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Chapter 1

Introduction: what is
complexity?

“There is all the difference in the world between knowing about and knowing how
to do” J. Evans, The History and Practice of Ancient Astronomy, 1997

1.1 Complexity is not simple

If turbulence is the graveyard of theories, then complexity is surely the tombstone of definitions.
Many books on complexity have been written, and the braver of their authors have attempted
to define complexity, with limited success. Being nowhere as courageous I have simply decided
not to try. Although complexity is the central topic of this book, I hereby pledge to steer clear
of any attempt to formally define it.

This difficulty in formally defining complexity is actually surprising, because we each have
our own intuitive definition of what is “complex” and what is not, and we can usually decide
pretty quickly if it is one or the other. To most people a Bartok string quartet “sounds”
complex, and a drawing by Escher “looks” complex. Such intuitive definitions can even take an
egocentric flavor, i.e., an Escher drawing is complex because “I could not draw it” or a Mozart
piano piece complex because “I could not play it”.

The many guises of complex systems to be encountered further in this book often involve
many (relatively) simple individual elements interacting locally with one another. This char-
acterization —it should definitely not be considered a definition— does capture a surprisingly
wide range of events, structures or phenomena occurring in the natural world, that most of
us would intuitively label as complex. It even applies to many artificial constructs and prod-
ucts of the human mind. While novels by Thomas Pynchon are typically replete with oddball
characters, events therein are for the most part constrained by the laws of physics and usually
follow a relatively straightforward timeline. What makes Pynchon’s novels complex is that
they involve many, many such characters interacting with one another. The complexity arises
not from the characters themselves, however singularly they may behave, but rather from their
mutual interactions over time. Likewise, many of Escher’s celebrated drawings' are based on
tiling of relatively simple pictorial elements, which undergo slow, gradual change across the
drawing. The complexity lies in the higher level patterns that arise globally from the mutual
relationship of the neighbouring pictorial units, which are themselves (relatively) simple.

Nice and fine perhaps, but turning this into a formal definition of complexity remains an open
challenge. One can turn the problem on its head by coming up instead with a definition of what
is not complex, i.e., a formal definition of “simple”. Again purely intuitive and/or egocentric
definitions are possible, such as “simple =my 5-year old could do this”. Like complexity,

1See http://www.mcescher.com/gallery/transformation-prints for reproductions of artwork by Maurits
Cornelis Escher.
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8 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

simplicity is to a good part in the eye of the beholder. I am a physicist by training and an
astrophysicist and teacher by trade; I am well aware that my own personal definition of what
is “simple” does not intersect fully with that of most people I know. Yet such divergences of
opinions are often grounded in the language use to describe and characterize a phenomenon.

Consider for example the game of billiard, known more colloquially as pool?. Even without
any formal knowledge of energy and momentum conservation, a beginner develops fairly rapidly
a good intuitive feel for how the cue ball should hit to propel a targeted numbered ball into a
nearby pocket; reliably executing the operation is what requires skill and practice. Now, armed
with Newton’s laws of motion, and knowing the positions of the pocket and two participating
balls, the needed impact point of the cue ball can be calculated to arbirarily high accuracy; the
practical problem posed by the production of the proper trajectory of the cue ball, of course,
remains... Whichever way one looks at it, the collision of two (perfectly spherical) billiard balls
is definitely simple, provided it takes place on a perfectly flat table.

If physical laws allow in principle the computation of the exact trajectories of two colliding
billiards balls, the same laws applied repeatedly should also allow generalization to many balls
colliding in turn with one another. Experience shows that the situation rapidly degrades as the
number of balls increases. I have not played billiard much, but still enough to state confidently
that upon starting the game, no single billiard break is ever exactly alike another, despite the
fact that the initial configuration of the 15 numbered balls (the “rack”) is always the same
and geometrically regular —close packing in a triangular shape. The unfolding of the break
depends not just on speed, trajectory angle and impact position of cue ball, but also on the
exact distances between each ball in the rack and whether one ball actually touches another,
i.e., on the exact position of each ball. For all practical purposes, the break is unpredictable,
because it exhibits extreme sensitivity to the initial conditions, even though the interaction
between any pair of colliding balls is simple and fully deterministic.

Is complexity then just a matter of sheer number ? If the definition of complexity is hiding
somewhere in the interactions between many basic elements, then at least from a modelling
point of view we may perhaps be in business. If the underlying physical laws are known,
computers nowadays allow us to simulate the evolution of systems made up of many, many
components, to a degree of accuracy presumably limited only by the number of significant
digits with which numbers are encoded in the computer’s memory. This “brute force” approach,
as straightforward as it may appear in principle, is plagued by many problems, some purely
practical but others more fundamental. Looking into these will prove useful to start better
pinning down what complexity is not.

1.2 Randomness is not complexity

If we are to seriously consider the brute force approach to the modelling of complex systems,
we first need to get a better feel for what is meant by “large number”. One simple (!) example
should suffice to quantify this important point.

Consider a medium-size classroom, say a 3 meter-high room with a 10 x 10 m floor. With
air density at p = 1.225kg m~2, this 300 m? volume contains 367 kg of Ny and Oy molecules,
adding up to some 10?® individual molecules. Written out long that number is

10000000000000000000000000000

It does not look so bad, but this is actually a very large number, even by astronomical standards;
just consider that the total number of stars in all galaxies within the visible universe is estimated
to be in the range 1022—102%. Another way to appreciate the sheer numerical magnitude of 10?8
is to reflect upon the fact that 10%® close-packed sand grains of diameter 0.25 mm — “medium-
grade sand” according to the ISO 14688 standard, but quality beach stuff nonetheless— would
cover the whole surface of the Earth, oceans included, with a sandy layer 1 kilometer thick.

2The reader unfamiliar with this game will find on the following Wikipedia page just enough information for
making sense the foregoing discussion: https://en.wikipedia.org/wiki/Eight-ball
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1.2. RANDOMNESS IS NOT COMPLEXITY 9

That is how many molecules we need to track —positions and velocities— to “simulate” air in
our classroom.

At this writing, the supercomputers with the largest memory can hold up to ~ 10 TB
= 10" B in RAM. Assuming 64 bit encoding of position and velocity components, each molecule
requires 48 B, so that at most 2 x 10'® molecules can be followed “in-RAM” 3. This is equivalent
to a cubic volume element of air smaller than a grain of very fine sand. We are a long way
from simulating air in our classroom, and let’s not even think about weather forecasting! This
is a frustrating situation: we know the physical laws governing the motion and interaction of
air molecules, but don’t have the computing power needed to apply them to our problem.

Now, back to reality. No one in his/her right mind would seriously advocate such a brute
force approach to atmospheric modelling, even if it were technically possible, and not only
because brute force is seldom the optimal modelling strategy. Simply put, complete detailed
knowledge of the state of motion of every single air molecule in our classroom is just not useful
in practice. When I walk into a classroom, I am typically interested in global measures such as
temperature, humidity level, and perhaps the concentration gradient of Magnum 45 aftershave
so as to pinpoint the location of the source and expell the offending emitter.

It is indeed possible to describe, understand and predict the behavior of gas mixtures such
as air, through the statistical definition of global measures based on the physical properties
of individual molecules and of the various forces governing their interactions. This statistical
approach stands as one of the great successes of nineteenth century physics. Once again a
simple example can illustrate this point.

The two panels atop Figure 1.1 display two different realizations of the spatially random
distribution of N = 300 particles within the unit square. Even though the horizontal and
vertical coordinates of each particles are randomly drawn from a uniform distribution in the
unit interval, the resulting spatial distributions are not spatially homogeneous, showing instead
clumps and holes, which is expected considering the relatively small number of particles in-
volved. Viewing these two distributions from a distance, the general look is the same, but
compared closely the two distributions differ completely in detail —not one single red particle
on the left is at exactly the same position as any single green particle on the right.

Consider now the following procedure: from the center of each unit square, draw a series of
concentric circles with increasing radii r; the particle number density (p, in units of particles
per unit area) can be computed by counting the number of particles within each such circle,
and dividing by its surface area 7r2. Mathematically this would be written as follows:

1 o 1 ifa? +y2 <r?,

plr) = 2 712::1 { 0 otherwise . (L)
Clearly as the radius r is made larger, more and more particles are contained within the
corresponding circles, making the sum in eq. (1.1) larger, but the area mr? also increases, so it
is not entirely clear a priori how the density will vary as the radius r increased. The bottom
panel of Figure 1.1 shows the results of this exercise, applied now to two realizations of not 300
but N = 107 particles again randomly distributed in the unit square. The statistically uniform
packing of N = 107 particles in the unit square implies a typical inter-particle distance of order
§ =~ 1/v/N ~ 0.0003 here. For radii r in eq. (1.1) of this order or smaller, the computed density
value is critically dependent on the exact position of individual particles, and for r < ¢ is it
quite possible that no particle is contained within the circle, leading to p = 0. This is what is
happening for the red curve on Fig. 1.1 up to r ~ 0.0001, while in the case of the distribution
associated with the green curve it just so happens that a clump of particles is located at the
center of the unit cube, leading to abnormally large values for the density even for radii smaller
than 0. Nonetheless, as 7 becomes much larger than J§, both curves converge to the expected
value p = 107 particles per unit area.

3Molecules also have so-called internal degrees of freedom, associated with vibrational and rotational excita-
tion, but for the sake of the present argument these complications can be safely ignored.
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Figure 1.1: Going from the microscopic to the macroscopic scale. The top panels show two
distinct random distributions of N = 300 particles on the unit square. The bottom panel
shows the result of using eq. (1.1) to calculate the particle density, based on a series of circles of
increasing radii, concentric and centered on the middle of the unit square, now for two distinct
random distributions of N = 107 particles. Note the logarithmic horizontal axis. The resulting
density curves differ completely for radii smaller than a few times the mean inter-particular
distance § = 0.0003, but converge to the expected value 107 particles per unit area for radii
much larger than this distance (see text).
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1.2. RANDOMNESS IS NOT COMPLEXITY 11

Figure 1.1 illustrates a feature that will be encountered repeatedly in subsequent chapters
of this book, namely scale separation. At the microscopic scale (looking at the top panels of
Fig. 1.1 up close) individual particles can be distinguished, and the description of the system
requires the specification of their positions, and eventually their velocities and internal states,
if any. In contrast, at the macroscopic scale (looking at the top panels of Fig. 1.1 from far
back), global properties can be defined that are independent of details at the microscopic scale.
Of course, if two systems are strictly identical at the microscopic level, their global properties
will also be the same. What is more interesting is when two systems differ at the microscopic
level, such as in the two top panels of Fig. 1.1, but have the same statistical properties (here x
and y coordinates uniformly distributed in unit interval); then their physical properties at the
macroscopic scale, such as density, will also be the same.

It is worth reflecting a bit more upon this whole argument, to fully appreciate under which
conditions global properties such as density can be meaningfully defined. Considering the
statistical nature of the system, one may be tempted to conclude that what matters most is
that N be large; but what do we mean by “large” ? Large with respect to what ? The crux is
really that a good separation of scale should exist between the microscopic and macroscopic.
The inter-particle distance ¢ (setting the microscopic scale) must be much smaller than the
macroscopic scale L at which global properties are defined; in other words, N should be large
enough so that § < L. The two vertical dashed lines on Figure 1.1 have been drawn to
indicate the scale boundaries of the microscopic and macroscopic regimes; the exact values of r
chosen are somewhat arbitrary, but a good separation of scale implies that these two boundaries
should be as far as possible from one another. In the case of air in our hypothetical classroom,
§ ~ 3 x 107%m, so that with a macroscopic length scale ~ 1m, scale separation is very well
satisfied.

What happens in the intermediate scale regime, i.e., between the two dashed lines on Fig. 1.1,
is an extremely interesting question. Typically, meaningful global properties cannot be defined,
and N is too large to be computationally tractable as a direct simulation. In closed thermo-
dynamic systems (such as air in our classroom), also lurking somewhere in this twilight zone
of sorts is the directionality of time: (elastic) collisions between any two molecules are entirely
time-reversible, but macroscopic behavior, such as the spread of olfactively unpleasant after-
shave molecules from their source, is not, even though it ultimately arises from time-reversible
collisions. Fascinating as this may be, it is a different story, so we should return to complexity
since this is complex enough already.

If large N and scale separation are necessary conditions for the meaningful definition of
macroscopic variables, they are not sufficient conditions. In generating the two top panels of
Fig. 1.1, particles are added one by one by drawing random numbers in the unit interval to set
their horizontal (z) and vertical coordinates (y). The generation of the (z,y) coordinates for
a given particle is entirely independent of the positions of particles already placed in the unit
square; particle positions are entirely uncorrelated. We will encounter repeatedly in subsequent
chapters situations where the “addition” of a particle to a system is entirely set by the locations
of particles already in the system. Particle positions are then strongly correlated, and through
these correlations complexity can persist at all scales up to the macroscopic.

To sum up the argument: while systems made up of many interacting elements may appear
quite complex at their microscopic scale, there are circumstances under which their behavior at
the macroscopic scale can be subsumed into a few global quantity for which simple evolutionary
rules can be constructed or inferred experimentally. The take-home message here is then the
following: although complex natural systems often involve a large number (relatively) simple
individual elements interacting locally with one another, not all systems made up of many
interacting elements exhibit complexity in the sense to be developed throughout this book.
The 10?® air molecules in our model classroom, depiste their astronomically large number and
ever occurring collisions with one another, collectively add up to a simple system.

naturalcomplexity.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal



12 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

1.3 Chaos is not complexity

Complex behavior can actually be generated in systems of very few interacting elements.
Chaotic dynamics is arguably the best known and most fascinating generator of such behavior,
and there is no doubt that patterns and structures produced by systems exhibiting chaotic
dynamics are “complex”; at least in the intuitive sense alluded to earlier.

Practically speaking, generators of chaotic dynamics can be quite simple indeed. The lo-
gistic map, a very simple model of population growth under limited carrying capacity of the
environment, provides an excellent case in point. Consider a biological specie with a yearly
reproduction cycle, and let x,, measure the population size at year n. Under the logistic model
of population growth the population size at year n + 1 is given by

Tpy1 = Axp(1 —xy) , n=0,1,2,.. (1.2)

where A is a positive constant, and z( is the initial population. Depending on the chosen
numerical value of A, the iterate sequence xg,x1,22,... can converge to zero, or to a fixed
value, or oscillate periodically, multiperiodically or aperiodically as a function of the iteration
number n. These behaviors are best visualized by constructing a bifurcation diagram, as on the
bottom left panel of Fig. 1.2 below. The idea is to plot successive values of x, produced with
a given value of A, excluding if needed the transient phase during which the initial value xq
converges to its final value or set of values, and repeating this process for progressively larger
values of A. Here for values of 1 < A < 3, the iterate sequences converges to a fixed non-zero
numerical value, which gradually increases with increasing A; this leads to a slanted line in the
bifurcation diagram, as successive values of z,, for a given A are all plotted atop on another.
Once A exceeds 3 the iterates alternate between two values, leading to a split into two branches
in the bifurcation diagram. Further increases of A lead to successive splittings of the various
branches, until the chaotic regime is reached, at which point the iterate z,, varies aperiodically.
This is a classical example of transition to chaos through a period-doubling cascade.

The bifurcation diagram for the logistic map is certainly complex in the vernacular sense
of the word; most people would certainly have a hard time drawing it with pencil and paper.
There is in fact much more to it than that. The series of nested closeups on Fig. 1.2 zoom in on
the end point of the period-doubling cascade, on a branch of the primary transition to chaos.
No matter the zooming level, the successive bifurcations have the same shape and topology.
This self-similarity is the hallmark of scale invariance, and marks the bifurcation diagram as a
fractal structure. We will have a lot more to say on scale invariance and fractals in subsequent
chapters, as these also arise in the many complex systems to be encountered throughout this
book.

Chaotic systems such as the logistic map also exhibit structural sensitivity, in the sense
that they can exhibit qualitative changes of behavior when control parameters —here the
numerical constant A— undergoes small variations. For example, in the case of the logistic
map, increasing A beyond the value 3.0 causes the iterate x,, to alternate below a low and high
value, whereas before it converged to a single numerical value. In the chaotic regime the map
is also characterized by sensitivity to initial condition, in that the numerical difference between
the z,,’s of two sequences differing by an infinitesimally small amount at n = 0 is amplified
exponentially in subsequent iterations.

Many complex systems to be encountered in the following chapters exhibit similar sensi-
tivities, but for entirely different reasons, usually associated with the existence of long range
correlations established within the system in the course of its prior evolution, through simple
and local interactions between their many constitutive elements. The cleanest examples of
chaotic systems, in contrast, involve a few elements (or degrees of freedom), subject to strong
nonlinear coupling. Although such chaotic system generate patterns and behavior that are
complex in the intuitive sense of the word, in and of themselves they are not complex in the
sense to be developed in this book.
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1.3. CHAOS IS NOT COMPLEXITY 13
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Figure 1.2: Bifurcation diagram for the logistic map (bottom left), as given by eq. (1.2). The
first bifurcation from the trivial solution x,, = 0 occurs at A = 1, off to the left on the horizontal
scale. The other three frames show successive nested closeups (red—blue—green) on the the
period doubling cascade to chaos.
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14 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

1.4 Open dissipative systems

One common feature of systems generating complexity is that they are open and dissipative.
Billiard can serve us well once again as providing a simple example of these notions. After a
billiard break, the moving balls eventually slow down to rest (with at least one hopefully falling
into a pocket in the process). This occurs because of kinetic energy loss due to friction on the
table’s carpet, and not-quite-elastic collisions with the table’s bumpers. The system jointly
defined by the moving balls is closed, because it is subjected to no energy input after the initial
break, and is dissipative because that energy is slowly lost to friction (and ultimately, heat)
until the system reaches its lowest energy equilibrium state: all balls at rest.

Imagine now that the billiard table in located inside a ship sailing a rough sea, so that the
table is ever slowly and more or less randomly tilted back and forth. Following the break, the
balls may slow down to some extent, but will not come to rest since they intermittently pick
up energy from the moving table. They will also sometimes temporarily lose kinetic energy,
of course, for example when finding themselves moving “uphill” due to an unfavorable tilt of
the table. But the point is that the balls will not stop moving (well, until they all end up in
pockets) no matter how long we wait. A player somehow unaware of the ship’s rock-and-roll
would undoubtedly wonder at the curiously curved trajectories and spontaneous acceleration
and decceleration of the moving billiard balls... and perhaps conclude that his/her seventh
Pina Colada was one too many.

In this seafaring billiard situation the equilibrium state is one where, on average, the table’s
motion injects energy into the system at the same rate as it gets dissipated into heat by friction.
The system is still dissipative but is now also open, in that it benefits from an input of energy
from an external source. At equilibrium, there is as much energy entering the system as is
being dissipated, but the equilibrium state is now more interesting: the balls are perpetually
moving and colliding, a consequence of energy moving through the system.

A most striking property of open dissipative system is their ability to generate large-scale
structures or patterns persisting far longer than the dynamical timescales governing the in-
teractions of microscopic constituents. A waterfall provides a particularly simple example; it
persists with its global shape unchanged for times much, much longer that the time taken by an
individual water molecule passing through it. As a physical object, the waterfall is obviously
“made up” of water molecules, but as a spatiotemporal structure the identity of its individual
water molecules is entirely irrelevant. Yet, block off the water supply upstream, and the water-
fall disappears on the (short) timescale it takes a water molecule to traverse it. The waterfall
persists as a structure only because water flows through it, i.e., the waterfall is an open system.

This line of argument carries over to systems far more intricate than a “simple” waterfall.
Consider for example the Earth’s climate; now that is certainly a complex system in any sense of
the word. Climate collects a very wide range of phenomena developing on an equally wide range
of spatial and temporal scales: the seasonal cycle, large-scale atmospheric wind patterns such as
the jet stream, oceanic currents, recurrent global patterns such as El Nino, tropical storms, down
in scales to thunderstorm and tornadoes, to name but a few. Solar radiative energy entering
the atmosphere from above is the energy source ultimately powering all these phenomena. Yet,
globally the Earth remains in thermal equilibrium, with as much energy absorbed on the dayside
than radiated back into space over its complete surface in the course of a day. Earth is an open
system, with solar energy flowing in and out. If the sun were to suddenly stop shining, the
pole-equator temperature gradient would vanish and all atmospheric and oceanic fluid motions
would inexorably grind to a halt, much like the billiard balls eventually do after a break on a
fixed table. Everything we call climate is just a temporary channelling of a small part of the
“input” solar radiative energy absorbed by Earth, all ultimately liberated as heat via viscous
dissipation and radiated back into space. The climate maintains its complexity, and generates
persistent large-scale weather patterns —the equivalent of our waterfall— by tapping into the
energy flowing through the Earth atmosphere, surface and oceans. Earth is an open dissipative
system on a very grand scale.

Most complex systems investigated in this book, although quite simple in comparison to
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Earth’s climate, are open dissipative systems in the same sense. They benefit from an outside
source of energy, and include one or more mechanisms allowing to evacuate energy at their
boundary or dissipate it internally (or both).

1.5 Natural complexity

Although I have wiggled away from formally defining complexity, considering the title of this
book I do owe it to the reader to at least clarify what I mean by natural complexity, and how
this relates to complexity in general.

Exquisitively complex phenomena can be produced in the laboratory under well-controlled
experimental conditions. Only in the field of physics, phase transitions and fluid instabilities
offer a number of truly spectacular examples. In contrast, the systems investigated throughout
this book are idealizations of naturally occurring phenomena characterized by the autonomous
generation of structures and patterns at macroscopic scales that are not directed or controlled
at the macroscopic level or by some agent external to the system, but arise instead “naturally”
from dynamical interactions at the microscopic level. This is one mouthful of a characterization,
but it does apply to natural phenomena as diverse as avalanches, earthquakes, solar flares,
epidemics, and ant colonies, to name but a few.

Each chapter in this book presents a simple (!) computational model of such natural complex
phenomena. That natural complexity can be studied using simple computer-based models may
read like a compounded contradiction in terms, but in fact it is not, and this relates to another
key word in this book’s title: modelling. In the sciences we make models —whether in the
form of mathematical equations, computer simulations, or laboratory experiments— in order
to isolate whatever phenomenon is of interest from secondary “details”, so as to facilitate our
understanding of the said phenomenon. A good model is seldom one which includes as much
detail as possible for the system under study, but is instead one just detailed enough to answer
our specific questions regarding the phenomenon of interest. Modelling is thus a bit of an art,
and it is entirely legitimate to construct distinct models of the same given phenomenon, each
ailming at understanding a distinct aspect.

To many a practicing geologist or epidemiologist, the claim that the very simple computa-
tional models developed in the following chapters have anything to do with real earthquakes or
real epidemics may well be deemed professionally offending, or at best dismissed as an infantile
nerdy joke. Such reactions are quite natural, considering that still today in most hard sci-
ences explanatory frameworks tend to be strongly reductionist, in the sense that explanations
of global behaviors are sought and formulated preferentially in terms of laws operating at the
microscopic level. My own field of inquiry, physics, has in fact pretty much set the standard for
this approach. In contrast, in the many complex systems modeled in this book, great liberty is
often taken in replacing the physically correct laws by largely ad hoc rules more or less loosely
inspired by the real thing. In part because of this great simplification at the microscopic level,
what these models do manage to capture is the wide separation of scales often inherent to
the natural systems or phenomena under consideration. Such models should be thus consid-
ered as complementary to conventional approaches based on rigourous ab initio formulation of
microscopic laws, which often end up severely limited in the range of scales they can capture.

This apology of simple models is also motivated, albeit indirectly, by my pledge not to
formally define complexity. Instead, you will have to develop your own intuitive understanding
of it, and if along the way you come up with your own convincing formal definition of complexity,
all the better! To pick up on the quote opening this introductory chapter, there is all the
difference in the world between theory and practice, between knowledge and know-how. This
finally takes us to the final key word of this book’s title: handbook. This is a “how-to” book;
its practical aim is to provide material and guidance to allow you to learn about complexity
through hands-on experimentation with complex systems. This will mean coding and running
computer programs, and analyzing and plotting their output.
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16 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

1.6 About the computer programs listed in this book

My favorite book on magnetohydrodynamics opens its preface with the statement: “Prefaces
are rarely inspiring and, one suspects, seldom read”. I very much suspect so as well, and
consequently opted to close this introductory chapter with what would conventionally be preface
material, to increase the probability that it actually be read because it is really important stuff.

If this book is to be a useful learning tool, it is essential for the reader to code up and
run programs, and modify them to carry out at least some of the additional exercises and
computational explorations proposed a the end of each chapter, including at least a few of the
Grand Challenges. Having for many years taught introductory computational physics to the
first-semester physics cohort at my home institution, I realize full well that this can be quite
a tall order for those without prior programming experience, and, at first, a major obstacle
to learning. Accordingly, in developing the models and computer codes listed throughout this
book I have opted to retain the same design principle as in the aforementioned introductory
class:

1. No programming prerequisites; detailed explanations accompany every computer code
listed.

2. The code listings for all models introduced in every chapter must fit on one page, some-
times including basic graphics commands (a single exceptions to this rule does occur, in
chapter 10).

3. All computer programs listed use only the most basic coding elements, common to all
computing languages: arrays, loops, conditional statements, and functions. Appendix A
provides a description of these basic coding elements and their syntax.

4. Computing language-specific capabilities, including pre-defined high-level functions, are
avoided to the largest extent possible.

5. Clarity and ease of understanding of the codes themselves is given precedence over run-
time performance or “coding elegance”.

Each chapter provides a complete code listing (excluding plotting/graphics commands) al-
lowing to reproduce simulation results presented therein. These are provided in the program-
ming language Python, even though most of the simulation codes introduced throughout this
book were originally designed in the C or IDL programming languages. The use of Python
is motivated primarily by (1) its availability as free-of-charge, public domain software, with
excellent on-line documentation, (2) the availability of outstanding public-domain plotting and
graphics libraries, and (3) its rising “standard” status for university-level teaching. Regarding
this latter point, by now I am an old enough monkey to have seen many such pedagogical
computing language rise and fall (how many out there remember BASIC ? APL ? PASCAL
?...). However, in view of the third design principle above, the choice of a computing language
should be largely irrelevant, as the source codes? should be easy to “translate” into any other
computing languages. This wishful expectation was subjected to a real-life reverse test in the
summer of 2015: two physics undergraduates in my department worked their way through an
early, C-version of this book, recoding everything in Python. Both had some prior coding
experience in C, but not in Python; nonetheless few difficulties were encountered with the
translation process.

The above design principle also have significant drawbacks. The simulation codes are usually
very sub-optimal from the point of view of run-time speed. Readers with prior programming
experience, or wishing to develop it, will find many hints for more efficient computational
implementations in some of the exercises included at the end of each chapter. Moreover,

4Strictly speaking what I refer to here as “source codes” should be called “scripts”, since Python instructions
are “interpreted”, rather than compiled and executed. While well aware of the distinction, throughout this book
I opted to retain the more familiar descriptor “source code”.
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the codes are often not as elegant as they could be from the programming point of view.
Experienced programmers will undoubtedly find some have a FORTRAN-esque flavor, but so
be it. Likewise, seasoned Python programmers may be shocked by the extremely sparse use
of higher-level Python library functions, which in many cases could have greatly shortened the
coding and/or increase run-time execution speed. Again, this simply reflects the fact that code
portability and clarity have been given precedence.

A more significant but unfortunately unavoidable consequence of my self-imposed require-
ment to keep computational (as well as mathematical and physical) prerequisites to a minimum
is that some fascinating natural complex phenomenon had to be excluded from consideration
in this book; most notably perhaps, anything related to fluid turbulence or magnetohydrody-
namics, but also some specific natural phenomena such as solar flares, geomagnetic substorms,
Earth’s climate, or the workings of the immune system, or of the human brain, if we want to
think really complex. Nonetheless, a reader working diligently through the book and at least
some of the suggested computational explorations should come out well-equipped to engage in
the study and modelling of these and other fascinating instances of natural complexity.

1.7 Suggested further readings

Countless books on complexity have been published in the last quarter century, at all levels
of complexity (both mathematically and conceptually speaking!). Among the many available
non-mathematical presentations of the topic, the following early best-seller still offers a very
good and insightful broad introduction to the topic:

Gell-Mann, M., The quark and the Jaguar, W.H. Freeman (1994).

For something at a similar introductory level but covering more recent developments in the
field, see e.g.:

Mitchell, M., Complexity: a guided tour, Oxford University Press (2009).
At a more technical level, the following remains a must-read:
Kauffman, S.A., The Origin of Order, Oxford University Press (1993).

With regards to natural complexity and the hands-on, computational approach to the topic, I
found much inspiration in and learned an awful lot from:

Flake, G.W., The computational beauty of Nature, MIT Press (1998).

Complexity is covered in chapters 15 through 19, but the book is well worth reading cover to
cover. In the same vein, the following is a classic not to be missed:

Resnick, M., Turtles, termites and traffic jams, MIT Press (1994).

Statistical physics and thermodynamics is a standard part of the physics cursus. In my depart-
ment the topic is currently taught using the following textbook:

Reif, F., Fundamentals of Statistical and thermal physics, reprint Waveland Press (2009).

Good non-mathematical presentations aimed at a broader audience are however far harder to
find. Of the few I know, I would recommend chapter 4 in

Gamow, G., The great physicists from Galileo to Einstein, 1961, Dover reprint (1988).

The literature on chaos and chaotic dynamics is also immense. At the non-technical level, see
for example:

Gleick, J. Chaos: making a new science, Viking Books (1987).
For readers fluent in calculus, I would recommend:

Mullin, T., (ed.) The Nature of Chaos, Oxford University Press (1993),
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18 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

Hilborn, R.C., Chaos and Nonliner Dynamics, 2"%ed., Oxford University Press (2000).

The logistic model of population growth is discussed in detail in chapters 5 and 6 of Mullin’s
book. The functional and structural relationship between chaos and complexity remains a
nebulous affair. Those interested in the topic can find food for thought in:

Prigogine, 1., and Stengers, 1., Order out of Chaos, Bantam Books (1984),
Kaneko, K., Chaos as a source of Complexity and Diversity in Evolution, in Artificial Life,
ed. C. Langton, MIT Press (1995).

The M.C. Escher foundation maintains a wonderful Web site, where reproductions of Escher’s
art can be viewed and enjoyed; see

http://www.mcescher.com/
Anyone interested in Escher’s use of symmetry and transformations should not miss
Schattschneider, D., Escher: Visions of Symmetry, 2°¢ ed., Abrams (2003).

Finally, next time you have a good block of reading time in front of you and are in the mood
for a mind-bending journey into complexity in the broadest sense of the word, fasten your seat
belts and dive into

Hofstadter, D.R., Gédel, Escher, Bach, Basic Books (1979).
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Chapter 2

Iterated growth

The bewildering array of complex shapes and forms encountered in the natural world, from
tiny crystals to living organisms, often results from a growth process driven by the repeated
action of simple “rules”. In this chapter we examine this general idea in the specific context of
cellular automata, (hereafter abbreviated CA), which are arguably the simplest type of com-
puter programs conceivable. Yet they can sometimes exhibit behaviors that, by any standard,
can only be described as extremely complex.

Cellular automata also exemplify, in a straightforward computational context, a recurring
theme that runs through all instances of natural complexity to be encountered in this book:
simple rules can produce complex global “patterns” that cannot be inferred or predicted even
when a complete, a priori knowledge of these rules is at hand.

2.1 Cellular automata in one spatial dimension

Imagine a one-dimensional array of contiguous cells, sequentially numbered by an index j
starting at j = 0 for the leftmost cell. Each cell can be “painted” either white or black, with
the rule for updating the j* cell depending only on its current color and those of the two
neighbouring cells at positions j —1 and j+4 1. Consider now the following graphical procedure:
at each iteration, the CA looks like a linear array of cells that are either black or white. If
we now stack successive snapshots of this row of cells below one another, we obtain a two
dimensional spatiotemporal picture of the CA’s evolution, in the form of a (black & white)
pixellized image such as formed on the CCD of a digital camera, except that each successive
row of pixels captures an iteration of the growth process, rather than the vertical dimension of
a truly two-dimensional image.

The simple question is then: starting from some given initial pattern of white and black
cells, how will the array evolve in response to the repeated application of the update rule to
every cell of the array 7 As a first example, consider the following very simple CA rule:

e First Rule: Cell j becomes (or stays) black if one or more of the neighbour triad
[7 — 1,4,7 + 1] is black; otherwise it becomes (or stays) white.

The top panel of Figure 2.1 shows the first 20 iterations of a CA abiding to this rule, starting
from a single black cell in the middle of an otherwise all-white array. On this spatiotemporal
diagram, the sideways growth of the CA translates into a black triangular shape expanding by
one cell per iteration from the single initial black cell. Starting again from a single black cell
but adopting instead the following, equally simple second rule:

e Second Rule: Cell j becomes (or stays) black if either or both of its neighbours j — 1
and j + 1 are black; otherwise it stays (or becomes) white.

yields the pattern plotted on the bottom panel Figure 2.1. The global shape is triangular again,
but now the interior is a checkerboard pattern of white and black cell alternating regularly in
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Figure 2.1: The first 20 iterations of a 1D cellular automaton abiding to the first (top) and
second (bottom) update rules introduced in the text, in both cases starting from a single black
cell at the center of the array (iteration 0, on top). The horizontal direction is the “spatial”
dimension of the 1D CA, and time/iteration runs downwards.

both the spatial and temporal dimensions. With just a bit of thinking, these two patterns could
certainly have been expected on the basis of the above two rules.

But is it always the case that simple CA rules lead to such simple, predictable spatiotemporal
patterns? Consider now the following update rule:

e Third Rule: Cell j becomes (or stays) black if one and only one of its two neighbours
j—1or j+1is black; otherwise it stays (or becomes) white.

This is again a pretty simple update rule, certainly as simple as our first and second rules. The
top panel of Figure 2.2 shows the pattern resulting from the application of this rule to the same
initial condition as before, namely a single black cell at array center. The globally triangular
shape of the structure is again there, but the pattern materializing within the structure is
no longer so simple. Many white cells remain, clustered in inverted triangles of varing sizes
but organized in an ordered fashion. This occurs because our third rule implies that once the
cells have reached an alternating pattern of white/black across the full width of the growing
structure, as on iterations 3, 7, and 15 here, the rule forces the CA to reverts to all-white
at the next iteration, leaving only two black cells at its right and left extremities. Right/left
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Figure 2.2: The top panel is identical in format to Figure 2.1, but shows now the structure
produced after 20 iterations by the third CA update rules introduced in the text. The bottom
panel shows the same CA, now pushed to 512 iterations, with cell boundaries removed for
clarity.

symmetrical growth of new black cells then resumes from these points, replicating at each end
the triangular fanning pattern produced initially from the single original black cell. Growth
thus proceeds as a sequence of successive branching, fanning out, and extinction in the interior.

The bottom panel of Figure 2.2 displays 512 iterations of the same CA as on the top panel,
with the cell boundaries now omitted. Comparing the top and bottom panels highlights the
fundamental difference between the “microscopic” and “macroscopic” views of the structure.
On the scale at which the CA is operating, namely triad of neighbouring cells, a cell is either
white or black. On this microscopic scale the more conspicuous pattern to be noticed on the top
panel of Fig. 2.2 is that blacks cells always have white cells for neighbours at right, left, up and
down, but no so such “checkerboard” constraint applies to white cells (unlike on the bottom
panel of Fig. 2.1). At the macroscopic level, on the other hand, the immediate perception is
one of recursively nested white triangles. In fact, the macroscopic triangular structure can be
considered as being made from three scaled-down copies of itself, touching at their vertices;
each of these three copies, in turn, is made up of three scaled-down copies of itself, and so on
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down to the “microscopic” scale of the individual cells®.

This type of recursive nesting is a hallmark of self-similarity, and flags the structure as
a fractal. For now you may just think of this concept as capturing the fact that successive
zooms on a small part of a structure always reveal the same geometrical pattern, like with the
bifurcation diagram for the logistic map encountered in chapter 1 (cf. Fig. 1.2). More generally,
self-similarity is a characteristic feature of many complex systems, and will be encountered
again and again throughout this book.

Consider finally a last, fourth CA rule, hardly more complicated than our third:

e Fourth Rule: Cell j becomes (or stays) black if one and only one of the triad [j—1, 7, j+1]
is black, or if only j and j + 1 are black; otherwise it stays (or becomes) white.

This rule differs from the previous three in that it now embodies a directional bias, being
asymmetrical with respect to the central cell j: a white cell at 7 — 1 and blacks cells at j and
7+ 1 will leave j black at the next iteration, but the mirror configuration, j — 1 and j black and
7 + 1 white, will turn j white. The top panel of Figure 2.3 shows the first 20 iterations of this
CA, as usual (by now) starting from a single black cell. The expected symmetrical triangular
shape is there again, but now the interior pattern lacks mirror symmetry, not surprisingly so
perhaps, considering that our fourth rule itself lacks right/left symmetry. But there is more
to it than that. Upon closer examination one also realizes that the left side of the structure
shows some regularities, whereas the right half appears not to. This impression is spectacularly
confirmed upon pushing the CA to a much larger number of iterations (bottom panel). On the
right the pattern appears globally random. As with our third rule, inverted white triangles of
varying sizes are generated in the course of the evolution, but their spatial distribution is quite
irregular and does not abide to any obvious recursive nesting pattern. On the left, in contrast,
the pattern is far more regular, with well-defined structures of varying periodicities recurring
along diagonal lines running parallel to the left boundary of the structure.

With eight possible three-cell permutations of two possible states (white/black, or 0/1, or
whatever) and evolution rules based on three contiguous cells (the cell itself plus its right and
left neighbours), there exist 256 possible distinct evolutionary rules®. Even if always starting
from a single active cell, as on Fig. 2.1, these various rules lead to a staggering array of patterns,
going from triangular wedges, repeating checkerboard or stripe patterns, simple or not-so-simple
patterns propagating at various angles, nested patterns (as on Fig. 2.2), mixtures of order and
disorder (as on Fig. 2.3), all the way to complete randomness. You get to explore some of these
in one of the suggested computational exercises proposed at the end of this chapter.

These 256 1D CA rules can be divided fairly unambiguously into four classes, according to
general properties of the end state they lead to that are independent of the initial condition?.

e Class I CAs evolve to a stationary state; our First rule (Fig. 2.1) offers an example,
although keep in mind that the stationary state need not be all-black or all-white.

I This structure belongs to a class of geomerical objects known as Sierpinski triangles. It can be constructed by
a number of alternate geometrical procedures. The simplest consists in drawing a first triangle, then partitioning
it into 4 smaller triangles by tracing three straight line segments joining the edge centers, then repeating this
process for the three outer triangles so produced, and so on. The CA, in contrast, generates the same macroscopic
structure via a directional iterative spatiotemporal growth process.

2Describing CA rules in words, as done so far, can rapidly becomes quite awkward. A much superior and
compact description can be made using a 8-bit binary string, with each bit giving the update (black= 0 and
white= 1, say) associated with one of the eight possible permutations of black/white on three cells. As a bonus,
interpreting each such string as a binary coding of an integer yields a number ranging from 0 to 255, which then
uniquely labels each possible rule. Chapter 3 of the book by Wolfram cited in the bibliography describes this
procedure in detail. Under this numbering scheme the four rules introduced above are numbered 254, 250, 90,
and 30, respectively.

3The classification is best established through the use of a random initial condition where every cell in the
initial state is randomly assigned white or black with equal probability. In such a situation it is also necessary
to introduce periodic boundary conditions, as if the 1D CA were in fact defined on a closed ring: the last,
rightmost cell acts as the left neighbour of the first, leftmost cell; and vice-versa.
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Figure 2.3: Identical in format to Figure 2.2, but now for the fourth CA update rule introduced
in the text.

e Class II CAs evolve into a periodic configuration, where each cell repeatedly cycles through
the same set of states (which may differ from one cell to the next). Our second rule is a
particularly simple examplar of this class.

e Class III CAs evolve into a non-periodic configuration. Even though Figure 2.2 looks
quite regular, our third rule belongs in fact to this class, as you get to verify in one of the
computational exercises suggested at the end of this chapter.

e Class IV CAs collect everything else that does not fit into the first three classes; they are
also, in some sense, the more interesting rules, in that they yield configurations that are
neither stationary, periodic, nor completely aperiodic.

Figure 2.4 gives a minimal source code in the Python programming language for running the
1D two-state CA of this section, with a value zero for white cells and one for black cells. The CA
evolution is stored in the 2D array image, the first dimension corresponding to time/iteration,
and the second to the spatial extent of the CA (line 8). This code uses a single black cell at lattice
center for initial condition (line 9), and is set up to run the third rule introduced above. The
condition “one and only one of the nearest neighbours being black” is evaluated by summing the
corresponding numerical values of the cells (line 14); if the sum is one, then node j turns black
at the next iteration (value “1” in array image, line 15), otherwise remaines white (initialized
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# 1D 2-STATES CELLULAR AUTOMATON
import numpy as np
import matplotlib.pyplot as plt

# _________________________________________________________________________
N=129 # Size of 1D CA
n_iter=64 # Number of iterations
# _________________________________________________________________________
image=np.zeros([n_iter,N],dtype=’int’) # Initialize lattice to white
image [0,N/2]=1 # But set central node to black
for iterate in range(l,n_iter): # Iteration loop
for j in range(1,N-1): # Lattice loop
if imagel[iterate-1,j+1]+image[iterate-1,j-1] == 1: # Third rule
image[iterate,jl=1 # Turn node black

# End of lattice loop

image[iterate,0]=image[iterate,N-2] # Enforce periodicity
image[iterate,N-1]=image[iterate,1]
# End of iteration loop

plt.imshow(image,interpolation="nearest") # Display structure
plt.show()
# END

Figure 2.4: A minimal source code in the Python programming language for the one-dimensional
CA introduced in this section. As with all Python codes given in this book, the Python numpy
library is used. The numpy function np.zeros() generates an array of whatever size given to
it as argument and fills it with values zero; here a 2D array of size n_iterxN, through the
argument [n_iter,N]. The code given here operates according to the third CA rule introduced
in the text.

value “0”). Periodicity is enforced in the spatial direction (lines 18-19; see §D.2 for further
detail on this). Upon completion of the CA’s evolution over the preset number of iterations,
the structure produced is displayed using the imshow () function from the matplotlib.pyplot
graphics library (lines 22-23).

2.2 Cellular automata in two spatial dimensions

Cellular automata are readily generalized to two (or more) spatial dimensions, but the various
possible lattice geometries open yet another dimension (figuratively speaking!) to the specifi-
cation of the CA and its update rules. It will prove useful to adopt an alternate but entirely
equivalent formulation of CA based on a lattice of interconnected nodes, conceptually equiva-
lent to the center of cells on Fig. 2.1-2.3. Figure 2.5 illustrates the idea, for different types of
two-dimensional lattices using different connectivities between neighbouring nodes.

On Cartesian lattices in two spatial dimensions (panels A and B), connectivity typically
involves either only the 4 nearest neighbours (in red) at right/left/top/down of a given node
(in black), or also the four neighbours along the two diagonals (panel B)*. Anisotropic connec-

4The top/bottom /right /left 4-neighbour connectivity on a Cartesian lattice is sometimes referred to the von
Neumann neighbourhood, and the 8-neighbour connectivity as the Moore neighbourhood. See §D.1 for more on
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Figure 2.5: Example of some lattices and associated nodal connectivities, as indicated by the
line segments connecting the central black node to its nearest-neighours in red. The meaning
of orange- and yellow-colored nodes in (B) and (D) will be elucidated further below.

tivities, as on panel C, can be reinterpreted as changes in lattice geometry; upon introducing
a horizontal displacement of half an internodal distance per row and compressing vertically by
a factor sin(7/3) ~ 0.866, as shown on panel D, one obtains a regular triangular lattice with
6-neighbour connectivity. From the point of view of CA evolutionary rules, the two lattices
in C and D are topologically and operationally equivalent. What is interesting in practice
is that whether triangular or cartesian, these lattices can all be conveniently stored as two-
dimensional arrays in the computer’s memory, and the “true” geometry becomes set by the
assumed connectivity.
We first restrict ourselves to the following very simple 2D CA rule:

e A node becomes active if one and only one of its neighbours nodes is also active.

Note that such a rule has no directional bias other than that imposed by the lattice geometry
and connectivity: any one active node will do. However, a noteworthy difference with the 1D
CA rules considered previously is that here, once activated a node remains activated throughout
the remainder of the iterative process. Nonetheless, as far as rules go, this is probably about as
simple as it could get in this context. Figure 2.6 lists a minimalistic Python source code for this
automaton, defined on a triangular lattice with 6-neighbour connectivity. Note the following:

1. The code is structured as an outer temporal loop running a preset number of temporal it-
erations n_iter (lines 16-28), inside of which two nested loops over each lattice dimension

these matters.
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26 CHAPTER 2. ITERATED GROWTH

# 2D 2-STATES CELULAR AUTOMATON ON TRIANGULAR LATTICE
import numpy as np
import matplotlib.pyplot as plt

# ___________________________________________________________________________
N=24 # Size of 2D CA

n_iter=10 # Number of iterations
n_neighbour=6 # Number of connected neighbours
# ___________________________________________________________________________
dx=np.array([ 1, 0,1,-1,0,-1]) # nearest neighbour template
dy=np.array([-1,-1,0, 1,1, 0])

image=np.zeros ([N,N],dtype=’int’) # Initialize lattice to white...
image[N//2,N//2]=1 # ...except central node to black
plt.scatter(N//2,N//2) # Set up plot, with central node

plt.axis([0,N,0,N])
plt.axes() .set_aspect(’equal’)

for iteration in range(l,n_iter): # Iteration loop
update=np.zeros([N,N],dtype=’int’) # Set/reset evolution array
for i in range(1,N-1): # Lattice loops
for j in range(1,N-1):
cumul=0

for k in range(0,n_neighbour): # Loop over nearest-neighbour
cumul+=image [i+dx [k] , j+dy [k]]
if image[i,j]==0 and cumul==1: # Only one active neighbour
update[i,jl=1 # Activate node
plt.scatter(j+(i-N//2)/2.,N//2+0.866%(i-N//2)) # Plot node
# End of lattice loops

image+=update # Synchronous update of CA
# End of iteration loop

plt.show() # Display structure
# END

Figure 2.6: A source code in the Python programming language for a two-dimensional CA
defined over a triangular lattice with 6-neighbour connectivity. This is a minimal implemen-
tation, emphasizing conceptual clarity over programming elegance, code length, or run-time
speed. The various matplotlib instructions (lines 13-15, 27 and 33) display the final struc-
ture, with activated nodes shifted horizontally and compressed vertically (line 27) so as to
correctly display the structure in physical space, as on Fig. 2.7.
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2.3. A ZOO OF 2D STRUCTURES FROM SIMPLE RULES 27

(lines 20-21) carry out the activation test.

2. The connectivity is enforced through the use of the 1D template arrays dx and dy in
which are hardwired the relative location, measured in lattice increments, of the connected
neighbours (lines 9-10); these 1D arrays are then used to access the 2D array image which
stores the state of the CA proper (lines 23-24).

3. If a cell is to become active at the next iteration, its new state is temporarily stored
in the 2D work array update (line 26), which is reset to zero at the beginning of each
temporal iteration (line 18); only once all nodes have been tested is the lattice array
image updated (line 30). This synchronous update is necessary, otherwise the lattice
update would depend on the order in which nodes are tested in the first set of lattice
loops, thus introducing an undesirable spatial bias that would distort growth.

Consider now growth beginning from a single occupied node (the “seed”) at the center of
a triangular lattice. The first three steps of the iterated growth process are illustrated via the
color-coding of lattice nodes on Fig. 2.5D. Starting from a single active node, the next iteration
is a hexagonal ring of 6 active nodes (in red) surrounding the original active node (in black). At
the next iteration only the six nodes colored in orange abide to the 1-neighbour-only activation
rule, but on the following iteration each of these 6 “branches” will generate an arc-shaped clump
of 3 active nodes (in yellow) at its extremity. Figure 2.7 picks up the growth at iteration 5 (top
left), with subsequent frames plotted at a cadence of 3 iterations. As the six “spines” grow
radially outwards, the faces of the growing structure eventually fill inwards from the corners,
until a hexagonal shape is produced; from that point on growth can only pick up again at the
six corners, and later towards the centers of the faces, eventually adding another “layer” to the
growing structure. The broken concentric white hexagons within the structure plotted in the
bottom right corner of Fig. 2.7 are the imprint of this layered growth process. Evidently, here
the 6-fold symmetry of the connectivity remains reflected in the global, “macroscopic” shape of
the growing structure; this could perhaps have been expected, but certainly not the intricacies
of details produced within the structure itself. In fact there is much more to these details than
meets the eye; step back a bit to view the bottom right structure from a distance, and it will be
hardly distinguishable from the middle left structure viewed at normal reading distance. This
is again an indication of self-similarity.

All this being said, looking at Figure 2.7 the first thing that comes to mind is of course:
snowflakes! It might appear ludicrous to suggest that our very artificial computational setup
—triangular lattice, neighbour-based growth rule, etc— has anything to do with the “natural”
growth of snowflakes, but we will have occasions to revisit this issue in due time.

A similar 2D CA simulation can be run on a Cartesian lattice with 8-neighbour connectivity,
starting again with a single active node at lattice center. All that is needed is to append two
elements to the stencil arrays dx and dy in the code listed on Fig. 2.6. The first four steps of the
growth process are again indicated by the nodal color coding on Fig. 2.5B. The first iteration
produces a 3 x 3 block of active nodes but at the next iteration our one-neighbour rule makes
growth possible only along diagonals quartering this 3 x 3 block (orange nodes). The next
iteration (yellow nodes) generate a 5-node 90-degree wedge about each of the four extrusions
generated at the preceding iteration; except for the 4-fold symmetry, this is essentially the same
growth pattern observed in 6-fold symmetry on the triangular lattice (Fig. 2.5D). Figure 2.8
picks up the growth process at iteration 5, and subsequent frames are plotted on a 3-iteration
cadence, as on Fig. 2.7. Growth now proceeds from the corners of the squares, which spawn
more squares at their corners, and so on as the structure keeps growing, once again in a self-
similar fashion.

2.3 A zoo of 2D structures from simple rules

We henceforth restrict ourselves to a Cartesian lattice with 8-neighbours connectivity, and
introduce a generalized 8-neighbour activation rule as follows: a node becomes active if either
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28 CHAPTER 2. ITERATED GROWTH

Figure 2.7: Structure growth generated by the 2D cellular automaton with the simple one-
neighbour rule on an hexagonal, 6-neighbour lattice. The top left image shows the structure
after 5 iterations, and the other images display the subsequent evolution on a 3-iteration ca-
dence, the growth sequence being obvious. In the notation of §2.3 this rule is written as (1) + 1.

ny or ng neighbouring nodes are active; We also include in the rule the number s of “seed”
active nodes used to initialize the growth process. We write all this as:

(n1,n2) +s 1<ny,ny <8, ny < ng . (2.1)

A specific example will likely help more than further explanations: the rule (1,5) + 1 means
that we start from one active node (s = 1); a node becomes active if either 1 or 5 neighbouring
nodes are active; and remains inactive otherwise, namely if it has either 0, 2, 3, 4, 6, 7 or 8
active neighbours. Once again, no directional bias is introduced, as it does not matter where
the 5 active nodes (say) are located in the 8-node group of neighbouring nodes. Under this
notation, the rules used to grow the structure on Fig. 2.7 would be written as (1) + 1.

Figure 2.9 shows a sample of structures grown using various such rules, as labeled. The
variety of structures produced even by this narrow subset of rules is quite staggering, including
again self-similarity, mixture of order and disorder, compact structures porous or solid, etc.
Some rules, such as (3,6) + 5, do not even generate regular outward growth, as extrusions fold
back inward to fill deep crevices left open in earlier phases of the iterated growth process.

Staring as these and other structures generated by other specific incarnation of the 2-member
rule (2.1), one is naturally tempted to extract some general trends; for example, Rules beginning
with “1” produce squares that grow by spawning more squares at their corners, in a manner
qualitatively similar to the basic (1) + 1 rule; the numerical choice for ny affects primarily the
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Figure 2.8: Structure generated by the 2D cellular automaton with the simple rule (1) 41, now
on a cartesian, 8-neighbour lattice. The top left image shows the structure after 5 iterations,
and the other images display the subsequent evolution on a 3-iteration cadence, the growth
sequence being again obvious.

internal pattern. Rules beginning with a “2’, on the other hand, produce diamonds-shaped
structures, with ordered and disordered internal regions, growing along their 4 approximately
linear faces; the numerical choice for ns affects mostly the relative importance of ordered and
disordered regions in the interior. Rules with a “3” produce compact structures, sometimes solid
sometimes porous, with various patterns of symmetry about vertical, horizontal or diagonal axes
present at the global scale. Now, if you find this convincing on the basis of Fig. 2.9, try running
a simulation for rule (3,7) 4+ 5 and reconsider your position!

The overall conclusion of our relatively limited explorations of two-dimensional CA remains
the same as with the one-dimensional CA considered previously: simple, microscopic growth
rules can produce macroscopic structures ranging from highly regular to highly “complex”, and
very, very few of these structures could have been anticipated knowing only the lattice geometry
and the growth rules.
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(1.2)+1 | T (1.3)+1 " 1)+t

(3,4)+3 (3,5)+7 (3,6)+5

Figure 2.9: A zoo of structures grown by the 2D cellular automaton on a cartesian 8-neighbour
lattice operating under a variety of rules, as labeled. All automata executed over 100 iterations,
except for the bottom three, for which 200 iterations were executed.

2.4 Agents, ants and highways

In the “classical” CAs considered thus far, the active elements are the lattice nodes themselves,
and so are fixed in space by definition. Another mechanism for iterated growth involves active
elements moving on and interacting with the lattice (and/or with each other), according once
again to set rules. Henceforth, such active elements will be defined as “Agents”. For example,
an agent known as an “ant” moves and operates on a lattice as follows, from one iteration to
the next:

e Move forward;
e If standing on a white node, paint it black and turn right by 90 degrees;

e If standing on a black node, paint it a whiter shade of pale (meaning white) and turn left
by 90 degrees;

These are pretty simple behavioral rules, yet they hold surprises in stock for us.
Figure 2.10 gives a simple numerical implementation of these behavioral rules. As with most
codes listed throughout this book, logical clarity and readability have been given precedence
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over programming elegance, code length, or run-time speed, and computing language-specific
capabilities are systematically avoided. Note the following:

1. The code is again structured as an outer temporal loop running a preset number of
temporal iterations n_iter (starting on line 15).

2. The two arrays x_step and y_step store the z- and y-increments associated with the four
possible displacements, in the order down, left, up, right (lines 8-9). These are used to
update the ant’s position on the lattice (ix, iy) as per the ant’s direction, stored in the
variable direction. Under this ordering convention, turning right requires incrementing
direction by +1 (line 24), and left by —1 (line 28).

3. The modulus operator “%” is used to enforce periodicity for the ant’s position (lines 19—
20) and stepping direction (lines 25 and 29). The instruction a % b returns the remainer
of the division of a by b, e.g., 7%3 = 1, 2%3 = 2, 3%3 = 0. See §A.3 for more on the use
of the modulus operator in Python.

4. The change in the lattice state at the ant’s position is first calculated (variable update)
and the lattice updated (line 31) only once the if...else construct is exited. This is needed
because the lattice state at the ant’s position sets the operating condition of this logical
structure, so changing its value within its blocks of instructions is definitely not a good
idea in most programming languages.

The top panel on Figure 2.11 shows the structure built by a single ant moving on a 300 x 300
lattice, starting at the location marked by the red dot, and initially pointing North (top of the
page). The initial state of the lattice is all-white nodes. These are the parameter setting
and initial conditions implemented in the code listed in Fig. 2.10. The first few thousands of
iterations, shown in the inset framed in red, produce if not a strictly random, at least highly
disordered clump of white and black nodes. But after a bit more than 10000 time steps, a
switch to a different behavior takes place. The ant now executes a periodic series of steps,
involving a lot of backtracking but also a net drift velocity along a diagonal with respect to
the lines of the Cartesian lattice, leaving behind in its trail a highly ordered, spatially periodic
pattern of white and black nodes (see green inset). This behavior has been dubbed “highway
building”, and it could hardly have been expected on the basis of the ant’s simple behavioral
rules. Highway building always proceeds along 45 degree diagonals, and once started would go
on forever on an infinite size lattice. The fact that the highway points here to the South-East
on Fig. 2.11 is determined by the initial condition: all-white nodes and the ant pointing North.

In practice simulations such as on Fig. 2.11 are carried out on a finite size lattice, on which
horizontal and vertical periodicity is enforced. So here, pushing the simulation farther would
eventually lead to the ant (and its highway) leaving the lattice near the SE corner, to reappear
near the NW corner, still heading SE, eventually hitting the structure it just built. This throws
the ant into a fit; disordered (re)painting prevails for a while, forming a structure statistically
similar to that characterizing the first 10* iterations, but after many thousands of iterations
highway building resumes, in a direction orthogonal to that of the original highway, to the SW
here. As the lattice fills with blotches of disorder and stretches of highways crossing each other,
highway building becomes increasingly difficult, and if the evolution is pushed sufficiently far,
on any finite-sized lattice the end result is randomness.

Highway building is a pretty delicate process that is easily disturbed. The bottom panel
of Figure 2.11 shows what happens when a small number of randomly selected lattice nodes
are painted black before the ant starts moving. At first the evolution proceeds as before, and
highway building towards the SE begins, but soon the ant hits one of the randomly distributed
black node, triggering disordered painting. Highway building eventually resumes, still towards
the SE, until another black node is encountered, triggering another, shorter disordered episode
that ends with highway building resuming now towards the NE; and so on over the 51000
iterations over which this specific simulation was pursued.
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CHAPTER 2. ITERATED GROWTH

# HIGHWAY BUILDING BY LANGTON’S ANT
import numpy as np
import matplotlib.pyplot as plt

N =300
n_iter=20000

x_step=np.array([0,-1,0,1])
y_step=np.array([1,0,-1,0])
image=np.zeros ([N,N],dtype=’int’)
ix=N//4

iy=N//4

direction=1

for iteration in range(O,n_iter):

ix+=x_step[direction]
iy+=y_step[direction]
ix=(N+ix) % N
iy=(N+iy) % N

if imagel[iy,ix] == 0:
update=1
direction+=1
direction=direction % 4
else:
update=-1
direction-=
direction=(4+direction) % 4

image[iy, ix]+=update
# End of temporal loop

# Lattice size
# Number of temporal iterations

# Template arrays for steps

# Initialize lattice array, all white
# Ant’s starting position in x

# Ant’s starting position in y

# Ant’s starting direction, North

# Temporal loop
# Ant moves

# Enforce periodicity in x
# Enforce periodicity in y

On a white node

Paint it black...

...and turn right...

...but stay within step array
On a black node

Paint it white...

...and turn left...

...but stay within step array

plt.imshow(image, interpolation="nearest")

plt.show()
# END

# Display final structure

Figure 2.10: A source code in the Python programming language for an “ant” agent abiding
to the rules introduced in §2.4. This code generates the simulation plotted on the top panel of
Fig. 2.11 below (minus the colored dots and insets).
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Figure 2.11: Highway building by an “ant agent” in a clean (top, 20000 iterations) and noisy
(bottom, 51000 iterations) background environment. The solid dots show the starting (red)
and ending (green) position of the ant, with the inset on the top panel providing closeups of
the lattice about these two points. The lattice is assumed periodic in both the horizontal and
vertical. See §D.2 for more on periodic boundaries conditions on lattices.
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2.5 Emergent structures and behaviors

We have barely scratched into the realm of structures and behaviors that can be produced
by CA and CA-like systems. Nonetheless, the take-home message of this chapter should be
already clear: very simple rules can produce very complex-looking structures. But should
we really be calling these structures “complex” if their generating rules are simple? Or do we
remain tied to an intuitive definition of “complex” relying on our visual perception of structures
and behaviors? Students of complexity have been rattling their brains over that one for quite
a while now.

Consider the measure known as algorithmic complezity; namely the length of the smallest
computer program that can generate a given output —a spatial pattern, a time series, a network,
whatever. It may appear eminently reasonable to suppose that more complex patterns require
longer programs; simulating the evolving climate certainly requires a much longer code (and a
lot more computer time!) than simulating the harmonic oscillation of a frictionless pendulum.
It seems to make sense, but we need to look no further than the simple 1D CAs investigated in
§2.1 to realize the limitations of this measure of complexity. The CAs of Figs. 2.1, 2.2 and 2.3
can be produced by programs of exactly the same length, yet they could hardly be considered
“equally complex”.

Our brief foray into cellular automata also highlights a theme that will recur throughout
this book and that is almost universally considered a defining feature of natural complexity:
emergence; this term is used to refer to the fact that global structures or behaviors on macro-
scopic scales cannot be reduced to (or inferred from) the rules operating at the microscopic
level of individual components making up the system; instead, they emerge from the interac-
tions between these components. Synthetic snowflakes and ant highways are such examples of
emergence, and are by no means the last to be encountered in this book.

2.6 Exercises and further computational explorations

1. Use the 1D CA code of Figure 2.4 to explore the behavior of the four CA rules introduced
in §2.1 when starting from a random initial condition, i.e., each cell is randomly assigned
black or white color with equal probability. If needed see §C.2 for a quick start on
generating uniformly distributed random deviates in Python. Make sure also to enforce
periodic boundary conditions (see §D.2).

2. The aim of this exercise is to explore further the patterns produced by 1D CA rules, all
of which relatively easy to implement in the source code of Fig. 2.4. The following 5
individual rules produce patterns qualitatively distinct from those already examined in
§2.1. Unless the pattern looks really trivial, make sure to run the CA for enough iterations
to ascertain its long-term behavior.

e Cell j becomes (or stays) black only if both j — 1 and j are white; otherwise the cell
stays (or becomes) white.

e Cell j becomes (or stays) black if any two cells of the triad [j — 1, 4, j + 1] are black,
or if both 7 — 1 and j are white; otherwise the cell stays (or becomes) white.

e Cell j becomes (or stays) white if j — 1 and j are both black, or if the triad [j —
1,7,7 + 1] are all white; otherwise the cell stays (or becomes) black.

e Cell j becomes (or stays) black if cell j — 1 and at least one of the pair [j,5 + 1]
are black, or if the triad [j — 1, 7,7 + 1] are all white; otherwise the cell stays (or
becomes) white.

e Cell j becomes (or stays) white if j + 1 and j are both white, or if the triad [j —
1,4,7 + 1] are all black; otherwise the cell stays (or becomes) black.

The last two rules, in particular, should be iterated over many hundreds of iteration over
a large lattice; the patterns produced are particularly intriguing. You should also run
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these five rules starting from a random initial condition. To which CA class does each
belong ?

3. Modify the code of Fig. 2.6 to introduce 2-member rules such as those used to produce
Fig. 2.9 on the 6-neighbour triangular lattice. Explore the growth produced by the set of
rules (1,2) + 1 through (1,6) 4+ 1. Is lattice structure always imprinted on global shape ?

4. Modify the code of Fig. 2.6 to operate on a Cartesian 8-neighbour lattice, and explore
the sensitivity to initial conditions for rules (3,4) + n and (3,5) + n. More specifically,
consider the growth produced by using either n = 3, 4 or 5 active nodes, organized either
linearly, as a 2 x 2 block, as a diamond-shaped 5-node block, etc. Is the geometry of the
initial condition imprinted on global shape ?

5. The Game of Life is one of the most intensely studied 2D cellular automaton. It is
defined on a two-dimension Cartesian lattice periodic horizontally and vertically, with
eight-neighbour connectivity. Each lattice node can be in one of two possible states, say
“inactive” and “active” (or 0 and 1; or white and black; or dead and alive, whatever),
and evolves from one iteration to the next according to the following rules:

e if an active node has less than two active neighbours, it becomes inactive;

e if an active node has more than three active neighbours, it becomes inactive;

e if an inactive node has three active neighbour, it become active;

e if a node has two active neighbours, it remains in its current state.
This automaton can generate “organisms”, i.e. shape-preserving structures moving on
the lattice, in some cases interacting with one one another or with their environment to
produce even more intricate behaviors. Modify the code of Fig. 2.6 to incorporate the

above rules, and run simulations starting from a random initialization of the lattice in
which each node is assigned active or inactive status with equal probability.

6. The Grand Challenge for this chapter is to explore the behavior of another interesting
ant-like agent, known as the “termite”. Termites move randomly on a lattice on which
“wood chips” (i.e. black) have been randomly dispersed. The termite’s behavioral rules
are the following:

e Random walk until coming up against a wood chip;

e if currently carrying a wood chip, drop it at current position (i.e., next to the one
just bumped into), and resume random walk;

e else, pick up the chip bumped into, and resume random walk.
Code this up, perhaps starting from the “ant” code of Fig. 2.10. Section D.3 may prove
useful if you need a kickstart on how to code up random walk on a lattice. How is the

distribution of wood chips evolving with time ? Does this change if you let loose more
than one termite on the lattice ?

2.7 Further readings

Pretty much anything and everything that could be written on cellular automata can be found
in
Wolfram, S., A new kind of science, Wolfram Media Inc. (2002).

The material covered in §2.1 and 2.2 follows rather closely parts of chapters 2 and 8 of this
massive tome. The Wikipedia page on Cellular Automata includes a good discussion of the
history of CA research, with copious references to the early literature (viewed March 2015).
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For a succinct and engaging introduction to virtual ants and similar computational insects,
see

Resnick, M., Turtles, Termites and Traffic Jams, MIT Press (1994).
as well as chapter 16 in
Flake, G.W., The computational beauty of Nature, MIT Press (1998).

Chapter 15 of this volume also offers a nice introduction to cellular automata, including the
Game of Life. As far as I know, the general notion of an “Agent” has been borrowed from
economics and introduced in complexity science by John Holland; for more on this concept see:

Holland, J.H., Hidden Order, Reading: Addison-Wesley (1995).

Some years ago the term Artificial Life was coined to define a category for computational ants,
termites, turmites, boids, and other similarly designed computational critters, as well as those
appearing in John Conway’s Game of Life. The following collection of papers remains a great
overview of this computational zoology and its underlying motivations:

Langton, C. (ed.), Artificial Life, MIT Press (1995).

Langton is actually the designer of the ant agent starring in §2.4. The Wikipedia page on
Langton’s ant is worth viewing; it also provides examples of extensions to multiple states ants,
as well as a good sample of references into the technical literature:

http://en.wikipedia.org/wiki/Langton%27s_ant (viewed March 2015)
Finally, and not to be missed, a detailed study of the real thing:

Gordon, D.M., Ant encounters: interaction networks and colony behavior, Princeton Uni-
versity Press (2010).
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Chapter 3
Aggregation

The structures generated by the cellular automata of the preceding chapter grew according to
lattice-base rules that are both artificial and completely deterministic. By contrast, naturally
occurring inanimate structures typically grow by accretion of smaller size components, in a
manner often far more random than deterministic. Interplanetary dust grains grow by accre-
tion of individual molecules, as well as coalescence with other dust grains. Ice crystals and
snowflakes grow by accreting individual water molecules, a process often seeded by a dust grain
—some having fallen into the atmosphere from interplanetary space ! As spectacularly exem-
plified by snowflakes, randomly-driven accretion can sometimes produces structures combining
surprisingly high geometrically regularity and complexity.

3.1 Diffusion-limited aggregation

We focus here on one specific accretion process, known as diffusion-limited aggregation (here-
after DLA). The idea is quite simple: particles move about randomly, but stick together when
they come into contact; clumps of particles produced in this manner grow further by colliding
with other individual particles, or clumps of particles. Over time, one or more aggregates of
individual particles will grow. That is to be expected by the very nature of the aggregation
process, but the shape of the aggregates so produced turns out to be nothing like whatever one
might have expected.

Conceptually, simulating diffusion-limited aggregation is simple. Diffusion and random
walks are the macroscopic and microscopic representations of the same thermodynamically
irreversible process. This equivalence is discussed at some length in Appendix C (see §C.6). A
random walk is defined as a succession of steps taken in directions that vary randomly from
one step to another, in a manner entirely independent of the orientation of prior steps. All that
is needed to simulate a random walk is really a random number generator'. Accordingly, in a
DLA simulation M random walking “particles” are left to do their usual thing, but whenever
any two come within some pre-set interaction distance, they stick together. Computationally,
this means checking M?/2 pairwise distances at every temporal iteration. This o< M? scaling
rapidly makes the calculation computationally prohibitive at large M. Turning to random
walks on a lattice (see §D.3) neatly bypasses this problem, since all that needs to be done is to
check, for each particle, its nearest neighbour nodes on the lattice for the presence of a “sticky”
particle; the pairwise proximity test now scales as oc M.

In the specific implementation of DLA considered in this chapter, one or more fixed “sticky”
particles are placed on the lattice, serving as seeds for the growth process. Random walking
particles sticking on these seed particles stop moving upon contact, and become sticky them-
selves.

ISection §C.5 of Appendix C provides an introduction to the mathematical description and statistical prop-
erties of random walks.
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3.2 Numerical Implementation

The source code listed in Figure 3.1 implements the lattice-based approach to DLA just de-
scribed, again in a manner far from the most computationally efficient, but at least easy to
read and understand. The simulation operates in two spatial dimensions on a N x N Carte-
sian lattice, but its generalization to three spatial dimension is straightforward —although the
visualisation of results is not. In addition to two arrays x[n_walkers] and y[n_-walkers] con-
taining respectively the horizontal and vertical coordinates (in lattice units) of each particle,
we also introduce a 2D array grid, which holds values “0” for an empty node and “1” if the
node is occupied by one (or more) random walking particle. Note that this array must be
updated every time a particle makes a move. Elements of the grid array will also be assigned
the numerical value “2” wherever a node is occupied by an immobilized sticky particle. Note
the following;:

1. The code is structured as two nested loop: an outer temporal loop (starting on line 24),
and an inner loop (starting on line 25) running over the M particles.

2. Although the lattice is of size N x N, the 2D array grid has dimensions (N + 2) x (N +
2) (line 13); the rows and columns 0 et N 4 1 are “ghost nodes” introduced to avoid
overflowing array bounds when testing nearest neighbours, without having to introduce a
series of specific conditional statements to modify nearest-neighbour definitions for nodes
at the edges of the lattice. See §D.1 for more on ghost nodes and lattice boundary
conditions.

3. Initialisation consists in randomly distributing the particles on the lattice, by assigning
them horizontal and vertical positions in the integer arrays x[j] and y[j] (lines 18-19).
The corresponding position in the 2D array grid is initialized to “1” (line 20), to flag
the node as being occupied by a moving particle, grid having been initialized to zero
beforehand (line 13).

4. An array status assigns a tag to each random walking particle: “1” if the particle is
mobile, and “2” once it got stuck next to a sticky particle (line 37). The inner loop then
checks for sticky neighbours only for particles still mobile (if status[jl==1, line 26).

5. The DLA process begins by assigning “sticky” status to the node located at the center of
the lattice (line 21).

6. The outer temporal loop repeats until all particles have been aggregated (i.e., while(
n_glued < n.walkers ...), or until preset maximum number of temporal iterations
(max_iter) has been reached.

7. The lattice is considered periodic, so that the positions of particles leaving the lattice are
reset to the opposite edge (lines 30-31), as with the ant of §2.4.

8. The test for sticky-neighbour uses two arrays, dx and dy, each of length 8, contain-
ing a stencil for the relative positions in z and y of the 8 nearest neighbours nodes
(top+down+right+left+4 diagonals; lines 11-12). Here two bits of Python-specific syn-
tax and operators are used, which are not available in all computing languages (line
35): the indexing dx[:] means “loop over all elements of dx”; and the somewhat self-
explanatory conditional statement of the type if 2 in dx[:] means “if the value 2 is
found in any element of array dx”. Note how elements of grid are accessed in this manner
here, but through mathematical operations calculating the corresponding nodal positions
within the indexing of grid.

9. In order to speed up calculations, here two random walking particles are allowed to occupy
the same node, which is unconventional for particles-on-lattice simulations.
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# DIFFUSION-LIMITED AGGREGATION ON A CARTESIAN LATTICE
import numpy as np
import matplotlib.pyplot as plt

# ___________________________________________________________________________
N =128 # Lattice size

max_iter =100000 # Max number of temporal iterations
n_walkers=1000 # Number of random walkers

# ___________________________________________________________________________
x_step=np.array([-1,0,1,0]) # Template arrays for random walk
y_step=np.array([0,-1,0,1])

dx =np.array([-1,0,1,0,-1,1,1,-1]) # Template arrays for sticking

dy =np.array([0,-1,0,1,-1,-1,1,1])

grid =np.zeros([N+2,N+2],dtype=’int’) # Lattice array

X =np.zeros (n_walkers,dtype=’int’) # Walker x-coordinate in nodal unit
y =np.zeros(n_walkers,dtype=’int’) # Walker y-coordinate in nodal unit
status=np.ones(n_walkers,dtype=’int’) # Walker status array: all mobile
for i in range(O,n_walkers): # Place walkers on lattice

x[i]=np.random.random_integers(0,N-1)
y[il=np.random.random_integers(0,N-1)
grid[x[i],y[i]]=1

grid[N//2,N//2]=2 # Introduce sticky central node
iteration,n_glued=0,0 # Counters
while (n_glued < n_walkers) and (iteration < max_iter):
for i in range(0,n_walkers): # Loop over walkers
if status[i] == 1: # This walker is still mobile
ii=np.random.choice([0,1,2,3]) # Pick direction
x_new=x[i]+x_step[ii] # New position on lattice
y_new=y[i]+y_step[ii]
x_new=(N+x_new) % N # Periodic boundaries in x,y
y_new=(N+y_new) % N
grid[x_new,y_new]=1 # Update lattice
grid[x[i],y[il1=0
x[1],y[il=x_new,y_new # Move walker
if 2 in grid[x[il+dx[:],y[il+dy[:]]: # Check for sticky neighbour
grid[x[i],y[i]]=2 # Assign sticky status to walker
status[i]=2
n_glued+=1

# End of work on this mobile walker
# End of loop over all walkers
# Graphics command displaying positions of glued walkers could go here
iteration+=1
print("iteration {0}, glued walkers {1}.".format(iteration,n_glued))
# End of temporal loop
plt.imshow(grid,interpolation="nearest") # display aggregate as pixel image
plt.show()
# END

Figure 3.1: Source code in the Python programming language for diffusion-limited aggregation.
The random walk uses a 4-element template, namely the two arrays x_step and y_step, to
identify the relative position of the four neighbouring nodes on which a particle can move at
the subsequent random walk step. A random number from the set {0, 1,2, 3} is then generated
to pick a target lattice node for the random move. See §D.3 for more random walks on lattices.
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10. The final aggregate is displayed by passing the array grid as argument to the imshow
function from the library matplotlib (lines 45-46).

The DLA algorithm of Fig. 3.1 is very inefficient, in that it spends a lot of time random-
walking particles which are very far from the aggregate, in particular early on in the simulation.
A much better run-time performance can be obtained by injecting particles one by one, at
random positions along the perimeter of a growing circle circumscribing the growing aggregate.
One of the suggested computational exercise at the end of this chapter leads you through the
design of a faster DLA code based on this idea.

3.3 A representative simulation

Figure 3.2 shows a specific example of a two-dimensional DLA aggregate, grown here from a
single “sticky” seed particle located at the center, with 20000 random walking particles initially
distributed randomly over the computational plane. This is the setup up implemented in the
code of Figure 3.1. The aggregate grows outwards from its seed, as expected, but its shape
is anything but an amorphous clump. Instead, the aggregate generates a series of outward
projecting branches, themselves spawning more branches, and so on to the edge of the structure.
The particles making up the aggregate on Fig. 3.2 are color-coded according to the order in
which they were captured by the growing aggregate, as indicated at right. Looking carefully
at Fig. 3.2, you should be able to see that growth takes place through capture and successive
branching almost always occurring at or near the tips of existing branches. Unlike with the
structures encountered in the preceding chapters, which grew according to deterministic lattice-
based rules, here the geometry of the lattice is not reflected in the growing structure, unless
one zooms in all the way to the scale of the lattice itself.

Growth by branching is readily understood once one realizes that any asperity forming on
the growing aggregate tends to capture more random walking particles than a plane surface.
As shown on Figure 3.3, on a 2D cartesian lattice, there is one and only one way to stick to
a plane surface, namely a step directed perpendicularly towards that surface, as illustrated on
Figure 3.3A. An asperity, on the other hand, can be reached from many directions, as shown on
Figure 3.3B, and so will tend to capture more random walking particles and continue growing.
Moreover, once two neighbouring dendrites have started to grow, the space in between will be
hard to reach, because particles executing a random walk will be more likely to stick to one or
the other dendrite, than reaching their branching point. Indeed, on Figure 3.3B the immediate
diagonal neighbours of the branching point (open black circles) are simply inaccessible, because
any particle reaching either of its two neighbouring node will stick there and proceed no further.
The end results is successive growth and branching, rather than homogeneous or statistically
uniform filling of the lattice. This effective “exclusion” of nodes neighbouring existing branching
points is loosely akin to the operation of the 1-neighbour-only activation rule used in some of
the 2D cellular automata investigated in §2.2.

3.4 A zoo of aggregates

So we understand the dendritic shape of DLA aggregates. Yet other factors come into play
in determining the type of structure produced. Figures 3.4 and 3.5 show results of 2 DLA
simulations again on a regular 2D 1024 x 1024 lattice, this time with 32 sticking particles
introduced at random locations on the first iteration of the simulation. The two simulations
only differ in the number of moving particles placed on the lattice: 5 x 10* for Fig. 3.4 and four
times more for Fig. 3.5.

Thirty aggregates of varying sizes and shapes can be counted on Figure 3.4. This is two fewer
than the initial number of sticky particles, a consequence of two “fusion” events between pairs
of growing aggregates taking place early in the course of the simulation. Each aggregate shows
the same overall branching structure as on Fig. 3.2, but now their global shape is less “circular”.
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Figure 3.2: Growth of a dendritic structure by diffusion-limited aggregation. Here 20000 par-
ticles have random-walked on a 2D cartesian lattice of size 1024 x 1024, with a single “sticky”
seed particle placed at lattice center at the first iteration. The colors indicate the order in
which the free particles have aggregated: red for the first 10% particules, orange for the next
103, and so on following the color code indicated at right.
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Figure 3.3: Capture of particles (A) on a plane surface, and (B) on the tip of a branch. Linked
red solid dots represent aggregated particles, and open red circles lattice nodes on which an
incoming particle would be captured. In (A), each fixed particle controls one such node (red
dotted line), itself only accessible from the node vertically above (black arrow). In (B), in
contrast, the aggregated particle at the end of the branch controls five capture sites, which
jointly are accessible from seven distinct steps. Note also that the two empty lattice nodes
drawn as black open circles in (B) cannot be reached, because particles would inevitably stick
at a neighbouring nodes one step earlier.

This is because of the finite number of particles available to sustain growth; aggregates growing
close to one another will “compete” for the available supply of random walking particle along
the direction linking their geometrical centers. As a result, aggregates will grow preferentially
in directions where no other aggregates are located. The close group of three aggregates at
mid-height along the left edge of Fig. 3.4 offers a nice illustration of this pattern. For the same
reason, aggregates growing in (relative) isolation will tend to reach a larger final size. Similar
asymmetric growth is observed in many biological organisms, such as sponges or corals, with
growth taking place preferentially in directions of greater nutrient concentration.

Although one would be hard pressed to ascertain this visually, there are 25 individual
aggregates on Figure 3.5. Here the initial density of random walking particle is quite high:
200000, for 1024 x 1024 lattice nodes, meaning that about one node in five initially contains
a particle. Growth then proceeds very quickly, but even in this case the resulting structures
retain the dendritic shape characteristic of DLA aggregates generated at lower densities.

The aggregates resulting from the DLA process are not just visually spectacular; they
also possess some rather peculiar geometrical properties, most notably self-similarity and scale
invariance. Investigating these properties will first require a detour through fractal geometry,
to which we now turn.

3.5 Fractal geometry

Consider the iterated growth procedure illustrated on Figure 3.6. Starting with a seed line
segment of unit length (n = 0, on top), divide this segment in three sections of equal length.
Raise an equilateral triangle from the middle segment, as shown on the n = 1 curve. Now
repeat this process for the four line segments of this n = 1 curve, thus leading to the n = 2
curve; and so on for n = 3, n = 4, etc, as shown on Fig. 3.6 up to n = 6. The curve resulting
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k-

Figure 3.4: Aggregates in a DLA simulation involving 50000 particles on a 1024 x 1024 lattice,
with 32 randomly distributed particles assigned “sticky” status prior to the first iteration.
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Figure 3.5: Same simulation as on Fig. 3.4 but for four times more particles (200000). There
are 25 individual aggregates here, 7 less than the initial 32 sticky particles because of fusion
between some growing aggregates in the course of the simulation. Try pedalling your way out
of that maze...
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from this process as n keeps increasing is known as the Koch fractal?.

The Koch fractal is visually pretty, but it also possesses some rather peculiar mathematical
properties. The length of each straight line segment decreases by a factor of 3 at each iteration,
as per the rules of the growth process; but the number of these line segments increases by a
factor of four at each iteration. Consequently, the total length L of the curve increases with

the iteration count n as
\" 4\"
L = 4" - == . 3.1
m=vx(3) =(3) (3.1)

Since 4/3 > 1, the length of the curve will diverge to infinity as n increases; expressed mathe-
matically:

lim L(n) — oo . (3.2)

n—oo
Inspection of Fig. 3.6 may suggest that this divergence is rather slow, and therefore irrelevant
in practice —after all, infinity is much farther away than anyone can think. Still, it is an easy
exercise to calculate that starting from a seed line segment of length L(0) = 5cm, already at
n = 100 the “unfolded” Koch fractal is long enough to wrap around the Earth about 4000
times! Now, try to think this through; the infinitely long Koch fractal has well-defined start
and end points, namely the two ends of the original seed line segment. How can an infinitely
long line have a beginning and an end ? Moreover, this infinitely long line is contained within
the definitely finite-sized page of this book. How can an infinitely long line be circumscribed
within a geometrical figure like a rectangle, which has a finite perimeter ?

Such mathematical monsters, as the mathematician Helge von Koch used to call the fractal
that now bears his name, cannot be casually dismissed as such, because they do occur in the
natural world. The fluid dynamicist Lewis Fry Richardson found out the hard way when he tried
to measure the length of the British coastline. Working with topographic maps of decreasing
scale, he had to come to grips with the fact that the total measured length of the coastline
just kept increasing as the map scale decreased, instead of converging to a finite value as he
was originally expecting. Yet Britain is most definitely an island, with a clearly finite surface
area; a finite surface area bounded by an infinitely long perimeter. Welcome to the bewildering
world of fractal geometry...

Loosely speaking, the Koch fractal and the British coastline are “more” than lines, but
“less” than surfaces. Geometrically speaking, they are thus objects which should be assigned
a dimension between one and two, i.e., a fractional dimension; thus the name “fractal”.

Now back to DLA; no matter how complex its shape, the aggregate of Fig. 3.2 is made up
of a finite number of individual particles located in a plane, so each particle can be tagged by
two numbers, for example its line and column integer indices on the lattice. On the basis of
this parametric definition of dimensionality, it must therefore be declared a two-dimensional
object; so would the CA-generated structures of Figs. 2.5 and 2.9. This would also be true if
the particles were packed in the shape of square. Yet the DLA aggregate really does not look
anything like a solid square, or a pancake, or whatever. The challenge is thus to find a way to
quantify this difference.

Consider the two simple geometrical objects illustrated on Figure 3.7: a line and a square.
Both are constructed by placing a finite number of particles (in red) on a 2D Cartesian grid
similar to that used for the above DLA simulations. It is only on the macroscopic scale, much
larger than the microscopic scale defined by the lattice spacing, that these two objects can be
called “line” and “square”3. Introduce now the same procedure used in §1.2 to evaluate the
number density of randomly distributed particles: from the geometrical center of each structure,
draw a series of concentric circles of increasing radii R. For each of these circles, count the

2If an equilateral triangle is used as a germ, yet another pretty kind of synthetic snowflake is produced: the
Koch snowflake Try it!

3To gain an intuitive grasp of this distinction, step back and look at Figure 3.7 from an increasing distance
and see how far you need to stand to “lose” the granularity of these two geometrical objects.
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n=1
L=1.333
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Figure 3.6: The first six iterations in the “growth” of the Koch fractal. The seed (n = 0) is a
straight line segment spanning [0, 1]. At each iteration an equilateral triangle is raised from the
central third of the line segment, towards the “outside” of the structure. The length L of each
curve is indicated at right. The bottom image is 27x zoom on the small region delimited by
the red rectangle on the n = 6 iteration. Note how this zoom is identical to the n = 3 iteration.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity.tex, July 28, 2016



3.5. FRACTAL GEOMETRY 47
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Figure 3.7: The mass-radius method for determining the dimension of two objects having
geometrically simple shapes at the global scale, but made up of individual particles at the
microscopic scale: (A) a line, and (B) a solid square. The mass M (R) is defined here as the
number of particles contained in a circle of radius R centered on each object. Note how, on
each plot, the mass returned for the two outermost circles would be the same, indicating that
the global scale of the objects has been reached (see text).

number of particles it contains, and call this the “mass”, denoted hereafter M. Obviously M
increases with R. For a straight line of contiguous particles, as on Fig. 3.7A, M would grow
linearly with R, while for a solid square, as on Fig. 3.7B, the growth would be quadratic, i.e.,
M o R?. In both cases this growth can be expressed as a power law:

M(R) < RP | D>0. (3.3)

with D = 1 for a line of particles, and D = 2 for a solid square. The power law index D thus
provides a measures the object’s dimensionality. Note that eq. (3.3) can be expected to hold
only for radii significantly larger than the inter-particle distance on Fig. 3.7, and smaller than
the global scale of the objects.

Figure 3.8 shows what happens when this mass-radius method is applied to the DLA aggre-
gate of Fig. 3.2, with the circle’s center coinciding with the original sticky particle used to seed
the aggregate. The axes being logarithmic, the linear relationship holding in the gray shaded
area indicates that mass still increases as some power of the circle radius*. This power law
holds well for spatial scales smaller than the size of the aggregate, but significantly larger that
the distance between two particles, as set by the lattice spacing. This time the logarithmic
slope is D = 1.665; even though the aggregate has grown on a two-dimensional plane, it has a
spatial dimension between one and two, in other words it is “more” than a line but “less” than
a surface; again a fractal!

The mass-radius method for determining the fractal dimension is trickier to apply to objects
which do not have a well-defined geometrical center. A more robust method is box counting,
which is particularly appropriate to structures defined on lattices or as pixellized images. Box

4Start with the power-law relation M/My = RP; taking the logarithm on both sides yields log(M/My) =
log M — log Mo = log RP = Dlog R, so that

log M = Dlog R + log My ,

which is a linear relationship between log M and log R, with D as the slope and log My the intercept.
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Figure 3.8: Mass-radius relationship for the DLA aggregate of Fig. 3.2. The logarithmic slope
is now 1.665, which, geometrically speaking, places this structures between the “line” and the
“square”, in other words somewhere between a one-dimensional object (D = 1, lower dotted
line) and a two-dimensional object (D = 2, upper dotted line). The gray shaded area indicates
the range used to compute the slope (see text).

counting operates as follows. Imagine trying to cover the aggregate of Fig. 3.2 with a tiling
of contiguous squares of size M x M, the measuring unit being here the internodal distance
on the lattice (i.e., M = 8 means a square covering up a 8 x 8 block of nodes). Figure 3.9
illustrates this procedure, for box sizes of M =8, 16, 32 et 64. Now, for each value of M,
count the number B(M) of such boxes required to cover the aggregate. Whether a box covers
one or many particles making up the aggregate, it always contributes +1 to the box count.
The smallest meaningful box size is M = 1, in which case the count is equal to the number of
particles making up the aggregate. The largest meaningful box size is of the order of the linear
size of the aggregate; any larger box size would always return a box count B = 1, independently
of box size.

Figure 3.10 is an example of a user-defined Python function which performs a boxcount
calculation on a 2D array “grid” of size N x N provided through its argument list. Upon
successful completion the function returns three quantities: the number of scales used for the
analysis (the integer n_scales), and two arrays of this size holding the scale size M in nodal
units (array scale) and corresponding boxcount B (array n_box). This could be called directly
at the end of the DLA code presented on Fig. 3.1, via the instruction:

n_scales,scale,n_box=boxcount (N, grid,2)

Now onto the fractal dimension. Figure 3.11 plots the box count as a function of resolution r
(= 1/M), defined as the inverse of the scale of measurement M (i.e., high resolution = small
measuring scale). Logarithmic axes are used once again, and the straight line fit indicates that
the box count is related to the resolution via a power law, here of the form

N(r)xrP?,  D=1591. (3.4)
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M = 8 , Boxcount = 1940 M = 16 , Boxcount = 661

M = 32, Boxcount = 226 M = 64 , Boxcount = 71

Figure 3.9: Four successive doubling steps of the box counting method, as applied to the DLA
aggregate of Figure 3.2. Each iteration doubles the linear size M of the gray squares used to
cover the structure.
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# BOX COUNTING FUNCTION FOR FRACTAL INDEX CALCULATION
def boxcount(n,grid,occ_val):
# Input is 2D array "grid", of size nxn; value =2 means occupied node

n_scales=1 # Calculate number of scales
while (2%*n_scales < n) and (n_scales < 100): n_scales+=1
scale=np.zeros(n_scales) # Will hold all box size values
n_box=np.zeros(n_scales) # Will hold the boxcount
for iscale in range(0,n_scales): # Loop over allowed scales
block_size=2**(iscale+1) # Block size for this scale
n_block=n//block_size # Number of blocks for this scale
n_box[iscale]=0
for i in range(O,n_block): # Loop over first dimension
il=block_sizex*i # i-range of this block
i2=block_sizex(i+1)
for j in range(O,n_block): # Loop over second dimension
jl=block_sizex*] # j-range of this block

j2=block_size*(j+1)
if occ_val in grid[il:i2,j1:j2]: # At least 1 occupied node
n_box[iscale] +=1 # Increment box count
# End of lattice loops
scale[iscale]=block_size
print("scale {0}, boxcount {1}.".format(scale[iscale],n_box[iscale]))
# End of scale loop

plt.scatter(l./scale,n_box) # Simple version of Fig 3.11
plt.xscale(’log’) # logarithmic axes
plt.yscale(’log’)

plt.show()

return n_scales,scale,n_box
# END FUNCTION BOXCOUNT

Figure 3.10: A user-defined Python function performing a boxcount calculation on an input
array grid of size N x N, passed through the function’s argument list. Sites having values
occ_val, pased also as argument, are deemed occupied for the purpose of boxcount. For the
DLA simulations produced using the code on Fig. 3.1, the value “2” should be used. The
number of allowed scales (n_scales) is first calculated, as the highest power of 2 that yields a
value smaller or equal to the grid size (lines 4-5). The maximum scale number is hardwired at
100; it you fancy doing calculations on lattices of linear size exceeding 2'%°, (1) increase this
number, and (2) see you in the 22" century (maybe...). The function is structured around
a loop on all allowed scales (starting on line 9), within which two nested loop over the two
lattice dimensions build the appropriate blocks (lines 13-18), as index ranges in the grid array.
The function returns arrays scale and n_box, both of length n_scales, containing respectively
the scales M and corresponding box count B(M ). The generalization to rectangular arrays, or
arrays of dimensions larger than 2, is simple and thus left as an exercise, as the saying goes. The
mathplotlib plotting instructions on lines 25-28 produce a simple version of Fig. 3.11 prior to
exiting the function. A linear least-squares fit to this log-log plot allows a determination of the
fractal index (see text).
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Figure 3.11: Determination of the fractal dimension of the DLA aggregate of Fig. 3.2 by the
box counting method. As before, the fractal dimension is given by the logarithmic slope of the
boxcount B versus r, as determined on a range of resolution (r = 1/M) bracketed by the size
of the structure (small r) and the lattice interval (large 7).

This again holds over a range in resolution bracketed by the size of the aggregate (r small)
and the lattice scale (r large). As before, the logarithmic slope on Fig. 3.11 directly yields the
power-law index D, which is again a measure of the fractal dimension of the aggregate. This
version of the fractal dimension is here equal to D = 1.591.

Should we be concerned that the fractal dimensions obtained from the mass-radius relation
(D = 1.665) differs from that extracted from box counting (D = 1.591)? Not really. Whatever
method is used, here it pertains to a specific aggregate produced by an equally specific realiza-
tion of the DLA process. To obtain a truly accurate determination of the fractal dimension of
DLA aggregates in general, one would need to generate many such aggregates through statis-
tically independent realizations of the DLA process, combine the box counts and calculate D.
For DLA aggregates, the result turns out to be D = 1.6 independently of the method used, as
it should be. This idea of ensemble averaging is discussed in more detail in the next chapter.

3.6 Self-similarity and scale invariance

The defining characteristics of fractal geometry are self-similarity and scale invariance. Loosely
speaking, this means that a fractal structure always “looks the same” upon zooming closer and
closer in. We encountered this already in §1.3 with the bifurcation diagram for the logistic
map (Fig. 1.2); with the cellular automaton of Fig. 2.2; as well as with the Koch fractal of
Fig. 3.6. Figure 3.12 illustrates this effect, for our now familiar DLA aggregate of Fig. 3.2. No
matter what the zooming levels is, one just sees irregular branches giving rise to more irregular
branches, themselves spawning more smaller branches, all the way to the scale of the lattice.
Only at that scale can it be clearly perceived that the simulation is carried on a cartesian
lattice with sticking on the 8 nearest neighbours, i.e., vertically, horizontally and diagonally.
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Of course, scale invariance also breaks at the global scale of the aggregate (top left), where a
“growing center” is readily identified, and the finite size of the structure becomes apparent.

The break in scale invariance at the lowest and largest spatial scales characterizing the
structure is quite typical. It already showed up on Figs. 3.8 and 3.11, in the departure of the
measurement data points from the power-law relationships. The range in which this relationship
holds effectively defines the scale-invariant regime. Indeed, the very existence of a power-law
regime in the distribution of some measure of a structure is usually taken as an indicator of
scale invariance®. But what is responsible for scale invariance ? This is a complex (!) question,
to which we shall often return in later chapters. In the DLA context, scale invariance reflects
self-similarity in the growth process: branches grow by spawning more branches, through a
sticking process that operates locally and “knowns” nothing about the global properties of the
growing aggregate.

Nature is replete with scale invariant structures hard to described using conventional Eu-
clidian geometry, unlike most technological constructs. A car engine fully taken apart will yield
a lot of flat or curved plates, cylinders, disks, rods, pierced hexagons, and so on; now, try to
go build a snail shell out of regular 2 x 4 Lego blocks®, and while doing so you should have
ample time to reflect upon the fundamental differences between these two geometrical classes
of objects.

3.7 Exercises and further computational explorations

1. Distribute particles on a Cartesian lattice (A) along a line, and (B) filling a square block,
as on Fig. 3.7. Apply the mass-radius method to these two objects, produce plots similar
to Fig. 3.8, and verify that D =1 in the former case, and D = 2 in the latter.

2. A simple modification to the DLA code of Fig. 3.1 can greatly increase its run-time speed.
The idea is to inject a single particle per iteration, at some ramdomly chosen location on
a circle circumscribing the growing DLA aggregate. You need to implement the following
modifications:

(a) Initializations consists in placing a single sticky particle at lattice center (z,y) =
(N/2,N/2); set the circle radius to R = 2;

(b) At each iteration pick a random angle 6 € [0, 27] and place a single random-walking
particle on the lattice node closest to the position (x,y) = (N/2 + Rcosf, N/2 +
Rsin0).

(c) If a particle sticks, calculate its distance d with respect to the initial, central sticky
particle; if this distance is larger than R, reset R =d + 1.

(d) Once the injection circle hits the sides of the lattice, stop injecting particles but keep
running the simulation until all remaining random-walking particles have aggregated.

3. Use the Python code of Fig. 3.1 to explore the effect of varying the initial particle density,
the latter defined as the total number of random walking particles divided by the total
number of available lattice nodes. At what density can you finally produce an amorphous
solid object ? Using the box counting method on your sequence of aggregates, determine
whether or not their fractal dimension is influenced by the initial particle density.

5At a purely mathematical level, a power-law is said to be scale-invariant for the following reason: start
with a generic power law f(z) = for~™® and introduce a new scale of measurement =’ = ax (this could be as
simplistic as switching from centimeters to meters as a unit for x, in which case a = 1072). Then we have

f&)/fo=(a")"% = (az)"* =a "%z~ *.

< i.e., neither the power-law form or

Defining f) = foa™, the power law remains of the form f(z")/f) = =~
index have been altered by the change of scale.

6Readers of a younger generation may try to pick up this challenge on Minecraft instead.
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Figure 3.12: Self-similarity in the DLA aggregate of Figure 3.2. The two successive zooms each
magnify by a factor of four in linear size. The color coding indicates the order in which the
particles have aggregated, following the color scheme explicited on Fig. 3.2.
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4. Grow some DLA aggregates starting from a row of sticking particles located along one
edge of the lattice. Do so for a uniform random initial distribution of moving particles;
and a Gaussian initial distribution centered on the middle of the lattice (if needed see
Appendix C on how to produce Gaussian distributions of random deviates). Experiment
with different values for the density of random walking particles, or for the location of
the initially sticky particles.

5. Modify the Python code of Fig. 3.1 (or better, the alternate version you built in exercise
2) so that moving particles only stick if they have a sticking particle at one of their
four closest neighbours, top/down/right/left, i.e., excluding diagonal neighbours. Using a
single sticking particle as seed, as on Fig. 3.2, reflect upon the impact this change has on
the overall appearance of the resulting DLA aggregate, and contrast this with the impact
of a similar change on the deterministic growth rules used to produce the structures on
Fig. 2.9.

6. And now for the Grand Challenge: set up and carry out a DLA simulation on a 6-
neighbour triangular lattice, starting from a single sticky particle at lattice center. This
really only implies altering the template arrays dx and dy in the code listed on Fig. 3.1 (or
the faster version designed in exercise 2; see also Fig. 2.5 for inspiration). Determine the
fractal dimension of the resulting aggregate (the mass-radius method will be fine here). Is
the fractal dimension dependent on the assumed lattice topology ? Think carefully about
the best way to apply the mass-radius and/or box counting methods on such a lattice;
you may start by taking yet another look at Fig. 2.5.

3.8 Further readings

The DLA model introduced in this chapter essentially follows:

Witten, T.A.Jr, & Sanders, L.M., Diffusion-limited aggregation, a kinetic critical phe-
nomenon, Phys. Rev. Lett., 47, 1400-1403 (1981).

The Wikipedia page on diffusion limited aggregation is rather minimal, but does include a nice
photograph of a copper sulfate aggregate grown in the laboratory through DLA (March 2015):

http://en.wikipedia.org/wiki/Diffusion-limited_aggregation

A multitude of good books are available on fractal geometry. The following is amongst the
most influential early discussion of the subject, and is still well worth reading:

Mandelbrot, B., The fractal geometry of Nature, Freeman (1982).

At the textbook level, try
Falconer, K., Fractal Geometry, John Wiley & Sons (2003).

I also found the following web page quite informative (viewed June 2016):
http://users.math.yale.edu/public_html/People/frame/Fractals/

I gained much inspiration and insight on naturally occurring fractal geometry from the following
two books, which I thus take the liberty to cite even though they may not be the optimal
references on the topic:

Prusinkiewicz, P., & Lindenmayer, A., The algorithmic beauty of plants, Springer (1990),
Flake, G.W., The computational beauty of Nature, MIT Press (1998).
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Chapter 4

Percolation

We saw in the preceding two chapters that rule-based growth, whether in cellular automata
or through DLA, can lead to the buildup of complex structures, sometimes exhibiting fractal
geometry. We now examine another lattice-based system where similarly complex structures
can arise from pure randomness. Percolation usually refers to the passage of liquid through
a porous or granular medium. In its more abstract form, as developed in this chapter, it has
become an exemplar of criticality, a concept in statistical physics related to phase transitions.
An iconic example of the latter is liquid water boiling into water vapor, or freezing to ice.

Superficially, the simple lattice-based model introduced in this chapter bears no relation
whatsoever to boiling water or to the flow of fluids through porous media. Yet it does capture
the essence of the critical behavior characterizing these systems; such is the power of physical
and mathematical abstraction.

4.1 Percolation in one dimension

Consider a one-dimensional lattice of length IV, i.e., a chain of N nodes each connected to its
immediate right and left neighbours, with the exception of the two nodes at the ends of the
lattice, which have only one neighbour. Figure 4.1 shows a N = 64 example. Each node has
a probability p of being occupied (with of course 0 < p < 1). This occupation probability is
the same for all nodes, and is independent of neighbouring nodes being empty or occupied; in
other words, each node is statistically independent of all others on the lattice. For a very large
lattice (N — 00), the expected number of occupied nodes tends towards pN, but at any finite
N deviations from this expected values are anticipated, and may be substantial for small V.
This is indeed the case on Figure 4.1, where the p = 0.3 lattice contains here fewer occupied
nodes than at p = 0.2.

If p is small, only a few nodes on the lattice will be occupied, and most will have empty
nearest-neighbour nodes. But as p is increased, the likelihood of having neighbouring nodes
occupied also increases. Define a cluster as a set of contiguous occupied nodes, delineated by
one empty node at each end. With p the probability of a node being occupied, 1 — p is the
probability of the node being empty. The probability of having at least one cluster of length s
is thus:

(1=p)xpxpxpx..x(1-p)=p*(1-p?>. (4.1)
—_——
s times
This expression tends towards zero for very large clusters (s — o0), even in the limit p — 1.
This reflects the fact that one empty node somewhere is enough to “break” a cluster otherwise

of length s — oco. Nonetheless, at some finite N the probability of having a cluster of size s
increases with p, as one would have expected.
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Percolation 1D, N=64

1.0 000000000000000000000000000000000000000000000000000000000000000 (1 (54 )
0.9 000000000°00000000000000000000000 0000000 00000 000000000000000 (57 )
0.8 00000000000 000000 70000000000000000 00 0000 0000 000 000 0 000 O | (51)
0.7 08000000000 00000000000°00000°0000000° 0 0000000000000 000 000 4 /(414 )
0.6 08008000000008000000.000 0 00.000°000. 000 0 0000 8 0 008 0 0 35(38)
0.5 608008080800000000000 000000000 00000000 6080006 00000000 0 800 34(32)
0.4 COeeOOOOOOOOOOOOOOOON0CCCeeeee e 80 8 e 080 808 00880080 23 (25 )
0.3  060080080000008000000O00OCCCeeee8 CC0000C800000000000e00 e e 15(19)
0.2 0000800080800 00e000e00000e e COCOee00800000000000000eccescesee 17(12)

Figure 4.1: Percolation lattices in one spatial dimension. Each line represents a N = 64 lattice,
with occupied nodes in black and empty nodes left as open circles. The occupation probability
p increases from bottom to top in steps of 0.1, as indicated at left. The number of occupied
nodes is listed at right, followed by the value p x IV expected statistically, within parentheses.

Let sj, measure the size, i.e. the number of occupied nodes, for the k™ cluster on the lattice,
and denote by S the size of the largest such cluster!:

S = max(sg) , k=0,1,2,3..... (4.2)

Consider now what happens as p is gradually increased. As long as relatively few nodes are
occupied, one may expect that existing clusters will grow by “tacking” an new occupied node
at one of their extremities. The probability of this happening increases linearly with p, so one
would expect S o p for p small. This expectation is borne out on Fig. 4.1: S grows from 2 to
4 to 5 to 6 as p increases from 0.1 to 0.2 to 0.3 to 0.4. However, once a substantial fraction
of lattice nodes are occupied, many clusters of significant sizes exist on the lattice, and a new
growth process emerges: fusion of two prexisting clusters separated by one empty node, once
that node becomes occupied. As p continues to increase and the lattice fills up, fusion of ever
larger clusters becomes increasingly frequent, and leads to a very rapid growth of S. It can be
shown that in the limit N — oo, the size of the largest cluster grows according to

1
lim § = -+ (4.3)
N—o00 1-— p
This indicates that the size of the largest cluster tends to infinity in the limit p — 1. In other
words, the largest clusters reaches a size comparable to that of the whole system. The numerical

ITo be consistent with Python’s array indexing convention (see Appendix A), the K clusters on the lattice
are numbered from 0 to K — 1. Sorry...
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value of p at which this happens is called the percolation threshold, hereafter denoted p.. For
one-dimensional lattices, p. = 1 for the very simple reason that only one empty lattice node
is enough to “break” the infinite cluster. This conclusion would have been easy to anticipate
without all this probabilistic mumbo-jumbo; but it was important to go through it nonetheless,
because things become a lot trickier —and complex — for lattices in more than one spatial
dimension.

4.2 Percolation in two dimensions

Let’s move to two-dimensional lattices, and see how much of what we learned in one dimension
carries over. In what follows we restrict ourselves to regular cartesian lattices with top/bot-
tom/left /right nearest-neighbour connectivity. Each node on the lattice is identified by a pair
of integer (i, j) flagging its “vertical” and “horizontal” location, respectively (if needed see Ap-
pendix D for more on lattice definition and notation). Except for nodes located at the lattice
boundaries, the four nearest neighbours of node (i, j) are

—— ——— —— ~——
bottom top right left

Here is a small source code in the Python programming language that defines such a 2D lattice
of size 128 x 128, and fills it with occupation probability p = 0.59:

# CREATES AND FILLS A 2D CARTESIAN PERCOLATION LATTICE
import numpy as np
import matplotlib.pyplot as plt

# __________________________________________________________________________
N=128 # Lattice size

p=0.59 # Occupation probability
np.random.seed(1234) # Seed for random number generator

# __________________________________________________________________________

lattice=np.zeros([N,N],dtype=’int’) # A 2D NxN lattice initialized to zero

for i in range(O,N): # Lattice loops
for j in range(O,N):
if np.random.uniform() < p: # Occupy this node

lattice[i,jl=1
plt.imshow(lattice,interpolation="nearest")
plt.show() # Display lattice
# END

Note that the value “1” is used to identify an occupied node, empty nodes being set at “0”.
Clusters are now defined as groups of contiguous occupied nodes separated from other clusters
or single occupied nodes by empty nodes. The percolation threshold is now defined as the value
of p at which the largest clusters spans the whole lattice, in the sense that it “connects” one
lattice boundary to its counterpart on the facing boundary.

Figure 4.2 shows three examples of two-dimensional regular cartesian lattices of size N x N =
64 x 64, with occupation probabilities p = 0.25, 0.50, and 0.75. At p = 0.25, the lattice contains
a large number of small clusters or isolated occupied nodes. Their spatial distribution is random
but statistically uniform. It is quite clear here that no single cluster spans the whole lattice, so
we are obviously below the percolation threshold. At p = 0.75 the lattice looks like a porous
objects, a bit like a sponge, containing many small holes distributed again randomly but in a
statistically uniform manner. Here one single very large cluster fills the lattice and contains
the majority of occupied nodes. This indicates that we are beyond the percolation threshold.
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Figure 4.2: Two-dimensional regular cartesian lattices of size N x N = 64 x 64, with occupation
probabilities p = 0.25, 0.5, et 0.75. Occupied nodes are filled in black, and empty nodes are
left white.

The p = 0.5 case is more ambiguous, at least visually. Are we seeing a dense clump of large
clusters, or a highly fragmented solid structure? That lattice would have to be studied carefully
to verify whether or not one cluster extends from one end of the lattice to another. But Figure
4.2 already allows to draw one interesting conclusion: unlike in the one-dimensional case, here
the percolation threshold p. < 1. This is because in two spatial dimension, an empty node can
be bypassed.

4.3 Cluster sizes

If building a 2D percolation lattice can be done in a few lines of Python code, identifying and
sizing clusters is a much more complex endeavour. There are many algorithms available to do
this, and the bibliography at the end of this chapter includes a few good references for those
wishing to delve into the state of the art. The algorithm introduced in what follows is far from
the most efficient, but it is relatively easy to code and conceptually simple to understand.

Imagine tagging an occupied node with a specific color, say green; starting from this newly
colored node, color green all occupied nodes that are nearest-neighbours, and then their nearest
neighbours, and so on until no uncolored nearest-neighbours are found. Then move to the next
as-yet uncolored occupied node, and repeat this process with a new color tag. Continue in this
manner until no uncolored occupied node is left on the lattice, and each cluster will end up
tagged with a unique color.

The Python code on Figure 4.3 is a direct implemention of this simple algorithm. This
user-defined function could be called directly at the end of the small code presented at the
beginning of this section, and the clusters plotted, through the instruction

n_cluster,size_cluster,tag._cluster,map_cluster=findcluster(N,lattice)

Algorithmically, this function operates along the lines described above:

1. The first step is to copy the N x N lattice into a working array map_cluster of size
(N + 2) x (N 4+ 2), thus leaving a padding of unoccupied ghost nodes (value = 0) along
its perimeter. This is carried out on line 9 through the implicit looping allowed by the
“11:12” array index syntax in Python, which means “access elements starting at index
value i1 up to position i2 (meaning, index i2-1! see §A.2 for more on this if needed).
This will allow the nearest-neighbour check to be carried for all nodes using the same
relative template, much as in the DLA code of Fig. 3.1; otherwise, boundary nodes would
need to be treated differently, increasing coding complexity. See §D.1 for more on the use
of ghost nodes.
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4.3. CLUSTER SIZES

99

#
# occupied node and a value O for an empty node
def findcluster(N,lattice):

dx,dy=np.array([-1,0,1,0]) ,np.array([0,-1,0,1]) #
size_cluster=np.zeros (N*N/2,dtype=’int’) #
tag_cluster =np.zeros(N*N/2,dtype=’int’) #
map_cluster =np.zeros([N+2,N+2],dtype=’int’) #
map_cluster[1:N+1,1:N+1]=latticel[:,:] #
n_cluster,iic=0,100 #
for j in range(1,N+1): #
for k in range(1,N+1):
size,add_to_size=0,0 #
if map_cluster[j,k] == 1: #
map_cluster[j,k]=iic #
size+=1 #
add_to_size+=1
while( add_to_size > 0) #
add_to_size=0
j1,j2=j,min(N, j+size) #
k1,k2=max(1,k-size) ,min(N,k+size)
for jj in range(j1l,j2+1): #
for kk in range(kl,k2+1):
if map_cluster[jj,kk] == #

if iic in map_cluster[jj+dx[:

map_cluster[jj,kkl=iic #

size+=1

add_to_size+=1
# end of inner lattice scan
size_cluster[n_cluster]=size #
tag_cluster[n_cluster] =iic #

print("cluster tag {7},
iic=np.random.random_integers(10,250)
n_cluster+=1

# end of this tagging

#
#

# end of outer lattice scan; display clusters

# FUNCTION FINDCLUSTER: TAGS AND PLOTS PERCOLATION CLUSTERS ON A 2D LATTICE
lattice is supposed of size NxN with nodal value 1 indicating an

Template arrays
Cluster size array
Cluster tag array
Cluster map array

Pad lattice with zeros
Counter, first tag

Outer lattice scan
Initialize counters
Initiate new tagging
New cluster tag

First node of cluster
Tagging in progress
Range of inner scan
Inner lattice scan
Untagged occupied node

1,kk+dy[:1]:
assign tag to node

Size of this cluster
Tag for this cluster

size {}.".format(iic,size))

Set up next tag
Increment counter

plt.imshow(map_cluster,interpolation="nearest") # Display clusters
plt.show()
return n_cluster,size_cluster,tag_cluster,map_cluster

# END FUNCTION FINDCLUSTER

Figure 4.3: A user-defined Python function for identifying and tagging individual clusters in
a two-dimensional percolation lattice with 4-neighbour connectivity. The matplotlib instruc-
tions on lines 41-42 display the clusters essentially as on Fig. 4.5.

naturalcomplexity.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal



60 CHAPTER 4. PERCOLATION

2. The algorithm is built on two nested outer loops, each running on one dimension of the
lattice (lines 12—-13), scanning it line by line;

3. At each node scanned within the outer loops, a test verifies whether the node is occupied
(value 1) and not yet assigned to a cluster (line 16). If so, a unique numerical tag (variable
iic) is assigned to it (line 17).

4. If and only if a new tag has been generated, a new “inner” lattice scan is initiated (line
21-32). Each occupied node having a nearest neighbour with identifier iic is tagged with
that same identifier (lines 27-29). A while loop construct (starting at line 21) ensures
that the inner lattice scan is repeated until no untagged occupied node is found with a
iic-tagged neighbour in the course of a complete scan.

5. By the design of the algorithm, the cluster being tagged can only enlarge by one nodal
distance horizontally and/or vertically from its starting node at each iteration of the while
loop. Consequently, the inner lattice scan spans an increasing range of nodes with each
iteration (lines 23-24), with the use of min/max to avoid out-of-bounds array indexing on
the array map_cluster. Note also that the order in which the lattice is scanned implies
that all nodes with index jj<j have already been tagged, so that the range of the inner
loop on line 25 begins at j1=j.

6. The nearest-neighbour check uses the two 4-neighbour template arrays dx and dy, verify-
ing whether any of the nearest neighbour already has been tagged with the value iic (line
28). Note here the use of the Python-specific construct if iic in ...”, which means
“if value icc is found in the set of array elements following”; if needed, see §A.5 for an
equivalent set of Python instructions using only simple for and if instructions.

7. At the end of the inner lattice scan, the number of nodes tagged with value iic is stored
in the array size_cluster (line 33), and the outer lattice scan resumes from where it
had been interrupted, until a new untagged occupied node is located, in which case step
3 begin anew, or the outer scan reaches the end of the lattice.

8. At the end of the outer lattice scan, the integer variable n_cluster contains the number of
clusters identified the array size_cluster contains the size (measured in number of nodes)
of each of these clusters, in the order of their tagging, and the array tag_cluster the
corresponding numerical value of the tags. Nodal values in the lattice array map_cluster
now contains, at occupied nodes, the tag value iic associated with each cluster, instead
of the value 1 originally indicating an occupied node (as per line 29). These are the
quantities returned by the function (line 43).

9. The size_cluster and tag_cluster arrays are assigned a length of N?/2 (lines 6-7),
which is equal to the most clusters than can be fit on a N x N lattice, namely clusters
all of size one distributed as a checkerboard pattern.

Figure 4.4 illustrates the operation of this cluster-tagging algorithm, here for a small 16 x 16
lattice at occupation probability p = 0.58. In the top left frame, five clusters have already
been tagged, as indicated by distinct colors, and the 12 frames cover successive tagging steps
(iterations of the while loop) within the outer lattice loop, starting from a untagged occupied
node at the upper left (in green).

This algorithm is (relatively) easy to code but inefficient in a number of ways, notably the
fact that the outer and inner sets of loop spend a lot of time revisiting nodes that are unoccupied
or have already been tagged. A more efficient approach, relatively straightforward to code in
Python, would be to first build a list of occupied nodes, and replace the two sets of loops at
lines 12-13 and 25-26 by a single loop over elements of that list. Elements of the array grid
are tagged as before, but nodes are then removed from the list as they are tagged.

Figure 4.5 shows the end result of the tagging algorithm of Fig. 4.3, here for a 512 x 512
lattice at p = 0.59. Upon completion of the tagging algorithm, locating and tracing the largest
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Figure 4.4: The cluster tagging algorithm of Fig. 4.3 in action, here on a 16 x 16 lattice at
p = 0.58. The nodal position (0, 0) is at top left in each frame. The outer and inner lattice scans
proceed line by line from top to bottom (loop indices j and jj) in the code of Fig. 4.3, and from
left to right in each line (loop indices k and kk). Colored squares correspond to occupied nodes
already tagged to a cluster, while gray squares indicated as-yet untagged occupied nodes and
white squares empty nodes. In the top left frame a new tagging inner loop has just started at
the left extremity of the third line of the lattice (nodal position (j, k) = (2,0)), and the bottom-
neighbour node has just been tagged (both in green). The next 11 frames show successive steps
of the tagging process, each corresponding to an iteration of the while loop at line 21 in Fig. 4.3,
the sequence being obvious. At the end of the tagging process (bottom right), a cluster of 44
nodes has been tagged “green”. The outer lattice scan would now resume, back in the third
column with the node (4, k) = (2,1). The next tag would be initiated at node (2, 6), for a size-2
cluster.

cluster simply requires searching the array size_cluster for its largest element, retrieving the
associated tag number from the array tag_cluster, and finally extracting the correspondingly
numbered nodes from the cluster map array map_cluster. These jointly form the largest cluster,
colored in black on Fig. 4.5. The top panel on Figure 4.6 shows how the size S of that largest
cluster increases with the occupation probability p, still for a NV x N = 512 x 512 lattice. What
is plotted is actually the mean largest cluster size (S), averaged over M = 10 realizations of the
lattice at each value of p (solid dots), with the vertical line segments indicating the standard
deviation og about the mean:

1 & 1 X V2
(8) =17 > Sm.  os= (M > (S - <S>)2> : (4.5)

As when computing the fractal dimension of DLA aggregates in the preceding chapter, such
ensemble averaging is carried out to ensure that the plotted variation is representative, and
not distorted by the idiosyncracies of a specific lattice configuration, each percolation lattice
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Figure 4.5: The 661 largest clusters on a 512 x 512 lattice at p. = 0.59. Unoccupied sites are
left white, gray indicates occupied nodes that are not part of one of the 661 largest clusters.
The largest cluster, plotted in black, collects S = 53537 of the 154867 occupied nodes, and
spans the whole lattice. Notice how holes in the larger clusters contain smaller clusters, them-
selves with holes containing even smaller clusters, and so on down to single occupied nodes.
The matplotlib instructions at the end of the cluster tagging function on Fig. 4.3 generate
essentially this type of display.
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being as unique as the seed provided to the random number generator upon initialization (if
needed see §C.2 on this seed business). As expected, the size S of the largest cluster grows
with the occupation probability?. For p < 0.2, linear growth (dashed curve) fits the numerical
data tolerably well, but already in the range 0.2 < p < 0.6 growth becomes super-exponential
(i.e., upwards curvature in this log-lin plot). This reflects successive pairwise fusion of existing
clusters, through the occupation of single nodes that had remained empty at lower p values.
Sometimes occupying just one more node is all it takes. The rapid saturation at p 2 0.6 is set
by the size of the lattice, which limits here the largest cluster to a maximal size of 512 x 512
(dotted line).

The bottom panel on Figure 4.6 shows the same results as on the top panel, except that
now the size of the largest cluster has been normalized by the expected number of occupied
nodes on the lattice at each value of p, i.e.:

F(p) = ;S;z(\];g ;

(4.6)

This measures the fraction of occupied nodes belonging to the largest cluster, and it highlights
something interesting; as long as p < 0.5, F(p) remains close to zero, even though the absolute
size of the largest cluster is growing significantly (cf. top panel, and its logarithmic vertical
axis!) In other words, the largest cluster becomes bigger, but does not particularly stand out
as compared to other clusters on the lattice. At the end of the range, p = 0.65, the largest
cluster includes almost all occupied nodes, which we expected already. But what is striking is
the sharpness of the transition between these two regimes. Around p = 0.55, F(p) grows very
rapidly, already approaching saturation close to unity at p ~ 0.65. Indeed, around p = 0.6 the
growth of S appears to diverge, in the (calculus) sense that dF/dp — co. The exact value of p
at which this takes place defines the percolation threshold for this 2D lattice. At this threshold,
the largest cluster contains on average half of the occupied nodes:

S(pc) = %chQ . (47)
For a four-nearest neighbour two-dimensional Cartesian lattice, the percolation threshold turns
out to be at p. = 0.592746. Unlike in the 1D case, there exist no equivalent to eq. (4.3), and
the percolation threshold must be evaluated numerically.

Enough (for now) with the largest cluster, and let’s turn to the population of all clusters on
the lattice. This information is contained in the array size_cluster returned by the cluster
tagging code listed in Fig. 4.3. We now want to get a measure for the range of clusters sizes
found of the lattice. Towards this end the most useful mathematical object is the probability
density function (hereafter PDF) of cluster sizes.

Mathematically, the PDF f(s) is defined such that f(s)As gives the probability of finding
on the lattice a cluster of size between s and s + As. Figure 4.7 plots such probability density
functions of cluster sizes on a N x N = 512 x 512 lattice with p = 0.3 (red), 0.59 (green) et
0.7 (blue). In essence, these discrete PDFs thus measure, in each simulation, the frequency
of clusters having size falling within each of the histogram bins®. Like most PDFs to be
encountered later throughout this book, the PDFs on Fig. 4.7 are plotted in so-called histogram
mode, to emphasize their fundamentaly discrete nature: a count of clusters in a given size range
As is an integer number and characterizes a finite size range.

In the first case, p = 0.3, the PDF drops rapidly as s increases, reflecting the fact that
the lattice is populated by small clusters (as on Fig. 4.2, left panel). At p = 0.7, one gigantic
cluster contains nearly all occupied nodes (as on Fig. 4.2, right panel). This single supercluster
accounts for the single blue histogram column at s ~ 2 x 10°. The remaining clusters are

2Note that throughout this chapter the term “growth” is used even though it does not arise from the action
of a dynamical process, such as in chapters 2 and 3.

3Readers unfamiliar with this concept should really read Appendix B before proceeding any further. Note
also that the PDF's plotted on Fig. 4.7 are constructed using logarithmically-constant bin sizes As, as described
in §B.5.
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Figure 4.6: The top panel shows the growth of the largest cluster on a 512 x 512 lattice, as a
function of the occupation probability p. Note the logarithmic vertical axis. Each solid dot is
an average over 10 statistically independent realizations of the lattice at the same value of p,
with the vertical line segments indicating the standard deviation og about the the ensemble
mean (S) (see eqgs. 4.5). The dashed curve corresponds to linear growth, and the dotted line
indicates the largest possible cluster size possible on the lattice, here 512 x 512 = 2.62 x 10°.
The bottom panel plots the same numerical results, but for S normalized by the total number
of occupied nodes (see eq. 4.6), and with the vertical axis now linear rather than logarithmic.
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Figure 4.7: Probability density functions (PDF) of cluster sizes on a 512 x 512 lattice for
p = 0.3 (red), 0.59 (green) et 0.7 (blue). Note the similarity between the PDFs at p = 0.3 and
p = 0.7, the crucial difference being the presence of the lone blue histogram bin at s ~ 2 x 102,
corresponding to the single largest cluster covering most of the lattice at p = 0.7.

small ones dispersed in the cavities of the supercluster, and their PDF closely resembles that of
clusters at p = 0.3. The case p = 0.59 is very close to the percolation threshold, and stands out
in that its PDF takes the form of a power law spanning essentially the whole range of cluster
sizes accessible on the lattice:

f(s) = fos™¢, a>0, (4.8)

here with o ~ 1.85. What is truly remarkable is that the numerical value of this exponent
is independent of lattice size, as shown on Figure 4.8. In going from small lattices of a few
103 nodes to lattices in excess of 10° nodes, the PDF retains the same power-law shape and
logarithmic slope; all that changes is the extension of the distribution to ever larger sizes, the
cutoff always occurring at of very near the expected size p.N?/2 for the largest cluster at the
percolation threshold. The power-law index o = 1.85 is said to be wuniversal for this class
of two-dimensional Cartesian lattices with 4-nearest-neighbour connectivity. These PDFs are
again ensemble averages of 10 realizations of the percolation lattice at each value of occupation
probability. Each PDF is constructed from combining cluster counts for all 10 realizations, and
then the power-law index o = 1.85 is calculated for this joint PDF*.

4.4 Fractal clusters

A robust power-law PDF is indicative of scale invariance in the structure being measured. We
have already encountered scale invariance in our discussion of fractal geometry in the preceding

4Note that this is not the same as averaging the 10 power-law indices associated with the individual PDFs
for each member of the ensemble, since a power-law is a nonlinear function of its independent variable, here size
occurrence frequency f(s)
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Figure 4.8: Cluster size PDFs near the percolation threshold, for 10-member ensembles of
statistically independent realizations of lattices ranging in size from N x N = 64 x 64 to
2048 x 2048, as color coded. The vertical tick marks in the upper right indicate the expected
size (S = p.N?/2) for the largest cluster on each lattice, and the dashed line is drawn with
a logarithmic slope of —1.85, which on such a log-log plots gives directly the exponent « in
eq. (4.8).

chapter. Could clusters on a lattice at the percolation threshold be fractal objects 7 Let us
look into that.

Figure 4.9 displays the largest cluster found on a 512 x 512 lattice, for occupation probabili-
ties ranging from p = 0.57 to 0.6, as labeled. At p = 0.57 the largest cluster is still significantly
smaller than the lattice, already spans it at = 0.59, and fills it in sponge-like manner at p = 0.6.
The shape of these clusters are noteworthy. Close to the percolation threshold, the clusters
are very filamentary and contain many large cavities, which contains smaller clusters also with
cavities, also containing smaller clusters, and so on down to the scale of the lattice interval (see
Fig. 4.5), in the same classical scale invariant manner as in the DLA aggregate on Fig. 3.2.
Clusters are indeed fractal objects, with a dimension somewhere between 1 and 2. Their frac-
tal index varies with the occupation probability p, the numerical value being smallest at the
percolation threshold. Because of their highly irregular shape, the fractal dimension of clusters
is best computed using the box counting method introduced in §3.5.

4.5 Is it really a power law 7

Power-law PDFs pop up everywhere in measurements of “event sizes” in naturally occurring
phenomena: for example, avalanches, forest fires, earthquakes, solar flares, to name but a few
which will be encountered in subsequent chapters. The implied scale invariance holds important
clues as to the underlying dynamical processes driving these events, and consequently a reliable
empirical determination of power-law form (4.8) and associated index « is important.

The power-law index a = 1.85 characterizing the PDFs on Fig. 4.8 was obtained by a linear
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p=0.57 p=0.58

Figure 4.9: The largest clusters on a 512 x 512 lattice, for occupation probabilities p = 0.57,
0.58, 0.59, and 0.6. Over this very restricted range, a small increase in p leads to a pronounced
increase in the size of the largest cluster.
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least-squares fit on the 2048 x 2048 PDF in the range 10 < s < 10, with the fit carried out in
the log-log plane and equal weight assigned to each histogram bin. This very simple method
has its limitations and must be used with proper caution. If the PDF extends over many orders
of magnitude in the measured variable (here over 5 orders of magnitude in s) and is built from
a great number of measured events (here over 10° for the 10-member ensemble), the inferred
power-law index typically turns out fairly accurate; this is often no longer the case for steeper
power-law PDF's spanning only a few orders of magnitude and/or built from a smaller sample of
measured events. Some robust statistical approaches have been designed, which allow reliable
determination of power law indices even under these circumstances. See §B.6 for more on these
matters.

The fractal structure of percolation clusters will certainly not extend to the very smallest
cluster sizes possible; a cluster of size two is definitely a line; so are one third of clusters of size
3, the other two thirds having the shape of 90° wedges; and so on. Scale invariance will surely
break down before reaching the smallest cluster size, like it did when zooming in on the DLA
aggregates (viz. Fig. 3.12). Likewise, the finite size of the percolation lattice will inevitably
distort the shape of the largerst clusters. This effect is clearly visible on Fig. 4.9 where, close
to the percolation threshold (p = 0.59, bottom left), parts of the largest cluster are clearly
deformed due to the presence of the lattice boundaries. Scale invariant, power-law behavior is
thus expected to break down at the high end of the cluster size distribution as well. This is
why the fit on Fig. 4.8 is carried out using only data in the range 10 < s < 10°.

4.6 Criticality

Let’s summarize what we have learned so far about 2D percolation. At and only at the perco-
lation threshold p., the following holds:

1. The sizes of clusters are distributed as a power-law;

2. The linear dimension of the largest cluster is ~ IV;

3. The largest cluster collects a fraction F' = 0.5 of all occupied nodes;

4. The growth rate of (S) diverges (d(S)/dp — o) in the limit p — p;

5. The rms deviation of the size of the largest cluster, relative to the mean value, is largest;

6. The fractal dimension of the largest cluster reaches its smallest numerical value.

These behaviors characterize what is known in statistical physics as a critical system. The
operational defining characteristic of a critical system is its global extreme sensivity to a small
perturbation in the system. Phase transition in water is the typical example, whereby water at
100 degrees Celcius transits from liquid to gaseous; there is no such thing as a pot of half-boiling
water; either the whole pot is boiling, or it is not, and under so-called standard atmosphere
conditions the transition point is at exactly 100° C. A tiny fraction of a degree below 100, and
the water is liquid; a tiny fraction of a degree above, and the water is already vapor. But
exactly at 100°C, adding a tiny increment of heat will trigger the phase transition®.

The link with percolation is with the behavior of the largest cluster as a function of the
occupation probability. When p < p., adding an occupied node will perhaps enlarge a cluster;
when p > p. there is already a large cluster spanning the lattice, and adding to it one more
occupied node will not change much. But exactly at p = p., adding a single node may connect
two existing large clusters to generate a cluster spanning the whole lattice. If we think of
the latter as a porous medium (occupied node=material, empty node=hole), the system goes
suddenly from permeable to impermeable. If the lattice is viewed as some composite material

5In the language of statistical physics, one would say that the correlation length of a perturbation becomes
comparable to the size of the system.
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made of electrically conducting grains (occupied nodes) embedded in a non-conducting matrix
(empty nodes), then at the percolation threshold the system goes suddenly from non-conducting
to electrically conducting. Other well-studied examples include magnetization at the Curie
point, polymerisation of colloidal liquids, superfluidity in liquid Helium, to name but a few.

In all these systems critical behavior materializes when a control parameter is very finely
tuned to a specific value —p. = 0.59274 for percolation on a 4-neighbour 2D Cartesian lattice;
temperature 100°C for boiling water, etc— by a mechanism external to the system. The
need for such finely tuned external control may suggest that criticality is unlikely to develop
spontaneously in natural systems, which are typically not subjected to finely tuned external
control.

It turns out that many natural systems can reach a critical state autonomously, through
the action of their own dynamics; and, as a matter of fact, the following chapter introduces
one.

4.7 Exercises and further computational explorations

1. Go back to take a look at Figure 3.5; would you say this “lattice” is at the percolation
threshold ? why ?

2. This mathematical task is to show that in the regime of small p, the largest cluster on a
1D lattice grows linearly with p; specifically:

. . 1+p
limS=1lim-—~14+2p. 4.9
p1<<ml pl<<mllfp P (4.9)

3. Construct a series of 1D percolation lattices of length N = 128, with occupation proba-
bility ranging from p = 0.1 to p = 0.9 in steps of 0.1, like on Fig. 4.1. For each value of p,
construct 10 such lattices, each using a different seed for the random number generator
controlling the loading of the lattice (see §4.2 and Appendix C). Now, for each p value,
determine the mean number of occupied nodes, as averaged over the ten realizations of
the lattice, and compare it to the expected value pN. Then, calculate the mean size of
the largest cluster (S) for each p, again averaged your ten lattice realizations, and plot
this mean value as a function of p. Identify the value of p at which the growth process
switches from single-node addition to cluster fusion.

4. Generate a 2D 256 x 256 Cartesian percolation lattice at p = 0.59, following the procedure
described in §4.2, and use the code listed on Fig. 4.3 (or some equivalent) to extract the
largest cluster. Use the box counting method introduced in the preceding chapter to
determine its fractal index. Repeat the procedure at a few other values of p on either side
of the percolation threshold, and verify that the fractal dimension of the largest cluster
is smallest at p = p..

5. Generate a ten member ensemble of 64 x 64 2D Cartesian percolation lattices at p = 0.59,
and build the cluster size PDF for this dataset, using logarithmically-constant bin sizes,
as described in §B.5. Estimate the power-law index by a linear least-squares fit to the
logarithm of bin count versus logarithm of size. Now estimate the power-law index (and
associated standard error) using the maximum likelihood estimator described in §B.6.
How well do the two values compare ?

6. And now the Grand Challenge! Percolation lattices can be used to study a phenomenon
known as anomalous diffusion. The idea is as follows: first generate a 2D 512 x 512 lattice
at its percolation threshold, identify the largest cluster, and place an “ant”-like agent (see
§2.4) on an occupied node near the center of this cluster. At each temporal iteration,
the ant selects randomly one of the four possible directions up/down/right/left, and steps
to that location only if the node is occupied; otherwise the ant remains in place until
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the next temporal iteration. So, in essence the ant is moving randomly in a “labyrinth”
defined by the cluster of which the starting node is part. At each iteration n, calculate
the (squared) displacement

Dy = (20 = 20)* + (yn — %0)°

from the ant’s starting position (xg,y0). You may let the ant move over a preset number
of time steps, but do stop the calculation if the ant reaches the edge of the lattice.

(a) Repeat the above simulation process for 10 distinct realizations of your percolation
lattice, and plot the ensemble-average root-mean-squared distance \/(D2) versus
iteration count.

(b) Repeat all of the above for lattices above and below the percolation threshold (at
p=0.5to p=0.7, say).

“Normal” diffusion is characterized by a displacement (d,) « /n (see Appendix C if
needed). In which range of occupation probability p can diffusion be deemed most
“anomalous”?

4.8 Further readings

Much has been written on percolation as an exemplar of criticality. At this writing the classical
reference remains:

Stauffer, D., & Aharony, A., Introduction to percolation theory, 2°4 ed., Taylor & Francis
(1994),

but see also chapter 1 in

Christensen, K., & Moloney, N.R., Complexity and Criticality, London: Imperial College
Press (2005).

The following offers a grand tour of phase transitions and related behaviors in a variety of
physical, biological and even social systems:

Solé, R.V., Phase transitions, Princeton University Press (2011).

There is also much to be learned from the following book, for those with the appropriate
mathematical skills:

Sornette, D., Critical phenomena in natural sciences, Springer (2000);

Chapter 12 deals specifically with percolation, but the first four chapters also contain a wealth
of useful information on critical systems and the statistical properties of variables distributed
as power laws, or other distributions with power-law tails. Algorithms for cluster labeling exist,
that are far more efficient than that introduced in §4.2; see the aforecited Stauffer & Aharony
book, and also:

Newman, M.J.E.; & Ziff, R.M., Phys. Rev. Lett., 85(19), 4104—4107 (2000)

as well as the following Santa Fe Institute working paper by the same authors (viewed June
2016):

http://www.santafe.edu/media/workingpapers/01-02-010.pdf

On statistically proper techniques for assessing the probability of power-law behavior and de-
termination of their indices from experimental data, see

Clauset, A., Shalizi, C.R., Newman, M.E.J., STAM Review, 51(4), 661-703
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Chapter 5

Sandpiles

The sky is blue, the sun is high, and you are sitting idle on a beach, a cold beer in one hand
and a handful of dry sand in the other. Sand is slowly trickling through your fingers, and as a
consequence a small conical pile of sand is slowly growing below your hand. Sand avalanches
of various sizes intermittently slide down the slope of the pile, which is growing both in width
and in height but maintains the same slope angle.

However mundane this minor summer vacation event might appear, it has become the icon of
Self-Organized Criticality (hereafter SOC), an extremely robust mechanism for the autonomous
development of complex, scale-invariant behaviors and patterns in natural systems. SOC will
be encountered again and again in subsequent chapters, hiding under a variety of disguises, but
here we shall first restrict ourselves to an extremely simple computational idealization of that
iconic summertime pile of sand.

5.1 Model definition

The sandpile model is a lattice-based cellular automaton-like system evolving according to
simple, discrete rules, local in space and time. Here we consider a one-dimensional lattice made
up of N nodes with right+left neighbour connectivity, as in 1D percolation (see Fig. 4.1). This
lattice is used to discretize a real-valued variable S7', where the subscript j identifies a node on
the lattice and the superscript n denotes a temporal iteration. Initially (n = 0) we set

S)=0, j=0,.,N-1. (5.1)
This nodal variable is subjected to a forcing mechanism, whereby at each temporal iteration a
small increment s is added to the variable S, at a single randomly selected node:

Sntl=grys, rel0o,N-1], s€0,¢], (5.2)

where r and s are extracted from a uniform distribution of random deviates spanning the given
ranges, and the maximum increment ¢ is an input parameter of the model. The physical system
inspiring this simple model is a pile of sand, so you may imagine that S7" measures the height
of the sandpile at the position j on the lattice at time n, and the forcing mechanism amounts
to dropping sand grains at random locations on the pile. Obviously, the sandpile will grow in
height in response to this forcing... at least at first.

Now for the dynamics of the system; as the pile grows, at each temporal iteration the
magnitude of the slope associated with each nodal pair (j, 7 + 1) is calculated:

=80, — ST, j=0,.,N-2. (5.3)

If this slope exceeds a preset critical threshold Z., then the nodal pair (j,j 4+ 1) is deemed
unstable. This embodies the idea of static friction between sand grains in contact, which can
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S_Snj+1)/2

Figure 5.1: Action of the redistribution rules given by egs. (5.4). The dark gray columns indicate
the nodal values (sand height) for a quartet of contiguous nodes, with the black solid dots linked
by solid lines indicating the slope, as given by eq. (5.3) and with thicker line segments flagging
slopes in excess of the threshold Z. (depicted by the triangular wedge at top left). Here the
nodal pair (j,j+ 1) exceeds this critical slope, so that the redistribution alters the nodal values
as indicated by the two red vertical arrows. This is equivalent to moving by one nodal spacing
downslope the quantity of “sand” enclosed by the upper green box, as indicated by the green
arrow. This adjustment leads to the new slopes traced by the red dots and solid lines, which
here is now unstable for the nodal pair (j+ 1,7 + 2). This would lead to another readjustment
at the next iteration (see text).

equilibrate gravity up to a certain inclination angle, beyond which sand grains start toppling
downslope. A redistribution rule capturing this toppling process is applied so as to restore
stability at the subsequent iteration. Here we use the following simple rule:

Sl =857 +(S-57)/2,  SpH =857+ (85-541)/2, (5.4)

where
S = (S}, +57)/2. (5.5)

This rule displaces a quantity of sand from the node with the higher SJ’-L value to the other, such
that the local slope 27 is reduced by a factor of two. Figure 5.1 illustrates this redistribution
process. If € <S5, 541, then the critical slope is only exceeded by a small amount, and the
above rule will always restore local stability. It is left as an easy exercise in algebra to verify
that this rule is conservative, in the sense that sand is neither created or destroyed by the
redistribution:

Sl gl = §r ST (5.6)
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and that the quantity 657" of sand displaced is given by

.G
0S5y = ik (5.7)

as indicated by the green boxes on Fig. 5.1. But now, even if the pair (4,7 + 1) was the only
unstable one on the lattice at iteration n, the redistribution has clearly changed the slope
associated with the neighbouring nodal pairs (j — 1,7) and (j + 1,7 + 2) since S and S},
have both changed; and it is certainly possible that one (or both) of these neighbouring pairs
now exceeds the critical threshold Z. as a result. This is the case for the pair (j + 1,7 + 2) in
the specific configuration depicted on Fig. 5.1. The redistribution rule is applied anew to that
unstable nodal pair; but then the stability of its neighbouring pairs must again be verified, and
the redistribution rule applied once again if needed, and so on. This sequential process amounts
to an avalanche of sand being displaced downslope, until every pair of contiguous nodes on the
lattice is again stable with respect to eq. (5.3).

Now the boundary conditions comes into play. At the last node of the lattice, at every
iteration n we remove any sand having accumulated there due to an arriving avalanche:

S% =0, (5.8)

This is as if the sandpile reached to the edge of a table, with sand simply falling off when
moving beyond this position. No such removal takes place at the first node, which may be
imagined as being due to the presence of a containing wall. The boundary condition (5.8) turns
out to play a crucial role here. Because the redistribution rule is conservative, and in view of
the inexorable addition of sand to the system mediated by the forcing rule, the boundary is the
only place where sand can be evacuated from the system.

In light of all this, one may imagine that a stationary state can be reached, characterized by
a global slope equal to Z., with avalanches moving sand to the bottom of the pile at the same
(average) rate as the forcing rule is loading the pile. As we shall see presently, a stationary state
is indeed reached, but presents some characteristics one would have been very hard pressed to
anticipate on the basis of the simple rules introduced above.

5.2 Numerical implementation

The source code listed in Figure 5.2 gives a minimal numerical implementation of our one-
dimensional sandpile model, “minimal” in the sense that it favors coding clarity over compu-
tational efficiency and coding economy. Note the following:

1. The array sand [N] is our discrete variable S7', and contains the quantity of sand at each
of the N nodes of the lattice at a given iteration. Here this is initialy set to zero at all
nodes (line 10).

2. The simulation is structured as one outer temporal loop, and this loop is set up to execute
a predetermined number of temporal iteration n_iter (starting at line 14);

3. Each temporal iteration begins with an inner loop over each of the N — 1 pairs of neigh-
bouring nodes on the lattice (starting on line 17). First the local slope is calculated (line
18), then tested for stability (line 19), and wherever the stability criterion is violated, the
quantity of sand that must be added or removed from each node to restore stability, as
per the redistribution rule (5.4), is accumulated in the array move (lines 21-22), without
updating array sand at this stage. This update is only carried out once all nodes have
been tested, by adding the content of move to sand (line 27). This synchronous update of
the nodal variable is important, otherwise a directional bias is introduced in the triggering
and propagation of avalanches;
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CHAPTER 5. SANDPILES

# SLOPE-BASED SANDPILE MODEL IN ONE DIMENSION

import numpy as np
import matplotlib.pyplot as plt

N=101

E=0.1
critical_slope=5.
n_iter=200000

sand=np.zeros (N)
tsav=np.zeros(n_iter)
mass=np.zeros(n_iter)

for iterate in range(O,n_iter):
move=np.zeros (N)

for j in range(O,N-1):
slope=abs(sand[j+1]-sand[j])
if slope >= critical_slope:
avrg=(sand[j]+sand[j+1])/2.
move[j] +=(avrg-sandl[j]

tsav[iterate]+=slope/4.
# end of lattice loop

if tsav[iterate] > O:
sand+=move
else:

j=np.random.random_integers(0,N-1)

sand [j]+=np.random.uniform(0,E)

sand[N-1]=0.
mass [iterate]=np.sum(sand)

# print("{0}, mass {1}.".format(iterate,mass[iterate]))

# End of temporal iteration

# Now plot a simpler version of Figure 5.4

plt.subplot(2,1,1)
plt.plot(range(O,n_iter) ,mass)
plt.ylabel(’Sandpile mass’)
plt.subplot(2,1,2)
plt.plot(range(O,n_iter) ,tsav)
plt.ylabel(’Displaced mass’)
plt.xlabel(’iteration’)
plt.show()

# END

)/2.
move [j+1]+=(avrg-sand[j+1]1)/2.

# Lattice size

# Peak forcing increment

# critical slope

# Number of temporal iterations

# Lattice, initially empty
# Avalanche time series
# Sandpile mass time series

# Temporal iteration
# Initialize diplaced sand array

# Loop over lattice
Eq (5.3): slope between j,j+1
# Pair j,j+1 is unstable

H

+H+

Eq (5.4)
Eq (5.4)
Eq (5.7)

sand moved to/from j
sand moved to/from j+1
cumulate displaced mass

H

# At least one node avalanched
# Transfer sand

# No avalanche; drive lattice
# Pick random node

#

Eq (5.2): add sand increment

# Eq (5.8): boundary condition
# Sandpile mass at this iteration

# Set up first plot (top)
# Sandpile mass vs iteration

# Set up second plot (bottom)
# Displaced mass vs iteration

Figure 5.2: A source code in the Python programming language for the one-dimensional sandpile
model described in the text. This represents a minimal implementation, emphasizing conceptual
clarity over programming elegance, code length, or run-time speed.
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4. Addition of sand at a random node (lines 29-30) only takes place if the lattice was found
everywhere stable at the current iteration. This is known as a “stop-and-go” sandpile,
and is meant to reflect a separation of timescale between forcing and avalanching, the
former being assumed to be a much slower process than the latter.

5. At the end of each iteration, the mass of the pile and mass displaced by avalanches, to
be defined shortly in egs. (5.9) and (5.10) below, are stored in the arrays mass and tsav;
these time series will be needed in analyses to follow.

6. Note another piece of Python-specific coding on line 33: the instruction np.sum(sand),
using the summing function from the numpy library, returns the sum of all elements of
array sand; this could be easily replaced by a loop sequentially summing the elements of
the array.

7. The matplotlib intructions on lines 3845 produce a simplified version of Fig. 5.4 further
below.

5.3 A representative simulation

Let’s look at what this code does for a small 100-node lattice, initially empty (i.e., S;-) =0Vj),
with the driving amplitude set at ¢ = 0.1 and the critical slope at Z. = 5. Figure 5.3 illustrates
the growth of the sandpile during the first 10 iterations. Recall that sand is being dropped at
random locations on the lattice, but in a statistically uniform manner, so that at first the pile
remains more or less flat as it grows. However, the “falloff” boundary condition imposed on the
right edge drains sand from the pile, so that the pile develops a right-leaning slope, first close
to its right edge but gradually extending farther and farther to the left. In contrast, at the
left edge the “wall” condition imposed there implies that sand just accumulates without falling
off. Consequently the pile remains flat there until the slope growing from the right reaches the
left edge. This occurs here after some 850000 temporal iterations. In this transient phase the
system has not yet reached statistical equilibrium: averaged over many iterations, more sand
is added to the pile than is evacuated at the open boundary.

This all make sense and could have been easily expected, doesn’t it, given the model’s setup?
So why having bothered to run the simulation? Well, to begin with, careful examination of
Fig. 5.3 reveals that one very likely expectation did not materialize. The dotted line indicates
the slope corresponding to the set critical slope Z. = 5. In the statistically stationary state,
the pile ends up with a slope significantly smaller (here by about 7%) than Z. = 5. This
equilibrium slope defines the angle of repose of the sandpile. But why is the pile stopping to
grow before the critical slope is reached ? This is is due to the stochasticity imbedded in the
forcing mechanism, which leads to some nodal pairs going unstable before the pile as a whole
has reached the critical slope Z.. As a consequence, the system stabilizes at an average slope
smaller than Z., approaching Z. only in the limit € — 0. But this is just the beginning of the
story.

It will prove useful to define a few global quantities in order to characterize the temporal
evolution of the lattice. The most obvious is perhaps mass, namely the total quantity of sand
in the pile at iteration n:

M™ =" ST (5.9)

Figure 5.4A shows a time series of this quantity, starting at the beginning of the simulation.
Mass first grows with time during the transient phase, but eventually saturates at a value
subjected to zero-mean fluctuations. These are better visible on the inset, showing a zoom of
a small portion of the time series. The shape is quite peculiar. In fact, the line defined by the
M™ time series is self-similar, with a fractal dimension larger than unity. On this zoom mass
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Figure 5.3: Growth of a one-dimensional sanpile constrained by a wall on its left edge, as
produced by the code listed on Fig. 5.2, here starting from an empty N = 100 lattice and with
parameter values Z. = 5 and ¢ = 0.1. The dotted line indicates a slope of Z.. Each curve is
separated from the preceding one by 10° iterations, as color-coded from bottom towards the
top.

is seen to grow linearly, at a well-defined rate set by the magnitude of the forcing parameter e,
but this growth is episodically interrupted by sudden drops, occurring when sand is evacuated
from the pile when avalanches reach the open boundary at the end of the lattice. The resulting
fractal sawtooth pattern reflects the slow, statistically uniform loading and rapid, intermittent
discharge. The sandpile is now in a statistically stationary state: the mass is ever varying, but
its temporal average over a time span much larger than the mean time interval between two
successive avalanches remains constant.

Another interesting quantity is the mass displaced at iteration n in the course of an ongoing
avalanche:

N-2
AM™ =" 48y, (5.10)
=0

where 057 is given by eq. (5.7). Keep in mind that this quantity is not necessarily equal to
Mn™ L — M™ since an avalanche failing to reach the right edge of the sandpile will not lower the
total mass of the pile, even though sand is being displaced downslope. Nonetheless, it is clear
from Fig. 5.4 that the total mass of the sandpile varies very little even when a large avalanche
reaches the right boundary; the largest drop visible in the inset on Fig. 5.4A amounts to a
mere 0.2% of the sandpile mass. This is because only a thin layer of sand along the slope
is involved in the avalanching process, even for large avalanches. The underlying bulk of the
sandpile remains “frozen” after the sandpile has reached its statistically stationary state.
Figure 5.4B shows the segment of the AM™ time series corresponding to the epoch plotted

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity.tex, July 28, 2016



5.3. A REPRESENTATIVE SIMULATION 7

E .

‘]
0
o

—_
(&)}

2.09

2.08

2.07

o
(@)

2.06 . . .
16.00 16.05 16.10 16.15 16.20

Sandpile mass M [10
—_
o

OO L L | | L L L L |
0 5 10 15 20
iteration [10°]
80 - - - 1T - 1 T 1
[ (B) i
= 60 -
S ]
2 L i
©
g L
- 40 o
]
o L
s |
@)
o T
R 20 1
O;I.' i ."ﬂll } II.II\'|. L IIL “I| l ." |
16.00 16.05 16.10 16.15 16.20

iteration [10°]

Figure 5.4: Panel (A) shows a time series of total mass M™, as given by eq. (5.9)), for a
simulation with parameter values N = 100, Z. = 5, and € = 0.1 and initial condition S? = 0.
The inset shows a zoom of the time series in the statistically stationary phase of the simulation,
highlighting its fractal shape. Panel (B) is a time series of displaced mass AM™, as given by
eq. (5.10), spanning the same time interval as the inset on panel (A).
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in the inset on part (A). This time series is again very intermittent, in the sense that AM™ =0
except during short “bursts” of activity, corresponding to avalanches. These avalanches are
triggered randomly, and have widely varying sizes, ranging from one pair of nodes to the whole
lattice.

Figure 5.5 illustrates the spatiotemporal unfolding of avalanches over 2000 iterations in the
statistically stationary state of the same simulation as on Fig. 5.4. The vertically-elongated
images at center and right each show a 1000-iteration segment, the right being the continuation
of the central one, with time running vertically upwards. The horizontal is the “spatial” di-
mension of the 1D lattice, the open boundary being on the right. The square pixellized images
on the left are two closeups each capturing the onset and early development of an avalanche.
The color scale encodes the quantity of displaced sand, with green corresponding to zero. The
purple/pink shades delineate the avalanching regions. Note how avalanches start always at a
single nodal pair, following the addition of a sand increment at a single node, and typically
expand downslope (here toward the right) as well as upslope (towards left) in subsequent it-
erations. The smaller avalanches often remain contained within the slope (bottom of middle
image), but the larger one typically reach all the way to the open boundary and discharge
sand from the pile. The constant inclination angle of propagating avalanches in such diagrams
reflects the one-node-per-iteration propagation speed of the avalanching front, as set by the
local redistribution rule.

The aggressively pastel color scale used to generate Fig. 5.5 was chosen so as to visually
enhance substructures building up within avalanching regions. The most prominent pattern at
the lattice scale is checkerboard-like, and simply reflects the fact that the stability and redis-
tribution rules introduce a two-node spatial periodicity in the lattice readjusment. Of greater
interest are the long-lived substructures emanating from the avalanching front and propagat-
ing vertically upwards in the avalanching regions. These are quite striking on the central and
right image on Fig. 5.5. They are triggered by small variations in the slope characterizing
stable regions in which the avalanching is progressing. These irregularities are responsible
for avalanches, even large ones, sometimes stopping prior to reaching one of the other lattice
boundaries. Morphologically, they also bear some similarity to the spatiotemporal structures
that can build up in two-states 1D cellular automata of the type investigated in §2.1.

5.4 Measuring avalanches

Figures 5.4B and 5.5 illustrate well the disparity in avalanche size and shape. This is worth
looking into in greater detail. We begin by defining three global quantities characterizing each
avalanche, all computable from the time series of displaced sand (array tsav in the simulation
code listed on Fig. 5.2):

1. Avalanche energy! E: the sum of all displaced mass AM™ over the duration of a given
avalanche;

2. Avalanche peak P: the largest AM™ value produced in the course of the avalanche.

3. Avalanche duration 7: the number of iterations elapsed between the triggering of an
avalanche and the last local redistribution that follows;

These three quantities can be easily extracted from the time series of displaced mass (array tsav
in the Python code listed on Fig. 5.2). The idea is to identify the beginning of an avalanche
as a time step iterate for which tsav(iterate)> 0 but tsav(iterate-1)= 0; likewise, an
avalanche ends at iteration iterate-1 if tsav(iterate-1)> 0 but tsav(iterate)= 0. The
following user-defined Python function shows how to code this up:

1 “Energy” is used here somewhat loosely, yet clearly the redistribution rules involve displacing sand downs-
lope, as indicated by the green boxes on Fig. 5.1, thus liberating gravitational potential energy, and justifying
the analogy.
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Figure 5.5: Spatiotemporal map of avalanches cascading across the lattice, in a 2000-iteration
long segment in the statistically stationary phase of the simulation plotted in Fig. 5.4. The
image displays the displaced mass 657 as a function of node number running horizontally, and
time running vertically from bottom to top. The open boundary coincides with the right edge
of each image. The image on the right is the temporal continuation of that in the middle, and
the two pixellized images on the left are closeups on the early phases of two avalanches. Green
corresponds to zero displaced mass (stable slope), and shades light blue through purple to red
are avalanching regions. This rather unusual pastel color scale was picked to better illustrate
the substructures developing within avalanching regions (see text).
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# FUNCTION MEASURE_AV: EXTRACTS ENERGY, PEAK AND DURATION OF AVALANCHES
def measure_av(n_iter,tsav):
n_max_av=10000
e_av=np.zeros(n_max_av)
p_av=np.zeros(n_max_av)
t_av=np.zeros(n_max_av)
n_av,sum,istart,avmax=-1,0,0,0.
for iter in range(l,n_iter): # loop over time series
if tsav[iterate] > 0. and tsav[iterate-1] ==
sum,avmax=0.,0.
istart=iterate # a new avalanche begins
if n_av == n_max_av-1: safety test
print("too many avalanches")
break

maximum number of avalanches
avalanche energy series
avalanche peak series
avalanche duration series

H OB H

+*

# break out of loop
n_av+=1 # increment avalanche counter

sum+=tsav [iterate] # cumulate displaced mass

if tsav[iterate] > avmax: # check for peak
avmax=tsav[iterate]

if tsav[iterate] <= 0. and tsav[iterate-1] > 0: # this avalanche ends

e_av[n_av]= sum # avalanche energy
p_av[n_av]= avmax # avalanche peak
t_av[n_av]= iterate-istart # avalanche duration

# end of loop over time series
return n_av,e_av,p_av,t_av
# END FUNCTION MEASURE_AV

This function could be called, for example, after the outer loop in the sandpile code of
Fig. 5.2. Note the safety test (lines 12-14) exiting the loop so as to avoid the avalanche counter
n_av becoming larger than n_max_av, which would cause out-of-bounds indexing of the arrays
e_av, p-av and t_av. Upon exiting from the loop, the variable n_av contains the number
of avalanches in the time series array tsav, and the arrays e_av, p_av and t_av contain the
associated energy F, peak displaced mass P, and duration 7" of each of these avalanches.

Although large avalanches moving more sand tend to last longer and reach higher peak
discharge rates, the quantities F/, P and T are correlated only in a statistical sense. Figure 5.6
shows the correlation between avalanche size E and duration 7" for 15019 avalanches having
occurred in a 5 x 10° iteration segment of a simulation on a N = 1000 lattice. Overall E does
increase with 7', but the distribution of avalanche data shows some rather peculiar groupings,
most notably along diagonal lines in this correlation plot. Moreover, all data fall within a wedge
delimited by lines with slopes of +1 and +2 in this log-log plot.

Consider a lattice everywhere at the angle of repose, with the addition of a small random
increment at node j bringing one nodal pair infinitesimally beyond the stability threshold.
Equation (5.7) then yields a displaced mass 65} = Z./4; this is the smallest avalanche that can
be produced on the lattice; it is the “quantum” of displaced mass (or energy) for this system,
hereafter denoted 6 My. Now, suppose that this redistribution destabilizes the downslope pair
(j,7 + 1), but not its upslope counterpart (5 — 1,7); with the lattice everywhere at the angle
of repose, our quantum of displaced mass will move down the slope, one node per iteration,
until it is evacuated at the open boundary. If the original unstable nodal pair is M nodes away
from the open boundary, this avalanche will have duration 7= M and energy E = M x §My;
consequently, £ = dMyT, a linear relationship. If the initial avalanche destabilizes both
neighbouring pairs but no other pair upslope, then two quanta of mass will move down the
slope, leading to £ = 26MyT. And so on for higher numbers of mass quanta. The duration of
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Figure 5.6: Correlation between avalanche size E (displaced mass) and duration T in the
statistically stationary phase of a sandpile simulation on a N = 1000 1D lattice. The dotted
lines bracketing the avalanche data have slopes of +1 and +2 in this log-log plot, corresponding
respectively to the relationships £ o< T and E o< T?.

such avalanches is clearly bounded by the size of the lattice. These are the line-like avalanches
on Fig. 5.5, and they map onto the straight line groupings with slope +1 on Figure 5.6. The
avalanche whose onset is plotted on the bottom left closeup on Fig. 5.5 belongs to the fourth
such family (four mass quanta moving out to the open boundary). These families represent the
quantized “energy levels” accessible to the avalanches. The upper bounding line with slope of
42 is associated with avalanches spreading both upslope and downslope; all nodes in between
avalanche repeatedly until stabilization occurs at the ends of the avalanche front, or mass
is evacuated at the boundary. These are the avalanches taking the form of solid wedges on
Fig. 5.5. In such cases the number of avalanching nodes increases linearly with 7', so that the
time-integrated displaced mass will be oc T2. The locality of the redistribution rules precludes
avalanches from growing faster on this 1D lattice, which then explains why the avalanche
energies are bounded from above by a straight line of slope +2 on Figure 5.6. Of course, any
intermediate avalanche shape between lines and wedges is possible, and so the space between
the two straight lines is also populated by the avalanche data. Incidentally, there is a lesson
lurking here: just because a system is deemed to exhibit “complexity” does not mean that some
aspects of its global behavior cannot be understood straightforwardly !

Even though the correlations between avalanche parameters exhibit odd structure, their
individual statistical distributions are noteworthy. Figure 5.7A and B show the probability
density functions (see Appendix C) for E and P, for simulations carried out over lattices of
size N = 100, 300, 1000 and 3000, but otherwise identical (Z. = 5, ¢ = 0.1, and redistribution
given by eq. (5.4)). The PDFs take the form of power laws, with logarithmic slope independent
of lattice size; as the latter increases, the distribution simply extends farther to the right.

This behavior we have encountered before in chapter 4, in the size distribution of clusters on
2D lattices at the percolation threshold. (cf. Fig. 4.8). Here this invariant power-law behavior
of materializes only in the statistically stationary phase of the simulation. It indicates that
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Figure 5.7: Probability density function of (A) avalanche energy E and (B) avalanche peak P,
in the statistically stationary states of the sandpile model for varying lattice sizes, as indicated.
The PDF of avalanche duration T resembles that for P in (B), except for a steeper logarithmic
slope. Note the logarithmic scales on both axes. In all cases the PDFs take the form of power
laws, with a flattening at small values of F and P, and a sharp drop at high values, occurring at
progressively larger values of E and P for larger lattices. Note, however, that the logarithmic
slope is independent of lattice size. Compare this to Fig. 4.8.
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avalanches are self-similar, i.e., they do not have a characteristic size. This scale invariance
reflects the fact that at the dynamical level, the only thing distinguishing a large avalanche
from a small one is the number of lattices nodes involved; the same local rules govern the
interaction between nodes. But in the percolation context, we also argued that scale-invariance
appeared only when the system had reach a critical state; could this also be the case here ?

5.5 Self-organized criticality

It is truly remarkable that of all the possible ways to move sand downslope at the same average
rate as sand addition by the forcing rule, so as to achieve a statistically stationary state,
our sandpile model “selects” the one characterized by scale-free avalanches. Because many
natural systems behave in this manner, the sandpile (real or idealized) has become the icon for
avalanching behavior in general, and for the concept of self-organized criticality in particular.

We saw in chapter 4, in the context of percolation, that a system is deemed critical when
the impact of a small, localized perturbation can be felt across the whole system. Recall
how at the percolation threshold, occupying one more node on the lattice can connect two
pre-existing clusters, forming a single large cluster spanning the whole lattice; as a result the
system suddenly becomes permeable, electrically conducting, whatever, whereas prior to that
it was impermeable, or insulating, etc. You should also recall that this extreme sensitivity
only materialized at the percolation threshold, so that critical behavior required external fine
tuning of a control parameter, which in the case of percolation is the occupation probability
p. Moreover, it is only at the percolation threshold that clusters on the lattice exhibited scale
invariance (viz. Fig. 4.7).

So where is the criticality here 7 With the sandpile, the equivalent of the percolation
threshold is the angle of repose of the pile. If the slope is inferior to this, as when the sandpile
is still growing, then local addition of sand may trigger small, spatially confined avalanches, but
certainly nothing spanning the whole lattice. If the global slope angle is larger than the angle
of repose, then the lattice is already avalanching vigorously. Only at the angle of repose can the
addition of a small bit of sand at a single random node do anything between (1) nothing, and (2)
trigger an avalanche running along the whole slope. However, and unlike with percolation, here
the angle of repose is reached “naturally” as a consequence of the dynamical evolution of the
system —mnamely the forcing, stability, and redistribution rules— through interactions between
a large number of lattice nodes over time, without any fine tuning of external parameters. The
critical state is here an attractor of the dynamics. For this reason, systems such as the sandpile
are said to be in a state of self-organized criticality, to distinguish them from conventional
critical systems which rely on external fine tuning of a control parameter.

Much effort has gone into identifying the conditions under which a system can exhibit self-
organized critical behavior. At this writing there exist no general theory of self-organized critical
systems, but the following characteristics appear sufficient —and possibly even necessary. A
system must be:

1. open and dissipative,
2. loaded by slow forcing,
3. subjected to a local threshold instability...

4. ...which restores stability through local readjustement.

However restrictive this may appear, the number and variety of natural systems that in prin-
ciple meet these requirements is actually quite large. Joining avalanches and other forms of
landslides are forest fires, earthquakes, hydrological drainage networks, geomagnetic substorms,
and solar flares, to mention but a few. Some of these we will actually encounter in subsequent
chapters. More speculative applications of the theory have also been made to species extinction
and evolution by punctuated equilibrium, fluctuations and crashes of stock markets, electrical
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blackouts on power grids, and wars. See the references listed in the bibliography at the end of
this chapter for more on these matters.

5.6 Exercises and further computational explorations

1. Verify that the redistribution rule given by eq. (5.4) does lead to eq. (5.7).

. Modify the 1D sandpile simulation code of Fig. 5.2 to keep track of the mass falling off the

pile at its right edge. This will be a distinct avalanching time series from the displaced
mass time series tsav. Once the statistically stationary state has been reached, use this
new “falloff” time series to calculate the corresponding avalanche parameters E, P and
T, as in §5.4 above, and construct the corresponding probability density functions (as on
Fig. 5.7). Are falloff avalanches scale invariant? How well does the “falloff E” correlate
with the “avalanching E” as defined in §5.4 7

. Use the 1D sandpile simulation code of Fig. 5.2 to verify that the statistically stationary

self-organized critical state is independent of the initial condition; more specifically, try
various types of initial conditions such as, for example, an initial sandpile at the angle
Z., or already at the angle of repose, or an initial sandpile loaded uniformly at some fixed
height, etc.

. Carry out 100-node simulations using different £ (¢ = 0.01, 0.1 and 1, say). Are the angles

of repose the same ? Making sure to have reached the statistically stationary state before
beginning your analyses, construct PDF of slope values (as given by eq. 5.3) as extracted
from a single non-avalanching iteration of each simulation; are these PDFs dependent
on the value of ¢ 7 Then construct the PDF of avalanche energy E for the same three
simulations; are they the same 7

. The 1D sandpile code listed on Fig. 5.2 is very inefficient from the computational point

of view; most notably perhaps, at every iteration it checks all lattice nodes for stability,
even if a perturbation s has only been added at a single randomly selected node at the
preceding iteration (see eq. 5.2). An easy way to improve on this is to modify the start
and end points of the loop over the lattice nodes so that stability is checked only at
the three nodes [r — 1,7,r + 1], where r is the random node at which a perturbation
is added. The reader with prior coding experience may instead try the really efficient
algorithmic approach, which is to keep a list of nodes either avalanching or subject to
forcing, and run the stability checks and redistribution operations only on list members
and their immediate neighbours. This is fairly straightforward in Python, which contains
a number of computationally efficient list manipulation operators and functions. This
may sound like a lot of work to speed up a simulation code, but when generalizing the
avalanche model to two or three (or more) spatial dimensions, such “trick” will mean
waiting 10 minutes for the simulation to run, rather than 10 hours (or more). Which
takes us naturally to...

. The Grand Challenge for this chapter is to design a two-dimensional version of the sandpile

model introduced herein. Your primary challenge is to generalize the stability criterion
(eq. 5.3) and redistribution rule (eq. 5.4) to 2D. Begin by thinking how to define the slope
to be associated with a 2 x 2 block of nodes. Measure the avalanche characteristics E, P
and T once the SOC state has been reached, and verify that these are distributed again
as power-laws. Are their index the same as in the 1D case ? You should seriously consider
implementing in your 2D sandpile code at least the first of the speedup strategies outlined
in the preceding exercise.
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5.7 Further readings

The concept of Self-Organized Criticality was coined by Per Bak, who became its most en-
thusiastic advocate as a theory of (almost) everything. His writing on the topic are required
reading;:

Bak, P., Tang, C., Wiesenfeld, K., Physical Review Letters, 59, 381 (1987),
Bak, P., How Nature Works, New York: Springer/Copernicus (1996),

but see also:
Jensen, H.J., Self-Organized Criticality, Cambridge University Press(1998).

and, at a more technical level:

Turcotte, D.L., Rep. Prog. Phys., 62(10), 1377-1429 (1999)

Sornette, D., Critical phenomena in natural sciences , Berlin: Springer (2000)

Hergarten, S., Self-organized criticality in Earth systems, Berlin: Springer (2002)

Aschwanden, M.J. (ed.), Self-organized criticality systems, Berlin: Open Academic Press
(2013)

Finally, for a good reality check on the behavior of real piles of real sand:
Duran, J., Sands, Powders, and Grains, New York: Springer (2000)

It turns out that real piles of real sand seldom exhibit the SOC behavior characterizing the
idealized sandpile models of the type considered in this chapter. However, some granular
materials do, including rice grains; see chapter 3 in the book by Jensen listed above.
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Chapter 6

Forest Fires

Chapter 4 introduced some of the remarkable properties of randomly produced percolation
clusters. These clusters were entirely static, “frozen” objects, their structure determined once
and for all by the specific realization of random deviates used to fill the lattice.

Can any “natural” process generate dynamically something conceptually resembling a per-
colation cluster? The answer is yes, as exemplified by the forest fire model investigated in
this chapter. Its ecological inspiration is probably as far removed as it could be from flow
through porous media or phase transitions, yet at a deeper level it does represent an instance
of dynamical percolation.

6.1 Model definition

The forest fire model is, fundamentally, a probabilistic cellular automaton. Sticking again to a
2D Cartesian lattice, each node (3, j) is assigned a state s; ; which can take one of three possible
values: “empty”, “inactive”, and “active”. Starting from an empty lattice (s; ; = 0 for all 7, j),
the nodal variable evolves in discrete time steps (sf'; — sf}“l) according to a set of local rules,
some of a stochastic nature:

1. Rule 1: An empty node can become occupied with probability p, (stochastic);
2. Rule 2: An inactive node can be activated with probability p, (stochastic);

3. Rule 3: An inactive node becomes active if one or more of its nearest neighbours was
active at the preceding iteration (deterministic);

4. Rule 4: Active nodes becomes empty at the following iteration (deterministic).

The ecological inspiration of the model should be obvious: inactive nodes represent trees; active
nodes are burning trees; Rule 1 is tree growth; Rule 2 is a tree being ignited by lightning; Rule
3 is fire jumping from one tree to a neighbouring tree; and Rule 4 is destruction of a tree by fire.
You have probably anticipated already that successive ignition of trees by a burning neighbour
can lead to the propagation of a burning “front” across the lattice, i.e., an “avalanche” of
burning trees. This expectation is certainly borne true, but as with the simple sandpile model
considered in the preceding chapter, the spatiotemporal evolution of the system holds quite a
few surprises in store for us.

6.2 Numerical implementation

The Python source code listed on Figure 6.1 is a minimal implementation of the forest fire
model, again in the sense that it sacrifices coding conciseness and execution speed to conceptual
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88 CHAPTER 6. FOREST FIRES

# FOREST-FIRE MODEL ON 2D CARTESIAN LATTICE
import numpy as np
import matplotlib.pyplot as plt

# ___________________________________________________________________________
N =100 # Lattice size
p_g =1.e-3 # Growth probability
p_T =1l.e-5 # Lightning probability
n_iter=25000 # Number of temporal iterations
# ___________________________________________________________________________
dx=np.array([-1,0,1,1,1,0,-1,-1]1) # Template arrays
dy=np.array([-1,-1,-1,0,1,1,1,01)
grid=np.zeros ([N+2,N+2] ,dtype=’int’) # Initialize lattice: no trees
trees=0 # Tree counter
for iterate in range(O,n_iter): # temporal iteration
update=np.zeros ([N+2,N+2] ,dtype=’int’) # evolution array
burn=0 # burning tree counter

# scan lattice to flag which trees must grow, ignite or vanish
for i in range(1,N+1):
for j in range(1,N+1):

if grid[i,j] == 1: # there is a tree on this node
if 2 in grid[i+dx[:],j+dy[:1]: # 1 or more burning neighbour
update[i,jl=1 # ignite
burn+=1
if np.random.uniform() < p_f: # lightning strikes (maybe)
update[i,jl=1 # ignite
burn+=1
if grid[i,j] == 2: # remove trees already burning
update[i,j]l=-2
trees-=
if grid[i,j] == O: # empty node

if np.random.uniform() < p_g: # grow tree (maybe)
updatel[i, jl=1
trees+=1
# end of lattice scan

grid+=update # synchronous update of lattic
print("iteration {0}, trees {1}, burn {2}.".format(iterate,trees,burn))
# end of temporal loop
plt.imshow(grid,interpolation="nearest") # display final state
plt.show()
# END

Y

Figure 6.1: A minimal implementation of the forest fire model in the Python programming
language.
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clarity and readability. The overall structure is similar to the sandpile code of Fig. 5.2, but the
simulation is now performed on a 2D Cartesian lattice of size N x N. Burning (active) nodes
are assigned the numerical value “2”, while occupied (inactive) nodes are set to “1” and empty
nodes to “0”. The temporal iteration is governed by the outer fixed-length loop starting on line
15, inside of which all the coding action is really sitting. Take note of the following:

1. The simulations begins with an empty lattice: all nodal values in grid are set to zero
(line 12), using Python/numnp’s array creation-and-initialization function zeros.

2. As with the DLA code of chapter 3, the 2D arrays grid and update are padded with an
outer frame of ghost nodes which always remain empty, but allow nodes at the real edges
of the lattice to be tested for ignition in the same manner as interior nodes. Consequently,
even though the lattice array is of size (N+2) x (N+ 2), loops over the lattice run from 1
to N; meaning in Python, range (1,N+1) on lines 19-20, as per the loop range and array
element numbering conventions in the Python programming language. See §D.1 if needed.

3. Ghost nodes retain the value zero throughout the simulation; you may think of this
as equivalent to the simulation domain being enclosed within four scrupulously well-
maintained fire trenches.

4. Once again the nodes that are to grow a tree, catch fire, or turn empty, are first identified
in the first block of for loops, and the needed changes (+1 for tree growth, line 33; +1
for igniting an existing tree, either by lightning (line 23) or via a burning neighbour (line
26); and —2 for a burned tree vanishing (line 29), are stored in the 2D array evol. This
work array is reset to zero at the beginning of each temporal iteration (line 16).

5. The lattice update is later carried out synchronously, at the end of the temporal iteration
loop (line 37).

6. The relative coordinates of the 8 nearest neighbours to any node are stored in the template
arrays dx and dy (lines 10-11). See §D.1 if needed.

7. Note again on line 22 the Python-specific instruction if 2 in grid[i+dx[:],j+dy[:]1]:
and its built-in implicit loop, to check whether there is at least one burning tree in the
set of nearest-neighbour to node (i, j), as defined by the template arrays dx and dy.

8. Note that lightning can still strike while a fire is burning; this model is operating in
“running” rather than “stop-and-go” mode.

In case you did not notice it already, this forest fire model is at the core of the algorithm
introduced in chapter 4 for the tagging of clusters on the percolation lattice (if you are not
convinced, compare Figs. 4.3 and 6.1). Occupied nodes are the trees; tree growth is turned off,
and random ignition by lightning strikes is replaced by systematic ignition of as-yet untagged
occupied nodes. The ensemble of trees burned by each such ignition is a cluster, and the largest
fire maps the largest cluster on the lattice.

Getting back to to the forest fire model per se, clearly the rules governing the lattice evo-
lution are quite simple, and only Rule 3 actually involve nearest-neighbour contact. Moreover,
the model involves only two free parameters, namely the tree growth probability p, and the
lightning probability pf. Nonetheless, as these two parameters are varied the model can gen-
erate a surprisingly wide range of behaviors, hard to anticipate on the basis of its defining
dynamical rules.

6.3 A representative simulation

Figure 6.2 shows the triggering, growth and decay of a large fire in a representative forest fire
model simulation on a small 100 x 100 lattice, with parameter values p, = 103 and Dy = 1075,

naturalcomplexity.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal



90 CHAPTER 6. FOREST FIRES

This simulation had been running already for many thousands of iteration, and so had reached
a statistically stationary state!. The Figure shows a sequence of snapshots taken ten iterations
apart, going left to right from top to bottom. A few iterations prior to the second snapshot,
lightning has struck a bit up and left from lattice center. Fire activity propagates from node
to node, at an average speed determined by the density of trees but never exceeding one lattice
spacing (horizontally and/or vertically) per iteration, as per Rule 3. The combustion front is
initially almost circular, but later evolves into a far more convoluted shape as the fire sweeps
across the lattice, reflecting the substantial spatial variations of tree density in the pre-fire
lattice configuration. This heterogeneity is itself a consequence of previous fires having burned
across the lattice in the more or less distant past (viz. the last snapshot on Fig. 6.2). Even
though fires are triggered by a stochastic process (Rule 2 above), past fire activity influences
the evolution of current fires.

Figure 6.2 illustrates well the disparity of timescales characterizing the forest fire model. The
shortest is the “dynamical” timescale characterizing the propagation of the fire from one node to
a neighbouring node; namely one temporal iteration. The next timescale is that associated with
tree growth, and is given by p;l = 103 iterations here. Starting with an empty 100 x 100 lattice,
this means that on average 10 new trees would grow at each temporal iteration. The first three
snapshots in the last row exemplify quite well how much longer than the dynamical timescale
this is: they must be scrutinized very carefully to notice the ~ 300 new trees having appeared
in the course of the 30 iterations spanned by these snapshots. The spontaneous activation
probability —lightning strikes— usually determines the longest timescale. The expected time
interval between two successive activations is of the order of (p x N2 x ps)~!, where N is the
linear size of the lattice and p the mean occupation probability in the statistically stationary
state; this is defined as the number of live trees divided by N2, the total number of lattice
nodes?. Here, with N = 100, p ~ 0.2 and pr = 10~°, a lightning strike is expected every 50
iterations on average, but it must be kept in mind that following a large fire such as on Fig. 6.2,
p can fall much below its mean value calculated over the duration of the simulation.

The bottom right panel on Figure 6.2 shows the “cluster” of all trees burned in the 105-
iteration long fire covered by the other frames. Overall this maps well, but not perfectly, to
the tree density characterizing the top left panel of Fig. 6.2, just prior to fire onset. Note how
this cluster of burned trees contains “holes” in which clumps of trees have survived the fire, as
the burning front became more convoluted. The shape of this cluster should remind you of the
percolation clusters encountered in chapter 4; and yes, you hopefully guessed it, this cluster of
burned trees is a fractal.

Figure 6.3 now shows now a segment of the time series of burning trees, in the same sim-
ulation. The large fire of Fig. 6.2 is the largest of the three fires visible on this time series,
starting at iteration 3055. Fires clearly span a wide range in size, and their activity can show
significant temporal variability in the course of a given fire. As one might have expected, large
fires destroying large number of trees tend to burn longer and flare up more strongly, but the
correlation between these fire measures is far from perfect; on Fig. 6.3, the third fire lasts only
a few iterations more than the second, but destroys almost three times as many trees.

6.4 Model behavior

The numerical choices made for the growth and activation probabilities p, and py can lead to
widely varying behaviors in the spatiotemporal evolution of the system. This is illustrated on
Figures 6.4 and 6.6, which show time series of the number of occupied nodes that are inactive
(i.e., occupied by a tree; Ny, in green) and active (burning trees; Ny, in red), for four different

n this forest fire model this is best ascertained by tracking the total number of trees on the lattice, until
it levels off to a stable mean value. Note also that whatever the initial condition, the duration of the initial
transient increases rapidly with decreasing py and py.

2Here the occupation probability p is not an input parameter, as in percolation, but a characteristic of the
statistically stationary state attained by the simulation; but even then, only to a first approximation (more on
this shortly).
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Figure 6.2: A sequence of snapshots, taken 10 iterations apart, of a 100 x 100 lattice in a
simulation of the forest fire model running with p, = 1072 et p; = 107°. Empty nodes are
left white, nodes occupied but inactive are green, and active nodes are red. Here lightning has
struck a bit left and up of the lattice center, two iterations prior to the second snapshot. The
resulting burning front subsequently sweeps through a large fraction of the lattice. The bottom
right frame shows the location of all trees having burned in this fire. Notice also the small
fire, triggered by a second lightning strike, ignited in the upper left portion of the lattice a few
iterations prior to the eleventh frame (third column in third row from top). A mpeg animation
of this Figure will be available
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Figure 6.3: Time series of the number of burning trees in the simulation of Fig. 6.2, with the
large fire starting at at iteration 3055 being the one captured by that sequence of snapshots.
Next to each fire are listed the total number of burned trees (F), peak number of burned trees
at any single iteration (P) and fire duration (T').

combinations of p, et py values. If p; ~ p, (top panel of Fig. 6.4, with p, = p; = 107%),
then trees are struck by lightning at a frequency comparable to their growth rate. The total
number of trees remains approximately constant, and numerous small fires are always burning
here and there, without ever becoming large because the density of trees is too small; with
N, hovering around 1500, only 15% of the 10* lattice nodes are occupied at any given time,
meaning that few pairs of trees stand on neighbouring nodes. If p, is raised to 1072 (bottom
panel on Fig. 6.4), trees grow much faster and their density is roughly twice larger. Not only
can fires now spread, but in fact trees are now growing so rapidly that once ignited, a fire never
stops because new growth behind the burning front replenishes the forest at a rate comparable
to the time it takes the fire to move across the lattice, here of the order of 100 iterations.
These parameter regimes are of course ecologically unrealistic, but represent classes of pos-
sible behavior for this model that are quite interesting in their own right. Figure 6.5 shows a
snapshot of a 1024 x 1024 lattice in the rapid regrowth regime (p, = 1072), where a few dozen
random lightning strikes have taken place in the first 100 iterations, but lightning has been
artificially “turned off” afterwards. Moving burning fronts (in red) are ubiquitous across the
lattice, growing, shrinking, fragmenting, merging, and interacting with one another, and often
develop into approximately circular arcs, with their tips curling back inwards, in the manner of
a spiral with a large opening angle3. The density of trees (in green) at any location on the lattice
undergoes a recurrence cycle of slow growth at a rate set by p, up to value approaching unity,
then a sudden drop to zero as the burning front moves through, followed by slow growth anew.
This general type of recurrence cycle will be encountered repeatedly in subsequent chapters.
Let’s get back to the more ecologically realistic situation where trees grow slowly and fires
are rare events. Figure 6.6 shows what happens if the growth and activation probabilities are

3We will encounter in chapter 11 a cellular automaton behaving similarly, when discussing excitable systems
and reaction-diffusion chemical reactions.
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Figure 6.4: Time series for the number of active (red) and inactive (green) occupied nodes, for
various combinations of p, and py, in a regime where these growth and activation probabilities
are relatively high. Both of these simulations are run on a 100 x 100 lattice, and the time series
plotted are extracted far into the statistically stationary state.

naturalcomplexity.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal



94 CHAPTER 6. FOREST FIRES

Figure 6.5: Snapshot of a 1024 x 1024 lattice, for a simulation with p, = 102, D= 1072, but
with lightning artificially turned off after the first 50 iterations. In this parameter regime, trees
grow so fast that once ignited, fire persists throughout the simulation, with burning fronts
expanding, fragmenting, shrinking and interacting with one another. Note how the curve
burning fronts often show a tendency to spiral inwards at their extremities.
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lowered to the much smaller values p, = 107% and py = 107%, respectively. The lattice now
has enough time to really fill up before lightning strikes again. But when the ignition finally
happens, almost every tree has at least one nearest neighbour, so the fire sweeps almost the
whole lattice clean. This leads to a quasiperiodic “load/unload” recurrence cycle whereby, at
more or less regular intervals, the whole forest is destroyed, and regrowth must start from
zero or nearly so. On the top panel of Figure 6.6, when lightning strikes there are around 5000
occupied nodes, out of a possible grand total of 100 x 100 = 10*. The corresponding occupation
probability is therefore ~ 0.5, which pretty much guarantees that every tree has a neighbour.
The fact that a few hundred trees remain at the end of a large fire is in part a boundary effect;
on a 100 x 100 lattice, 392 nodes are boundary nodes that have three fewer neighbours than
interior nodes, and the 4 corner nodes even fewer. These boundary nodes are thus harder to
reach for an ongoing fire.

At low py, the only way to break the load/unload cycle so prominent on the top panel of
Fig. 6.6 is if tree growth is sufficiently slow so that the lattice does not have time to completely
fill up between two successive lightning strikes. Keeping py = 1075 but lowering pg to 1074
yields the solution plotted on the bottom panel of Fig. 6.6. Fires, when they occur, can still
be quite large, but they are now triggered far less regularly and exhibit a wide range in size.
Note also the fractal sawtooth pattern of the time series for occupied nodes, which shows an
uncanny resemblance to the mass time series in the sandpile model of the preceding chapter
(cf. the inset on Fig. 5.4A).

In cases like on Fig. 6.6, where one or more fires are not burning continuously somewhere
on the lattice (as they do on Fig. 6.5), it is possible to characterize each individual fire as we
did avalanches in the sandpile model, through the variables E, P and T, defined respectively
as:

1. E: the total number of trees burned in the fire,
2. P: the peak number of trees burned at any one iteration in the course of the fire,
3. T the fire duration, measured in temporal iterations.

These quantities are correlated with one another, in that large fires tend to last longer, but
we know already from Fig. 6.3 that a perfect correlation is not to be expected. Figure 6.7
shows the probability density functions of fire sizes (E), for the two simulations of Fig. 6.6. At
Dg = 103 the distribution is approximately gaussian, centered here around fire size 4800, but
with a long, flat non-Gaussian tail extending to much smaller fires and a narrow, tall peak at
very small fire size (off scale to the left on Fig. 6.7A). In this py < 1 regime, lowering the growth
probability from p, = 1073 to p, = 10~* leads to a transition from a Gaussian distribution,
with a relatively well-defined mean, to a power-law of the form:

f(E)=foE™®, a>0, (6.1)

here with a = 1.07. For such power-law PDF it can be shown that the average fire size (E) is
given by:

(E) fo [E%o — E20] (6.2)

= 2 _« max min

where Ey,in and E. are the smallest and largest fires that can be produced by the simulation,
here 1 and 10%, respectively (see Appendix B for the calculation of averages from a PDF). With
Emin < Fmax (which is usually the case on large lattices) and a < 2, this is well approximated
by:

<E>N% [ < 2] (6.3)

> . .

This is because with o < 2 the exponent 2 — «v in eq. (6.2) is positive, so that the first term in
the square brackets ends up much larger than the second. The opposite would be true if a > 2.
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Figure 6.6: Identical in format to Figure 6.4, but now for simulations operating in the regime
where the activation probability py is very small. Compare the bottom plot to the inset on
Fig. 5.4A.
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Figure 6.7: Probability distribution of fire size F, for the two simulations of Fig. 6.6. The
distribution in (A) is tolerably well fit by a Gaussian, except for its flat, low amplitude tail
extending to small fire sizes. The distribution in (B) is well described by a power law with
index —1.07.
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In the regime p, < 1, py < py, the first case prevails, and therefore the largest fires dominate
the evolution of the (eco)system?*.

Whatever their shape, PDFs are defined such that f(FE)dE measures the occurrence prob-
ability of a fire of size between F and E/ 4 dE. In the ecologically realistic p, < 1 regime, any
one node contributes only one burned tree to a given fire; the situation was different in the
sandpile model of the preceding chapter, where a node could topple repeatedly in the course
of the same avalanche (see Fig. 5.5 if you’re not convinced). Here, if a fire destroys E trees,
it is because lightning hit somewhere within a cluster containing E connected trees. However,
the probability that a cluster of size E be hit by randomly distributed lightning strikes is also
proportional to the cluster size. Therefore, the probability density function of cluster sizes
must be distributed as oc E~(@t1) if the probability density function of fire sizes is o« E~%;
with o = 1.07 for the simulation of Fig. 6.7B, this implies that clusters of trees are distributed
as a power-law with index —2.07. Recall from chapter 4 that percolation clusters show a scale-
invariant power-law size distribution only at the percolation threshold (viz Fig. 4.7). Can we
then conclude that the forest-fire lattice is at the percolation threshold ?

It turns out to be significantly more complicated than that. Unlike in classical percola-
tion, the tree density, equivalent to the occupation probability in percolation, is not constant
across the lattice in the forest fire model. This is illustrated on Fig. 6.8, showing a snapshot
of the distribution of trees (black dots) in a py = 1074, D= 10~7 simulation, now on a much
larger 1024 x 1024 lattice. The mean density of trees is only approximately constant within
irregularly-shaped domains, with significant jumps occurring at the boundaries separating con-
tiguous domains. These domains have been carved by prior fires having swept through the
lattice. Tree growth, as mediated by Rule 1, is random but statistically homogeneous in space,
so that the mean density of a given (large enough) domain is proportional to the time elapsed
since the end of the last major fire having swept through that domain. Each individual do-
main behaves effectively as a separate percolation lattice, with slowly increasing occupation
probability. Immediately following a fire, the occupation probability is close to zero, but grows
linearly with time, eventually reaching the percolation threshold (p. = 0.4072 for a Cartesian
lattice with 8-neighbours connectivity). Recall that the likelihood of a single cluster taking
over the lattice increases very rapidly once moving beyond this threshold (see Fig. 4.6), so that
lightning, when and wherever it hits, is likely to wipe out the whole domain in a single fire.
The shape and size of domains evolves slowly in the course of the simulation, because part of
a domain may be destroyed by fire before reaching the percolation threshold (lightning hitting
“early”), or by fusion with neighbouring domains if both have exceeded significantly the perco-
lation threshold prior to one igniting (lightning hitting “late”). Clearly, the probability density
function of fire sizes is determined by the past history of fires, going back at least a few p;l
iterations. Since typically p, < 1, the system is said to exhibit long temporal correlations.

6.5 Back to criticality

Running forest fire model simulations for various combinations of growth and activation proba-
bilities p, and p¢, one soon realizes that in the portion of parameter space satisfying the double
limit:

pr<Lpg, pg<l, (6.4)

the probability density function of fire sizes (and durations) always assumes a power-law shape.
Moreover, in that regime the power-law index is always the same, and, for large enough lattices,
is independent of lattice size. In other words, the corresponding values of « are universal, and
involve no fine tuning of control parameters. In this regime, the forest fire model exhibits
self-organized criticality.

4The same holds for the Earth’s crust, with the largest earthquakes contributing the most to the relaxation
of tectonic stresses; more on this in chapter 8.
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Figure 6.8: Snapshot of a forest-fire simulation on a 1024 x 1024 lattice, with parameters
Dg = 10~ and Dy = 10~7. Each small black dot is a tree, so that the resulting pointillist
gray shading provides a visual measure of tree density. Burning trees are plotted in red. Note
how tree density, as measured visually by the level of gray shading, is approximately constant
within contiguous domains, relatively well-delineated but very irregularly-shaped. The lighter
areas are the scars of the more recent fires, and often contain dense clumps of surviving trees,
corresponding to “holes” within the former clusters destroyed by fire. On this snapshot two
fires are burning, a large one near lattice center and a smaller one near bottom.
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In terms of the conditions for SOC behavior identified at the end of chapter 5, slow forcing
is tree growth; the threshold instability (with respect to lightning strike) is the presence of a
tree on the node hit by lightning; redistribution is the propagation of fire to neighbouring trees.
The system is open, because new trees are continuously added to the lattice, and dissipative,
because a mechanism (fire) removes trees from the lattice.

But why should it matter whether wildfires represent an instance of SOC 7 It turns out to
matter a lot, when you decide to actively manage wildfires.

6.6 The pros and cons of wildfire management

As T write these lines, life is slowly returning to the 1,500,000+ acres of land (over 6000 square
kilometers) charred by the Spring 2016 Fort McMurray wildfire in Northern Alberta. It is
currently lining up to rank as the costliest natural disaster in Canadian history. Amazingly
enough, “only” two people died, in a car collision during the town’s evacuation. Sometimes the
toll gets worst. I lived in Colorado back in 1994 and vividly recall the Storm King Mountain
wildfire near Glenwood Springs, which on July 6 claimed the lives of 14 firefighters who could not
escape a rapidly moving firefront. And if this was not bad enough, a century ago an estimated
223 Northern Ontario residents suffered the same fate when half a dozen small communities
were swept by the 29 July 1916 Matheson wildfire. The dangers of wildfires, and wildfire
fighting, are not to be taken lightly. This is serious business.

In Canada as in the United States, until recently and to some extent still now, wildfire
management consisted in putting out potentially dangerous wildfires as quickly as possible,
when the fire is still small. It sure seems to make a lot of sense. This type of fire management
practice is easy to incorporate in the simulation code of Fig. 6.1. For example, introduce a
time-dependent extinction probability (p.) which decrease with the current number of burning
trees (np) as

_ OQ/nb(t) if ny S 10
e(l) = . 6.5
Pe(t) {0 otherwise (6.5)

Now, when a fire is triggered and begins to grow, at every subsequent temporal iteration a
probability test forces simultaneous extinction of all burning nodes with probability p.. As the
fire grows beyond a few tens of simultaneously burning nodes, this probability will tend to zero,
reflecting the fact that real wildfires become very hard to extinguish once they really get going.

Considering that even large fires start off small, this procedure will clearly reduce the number
of fires burning on the lattice over a set time span. However, because the PDF of fire sizes has
a power-law shape, most extinguished fires would have remained small anyway Extinguishing
them thus leaves more fuel for subsequent fires; whenever one manages to grow to a size where
it probability of being extinguished goes to zero as per eq. (6.5), the forest is more densely
packed with trees than it would have been had the earlier small fires not been extinguished.
As a consequence, the total number of fires decreases, but the size of the largest fires may well
increase! Not at all the desired outcome of good wilfire management. The Grand Challenge for
this chapter leads you through a quantitative investigation of this phenomenon.

6.7 Exercises and further computational explorations

1. The time series on the bottom of Fig. 6.4 shows a very clear periodicity; can you determine
what sets the period here ?

2. Run two forest fire simulations using the parameter values on Fig. 6.6. Make sure to
run your simulations long enough to generate a few hundred fires at least. Calculate the
fire measures E, P and T, as on Fig. 6.3, and examine how these correlate against one
another for your ensemble of fires. In both cases examine also if fire size E correlates with
the time elapsed since the end of the previous fire, or with the size of the previous fire.
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3. The aim here is to have you test some modifications to the Forest-Fire model, and examine
their impact. Work with a 100 x 100 lattice, and try at least one of the following (and
the more the better!):

(a) Modify the Python source code of Fig. 6.1 so that it operates in “stop-and-go”
rather than “running” mode, i.e., no tree is allowed to grow as long as a fire is
burning anywhere on the lattice. In which parts of parameter space does this alter
the global behavior of the model ?

(b) Modify the Python source code of Fig. 6.1 so that fire propagates only to the four
nearest neighbours top+down-+right+left. Does this alter the global behavior of the
model ?

(¢) Modify the Python source code of Fig. 6.1 so that the growth probability increases
linearly with the number n of occupied neighbouring nodes, for example p, — py(1+
n). Does this alter the global behavior of the model 7

(d) Modify the Python source code of Fig. 6.1 to introduce periodic boundary conditions
in the horizontal and vertical (see Appendix D for more detail on implementing such
boundary conditions on a lattice). Set py = 107" and explore the types of patterns
generated at p; = 1072 and 1072

4. The forest fire model is ideally suited to investigate an interesting variation on percolation
sometimes known as dynamical percolation. The idea is to replace the initial condition in
the forest-fire model of Fig. 6.1 by a classic percolation lattice with occupation probability
p (see the small Python code at the beginning of §4.2). Now turn off tree growth and
lightning, but as an initial condition set on fire all nodes along the left edge of the lattice,
and run the model until the fire extinguishes. Repeat the process for 10 distinct random
realizations of your percolation lattice, and keep track of the fraction or runs for which the
fire reaches the right edge prior to extinction. Repeat for varying p and construct a plot
showing the fraction of “successful” realizations versus p. How does this plot compare
to the bottom panel on Fig. 4.6 7 How would you estimate the percolation threshold p.
from such ensemble averaging ?

5. The numerical implementation of the Forest-Fire model listed on Fig. 6.1 is extremely
inefficient in many respects. For example, just consider the fact that every empty node
of the lattice is subjected to the tree growth probability test at every temporal iteration;
for a N x N lattice, since trees grow only on empty nodes (Rule 1), it would much faster
to “grow” a tree at p; x N, randomly selected empty nodes, where N, is the number
of empty nodes at the current iteration. Modify the Python source code of Fig. 6.1 to
operate in this manner. And, if you feel up to some more serious coding, see Exercise 5
in chapter 5 for more ideas.

6. And finally for the Grand Challenge: wildfire mitigation and management! The idea is
to implement the strategy outlined in §6.6 into the basic code of Fig. 6.1. Work off a
128 x 128 lattice in the SOC regime of Fig. 6.6: p, = 10~* and p; = 1075, Examine how
the PDF of fire sizes varies as you increase the probability of extinction, i.e., replace the
numerical factor 0.2 in eq. (6.5) by the values 0.1, 0.2, 0.3 and 0.5. Run the simulations
for the same number of temporal iterations in all cases. Is the PDF getting steeper or
flatter as the probability of extinction increases 7 How about the size of the largest fires
? How would you go about designing an “optimal” wildfire management strategy in the
context of this model ? Note: in the context of this Grand Challenge you will be trying
to obtain accurate determinations of the power-law index of the PDFs at each extinction
probability; you may consider calculating this index following the maximum likelihood
approach described in §B.6. Make sure to exclude the initial transient phase from your
analyses, and to push the simulations far enough in time to have many hundreds of fires
to build your PDFs from, even in the simulation with the fewest fires.
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6.8 Further readings

The forest-fire model introduced in this chapter is due to:

Drossel, B., & Schwabl, F.,| Self-organized critical forest-fire model, Phys. Rev. Lett., 69(11),
1629-1632 (1992).

A comprehensive review of its properties can be found in:

Hergarten, S., Wildfires and the Forest-Fire Model, in Self-organized criticality systems,
ed. M. J. Aschwanden, Berlin: Open Academic Press, 357-378 (2013).

I know of no good textbook dedicated to the mathematical modelling of wildfires, but the
topic is sometimes covered in textbooks on mathematical modeling in general. I did find the
Wikipedia page on wildfire modeling well-balanced and quite informative, and it also includes
many good references to the technical literature (consulted November 2014):

http://en.wikipedia.org/wiki/Wildfire modeling

On the comparison of real wildfire data with an improved SOC-type models akin to that
considered in this chapter, including fire management strategies, see

Yoder, M.R., Turcotte, D.L., & Rindle, J.B., Phys. Rev. E, 83, 046118 (2011)

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity.tex, July 28, 2016



Chapter 7

Traffic Jams

Avalanches on a sandpile and forest fires on a lattice both represent a form of complex collective
behavior emerging from simple interactions between a large number of equally simple interacting
elements. There is no directed purpose in the toppling of a sand grain, or the ignition of a tree
by a neighbouring burning tree.

Complex collective behavior can also emerge from the interactions of system elements that
do behave in a purposeful manner, and in some cases this collective behavior may even appear
to run counter to the purpose driving these individual interacting elements. The occurrence of
traffic jams in the flow of moving automobiles is fascinating example, and is the focus of this
chapter.

7.1 Model definition

The basic model design is once again conceptually quite simple. A line of N cars is moving in
the same direction along a single-lane one-way road. The agents driving the cars slow down if
they come too close to the car ahead of them, accelerate if the distance allows it, and respect
the speed limit. No passing or backing up is allowed. Think about it a bit; these are pretty
realistic and conventional “driving rules”. More specifically, and with the positions and speed
of the k' car at time ¢,, henceforth denoted by a2 et v} (k=0,...,N—1), the speed adjusment
rules are the following;:

1. At each time step (n), each driver (k) “calculates” (or eyeballs...) its distance § to the

car ahead:
5=y, - o (7.1)
2. If § < 5, the car slows down:
ot = -3 (7.2)
3. If § > 5, the car speeds up:
optt = o +1 (7.3)

4. The car speed must always remain bound in [0, 10], 10 being the speed limit, and the
lower bound precluding backing up.

5. Each car moves according to the standard prescription for uniform speed (that is, uniform
within a given temporal iteration):

2T =2 o x At (7.4)

In all that follows, we will set At = 1 without any loss of generality.
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6. And here is the crux. Every once in a while, due to an incoming text message, a change
of CD, a squirrel crossing the road, or just for the sheer fun of being a royal pain in the
patookus, some random bozo agent (k = r) slams on the brakes:

ottt = — 3 rel[0,N—1]. (7.5)
Unlike with normal braking, here this rare (hopefully) random occurrence takes place
independently of the distance to the car ahead. This is also the only one of the six driving
rules which is not fully deterministic.

7.2 Numerical Implementation

The Python source code listed on Figure 7.1 offers a simple implementation of the above traffic
model. Take note of the following:

1. The simulation is once again structured around an outer temporal loop (starting at line
16) enclosing three sequential inner loops over the N cars (starting at lines 18, 27, 31);

2. Car positions are initialized as random-valued positive increments; here in the range
3 < xpy1 — x < 17 (line 14), for a mean inter-car distance of 10 units. This procedure
ensures that r1 <z < 23 < 24 < ... < ZN;

3. The change in car velocities is first computed for all cars in the first two inner loops, and
only then are the car positions calculated and the array x updated, in the third inner
loop (lines 31-32);

4. Safety tests using the Python functions min and max ensure that the speed cannot exceed
10 (lines 23 and 25), or fall below zero (line 21), respectively.

5. Similarly, a “safety test” (line 32) ensures that no car can get closer than one unit from
the car ahead.

6. Car number N, in the lead, does not have a car ahead of itself; consequently it adjusts its
speed according to the distance to the following car (line 24-25).

7.3 A representative simulation

Figures 7.2 and 7.3 show results for a typical simulation, here for an ensemble of 300 cars
initially at rest and distributed randomly, with a mean spacing of 10 units. This is actually the
same initial condition set up in the source code of Fig. 7.1. Both Figures show the trajectories,
position versus time, for all cars (Fig. 7.2) or subset thereof (Fig. 7.3). The first Figure focuses
on the first 1000 temporal iterations of the simulation, while the second extends much farther,
to 10* iterations. On such plots, horizontal streaks are symptomatic of cars at rest, i.e., traffic
jams.

Early in the simulation (Fig. 7.2), traffic is a total mess because the initial spacing between
cars is too small. Cars are continuously braking, triggering more braking in the cars following.
As the first cars ahead of the lineup start to increase their speed and move ahead of the
mess, cars behind them eventually do the same, until all cars have managed to pick up speed
and increase the distance between each other, which occurs here after about 1300 temporal
iterations. Loosely speaking, we can define this as the beginning of the “fluid” phase of the
simulation, whereas the hopeless jam characterizing the first ~ 10° iterations will be referred
to as the “solid” phase. It is clear on both these Figures that even when the simulation is far
into its fluid phase, jams of varying sizes still occur intermittently. Most of these are caused by
a random bozo braking, but such an individual perturbation will sometimes have little effect,
while at other times a jam implying almost all cars is produced, for example the jam beginning
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7.3. A REPRESENTATIVE SIMULATION

105

for

N=300
p_bozo=0.1
n_iter=2000

v=np.zeros (N)
x=np.zeros (N)
mean_v=np.zeros(n_iter)
x[0]=1

for k in range(1,N):

# DISCRETE TRAFFIC MODEL ON A ONE-WAY STRAIGHT ROAD
import numpy as np
import matplotlib.pyplot as plt

number of cars
probability of random braking
number of temporal iterations

zero initial speeds for all cars
car positions

time series of mean speed

first car at x=1

initialize car positions

x [k]=x[k-1]+np.floor (np.random.uniform(3.,14.))

iterate in range(O,n_iter):

for k in range (0,N-1):
dx=x [k+1]-x [k]
if dx < &:
v [k]=max (0,v[k]-3)
if dx > b5:
v[k]=min(10,v[k]+1)
if x[N-1]-x[N-2] <= 10:
v[N-1]=min(10,v[N-1]+1)
for k in range(0,N):
if np.random.random() <= p_bozo:
v [k]=max (0,v[k]-3)

for k in range(O,N-1):
x [k]l=min (x[k]+v[k],x[k+1]-1)
x[N-1]+=v[N-1]

mean_v[iterate]l=(v.sum())/N

print("iteration {0}, mean speed {1}.
# end of temporal loop

plt.plot(range(0,n_iter) ,mean_v)
plt.axis([0,n_iter,0.,10.])
plt.xlabel(’Iteration’)
plt.ylabel(’Mean car speed’)
plt.show()

# END

#

H*

temporal loop

first car loop: update speeds
distance to next car ahead
too close: slow down

far enough: speed up

special case: lead car

second car loop: braking
some bozo slams the brakes

third car loop: update positions
with no-crash safety test
special case: lead car

.format (iter,mean_v[iterate]))

plot mean speed vs iteration

Figure 7.1: Python source code for the simple automobile traffic model introduced in this
chapter.
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10000

8000
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2000

Figure 7.2: Trajectories of all cars in the simulation, defined as the variation of their position
(vertical axis) versus time (horizontal axis), as produced by the Python code of Fig. 7.1, with
all 300 cars initially at rest. The simulation evolves according to two fairly distinct phases,
the first being one of ubiquitous traffic jams, transiting towards a state in which all cars move
at the same average speed, but with traffic jams of varying sizes still occurring intermittently.
The green line shows the trajectory of the car initially located a quarter of the way behind the
leading car. The dotted line show the slope corresponding to the speed limit v = 10. The inset
zooms in on a large traffic jam, and shows than even in a jam, car trajectories never cross (no
passing allowed on a single lane one-way road!). 7.1.
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Figure 7.3: Same as Fig. 7.2, but covering a temporal interval ten times longer, and with only
11 car trajectories plotted, for clarity. The gray shaded area at the lower left is the range
covered by Fig. 7.2. The dotted line is again the trajectory of a car moving at the maximum
speed v = 10, and the two dashed line mark the average speed of the ensemble of cars in the
fluid phase of the simulation.

at (z,t) ~ (7000, 500) on Fig. 7.2. Note that here with 300 cars and a bozo probability of 0.1, on
average 30 random braking events take place at every temporal iteration, which is substantial.

The inset on Fig. 7.2 shows the trajectory of a specific car, in green, having just managed to
free itself from a major jam having affected nearly the whole system, and subsequently hitting
the back of, to later extract itself from, two smaller jams. Upon careful examination of this
inset it becomes clear that individual cars are either moving at or close to the speed limit, or
are at rest or nearly so, stuck in a jam. It is also noteworthy that the temporal duration of a
jam is substantially longer than the time any single car spends stuck in it (take another look at
the green trajectory in the inset to Fig. 7.2). This happens because cars free themselves from
the jam one by one at its downstream end, while other cars pile up at its upstream end. As a
consequence, once triggered the jam grows backwards in x with time, even though no car ever
moves backwards here.

In position versus time plots such as on Figs. 7.2 and 7.3, the slope of the car trajectories
gives the average speed of the ensemble of cars. This is indicated by the two parallel dashed
lines bracketing the car trajectories on Fig. 7.3. The corresponding slope is very well-defined
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and remains constant in the fluid phase of the simulation. Note however that it is significantly
smaller than the slope expected for a car moving uniformly at the speed limit, which is indicated
here by the dotted line. In other words, even though cars could all in principle move at the
speed limit, through their interactions they settle in a mean state where their ensemble average
speed is significantly smaller than the speed limit!. You should recognize this type of collective
“sub-optimality” as something we have encountered already, and if not go take a look again at
Fig. 5.3.

7.4 Model behavior

We need to get a bit more quantitative in our attemps to understand how this model behaves.
Two interesting global quantities are the mean speed for all cars:

1 N—-1
@Ozﬁggw, (7.6)

and the mean distance between successive cars in the lineup:

N-2

1 TN_1— T
0) = —— — = .
() N1 (Thr1 — zk) N1 (7.7)
k=0
The mean density of cars is simply the inverse ratio of this expression:
N -1
p=—". (7.8)
IN-1 — X0
Knowing these two quantities, one can compute the car fluz (P):
®=px(v); (7.9)

This measures the average number of cars passing a given position =* per unit time.

Figure 7.4 shows time series of the three quantities (v), p and ® for the simulation of Figure
7.2. All three vary markedly in the early part of the simulation, until the transition to the fluid
phase at t ~ 1300. Note however that the mean density and flux of cars only really stabilize
starting around ¢ ~ 2000. This indicates that reaching a statistically stationary state still
requires a significant amount of time after transiting from the solid to fluid phase.

A noteworthy property of this statistically stationary state is that its global characteristics
such as mean speed, density, etc., are independent of the initial condition for the simulation. The
mess of monster traffic jams characterizing what we dubbed the solid phase of the simulation
certainly suggests that the initial condition imposed here is far from optimal, in terms of getting
the traffic going. Nonetheless, cook up whichever initial condition you can think of, with the
traffic rules used here and for a large enough number of cars, the system always stabilizes at
the same statistically stationary values of (v), p and ® as on Figure 7.4.

The evolution towards such robust mean car speeds (and densities) would also suggest
that most cars end up travelling most of the time at or near that speed, in other words the
distribution of car speeds is Gaussian-like and centered on its mean value (v). This is not at
all the case, as one can immediately see from Figure 7.5. This shows the probability density
function of car speeds?, built from all cars at all iterations far into the statistically stationary
fluid phase of the simulation (¢ > 3500). The distribution is in no way Gaussian, or even
symmetrical about its mean value (vertical line segment at ~ 8.6), but instead spans the whole
allowed range, with its peak at v = 10 and secondary peaks at v =7 and v = 0. The v =7
peak is a direct consequence of the braking rule (eq. (7.2)), which decrements speed by three
units, acting on the primary peak at v = 10.

IThis is not due to random braking of individual cars; with a bozo probability of 0.1 and re-acceleration to
full speed requiring three iterations, the average speed of an isolated (non-interacting) car would be 9.4 here.

2Since car speed is defined as an integer in the range 0 < vy <10, this distribution is fundamentally restricted
to 11 bins.
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Figure 7.4: Time series of mean speed (v), mean density p, and car flux ®, in the simulation of
Figures 7.2 and 7.6. Even though the fluid phase begins around ¢ ~ 1300, statistical stationarity
is reached much later, around ¢ ~ 2000.

What this distribution expresses is worth expliciting and reflecting upon. Cars spend over
60% of their time moving at the speed limit v = 10, and only 4% of their time stuck in a traffic
jam of whatever size, which is really not so bad after all (although for most people, myself
included, the stress level generated by the time spent in the jams would be disproportionately
much higher). Note also that while a “mean car speed” can be defined unambiguously from a
mathematical point of view, in itself it does not provide a very useful information regarding the
state of a specific car, even in a statistical sense. This stands in contrast to a situation where
the car speeds would have been distributed as a Gaussian, in which case the mean speed also
coincides with the most probable speed. This is not the case on Figure 7.5, where the most
probable speed is v = 10, significantly higher than the mean speed.

7.5 Traffic jams as avalanches

You probably have already figured out that the buildup of a traffic jam in these simulations
is akin to an avalanche of successive braking events. Moreover, at the dynamical level nothing
fundamentally distinguishes small jams from large ones; all that changes is the number of cars
involved. Could we not then expect jams to exhibit some form of scale invariance 7 let’s look
into that.

Some care is warranted in defining the “size” of a traffic jam; the number of cars involved
is obviously an important factor, but so is the temporal duration of the jam, which, as we
already noted, is typically larger than the time any individual car spends stuck in it. A jam
is a pseudo-object, in that cars are continuously piling up at the back of the jam, and others
removed at its front. Much like a waterfall, which retains its shape despite the fact that water
is flowing through it, a large traffic jam retains its “identity” for a length of time usually much
larger than the time any one car spends moving through it. Traffic jams are spatiotemporal
structures and must be treated as such.

Consider the following procedure: we build a rectangular pixellized “image” where there
are as many pixels horizontally as there are cars, and as many pixels vertically as there are
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Figure 7.5: Probability density function of car speeds, built from the speeds of all cars at each
temporal iteration far into the fluid phase (¢ > 3500) of the simulation plotted in Figs. 7.2 and
7.3. The vertical line segment at v ~ 8.6 indicates the mean speed, and the secondary peak
at v = 7 is a direct consequence of the braking rule (v — v — 3) for cars moving at the speed
limit, and which dominate the distribution (see text).

temporal iterations. Each pixel (k,n) in the 2D image is assigned an integer value between
zero and ten, set equal to the speed of car k at iteration n, i.e., v}'. Figure 7.6 shows the
results of this procedure, in the form of three successive 1000 iteration-long blocks laid side by
side, with color encoding speed according to the scale at right. This representations illustrates
well the fact that traffic jams are structures that exist in space and time, and their backward
propagation, one car at a time, becomes particularly striking.

Now, the idea is to define a traffic jam as a cluster of pixels with value zero, contiguous
in car number space (horizontally) and time (vertically). Figure 7.7 illustrates the idea, for
a 300-iteration long segment corresponding to the middle portion of the central column on
Fig. 7.6. Clusters of halted cars evidently span a wide range of sizes, going from a single pixel
up to slanted structures stretching over many hundreds of iterations and collecting in excess of
10® pixels. In some cases pixels that appear to “belong” to the same jam, as per their location
along the same slanted streak of pixels, end up broken into a string of smaller groups. Some
smaller jams also occasionally merge into larger ones, but the model’s governing rules makes
it difficult for a jam to spawn secondary branches, a rare occurrence restricted to very small
jams. Figure 7.7 seriously begins to smell of scale invariance. And you will undoubtedly recall
that back in chapter 4, when investigating percolation, we introduced an algorithm (based in
fact on the forest fire model of chapter 6), that can assign a unique numerical tag to each such
cluster. Because of the tendency of jams to shift backward one car per time step, here we
define contact with any of a pixel’s eight nearest neighbours, i.e., including diagonally, as the
criterion for tagging pixels to the same clusters. This involves only a minor modification to the
cluster-tagging code of Fig. 4.3.

Figure 7.8 show the probability density function of traffic jam sizes, built from the 3441
distinct jams tagged in the last 8000 iterations of our now familiar simulation of Figs. 7.2 and
7.3. The first 2000 iterations have been omitted so as to restrict the statistics to the stationary
fluid phase. Once again, the sizes are distributed as a well-defined power law spanning here
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Figure 7.6: Traffic jams in the simulation of Figs. 7.2 and 7.3. What is plotted on each of
the three color-coded images is the speed of the cars as a function of car number (running
horizontally) and time (running vertically from bottom to top), for three successive 1000-
iteration chunks of the simulation in its fluid phase. Zero speed is black, going through blue
and red up to v = 10 in yellow, as per the 11-steps color scale at right.
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Figure 7.7: Clusters of v}l = 0 cars for a 300 iteration long segment of the simulation corre-
sponding to the middle part of the central column on Fig. 7.6. Note the merging of small jams
into the larger jam running at left.

over two orders magnitude in size, with logarithmic slope —1.58. This power-law form supports
—but does not rigorously prove— our growing suspicion that traffic jam are scale-invariant
spatiotemporal structures.

7.6 Car traffic as a SOC system ?

Scale invariance is a hallmark of critical systems, but its presence is certainly not a proof for
the presence of criticality; the aggregates of chap. 3 were scale invariant, but the DLA process
has nothing to do with criticality®>. On the other hand, our traffic model does show a key
defining feature of critical systems: in its statistically stationary state, one small perturbation
(a randomly braking bozo) has a finite probability of affecting the whole system, through the
triggering of a jam bringing all cars to a grinding halt, from first to last. This is akin to a
lattice at the percolation threshold, where the appearance of a single additional occupied node
can produce a cluster spanning the whole lattice. Moreover, and now unlike percolation, here
this state arises autonomously through the interactions between a large number of moving cars.
If it is criticality, then it is also self-organized criticality.

The lofty objective of traffic engineering is to ensure a smooth flow of automotive traffic,
subject to the additional desirable practical goal that all participating drivers get to where they
want to go as quickly and painlessly as possible*. One would strongly suspect that traffic jams

30r does it ? If you are keen on the issue, read and and reflect upon the Witten & Sanders paper cited at
the end of chapter 3.

4My home town, Montréal, seems to operate under a different method; or perhaps there is just no method
at all...
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Figure 7.8: Probability density function for the sizes of the 3441 distinct traffic jams tagged
in the last 8000 iterations of the simulation plotted in Figs. 7.2 and 7.3. The distribution is
well-fit by a power law with index —1.58.

represent a major obstacle towards this goal. Can these traffic jams be avoided ? Obviously,
one possibility is to ensure a spacing between cars large enough for a random braker to have
time to accelerate back to the speed limit before the next car behind has caught up and is
forced to brake. However, such a state would be characterized by a low density of cars, and
therefore a low flux even if all car fly along smoothly at the speed limit. If the objective is
to get a very large volume of commuter traffic into town, this will not do. One could try the
opposite approach and pack cars as closely as possible behind one another, thus reaching high
densities and therefore high flux; but such a state will always produce a huge jam as soon as a
bozo decides to brake for nothing, causing a massive slowdown of a great many cars, with the
flux dropping precipitously as a consequence, and recovery to a fluid phase a lengthy process.
Is there a working solution to this flux maximisation problem ? The answer is thought to be
yes, and we have been staring at it all along.

It has been conjectured that the stationary state attained by these traffic simulations, despite
the jams of all sizes occurring across the system, actually mazimizes the flux of cars in the
presence of random brake-slamming bozos, as compared to any other carefully engineered traffic
state®. In other words, a scale-invariant distribution of traffic jams is the system’s emergent
strategy for minimizing the global impact of randomly braking bozos. Certainly nothing of this
sort could have been anticipated on the basis of the simple traffic rules defining the model. You
actually get to test some aspects of this remarkable conjecture in some of the computational
explorations suggested below.

7.7 Exercises and further computational explorations

1. It was stated back in chapter 5 that the necessary conditions for SOC were (in short): a
slowly-driven open system subjected to a self-stabilizing local threshold instability. Can

5This is a conjecture in the sense that no-one has yet been able to rigorously prove it, as far as I know
anyway; but no-one has managed to offer a clear counterexample either.
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you identify these elements in the traffic model considered in this chapter ? How could
you argue that this is yet another instance of an open dissipative system 7

2. This one lets you explore some parameter dependencies of the traffic model introduced
in this chapter.

(a) Generate a series of traffic simulations with varying numbers of cars (30, 100, 300,
1000 and 3000, say). Investigate whether the mean speed, density and car flux in
the fluid phase depend on the total number of cars.

(b) Use the code of Fig. 7.1 to produce a set of traffic simulations with increased prob-
ability of random braking (variable p_bozo), but otherwise identical. Examine the
effect on the mean speed attained in the fluid phase of the simulation. Do you always
see a reasonably well-defined transition from “solid” to “fluid” ?

3. Try to engineer an initial condition which will minimize the duration of the “solid” phase
of traffic. The idea is of course to distribute a set number of cars on a set length of road;
what you can play with is the position and initial speeds of the cars. Are the mean speed
and car density attained in the statistically stationary fluid state dependent on the initial
condition ?

4. Change the acceleration and braking rules (i.e., the magnitude of the increment and decre-
ment in speed), and examine the impact of such changes on the upstream/downstream
motion of jams. Can you infer a simple mathematical relationship between these model
parameters (microscopic rules) and the motion of jams (macroscopic behavior) ?

5. A commuter’s nightmare version of our traffic jam model can be produced by having the
cars move along a circular one-way ring-road. Your first task is to modify the Python code
of Fig. 7.1 accordingly. Think this one through carefully; you can do this by changing
a single line of code in Fig. 7.1, once you define the length of the road perimeter. How
does the model behave as compared to the original straigth road version introduced in
this chapter 7

6. The Grand Challenge for this chapter is two-pronged. You have to work with the ring-road
version of the model, as described in the preceding exercise.

(a) Examine how the mean speed and car flux in the statistically stationary state vary
as a function of car density (as controlled by the number of cars placed on the ring-
road), for a fixed road perimeter. Does this remind you of something ? If not, go
back and reread chapter 4, then come back and determine the percolation threshold
for this ring road.

(b) The dynamical rules defining the traffic model introduced in this chapter are invari-
ant under an inversion of car velocities, vy — —wvy for all k. Modify the ring-road
version of the model so that initial car speeds are set randomly at either +1 or —1
equiprobably. Adjust the driving rules accordingly, and in particular add a “chicken”
rule: whenever two cars are about to collide face-on, reverse the speed of the slow-
est car (and set both speeds to zero if they have the same speed). Use an initial
car density sufficiently low for a fluid phase to be eventualy attained (as per your
investigations in (a)). Carry out an ensemble of simulations with distinct random
initializations, and verify that in the end state both senses of driving (clockwise and
counterclockwise) are equally probable. This represents an instance of symmetry
breaking: nothing in the dynamical rules favors one sense of rotation over the other;
the direction of the global flow of cars emerges from the (symmetrical) dynamical
rules acting on the low amplitude “noise” of the initial condition.
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7.8 Further readings

There exists a vast literature on the mathematical modeling of traffic flow. The following
(advanced) textbook offers a good survey of the current state-of-the-art:

Treiber, M., & Kesting, A., Traffic flow dynamics, Springer (2013)
The traffic model studied in this chapter essentially follows that proposed by:
Nagel, K., & Paczuski, M., Emergent traffic jams, Phys. Rev. E, 51, 2909 (1995)
but see also chapter 3 in
Resnick, M., Turtles, Termites and Traffic Jams, MIT Press (1994).

My first encounter with the mathematical modelling of traffic jams was in chapter 5 of the
following delightful book, which the mathematically-inclined should not miss:

Beltrami, E., Mathematics for dynamical modeling, San Diego: Academic Press (1987).
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Chapter 8

Earthquakes

Earthquakes are scary, because they are powerful and (as yet) unpredictable, and can have
consequences going far beyond rattling the ground under our feet; just in recent years, think of
the earthquake-triggered December 2004 killer tsunami in the Indian ocean, or the March 2011
failure of the Fukushima nuclear power plant in Japan, or the hundreds of thousand people left
homeless by the April 2015 earthquake in Nepal. This is serious business.

It is now understood that the Earth’s crust is broken into a dozen or so major tectonic plates,
about 100km thick, floating on a deep fluid layer of molten rocks called the asthenosphere.
Horizontal fluid motions are ubiquitous in the outer astenosphere, due to thermally-driven
convection in the Earth’s interior. These flows produce a horizontally-oriented viscous force at
the bottom of tectonic plates, which is opposed by static friction at the boundaries between
adjacent plates moving relative to one another. These regions of high static stress are known
as fault lines. As the viscous force builds up, the rock first deforms elastically, but there comes
a point where static friction and deformation can no longer offset forcing. The plates abruptly
move, producing what we call an earthquake.

The energy released by earthquakes is quantified by their magnitude m, essentially a loga-
rithmic measure of seismic wave amplitudes. A long-known, remarkable property of earthquake
energy release is that the distribution of their magnitudes takes the form of a power-law. More
specifically, the number N of earthquakes having a magnitude larger than m in a given area
and time interval is given by the celebrated Gutenberg-Richter Law:

N(>m)oxm™, (8.1)
where b ~ 1 in most locations'. This power-law is taken to reflect scale-invariance in the
dynamics of earthquakes, a property that can be reproduced using a simple mechanical model
to which we now turn.

8.1 The Burridge-Knopoff model

The Burridge-Knopoff stick-slip model of seismic faults is a mechanical construct defined as
a two-dimensional array of blocks interconnected by springs to their four nearest neighbours,
sandwiched in the vertical between two flat plates (see Figure 8.1). Each block can be tagged
by a pair of indices (7,j) measuring its relative position in x and y in the array. The blocks
rest on the bottom plate and are each connected to the top plate by another set of leaf springs.
Figure 8.1 illustrates this arrangement for a block (4, j) and its four nearest neighbours (i—1, j),
(i+1,7), (¢, — 1) and (4,5 + 1). The bottom plate is assumed to be at rest, but the top plate
moves in the positive z-direction at a constant speed V. This is the model’s analog to the
moving astenosphere fluid and the viscous force it impresses on the plates. The motion of the

1Equation 8.1 is a cumulative PDF; the usual bin count-based PDF would be m~ @+ If needed, see
Appendix B for more on cumulative PDFs.
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Figure 8.1: The Burridge-Knopoff sliding-block model of earthquakes, displayed here in top and
side views. The bottom plate is assumed fixed and the top plate moves with a constant speed
V. Leaf springs are traced in green, and inter-block springs in red. The block displacements (z)
are measured from the anchoring points of the leaf spring on the top moving plate, indicated
by green dots on the top-view diagram.
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upper plate will gradually stretch the leaf springs, thus inexorably increasing the z-component
of the force acting on each block. The model assumes that Hooke’s Law holds, meaning that
the force is linearly proportional to the stretching of each spring:

F,=KAx , (8.2)

where K is the spring constant and the displacement Az = z; ; is here set equal to the distance
between the block center and the anchoring point of its leaf spring on the top plate (see Fig. 8.1).
The spring constants of the inter-block springs and leaf springs are not necessarily the same,
and are respectively denoted K and K in what follows.

The x-component of the total force acting on block (7, 5) is given by the sum of the contri-
butions from the spring connected to the four nearest-neighbours, plus that of the leaf spring:

Yy = Kz j — i) + Koy —aity) + K(aiy oy —aiy) + K3y, —2fy) — Kpai;
= Kzl j + ooy + a0+ o — i) — Kpag, (8.3)

where, in anticipation of developments to follow, the superscript “n” indicates time?. Missing
from this expression is the static friction force acting between the block and the lower plate
on which it rests. As long as this can equilibrate the force mediated by the springs, given by
eq. (8.3), every block in the system remains at rest.

Because the displacement of the top plate increases inexorably the force transmitted by the
leaf springs to the blocks, there will inevitably come a point when the friction force cannot
counteract the spring forces, and a block will slip. The key idea here is that upon slippage, the
block (i, 7) rapidly settles at an equilibrium position where the net spring force is zero:

1 1 1

FUt = Kooy + oy +af oy +al g —4af]") — Kpal[h =0, (8.4)

again with superscript n + 1 denoting the time after slippage. The change in the total spring
force acting on block (i, 7) is thus:

_ 1 1

0F;; = Fﬁf - I = (4K + KL)(ac’fJ+ - i) (8.5)

Since Fﬁ;rl = 0 by prior assumption (namely, eq. (8.4)), the right hand side of this expression

must be equal to —F";. Consider now the neighbouring block (i 4+ 1,7), say. Assuming only

block (7, j) had undergone slippage, the corresponding change in the total force acting on block

(i +1,7) is simply
6Fip1 ;= Kzt — o). (8.6)

) ]

This must be equal to JF; ;, as per Sir Newton’s celebrated action-reaction dynamical Law;

eq. (8.5) can thus be used to substitute for :v:lj'l —z}'; in eq. (8.6), which immediately leads to:
0Fip1;=al;, (8.7)
where
K
T IRT R (88)

Therefore, the force on block (i 4+ 1,j) varies by an amount proportional to the force acting
on block (7, j) before slippage, a result which also holds for the other three nearest neighbour

2Because the displacements = are measured from the anchoring points of the leaf spring, in general they will
be negative quantities (like the five illustrative displacements on Fig. 8.1). Consequently, a term like 7KLz?j

in eq. (8.3) is positive-signed, indicating that the leaf spring pulls the block in the positive z-direction, as it
should.

naturalcomplexity.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal



120 CHAPTER 8. EARTHQUAKES

blocks®. The numerical value of the proportionality constant « is set by the ratio of spring
constants; note in particular that:

lim a«—0, lim a—)l. (8.9)
K<LKpL K>Kr 4

Is turns out to be possible to design a simple sandpile-like model in which the rules can
be unambiguously related to the physical laws at play in the Burridge-Knopoff sliding block
model. The key is to use the total force F; ; acting on block (4, j) as a nodal variable, rather
than its position.

As with the 1D sandpile model considered in chapter 5, the Olami-Feder Christensen (here-
after OFC) model is a lattice-based cellular automaton-like system evolving according to simple
rules discrete in space and time. In keeping with the Burridge-Knopoff sliding block pic-
ture we consider here a two-dimensional Cartesian lattice made up of N x N nodes with
right+left+top+down neighbour connectivity, This lattice is used to discretize a real-valued
variable F};, where the subscript pair (i,7) identifies each node and the superscript n now
denotes a discrete temporal iteration.

The nodal variable is subjected to a deterministic forcing mechanism, whereby at each
temporal iteration, a small increment 0 F' is added to the force variable F' at every node on the
lattice:

FUU = FY +6F,  Vij. (8.10)

This captures the slow displacement of the top plate in the Burridge-Knopoff model, which
inexorably increases the force transmitted to all blocks through their leaf spring. Whenever the
total force on the block exceeds some preset threshold F,,

Fr; > F. (8.11)

corresponding physically to the friction force between the blocks and the bottom plate, the
node relaxes to a zero-force state by redistribution to its nearest neighbours:

n+1 __
Fz’,j =0 ) (812)
Fpft=F, +aFy,  0<a<025, (8.13)

where nn = (i+1,7) (i —1,7) (4,5 + 1) (4,5 — 1), and « is in fact the very same proportionality
constant appearing in egs. (8.7)—(8.8), i.e., it measures the fraction of the force acting on the
unstable node that is lost to the upper plate, rather than being redistributed to the nearest
neighbours. This redistribution evidently restores local stability to node (¢,7), but as in the
sandpile model of chap. 5, one or more of the nearest neighbours can be pushed beyond the
stability threshold by the redistribution of the nodal variable, possibly leading to avalanches
of nodal destabilisations cascading across the lattice. Figure 8.2 illustrates schematically this
redistribution process, in a situation where node j exceeds the stability threshold through the
addition of a forcing increment 0F (left panel). The subsequent redistribution (right panel)
pushes node j + 1 above the stability threshold, which will lead to a new redistribution of
a nodal quantity oF ;fll to nodes 7 and j + 2 at the next iteration, restoring the lattice to
stability.

Notwithstanding the fact that it is defined here on a two-dimensional rather than one-
dimensional lattice, the OFC model may look like a mere thematic variation on the simple
sandpile model introduced in chapter 5, with the stability criterion defined in terms of the

3In general the slipping block would also move in the y-direction, unless Tij+1 = T;j—1; this can ignored
here because the y-displacement will average to zero after many slipping events, a consequence of the fact that
the forcing by the upper plate is aligned with the z-direction. Also, note that eq. (8.8) is only valid for “interior”
blocks; those at the edges and corners of the block system would have & = K/(3K+K) and a = K/(2K+ K,),
respectively.
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iteration n (forcing) iteration n+1 (avalanching)

Figure 8.2: Action of the redistribution rule given by eqgs. (8.12)—(8.13), here simplified to one
spatial dimension. The lattice is everywhere stable (F; < F.) at the beginning of iteration n
(left panel), but uniform forcing (black arrow, viz. eq. (8.10)) pushes node j above the stability
threshold F, (dashed line). At the subsequent iteration (right panel), node j is reset to zero
and only a fraction aF]" of its former value F}' is redistributed to neighbouring nodes. Note
that forcing stops during avalanching, i.e., this is a “stop-and-go” model. Compare to Fig. 5.1
for the 1D sandpile model of chapter 5, where stability is based on the value of the slope.

nodal values themselves, rather than their slope (or gradient, in 2D). The apparently minor
differences between the two model setups are in fact profound at the level of their physical
implications, and, as we shall see in the remainder of the present chapter, lead to markedly
distinct global behaviors.

One key difference is that for o < 0.25 in eq. (8.13), the OFC model is non-conservative:
the sum of the nodal variable Fj; is smaller after a redistribution event than it was prior to
it. Recall that the choice @ = 0 corresponds to a complete decoupling of the blocks with
one another (the spring constant K = 0), in which case the force F}"; at an unstable node is
entirely transfered to the upper plate though the leaf spring. It is only at the opposite extreme
a = 0.25, implying a ratio of spring constants Kp/K < 1, that all of F}"; is transmitted only
to neighbouring blocks during a slippage event, which then makes redlstrlbutlon conservative.

Another key difference is that the driving, stability and redistribution rules of the OFC
model are all completely deterministic. The only stochasticity is introduced in the initial
condition, where at n = 0 the nodal variable is set to some uniformly distributed random value
within the allowed range of stable values:

F.=r, ij=1,..N, rel0,F]. (8.14)

The OFC sandpile model is usually taken to operate in stop-and-go mode, meaning that
driving is interrupted during avalanches and resumes only once the system is everywhere stable.
The implied separation of timescales between the driving and avalanching processes is very well
justified in the Earthquake context, with mean displacement speeds for tectonic plates of about
a centimeter per year (roughly the speed at which our nails grow), versus meters per second
for slippage during earthquakes.
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8.2 Numerical implementation

The numerical implementation of the OFC model used in what follows, as listed in Fig. 8.3,
closely follows that of the 1D sandpile model in terms of overall code structure.

1. The simulation executes a preset number of temporal iterations, as set by the value of
the variable n_iter (loop starting on line 20).

2. Once again that stability check and redistribution are executed one after the other within
the outer temporal loop, so as to achieve synchronous update of the nodal variable.

3. The lattice arrays force and move are assigned sizes (N + 2) x (N + 2), even though the
lattice is of size N x N (lines 13 and 21). The extra rows and columns are ghosts nodes
along the perimeter of the lattice, introduced so as to avoid out-of-bound indexing (index
< 0 or > N — 1) during redistribution. The lattice loops therefore run from from index
values 1 to N (lines 16-17 and 23-24). The force on ghost nodes retain a value of zero
throughout the simulation.

4. As with the forest-fire code of Fig. 6.1, two integer arrays, dx and dy, are used to de-
fine a nearest-neighbour template relative to any node (i,5) (lines 11-12); implementing
eq. (8.13) is then carried out via an implicit loop over the elements of these template
arrays, by using them to index the move array (line 27).

5. Forcing takes place at all nodes (line 34), but only if no node was found unstable at the
current iteration.

As with most Python codes introduced in the preceding chapters, this implementation favors
readability over computationally efficiency. Since the driving is deterministic, the current state
of the (non-avalanching) lattice determines entirely how many forcing iterations are required
before the next toppling occurs; taking advantage of this fact can lead to huge speedup, the
more so the smaller the dF. One of the computational exploration exercise at the end of this
chapter offers a few hints on how to take advantage of this property of the OFC model.

8.3 A representative simulation

As usual, we first examine in some detail one specific representative simulation, here on a
128 x 128 lattice and parameter values F. = 1, 6F = 10~* and a = 0.15, the latter implying
markedly non-conservative redistribution, as 40% of the nodal variable is “lost” every time a
node topples. A good measure of avalanche size E here is the amount of force dissipated in the
course of all redistribution events occurring during the avalanche. In practice, an equivalent
measure is simply the total number of toppling nodes (counting all repeated toppling as such),
since all redistribution events dissipate essentially the same quantity of nodal variable, namely
(1 —4a) x F,, provided §F/F. < 1.

Figure 8.4 shows portions of the avalanche size time series for our representative simulation,
after it has reached its statistically stationary state. The top panel shows a 40000 iteration-long
segment, the middle panel 2 x 10° iterations, up to 2 x 10° at bottom. Avalanches covering
a wide variety of sizes are seen to occur, here ranging from one toppling up to 4000 for the
largest avalanche in the bottom panel. The top time series shows a very clear recurrence of
the same avalanching pattern, with period here ~ 10960 iterations. Careful examination of the
time series reveals that it is not exactly periodic, with changes in the temporal patterns of
the smaller avalanches. Going to longer time spans (middle and bottom panels) reveals that
episodes of nearly-periodic behavior have a finite temporal duration, gradually transiting from
one recurrent avalanching pattern to another. The middle panel shows one such transition, in
which the largest avalanche in the recurring pattern goes from a size of 750 in the first third of
the sequence, up to 1800 in its final third. Nonetheless, over much longer time spans (bottom
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# OLAMI-CHRISTENSEN-FEDER 2D LATTICE MODEL FOR EARTHQUAKES
import numpy as np
import matplotlib.pyplot as plt

N =64 # lattice size

f_thresh=5. # force threshold

delta_f =1.e-4 # forcing amplitude

alpha =0.15 # conservation parameter
n_iter =100000 # number of temporal iterations

dx=np.array([-1,0,1,0]) # template arrays
dy=np.array([0,-1,0,1]) # template arrays
force=np.zeros ([N+2,N+2]) # force array
toppling=np.zeros(n_iter,dtype=’int’) # toppling time series
totalf=np.zeros(n_iter,dtype=’int’) # total force time series
for i in range(1,N+1):

for j in range(1,N+1):

force[i,jl=f_thresh*(np.random.uniform()) # random initial force

for iterate in range(O,n_iter): # temporal iteration
move =np.zeros([N+2,N+2]) # reset evolution array
# scan lattice to flag which nodes must redistribute and reset to zero
for i in range(1,N+1):
for j in range(1,N+1):

if forceli,j] >= f_thresh: # node i,j is unstable
move[i,jl-=forceli,j] # Eq (8.13): reset
move [i+dx[:], j+dy[:]]+=alpha*forcel[i,j] # Eq (8.14): distribute
toppling[iterate]+=1 # cumulate topplings

# end of lattice scan

avalanche occured
update lattice

no avalanche

Eq (8.11): drive lattice

if toppling[iterate] > O:
force+=move

else:
forcel:,:]+=delta_f

H H B

totalf [iterate]l=force.sum() # total force on lattice
if iterate % 10000 == O:
print ("{0}, toppl {1}.".format(iterate,topplingl[iterate]))

# end of temporal loop
plt.subplot(2,1,1)
plt.plot(range(O,n_iter),totalf) # plot total force time series
plt.ylabel(’Total force’)
plt.subplot(2,1,2)
plt.plot(range(0,n_iter),toppling) # plot toppling time series
plt.xlabel(’Iteration’)
plt.ylabel (’Toppling nodes’)
plt.show()
# END

Figure 8.3: Minimal Python source code for the Olami-Feder-Christensen lattice-based imple-
mentation of the Burridge-Knopoff earthquake model.
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Figure 8.4: Three segments of increasing lengths extracted from the time series of avalanche
size in a simulation executed on a 128 x 128 lattice, with conservation parameter o = 0.15
and forcing parameter §F = 10~*. The top panel spans 4 x 10* iterations, the middle 5 times
more, and the bottom another factor of 10 more. The shaded areas indicate the temporal
range covered by the preceding panel. The colored line segments on the top panel indicate the
toppling times for three selected lattice nodes (viz. Figure 8.5 below). The avalanche energy
time series exhibit a clear periodic behavior, here with a period of ~ 10960 iterations.
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Figure 8.5: Time series of the force value at three selected nodes on the lattice, in the same
simulation as on Fig. 8.4 (128 x 128, F. = 1, §F = 10~%, a = 0.15). These three time series
span the same interval as the top panel on Fig. 8.4. The sampled nodes are (i,j) = (64,64),
(32,32), and (64, 76) in red, green, and blue, respectively. The slanted dotted lines indicate
a growth rate of 6F = 10™% per iteration, corrected for the mean fraction of iterations spent
avalanching.

panel) there is a clear periodicity present in the recurrence of the largest avalanches, despite
large variations in their peak sizes during quasi-periodic subintervals.

Figure 8.5 shows time series of the nodal force F; ; at three selected node in the lattice’s
interior. The recurrence cycle is now strikingly apparent. Nodal values rise slowly, at the same
rate for all nodes, in response to forcing, but these slow rises are interrupted by upwards jumps
by a quantity aF, = 0.15 here, when the node receives a force increment from a neighbouring
avalanching node, and drops to zero when the node itself exceeds the stability threshold. Here
the blue and green nodes topple in response to an avalanching nearest-neighbour, while the red
node reaches the stability threshold via forcing. The colored line segments on the top panel of
Fig. 8.4 indicates the times when the three sample nodes of Fig. 8.5 are avalanching. None of
the three nodes participate in the largest periodic avalanches, but the blue and green nodes do
take part in smaller recurrent avalanches still large enough to be distinguishable on the scale
of this plot.

The recurrence period of ~ 10960 iterations is conspicuously close to the time t = (§F)~! =
10* iterations required for forcing alone to take a node from zero up to the stability threshold.
This is only part of the story though, because all nodes, in the course of their buildup, jump
up a few times in response to an avalanching neighbour. Moreover, the model is operating in
stop-and-go mode under a single temporal iteration loop; iterations spend avalanching must
be subtracted from the recurrence period if comparing it to the forcing timescale. In this
specific simulation, 63% of iterations are spent avalanching somewhere on the lattice, so that
the “corrected” recurrence period measured in forcing steps is in fact 4000 iterations, leading
to a growth of F;; by 0.4 under pure forcing. The remainder is produced by avalanching
neighbours, consistent with Fig. 8.5. Put differently, in the course of a recurrence cycle, an
“average” node receives four increment +0.15 from avalanching neighbour, and the rest from
the deterministic driving process, consistent with Fig. 8.5.
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We are still faced with a puzzle: how can a purely deterministic evolution using a totally ran-
dom initial condition produce (quasi)periodic global behavior on (relatively) short timescales,
but aperiodic on longer timescales? The nodal coupling mediated by the redistribution rule is
the culprit. Figure 8.6 shows the lattice initial condition (top left), and at three times sepa-
rated by 106 iterations, much later in the simulation, as labeled. The random initial pattern
gives way to a patchwork of domains of varying sizes, within which many nodes have the same
value or share a small set of values. These domains vary in shape and size as the simulation
unfolds, as they interact with one another through avalaching taking place at their boundaries.
These spatial domains of contiguous similar nodal values are directly reflected in the recurrent
avalanching patterns of Fig. 8.4. Whether a domain is destabilized through a neighbouring
avalanche or because all nodes hit the stability threshold at the same time through slow forc-
ing, the whole domain collapses to zero and rebuilds anew. The larger the domain, the larger
the associated avalanche. We encountered something like this already with the Forest-Fire
model of chapter 6 (cf. Fig. 6.8). The slow evolution of domain sizes and boundaries is what
leads to the gradual transitions between different recurrent avalanching patterns, as exemplified
by the middle panel on Fig. 8.4.

8.4 Model behavior

There are three parameters defining model behavior: the conservation parameter «, forcing
parameter 0F, and threshold F.; at a given «, all that matters is the ratio §F/F,; hereafter
we continue to use F,. = 1, as in the representative simulation just considered, without loss of
generality. The choice of 0 F' is largely irrelevant to the avalanching dynamics, as long as it is
small enough, in the sense of §F < «F,, corresponding to slow forcing. The adopted value of
0 F does set the mean inter-avalanche waiting time, though, and therefore the overall timescale
of the simulation.

Running the OFC model with different values of a soon reveals that the numerical value of
this parameter has an important influence on the size and recurrence period of avalanches. In
the limiting case of no inter-nodal coupling (v = 0), each nodal value grow linearly at a rate
(0F) per iteration, starting from its (random) initial condition, and subsequently avalanches
independently of neighbouring nodes at exactly every (§F)~! iterations. The system is com-
pletely periodic, all avalanches are of size one (unless two nodes have an initial condition that
differ by less than ¢ F), and the random initial pattern is forever frozen into the system. This is
no longer the case when redistribution couples avalanching nodes (o > 0). As « increases, the
recurrence period diminishes, from 6435 iterations at « = 1.0, 4002 at o = 1.5, down to 2165
iterations at a = 0.2. This trends makes sense in light of our earlier discussion of Fig. 8.5. The
higher «, the larger the upward jump in nodal value in response to an avalanching neighbour.
Correspondingly fewer forcing iterations are then required to reach the stability threshold. The
recurrent avalanching patterns disappear gradually as o — 0.25, and are nowhere to be found
at a =0.25

Whatever the value of «, periodic behavior is due to the presence of spatial subdomains of
identical nodal values on the lattice (viz. Fig. 8.6). It is easy to understand how a large domain
of contiguous nodes sharing the same nodal value will remain “synchronized” over extended
periods of time. How that synchronization sets in, starting from a purely random initial pattern,
is what begs for an explanation.

Consider two neighbouring nodes F{y), F(2) with force values

Fiy=F+A, Fay=F-A, —  |F}-F|=2A. (8.15)

Now suppose that both nodes are avalanching simultaneously; as per the redistribution rules
(8.12) and our synchronous nodal updating procedure, their post-redistribution value will not
be F(l) = F(g) = 0, but rather

Bt =a(Fo8),  RyteaFed), o R E=ta, @10
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Figure 8.6: Four snapshots of the OFC lattice, for the same simulation as on Figs. 8.4 and
8.5 (6F = 107*, a = 0.15). The color scale encodes the magnitude of the force F; ; at each
node. The top left frame shows the purely random initial condition (F; ; randomly distributed
in the interval [0, 1]), and the other three frames are sampled at a cadence of 108 iteration, as
labeled. Note the buildup of large “domains” of equals values in Fj;, slowly changing shape as
the simulation proceeds... and compare with Fig. 6.8.
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Figure 8.7: Probability density functions of avalanche energy in simulations with varying values
of the conservation parameter «, as color-coded. All distribution have a well-defined power-law
range, with logarithmic slope flattening with the conservation parameter: —3.34 at a = 0.1,
—1.92 at « = 0.2, up to —1.18 at @ = 0.25. The dotted line segments indicate the energy
range over which these slopes are computed. All three simulations are executed on a 128 x 128
lattice, with forcing parameter 6F = 10~%. These distributions are based on 5 x 10° iteration-
long segments, during which over 10 avalanches have taken place in each simulation.

assuming again here F, = 1 without loss of generality. The difference in nodal values prior
and after the redistribution has thus decreased, by a factor a (< 0.25)%. Once the two nodes
are synchronized (in the sense F(j) = F;), so that A = 0 in eq. (8.15)), redistribution will
maintain synchrony, and so will the deterministic forcing mechanism embodied in eq. (8.10);
only the input from a third neighbouring avalanching node can break it. In other words,
once a spatially extended portion of the lattice is synchronized, it can only be destroyed at
its boundary; the more extended the synchronized region, the longer it is likely to persist, as
boundary perturbation make their way inwards in successive recurrence cycles.

It is a remarkable fact that despite the model’s (quasi)periodic temporal behavior, avalanches
in the OFC model remain scale-invariant. This is illustrated on Fig. 8.7, showing probability
density functions of avalanche sizes for simulations using a = 0.1, 0.2 and 0.25. The latter
is conservative, and is characterized by a power-law spanning over four orders-of-magnitude
in avalanche size, with logarithmic slope —1.19. Non-conservative simulations (o < 0.25) re-
tain the power-law shape, with the logarithmic slope steepening and the upper cutoff moving
to smaller sizes as « decreases. These trends are readily understood upon noting that for a
statistically stationary state to be maintained, the nodal variable must be either dissipated
locally or evacuated at the boundaries, at the same average rate as the forcing increases it.
Low levels of dissipation thus require more avalanches to discharge at the boundaries, while
at higher levels of dissipation avalanches can more easily stop somewhere in the interior of the
lattice. Consequently, large avalanches become more common as o — 0.25, which translates

4This is typical of isotropic linear diffusive processes, which tend to even out gradients in the diffusing
quantity. Indeed here the net quantity of “force” transported from the higher- to lower-valued node by the
redistribution rule is (1 — a)2A which is linearly proportional to the initial difference 2A in nodal value, in line
with classical Fickian diffusion.
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into a flatter power-law for their size distribution.

8.5 Predicting real earthquakes

Large earthquakes are extremely destructive, either by themselves or through the tsunamis
they often generate. They are, arguably, the one type of global natural hazard one would
most like to be able to predict. Not surprisingly, seismologists, mathematicians, as well as a
wide assortment of quacks, have been at it for years and years. In part because such a large
volume of data is available, some earthquake prediction schemes have been proposed, based
on purely statistical inferences or artificial intelligence-based expert systems. Such techniques
typically strive to identify robust precursors signals in time series of seismic data. Much like
the lattice-based model introduced in this chapter, these prediction techniques are based on
highly simplified representations of the physical processes underlying the target phenomenon
—if they are at all present in the model. Instead, they operate by training on real-world data,
by learning to “recognize”, in the data, patterns that have predictive values.

Consider now the consequences of earthquake magnitude being distributed as a power-law,
as per the Gutenberg-Richter law. Most events are small, and the larger events, which are those
one would very much like to predict, are rare. Therefore the seismic data record, as voluminous
as it may be, contains mostly small events. The number of large events available to train expert
system ends up being rather small, the more so the larger the target event size. This is (at
least in part) why reliable earthquake prediction schemes are still lacking despite many decades
of data collection and research efforts.

The Gutenberg-Richter law is characterized by logarithmic slope b ~ —1 for a cumulative
distribution, implying ~ —2 for probability density functions such as plotted on Fig. 8.7. Taken
at face value, the OFC model would then indicate that plate tectonics operates in the non-
conservative regime, with o somewhere in the range 1.5-2.0. This is a parameter range where
recurrent avalanching behavior sometimes occurs. This possibility is supported to some extent
by seismic data, which show that certain tectonic faults, including the (in)famous San Andreas
fault in California, generate large “characteristic” earthquakes which exhibit quasiperiodicity
in their temporal pattern of occurrence.

Quasiperiodicity is an extremely attractive property from the point of view of earthquake
forecasting, and you get to try your hand at it in the Grand Challenge for this chapter. But
beware, this is a serious and dangerous business. A team of six Italian government seismologists
found out the hard way when they were prosecuted and found guilt of manslaughter for having
failed to predict the April 2009 earthquake that destroyed the small town of L’Aquila®. Bear
also in mind that the OFC sandpile is a model of the Burridge-Knopoff model of seismic fault;
when you’re making predictions using a model of a model, caution is definitely warranted, even
if you don’t live in Italy.

8.6 Exercises and further computational explorations
1. Fill in the missing mathematical steps leading from eq. (8.3) to (8.8)

2. Compute the probability density functions (PDF) of avalanches sizes for simulations using
a = 0.2 and 6F = 10~ on lattice sizes 32 x 32, 64 x 64, and 128 x 128. Compare the
logarithmic slopes and large-size cutoffs. Be careful to build your PDFs from a time series
segments in the statistically stationary state; this may require up to 107 iterations for the
larger lattice size (but see next Exercise)!

3. Knowing the value of the forcing parameter 6F and the largest nodal value F}"; on the
(non-avalanching) lattice at iteration n, one can easily compute the number of iterations

5Rational thinking —or perhaps just plain common sense— eventually prevailed, and the conviction was
finally overturned in November 2014 by an appeal court.
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required before the triggering of the next avalanche: (F, —max(F}";))/0F. This result can
be capitalized upon to accelerate the simple-minded code of Fig. 8.3. Do it, and estimate
the speedup factor.

4. Introduce in the model a mildly stochastic non-conservative redistribution, by drawing
anew a value of « uniformly distributed in the range 0.14 < o < 0.16 at each toppling
node. Is this enough to break the quasiperiodicities of the avalanche time series 7

5. Construct correlation plots between avalanche sizes (E) and duration (T') for a set of
three simulations using o = 0.15, 0.2 and 0.25. Can you infer a mathematical equation
that captures the (statistical) relationship between these two quantities?

6. And now for the Grand Challenge: Earthquake prediction ! Extract a 2 x 10° iteration-
long segment of the avalanche time series in the statistically stationary state of a a = 0.15,
dF = 10~* simulation. Using the first 10° iterations, compute the maximum avalanche
size, recurrence period of avalanches, and whatever other potentially useful quantity you
may think of. Then, try to forecast the timing and size of the larger avalanches (size larger
than 20% of the maximum avalanche size determined previously) in the second half of
your time series. Here a “good forecast” means getting the timing of the earthquake
right within 10? iterations, and amplitude within £25% of the “observed” value. Keep
also track of false alarms, when you predict a large earthquake that does not occur,
and misses, when you fail to predict an earthquake that does occur. This is a pretty
open-ended Grand Challenge, you get to decide when to stop!

8.7 Further readings

I am no expert on earthquakes, which is perhaps why I found the Wikipedia page on the topic
informative and a very good read (consulted December 2014):

http://en.wikipedia.org/wiki/Earthquake

The Web page of the U.S. Geological Survey also contains a wealth of interesting information
on earthquakes, and provides access to all kinds of earthquake-related data:

http://earthquake.usgs.gov/earthquakes/
On the Burridge-Knopoff model and its sandpile-like reformulation, see:

Carlson, J.M., & Langer, J.S., Phys. Rev. A, 40, 6470 (1989),
Olami, Z., Feder, H.J.S., & Christensen, K., Phys. Rev. Lett., 68, 1244 (1992),
Hergarten, S., Self-Organized Criticality in Earth Systems, Berlin: Springer, chap. 7 (2002).

The description of the Burridge-Knopoff model in §8.1 is closely inspired by the presentation
in §3.10 of the following book, which also offers a an illuminating mathematical analysis of the
OFC model:

Christensen, K., & Moloney, N.R., Complexity and Criticality, Imperial College Press
(2005).

On more elaborate modeling and analyses of earthquakes, a good recent entry point in the
literature is

Sachs, M.K., Rundle, J.B., Holiday, J.R., Gran, J., Yoder, M., Turcotte, D.L., & Graves, W.,
Self-organizing complex earthquakes: scaling in data, models and forecasting, in
Self-organized criticality systems, ed. M. J. Aschwanden, Berlin: Open Academic
Press, 333-356 (2013)
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Chapter 9
Epidemics

Whether your favorite is the Black Death in the Middle Ages, AIDS in the 1980’s, or the 2014
Ebola outbreak in Africa, all epidemics are scary (like earthquakes!). Perhaps it is the thought
that even the strongest amongst us can be felled, almost randomly, by an organism that cannot
even be seen or felt; or the fact that huddling together, a most natural human reflex in times
of duress, is exactly what we should not be doing during an epidemic.

It turns out that the epidemic spread of contagious diseases shares many characteristics
with some of the apparently unrelated systems considered in preceding chapters. Let’s dive in
and look into that.

9.1 Model definition

Contagious diseases are often said to spread “like wildfires”, and this is precisely the basic idea
underlying the model of epidemic spread considered in this chapter. More specifically, the model
is constructed by adding random walk on a lattice to the the forest-fire model of chapter 6. The
algorithm is as follows: a preset number M of random walking agents move on a 2D Cartesian
lattice of size N x N, with two or more agents allowed to meet on the same lattice node. A
contagious agent is now introduced at some random location on the lattice. Perhaps fortunately
for himself (but certainly not for the remainder of the population), the sick agent does not keel
over immediately, but survives during L temporal iterations, and infects any other random
walking agent met on any lattice node during that time period. These newly infected agents
immediately become contagious and also have a post-infection life span of L iterations, and so
will likely also infect other agents met on other lattice nodes in the subsequent L iterations.
Sick walkers fall dead on the spot L iterations after being infected, remain immobile thereafter
(no zombies!), and immediately cease to be contagious.

As you may well imagine, this algorithm can lead to an “avalanche” of infection events
propagating across the lattice; but, as usual, looking into how this comes about will reveal
some interesting subtleties... and complexities!

9.2 Numerical implementation

Figure 9.1 is a minimal Python source code implementing the epidemic “algorithm” just de-
scribed. Take good note of the following:

1. The simulation is structured within an outer conditional (while) loop (starting on line
24), which will iterate until the number of infected walkers (tt ninfect) falls to zero, or
a preset maximum number of temporal iterations (max_iter) has been reached. Upon
termination of this loop, the value of the variable iterate yields the duration of the
epidemic.
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CHAPTER 9. EPIDEMICS

# EPIDEMIC SPREAD IN A POPULATION OF RANDOM WALKERS ON A LATTICE

import numpy as np
import matplotlib.pyplot as plt

N =128

M =4000

L =20

max_iter=10000

x_step =np.array([-1,0,1,0])
y_step =np.array([0,-1,0,1])
X,y =np.zeros(M) ,np.zeros (M)
infect =np.zeros(M)

lifespan=np

.zeros (M)
ts_sick =np.

zeros (max_iter)

for j in range(M):

x[j]=np.
y[jl=np.

random.random_integers(0,N)
random.random_integers(0,N)

lifespan[j]=L
jj=np.random.random_integers(0,M-1)

infect[jjl=1

n_sick,n_dead,iterate=1,0,0

while (n_sick > 0) and (iterate < max_iter):

for j in range(0,M):
if infect[j] < 2:

ii=np.random.choice([0,1,2,3])
x[jl+=x_step[ii]
y[jl+=y_step[iil
x[j1=min(N,max(x[j],1))
y[jl=min(N,max(y[j],1))

if infect[j]==1:

lifespan[j]l-=1

if lifespan[j] <= 0:
infect[j]=2
n_sick-=1
n_dead+=1

for k in range(0,M):

if infect[k] == 0 and k != j: # this one is healthy...
if x[jl==x[k] and y[jl==y[k]l: #

infect[k]=1
n_sick+=1

# end of loop over all walkers
ts_sick[iteratel=n_sick
iteratet+=1

print("iteration {0}, sick {1}, dead {2}.".format(iterate,n_sick,n_dead))

# end of temporal loop

plt.plot(range(0,iterate+10),ts_sick[0:iterate+10])

plt.show()
# END

H O H O H

H#

#

lattice size

number of random walkers
lifetime parameter

maximum number of iterations

template arrays

walker (x,y) coordinates
walker health status

time left to live

time series of sick walkers
place walkers on lattice

infect one random walker
various counters

temporal iteration

loop over all walkers

this walker is still alive
pick direction

update walker coordinates

bounding walls in x,y
this walker is sick

the clock ticks...
this walker dies

check for walkers on node

...and so: infect

Figure 9.1: Minimal Python source code for the epidemic spread model used in this chapter.
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2. Four 1D arrays of length M store the information characterizing each random walker:
x[M], y[M], infect[M], and lifespan[M] (lines 12-14). The (x, y) position on the lattice
of the j' walker is stored in elements x[j] et y[jl; its medical status is stored in
infect[j], where a value “0” indicates a healthy walker, “1” an infected walker, and “2”
a deceased, immobile walker. The element 1ifespan[j] is the life span of the walker,
i.e., the number of temporal iteration it has left to live.

3. Initialisation consists in randomly distributing the M walkers on the lattice (lines 17—
18), and assigning infected status (infect[jjl=1) to a randomly chosen single one (lines
20-21).

4. Only the live walkers (whether healthy or infected, infect[j]<2) move on the lattice
(line 26). The 2D random walk is done in the usual manner (lines 27-29), but here a
combinaison of min/max operations ensure that walkers on edge nodes cannot leave the
lattice (lines 30-31); Are we starting to feel nervous... ? put otherwise, the walkers are
trapped on a square-shaped island.

5. Once walker j becomes infected, the corresponding array element lifespan([j] is decre-
mented by one at each subsequent temporal iteration (line 33); when lifespan([j] hits
zero (line 34), walker j is declared dead (infect[j1=2; second if statement in the inner
loop).

6. For each infected walker (last if statement in the walker loop), another inner loop (start-
ing on line 38) tests for coincidence in the x and y lattice coordinates with any other
healthy (infect [k]==0) walker (line 39), in which case infection occurs (infect [k]=1 on
line 41).

7. Counter variables n_sick and n_dead accumulate the number of infected and dead walkers
on the lattice at each temporal iteration, and are written to screen at each iteration.

8. Upon termination of the epidemic, a time series of the number of sick walkers (previously
accumulated in array ts_sick), is plotted against iteration count, like the red curve on
Fig. 9.2 below.

Here again it would be possible to take advantage of the operators and functions for list
manipulation provided by Python to design a computationally more efficient version of this
simulation. One of the exercises at the end of this chapters offers hints on how to get started.

9.3 A representative simulation

As is now customary, we first look in some detail at the characteristics of a specific simulation
before launching into the study of the model’s behavior. Figure 9.2 shows a time series of
the number of infected (red line) and healthy (green line) individual walkers in a simulation
beginning with M = 4000 random walkers moving on a 128 x 128 lattice, including one randomly
selected infected individual. The lifespan parameter is set here at L. = 20 temporal iterations.
Even though the epidemic begins with a single infected individual, it spreads here rather rapidly,
with some 50 individuals already infected by the time the original sick individual keels over at
iteration 20. By iteration 100 the epidemic looks like it is waning, but it then picks up again,
in fits and starts, to reach it peak with 73 infected individuals at iteration 262. This is followed
by 5 more or less distinct epidemic surges, before the last infected individual finally dies at
iteration 919, marking the end of this simulated epidemic.

Figure 9.3 shows the spatiotemporal spread of the epidemic, this time by plotting a color-
coded symbol at the final resting place of each infected individual in the simulation. The color
code, explicited by the color bar, gives the iteration at which each individual was infected. The
line segments connect each infected individual with the other having transmitted the disease;
note that on this plot these are at distinct spatial locations, since individual are not plotted at
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Figure 9.2: Time series of infected (red) and healthy (green) random walkers in a simulation
carried out on a 128 x 128 lattice initially populated by 4000 random walkers, with the life
span of infected walker set at L = 20 iterations. Here the duration of the epidemic is 919
temporal iterations, significantly above average for these parameter settings; yet at the end of
the epidemic, the population is reduced to 62% of its initial value, which is almost exactly the
average death toll for these parameter settings (more on all of this in §9.4 below). Note the
multiple successive surges in the evolution of the epidemic, a characteristic commonly observed
in real epidemics... and compare to Fig. 6.3.

the location where they were infected. Here the original infected individual was located very
near the lower edge of the lattice (indicated by the orange circle), thus with fewer walkers within
its 20 iteration range than if it had been located in the interior. Nonetheless, in this specific
instance the epidemic does manage to spread, early on more or less in all directions. The
resulting circular “epidemic front” first increases in radius, but soon breaks into two distinct
subfronts, one heading vertically upwards and the other meandering to the right and eventually
extinguishing in the bottom right corner of the lattice. The first front fares better (so to
speak), as it spreads upwards to the top of the lattice, with yet another sub-front backtracking
downwards to end very near the point of origin of the epidemic. Here the epidemic has thus
“percolated” from one end of the lattice to the other, so that this type of process is akin to
dynamical percolation.

Qualitatively speaking, the epidemic surges on the time series of Fig. 9.2 and the spatially
distinct infection focii on Fig. 9.3 are both features observed in real epidemics. Because no
new random walkers are introduced on the lattice (ruthless quarantine in effect!), the epidemic
inevitably ends as it destroys its own propagation vector. In the case of the simulation displayed
on Figs. 9.2 and 9.3, the epidemic ends after 919 iterations, with over a third of the initial
population killed off; we are in the general ballpark of the Black Death here, with an estimated
25% of Europe’s population decimated between 1347 and 1350.

9.4 Model behavior

It does not take much profound thinking to realize that a key factor in epidemic spread is the
density of random walkers moving about on the lattice. The higher that density, the more likely
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Figure 9.3: Epidemic spread for a simulation on a 128 x 128 lattice populated by 4000 random
walkers, with the lifetime of infected walker set at L = 20 iterations (same simulation as on
Fig. 9.2). The solid dots indicate the final resting place of dead walkers, color-coded according
to the iteration at which they became infected, as indicated by the color bar, and the line
segments connect each dead walker to the walker from whom infection was picked up. The
simulation was initialized with the introduction of a single infected walker, here very near the
bottom edge of the lattice, as indicated by the orange circle. In this simulation 1534 walkers
fell to the epidemic, very close to the average for this initial population density and lifetime
parameter. A mpeg animation of this Figure will be available
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an infected agent is to meet and infect at least one healthy colleague before dropping dead, and
in doing so, sustain the epidemic. The initial population density (p) is simply defined as the
ratio of the M walkers to the number of available lattice nodes (N x N), and equivalent to an
occupation probability:

M

P=Nz (9.1)
Figure 9.4 shows results from a series of epidemic simulations, all with a lifespan parameter
L = 20, and computed for varying initial population density. These are again ensemble average
results; for each value of p, K statistically independent realizations are carried out, by changing
the seed of the random number generator controlling the distribution of the initial population
and random walk steps. For each individual simulation, one can compute the duration 7T} and
death rate 0 < py < 1, the latter being simply the ratio of deaths to the initial population size.
The solid dots plotted on Fig. 9.4 are the values of p and T averaged over each ensemble of
K = 20 simulations at a given value of p, denoted in what follows as (T') and (u):

W= m. T = > T 92)
k=1 k=1

A quantitative measure of the variability in epidemic spread is offered by the root-mean-square
standard deviations about these ensemble averages:

1/2

s 1/2 LXK
o = (K > (s - <M>)2> . or= (K > (T - <T>>2> - (9.3)
k=1 k=1

The vertical line segments on Fig. 9.4 are drawn over the range (1) £ 0, and (T') £ or, at each
value of p.

Figure 9.4 certainly indicates that the average death rate (u) increases with population
density, as expected, but the form of the variation should remind you of the growth of the
largest cluster on a percolation lattice (compare with Fig. 4.6, bottom panel). As with the
percolation problem, the variance is also largest at values of p where the average death rate
varies most rapidly. This large variability also carries over to epidemic duration, which also
peaks at the value of p around which the death rate increases the fastest. The subsequent
decrease of the epidemic duration reflects the fact that even at very high population density,
the model design is such that the epidemic front can advance a most by one nodal spacing per
temporal iteration. This leads to a saturation of the epidemic duration at ~ 2 x N = 256,
indicated by the dashed line segment on the bottom panel of Fig. 9.4; this is the total number
of steps required on a 4-neighbour Cartesian lattice to travel from one corner of the lattice to
the opposite corner.

Examination of the high variability around p = 0.25 soon reveals that the high rms deviation
results from the epidemic simply failing to pick up in a subset of the simulations. In other words,
the distribution of death rates or duration does not at all look like a Gaussian centred on the
mean value —yet another reminder of the potential interpretative pitfalls of egs. (9.3). The
vertical gray bands on Figure 9.4 span the range going from the lowest to highest values of
death rate and duration, in each 20 member set of simulations at each initial density. For low
(p £ 0.15) and high (p 2 0.35) density, this range is quite narrow and well-centered on the mean
value; but in between a much wider span is observed. Typically, in the range 0.2 < p < 0.3,
a given epidemic can fail to take off altogether, due to the injected sick agent keeling over
after L = 20 iterations before infecting anyone, or persist for many hundreds of iterations and
achieve a high death rate. Even at the relatively high density of p = 0.305, here one individual
simulation has failed to produce an epidemic, while seventeen of the other realizations decimate
over half the initial population. Evidently, what happens very early in the simulation is crucial.

At the beginning of the simulation, with a mean density p = M/N? and all walkers moving
independently of one another, the probability of two walkers meeting on the same node at one
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Figure 9.4: Variation of the death rate (top) and epidemic duration (bottom), as a function of
initial population density. Each solid dot corresponds to the mean of 20 statistically independent
realizations of each simulation, with the vertical line segment indicating the £+ one standard
deviation about that mean (see egs. 9.3). For each density value, the gray bands indicate the
minimum and maximum values occurring in this 20 member set. All simulations executed on
a 128 x 128 lattice, with the lifespan of infected walker set at L = 20 iterations. Compare the
top panel to the bottom panel of Fig. 4.6
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iteration is given by p2. If one walker is infected, the probability that it does not meet a healthy
walkers in L iterations is thus (1 — p?)%; therefore, the probability p that the infected agent
meets at least one healthy member of the population is

p=1-(01-p)". (9-4)

For the L = 20 simulations used to construct Figure 9.4, we have p = 0.18 at p = 0.1, rising
to p = 0.56 already at p = 0.2, p = 0.85 at p = 0.3, up to p = 0.97 at p = 0.4. This indicates
that the odds of the epidemic getting going exceeds 50-50 once the initial density reaches ~ 0.2.
Between p = 0.2 and 0.3, there is still a fair chance that early on the first or first few infected
agents die before infecting others in the population, but when the epidemic does get going a
large number of agents will end up being infected. One can thus expect greater variability in
the epidemic duration and death toll in this range. Beyond p = 0.3, the spread of infection
is almost certain, and large epidemics invariably ensue. These probabilistic inferences are in
general agreement with the numerical results of Fig. 9.4.

The above analysis is limited by the fact that in reality a sick walker can infect more than
one healthy individual. For example, in the specific simulation of Figs. 9.2 and 9.3, the average
infection rate is almost exactly one per infected walker, but a large fraction (40%) of infected
walkers actually died without transmitting the disease, 34% of sick walkers infected only one
population member, 17% managed to infect 2, and so on with the 2 most “efficient” infectors
each managing to transmit the disease to 6 healthy population members; once again, nothing
like a Gaussian distribution.

Ultimately, for the epidemic to grow, the total infection rate must exceed the death rate,
but how many healthy walkers will be infected by a given sick walker depends on the local
density of healthy walker, itself influenced by the prior presence or absence of infected walkers
in the vicinity. Figure 9.5 displays the epidemic spread for the simulation of Fig. 9.3 (at
left), as well as for a higher initial density simulation (p = 0.488, at right). Now only the
“infection links” between infected and infector are plotted, this time as a function of the x-
nodal position of the walkers’ final resting place, with time running vertically upwards. The
branching structure of the epidemic spread is now clearly visible, and, especially for the lower
initial density simulation, has a definite self-similar look. One can also pick up a definite
maximal inclination for the spreading branches in these space-time diagrams, indicative of
a well-defined peak propagation speed. The dashed line segments are “guides to the eye”
serving to indicate this peak propagation speed, which here increases almost linearly with
initial population density.

The left panel on Figure 9.5 illustrates well why simulations such as this one exhibit the most
variability on Fig. 9.4. At this initial density the epidemic is just barely able to propagate across
the lattice. Just as a single infection event starts the epidemic at the beginning of the simulation,
here much later in the simulation often a single infection event determines whether the epidemic
will extinguish itself or flare up again. This is the case with the p = 0.24 simulation of Fig. 9.5A,
in which the single infection event having taken place at (x,t) = (18,282) is responsible for the
further spread of the epidemic for another 650 iterations; had this infection not taken place,
the epidemic would have ended with the extinction of its right branch, around iteration 380.
Think about it: all it would have taken is one random step in a different direction.

The epidemic spread at the higher density p = 0.49 (right panel on of Fig. 9.5) is more
regular, as the epidemic front progresses steadily across the lattice, leaving only dead walkers
in its wake. Figure 9.6 offers yet a different view of epidemic propagation at high density. The
top panel is a series of snapshots, 20 iterations apart, showing the spatiotemporal evolution of
the spatial density of sick agents. This is computed simply by dividing up the 128 x 128 lattice
in 16 X 16 contiguous blocks of 8 x 8 nodes, and computing the number of sick agents in each such
block. The resulting 16 x 16 array is then rendered in grayscale. The epidemic spreads as a more
or less circular wavefront, like ripples at the surface of a pond in which a rock has been thrown.
For each such snapshots, one can compute the distance of each infected agent from the starting
point of the epidemic, namely the node on which the initial single infected agent was located.
The red circular arcs on the snapshots are centered on this location and drawn with a radius
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Figure 9.5: Another view of epidemic spread, now with time running vertically upwards and
the dead walkers distributed according to their horizontal nodal position on the lattice. Only
the “infection links” are plotted, for clarity. Panel (A) at left is for the same simulation as
on Fig. 9.3. Note the self-similar branching structure, and how this epidemic would have
ended around iteration 280, had it not been for the single infection event taking place at
(z,t) = (18,282). Panel (B), at right, shows an epidemic spread in a simulation with twice the
initial population density as in (A). Note the different vertical (temporal) scales on both panels.
The dashed oblique lines are guide to the eye indicating propagation speeds of 0.33 node per
iteration at left, and 0.6 node per iteration at right. The death rates for these simulation are
38.8% in (A), and 98.2% in (B).
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Figure 9.6: Spread of the epidemic wavefront in the p = 0.49 solution of Fig. 9.5B. The
sequence of snapshots on top show a grayscale rendering of the density of infected agents, on
a 20-iteration cadence, as labeled. The red circular arcs are centered on the starting point of
the epidemic, and drawn with the mean distance of the infected agents measured from that
point. The bottom panel shows the variation with time of this distance (solid line), along with
the root-mean-square displacement for a two-dimensional random walk (dash-dotted line). The
solid dots identify the 10 snapshots plotted on top, and the inset is a closeup on the first 20
iterations.
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equal to the mean distance of all infected agents. The wavefront thickens and develops internal
structure (i.e., density “clumps”), but retains its circular shape until the lattice boundaries
are encountered. The bottom plot shows how this mean radius varies with time. From about
iteration 80 onwards, the relationship is linear, indicating a radial expansion of the epidemic
front at a constant speed of ~ 0.6 nodal spacing per temporal iteration. An approximately
constant propagation speed is a characteristics of many observed epidemics in homogeneous
population density environments; introduced in Italy by ship around December 1347, in the
following three years the Black Death propagated steadily northward across mainland Europe
by about 300 kilometer per year.

Considering that infected agents spread the disease through their random walk on the
lattice, a constant propagation speed is a curious result; the root-mean-square displacement in
a random walk increases as the square root of the number of steps taken (see C.5 if in a need of
a refresher on the statistics of random walks). This square-root law is plotted as a dash-dotted
line on Fig. 9.6. It offers a reasonable representation of epidemic spread in the first 20 iterations
or so (see inset), but afterwards grossly underestimates the propagation speed. This is because
infection does not spread through a single sick agent stumbling its way through the lattice, but
rather through a sequence of successive infection events. This is like a row of toppling dominos,
where the toppling wave travels much farther than any individual domino.

9.5 Epidemic self-organization

The infection rate can be measured by keeping track of how many healthy walkers are infected
by each sick walker in the course of the simulation!. The corresponding probability density
functions are plotted on Figure 9.7, for the two representative simulations plotted on Fig. 9.5
(p = 0.244 and 0.488), together with a third representative simulation with p = 0.366, in all
three cases with L = 20. These are global statistics, built using all infection events irrespective
of when they occurred during the epidemics.

What is truly remarkable on Figure 9.7 is that despite very different death rates, durations,
and patterns of epidemic spread (as per Fig. 9.5), all three distributions have very similar
shapes. Even more remarkable, they also all have a mean infection rate equal to unity, meaning
one infected per infector, to better than one part in 103. Because the population density
is rapidly reduced in the vicinity of epidemic fronts, locally the epidemic extinguishes itself,
leading to a form of self-regulation which continuously maintains the epidemic at the edge of
termination. Put differently, through local interactions (infection) and diffusive-like spreading
(random walk) of infected individuals, and no matter the population density, once (and if) it
gets going, the epidemic self-organizes dynamically around a marginal infection rate of exactly
unity; a result both neat and unexpected, isnt’t it !

9.6 Small-world networks

In all epidemic simulations we have considered thus far, infection is a purely local process,
as infected agents can only infect healthy agents located in their immediate spatial vicinity, as
determined by the range of their random walk before they fall dead. This may be an appropriate
first-order model for the spread of the Black Death in the Middle Ages, but is inappropriate
for the spread of pandemics in our modern world. Viruses can now hitch an airplane ride and
travel halfway across the world within a single day. This is why airports have become the front
line of the battle against pandemics.

Pretty much everybody, out of sheer boredom, has at least once stared at the map of airline
routes at the back end of that infamous airline magazine inevitably found-in-the-pocket-of-the-
seat-in-front-of-you (it still makes better reading that the safety card). The airline routes are
idealized as smooth curves linking one city to another, even though few planes would ever follow

1In the epidemiological literature this is called the “reproduction number”.
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Figure 9.7: Probability density functions of infection rates for the two specific simulations of
Fig. 9.5, having p = 0.244 and p = 0.488, and a third with an intermediate initial population
density p = 0.366, as color-coded. The three correspondingly color-coded vertical line segments
indicate the means of the distributions, in all cases equal to unity to better than a part in 103.
All three distributions are very much alike in shape.

exactly this path. When planning a trip, connectivity often takes precedence over geographical
proximity. What often matters most in choosing a ticket is how many links there are between
the departure and arrival cities, as defined by the airline’s network of connecting flights. A
trip’s effective “distance” is no longer measured in kilometers, but rather as the number of
links required to go from one city to another. As a resident of Montréal, a hub-city for Air
Canada, I am in fact “closer” to London (U.K.) than I am from London (Ontario): 5 nonstop
and 62 one-stop flights per day for the former, versus 9 flights per day for the latter, all one-
stop; and connections is what seasoned air travellers are most eager to keep to a minimum,
because the probability of your trip (and/or luggage) going to pots because of flight delay or
cancellation increases rapidly the more connections a trip involves.

Figure 9.8 depicts four possible networks linking N = 12 nodes. Their equidistant spacing
along the perimeter of a circle is for plotting purposes only, and irrelevant for everything that
follows. The network in (A) is locally-connected, and a periodic equivalent of the nearest-
neighbour 1D percolation lattice introduced in §4.1 and 1D sandpile model of chapter 5. This
network has 12 links, and the node-to-node distance varies from 1 to 6 links, with an average
travel distance of 3.27 links for the network as a whole. The network in (B), in contrast, is
fully connected; it has N x (N — 1) = 132 links, and an average travel distance of 1 link by
construction. This is the dream of any semi-regular air traveller, but an airline adopting this
model would face huge operating costs.

The network in (C) is a single-hub network, with all nodes connected only to a hub node,
here node 0. This network has N — 1 = 11 links, and average travel distance of 1.92 links.

The random-looking network in (D) has 13 links, for an average travel distance of 2.76
links. The largest average single-node travel distance is 3.5 links to/from node 2, the smallest
1.6 to/from node 6, the longest pairwise distance is 5 links, occurring between nodes 2 — 7
and 3 — 7. The pattern of node linking is random, but not in the sense of a uniform random
distribution; 5 nodes have only 1 link, 3 nodes have 2 links, 3 have 3 links, and node 6 has 6
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Figure 9.8: Four possible static networks connecting 12 nodes. The locally-connected network
in (A) introduces links only between nearest-neighbours, while the fully-connected network in
(B) is at the opposite extreme, with each node being connected to every other node. In the
single-hub network in (C) all nodes connect to each other via node 0. The random-looking
“small-world” network in (D) belongs to the class of scale-free networks, with the number of
links into each node distributed as a power-law (see text).
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links, acting here as kind of hub. This network was constructed by first assigning a number of
link to each node by drawing this number from a power-law distribution spanning the range
[1, N], then picking random nodes onto which to connect these links. Such a network is scale
invariant, and, for reasons be elucidated further below, is known as a small-world network.

The fully-connected network may have the smallest average travel distance, but if links are
“expensive”, the total cost is best defined as this mean travel time multiplied by the total
number of links in the network. Typically, a measure of this type is what an airline would
strive to minimize. For the four networks of Fig. 9.8 this comes out at 39.2, 132.0, 21.1 and
35.9 for A, B, C, and D, respectively. The single-hub network is most cost-effective under this
definition, with the small-world network coming in second and the local network not too far
behind. The fully-connected network ends up the most inefficient, by a large factor.

In the real world, connection efficiency (however defined) is not the end of the story; redun-
dancy is another extremely important factor. If one link is broken or one node taken offline for
the local network of Fig. 9.8A, the average travel distance goes up to 4.33 but all nodes remain
connected. However, break a second link and a part of the network becomes isolated from the
rest. The fully-connected network in (B) is largely impervious to the loss of one or a few links:
the travel time between the disconnected two nodes simply increasing by 1 link, and the rest
of the network remains unaffected. Typically, a large number of links must be broken before a
node becomes isolated; such a network is mazimally redundant. In the single-hub network (C),
losing a link or the node it connects to affects only this node, unless failure occurs at the hub;
then all nodes lose connection to one another. Single-hub networks have a single point of fail-
ure. This is why large airlines operate more than one hub, even if this is less cost-efficient than
single-hub operation. When operating in single-hub mode, all it takes is one good snowstorm
or bomb threat to paralyze the whole network. The small-world network on Fig. 9.8D is more
robust in this respect. Like in the single-hub network, nodes with a single link to the network
become isolated if that link breaks; but here even in the worst-case scenario of hub-node 6 going
offline, only nodes 1,2,8,9 becomes isolated, since nodes 4 and 10 can pick up at least some of
the traffic normally going through node 6.

You can now imagine what happens if you populate each node with a group of agents, each
having a small but finite probability of travelling to another node, and infect one such agent
with some horribly contagious disease (and in case you cannot, the Grand Challenge closing
this chapter will lead you through it). Hub nodes become critical, and this is where one would
concentrate efforts for the detection and quarantine of sick individuals (and perhaps vaccination
of healthy ones), in order to avoid a pandemic.

Scale-free networks pop up everywhere. The pattern of links between Web Pages has been
argued to be a scale free network; likewise with the pattern of citations of scientific papers; and
the connectivity pattern of electrical power grids. The brain’s interconnected neurons arguably
make up the ultimate complex network, and it may well be scale-free (although this remains to
be demonstrated). At a more munane level, try drawing on a piece of paper the network of your
own social relations, including not just a link betwen you and them, as in a single-hub network,
but also links between mutual friends and acquaintances, as well as links to their friends and
acquaintances you are aware of even though they are not part of your own imemdiate social
network. Unless you live in Antarctica or are a true mountaintop ermit, pretty soon you will
end up with a scale-free network of the small-world variety; and if you have on hand a very
large piece of paper you will soon realize that anyone can connect to pretty much anyone else
through a surprisingly small number of links. This is why we feel that “it’s such a small world”
when we meet a perfect stranger and find out she happens to be good friends with the younger
brother of another friend of ours living abroad; and this is also why such networks are known
as “small world” networks.

Anyhow, you may go ahead and add “catching a contagious disease” to your list of good
reasons to avoid connecting flights; but keep all of this also in mind before dropping in on a
friend, the next time you come down with a very nasty flu.
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9.7 Exercises and further computational explorations

1.

9.8

The time series of infected walkers on Fig. 9.2 shows relatively well-defined surges of
duration of order 10? iterations. Such repeating surges are actually often observed in real
epidemics. Can you figure out what sets this characteristic timescale 7

In discussing the dependence of epidemic characteristics on the initial population density,
the resemblance between the top panel of Fig. 9.4 and the bottom panel of Fig. 4.6
was noted, suggesting that epidemic spread might be related to percolation, and thus
criticality. If this is criticality, what is the control parameter here? Could this be self-
organized criticality 7 Would you say that the branching structure on the left panel on
Fig. 9.5 is a fractal ?

Use the simulation code of Fig. 9.1 to examine how the spread of epidemics varies with
the value of the lifespan parameter L, at initial population densities p = 0.25 and p = 0.5.

Carry out 100 statistically distinct simulations using the parameter settings used on
Figs. 9.2 and 9.3. Construct histograms of epidemic duration and total deaths. Are these
distributions Gaussian-like 7 Are they even approximately symmetrical about their mean
value 7

This one is for readers with coding experience in Python —or interested in developing it.
Restructure the simulation code of Fig. 9.1 so that it operates on lists of healthy and sick
walkers, rather than always looping on the whole population (including dead walkers)
at every temporal iteration (viz. lines 25 and 38). This is most easily done by taking
advantage of Python’s list manipulation operators and functions, adding newly infected
walkers to the “sick” list, removing from it dead walkers, etc. Think carefully how you
would go about modifying the internal loops within the outer temporal loop on Fig. 9.1.

. Your Grand Challenge is to simulate epidemic spread on a small-world network. You

may use the network of Fig. 9.8D, or design your own, larger scale-free network. On
each of the network’s k = 1, ..., N nodes, place n; agents, where nj can be the same on
all nodes (100, say), or vary from one node to another acording to your favorite recipe.
Conceptually, each of these node is a “city”, a bit like a coarse-grained version of the
nearest-neighbour lattice used for the simulations presented in this chapter. At every
temporal iteration a sick agent has a probability p; (< 1) to infect another agent on the
same node, and a probability p; (also < 1) to travel to a randomly chosen linked node.
As in the lattice-based simulations considered in this chapter, once infected an agent has
a finite lifetime L. Introduce a single sick agent on a randomly selected node, and follow
the spread of the epidemic, for various values of p;, p; and initial nodal population. Once
you have identified a parameter regime where the epidemic invariably takes off, fix the
value of these parameters and introduce a vaccination campain on the primary hub node.
The idea is that a randomly selected fraction f of the nodal population is vaccinated and
cannot be infected or carry the disease. Determine the vaccination fraction f required to
prevent epidemic spread with better than 90% probability.

Further readings

Many historical accounts of epidemics are available in the popular literature. I have certainly
not read them all, but so far my favorite remains:

Zinsser, H., Rats, Lice and History (1935) [available as 1996 reprint Black Dog & Leventhal

Publishers|

Also well worth reading in this context is I’'Oeuvre au Noir (translated in English as The
Abyss), by Marguerite Yourcenar. Readers fluent in higher mathematics may be interested
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in comparing the model introduced in this chapter to the more conventional statistical and
differential equation-based approaches to the modeling of epidemic spread. Good entry points
into this vast literature are

Daley, D.J., & Gani, J., Epidemic Modeling: An introduction, Cambridge University Press
(1999).
Murray, J.D., Mathematical Biology, Berlin: Springer, chaps. 19, 20 (1989)

Part four of Mitchell’s book cited in the bibliography to chapter 1 offers an engaging and
non-technical general introduction to the science of networks. At a more technical level, see

Watts, D.J., Small Worlds: The dynamics of networks between order and randomness,
Princeton University Press (2003)
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Chapter 10

Flocking

There is safety in numbers. Some of this is psychological, but it also harks back to basic
geometry: because the surface to volume ratio of compact objects decreases with increasing size,
the number of individuals exposed to predators at edges of a large animal flock is small compared
to those protected within its interior, the more so the larger the flock. Add the deterrent of
perhaps looking like a dangerously large animal under suboptimal viewing conditions, and the
possibility of group manoeuvers confusing an approaching predator, and you have a potential
evolutionary advantage. That the advantage is real and not just potential is confirmed by the
fact that a wide variety of living creatures have evolved this behavioral strategy, including many
species of mammals (herds), birds (flocks), fishes (schools), and insects (swarms).

Models of flocking have also been used to understand —and control— the movement of
dense human crowds in socially extreme situations. Indeed, the flocking model introduced in
this chapter closely follows one developed with the specific aim of understanding global crowd
movements in the so-called mosh pits at Heavy Metal rock concerts. Human crowd movement
(and management) thus provides the context of the simulations described in what follows.

10.1 Model definition

The flocking model considered here is defined in two spatial dimensions on the periodic unit
square: x,y € [0,1]. N agents are moving within this domain, under the influence of four forces.
The forces acting on any agent j are the following:

1. Repulsion: In a flock or crowd, the bodily sizes of participating individuals sets a
typical lower limit to the distances between individuals (e.g., a shoulder width). To pack
a crowd tighter would requires a substantial external force, which would typically meet
an equally substantial resistance. This property is modeled here by introducing a short-
range repulsion force, which is very intense within a range set by an interaction distance
ro, but falls very rapidly at larger distance:

N
Flr'ep — EZ (1 — Tjk/(QTO))3/2f'jk Tjk S 2T0 7j 7é k . (101)
/ 0 otherwise

k=1
Here rj; is the distance between agents j and k, and tj; is a unit vector pointing from
k towards j. The parameter € sets the magnitude of this repulsion force. All simulations
considered below use a spatial range ro < 1.

2. Flocking: In a crowd, many people behave like sheeps, blindy following others around
them down well-trodden corridors into the valley of steel... or wherever. Here this ovine
tendency is modeled by introducing a flocking force which tends to align the velocity
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vector of agent j with that of the group of individuals located within a flocking radius r¢
of its own location. Mathematically:

Flodk = aV/VV .-V, (10.2)

where

N .
vV — {Vk Tik <Tp ] Fk 10.3
; 0 otherwise ( )

measures the vectorially summed velocity of all k£ agents located within r¢ of agent j,
and the parameter « sets the magnitude of this flocking force. In all simulations that
follow we use ry > 4ry, reflecting the fact that in a crowd we typically only see (and react
to) other that are relatively close to us, these being still more numerous than those in
immediate bumping range.

3. Self-propulsion: In some contexts, e.g., a protest march, some individuals are purpose-
fully trying to move at some finite speed. This is modeled here through a self-propulsion
force, defined mathematically as:

F?r()p = ,U(UO — UJ)\A/'j 5 (104)

where vy is the target velocity of agent j, and the parameter u sets the magnitude of the
self-propulsion force. The speed of agent j is

vi =/v3; vy (10.5)

and V; is a unit vector aligned with its current velocity:

~ _ Uz . ~ _ Uyg .
Vg, = vﬁ z, Vy, = v’- 7. (10.6)
J j

In all simulations discussed in this chapter we set 1 = 10. Note that setting vp = 0 will
tend to deccelerate agent j, not exactly what one think of as “self-propulsion”, but this
is not unrealistic in a crowd; depending on context many people just naturally slow down
to a standstill unless they are being actively pushed around.

4. Random: Finally, agents can be subjected to small —or not-so-small— perturbations of
whatever origin. This is modeled through a randomly-oriented force:

Frand =g (10.7)

where each component of 7 is extracted from a distribution of random deviate uniform
in the range [—n, 7).

The total force acting on agent j is thus the vector sum of these four forces:
. rep flock prop d
Fj=F 7" +F°"“+F " +F™, (10.8)

which will induce an acceleration according to Sir Isaac Newton’s celebrated third law of motion:
aj = L. (10.9)

We can suppose that all agents have a mass M = 1, without loss of generality. From one time
step to the next, agents move and adjust their speed according to:

F;(t)
AL (10.10)

x;(t + At) = x;(t) + v;(t) At , v;(t+ At) = v;(t) +
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with At the time step'. Most simulations reported upon in this chapter use a time step
At = 0.01. The initial condition usually consists in randomly distributing a fixed number of
individual on the unit square, and assigning each a randomly-oriented velocity with magnitude
in some preset interval. The domain is deemed periodic in x and y, meaning, for example, that
any agent moving beyond z > 1 immediately reappears at the left side of the domain, with
the same speed (magnitude and orientation) as when leaving from the right; and similarly for
agents exiting at * < 0, y < 0 or y > 1. Geometrically, it is as if the agents were moving on
the surface of a torus, much like the lattice-painting ant agents encountered way back in §2.4.

10.2 Numerical implementation

Figure 10.2 provides a listing for a Python code that implements the above simulation algo-
rithm. This code looks deceptively simple, as it consists of little more than initializations and
implementation of eqgs. (10.10); this is because all the action —and coding intricacies— are
contained in the user-defined Python functions buffer and force, which are invoked to calcu-
late the total force acting on every agent at every temporal iteration. Source listings of these
functions are given on Figs. 10.3 and 10.42. While positional and velocity periodicities are easy
to implement (lines 40-41 in Fig. 10.2), the calculation of the repulsion and flocking forces near
domain boundaries is where the challenge lies. This is handled as a two-step process, through
the user-defined functions buffer and force.

The first step, handled by the function buffer, is to replicate agents located closer to a
boundaries than the range of the flocking force, so that they can effectively contribute to the
flocking (and repulsion) forces felt by agents located close to the opposite boundary. The idea
is illustrated on Figure 10.1. Here 16 agents (solid black dots) populate the unit square (in
black). Define now a buffer area (gray shading) corresponding to the periodic unit domain
with its  and y boundaries expanded outwards by a distance equal to the flocking radius r;.
Particles within the unit square but closer than r¢ to a boundary get replicated one unit away
inside this buffer, in the direction ooposite to that of the nearby boundary. This replication
process is indicated by the color coding of replicated agents on Fig. 10.1. Note how agents
located close to a corner of the unit square spawn three replicants: horizontally, vertically and
diagonally. Here the computation of the flocking (and repulsion) forces acting on any one of
the 16 original agents located within the unit squares could now involve up to 15 + 20 other
agents, real or replicants.

Examine carefully the two functions listed on Figs. 10.3 and 10.4 and note the following:

1. The job carried out by function buffer is to construct expanded arrays xb, yb, vxb, vyb
for the positions and velocity of agents and replicates, as per Fig. 10.1 and accompanying
discussion. The buffer width rb is passed through the function’s argument list when
invoked by the main program (line 33 on Fig. 10.2), where it is set to the flocking radius
Tf.

2. The (modified) position and velocity of every such replicated agent are introduced at
position nb of the above expanded arrays, with nb incremented by one every time a
replicated agent is added. At the end of this operation, the arrays xb, yb, vxb, vyb
contain nb (> N) agents, distributed in the interval [—r4, 1 + 7] in 2 and y.

IThese expressions result directly from the application of the Euler explicit first-order finite difference formula
to the differential form of Newton’s Laws of motion. Positional accuracy could be improved by writing

x;(t + At) = x;(t) + v, () At + LE;(0) (At)?
2 M
However, this yields an algorithm where velocities are evaluated less accurately than positions, an unwanted
feature in situations where the force F depends not just on x but also on v, which is the case here.
20ne may note that these program sub-units are as intricate than the primary code calling it. This is a
common situation in real simulation codes , where one strives to define functional sub-units so as to maintain

a visually clear logical flow within each program unit.
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Figure 10.1: Construction of a buffer zone (gray shading) with replicated agents (colored open
circles), to ensure proper calculation of the flocking and repulsion forces experienced by agents
(solid black dots) distributed over a periodic unit domain (black square). Any agent located
closer than the flocking radius from a boundary (solid dots with colored ring) gets replicated a
unit distance away in the opposite direction, as captured here by the color coding. Note how
agents located close to a corner get replicated thrice. For the specific distribution of 16 agents
in the unit square shown here, a total of 20 replicants have been created.
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# FLOCKING SIMULATION ON THE UNIT SQUARE
import numpy as np
import matplotlib.pyplot as plt

# ___________________________________________________________________________
N =350 # Number of agents

n_iter=1000 # Number of temporal iterations

dt =0.01 # Time step

r0 =0.005 # Range of repulsion force

eps =0.1 # Amplitude of repulsion force

rf =0.1 # Range of flocking force

alpha =1.0 # Amplitude of flocking force

vO0 =0.0 # Target speed

mu =10 # Amplitude of self-propulsion force
ramp =0.5 # Amplitude of random force

# ___________________________________________________________________________

x,y =np.zeros(N),np.zeros(N) # Positions of agents
vx,vy=np.zeros(N) ,np.zeros (N) # Velocities of agents
fx,fy=np.zeros(N) ,np.zeros(N) # Forces on agents
xb =np.zeros ([4*N]) # Define buffer zone arrays
yb =np.zeros([4*N])
vxb=np.zeros ([4*N])
vyb=np.zeros ([4*N])
for j in range(0,N): # Initialize positions and velocities
x[j] =np.random.uniform() Random position in unit square
y[j] =np.random.uniform()
vx[jl=np.random.uniform(-1.,1.) # Random velocity components in [-1,1]
vy[jl=np.random.uniform(-1.,1.)

+*

for iterate in range(O,n_iter): # Temporal loop
# First add replicate agents in buffer around unit square
nb,xb,yb,vxb,vyb=buffer (max(r0,rf) ,x,y,vx,vy)
# Now calculate acceleration for each real agent
fx,fy=force(nb,xb,yb,vxb,vyb,x,y,vx,vy)

vx+=fx*dt # Eqs (10.10) by components
vy+=fy*dt # (remember mass=1)
X +=vx*dt
y +=vy*dt
x =(1.+x) % 1 # Enforce periodicity in x
y =(1.+y) % 1 # Enforce periodicity in y
# End of temporal loop
plt.scatter(x,y) # Plot positions of agents

plt.quiver(x,y,vx,vy,headlength=5) # Plot velocity vectors of agents
plt.axis([0.,1.,0.,1.]1)

plt.show()

# END

Figure 10.2: Basic Python code for the flocking model used in this chapter. This code requires
two user-defined functions called buffer and force, as listed on listed on Figs. 10.3 and 10.4
immediately following.
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# BUFFER FUNCTION: INTRODUCE REPLICATE AGENTS OUTSIDE OF UNIT SQUARE,
# IN A SQUARE BUFFER EXTENDING OUTWARD BY A DISTANCE rb
def buffer(rb,x,y,vx,vy):
xb[0:N],yb[0:N] =x[0:N],y[0:N] # Initialize buffer arrays
vxb[0:N],vyb[0:N]=vx[0:N],vy[0:N]
nb=N-1 # Already have N real agents
for k in range(O,N): # Add replicants to buffer
if ( x[k] <=1rb ): # Close to left
nb+=1
xb[nbl=x[k]+1.
yb[nb] ,vxb[nb],vyb [nbl=y[k],vx[k],vy[k]
if ( x[k] >= 1.-rb): # Close to right
nb+=1
xb[nbl=x[k]-1.
yb [nb] ,vxb [nb],vyb[nbl=y[k],vx[k],vy[k]
if ( y[k] <= rb ): # Close to bottom
nb+=1
yb[nbl=y[k]+1.
xb [nb] ,vxb [nb],vyb[nbl=x[k],vx[k],vy[k]
if ( y[k] >= 1.-rb ): # Close to top
nb+= 1
yb[nbl=y[k]-1.
xb [nb] ,vxb [nb] ,vyb[nbl=x[k],vx[k], vy [k]
if ( x[k] <= rb and y[k] <= rb ): # Close to bottom left
nb+= 1
xb[nb] ,yb[nbl=x[k]+1.,y[k]+1.
vxb [nb] ,vyb [nb]l=vx [k] , vy [k]
if ( x[k] >= 1.-rb and y[k] <= rb ): # Close to bottom right
nb+= 1
xb[nb] ,,yb[nbl=x[k]-1.,y[k]+1.
vxb [nb] ,vyb[nbl=vx [k] , vy [k]
if ( x[k] <= rb and y[k] >= 1.-rb ): # Close to top left
nb+= 1
xb[nb],yb[nbl=x[k]+1.,y[k]-1.
vxb [nb] ,vyb[nbl=vx [k], vy [k]
if ( x[k] >= 1.-rb and y[k] >= 1.-rb ): # Close to top right
nb+= 1
xb[nbl ,yb[nbl=x[k]-1.,y[k]-1.
vxb [nb] ,vyb[nb]=vx [k], vy [k]
# End of buffer loop
return nb,xb,yb,vxb,vyb # Total real+replicate agents
# END OF FUNCTION BUFFER

Figure 10.3: A used-defined Python function used in flocking model to add agents replicates
outside of the unit square domain, to facilitate the computation of the total force carried out
by the user-defined function force listed in Fig. 10.4 immediately following. This function is
called once at the beginning of each temporal iteration (line 33 in Fig. 10.2).
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# FORCE FUNCTION: CALCULATE TOTAL FORCE ACTING ON ALL AGENTS
# Values for r0O,eps,rf,alpha,vO,mu,ramp set in calling program
def force(ub,xb,yb,vxb,vyb,x,y,vx,vy):

for j in range(O,N): # Loop over real agents
repx,repy,flockx,flocky,nflock=0.,0.,0.,0.,0
for k in range(O,nb): # Loop over agents+replicants
d2=(xb[k]-x[j1)**2+(yb[k]l-y[jl)**2 # Squared distance j,k
if (d2 <= rf*x*2) and (j != k): # k contributes to flocking

flockx+=vxb [k]
flocky+=vyb [k]

nflock+=1
if (d2 <= 4.*r0*x2): # k contributes to repulsion
d=np.sqrt(d2) ; # Distance between j and k

repx+=eps*(1.-d/(2.%r0))**1.5 *(x[jl-xbl[k])/d # Eq (10.1)
repy+=eps*(1.-d/(2.*%r0))**1.5 *x(y[jl-ybl[k])/d
# End of loop over agents and replicants

normflock=np.sqrt(flockx**2+flocky**2) # Denominator in Eq (10.2)

if ( nflock == 0 ): normflock=1. # To avoid 0/0 division
flockx=alpha*flockx/normflock # Flocking Eq (10.2)
flocky=alpha*flocky/normflock

vnorm =np.sqrt (vx[j]**2+vy[j]**2) # Speed of agent j
fpropx=mu* (vO-vnorm) * (vx[j]/vnorm) # Self-propulsion Eq (10.4)

fpropy=mu* (vO-vnorm) * (vy[j]/vnorm)
frandx=ramp*np.random.uniform(-1.,1.) # Random force Eq (10.5)
frandy=ramp*np.random.uniform(-1.,1.)
fx[jl=(flockx+frandx+fpropx+repx) # Total force on agent j
fy[jl=(flocky+frandy+fpropy+repy)

# End of loop over real agents

return fx,fy
#END OF FORCE FUNCTION

Figure 10.4: A user-defined Python function that computes the total force acting on each agent
(j-indexed loop starting on line 5). This function is called at every temporal iteration, at line
35 in the temporal loop in the flocking simulation code listed on Fig. 10.2

naturalcomplexity.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal



154 CHAPTER 10. FLOCKING

3. The force acting on agent j is calculated based on its distance to every other agents,
including replicants; this means that the j-indexed loop starting at line 5 in the force
function of Fig. 10.4 runs from 0 to N — 1, i.e., only over the N “real” agents located
within the unit square; whereas the k-indexed loop within force (lines 7-16 on Fig. 10.4)
runs from 0 to nb — 1.

4. There are now N x (nb — 1) pairs of (distinct) agents between whom distance-based forces
must be calculated, at every temporal iteration. This calculation better be as efficient
as possible. A first test (line 9) checks whether agent k is within the flocking radius 7
of agent j; if so the flocking force is calculated, and then a second test (line 13) verifies
if k is also within 2rg of j, in which case its contribution to the repulsion force is also
calculated. A consequence of this construct is that the first if will be executed nb times
per real agent, but the second only a few times since, typically, only a few agents are
within a radius r¢ of agent j.

5. The calculation of the flocking and repulsion forces includes a test (in line 9) that prevents
computing the repulsion force of an agent on himself should j = k. Look again at eq. (10.1)
and imagine what would happen without this exclusion...

6. If no agent is within the flocking radius r¢ of agent j, then the calculation of the flocking
force will produce a division by zero, since we then have the norm V'V - V = 0 in eq. (10.2);
to avoid this problem the counter variable nflock tallies up the number of agents within 7
of agent j (line 12); if this is zero, then the norm (local variable normflock) is artificially
set to unity (line 20), so that the flocking force will be zero, rather than whatever you
get from dividing zero by zero (with many computing languages you would get that
(in)famous NaN...).

7. The z- et y- components of the flocking and repulsion forces are calculated separately and
accumulated in the local variables flockx, flocky, repx, et repy. It is only upon exiting
the k-indexed inner loop that the total forces are calculated, including the contributions
of the purely local self-propulsion (lines 24-25) and random (lines 26-27) forces.

8. Upon returning control to the calling program unit, the final step consists in using
eq. (10.10) to update the position and velocity arrays for all agents j (lines 36-39 on
Fig. 10.2), with periodicity enforced (lines 40-41), and without forgetting that we have
assumed all agents to have a unit mass (M = 1 in eq. 10.9). Note here the use of mathe-
matical operators acting on numpy arrays, rather than array elements within a loop.

Even with the little tricks introduced here, such brute force computing of distances between
all pairs of agents can become prohibitively expensive as N gets very large. There exists
algorithms far more efficient for this, developed for so-called N-body simulations. The interested
reader will find a few good entry-point references at the end of this chapter.

10.3 A behavioral zoo

With four forces acting in the simulations and the large number of numerical parameters defining
their respective ranges and magnitude, it is no surprise that the model can produce a very
wide range of global behaviors. For convenience and later reference, Table 10.1 lists all model
parameters and the corresponding numerical values used in the various sets of simulations
presented in the remainder of this chapter.

Rather than taking our customary detailed look at one specific simulation, in the present
context it will prove more useful to first consider a few simple simulations demonstrating the
action of a subset of forces, to better appreciate the behavior of subsequent simulations.

Figure 10.5 shows snapshots of four simulations with the flocking force turned off, and self-
propulsion acting to brake the individuals to rest (target speed vy = 0 in eq. (10.4)); numerical
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Table 10.1: Model parameters (Active/Passive where appropriate)

Description Equation Fig. 10.5 Fig. 10.6 Fig. 10.7 Fig. 10.8
ro  Repulsion radius (10.1) 0.05 - 0.025 0.025
e  Repulsion amplitude (10.1) 25 0 25 25
r¢  Flocking radius (10.2) - 0.1 0.1 0.1
«  Flocking amplitude (10.2) 0 1 1 0.1/1
vg  Target velocity (10.4) 0 0 0.02/0 0.05/0.02
i Self-propulsion amplitude (10.4) 10 10 10 10
n  Random force amplitude  (10.7) 1,3,10,30 0.1 0.1/0 10/0.1
N Number of agents 100 342 114—456 342

values for other model parameters are given in the caption and listed in the fourth column
of Table 10.1. What varies in this sequence is the magnitude of the random force, increasing
from left to right, as labeled. The top row shows the position of all agents after an elapsed
time interval ¢ = 20, from an initial condition consisting of 100 agents randomly distributed
on the unit square, with randomly-oriented initial velocities. As long as the the random force
remains relatively small (7 = 1, left column), the repulsion force rapidly pushes the agents into
a quasi-equilibrium, geometrically-ordered configuration in which the total repulsion force on
any agent vanishes. Because the repulsion force is isotropic, the resulting global end state must
also be, which here leads to a close-packing hexagonal pattern. Here this pattern includes some
“defects” and “holes”, because a few additional agents would be needed here to construct a
truly regular periodic hexagonal “crystal”. At low 7 the individual agents also move about their
equilibrium position under the action of the random force, damped by the action of the self-
propulsion force which acts here as a brake (vg = 0). As the trajectories plotted in the bottom
row show, this motion is hardly discernable at n = 1, but already at n = 3 it is sufficient to
produce noticeable perturbations in the hexagonal configuration. At n = 10 the random force
is large enough for pairs of “colliding” agents to occasionally exchange positions, leading to
slow, irregular pseudo-random drift across the domain. At n = 30 the simulation is now in a
“fluid” phase, with agents describing what for all intents and purposes is a 2D random walk.
In general, the spatial density of agents distributed over the domain is a key parameter in
these types of simulations. In view of the short range and high intensity of the repulsion force
(viz. eq. (10.1)), one can consider that each agent bodily occupies a “surface” ~ mrZ. The
compactness coefficient (C) is defined as the ratio of the total surface collectively occupied by
agents to the available surface. Since the simulation is defined on a unit square, we have:

C =7Nrg . (10.11)

For the N = 100 simulations of Fig. 10.5, with ro = 0.05, this gives C' = 0.785, confirming the
visual impression that agents are pretty tightly packed.

Figure 10.6 shows a simulation now driven only by the flocking force, with self-propulsion
acting as a brake (vo = 0). Repulsion is turned off (¢ = 0), and a small random force is included
(n = 0.1). The first snapshot, taken at ¢ = 0.5, shows how the initial random velocities are
rapidly damped by the braking force, but with the flocking force already starting to align
velocity vectors of neighbouring agents. By ¢ = 1.0 the flocking force has led to a general
acceleration of most agents, with groups of agents merging to produce a clockwise vortex at
left, which persists until about ¢ = 2, by which time agents are moving as a long sinuous
stream. The periodic boundary conditions lead to a “collision” at ¢ = 6 as the upwards
moving front of the stream at right merges with its middle part leaving the domain diagonally
through the bottom left corner to reappear at the upper right. This causes a merging of the
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Figure 10.5: Four simulations driven only the repulsion and random forces, with self-propulsion
acting as a brake (vg = 0). All simulations have rg = 0.05, ¢ = 25, « = 0, = 10, and a random
force amplitude 7 increasing from left to right, as labeled. The top row shows the distribution
of agents, with the line segments indicating the orientation and magnitude of their velocity
vectors. The bottom panels show a trajectories of four selected agents over a time interval
100At = 2 in the course of the simulation.

stream into a single, denser flock, which ends up moving at constant speed along a straight line
pointing approximately North-West here (¢t = 30). This final streaming direction is ultimately
determined by the initial condition, with all directions being in principle equiprobable.

10.4 Segregation of active and passive flockers

The variety of behaviors that can be generated in our flocking model becomes even larger if
we allow for the coexistence of agents following distinct sets of dynamical rules; think, for
example, of a bunch of riot-control law-enforcers moving into a crowd of protest marchers;
or of a group of belated concert goers trying to push their way to the front of the general
admittance floor. In such a situation we can identify “active” agents, trying to do something,
and “passive” agents, not doing much until they get pushed around or hit on the head. Such a
dual-population of agents is readily accommodated within the simulation code of Figs. 10.2 and
10.4, by introducing suitable arrays of length N for the model parameters that have different
values for the two types of agents.

An interesting and important question in crowd management is to understand under which
circumstances two intermingled populations of active and passive agents can spontaneously
segregate, by regrouping into distinct flocks. Figure 10.7 shows snapshots taken far into a set
of four simulations, in all cases including the same number N, = 45 of active agents, in red,
and an increasing number of their passive cousins, in green. Except for the numbers of passive
agents, all simulations use the same parameter values, as listed in Table 10.1 under “Fig. 10.7”.
Here active agents only differ in having a finite target velocity vy = 0.02 and being subjected
to a small random force n = 0.1.

At low compactness (C' < 0.25) the self-propulsing active agents flock into a long stream
that clears a path through the passive agents, most of the latter remaining at rest unless they
happen to be pushed around by an active agent. At intermediate compactness (C' ~ 0.5),
sustained flocking turns out to be difficult, as small flocks of active agents continually merge
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Figure 10.6: Flock formation in a simulation driven only by the flocking force, with the self-
propulsion force acting as a brake (vg = 0). The parameter values for these simulations are
listed in the fifth column of Table 10.1. Note that the various frames are not equally spaced in
time. Keep also in mind that the simulation domain is periodic in z and y. A mpeg animation
of this Figure will be available

and separate again as they encounter channels between passive groups. Once compactness
reaches two thirds (for this parameter regime), the groups of motionless, passive agents are
sufficiently dense and massive to strongly resist entry by a self-propelled active agent, which
ends up again favoring the formation of a large flock of active agents collectively succeeding in
opening a channel through the crowd. The system behaves here like a two-phase flow, with the
active agents percolating through a largely inert irregular matrix. At even higher compactess
(rightmost panel), isolated active agents can become trapped in the close-packed “cristalline”
assemblage of passive agents.

The global behavior, namely the capacity of the active agents to flock, clearly shows a
non-trivial relationship to compactness, as a consequence of the dynamical rules governing the
interactions. This can be appreciated upon examining the velocity distributions of all agents,
plotted in the bottom row of Fig. 10.7 in the form of polar plots, where each color-coded
line corresponds to the velocity vector of one agent. At low compactness the velocities of
active agents are strongly co-aligned, which provides a sustained flocking force maintaining the
motion. Significant scatter is present at high compactness, mostly due to agents at the edges
of the flock being deflected by collisions with the solid walls of passive agents on either side of
the open channel cut by the flock of active agents. The largest scatter is found at intermediate
compactness, a consequence of the fact that active agents fail to form a persistent large flock.
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Figure 10.7: Flock formation in a sequence of simulations with compactness increasing from
left to right, as labeled. The top row of panels show the spatial distributions of active (red)
and passive (green) agents after an elapsed time of 50 time units. The bottom panels show the
corresponding polar diagrams of agent velocities, measured in units of the active agent’s target
speed vy, and with the dotted circles indicating multiples of vy in steps of unity. The large
colored dots indicate the mean speed of active and passive agents. The parameter values for
these simulations are listed in the sixth column of Table 10.1.

10.5 Why you should never panic

Imagine this: it’s a nice Sunday afternoon and your favorite home team is facing the arch-enemy
from elsewhere for a spot on the semi-finals, so the stadium is packed solid. About halfway
into the game a fire breaks out; or an earthquake suddenly starts rattling hard; or the PA
system turns on to page Agent Smith to go meet the quarantine team at entrance A-8, quickly
and without touching anyone or anything please, because your Ebola test turned out positive;
or whatever. At any rate, such events are more likely than not to trigger a mass movement
towards the stadium’s exits. We all know the drill: stay calm, walk fast but don’t run, no
pushing, and do not use the elevators. However, based perhaps on experience —and if not, at
least on what we learned from our examination of traffic flow in chapter 7— we also know that
a few panicked bozos running around randomly and bumping into people can seriously disrupt
what would otherwise be an orderly evacuation.

Our flocking model is ideally suited to investigate the perturbing effects of panicked indi-
viduals on collective, ordered motion. We consider again two types of agents: (1) strongly
flocking (o = 1) “calm” agents, subjected to self-propulsion to a moderate “walking” speed
(vp = 0.02) and small random force (n = 0.1), and (2) “panicked” agents striving for running
speed (vo = 0.05), undergoing sudden and erratic changes in direction, modeled here through a
large random force (n = 10), and far less interested in flocking (o = 0.1). All other parameter
values as listed in the rightmost column of Table 10.1. The idea is thus to carry out simulations
at relatively high compactess, C' = 0.67, varying the proportion f = N,/N of panicked agents
in the population, with this ratio f remaining fairly small.

Figure 10.8 shows a sequence of simulations where the fraction of panicked agents increases
from zero (at left) to a mere 5% (at right). In the absence of panicked agents, a generally
constant cruising speed is reached, with the self-propulsion force equilibrating the flocking
force. The small dispersion in the orientation of velocity vectors again reflects the action
of the weak random force, and the intermittent action of the repulsion force resulting from
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Figure 10.8: Similar in format to Figure 10.7, but this time for a sequence of C' = 0.67 simu-
lations with an increasing fraction of “panicked” agents (in red). The snapshots are taken at
time t = 50, and all simulations use again the exact same initial condition for the positions and
velocities of all agents, irrespective of their “panicked” or “calm” status. A mpeg animation of
this Figure will be available

inhomogeneities in the spatial distribution of the moving flock of agents. As one would have
expected, this dispersion gradually increases as more and more panicked agents are introduced
in the simulation. Notice how panicked agents tend to carve out “holes” for themselves within
the moving flock of calm agents, a phenomenon observed in real crowds. This is due to the
repeated collisions with surrounding calm agents, driven by the random force and mediated by
the repulsion force.

Probably not expected at all is the fact that even a few percent of panicked agent can
induce long-term, global changes in the moving flock, more specifically significant changes
in the spatial orientation of its motion. This is further illustrated on Figure 10.9, showing
trajectories of a single calm agent in each of the four simulations of Fig. 10.8, plus two others
at higher fraction of panicked agents, as labeled. Even at the highest panicked fraction, these
trajectories remain representative of the moving flock as a whole. It is remarkable that even
as little as 2% of panicked agents can cause a deflection of the moving flock by almost 45
degrees. Of course different deflections would be produced if different random initializations
were used, but the trends observed on Fig. 10.9 are robust: flock deflection increases rapidly
with increasing fractions of panicked agents, and sets in very early in the simulation. At the
highest fractions of panicked agents, the net distance travelled also decreases markedly, which
is not a good thing if rapid evacuation of the crowd is hoped for.

Written in big bright letters on the backside of the authoritative Hitchhiker’s Guide to the
Galaxy is the well-known first rule of galactic survival: DON’T PANIC. Our flocking simulations
demonstrate that this dictum also bears following even in more Earthly stressful circumstances.

10.6 Exercises and further computational explorations
1. The force function of Fig. 10.4 could run twice faster by taking into account the fact that
the repulsion and flocking forces of agent k on agent j is equal in magnitude but opposite

in direction to the repulsion and flocking forces of agent j on agent k —as per Newton’s
famous action-reaction principle. Give it a go!

naturalcomplexity.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal



160 CHAPTER 10. FLOCKING

Figure 10.9: Trajectories of a randomly selected “calm” agent in the simulations of Figure 10.8,
augmented by two simulations using panicked fractions of 10 and 20%, as labeled. The dotted
circles are draw at radii = 2,4 and 6, centred on the initial position of the selected agents. For
plotting purposes the unit square has been replicated so as to show trajectories in “physical”
space. All trajectories cover the same time span, namely 50 time units.

2. Carry out a sequence of simulations like those plotted on Figure 10.5. For each compute
the final total kinetic energy, namely the sum of (1/2)M v? over the whole population at
your last time step, and examine how this varies with . Is the transition from “solid” to
“fluid” taking place abruptly or gradually 7 Could this “phase transition” be considered
an instance of a critical phenomenon 7

3. Construct a new set of simulations such as on Fig. 10.7, but decrease gradually the
amplitude of the flocking force (parameter «) for the active agents. At which value of
a do you cease to form flocks ? Is the transition abrupt or gradual ? Does it depend
sensitively on compactness 7

4. The formation of long-lasting coherent structures, such as the (transient) vortex of Fig. 10.6,
also takes place in two-population versions of the model. Try to look for such structures
in simulations at high compactness (0.9 < C' < 1.0), and a proportion of active agents
N, /N =1/3. Active agents have small but finite target velocities (vg = 0.02) and random
force (n = 0.1), while passive agents have vg = 0 and n = 0. You may vary the magni-
tude of the flocking force (parameter o) and self-propulsion amplitude (i) for active and
passive agents. For the other model parameters, use the values listed in Table 10.1 for
Figure 10.7.

5. Another important task in crowd control is how to intervene so as to get a large compact
crowd of passive or disoriented individual to start moving collectively in a specific direc-
tion. The idea is basically the same as on Fig. 10.7, namely to introduce a population of
self-propelled active agents in a dense group of passive agent. Modify the self-propulsion
force so that the target speed of active agents is oriented in the positive y-direction (say),
and use the difference in the average y-component of the velocity of the passive and active
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agents as a measure of “coupling”. Identify in which portion of the model’s parameter
space this coupling is the strongest. Use the same parameter values as in the simulations
of Fig. 10.7, but explore the effects of varying vg, a, p and/or n for the active agents.
How sensitive are your results to compactness 7

6. The Grand Challenge for this chapter is a real fun one: repeat the simulation of Fig. 10.6,
but add now a single, rapidly moving (vg = 0.5) strongly flocking (o = 5) “predator” agent
which generates a long-range repulsive force (rg = 0.1, say) in the flocking “prey” agents.
Give the predator (and only the predator) a flocking radius 50% larger than its repulsion
radius, so it can “see” and track the prey before scaring it away. Adding a moderate
random force (n = 1) to the predator yields nicer results. You should observe flock
shapes and evolution resembling observations, including arched thinning flocks dividing
to “confuse” the predator.

10.7 Further readings

The flocking model introduced in this chapter is taken from:

Silverberg, J.L., Bierbaum, M., Sethna, J.P., & Cohen, 1., Collective Motion of Humans in
Mosh and Circle Pits at Heavy Metal Concerts, Phys. Rev. Lett., 110, 228701
(2013).

The following is also very interesting on the broader topic of crowd behavior and management:

Moussaid, M., Helbing, D., & Theraulaz, G., How simple rules determine pedestrian behav-
ior and crowd disasters, Proc. Nat. Acad. Sci., 108, 6884-6888 (2011).

There exists a vast biological and ecological literature on flocking; at the non-mathematical
level I much enjoyed:

Partridge, B.L., The structure and function of fish schools, Scientific American, 246(6),
114-122 (1982),
Feder, Toni, Statistical physics is for the birds, Physics Today, 60(10), 28 (2007).

On algorithms for N-body simulations I found the following very informative, even though it
focuses on gravitational problems:

Trenti, M., Hut, P., N-body simulations (gravitational), Scholarpedia, 3(5), 3930 (2008),
This is available online, open access (March 2015):

http://www.scholarpedia.org/article/N-body_simulations_(gravitational)
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Chapter 11

Pattern Formation

11.1 Excitable systems

Many physical, chemical and biological systems can be categorized as excitable; in the simplest
such systems, two “components” interact in such a way as to alter each other’s state, through
(nonlinear) processes of inhibition or amplification. Starting from a homogeneous rest state,
many systems of this type can spontaneously generate persistent spatiotemporal patterns when
subjected to some perturbation. Examples abound in chemistry, notably with autocatalytic
chemical reactions. Consider the following generic chemical reaction chain taking place in a
fully-mixed environment:

A - X (11.1)
B+X — Y+D (11.2)
2X+Y — 3X (11.3)

X - C (11.4)

The first reaction produces reactant X by dissociation of some compound A available in large
quantities; A thus provides a constant-rate source of X. The second second reaction produces
a second reactant Y from X through a reaction involving a compound B also available in large
quantities. The third reaction is the critical one; it converts Y back to X through a three-
body reaction involving two X; the overall rate is therefore proportional to the square of the
concentration of X in the mixture, times the concentration of Y. This one is the autocatalytic
reaction in the chain: X reacts with itself to produce more of itself. The fourth reaction
represents the “spontanecous” dissociation of X at come fixed rate, and acts as a sink of X.
The chain as a whole converts A and B to C' and D, with X and Y being produced and
destroyed as intermediate steps in the chain.

If the concentrations of A and B are held fixed in the mixture (e.g., by continuous re-
plenishment and stirring), it can be shown that there exists an equilibrium state where the
concentrations of X and Y also remain fixed, at values

Xeq=A, Ye=B/A, (11.5)

assuming all four above reactions have the same time constants and with reverse reaction rates
set to zero. In this equilibrium state, the second reaction produces Y at the same rate as the
third one destroys it, so that the concentration of X stabilizes at a level such that the chain
as a whole simply converts A and B to C' and D at a constant rate. However, for some values
of A and B this equilibrium state turns out to be unstable, and this is due to the nonlinearity
characterizing the third, autocatalytic reaction in the chain. Because reaction 3 proceeds at
a rate proportional to X2, while the second reaction is instead linearly proportional to X,
an increase of whatever origin in the concentration of X will favor the third reaction over the
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second. The concentration of X will thus keep increasing, leading to a runaway production of X;
this runaway cannot go on forever, because it also depletes Y, at a rate higher than the second
reaction can replenish it. As Y plummets to a low concentration, reaction 3 turns off, and Y’
starts rebuilding through the second reaction, a reaction now favored by the high concentration
of X in the mixture. This leads to a chemical oscillation whereby the concentrations of X and
Y wax and wane periodically. Such chemical oscillations are observed in the laboratory, the
Belousov-Zhabotinsky reaction being the classical example. In that case the excitation variable
X is the concentration of bromic acid, and the recovery variable Y is the concentration of some
suitable metallic ion, such as ferroin.

In the above reaction chain X acts as an activation variable, and Y as a recovery variable,
and systems capabe of producing such nonlinear oscillations (or runaway) when perturbed
away from their equilibrium state are deemed excitable. Their dynamical behavior becomes
particularly interesting when excitation involves a threshold.

Figure 11.1 illustrates schematically the workings of an activation-recovery cycle in a generic
excitable system, with X as the excitation variable and Y the recovery variable. The system
possesses a stable rest state, stable in the sense that small perturbations in either X or Y are
damped so that the system remains in this rest state. However, a sufficiently large perturbation
in the excitation variable X (dotted arrow) can push the system into a post-activation state
characterized by a value of X that now allows the growth of Y. The growth of the recovery
variable Y is however restricted to a finite range, and when the upper end of this range is
attained (saturation), de-excitation takes place. This drives X back to a value at which ¥ can
no longer grow. Typically, during this refractory stage the system cannot be excited, and both
X and Y simply return to the rest state.

In many situations of interest the activation variable reacts to system changes on a much
faster timescale than does the recovery variable; the former can thus be assumed to take on
one of two possible states, active or inactive, and the period of the activation-recovery cycle
becomes set by the reaction timescale for the recovery variable Y. In other words, on Fig. 11.1
the horizontal displacements are “fast”, while vertical displacements are “slow”!

Quite obviously, triggering the activation-recovery cycle requires some mechanism to push
the excitation variable X beyond its activation threshold. This mechanism can certainly be
external to the system. In the context of autocatalytic chemical reactions, for example, this
could be as simple as a Agent Smith pouring more chemicals into the test tube. A far more
interesting situation is one in which the system is spatially-extended and characterized by
chemical concentration gradients. Diffusion can them move chemicals from regions of higher
concentration to neighbouring regions of lower concentration, an in doing so activate the system

away from the rest state in spatially localized regions of the domain?.

Dynamically similar activation-recovery cycles have observed in contexts other than chemical
reactions. A particularly interesting example is provided by electrically excitable biological
tissues, such as the heart muscle or nerve axons, for which membrane potential acts as the
excitation variable X, and cross-membranic ionic currents define the recovery variable Y.

1Figure 11.1 is a simplified, schematic representation of the phase space plot for a system of two coupled
nonlinear differential equations of the generic type:

0X oYy

8t _f(XaY) St _g(X7Y)7
in the case of the reaction chain considered above, f(X,Y) = A— (B+1)X + X?Y and g(X,Y) = BX — X?Y.
The rest state corresponds to the intersection of the two nullclines f(X,Y) = 0, g(X,Y) = 0. In situations where
the activation variable X reacts rapidly and remains in quasi-equilibrium (dX/d¢ ~ 0), the phase space path for
the inhibition-recovery cycle follows the f = 0 nullcline in response to (slow) variations in the recovery variable
Y. If the f = 0 nullcline is multivalued in X for some range of Y, then the system can also “jump” horizontally
from one branch of the nullcline to another, resulting in the type of activation-recovery cycle illustrated on
Fig. 11.1.

2In such a case the temporal evolution of X and Y can be described mathematically by a pair of coupled

partial differential equations, with the coupling nonlinearity as in footnote 1, and linear diffusion terms for X
and Y, typically of the usual Fickian variety (o< V2X and V?Y).
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Figure 11.1: Schematic representation of an activation-recovery cycle in the [X, Y] phase space
of a generic excitable system. Here X and Y represent the excitation and recovery variables,
respectively. The rest state is stable with respect to small perturbations in either X or Y, but
a large perturbation exceeding the activation threshold for the variable X (dotted arrow) can
initiate a large excursion in phase space, which represents the only dynamically allowed path
from the post-activation state back to the rest state.

11.2 The hodgepodge machine

The mathematical investigation of pattern formation in reaction-diffusion systems was initiated
by Alan Turing, during the final years of his tragically short life. Not only was Turing an
outstanding mathematician, but in the late 1940’s and early 1950’s he also had access to one
of the earliest working computer, operating at the University of Manchester in England. He
used this opportunity to carried out numerical solutions of coupled nonlinear reaction-diffusion
partial differential equations, at the time a complete terra incognita since such systems are
largely impervious to conventional pencil-and-paper mathematical techniques. Turing could
show that reaction-diffusion systems can spontaneously generate spatial patterns, which he
dubbed “chemical waves”. In 1952, and once again well ahead of his time, he proposed that such
chemically-driven spatial patterns formation represented a key mechanism for morphogenenis
in the developing embryo.

Even with the staggering increase in computing power having taken place since Turing’s
pioneering investigations, the mathematical and numerical investigation of spatially-extended
nonlinear reaction-diffusion equations remain a very computationally demanding endeavor. The
hodgepodge machine is a simple cellular automaton that captures much of the pattern-forming
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behavior of the class of coupled systems of nonlinear reaction-diffusion partial differential equa-
tions of the type Turing investigated, as well as of other excitable systems in the broader sense.

The model is defined over a two-dimensional regular Cartesian lattice, with 8-nearest-
neighbour connectivity (top+down+right+left+diagonals). The state variable s, representing
the concentration of a chemical reactant, is defined as a positive integer quantity restricted to
the range 0 < s < A, where A is the activation threshold. A nodal value s = 0 corresponds to
the rest state, s = A is the active state, and integer values in between represent recovery states.
Denoting s;'; the state value of node (i,7) at temporal iteration n, we first define the following
quantities:

e N,: the number of neighbouring nodes that are in the active state (si'; = A) at the
current iteration

e N,: the number of neighbouring nodes that are in recovery states (0 < si'; < A) at the
current iteration

e S: the sum of nodal values over all neighbouring nodes, including node s; ; itself:

i+l j+1
S=>" > st (11.6)
l=i—1m=j—1

Each node evolves from one temporal iteration to the next according to the following three
(relatively) simple rules:

e Rule 1: if a node is in the rest state (s = 0), its state at the next iteration is given by:
N, N,

5"t = min ( + ",A) : (11.7)
r a

e Rule 2: if a node is in the recovery stage (0 < s < A), its state at the next iteration is
given by:

s"+1 — min <NTS+ Ctg A) : (11.8)

e Rule 3: if a node is activated (s™ = A), it transits to the rest state at the next iteration:

" =0. (11.9)

Here r, a and ¢ are all positive constants, and the resulting numerical values for s"t! are
truncated to the nearest lower integer when computing Rules 1 and 2, since the state variable
s is an integer quantity.

How do these rules relate to the excitation-recovery cycle of Fig. 11.17 First, the state
variable s is to be associated with the recovery variable Y. Because of its truncation to the
lowest integer, Rule 1 captures the activation threshold dynamics represented by the dotted
arrow, with the numerical values of the parameters r and a setting the value of this threshold.
This is a “fast” process, as it operates in a single temporal iteration, and the resulting value of
s represents the post-activation state. The acceleration parameter g in Rule 2 sets the rate at
which s grows once activated, i.e., is sets the upwards climbing speed along the right edge of
the phase space path. As long as g < A, this can be considered a “slow” process, in that many
temporal iterations are required to travel up from the post-activation state to saturation. The
activation threshold A is equivalent to the saturation value of Y. Rule 3 amounts to saying
that the transition from this upper portion of the path back down to the rest state is “fast”,
i.e., it takes place in a single temporal iteration.

Consider first the behavior of a single node in the recovery phase (0 < s < A), surrounded
by 8 inactive nodes (s = 0); such a lattice state could only result from the initial condition,
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as Rule 1 above would normally preclude an isolated resting node from entering the recovery
phase. But assuming such an initial state (s°) can be prepared, with N, = 0 and S = s°
Rule 2 yields s' = S/(N, + 1) + g = s° + g. Pursuing the iterative process we then have
s2=s'4+g=5%42¢, s* = 5%+ 3¢, etc. This describes a linear growth of s, at a rate set by
the value of g, that will continue until the activation threshold A is reached. The same behavior
would characterize a group of neighbouring nodes all sharing the same value of s, because then
N, =8 and S = 95", so that once again s"™! = s™ + g; all nodes would grow linearly in time
with slope g, activate in synch, and start growing anew from a value s" = 8/a, as per Rule
1. The resulting cycle of recovery, activation, and return to the rest state results in a periodic
sawtooth pattern similar to the nodal evolution in the OFC Earthquake model (see Fig. 8.5)
in the absence of redistribution by neighbouring avalanching nodes.

One crucial difference with the OFC model, however, lies with the fact that in the hodge-
podge machine, redistribution between nodes takes place not just when nodes are activating,
but operates throughout the whole recovery phase, via the diffusive behavior built into Rule 2.
With g = 0 and for a recovering node surrounded by other recovering nodes (N, = 8), Rule 2
becomes s?jl = 5/9, ie., s;; adopts the mean value of its neighbourhood?.

The diffusive behavior of the hodgepodge is illustrated on Figure 11.2, displaying a suc-
cession of horizontal cuts through the middle of a 100 x 100 lattice, starting from an initial
condition comprised of a 20 x 20 block of nodes with s = 250 at lattice center, and s = 0
everywhere else. This solution uses parameter values a = r = 0.1, A = 255, and g = 0. On this
1D cut the initial condition (in black) shows up as a rectangular shape which spreads laterally
and flattens with time, adopting a Gaussian-like shape. This is exactly the behavior expected
from classical linear (Fickian) diffusion. At the outer edge of this spreading structure, nodes
having initially s = 0 are pushed into the recovery phase, producing a recovery front propa-
gating outward at a speed of one node per iteration. Each resting node hit by this front finds
itself with three neighbours in the recovery stage, and so jumps to a nodal value N,./r = 30, as
per Rule 1. Here because g = 0 and all surrounding nodes have the same value s = 30, once
pushed into the recovery state nodes experience no further growth?.

Now enters a non-zero acceleration parameter g. As soon as the recovery front hits a node,
growth at a rate set by ¢ begins. Once activated, each node is surrounded by other nodes
either just activated or beginning their recovery phase, so all grow at essentially the same rate.
However, because the front propagates outwards one node per iteration, each node lags its
predecessor by one g-sized step in the growth process. The presence of this systematic lag
results in a outward-propagating sawtooth waveform, dropping to zero and beginning anew
when nodes reach the activation threshold, a direct reflection of the temporal sawtooth pattern
locally characterizing the evolution of each node.

Figure 11.3 shows four snapshots of a simulation with parameter values a = r = 0.1 and
g = 10, now on a 200 x 200 lattice and starting from the same “central block” initial condition
of Fig. 11.2. The top row of images shows a greyscale coding of the state variable s at iterations
50, 60, 70 and 80, going from left to right. The four spreading planar wave fronts emanating
from the lattice center are quite obvious, and show curvature only near their intersections of the
four phase front. The bottom plot shows horizontal cuts across the lattice center, the outward
progagating sawtooth pattern being now most obvious.

3This is akin to linear (Fickian) diffusive processes, which in the steady state must satisfy Laplace’s equation
V2s = 0; using centered second-order finite differences on a regular equidistant Cartesian grid, one can show
that such steady-state solutions must satisfy

Sij = 3(82‘71,3' + Sig1,5 + Sij—1 + Sij+1) -

i.e., s;; is equal to the average of its four nearest-neighbours, top/down/right/left.

4Readers familiar with the modelling of diffusive processes may note some unexpected features on Fig. 11.2,
particular in the late evolutionary phases. The lateral broadening of the central bumps seems to come to a
standstill around iteration 100, after which slow inward shrinking ensues; this is not a behavior expected of
linear diffusion. The culprit is the truncation to the lowest integer applied to the computation of Rule 2, which
effectively acts as a sink term, slowly “removing” chemicals from the system. In other words, diffusion in the
hodgepodge machine is non-conservative.
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Figure 11.2: Diffusive behavior in the hodgepodge machine, for parameter values r = 0.1,
a = 0.1 and g = 0. The initial condition is s = 200 in a 20 x 20 block of nodes at the center
of a 100 x 100 lattice, and s = 0 elsewhere. The various color-coded lines are horizontal cuts
through the middle of the lattice, plotted and color-coded on a 10-iteration cadence, as listed.

For a propagating plane wavefront, activation of resting nodes ahead of the front drives their
state up to a value s = 3/a, after which they grow by an increment g at each iteration until they
reach the activation threshold; if diffusion is neglected, the period of this activation-recovery
cycle is then (A — 3/a)/g ~ 22 for the parameter values used on Fig. 11.3. Because the front
advances by one node per iteration, the corresponding wavelength of the propagating sawtooth
wave is then 22 nodes, in agreement with the wave pattern observed on Fig. 11.3.

11.3 Numerical implementation

Figure 11.4 offers a simple implementation of the hodgepodge machine in the Python pro-
gramming language. The overall code structure closely resembles the OFC CA encountered in
chapter 8 (cf. Fig. 8.3), the primary differences being at the level of lattice state updates (lines
34-45), which are carried out here according to eqs. (11.7)—(11.9), rather than the simpler
egs. (8.10)—(8.13). Both models use a random initial condition (lines 26-28) and enforce syn-
chronous update of the lattice. Note however that periodic boundary conditions are used here,
in contrast to the “frozen” boundary conditions of the OFC model. This is implemented via the
user-defined function periodic, which operates on a 2D array given as argument (here named
internally grid (see Fig. D.3) but does not return an explicit result. Note the use of Python’s
elif keyword, a contraction of the usual else...if construct. Finally, because the state variable
is an integer, the computations of Rules 1 (line 45) and 2 (line 41) truncate to the lowest integer
via the Python integer conversion function int®. Likewise, the use of Python’s min function

ensures that s?jl < A even if a or r are set at very small values.
,

5] have coded up the hodgepodge machine in C, IDL and Python, and kept finding small but puzzling
differences in some parts of parameter space; they turned out to be related to the manner in which these various
computing languages deal with truncation and conversion to integers. So be warned.
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Figure 11.3: Wave generation and spreading in the hodgepodge machine, for parameter values
a=0.1, »=0.1 and g = 10. The initial condition is s = 250 within a 20 x 20 block of nodes at
the center of a 200 x 200 lattice, and s = 0 elsewhere. The four panels on top show a grayscale
representation of s; ; at iterations 50 (framed in blue), 60 (purple), 70 (red), and 80 (green).
The bottom panel shows the corresponding horizontal cuts along the center of the lattice, at
the same four epochs, as color-coded.

11.4 Waves, Spirals, Spaghettis, and Cells

The operation of the hodgepodge machine combines a local activation-recovery cycle with spa-
tial spreading and entry into the recovery phase mediated either by neighbour proximity or
diffusion. These processes, as embodied in the hodgepodge machine, are not particularly com-
plicated, yet they can lead to a staggering array of patterns and behaviors as the model’s
defining parameters are varied. Figure 11.5 shows four examples, in all cases starting from
a random initial condition where the state nodal variable is drawn randomly at each node
from the interval [0, A]. These four solutions are all computed on a 128 x 128 lattice, with
A = 255 and other model parameters as listed over each snapshot, the latter all taken after 500
iterations®. Horizontal and vertical periodicity is enforced at the lattice boundaries.

The solution displayed on Fig. 11.5A (top left) produces irregularly shaped activation fronts

6The choice of color table can have a large impact on the structures visible when displaying the state variable
as an 8-bit pixellized image, as on Fig. 11.5. The grayscale adopted here (direct grayscale for panels A and
B, reverse grayscale for C,D) is the most neutral, but you can have fun with this by exploring the various
pre-defined color tables that can be supplied as an optional argument to the matplotlib function imshow in the
code of Fig. 11.4. Don’t be afraid to follow your innate artistic impulses, have fun with it!
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# PATTERN FORMATION BY THE HODGEPODGE MACHINE ON
import numpy as np
import matplotlib.pyplot as plt

N =128 #
AA=255 #
a=1.0 #
r =5. #
g =30. #
n_iter=423 #

# FUNCTION PERIODIC: enforces periodicity (see Fig D.3)

def periodic(N,grid):
grid[1:N+1,0] =grid[1:N+1,N] #
grid[1:N+1,N+1]=grid[1:N+1,1]
grid[0,1:N+1] =grid[N,1:N+1] #
grid[N+1,1:N+1]=grid[1,1:N+1]
grid[0,0] ,,grid [N+1,N+1]=grid [N,N],grid[1,1] #
grid[0,N+1],grid [N+1,0]=grid[N,1],grid[1,N]

# END OF FUNCTION PERIODIC

# MAIN PROGRAM

dx=np.array([-1, 0, 1,1,1,0,-1,-1]1) #
dy=np.array([-1,-1,-1,0,1,1, 1, 0])
state  =np.zeros([N+2,N+2],dtype=’int’) #

for i in range(1,N+1):
for j in range(1,N+1):

state[i, jl=np.random.random_integers(0,AA)

periodic(N,state) #
for iterate in range(O,n_iter):
update=np.zeros ([N+2,N+2] ,dtype=’int’) #
for i in range(1,N+1): #

for j in range(1,N+1):
suma, sumr,nsum=0.,0.,1.*state[i,j] #

for k in range(0,8): #
ns=state[i+dx [k], j+dy [k]]
nsum+=ns #
if (ns == AA): suma+=1 #

if (ns > 0) and (ns < AA): sumr+=
if stateli,j] > O and statel[i,j] < AA: # In recovery phase
update[i,jl=min([AA,int (nsum/(sumr+1.)+g)]) # Eq (11.3)

elif statel[i,j] == AA: # Enter rest phase
update[i,j]l= 0

elif statel[i,j] == 0: # Enter recovery phase
update[i, jl=min(AA,int (suma/a+sumr/r)) # Eq (11.2)

# End of main lattice loop
periodic(N,update) #
state=update #
# End of temporal iteration

plt.imshow(state,cmap="gray",interpolation="nearest")

plt.show()
# END

A 2D LATTICE

Lattice size
Activation threshold
Activation parameter
Recovery parameter
Acceleration parameter
Number of iterations

Horizontal periodicity
Vertical periodicity

The four corners

Template arrays

Lattice array

Enforce periodicity

Lattice update array
Main lattice loop

Initialize counters
Loop over nearest-neighbours

Sum all nodes (Eq 11.1)
Sum activated nodes
1 # Sum recovering nodes

Enforce periodicity
Synchronous update

Figure 11.4: A minimal implementation of the hodgepodge CA in Python.
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Figure 11.5: A sample of spatial patterns generated by the hodgepodge machine, starting from
a random initial condition. All these simulations are carried out on a 128 x 128 lattice, with
A = 255; other parameter values as listed. The temporal recurrence period for these solutions
are P = 42.6, 9.6, 12.0 and 10.0 iterations respectively, going from (A) through (D). A mpeg
animation of panels (A) and (B) will be available
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propagating across an otherwise diffuse profile for the state variable. In this parameter regime
the hodgepodge machine behaves a bit like the forest fire model of chapter 6 in some portions
of its parameter space. One important difference here is that the evolution of any given node
is quasiperiodic, with a mean periodicity of 42.6 iterations for this specific solution, a feature
to which we shall return shortly. The low value of g implies that diffusion (Rule 2) dominates
the evolution except in the immediate vicinity of an activation front.

In the solution displayed on Fig. 11.5B (top right) activation fronts are still present, but now
propagate with a well-defined wavelength, much as on Fig. 11.3, and are organized spatially in
the form of spreading spiral waves with focii distributed randomly across the lattice. Geometri-
cally intricate patterns are produced when spirals spreading from neighbouring focii meet, with
the wavefronts merging, interfering and annihilating each other. Some spiral focii occasionally
disappear while others appear through fragmentation of existing spiral fronts interacting with
one another. Production of new spirals often takes place from the tips of broken wavefronts,
and both sense of rotation are equiprobable. The nodal recurrence period corresponds to the
revolution period for the spirals, equal to 9.6 iterations for this solution.

Figure 11.5C (bottom left), displays an entirely different pattern, which is perhaps best
describe as thick overcooked spaghettis. No wave-like propagation is taking place here; instead
the spatial pattern remains frozen as the nodal variable increases to the activation threshold;
however, after the nodes activate, a new spaghetti pattern is produced, and another anew after
the next activation cycle, which for this solution has a period of 12 iterations. There is a qual-
itative behavioral similarity here with the spatial domains developing in the OFC earthquake
model (see Fig. 8.6) where the spatial shape of domains evolve only at their boundaries, from
one avalanching cycle to the next.

The solution displayed on Figure 11.5D (bottom right) evolves similarly, going through
sequences of spatially-steady patterns growing to activation, then re-emerging with a new spatial
distribution. For these parameter values the pattern includes many large cell-like structures,
some double-walled, some with more intricate internal structure. In this part of the model’s
parameter space, solutions are sometimes encountered where only small cells are first produced,
and as the solution goes through successive collective activation cycles, one “supercell” with
complex internal structure slowly takes over the domain, only to later desintegrate again into
small cells, this long spatiotemporal quasi-cycle then beginning anew.

The four solutions displayed on Figure 11.5 only sample a small subset of spatial patterns
that can be produced by the hodgepodge machine. Other types of spatial patterns include
diffuse cloud-like structures, structured binary noise, mixtures of homogeneous and inhomoge-
neous regions, and so on; and that is without even playing with the threshold parameter A
or nearest-neighbour template! Moreover, in many parts of parameter space the hodgepodge
machine also shows sensitivity to the choice of initial condition. All this complexity arises in a
CA defined by 4 primary numerical parameters. How can this be ?

As a first step towards answering this question, consider now Figure 11.6, showing time series
segments of the state variable s™ for a node located at lattice center, for the four hodgepodge
simulations of Fig. 11.5. These four solutions have recurrence period increasing with decreasing
value of g, as per our earlier discussion, so that in constructing this plot “time” (measured in
iterations) is divided by the recurrence period of each solution. The horizontal axis becomes a
measure of cycle phase, and on such a plot all solutions have a mean period of unity. All four
time series exhibit basically the same sawtooth pattern, namely gradual, quasilinear growth
to the activation threshold, followed by a rapid, l-iteration drop to the rest state once this
threshold is reached. Solutions with lows values of r show some curvature or even spikes at
the beginning of the recovery phase, as a consequence of the rapid upward jump produced by
eq. (11.7), Moreover, the solutions are not strictly periodic, as is readily noted upon examination
of Fig. 11.6 for solution A (in blue), and D (in green), the latter also exhibiting significant
variations in the duration of the resting phases.

Still, how can the nodal time series be so similar, when the spatial patterns of the solutions
displayed on Fig. 11.5 are so different 7 We should first note that because the recurrence
cycle periods are not the same for the four solutions of Figs. 11.5 and 11.6, diffusion has more
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Figure 11.6: Time series of the state variable s sampled at the center of the lattice, for the four
simulations of Fig. 11.5. The time series are plotted in units of cycle phase, and a phase offset
has been artificially introduced so that all peaks line up. These time series closely resemble
each other, even though the spatial patterns they produce do not (see text).

time to operate during the recovery stage of the longer cycle solutions than in their more
rapidly cycling cousins. The most important factor, however, is the relative spatial phase of
neighbouring nodes: by how much is each node lagging each of its eight neighbours in the
activation-recovery cycle, and does this lag have any directional bias ? Much insight into these
questions can be obtained by comparing and contrasting planar and spiralling wavefronts, the
exercise to which we now turn.

11.5 Spiralling out

Spirals are arguably the most visually striking and intriguing patterns produced by the hodge-
podge machine. They also have attracted the most attention, because spiral waves are observed
in many types of excitable systems. These include the Belousov-Zhabotinsky reaction and other
similar chemical reaction-diffusion systems, but also biological systems such as slime molds and
starving amoeba colonies. It has also been suggested that some classes of cardiac arythmia
could be associated with the breakup of the electrical wavefronts normally propagating across
the heart muscles into localized spiral waves, induced by tissue damage. The remainder of
this chapter thus focuses on understanding the generation of spiral waves in the hodgepodge
machine.

It will prove useful to first go back to the planar wavefronts of Fig. 11.3; more specifically,
let’s focus on the vertically-oriented planar wavefront propagating to the right on the sequence
of four snapshots. Except near corners of expanding square wavefront, nodes connected in the
direction parallel to the wavefront all cycle in phase. Phase difference only materialize between
nodes in the propagation direction of the planar wavefront. This occurs because each node
has 2 neighbours (top and down) sharing the same value of the state variable, three having
the same higher value (at left), and another three the same lower value (at right; this lateral
ordering reverses only at activation). The hodgepodge rules then ensure that vertical invariance
is preserved, and the same of course holds for horizontal invariance in the vicinity of vertically-
propagating plane wavefronts. Note that the square form of the spreading wave is not set by
the square pattern of the initial condition used to generate the solution displayed on Fig. 11.3.
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For these parameter values, activity propagates one node per iteration also along diagonals; in
other words, in terms of geometrical distance a planar activation front inclined by 45 degrees
with respect to the lattice gridlines propagates faster than horizontal or vertical wavefronts,
by a factor v/2. This implies that the circular wavefront initially produced by a circle-shaped
initial condition will inexorably evolve into a square spreading wave”. Diffusion, on the other
hand, tends to smooth out gradients, and so it will tend to turn sharp corners into curved arcs.
The persistence of curved wavefronts thus reflects a balance between propagation (Rule 1) and
diffusion (the diffusive part of Rule 2).

Consider now a node in the rest state (s = 0), located just behind a propagating planar
activation wavefront (s = A); such a node just entered the rest state at the preceding iteration
If the parameter a < 3, then Rule 1 will push it into the recovery state at the next iteration
(remember that Rule 1 truncates to the lowest integer!). If on the other hand a > 3, then the
node will stay in the rest state, and the lattice will remain forever inactive after the passage
of the wavefront, unless diffusion from elsewhere is efficient enough to trigger entry into the
recovery phase. This latter situation is akin to the radial spread of the epidemic wavefront on
Fig. 9.6, behind which no surviving agents remain, so that the epidemic cannot “re-activate”
behind the front unless enough healthy random walking agents stumble their way back into the
decimated area.

All of this become more interesting if, for whatever reason, the wavefront breaks. Nodes
located behind the last active node of the wavefront and having just entered the rest state may
now have neighbours that are in the recovery stage (0 < s < A), in which case Rule 1 can lead
to re-activation provided r is small enough. The effect will be to extend the wavefront beyond
its original tip, but this extension will lag in time (unless g ~ A), meaning that it will curl back
inwards towards the region located behing the bulk of the planar wavefront, eventually leading
to re-activation in those regions. This is the mechanism leading to the development of spiral
waves in some regions of the hodgepodge machine’s parameter space.

Figure 11.7 shows a closeup on the core of one of the spirals developing in the simulation
displayed on Fig. 11.5B. These ten frames span one revolution of the spiral. However, the
bottom right snapshot is not quite identical to top left. This is because the recurrence period
(viz. Fig. 11.6) for this solution is 9.4 iterations rather than 9.0. Examine closely the evolution
of the activation front (in red) in the core of the spiral, and see in action the process of
wavefront extension and curling just described. In particular, notice how the inside end of the
radially expanding activation front always grows towards its left (as measured with respect to
its local, approximately radial propagating direction), into a region containing recovering nodes
approaching the saturation threshold (light gray).

By the above logic, a planar wavefront segment should curl inwards at both ends, and
one can imagine the curling ends to eventually meet and regenerate a new planar wavefront.
Such a system can be viewed as a pair of couterrotating spiral cores. Figure 11.8 shows the
evolution of two such pairs interacting with one another. Near the center of the first frame (top
left), a short, approximately planar activation front is propagating towards the bottom right
corner. The curling back inwards of its tips is clearly apparent on the subsequent five frames,
persisting until the upper tip merges with the activation front generated by another spiral core.
The merging produces a new approximately planar wavefront, propagating downwards (frames
7 to 10) until another merging event with the lower curling tip of the first wavefront finally
regenerates the original wavefront propagating towards the borrom right corner.

This curling back of activation wavefronts can actually be observed in other systems inves-
tigated in some of the preceding chapters: they materialize in some parts of parameter space
for the forest-fire model of chapter 6 (viz. Fig. 6.5), as well as in the epidemic spread model of
chapter 9. As the saying goes, finding these regions of parameter space is left as an exercise!

Take a last look at Fig. 11.5B; there are pretty much as many spirals rotating clockwise than
counterclockwise. The location of the cores and sense of rotation of these spirals are determined
by the specific realization of the random initial conditions. In a given region of the lattice, the

7A similar squaring of burning fronts takes place in the Forest-Fire model of chapter 6, when the density of
trees through which the burning front moves is sufficiently high.
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Figure 11.7: Closeup on a spiral core spanning a full revolution of the spiral. Frames are spaced
one temporal iteration apart, with time running from left to right and top to bottom. Active

nodes (s;'; = A) are colored in red, with black corresponding to resting nodes (si'; = 0) and

(2]
the gray scale spanning the recovery range [1, A — 1], from dark to light. Parameter values as

on Fig. 11.5B. A mpeg animation of this Figure will be available

Figure 11.8: Interaction of spiral waves in the same simulation as in Fig. 11.7. The interacting
spiral waves are generated here by two pairs of counter-rotating cores. Parameter values as
on Fig. 11.5B. Compare to the shape of burning fronts on Fig. 6.5. A mpeg animation of this
Figure will be available
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spatially extended patterns reflects the action of the hodgepodge machine’s dynamical rules
working off this initial condition. These rules are isotropic, implying that nothing in their
formulation favors one sense of rotation over another; the emergence of two senses of rotation
is another instance of spontaneous symmetry breaking.

11.6 Spontaneous pattern formation

The formation of statistically stable, persistent patterns from a random initial condition repre-
sents yet another instance of order emerging from disorder. Equilibrium thermodynamics does
not allow this, so the explanation of pattern formation by the hodgepodge machine must again
be sought in terms of open dissipative systems.

How can the hodgepodge machine be deemed “open” and “dissipative”? The dissipative
aspect is related to the non-conservative nature of the diffusive process embodied in eq. (11.8), as
already discussed in relation to Fig. 11.2. The “open” aspect is harder to pinpoint, and its exact
form depends on the nature of the excitable system under consideration. For the hodgepodge
machine, it is hidden in the manner in which the activation-recovery cycle of Fig. 11.1, involving
the two dynamical variables X and Y, has been reduced to tracking a single quantity (s) related
to the recovery variable Y, whose evolution is determined by evolutionary rules defined with
fized numerical values for parameters r, @ and ¢g. This implies an external regulatory mechanism
that maintains constant operating conditions for the system, i.e., the system is not closed.

Nothwithstanding such interpretative subtleties, in remains quite remarkable that the won-
derful array of spatiotemporal patterns produced by the hodgepodge machine results only from
coherent spatial variations in the phase of the nodal recurrence cycle of neighbouring nodes.
Any one single node does the same thing as its neighbours: activate, grow slowly to satura-
tion, and then fall back to the rest state; and with a cycle period that is the same for all
nodes. The spatial phasing leading to pattern is established and sustained by the interplay of
threshold-based excitation, growth, and diffusive local spreading. The latter being in essence
the macroscopic manifestation of a microscopic random walk (see §C.6), the hodgepodge ma-
chine is truly producing (large-scale) order out of (small-scale) disorder, not just via the initial
condition but also via its underlying “microscopic physics”.

11.7 Exercises and further computational explorations

1. Similarities between behaviors observed in the hodgepodge machine and the forest-fire
model of chapter 6 have been noted repeatedly in this chapter. Try to find values of
the hodgepodge parameters a, r, g and A that best mimic the behavior of the forest-fire
model in the limit where p, is (relatively) high and py is very small (see, e.g., Fig. 6.5).

2. Repeat the simulations of Figure 11.5 using the following initial conditions:

(a) a circular block of nodes with s = 250 sitting at lattice center;
(b) a thick line segment (a 10 x 100) block of nodes s” = 250 sitting at lattice center;

(c) a few one-node wide straight lines of s = 250 nodes set at random angles with
respect to the lattice gridlines (these lines are allowed to intersect);

How dependent is the behavior of the hodgepodge machine on the initial condition?

3. Our discussion of wave propagation in the hodgepodge machine simulations of Fig. 11.3
has not considered the effect of diffusion, and the aim of this exercise is to do just that.

(a) Repeat the simulation of Fig. 11.3 for smaller and larger values of g. Is wave propa-
gation always possible 7 How is the wavelength and wave propagation speed varying
with g (keeping a =r =0.1) ?
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(b) Diffusion can be eliminated altogether from the hodgepodge machine by replacing
Rule 2 by s"™ = min(s™ + g, A). Repeat your previous set of experiments with this
diffusionless Rule 2. How are your results altered ?

4. Using the same hodgepodge parameter values as on Figure 11.5B, design an initial con-
dition that produces a single spiral with its core at lattice center. How can you control
the spiral’s direction of rotation ?

5. Explore the behavior of the following two variants of the hodgepodge machine:
(a) Redefine Rules 1 and 2 so that only the closest four neighbours (top+down+right+left)

are involved.

(b) Redefine Rules 1 and 2 so that they involve a more spatially-extended neighbour-
hood, namely all nodes in the range (i +2, j+2) of node (7, j), namely 24 neighbours,
with the same weight given to each.

Can you still produce spiral waves under these setups ? Simple and/or complex cells ?

6. The Grand Challenge for this chapter is a real bear, in fact borderlining seriously on a true
research project: generalizing the hodgepodge machine to three spatial dimensions. The
required coding developments are straightforward, and fundamentally the behavior of the
3D hodgepodge machine is still defined by the same four parameters a, r, g and A as in
its 2D cousin. However, visualizing results pretty much requires some skills (or learning
effort) in 3D data rendering and visualization. Explore the spatial patterns produced by
the 3D hodgepodge machine for varying parameter values. If you manage to produce
double coiled helices, let someone know because you may be on to something big!

11.8 Further readings

An engaging and accessible discussion of excitable systems can be found in chapter 3 of
Goodwin, B., How the Leopard changed its spots, Simon & Schuster (1994).

Autocatalytic chemical reactions and reaction-diffusion equations are discussed in numerous
mathematical biology and chemistry textbooks, for example:

Murray, J.D., Mathematical Biology, Berlin: Springer (1989).
Specifically on the Belousov-Zhabotinsky reaction, I found the following article very informative:
Zhabotinsky, A.M., Belousov-Zhabotinsky reaction, Scholarpedia, 2(9), 1435 (2007),
This is available online, open access (March 2015):
http://www.scholarpedia.org/article/Belousov-Zhabotinsky reaction

Turing’s groundbreaking 1952 paper on pattern formation in reaction-diffusion systems still
makes for a fascinating read; it is reprinted in chapter 15 of:

Copeland, B.J. (ed.), The Essential Turing, Oxford University Press (2004).
On the hodgepodge machine, see

Gerhardt, M., Schuster, H., A cellular automaton model of excitable media including cur-
vature and dispersion, Science, 247, 1563-1566, (1990)

Dewdney, A.K., The hodgepodge machine makes waves, Scientific American, 225(8), 104—
107, (1988)
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Chapter 12

Epilogue: natural complexity

9

“There are things to hold on to. None of it may look real, but some of it is. Really”.
Thomas Pynchon, in Gravity’s Rainbow

“What I cannot create, I do not understand” R.P. Feynman, 1988

12.1 A hike on slickrock

This is far from our first hiking trip in Southeastern Utah, but this one Easter trip has a new
twist to it: our thirteen year old son, an avid unicyclist, has taken his mountain unicycle along
to test his skills on the world-renowned slickrock mountain bike trails of the Moab region. Day
two finds us parked up Sand Flats road, on the barren plateau overlooking the Colorado river
and Moab valley, at the trailhead of the legendary slickrock loop.

This place is a burning hell in summer months, but in early April it makes for quite a
pleasant hike, with impressive views down into the surrounding canyons. But up where we are
it is really pretty much all slickrock, and the few small trees and shrubs are few and far in
between. Grasses, cactuses and wildflowers do manage to grow here and there in patches of
soil and debris having accumulated in cracks and shallow depressions in the rock, but by far
the most common biological presence, besides mountain bikers, is lichen.

Lichens are one of the earliest and most successful symbiotic experiment of the biological
world. Lichen is really algae and fungus teaming up in a mutually beneficial relationship; the
algae makes food through photosynthesis, while the fungus provides structural support and
anchoring, and gathers moisture and nutrients from the environment. The deal works, and
very well, as varieties of lichens are found in the most extreme environments, from the arctic
tundra to the driest deserts.

The desert environment is indeed very harsh, and most lichens I see on the rocks look pretty
dried up, and, I’'m guessing, are long dead. I don’t know much about lichens, but I'm presuming
growth takes place mostly in the Spring, while the porous sandstone surface still holds some
moisture and the sun is not yet scorching the rocks. I have since learned that the lichens I am
seeing belong to the family of crustose lichens, which usually grow radially outward on their
substrate. I do see plenty of more or less circular patches of varying colors and sizes. I also see
lichen rings. Upon examination, it just looks like the central part dried up, died, and flaked off,
leaving a ring-shape structure. It does makes sense. In some cases regrowth has taken place
inside an existing ring, presumably in a later wet season, leading to a pattern of concentric
irregular rings. This makes sense also, I'm guessing. Figure 12.1 shows some particularly nice
examples, captured in the Fiery Furnace area of Arches National Park.

But what really catches my attention are the spirals. They may not be the most common
pattern characterizing the growth of crustose lichen on slickrock, but they show up often enough,
in different types of lichens, on different types of rocky surfaces inclined at widely varying angles
with respect to gravity or the noon sun. The more spirals I see the more I see a pattern in there,
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Figure 12.1: Crustose lichen on the desert slickrock of Southeastern Utah. The true vertical
dimension of the image is about 40 centimeters. Photograph by yours truly.

something robust. As we make our way across the rocky landscape, I find myself pointing my
camera to the ground with increasing frequency. Fortunately for me, passing mountain bikers
are too awestruck at our son careening up and down the double-black-diamond mountain bike
trails on his unicycle to become concerned enough with my combination of foreign accent and
odd photographic behavior to dial the Homeland Security hotline.

The top image on Figure 12.2 shows an example of some of the spiral-shaped patterns
I photographed. 1 soon start to notice instances of double spirals-like structure, such as on
the middle and bottom photographs on Fig. 12.2, where the growth front curls back inwards
symmetrically about some bisecting axis, morphologically similar to those generated by the
hodgepodge machine in the “spiral” region of its parameter space (see Fig. 11.8). A few such
structures are also visible on Fig. 12.1, if you look carefully.

How can this be ? Lichen growth requires moisture, but also depletes water from the rock’s
surface. There is probably some nonlinearity in there somewhere. Can water be considered the
activation variable, and lichen growth a recovery variable tracing an activation-recovery cycle 7
Or would it be the other way around ? Looking closely at the rock texture and color ahead and
behind the lichen “front” reveals a definite asymmetry, faintly visible on the top photograph
on Fig. 12.2 especially around the spiral core. This looks very much like what the recovery
variable does on either side of the wavefronts produced by the hodgepodge machine.

By then my mind is racing, dreaming up excitable systems and reaction-diffusion dynamics.
I am well aware that I am engaging in a dangerous exercise, namely forcing a known explanation
on an intuitive hunch; but the visual evidence seems just too compelling for this to be a
morphological convergence without any common dynamical origin. I sure the hell wish I knew
more about lichen growth.

That same evening, watching the sunset over Canyonlands from the porch of our rental
cabin halfway up the LaSal mountains, it slowly dawns on me that my spontaneous and free-
wheeling speculations on lichen growth and form have strangely paralleled an experience lived
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Figure 12.2: Example of spiral patterns and inward curling growth fronts in various type of
crustose lichen of Southeastern Utah. Compare to Fig. 11.8. Photographs by yours truly.
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centuries ago by another physicist, also looking for a break, and also out for walk.

12.2 Johannes Kepler and the unity of Nature

History has not recorded the exact why or when, but one morning in the winter of 1609, Jo-
hannes Kepler decided to take the day off. For more than a decade he had labored relentlessly
to produce a working model of planetary orbits from the store of unprecedently accurate as-
tronomical observations of Tycho Brahe. He had arrived in Prague ten years before, to be
employed as Brahe’s senior assistant. Following the untimely death of his boss in 1601, Kepler
finally secured full and unrestricted access to the needed data, as well as inheriting the job
of Imperial Mathematician to Emperor Rudolph II. Professionally secure and, perhaps more
importantly, freed from pressures to vindicate Brahe’s pet planetary model, Kepler embarked
on a computational effort that would overthrow basic astronomical tenets that had endured for
over two millennia.

Today Kepler is remembered primarily for having deduced from Brahe’s observations the
three laws of planetary motions that bear his name. This may appear entirely in line with
astronomical tradition, which up to the times of Kepler and Galileo had primarily sought
accurate mathematical description of planetary motions. In reality, Kepler did break from
astronomical tradition, perhaps even more so than Galileo, by seeking physical causes for the
numbers, motions and overall arrangement of the six solar system planets known at the time.
His writings, very much in the stream-of-consciousness style and often veering into downright
geometrical mysticism, do not exactly make for easy reading today, and I suspect must have
also baffled many an early seventeenth century astronomer.

Already in his 1596 book entitled Mysterium Cosmographicum, Kepler had put forth a
daring hypothesis relating natural order to geometry. His idea was that the relative sizes of
planetary orbits could be deduced from the nesting pattern of the five regular platonic solids. In
later years he went on to consider the relation of planetary orbital periods to frequency ratios of
musical harmonies, and even the possibility that a magnetic field emanating from the rotating
sun was responsible for carrying the planets along their orbits. These ideas may appear naive
in retrospect, but they do reveal a sharp and inquisitive mind bent on explaining astronomical
facts, in the most modern sense of the word.

Who knows what Kepler was actually thinking about when he started walking the street
of Prague on that winter morning in 1609. But what was initially a casual walk soon took an
unexpected turn. Kepler himself later described the event:!.

“Just then by a happy chance water-vapour was condensed by the cold into snow,
and specks of down fell here and there on my coat, all with six corners and feath-
ered radii. Upon my word, here was something smaller than any drop, yet with a
pattern.” (p. 7)

Being the astronomer that he was, he marvels “it comes down from heaven and looks like a
star”. Figure 12.3 shows photographs of snowflakes having formed under varying meteorological
conditions. No single snowflake is ever exactly alike another, and there exists, for all intent and
purposes, an infinity of shapes intermediate between the thin 6-pointed “needle-star” (top left)
to solid hexagonal plates (bottom right)?.

Marveling at the delicate shapes of snowflakes on his sleeves, Kepler rapidly notices that all
the single snowflakes he observes are planar structures harboring six highly similar branches.
He immediately formulates an absolutely typical Keplerian question: Why siz ¢ which is soon
joined by another: Why flat ¢ Kepler, an accomplished mathematician, goes on to consider
the close-packing of spherical water droplets in the plane, noting that the resulting hexagonal
pattern has the same six-fold symmetry as his snowflakes. This could in principle “explain”

1 All quotations taken from the English transation of Kepler’s 1611 booklet entitled the six-cornered snowflake,
listed in the bibliography.
2This would be a good time to go back and take another look at Figure 2.7 !
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Figure 12.3: Photographs of snowflakes having formed under varying atmospheric condi-
tions. All these snowflakes are planar, except for the columnar cristal at bottom left
(seen here in side view). Public domain images, taken from the wonderful Web site
wwwl.odn.ne.jp/snow-crystals/English index.html (April 2015).
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both the observed planar structure and symmetry. Despite being firmly anchored in geometry,
for Kepler this is not an appropriate physical explanation. He wants to know what drives this
orderly assemblage of water droplets, and no other, upon condensation and freezing. Kepler
argues that this organizing principle (he calls it facultas formatriz) cannot reside in the water
vapor, which is diffuse and shapeless; nor can it be found in the individual water droplets
themselves, which are spherical and unstructured. Kepler goes on to consider critically a
number of working hypotheses, but rejects them one after the other as inadequate, to finally
conclude with a daring statement, grounded in his profound belief in the unity of Nature:

“...the cause of the six-sided snowflake is none other than that of the ordered shapes
of plants and of numerical constants (...) I do not believe that even in a snowflake
this ordered pattern exists at random.” (p. 33)

Today we understand that the 6-fold symmetry of snowflakes is a reflection of the cristalline
assemblage of water molecules in horizontally offset planar layers such that the oxygen atoms
define the vertices of space-filling tetrahedra. The resulting assemblage of oxygen and hydrogen
atoms in this cristal lattice happens to be the configuration that minimizes the free energy of
the system. There you go. Under most meteorological conditions, growth occurs preferentially
at the edges of the planar layers, rather than perpendicular to them, thus explaining the
two-dimensional shape of (most) snowflakes®. However, the manner in which the 2D growth
takes places is influenced by surface diffusion along the outer planar surfaces of the growing
cristal, and turns out to exhibit a very sensitive dependence to air temperature. Laboratory
experiments have shown that changes by as little as one degree Celcius can trigger, e.g., a
transition from solid hexagonal slowflakes to 6-branches dendritic cristals. It is quite sobering
to reflect upon the fact that more than four centuries after Kepler’s pioneering foray into
cristallography, the morphogenesis of the common snow cristal is still not adequately understood
in quantitative physical terms.

Kepler rejected atomism (in part for religious reasons), so that he would find the above
explanation for the flatness and 6-fold symmetry of snowflakes profoundly shocking, even though
at the end of his 1611 book on the topic he presciently defers the explanation of snow cristals
to “...the attention of metallurgists and chemists”. However, the atomistic groundings of the
modern view of snowflake structure would likely not have been Kepler’s strongest objection. At
the end of his concluding essay accompanying the 1966 English translation of Kepler’s book on
snowflakes, Lancelot Law Whyte cogently encapsulates the most fundamental aspect of Kepler’s
views on the unity of Nature by formulating, in contemporary physical language, a question
Kepler himself would have certainly approved for hitting the nail right on the head:

“We should not expect complete knowledge of highly complex systems, but it is
reasonable to require of science a simple explanation of simple observations. If the
hexagonal snowflake is highly complex, is there no shortcut from the postulates of
physics to our visual observations ? What in the ultimate laws produces visually
perfect patterns ?” (p. 63)

Whyte aptly entitled his concluding essay “Kepler’s unsolved problem”; I could have well
done the same with this chapter, because another fifty years later Kepler’s problem is still not
solved, but nowadays is considered to belong to the realm of the sciences of complexity.

The parallel between my hike on slickrock and Kepler’s morning walk in Prague could be
brought to a didactic climax if I were now to state that the said hike is what motivated the
writing of this book; but this would be a lie. My interest in complex systems originates farther
back in time, with a physical phenomenon truly extraterrestrial: solar flares.

3In some temperature ranges, snowflakes grow as prismatic columns of hexagonal cross-section, often capped
at each end by a wider hexagonal plate; see the bottom left panel on Fig. 12.3.
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2003/11/04 19:48

Figure 12.4: A large solar flare (X28 on the NOAA classification scheme) observed by the
EIT instrument onboard the solar observing satellite SOHO, a joint mission of NASA and the
European Space Agency. The image shows radiative emission in the Extreme Ultraviolet, at
a wavelength of 195A. This is a false-color image, in which the intensity of EUV emission in
each pixel is arbitrarily assigned a shade of green from a pre-defined color table (solar flares are
not particularly green!). This flare, which occurred near the solar limb on 4 November 2003, is
in all likelihood the strongest ever observed in the space era; we don’t know for sure because
the EUV emission was so intense it saturated the CCD imager, as evidenced here by the white
horizontal streaks extending right and left of the flaring area.

12.3 From lichens to solar flares

Solar flares are the manifestation of extremely rapid and spatially localized release of magnetic
energy in the extended atmosphere of the sun, known as the corona. Because they can generate
copious emission of highly energetic radiation and relativistic beams of electrically charged
particles which can pose a threat to astronauts and even space hardware, their prediction is a
priority in the developing discipline known as Space Weather. Fig. 12.4 shows an example of a
large flare, viewed here in the extreme ultraviolet domain of the electromagnetic spectrum. This
electromagnetic radiation is invisible to the eye and —fortunately for all of us surface-dwelling
life forms— is completely absorbed in the very high atmospheric layers of the Earth. The image
on Fig. 12.4 was captured from space, by the EIT instrument onboard the Earth-orbiting Solar
and Heliospheric Observatory. The flare causes the very bright EUV emission seen close to the
solar limb at right. Fainter emission is also seen all over the solar disk, often in the form of
filamentary, loop-like structures extending above the solar surface. These trace lines of force
of the sun’s magnetic field, which structures the otherwise diffuse coronal plasma. Kepler was
actually right about the sun having a magnetic field extending into interplanetary space!

The pattern of ultraviolet emission on Fig. 12.4 is certainly complex in the visual sense, but
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there is more to it than that. The “size” of a flare can be quantified through the total energy
released over the course of the event, which can be inferred from observations such as Fig. 12.4.
Flare sizes span many orders of magnitude in energy release, and turn out to be distributed as
a power-law, with a logarithmic slope that is independent of overall solar activity levels, and
is the same as inferred from flare-like emission observed in stars other than the sun. There is
by all appearances something universal in flare energy release, something that is not sensitively
dependent on details. Does this start to sound familiar ?

It did to Edward Lu, a fellow postdoc in the early 1990’s at the High Altitude Observatory
of the National Center for Atmospheric Research in Boulder, Colorado. Already well-versed in
flare physics through his doctoral research, Ed saw a connection with self-organized critical-
ity and sandpile models, which at the time were spreading like wildfire in statistical physics.
Teaming up with Russell Hamilton of the University of Illinois, the pair developed a three-
dimensional sandpile model, in essence similar to that introduced in chapter 5. They identified
the nodal variable with the coronal magnetic field, and used curvature of the nodal variable,
rather than slope (or gradient) to define a stability criterion (viz. eq. 5.3). This choice was phys-
ically motivated, as it could be related to electrical currents induced by stretching and bending
of magnetic fieldlines, already known to be conducive to the trigger of a dynamical plasma
instability known as magnetic reconnection. The latter was captured through simple but phys-
ically motivated local conservative redistribution rules, conceptually equivalent to eq. (5.4) but
differing in details. Lu and Hamilton could show that upon being subjected to slow random
forcing, much like in the simpler sandpile model of Chapter 5, magnetic energy release occurs
in the form of scale-invariant avalanches, characterized by a power-law size distribution with a
logarithmic slope comparing favorably to observations.

I remember very well Ed’s enthusiam at the time, and how hard he tried to “sell” his model
to other flare researchers, not to mention funding agencies. Unfortunatly he was too far ahead
of his times, and the response he received all too often was along the line of “it’s... interesting,
but is it really physics ?”. The idea did percolate slowly through the field in the following
decade, by which time many a solar physicist had followed in Ed’s trailblazing footsteps, and
many more have since. In the meantime Ed had become and astronaut and was personally
experiencing space weather on NASA’s space shuttle and on the International Space Station.
So it goes.

Such avalanches of magnetic reconnection events, if that is really what flares are, are not
restricted to the sun and stars. Large flares, such as that shown on Fig. 12.4, are often ac-
companied by the ejection of magnetized coronal plasma. These ejecta travel through the
interplanetary environment, plowing up the solar wind along the way. Upon impinging on the
Earth’s magnetosphere, they trigger geomagnetic storms, the most spectacular manifestation
of which being auroral emission, i.e., Northern (and Southern) lights. Substantial auroral emis-
sion also accompanies the so-called geomagnetic substorms, spontaneous and scale-invariant
energy release events originating in the Earth’s magnetotail, without any obvious solar trigger.
It appears that substorms are closely akin to solar flares, in that they are driven by similar
processes of magnetic fieldline stretching and bending, leading to avalanches of spatially local-
ized destabilization and magnetic energy release. Scale invariant energy release is also observed
in a number of more exotic astrophysical objects such as cataclysmic variable stars, pulsars,
blazars, and accretion disks around black holes. Self-organized critical avalanche-type models
for these objects have been developed, and offer an attractive explanatory framework for their
pattern of energy release. In all cases, instances of natural complexity on the grandest of scales.

12.4 Emergence and natural order
Snowflakes, plants, arithmetically and geometrically significant numbers; Kepler had no qualms
assuming that inorganic, organic and even mathematical systems share some common funda-

mental organizing principles. Running implicitly through this book is an assumption somewhat
akin to Kepler’s, in that similarly structured simple computational models, all ultimately based
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on large numbers of elements (or agents) interacting through (usually) very simple rules, can
capture emergent natural phenomena and processes as diverse as solar flares, avalanches, earth-
quakes, forest fires, epidemics, flocking, and so on. Rules at the microscopic levels are simple;
patterns and behaviors at the macroscopic level are not. How do we bridge the gap between
the microscopic and the macroscopic 7 And under which conditions can the latter be reduced
to the former ?

Understanding —and even predicting— the behavior of a macroscopic system on the basis
of the physical rules governing the interactions of its microscopic constituents has been carried
out successfully in many cases. For example, one of the many great successes of nineteenth
century physics is the reduction of thermodynamics to statistical mechanics. Macroscopic
properties of gaseous substances, such as pressure and temperature, as well as their variations
in response to external forcing, can be calculated precisely knowing the nature of the forces
acting between individual atoms or molecules of the gas. Even entropy, the somewhat esoterical
thermodynamical measure of disorder in a macroscopic system, can be unambiguously related to
the number of microstates available in the phase space of the system’s microscopic constituents.
Here the microscopic rules are simple, and lead to simple “laws” at the macroscopic level —even
though the intervening physico-mathematical machinery may not be so simple!

However, and even within physics, which deals typically with systems far simpler than or-
ganic chemistry or biology, this reductionist program often fails. Knowing everything about the
quantum physics of a single water molecule HyO would already be one tough Grand Challenge
in an advanced graduate course on quantum mechanics; yet this microphysical knowledge, in
and of itself, would be of little help in understanding why water flowing down a stream breaks
into persistent swirls and vortices. What is it, lurking somewhere between the microscopic and
the macroscopic, that evades reductionism 7

Leaving the realm of physics, things rapidly get a lot worst, and we might as well jump
immediately to what is arguably the most extreme example. Neurophysiologists are still a long
way from understanding the working details of a single neuron, but even if they did, I don’t
think anyone would ever claim that a single neuron can “think”. By all appearances, a great
many neurons are required, and what seems to matters most are not so much the neurons
themselves, but rather their pattern of synaptic interconnections. Still, can the 10'4—10'5
interconnections of the 10110 neurons in the human brain explain consciousness ? How
many water molecules does it take to make a waterfall 7 Are these two questions really one
and the same 7 Is it just, somehow, a matter of sheer numbers 7

The “spontanous” appearance of complex macroscopic behaviors irreducible to microscopic
rules is now usually refered to as emergence. One can certainly argue that if the arising
macroscopic behavior is unexpected, it simply means that we did not really understand the
consequences of our imposed microscopic rules. In my opinion, writing off emergence in this
way would be a spectacularly misguided instance of throwing away the baby with the bathwater.
As simple as the computational models explored throughout this book may be, they do capture
perhaps the essence of that elusive emergent something, that sometimes happens somewhere
between the microscopic and macroscopic. Understanding that something is what the science
of complexity is really about. When emergence has been explained, complexity will have been
explained also.

Emergence is, almost by definition, a non-reductionist concept. Understanding it may
require new ways to formulate questions and assess answers. Whether it is really “A New Kind
of Science” is a matter of opinion. I have more than a few colleagues who would still today reply
“it’s... interesting, but is it really physics ?” As far as [ am concerned, it still fits comfortably
within my preferred definition of science as a way of knowing.

12.5 Into the abyss: your turn

So, what is complexity ? 1 opened chapter one of this book by promising to keep clear of
any formal definition of complexity, and I will resolutely stick to my word. My hope remains
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that by working your way through this book, coding up and running the various models for
yourself, and trying your hand at of the computational exercises and Grand Challenges, you
have learned something useful and are coming out of it better equipped to tackle systems even
more complex. There is certainly no lack of those all around us in the natural world.

The science of complexity is still young, and its future remains wide open. I do believe that
it has something vital to contribute to humankind’s most fundamental interrogations on the
origin of life, the nature of consciousness, or perhaps even the very existence of matter in the
universe.

Now everybody—

12.6 Further readings

The following is an excellent English translation of Kepler’s little book on snowflakes, ac-
companied by insightful short essays on Kepler’s philosophy of science and contributions to
cristallography:

Kepler, J., The six-cornered snowflake, trans. and reprint, Oxford University Press, 1966.
On snowflakes in general, see

Bentley, W.A., & Humphreys, W.J., Snow crystals, reprint of 1931 McGraw-Hill by Dover
Press, 1963.
Nakaya, U., Snow crystals, natural and artificial, Harvard University Press, 1954.

If you happen to be curious about lichens, I found the Wikipedia page on the topic quite
informative:

http://en.wikipedia.org/wiki/Lichen (viewed April 2015)

On solar flares, see the web pages of the SOHO and SDO (Solar Dynamics Observatory) space
missions:

http://sohowww.nascom.nasa.gov/ (viewed April 2015)
http://sdo.gsfc.nasa.gov/ (viewed April 2015)

For a detailed presentation of self-organized criticality as an explanatory framework for energy
release in various astrophysical systems, see

Aschwanden, M., Self-organized criticality in astrophysics, Springer, 2011.

Many authors have written on emergence as the key to complexity. On this general topic I
always much appreciated the writings of John Holland. If you feel up to it try:

Holland, J.H. Emergence: from chaos to order, Addison-Wesley, 1998.

and/or his book Hidden Order, listed in the bibliography to chapter 2. On science as a way of
knowing, see the aptly entitled:

Moore, J.A., Science as a way of knowing, Harvard University Press, 1993.

Finally, should you ever decide to try hiking, canyoneering or mountain biking (or even unicy-
cling) in the Moab area, keep an eye out for those spiralling crustose lichens !

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity.tex, July 28, 2016



Appendix A

Basic elements of the Python
programming language

This appendix is not meant to be a comprehensive introduction to the Python programming
language. It only aims at presenting, and sometimes providing additional explanations regard-
ing, the use (and possible misuse) of the basic elements of Python on which the codes presented
throughout this book are built. The developers of Python and assorted Python libraries have
done a pretty superb job at providing online documentation, URLs to which being provided at
the end of this appendix. Also, never hesitate to google a Python query, you are very likely to
get the answer you need (and then some...).

With a few exceptions, only syntax elements common to most computing languages are used
throughout this book, to ease translation for those wanting to work with a computing language
other than Python; going all-out Python could have made many coding constructs more elegant
and compact, run faster, but also harder to decipher for non-Python-savvy users. This being
said, I found a few Python-specific contructs so useful that I ended up using them; in all cases
their functionality is explained in what follows, and alternate code fragments omitting their use
are also provided.

Raw Python is actually a pretty minimal language for the purpose of numerical computation,
but these limitations are readily bypassed by the use of various Python libraries. All Python
codes provided in the chapters of this book use functions from the numpy library. Python
libraries are still rapidly evolving, but at this point in time numpy is a standard. I generally
steered clear of high-level functions for scientific computation, to facilitate portability to other
computing languages. If you think you need those, look into the scipy Library.

A.1 Code structure

Python is really a scripting language, so that Python source codes, which should really be called
“scripts”, are not “compiled” but rather “interpreted”. The distinction may be profound from
the computer science point of view, but for the user the most important consequence is that a
Python source code is interpreted strictly sequentially, line by line.

Coding certainly carries one’s style, and there is definitely satisfaction to be had in writing
an elegant source code. Style may be personal, but some standard good programming habits
should also be adopted. For example, judicious definition of functions as program subunits is
a very good programming practice, as it often helps to highlight the overall logic of the code,
and favors code modularity. The so-called PEPS8 style guide for Python code (see URL at the
end of this Appendix) offers useful guideline on nearly all aspect of Python programming

A typical self-contained Python source code, such as those presented throughout this book,
is structured like this:
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# ONE OR MORE COMMENT LINES EXPLAINING BRIEFLY WHAT THIS CODE DOES
import numpy as np # import (and rename) numpy library
import matplotlib.pyplot as plt # import (and rename) matplotlib library

# THIS IS A USER-DEFINED FUNCTION

def my_first_function(x,y):

.. # Python instructions calculating z
return z

# END FIRST FUNCTION

# THIS IS ANOTHER USER-DEFINED FUNCTION
def my_second_function(z):
# Python instructions calculating s
return s
# END SECOND FUNCTION

# MAIN PROGRAM

# Assorted Python instructioms,
z=my_first_function(x1l,yl) # including calls to my_first_function, etc.
# END

For a more complete working example see the hodgepodge code listing on Fig. 11.4. A few
things worth nothing here:

1. You’ll have guessed already that “#” is the comment character in Python. Adding de-
scriptive comments to lines of code is always a good idea. Leaving a line blank has no
impact on code execution, but can improve readability, which is also a good idea. In
codes of significant length I like to separate functions from constant definition, programs,
etc, by a comment line of “—", but that’s just me.

2. Tt is often practical to rename libraries upon import; here for example, the numpy library
is internally renamed as np, so that invoking the numpy function array() can now be done
as np.array() instead of numpy.array(). The advantage of such renaming is perhaps
more apparent when invoking functions from a Library with a longer name, for example
matplotlib.pyplot...

3. The set of instructions associated with a function are identified only by being indented
to the right with respect to the def header. I highly recommend adding a comment line,
as in the above example, to explicitly flag the end of instructions lines pertaining to a
function.

4. User-defined Python functions can return more than one value via their return statement;
e.g., the return fx,fy instruction in the force function on Fig. 10.4.

5. In Python user-defined functions, the return statement is optional; functions can operate
internally on their arguments, which are then modified upon terminating the function.

6. If you opt to lump everything in a single source file, function definitions must appear before
being invoked the first time. Consequently, in the above global code structure example
the second user-defined function could call the first, but not the other way around.
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7. Any variable declared and initialized prior to the definition of functions and main program,
such as the constant PI in the above code fragment, is global and as such can be used
(but not modified) by any program subunit that follows.

8. Unlike functions, the main program need not be assigned a name. Nostalgic C program-
mers (like me) desperately longing for int main(void) can include a comment line with
“MAIN”, as in the above example.

Python’s numpy library includes the usual set of pre-defined mathematical functions such as
sin(), cos(), log(), sqrt (), etc. If you need it it most likely exists within Python. Typing
the first thing that comes to mind will often get you what you want, otherwise simply fall back
on the online documentation.

A.2 Variables and arrays

Python supports the usual variable types: float, integer, character, boolean, etc. Variable
types need not be explicitly defined, i.e., in interpreting the instruction a=1 Python will assign
integer status to the variable a, but would assign floating-point status if the instruction had
read a=1.0.

In Python, variable and function names can be longer than you ever want them to be. Lower
and uppercase characters are distinct, i.e., variables named aa and AA are not the same objects.
As in all computing languages, Python reserves certain character strings as keywords for its
own internal purposes. You won’t need much Python programming experience to figure out
than naming a variable for, if, else, def, return, etc., is probably not a good idea. Some
reserved Python keywords are not as intuitively obvious; once upon a time I got in trouble
naming a variable del, the Python keyword used to delete an element from a list, and the error
message | received was not exactly transparent... Other non-intuitive keywords names, all to
be avoided as variable names, include break, class, in, is, lambda, nonlocal, pass, try, and
yield. To this black list must be added the character strings identifying Python’s pre-defined
functions such as min, max, range, etc.

Raw Python supports lists, but the fixed length arrays commonly used in numerical com-
putation are created through specific functions in the numpy Library. Only three are used in
this book, and what they actually do depends on the argument provided; for example:

1. dx=np.array([-1,0,1,0]) creates a 1D array of length 4 named dx, containing the four
integer values —1, 0, 1, 0;

2. grid=np.zeros([N,M]) creates a 2D array named grid of size N x M, i.e., of length N
in the first dimension (rows/vertical) and M in the second (columns/horizontal) and fills
it with the (float) value zero; very useful for initialisation; The default variable type is
float.

3. status=np.ones(M, dtype=’int’) creates a 1D array of length M named status, and
fills it with the integer value 1; also very useful for initialisation.

Arrays can also be defined implicitly through mathematical operations, or the return of a
function. For example, if a has already been defined as a 1D array of length N, the instruction
b=a will create an second array b of length N and fill it with the corresponding elements of a.
Likewise, in the code fragment presented above, if z returned by the first function is a 2D array
of size N x N, the instruction:

g=my_first_function(x,y)

will create a 2D N x N array named q and fill it with the elements of the local array z calculated
internally within that function.
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Individual array elements are accessed through their indez, giving their position within the
array. Python numbers elements of an array of length N from 0 to IV —1, so that a[1] accesses
the second element of array a, a[N-1] the last, and a[N] will blow you out of array bounds.
You get used to it eventually...

A.3 Operators

Python includes all the basic arithmetical operators, using the usual keyboard symbols +,-,*,/
for addition, substraction, multiplication and division, respectively. Note that unlike in many
computing languages, in Python explicit integer division such as 7/2 will return 3.5, rather
than 3; in other words, implicit conversion to real-type will take place. If you really want to
divide two integers and get a truncated integer result, you must use Python’s integer division
operator //, e.g., 7//2 will return 3 as an integer.

Python allows a very flexible use of the value assignment operator =, for example the one-
line instruction a,b,c=0,1.,0 sets a = 0 (integer), b = 1 (float), and ¢ = 0 (integer). Powers
use the old FORTRAN syntax **, i.e. a**2 is the same as a*a, and fractional exponent are
allowed, so that, e.g., a**(1/3) returns the cube root of a.

Python also includes many other arithmetical operators, some quite useful, for instance the

additive/multiplicative decrement/increment operators +=, -=, *=, and /=, corresponding to:
a+=b equivalent to a=a+b
a-= equivalent to a=a-b
a*x=b equivalent to a=axb
a/=b equivalent to a=a/b

Another very useful operator is the modulus %, such that a%b returns the remainer of the
division of (positive) integer a by (positive) integer b. This is particularly useful to enforce
periodicity to random walks on lattices (see, e.g., the ant code listed in Fig. 2.10). Consider
the instruction

ix=(N+ix) % N

Aslong as 0 < ix < N, then N < N+ ix < 2N, so that the above instruction will leave the value
of ix unchanged; but if ix < 0, then this instruction will add N to ix; and will substract N if
ix > N.

Under Python’s numpy module, arithmetical operators can also act on arrays. For example,
if a and b are two 1D array of length N, the instruction

c=a+b

creates an array c also of length N, and sets its elements equal to the pairwise sum of the
elements of a and b. This is equivalent to the instructions:

c=np.zeros (N)
for i in range(O,N):
clil=alil+b[i]

This works only if the arrays have the same dimensions and lengths, otherwise Python will
return a run-time error. However, one useful Python/numpy-legal possibility used in this book
is to add a scalar to every element of an array. For example, in the earthquake code of Fig. 8.3,
lattice driving takes place by adding the same scalar increment delta_f to every element of the
2D array force through the instruction:

forcel:,:]+=delta_f

1

W,

where the symbol signifies “all elements of this array dimension”

1The shorter instruction force+=delta_f would be Python-legal as well, and achieve the same result. I find
this to be potentially confusing when reading the code, and so such syntax is avoided everywhere in this book.
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A.4 Loop constructs

Python supports the usual two basic loop constructs: fixed-length (for) loops and conditional
(while) loops. The basic syntax for a fixed-length loop is the following:

for i in range(0,N):

“ ”

where stands for one or more lines of syntactically-correct Python instructions. This
loop would repeat N times, with the loop index variable ¢ running from 0 to N — 1; that
is, not from 0 to N, as the colloquial meaning of “range” would normally suggest. A third,
optional parameter can be provided to range, controlling the size of the increment for the loop
control variable; writing the above as for i in range(0,N,2) would run the loop with values
i =0,2,4,6,8,..N — 1 (or N — 2 if N is even). It takes a little while to get used to this
convention, but it works, and has at least the merit of being compatible with array indexing,
in which elements of an array of length IV are also indexed from 0 to N — 1.

The fixed-length loop structure just described runs over a preset number of iterations de-
termined by the two arguments given to range (). In some situations it might not be possible
to determine a priori the number of iterations required by a loop. For example, in the DLA
simulations of chapter 3, the temporal iteration needs only run until all particles are stuck, or,
in the epidemic simulation of chapter 9, until the number of infected individuals has fallen to
zero. The appropriate temporal loop contruct in such a case would be, as in the epidemic code
of Fig. 9.1:

max_iter=100000 # maximum number of iterations
iterate=0 # iteration counter
while (n_infect > 0) and (iterate < max_iter): # temporal loop
# line(s) of Python instructions
iterate+=1 # increment iteration counter

# end of temporal loop

Note that the loop control condition includes a safety test ensuring that the loop cannot run
forever, if some algorithmic design flaw or coding mistake were to cause n_infect to never fall
to zero?.

Something equivalent to conditional loops can be also constructed using the break instruc-
tion, which prematurely exits an ongoing loop and picks up execution with the first instruction
following the end of the loop. As a specific example, the conditional loop above could be written

instead as:

max_iter=100000 # maximum number of iterations
for iterate in range(O,max_iter): # temporal loop
# line(s) of Python instructions
if n_infect == 0: break # break out of loop prematurely

# end of temporal loop

Such use of the break statement to build conditional loops is often not considered good
programming style, but it can be useful in some circumstances.

A particularly objectionable (IMHO) feature of loop syntax in Python is that the block of
instructions acted upon by the loop is identified only by being indented with respect to the
loop instruction, which means, e.g., that:

2] highly recommend developing this to a reflex when coding while loops
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for i in range(0,N):
a=i+l
print("a= {}.".format(a))

will not produce the same output as

for i in range(O,N):
a=i+1
print("a= {}.".format(a))

In the first case the value of a would be printed to screen at every iteration of the loop, but
in the second case only the last value would, after exiting the loop. If the loop controls only
a few lines of instructions, this indentation-based loop delimiting syntax is tolerable; but for
loop containing many instructions, or other nested loops or conditional blocks of instructions,
the code logic can become harder to follow. As a compromise, in many of the codes listed in
this book I have added a comment line to explicitly mark the end of long instruction blocks
associated with loops or conditional statements, as exemplified in the while loop example above.

Note finally that if a loop controls a single line of instruction, all can be written on the same
line, as on line 6 in the boxcount code of Fig. 3.10:

while (2%*n_scales < n) and (n_scales < 100): n_scales+=1

Like many modern programming languages, Python also supports a form of implicit loop
defined using the symbol “:” used to access subset of contiguous array elements. For example,
if A is an array of dimension 1 and length N, writing A[i1:12] accesses elements i1 to i2-1
of the array. This may seem straightforward, but where it becomes potentially confusing is in
a statement like A[0:10] which accesses the 10 elements indexed from 0 to 9 of array A, rather
than the 11 elements indexed from 0 to 10. To make things worse, this convention is different
in many other computing languages, where the equivalent of the Python A[0:10] syntax would
mean “access array elements indexed 0 through 10 inclusively”, now for a total of 11 elements.
Seasoned Matlab and IDL programmers, beware!

This being said, the syntactic shorcuts allowed by the use of “:” are just too useful to skip.

Consider for example the following instruction in the source code for cluster tagging listed in
Fig. 4.3:

map_cluster[1:N+1,1:N+1]=1latticel:,:]

In a single instruction line, this copies the N x N array lattice in the larger (N 42) x (N +2)
array map_cluster, leaving all edge values (ghost nodes) of map_cluster at their initialized
zero value. This instruction is thus equivalent to the double loop construct:

for i in range(0,N):
for j in range(O,N):
map_cluster[i+1, j+1]=latticel[i,j]

A.5 Conditional constructs

Python includes all the usual if ... and if ... else ... conditional contructs, with logical
conditions expressed in terms of the (self-explanatory) operators <, >, <=, >=, as well as the
somewhat less self-explanatory == and != for “equal to” and “not equal to”, respectively.
Conditional statements contructed in this manner can be combined using the usual and and or
logical operators. Two examples should suffice to illustrate the concept, the first taken from
the epidemic code of Fig. 9.1; the block of instruction following

if (infect[k] == 0) and (k != j):
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are executed provided both condition within parentheses are satisfied (i.e., evaluate to Boolean
TRUE)?. The second example is taken from the earthquake code of Fig. 8.3:

if topplingliterate] > 0:
force+=move

else:
forcel:,:]+=delta_f

Here the 2D lattice force is updated by addition of the 2D array move if at least one toppling
has occured (first block of instructions), otherwise the scalar increment delta_f is added at
every node of the lattice (second block of instructions). As with loop contructs, the blocks of
instructions controlled by the conditions are only delimited by being indented to the right (I
really hate this!), but a single condition-controlled instruction can be included after the colon
“” as a single instruction.

Python does not include a straightfoward case (or switch) construct; these must be built
using sequential if or nested if ... else statements, or the Python contracted version elif. See
the lattice update rules in the hodgepodge code listed in Fig. 11.4 for a specific example.

One type of Python-specific conditional instruction is so useful that I opted to make use of
it in some of codes listed in this book. For example, in Fig. 4.3:

if iic in map_cluster[jj+dx[:1],kk+dy[:1]:
# instruction(s) subject to conditional execution

This searches for the presence of the value iic in any one of the nearest neighbours of node
[jj,kk], as defined by the four element pairs stored in the template arrays dx and dy. This
single instruction is here equivalent to the construct

ifound=0
for i in range(0,4):
if map_cluster[jj+dx[i],kk+dy[i]] == iic:
ifound=1
if ifound ==
# instruction(s) subject to conditional execution

A.6 Input/Output and graphics

Python includes the usual set of functions for writing or reading to files, printing to screen, or
reading keyboard input. The only one used in the codes listed throughout this book is the basic
“print to screen” function print; see, e.g., line 43 in the DLA code of Fig. 3.1 for a specific
example. “Pretty printing” with full control over format is of course possible. See the Python
documentation for more on all this I/O stuff.

The output of most simulations described throghout this book is usually best displayed as
pixellized images (for any simulation defined over a lattice), or even better, animation of such
images. The Python Library matplotlib contains many user-friendly graphical functions that
do exactly this. See the URL provided further below. Most codes included in this book include
only very basic plotting instructions, all using matplotlib.

Some simulations, for example the forest fire model of chapter 6, the flocking simulations of
chapter 10, or the hodgepodge spiral simulations of chapter 11, are most definitely best appre-
ciated as animations; unfortunately there is as yet no really easy way to do this in Python. The
closest is the matplotlib function funcAnimation, but it requires encapsulating the simulation
time steps as a function to be called by the animation function. I opted to leave this out of
the codes provided throughout this book, but it is definitely worth the effort. Note also that

3The parentheses “(...)” are optional but I highly recommend their use in such compounded conditional
expressions.
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pre-computed animation files for some of these simulations are available from the Princeton
University Press web site at:
http://wherever

A.7 Further readings

The official Home Page of the Python programming language is
https://www.python.org

It gives (free) access to the software, provides download and installation instructions, user’s
guides and beginner’s tutorial, as well as many code example. Their Python tutorial contains
pretty much everything you need to know (and a lot more) to work through this book:

http://pythonprogramminglanguage . com
The PEPS style guide is also available there:

https://www.python.org/dev/peps/pep
Two other excellent Python ressources are

Langtangen, H.P., A primer on scientific programming with Python, 4" ed., Springer (2014),
Swaroop, C.H., A byte of Python, http://www.swaroopch.com/notes/python/,

as well as the Python tutorial from Code Academy:
https://codeacademy.com

For programming beginners, the Python tutor is excellent:
https://pythontutor.com

On the numpy and matplotlib Python Libraries, see:

http://numpy.org,
http://matplotlib.org,

At this writing, the easiest way to get started downloading and installing these (and other)
Python Libraries is through either one of the following open platforms:

http://scipy.org
https://www.continuum.io

No point procrastinating, start downloading now!
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Appendix B

Probability density functions

Probability density functions (hereafter PDF) measure the probability of finding a measurement
between some specified interval of possible values for the measured quantities. As an analysis
and interpretative tool they are used repeatedly in this book, and a basic understanding of
their construction and interpretation is essential. This is the aim of this Appendix. Section
B.1 introduces the idea at the pre-calculus level through a simple example, while the following
sections require a working knowledge of the calculation of derivatives and integrals of functions
of a single variable.

B.1 A simple example

The following list of numbers are the grades (in percent) obtained a few years ago by my cohort
of N = 83 undergraduate students at the mid-term exam of my introduction to computational
physics class:

46, 84,70, 66,41, 82, 69, 59, 28, 81, 88, 82, 83, 33, 27, 51, 62, 72, 87, 55, 66, 68, 55, 86,
75,74, 56,81, 60, 44, 84, 86, 75, 34, 96, 45, 57, 79, 81, 52, 24, 38, 74, 89, 68, 85, 85, 45,
62, 96,45, 40,48, 90,46, 57,33, 71,67, 82,94, 43, 16, 88, 46,91, 82, 55, 71, 86, 77, 63,

81,78, 59,84, 100, 69,92, 69, 44, 64, 88]

Let gj. represent the grade obtained by the k' student. The class average (g) for this exam is
simply given by the sum of all grades divided by the class size:

=+ (B.1)
k=1

which for the above data is (g) = 66.3. To what degree is this number really representative of
students grades ? This information can be obtained by constructing the PDF of the grades.

For such a discrete dataset, an approximation to the PDF can be built by constructing a
histogram. This consists in dividing the allowed range of the measured variable —here grades
between 0 and 100%— into contiguous bins each spanning a range of grades, and counting how
many data point fall in each bin; e.g. counting how many students have a grade between 60%
and 64.99%, between 65% and 69.99%, etc. This defines a discrete function

him(g;b) , m=1,..,. M, (B.2)

where b is the bin size and h,, the count in the m' bin. The number of bins is simply
M =100/b, i.e., the numerical extent of the data, here 100, divided by the binsize.

Figure B.1 shows histograms of the above data, for bin sizes of 2, 5 and 10, and with the class
average indicated by the vertical dashed line segment!. The numerical values of the histogram

1Since a histogram is, fundamentaly, a discrete function of the measurement variable, it is customary to
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Figure B.1: Histograms for my mid-term exam dataset, for bin sizes of 2 (dark gray), 5 (gray)
and 10 (light gray). The vertical dashed line segment is the class average computed using
eq. (B.1).

bins obviously depends on the choice of bin size; for a dataset of a given length, the wider
the bins the higher the corresponding counts, and some bins can of course remain empty. No
matter the bin size, in all cases the sum of counts in all the bins is always equal to the class
size N = 83, in other words, the histogram can be normalized:

1 M
v > hm=1. (B.3)
m=1

Knowing h,,, also allows an alternate procedure to compute the class average:

(9) = % > % b (B.4)

where b,, is the grade value at the center of bin m.

Python’s numpy library includes a function named numpy.histogram() which accepts as
input an array of values, such as my mid-term exam grades above, and returns an array con-
taining histogram bin counts (10 equidistant bins by default). It is also possible to set the
bin number, sizes and ranges through the function’s argument list; see the SCIPY/NUMPY
documentation (URLs provided at the end of Appendix A).

To turn the counts of Fig. B.1 into a probability, we need to divide it by the class size
N = 83, and to turn it in a probability density we also need to divide it by the bin size. This
last step is required so that the quantity h,, X b measures the probability p of finding, in the
grade dataset, a grade falling between the bounding values of each corresponding bin. This
is the very definition of a probability density. Figure B.2 shows the result of this procedure
for the histogram of bin size b = 5 from Figure B.1, and defines the discrete PDF for this
dataset. Its detailed shape is obviously influenced by the chosen bin size, and some of the finer

plot it into so called histogram mode, i.e., as a piecewise-constant function, varying discontinuously at bin
boundaries.
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Figure B.2: Discrete probability density function constructed from the gray histogram of
Fig. B.1 (bin size = 5). The shapes are of course identical on both plots, only the vertical
scale is altered, from raw counts to probability density.

structure also reflect specificities of the underlying dataset; Fig. B.2 would not be identical
if I had used mid-term exam data for a different year, even though my average grade for
the mid-term exam in this course always hovered around 65%. The finite size of the dataset
also guarantees that the PDF will not be smooth, and this would remain the case even if I
opted to minimize my grading time by assigning purely random grades in the allowed range
(more on this point in §C.2 below). But since I do not engage in such accelerated grading
practices, the PDF of Fig. B.2 does capture something about students’ performance (as well
as my grading performance, presumably). Note how the most probable grade, i.e. the bin
with the highest probability density (0.0289 for the bin 80—85%), is not that spanning the
average grade (bin 65-70%, with a probability density of 0.0193), reflecting the fact that this
distribution is asymmetric about its mean value. I have observed such an asymmetry almost
every year I taught this course; it was something real.?

B.2 Continuous PDF's

In the limit of very large datasets and infinitesimally small bin size (in the calculus sense),
the PDF can be considered a smooth, continuous function f(z), where the quantity f(z)dx
measures the probability of finding a measurement in the interval [z, 2 + dz]. The equivalent
of (B.3) becomes the normalization constraint:

/f(x)dx =1, (B.5)

2In fact, my grade PDFs often could be reasonably well-fit by a combination of two Gaussians, one very
broad and centered around 60%, the other much narrower and centered around 80%. These could be traced
pretty directly to two distinct group of students in the class: Physics major students, taking the course in
their first semester, and Physics-Math double-major students, taking the class in the third semester. The latter
group dominated the PDF peak around 85%, indicating rather unambiguously that my mid-term exams favored
them unfairly. Seeing this pattern repeat itself year after year, I eliminated the mid-term exam from the course
evaluation.
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and the equivalent of (B.4) is then:

(x)y = /f(x)xdx (B.6)

In both cases the integral must cover the full range of the variable z.

B.3 Some mathematical properties of power-law PDF's

Probability density functions of event sizes taking the form of power-laws are common in many
of the natural and simulated systems considered in this book, so they deserve a bit more
attention. Such a power-law PDF is written as:

f(z) = for™®, a>0, x € [zo, TpM] - (B.7)

where the constant fj is set by the normalization constraint (B.5). Without loss of generality
we can set the normalization interval of the PDF to the range [1, 00|, so that the substitution
of (B.7) into (B.5) yields:
a—1
= i . B.8
fo= lim —— @i (B.8)
Evidently, the normalization is only possible provided a > 1, otherwise fyo — oo in the limit
xp — 00. For normalizable PDFs we have

fo=a—-1 a>1. (B.9)

in the xp; — oo limit. Consider now a situation where the variable z is extracted from
measurements spanning the range [z, x )], as described by a normalizable power-law PDF
(a > 1). In such a situation the normalization constant becomes fy = (a — 1)x§ ™!, and the
mean value of the variable calculated via eq. (B.6) is

fo
a—2

(x) = (@3 —air®),  (a#2). (B.10)

In many cases the PDF spans many orders of magnitude in the variable x, i.e., zo < zp;. We
can then distinguish two regimes:

1. 1 < @ < 2: this implies 2 — @ > 0, so that the term involving x;; dominates in (B.10).
We then have

(x) = 2J:()ax?\2a . (B.11)

2. a > 2: this implies 2 — @ < 0, so that the term involving zy dominates (B.10), in which
case:

(x) = afo zy (B.12)

The special case a = 2 is “left as an exercise”, as we like to say in the business...

These two distinct regimes, as delineated by the value of the power-law index «, have
important consequences when constructing a PDF from a finite set of individual measurements.
Note in particular that for o < 2 the average event size is determined by the largest measured
event. These being rare if the PDF is a power law, computing the mean event size from an
experimental or numerical dataset containing too few events could lead to a gross underestimate
of the mean value. This is no longer the case if & > 2, since the mean value is then dominated
by the smaller, more frequent events, which will be well-represented even in a (relatively) small
dataset. If @ < 1, the mean value cannot even be mathematically defined.
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B.4 Cumulative PDF's

Sometimes observational data are represented through a cumulative PDF f(> x), such that
f(> x)dz measures the probability of finding a measured value larger than x. Our encounter
with the Gutenberg-Richter Law in chapter 8 offered one example. If z is distributed as a
power-law, then we have

f(>x) = /OO for™%dx =7 (B.13)

where the second equality holds only if the distribution can be normalized, requiring o > 1 so
that fo = a — 1. In such a situation, the cumulative PDF is also a power-law, with an index
differing by unity as compared to the index of the usual non-cumulative PDF.

B.5 PDFs with logarithmic bin sizes

If the PDF of a measured variable takes the form of power-law, the tail of a PDF constructed
from measurements will contain very few events, and so will be very “noisy”, making it difficult
to reliably infer the numerical value of the power-law exponent «.. This is illustrated on Figure
B.3, for PDFs constructed from a set of N = 300 data points extracted from a power-law
distribution with index a = 1.75. In panel (A) the PDF uses a bin size b = 10 and is plotted
using the usual linear axes. Because the PDF falls off very rapily with increasing x, here most
points end up concentrated in the first bin (0 < b < 10). When replotting the same data using
logarithmic axes, as on Panel (B), bins for > 100 either contain only one point, or none at
all. Fitting a straight line to this PDF looks like a pretty risky proposition. Turning to the
cumulative version of the PDF, as shown on Fig. B.3C, improves the situation somewhat, in
that the the middle of this distribution could conceivably by fitted with a straight line to yield
the exponent a—1 (= 0.75 here, and indicated by the dashed line segment). However, choosing
the start end end points of the fitting regions will be very tricky unless the PDF spans many
orders of magnitude in the measured variable.

One way around this difficulty is to introduce bin sizes that increase with x. A particu-
larly simple way to achieve this is to construct the histogram function of the logarithm of the
measurement variable:

y =log(z) , — dy = d?x , (B.14)
and then use a bin size constant in y. Whatever the variable we use to construct the PDF, the
normalization constraints (B.5) always hold, so that:

[ t@te = [ sy = [ 10y, (B.15)

the second equality resulting from eq. (B.14). We thus conclude that

flx) = M . (B.16)
x

In other words, we are correcting the counts (and associated probabilities) by accounting for
the fact that the bin size increases linearly with z. In this way, even if the PDF is constructed
as f(logx) with logarithmically constant bins, for a power-law PDF plotting f(logz)/x versus
z using logarithmic axes will still yield a straight line, with the slope corresponding to the index
a of the underlying PDF oc £~ for the original measurement variable. Figure B.3D shows the
result of this procedure, the the same underlying data as on Panels (A) and (B). A linear fit

(on the log-log plot representation) can now be envisioned with some measure of optimism.
From Fig. 4.8 to 8.7, all power-law PDFs encountered throughout this book are constructed
and plotted in this manner. When the measured variable spans many orders of magnitude
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Figure B.3: Plotting can make such a difference... PDF's for the same data are plotted on these
four panels, built from a set of 300 synthetic data points extracted from a power-law distribution
with index o = 1.75. Panel (A) plots the PDF on a standard plot with linear horizontal and
vertical axes, with a bin size of 10 used in constructing the PDF. Panel (B) plots the exact same
data, using now logarithmic axes, and panel (C) plots the cumulative PDF of the same data,
plotted again on logarithmic axes. The resolutely reckless could consider fitting a straight line
through the middle decade of the distribution. Panel (D) plots a PDF of the same data still,
now constructed using a logarithmic bin size of log(b) = 0.2 and plotted again on logarithmic
axes. A straight line fit can now be contemplated with some measure of confidence. The dashed
lines indicate the true slope of the distribution from which the N = 300 data were drawn (minus
unity for the cumultive PDF in C, as per eq. (B.13)).
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and N is vary large, a straight linear least-squares fit can then return a reasonably accurate
estimate of the power-law index «. If either of these conditions is not satisfied however, the
inferred value of o may deviate significantly from the underlying “true” value; fortunately, it
is (relatively) easy to do better.

B.6 Better fits to power law PDF

Compared to the dashed line indicating the true logarithmic slope of the distribution from
which the synthetic data were drawn, the PDF on Fig. B.3 looks pretty good in a “chi-by-
eye” sense. Yet a formal linear least-squares fit with equal weight assigned to each bin yields
a = 1.697 4+ 0.051, somewhat lower than the true underlying value o = 1.75. Maybe that’s
“good enough”; or maybe not. Remember the dangers of earthquake prediction encounter at
the end of chapter 8...

A proper statistical approach to this fitting problem would be to infer the index for the
power-law distribution which has the highest likelihood of having generated the measured data.
If = is a continuous variable and its PDF normalizable (i.e., a > 1), this maximum likelihood
estimator for « is:

Tmin

N 1
a:1+N<Zln In ) : (B.17)
n=1

where xni, is the lower bound of the range within which power-law behavior holds, as deter-
mined empirically from the data or on theoretical grounds. The associated standard error (o)
on « is given by

a—1
\/N )
For the synthetic data of Fig. B.3 and with z,;, = 1, the above expressions yield o = 1.744 £+
0.043, much closer to the target 1.75 than a linear least-squares fit to the log-log plot of
logarithmically binned data in (D).

In dealing with real data (including measurements from lattice-based simulations), two
difficulties must be dealt with. The first is the choice of i, in eq. (B.17). Consider for
example the PDF of percolation cluster sizes plotted on Fig. 4.8. As argued in §4.5, the self-
similar fractal structure cannot be expected to extend down to clusters of size one. Looking
at Fig. 4.8, picking xi, = 10 might be a reasonable “chi-by-eye” choice; a higher value would
obviously be safer, but this would also mean running the risk of throwing away more potentially
useful data, a problem that can become ever more acute the steeper the power-law. Here again,
statistically sound approaches are available to pick a proper i, (see bibliography at the end
of this Appendix).

A second potential difficulty arises from the fact that the upper end of the distribution of
percolation cluster sizes is likely to be affected to some extent by the finite size of the lattice,
in the sense that the size of the PDF cannot be expected to drop instantaneously to zero at
exactly the largest percolation cluster size p.N?/2. Different strategies exist to augment such
power laws with an upper cutoff, finite-size scaling function. Its defining parameters must then
be fit simultaneously with those of the power-law, which usually results in a nonlinear fitting
problem even if carried out in log-log space. See, e.g., the book by Christensen & Moloney
cited in the bibliography of chapter 4.

This second difficulty usually does not arise when working with real-world data, for which
a hard upper limit is seldom expected. For example, the largest earthquake ever measured, the
22 May 1960 earthquake in Chile, scored 9.5 on the Richter magnitude scale; yet nothing in
plate tectonics precludes in principle more energetic earthquakes; they simply have not occurred
since the beginning of the earthquake magnitude record. Likewise, the solar flare of Fig. 12.4 is
in all likelihood the largest observed during the space era, but the observations of ”superflares”

g =

(B.18)
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up to 10* time more energetic on stars other than the sun confirms that nothing close to the
upper limit has yet been observed on the sun —and, as with earthquakes, we can only hope it
stays that way.

B.7 Further readings

Most statistics textbooks discuss at some levels probability density funtions. See for example

James, F., Statistical Methods in Experimental Physics, 2¢ ed., World Scientific (2006).
Roe, B.P., Probability and Statistics in Experimental Physics, Springer (1992).

On the inference of power-law behavior in experimental data, see

Clauset, A., Shalizi, C.R., Newman, M.E.J., STAM Review, 51(4), 661-703
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Appendix C

Random numbers and walks

C.1 Random and pseudo-random numbers

A sequence of numbers is said to be random if the numerical value of each member in the set is
entirely independent of the numerical value of the other members of the set. Once upon a time
I enlisted by then 6-year old son to roll a standard 6-faced die twelve times in a row, twice so;
the results were the two sequences:

4-2-6-3-4-4-2-6-1-5-2-6,

6-6-1-2-3-3-5-6-3-6-2-3.

You may note that the second sequence does not include a single “4”. This is not so surprising
as one may think, considering that the probability of not rolling a 4 is 1 — 1/6 = 5/6, so that
the probability of not rolling a 4 twelve times in a row is (5/6)'? = 0.112. This is small, but
certainly not astronomically so (unlike your odds of winning at the lottery, which are). If indeed
each throw is entirely independent of the preceding throw, then the odds of obtaining exactly
one of these sequences is (1/6)'? = 4.6 x 10719, which is in fact exactly the same as obtaining
one of the following two sequences, which most people would judge, incorrectly, to be far less
probable:
1-2-3-4-5-6-1-2-3-4-5-6,

6-6-6—-6-6-6-6—-6-6—-6—-6-6.

Now, if you roll a die a very great many times (N, say), then you would expect to roll “1” N/6
times, “2” N/6 times also, and so on to “6”. If you get different numbers, then you should
really take a closer look at that die. For an unloaded die, every roll is independent of the
others, and every one of the six possible outcomes is equiprobable. In other words, the die is
a generator of random integers uniformly distributed in the interval [1, 6], and die-throwing is
categorized as a stationary memoryless random process.

How do you achieve the same thing on a computer ? At first glance this may appear non-
sensical, considering that a computer program is entirely deterministic; on a given architecture,
an executable program will always return the same output upon being presented with the same
input. This means that a computer program autonomously simulating successive throws of a
die will always produce the same sequence. In other words, the results of the n'® “throw” will
be entirely determined by the state of the computer’s memory following the (n — 1)*® throw,
this being true for all throws. Successive throws in the sequence are completely correlated; we
could be no farther from a a memoryless random process.

The way out of this paradox is to accept the fact that successive throws will be perfectly
correlated, but design our die-throwing algorithm so that, over a long sequence of throws,

1. Every throw value is equiprobable;
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2. There is no statistical correlation between successive throws; in other words, a “1” any-
where in the sequence is as likely to be followed by a ‘1”7, a ‘2”7, a “3”, etc.

It is this statistical uniformity of the sequence that defines its random status, although the term
“pseudo-random” is usually preferred, to distinguish it from truly random sequences, such as
die throw, coin flips, or radioactive decay.

C.2 Uniform random deviates

Many simulation codes listed in this book require either a random number generator which
returns floating-point numbers uniformly distributed in some fixed interval, or integers dis-
tributed uniformly in some range [0, N]. Python’s numpy library contains such generators
(and many others). Generic random number generators exist in most programming languages.
The theoretical, arithmetical, statistical and computational underpinnings of the generation of
pseudo-random numbers are rather intricate and would fill many pages, but this would not
be particularly useful here. For the purpose of working through this book, all you need know
is that pseudo-random number generators do exist, some are better than others, a few are
downright crappy, and by now the truly objectionable among these have gone extinct.

As an example, what follows is two distinct ways to generate the computational equivalent
of rolling a six-faced die:

import numpy as np

roll=np.random.random_integers(1,6)

Note that here, the upper and lower bounds given are inclusive (unlike the range () function
controlling unconditional loops in Python), so that the above call will return 1, 2, 3, 4, 5 or 6
equiprobably. The other way is:

import numpy as np

roll=np.random.choice([1,2,3,4,5,6])

Sometimes if is necessary to generate distinct sequences of random numbers, for example
when testing different realization of a stochastic process for the purpose of ensemble averaging;
many such instances can be found in this book. The numpy Library includes a function named
numpy . random. seed (), which allows to set the numerical value of the seed for subsequent calls
to any one of Python/numpy’s random number generators, by passing a specific integer value
as argument, e.g., numpy.random.seed(1234).

C.3 Using random numbers for probability tests

The ability to generate random numbers uniformly distributed in the unit interval allows a
simple numerical implementation of probability tests, in simulations involving stochastic rules.
In the forest fire model of chapter 6, for example, a tree on a lattice node can be ignited
by lightning with probability ps. For each such tree, the “decision” to ignite or not can be
encapsulated in a one-line conditional statement:

if np.random.uniform() < p_f: # lightning strikes (maybe)
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Figure C.1: Probability density functions constructed from sequences of N random numbers
uniformly distributed in the interval [0, 1], with N increasing by successive factors of 10 going
from (A) through (D). The horizontal dotted lines indicate the range +1 o about the expected
value f(z) = 1.

Since successice draws of the random number r (as produced by np.random.uniform()= r)
are uniformly distributed in [0, 1], then for p; = 107 (say) on average one in 10° draw will
satisfy r < py. Consequently, on average one in every 10° trees will be ignited by lightning
at each temporal iteration. If the lattice is very large and contains a number of trees > pJ?l,
then many trees will be ignited at each iteration; in the opposite situation, ignition events
will be separated in time, with the wait-time between successive lightning strikes distributed
exponentially in the regime py < p,.

The above procedure effectively draws pseudo-random numbers from a probability density
function (see Appendix B) of the form:

_J1 0<z<1
() = {0 otherwise ’ (C1)

which satisfies the normalization condition B.5. However, the discrete PDF for a sequence of
N pseudo-random number, constructed following the procedure described in §B.1, will only
converge to eq. (C.1) in the limit N — oo. Figure C.1 illustrates this convergence, for N-
member sequences of pseudo-random numbers with N increasing from 300 in (A) to 300000 in
(D). In all cases the bin size is b = 0.05, so that M = 20 bins are required to cover the interval.
These PDF being normalized, the expected value of every bin, in the limit N — oo, is unity.
Clearly, fluctuations about this expected value decrease rapidly as N increases. This decrease
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can be quantified by computing the root mean squared deviation about the expected value:

) M 1/2
o= (Mn;(hm - 1)2> . (C.2)

The dotted lines on On Fig. C.1 indicate the range +¢ about the expected value of unity. As
with any stationary memoryless random process, o varies as 1/v N.

C.4 Non-uniform random deviates

In some situations it can be useful or even necessary to produce sequences of pseudo-random
numbers extracted from non-uniform probability distributions. Python’s numpy library contains
many functions producing various common distributions of random deviates. If you only have
access to a function providing uniform random deviates, it is still possible to generate other
types of distributions, through a technique known as the transformation method. What follows
only states a few useful results. In all cases r is a random deviate extracted from a uniform
unit distribution, r € [0, 1], and is = the sought deviate from another distribution.
To get uniform random deviates in the range [a,b], a simple linear rescaling does the job:

r=a+(b—a)r, rel0,1], x € [a,b] . (C.3)

In this case the mean of the distribution is () = (a + b)/2. This can also be achieved by the
Python/numpy function call x=numpy.random.uniform(a,b).
An exponential deviate in the range x € [0, 00] is given by

x=-Anr, rel0,1], x € [0,00] . (C4)

Note that for r € [0,1], In(r) < 0; the minus signs in eq. (C.4) is important, don’t forget it !
Here the parameter A sets the scale of the exponential falloff; Smaller values of A\ give a more
steeply peaked distribution, and larger values a flatter exponential distribution. In all cases
the mean value of the distribution, as given by eq. (B.6), is (x) = A, even though the most
probable value is zero.

Under Python’s numpy Library, the function call x=numpy.random.exponential (scale)
produces such exponential deviates, but do note here scale= 1/ in the above expressions.

For a power law PDF (see eq. B.7) normalized to unity in the range [1, oc], the required
transformation is:

z = /0= rel0,1], z € [l,00], a>1. (C.5)

The artificial data used to generate the PDFs on Figure B.3 were generated in this manner.
The function numpy.random.power(a) in Python’s numpy Library can be used to produce
power-law deviates, but BEWARE;, its argument a corresponds to 1 — a under the power-law
definition used throughout this book, viz. eq. (B.7).
Another useful PDF is the Gaussian (or normal) distribution’; Gaussian distributions of
random deviates can be easily generated through the Box-Muller transformation: which produce
two Gaussian deviates x1, xo from two uniform deviates 1,79 via the relations:

x1 = +/—2Inr cos(2mra) x9 = v/—21nr sin(27rs) ri,rm € [0,1] ;2 € [—00, 0] (C.6)

The deviates so generated fill a Gaussian distribution of zero mean and unit variance. If the
deviates need to be centered about a non-zero mean value (zg, say) with a standard deviation
o # 1, then they should be rescaled as

gi =x0+0Xg1, g5 =20+ 0 X ga . (C.7)

The function call g=numpy.random.normal (x0,sigma) in Python’s numpy Library can be used
to produce Gaussian deviates of mean value zy and standard deviation o.

IStatistical theory would state that in the absence of cheating and with fair grading, and in the limit of
infinite class size (Ackpht!), the PDF of my mid-term exam grades plotted on Fig. B.2 should be a Gaussian
centered on the class average!
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C.5 The classical random walk

A random walk describes the changing position of an agent taking successive steps, all of the
same length s, but oriented randomly, in the memoryless sense that not only is the orientation
of step n random, but it is also entirely independent of the orientation of previous steps.

Consider first a one-dimensional random walk, where the displacement is constrained to lie
along a line (think of a very narrow road with high fences on both sides, or a very long doorless
corridor within a building). The displacement at step n, measured with respect to some starting
position, is denoted D,,, and the two equiprobable steps are s, = +1. By definition we can
write:

D, =D, 1+ 8, , n=20,1,2,3.. (C.8)

Note already that the total distance walked, n x s, is not the same as the displacement measured
from the origin; two steps to the right followed by two to the left add up to zero displacement,
even though four steps have been taken. The squared displacement is then

D2 =Dy 1+8,) =D2 | +5*+2D, 15, . (C.9)

Now comnsider a group of M agents, all starting at the same position and each engaging in a
(collisionless) random walk. Introduce now the ensemble average, denoted by the brackets (...),
defined over this whole group:

M
(0= > alm) (©.10)
m=1

Under this notation, the quantity (D,,) can be interpreted as the average displacement of the
group as a whole. Averaging is a linear operator, in the sense that

ety =@+, (w)=a), (C.11)

where « is any numerical coefficient. Because of this linearity, applying our averaging operator
to eq. (C.9) yields:

(D2) =(D2_, +5*+2D,_15,) = (D2_1) + (s*) + 2(Dy_15y) . (C.12)

If no communication or interaction takes place between agents and consequently they have no
way to get in step with one another, then for a large enough group of agents (s,,) = 0 since right-
and left-directed steps are equiprobable. Moreover, for a memoryless process the distribution
of steps £1 at iteration n is entirely uncorrelated to the distribution of displacements D,,_; at
the prior step. This implies:

(Dp—18n) = (Dp—1)(sn) =0. (C.13)
This results is critical for all that follows. Equation (C.12) now becomes:
(D2) = (D2_)+ 5 1)

Setting Dy = 0 without loss of generality, we have:

(DY) = s*, (C.15)
(D3) = (DI)+s* =2s%, (C.16)
(D3) = (D3)+s*=3s, (C.17)
= (C.18)
and so, after n steps:
(D2) =ns”. (C.19)
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Figure C.2: Temporal spreading of the distribution of 1000 1D random walkers, all originally
located at = 0. The thin lines are Gaussian best-fit to the distribution data, color-coded
correspondingly.

If the (discrete) variable n is interpreted as a temporal iteration, this expression indicates that
the mean quadratic displacement increases linearly with time, so that

V(D) = s . (C.20)

This is called the root-mean-squared displacement. It is important to understand that even
though this increases with time, the mean displacement (D,,) vanishes at all times. The dis-
tinction is easier to understand by simulating a great many random walks and constructing
distribution functions for the positions of the walkers. An example is shown on Figure C.2, for
a simulation involving 1000 1D random walkers, all starting at x = 0. The distributions are
constructed and plotted after 1000, 3000, 10000 and 30000 steps, as color-coded. It is clear from
these plots that the mean of each distribution, i.e., (D), always remains very close to zero,
even after 30000 steps, and that all time the most probable displacement, coinciding with the
peak value of the PDF, is also essentially zero. Yet, equally obviously, the distribution spreads
outwards with time, so that the probability of finding a large displacement, either positive or
negative, increases with time.

The colored thin lines are least-squares fits to these distributions, computed by adjusting
the parameter o of the Gaussian PDF:

1 —x?
f(z) po exp( =~ ) . (C.21)
This parameter is a measure of the width of the Gaussian distribution (the full width at half-
maximum is 1.176 x o, with 68.3% of all measurements contained within +o of the mean). Here
o can be shown to increase with time as /n, which is the same pseudo-temporal dependence
arrived at when computing directly the root-mean-squared displacement (C.20).

All of these results carry over to random walks in more than one spatial dimension. The
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Figure C.3: The first 18 steps of a two-dimensional random walk in the plane, with unit-length
step s,,. The numbered solid dots indicate the successive positions of the walker. The nineteenth
step will land somewhere on the green circle centered on 18. Where it will land on that circle,
i.e. the spatial orientation of that nineteenth step, is entirely independent of the length and
orientation of the current displacement vector Dig (red line segment).

displacement D,, and and step s,, become vector quantities, and eq. (C.8) must be replaced by
D,=D, 1+s,, n=123. (C.22)

where the step s,, still has unit length but is oriented randomly in space. The mean square
displacement at step n becomes

D? =D, 1+s,) (D1 +s,)=D2 | +5°+2D,,_1-s, . (C.23)

Once again, if the step orientation is truly random and uncorrelated to the displacement vector
at the prior step, then averaged over a large ensemble of walkers (D,,_1 - s,) = 0. Why this is
so is exemplified on Figure C.3, showing the first 18 steps of a 2D random walk beginning at
(z,y) = (0,0), with a step length |s| = 1 and the thick red line showing the rms displacement
vector after the eighteenth step, i.e., D1g. This vector makes an angle 615 with respect to the
x-axis of a Cartesian coordinate system centered on (0, 0), as indicated by the dotted lines. The
nineteenth step will land the walker somewhere on the green circle of unit radius centred on
the walker’s position at the eighteenth step. Where on this circle the walker will actually land
is entirely random, i.e., the angle a9 of its next step with respect to a local coordinate system
centered on Dyg can be anything between 0 and 27, equiprobably. Now, the angle between the
displacement vector D1g and s19 will be given by s19 — Djg, so that

Dis - s19 = Digsig cos(aig — b13) ; (C.24)
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Marche aleatoire (100 pas)

Figure C.4: Four 2D random walks of 100 steps each. The starting point is indicated by a black
dot at center, and the circle indicates a displacement D = vD - D = /n = 10.

At this point in the walk the angle 0;5 is already set, at some value between 0 and 27; whereas
a9 is drawn randomly from a uniform distribution spanning [0, 27[. Trigonometric functions
being periodic, it is as if the angle ar;9—60;g were also drawn from a uniform distribution spanning
[0,27[; its cosine is therefore as likely to turn out positive than negative, both identically
distributed, which ensures that an ensemble average of the above scalar product will always
vanish —even though it almost never would for a single walker. The same reasoning will hold if
both angle a9 and 015 were also drawn independently from their allowed range. This evidently
also holds for any step n, and leads to the conclusion that the ensemble average (D,,—1 - s,,) = 0.
Therefore, the ensemble average of eq. (C.23) becomes:

(Dn) =(Dp_y) +5°, (C.25)

just as in the case of the 1D random walk (cf. eq. C.14). Everything else proceeds as before
and leads again to eq. (C.19). This is a truly remarkable property of random walks: no matter
the dimensionality, the root-mean-squared displacement always increases as /n.

Figure C.4 illustrates a few 2D random walks, each over 100 steps, with the circle drawn
at the radius corresponding to the root-mean-square displacement, R = \/(Djo0) = 10s. This
Figure highlights once again the fact that the rms displacement is a statistical measure, obtained
from an ensemble average over a very large number of walkers; the displacement of a given
individual walker can deviate substantially from eq. (C.25), while remaining bound in [0, n X s].

C.6 Random walk and diffusion

The gradual spreading observed in the distribution of random walkers on Fig. C.2 is prototypical
of diffusive processes, and this turns out to me more than a mere visual analogy.
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Let’s stick to 1D random walks and consider what happens at some arbitrary position xg;
only walkers within the range z¢ — |s| < © < z¢ + |s| have a chance to cross zy at the next
step, but then again only if they happen to step in the needed direction (s = +1 for walkers
in zg— |s| < & < xg, and s = —1 for those in xg < z < 29 + |s|). Both stepping directions
being equiprobable, on average only half the walkers on each side will then cross xg. Denote
by 0N (zp) the net number of walkers crossing xg from the right to the left. This quantity will
be given by:

N (zo) = %N(xo —|s]) — %N(mo +1s]) , (C.26)
(a negative value for §N would then mean that the net flow of walkers is from left to right).
Now let N(zg,t) be the number of walkers standing somewhere in the full interval zo — |s| <
x < xo + |s| at time ¢. That number, at time ¢ + At, will then be given by N(zo,t) plus the
net number having entered from the left side at z¢ — |s|, minus the number having walked out
to the right across the right boundary z¢ + |s|. Evaluating eq. (C.26) at z¢ — |s| and zg + |s|
instead of just zy then leads to:

N(z,t+At) = N(z,t)+0N(x—s)—IN(x+s)
= N(x,t)+ ((;N(x—%) - ;N(:@) - (;N(x) - ;N(x—i—%)))
= N(z,t) + % (N(z +2s) —2N(z) + N(xz — 2s)) , (C.27)

where the “0” index on z and the absolute value on s have both been dropped to lighten the
notation. Dividing the right- and left-hand sides of this expression by At and rearranging
terms, we get:

N(z,t+At) — N(x,t) 1 ((23)2> y <N(m+28)—2N(x)+N(x—25)>.

At “2 At (25)2

(C.28)

Note that both the numerator and denominator of the RHS have been multiplied by the quantity
252; this mathematicaly legal but by all appearances arbitrary manoeuver was carried out so
that the quantity within the second set of parentheses on the right-hand side is identical to a
second-order centered finite difference formula for the second derivative of N with respect to
x, with a spatial discretisation increment 2s; while the term on the left-hand side is a first-
order forward difference formula for the time derivative of N, with time step At. If these
interpretations are accepted, then eq. (C.28) can be viewed as a finite difference discretisation
of the partial differential equation:

ON (x,t) 02N (x,t)
= D .2
ot ox2 (C.29)
where D is a diffusion coefficient, here given by:
~1(2s)?
=5 Ar (C.30)

Equation (C.29) is the well-known classical linear diffusion equation, which represents a macro-
scopic description of a random walk; it also describes the spreading of perfume (or other) smell
in a room where the air is at rest, the slow diffusive mixing of cream in a coffee that is not
being stirred, as well as a host of other common mixing and dilution processes. Equation (C.29)
holds provided the flux of the diffusing quantity is proportional to the (negative) concentration
gradient of the diffusive substance, which is known as linear (or Fickian) diffusion. The physi-
cal link with the random walk arises from the random motion of perfume or cream molecules,
continuously colliding with molecules making up the background fluid (air or water). Here is
one of these instances when understanding the microscopic behavior, namely the the random
walk, allows to calculate the macroscopic behavior, i.e., diffusion.

naturalcomplexity.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal



214 APPENDIX C. RANDOM NUMBERS AND WALKS

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity.tex, July 28, 2016



Appendix D

Lattice computation

Most computational implementations of the complex systems explored in this book are defined
over lattices, sets of interconnected nodes on which the dynamical variables of the problem
are represented. There are two interconnected concepts that need to be distinguished: lattice
geometry and connectivity. Geometry is set by the relative positions of lattice nodes in physical
space; connectivity refers to the coupling between nodes, i.e., which neighbouring nodes interact
with any given node. The foregoing discussion is framed in the context of two-dimensional
lattices, but generalization to higher dimensionality is usually straightforward.

When carrying our numerical simulations on lattices, nodal values are usually stored as ar-
rays in the computer’s memory, having the same dimension and lengths as the said lattices, i.e.,
nodal values on 128 x 128 lattice are stored in a 2D array having length 128 in each dimension.
The syntax for defining such arrays is described in §A.2. From the user’s point of view (but not
in the computer’s RAM), two-dimensional arrays are thus defined in terms of rows (first array
dimension) and columns (second dimension), as with a matrix, which effectively represents a
form Cartesian geometry. Storing, accessing and plotting nodal values for a Cartesian lattice
is thus algorithmically trivial.

Lattice geometries other than Cartesian can still be stored in 2D arrays, by suitable choice
of connectivity. The idea was already illustrated on panels (C) and (D) of Fig. 2.5: with
appropriate horizontal shifting of nodal positions, a 2D Cartesian lattice with anisotropic 6-
neighbour connectivity can be reinterpreted as a triangular lattice with isotropic 6-neighbour
connectivity. Geometry is secondary (except when plotting!), and connectivity is the key.

D.1 Nearest-neighbour templates

Setting connectivity for a lattice is best accomplished using a nearest-neighbour template. This
gives the relative positions of nearest neighbours with respect to a given nodal position (3, j).
For example, on a Cartesian lattice the four nearest-neighours of a node (i,7j) are located at
bottom, right, top, and left; or, in terms of nodal numbering: (i +1,7), (i,5+1), (¢ —1,5) and
(i,7 — 1). This can be stored in two one-dimensional integer arrays of length 4, one for each
lattice dimension. Under Python/numpy this is initialized as follows:

dx=np.array([1,0,-1,0])
dy=np.array([0,1,0,-1])

This is known as the von Neumann neighbourhood. Including the four diagonal neighbours
yields the Moore neighbourhood, which would be defined by the template arrays:

dx=np.array([0,1,0,-1,-1,1,1,-1])
dy=np.array([-1,0,1,0,-1,-1,1,1])

For the 6-neighbour triangular lattice of Fig. 2.5, the template arrays are:
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Figure D.1: Use (green) and misuse (red) of a 4-neighbour nearest-neighbour template on a
10 x 10 Cartesian lattice. Nodes are numbered by a pair of indices (4, j), starting at the top
left corner and increasing downwards and to the right. The template functions well for interior
nodes (black) but will lead to out-of-bound array indexing for boundary nodes (grey) unless
alternate reduced template arrays are introduced for boundary nodes, or additional conditional
instructions (if...else) are added within the code.

dx=np.array([0,1,0,-1,-1,1])
dy=np.array([-1,0,1,0,1,-1])

Whatever the connectivity, lattice operations can use these template arrays to efficiently retrieve
nearest-neighbour information. For example, with nodal values stored in a 2D array named
grid, calculating the sum of nodal values for all nearest-neighbours of node (i, j) under the von
Neumann neighbourhood could be coded like so:

sum_nn=0.
for k in range(0,4): sum_nn+=grid[i+dx[k],j+dy[k]]

or equivalently, by invoking the sum() function from Python’s numpy library:
sum_nn=np.sum(grid[i+dx[:],j+dy[:1])

These instructions would be typically embedded within two loops for the indices 7 and j, thus
scanning all lattice nodes. There is one pitfall to this stragegy: as shown on Figure D.1, still for
the von Neumann neighbourhood, it will fail for nodes at the boundaries of the lattice, which
only have three nearest-neighbours (and only two for the four corner nodes).

There are ways out of this difficulty, or course. The most straightforward in principle is to
treat boundary nodes separately, e.g. though the use of suitably modified template arrays used
only for boundary nodes. However, this lead to cumbersome extra coding that significantly
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1=4

Figure D.2: The same lattice as on Fig. D.1, but now surrounded by a layer of ghost nodes
(open gray circles). The full lattice is now of dimensions 12 x 12, but now the 4-neighbour
template can be used on all nodes of the imbedded original 10 x 10 lattice even for the (true)
boundary nodes (solid gray circles). Compare to Figure C.3

lengthens a simulation code and reduces its readability. A better strategy is to make use of
ghost nodes, as shown on Figure D.2. The 10 x 10 lattice of Fig. D.1 is now padded on all sides
with a layer of additional nodes (open gray cicles). This expanded lattice is now of size 12 x 12,
but computations associated with the model’s dynamical rules only take place in the interior
10 x 10 block of nodes corresponding to the original, unpadded lattice. Unlike on Fig. D.1,
using the 4-neighbour template on the red node, now numbered (¢, j) = (7, 10), will not exceed
array length in the horizontal since j 4+ 1 = 11, which is now legal *.

Which numerical value is to be assigned to ghost nodes is dependent on the boundary
conditions of the problem. In the earthquake model of chapter 8, for example, the ghost nodes
are simply set to zero and retain that value throughout the whole simulation. This is as easy
as it gets. In the hodgepodge machine simulations of chapter 11, on the other hand, the ghost
nodes are used to enforce periodic boundary conditions, as detailed in the following section.

D.2 Periodic boundary conditions
In some lattice-based models introduced in this book, periodic boundary conditions are imposed

on the lattice. Sometimes this is dictated by the geometry of the problem. Consider for example
ants walking on the surface of a sphere. Using latitude-longitude coordinates, an ant waking

1Some computing languages allow the use of negative integers to index array elements, so for example here
each dimension of the 12 x 12 lattice could have the nodes numbered from —1 to 10, so that the green and red
nodes retain their original numbering (z,5) = (3,2) and (6,9), as on Fig. D.1. I stayed away from this cleaner
numbering strategy for reasons of portability to languages that do not allow such generalized array indexing.
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Figure D.3: Enforcing periodic boundary conditions via ghost nodes. The boundary nodes of
the original 10 x 10 lattice (solid gray nodes on Fig. D.1) are copied to the ghost node layer
(open circles) on the opposite side of the enlarged 12 x 12 lattice, following the color coding
given. Note how the corner nodes of the 10 x 10 lattice get copied into three distinct ghost
nodes. Interior nodes (in solid black) remain unaffected by this whole procedure.

eastward and crossing longitude 360° must instantly “reappear” at longitude zero, because
both correspond to the same point on the sphere. Longitudinal periodicity is then mandatory.
Imagine now ants walking on the surface of a torus. Longitude is again periodic, but now so is
the “latitudinal” direction, since an ant starting in the equatorial plane and walking “North”
will travel a circular path that will bring it back to its starting point. When simulating such
a walk, the torus can thus be mapped to a square with periodicity enforced both horizontally
and vertically. This is the geometric interpretation to be ascribed to the highway building ant
of §2.4, and to the flocking simulation of chapter 10.

In other instances periodic boundary conditions are used simply because we cannot specify
boundary values, and doing so arbitrarily would perturb the evolution of the system. This is
the case with the hodgepodge machine simulations of chapter 11. Enforcing periodic boundary
conditions then implies that the simulated domain is but a “tile” that repeats itself across space
to infinity, exactly like on a tiled floor (made of identical tiles, and without the infinity part...).
In such a situation, we must simply accept the fact that the simulation cannot generate or
accommodate structures that have length scales larger than the simulated periodic unit.

Figure D.3 shows how ghost nodes can be used to enforce periodic boundary conditions. The
true boundary nodes of our now familiar original 10 x 10 lattice have been colored according
to the side they belong to, with four more distinct colors used for the corner nodes. If the
original lattice were to be replicated horizontally and vertically to tile the whole space under
the assumption of periodicity (as for the unit square domain on Fig. 10.1), then the top row
of ghost nodes (open blue circles plus corner nodes) are really the “same” nodes as the bottom
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row of the original 10 x 10 lattice (solid blue nodes plus corner nodes, boxed in blue). Vertical
periodicity can therefore be enforced by copying the ten nodal values of this row (boxed in
blue) to the corresponding nodes of the top row of ghost nodes, as indicated by the blue arrow.
The same applies for the top row of the original 10 x 10 lattice (purple), which gets copied
into the bottom row of ghost nodes. The same procedure is used in the horizontal direction, as
indicated by the color coding on the Figure. Note how each corner nodes in the 10 x 10 lattice
get copied thrice into ghost nodes: once horizontally, once vertically, and once diagonally to
the opposite corner of the 12 x 12 lattice. The function periodic, given within the code on
Figure 11.4, gives a compact algorithmic implementation of this procedure..

Periodicity in one spatial dimension amounts to assuming that the 1D domain is a closed
ring, which is much easier to implement; see for example the one-dimensional cellular automaton
code of Fig. 2.4.

D.3 Random walk on lattices

Random walks can be defined over a lattice, with walkers constrained to move from one node
to a randomly selected nearest-neighbour node, according to some suitably defined neighbour
template. All that is needed is to generate a random integer to pick an element of the ap-
propriate template arrays. The following code fragment shows how to set up a random walk
of N steps, here on a 2D Cartesian lattice with 4-neighbour connectivity, and with the walker
starting at the (arbitrary) nodal position (,5) = (5,5) on the lattice:

import numpy as np

N=100 # number of random walk steps
dx=np.array([0,1,0,-1]) # template arrays for 4-neighbours
dy=np.array([-1,0,1,01)

i,j=5,5

# initial nodal position of walker
for k in range(O0,N): # walk N steps
r=np.random.choice([0,1,2,3]) # random integer between O and 3 inclusive
i+=dx[r] # take one random step
j+=dy [r]

An example is shown on Figure D.4. The first 18 steps of the walk are shown, and reveal some
occasional backtracking (steps 2-3-4 and 13-14-15). Note also that after the sixth step, the
walker is actually back at its starting position.

This may appear to be a strongly constrained type of random walk, but when simulating many
such random walks on the lattice over a great many steps, the orientation of the displacement
vector is effectively random, and its ensemble averages (D), = 0 and <D2> x n, just like in
a classical random walk (see §C.5). Moreover, on length scales much larger than the inter-
nodal distance, the spatial distributions of walkers are essentially the same in both cases.
Figure D.5 illustrates this, now for four 400-steps random walks on a larger lattice, still with
4-neighbour connectivity. For displacements much larger than the microscopic scale set by the
inter-nodal distance, the spatial distribution of end points is statistically undistinguishable from
that associated with a conventional 2D random walk (cf. Fig. C.4).

Random walks on lattice become particularly useful when simulating a system where many
walkers moving simultaneously on the lattice interact locally in some way (e.g., the healthy and
sick agents in the epidemic propagation simulations of chapter 9). Knowing the position (i, j)
of a walker on the lattice, only this node (or nearest-neighbour nodes) must be checked for the
presence of another walker. In a classic random walk, this would involve instead the calculation
of ~ N2 /2 pairwise distances, to pick which walkers are within some set distance inside of which
the interaction takes place (as for the repulsion and flocking forces in the flocking simulations of
chapter 10). This becomes computationally prohibitive for very large N. There exist strategies
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Figure D.4: The first eighteen steps in a random walk on a 2D Cartesian lattice with 4-neighbour
connectivity, starting at lattice center. Successive nodal positions are numbered, and the thick
red line segment indicates the displacement vector D,, at step 18. The nineteenth step will
land the walker on one of the four nodes circled in green, which one being chosen randomly, in
a manner independent of the current position or direction of past steps (see text). Compare to

Figure C.3
% M
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Figure D.5: Four 400-steps random walks on a lattice with 4-neighbour connectivity, The
starting point is indicated by a black dot at center, and the circle indicates a displacement

D =+vD-D = /n =400 = 20. Compare to Figure C.4
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Figure D.6: Displacement rules for random walks on a lattice in which walkers are not allowed
to move to a node already occupied by another walker. Here 50 walkers (black solid dots) are
distributed on a 20 x 20 lattice. For a subset of six, the four target nodes are indicated by green
circles, and allowed moves by thick green line segments.

and algorithms to reduce this number, but they are too complex (!) to get into even in this
book.

Another, related attractive feature of random walks on lattices is the possibility to accom-
modate a simplified representations of “collisions” between two walkers. The idea is illustrated
on Fig. D.6. Often, at a given temporal iteration only a small fraction of lattice nodes are
occupied by random walkers (black solid dots). Every one of these would normally take its
next step to one of the four possible positions indicated by the stencil of four green circles
centered on each walker, as indicated on the Figure for only six walkers. The idea is to void the
step if it were to land the walker on a lattice node already occupied by another walker; in such
a situation the walker remains on his node until a new random step is attempted at the next
temporal iteration. The allowed steps for six selected walkers on Fig. D.6 are indicated by the
thick green line segments. The fact that walkers cannot move to an occupied node represents
a form of collision, since two walkers on neighbouring nodes cannot cross but instead tend to
move away from each other, in a statistical sense. The flow of fluids can be simulated in this
manner. Chapter 8 of Wolfram’s book on cellular automata (cited at the end of chapter 2)
presents a few nice examples. See also the Wikipedia pages on Lattice gas automaton and
lattice Boltzmann methods.
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Index terms

e Agents

definition

ants

termites

active vs passive
panicked
replicants

as car drivers

as flockers

e Agent Smith

o Artificial life

e Avalanches

e Bak,

size measures

falloff

in OFC earthquake model
in sandpile model

in traffic model

in epidemic model

random trigger

Per

Bifurcation diagram
Billiard (a.k.a. pool)
Black Death

Boundary conditions

open
closed

periodic
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Bozos

Brute force

Burridge-Knopoff stick-slip model
Cellular Automaton (CA)

definition

1D vs 2D

rules

classes

probabilistic
two-states
hodgepodge machine

simulating fluid flows

o Clusters

in percolation

in Forest-fire models
in traffic models
tagging algorithm

self-similarity

e Compactness coefficient

e Complexity

difficulty to define
intuitive vs algorithmic
and fractals

at edge of chaos

visual

and origin of life

and consciousness

e Criticality

defined
and phase transitions
control parameter

and fluctuations

e Crowd control

e Danger

of earthquake prediction

of squirrels crossing the road
of panicking

of huddling together
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of dividing by zero

of photographing slickrock
of taking the wrong step
of bad lighting

of connecting flights

of skipping preface

of excessive theorizing

e Diffusion

anomalous

equivalence to random walk
Fickian

in OFC model

in hodgepodge machine

on surfaces

partial differential equation
of a Gaussian profile

coefficient

e Diffusion-limited aggregation (DLA)

e Ebola

e Emergence

e Ensemble averaging

e Forest fire management

e Forcing

stochastic

deterministic

e Fractals

e Fractal dimension

as power law

by mass-radius relation
by box counting

of percolation cluster
of DLA aggregates

of forest fires

e [ETiction

as threshold mechanism
in sandpile
vs self-propulsion

in earthquake model
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e Game of Life

o Geomagnetic substorms
e Ghost nodes

e Gutenberg-Richter Law
e Growth

— rule-based
— seed
— by accretion
— by branching
— by fusion
— probabilistic
e Highway building
e Hofstadter, Douglas
e Holland, John
e Hooke’s Law
e Kepler, Johannes
e Koch fractal
e Langton, Chris
e Lattice

— definition

— Cartesian

— triangular

— connectivity

— 1D vs 2D

— boundary conditions

— nearest-neighbour template

— vs network
e Lichens
e Logistic map
e Mistakes

— random
— due to bad lighting

— due to noisy background
e Modelling
e Moore neighbournood

e Newton’s Laws of motion
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OFC: See Sandpile: Olami-Feder-Christensen

Open dissipative systems

billiard example
climate example

chemical example

Order from disorder
PDF: see Probabiliy density function

Percolation

in 1D

in 2D

dynamical

threshold

as exemplar of critical phenomena

and anomalous diffusion

e Pink Floyd

e Predator-prey

e Probability density functions (PDF)

definition

in sandpile model

in Forest-Fire model
in traffic model
Gaussian

Power-law
averaging using

and histograms

of earthquake size

e Procol Harum

e Pynchon, Thomas

e Python code

for 1D CA

for 2D CA

for ants and highways

for diffusion-limited aggregation
for box counting

for cluster tagging

for 1D sandpile

for forest fire model

for traffic model
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for earthquake model
for epidemic model
for flocking model

for hodgepodge machine

e Random numbers

computational impossibility
uniformly distributed
exponentially distributed
Gaussian distributed
Power-law distributed

seed

e Random walk

defined
equivalence to diffusion
on lattice

root-mean-squared displacement
1D vs 2D

e Reaction-diffusion chemistry

e Recurrence cycle

e Reductionism

e Redundancy

e Richardson, Lewis Fry

e Rolling Stones

e Safety in numbers

e Sandpile

1D vs 2D

stop-and-go

running

on the beach

conservative vs non-conservative
Olami-Feder-Christensen (OFC)
covering the Earth

stochastic redistribution rules

e Scale separation

e Science defined

e Self-organized criticality (SOC)

defined
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— necessary conditions
— in sandpile model

— in forest-fire model
— in traffic model

— in earthquake model

— in natural systems
e Self-similarity

— defined loosely
— defined formally

— and scale invariance
e Sierpinski triangles
e Small-world network
e Snowflakes
e SOC: see Self-organized criticality
e Solar flares
e Solid vs fluid phases
e Space weather
e Spaghettis
e Stars in galaxies
e Statistical stationarity
e Symmetry breaking
e Synchronous updating
e Time series
— periodic
— quasiperiodic
— aperiodic

— fractal

— intermittent
e Torus geometry
e Traffic engineering
e Turing, Alan
e Universality
o Waterfall
o Waves

— in epidemic model

— in forest fire model
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— in hodgepodge machine
— spiral

— spreading

chemical

sawtooth

o Wolfram, Steven
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