
1

NATURAL COMPLEXITY:

A MODELLING HANDBOOK

Paul Charbonneau

Département de Physique

Université de Montréal

July 2016

2

Table of Content

1 Introduction: what is complexity? 11

1.1 Complexity is not simple . 11

1.2 Randomness is not complexity . 15

1.3 Chaos is not complexity . 22

1.4 Open dissipative systems . 26

1.5 Natural complexity . 29

1.6 About the computer programs listed in this book 31

1.7 Suggested further readings . 35

2 Iterated growth 39

2.1 Cellular automata in one spatial dimension 40

2.2 Cellular automata in two spatial dimensions 46

2.3 A zoo of 2D structures from simple rules 51

2.4 Agents, ants and highways . 52

2.5 Emergent structures and behaviors 56

2.6 Exercises and further computational explorations 57

2.7 Further readings . 61

3

4 TABLE OF CONTENT

3 Aggregation 75

3.1 Diffusion-limited aggregation . 76

3.2 Numerical Implementation . 77

3.3 A representative simulation . 81

3.4 A zoo of aggregates . 84

3.5 Fractal geometry . 85

3.6 Self-similarity and scale invariance 91

3.7 Exercises and further computational explorations 93

3.8 Further readings . 95

4 Percolation 107

4.1 Percolation in one dimension . 108

4.2 Percolation in two dimensions . 110

4.3 Cluster sizes . 112

4.4 Fractal clusters . 120

4.5 Is it really a power law ? . 121

4.6 Criticality . 123

4.7 Exercises and further computational explorations 125

4.8 Further readings . 128

5 Sandpiles 139

5.1 Model definition . 140

5.2 Numerical implementation . 143

5.3 A representative simulation . 145

TABLE OF CONTENT 5

5.4 Measuring avalanches . 149

5.5 Self-organized criticality . 155

5.6 Exercises and further computational explorations 157

5.7 Further readings . 159

6 Forest Fires 169

6.1 Model definition . 169

6.2 Numerical implementation . 171

6.3 A representative simulation . 174

6.4 Model behavior . 178

6.5 Back to criticality . 189

6.6 The pros and cons of wildfire management 190

6.7 Exercises and further computational explorations 192

6.8 Further readings . 195

7 Traffic Jams 197

7.1 Model definition . 198

7.2 Numerical Implementation . 199

7.3 A representative simulation . 201

7.4 Model behavior . 205

7.5 Traffic jams as avalanches . 207

7.6 Car traffic as a SOC system ? . 209

7.7 Exercises and further computational explorations 212

7.8 Further readings . 214

6 TABLE OF CONTENT

8 Earthquakes 223

8.1 The Burridge-Knopoff model . 224

8.2 Numerical implementation . 232

8.3 A representative simulation . 233

8.4 Model behavior . 236

8.5 Predicting real earthquakes . 239

8.6 Exercises and further computational explorations 241

8.7 Further readings . 243

9 Epidemics 251

9.1 Model definition . 251

9.2 Numerical implementation . 252

9.3 A representative simulation . 255

9.4 Model behavior . 257

9.5 Epidemic self-organization . 264

9.6 Small-world networks . 265

9.7 Exercises and further computational explorations 269

9.8 Further readings . 272

10 Flocking 281

10.1 Model definition . 282

10.2 Numerical implementation . 286

10.3 A behavioral zoo . 293

10.4 Segregation of active and passive flockers 297

TABLE OF CONTENT 7

10.5 Why you should never panic . 300

10.6 Exercises and further computational explorations 302

10.7 Further readings . 304

11 Pattern Formation 311

11.1 Excitable systems . 311

11.2 The hodgepodge machine . 315

11.3 Numerical implementation . 322

11.4 Waves, Spirals, Spaghettis, and Cells 323

11.5 Spiralling out . 327

11.6 Spontaneous pattern formation 331

11.7 Exercises and further computational explorations 332

11.8 Further readings . 334

12 Epilogue: natural complexity 343

12.1 A hike on slickrock . 343

12.2 Johannes Kepler and the unity of Nature 348

12.3 From lichens to solar flares . 354

12.4 Emergence and natural order . 357

12.5 Into the abyss: your turn . 360

12.6 Further readings . 361

A Basic elements of the Python programming language 365

A.1 Code structure . 366

8 TABLE OF CONTENT

A.2 Variables and arrays . 371

A.3 Operators . 373

A.4 Loop constructs . 375

A.5 Conditional constructs . 379

A.6 Input/Output and graphics . 381

A.7 Further readings . 382

B Probability density functions 385

B.1 A simple example . 385

B.2 Continuous PDFs . 390

B.3 Some mathematical properties of power-law PDFs 391

B.4 Cumulative PDFs . 392

B.5 PDFs with logarithmic bin sizes 393

B.6 Better fits to power law PDF . 396

B.7 Further readings . 398

C Random numbers and walks 399

C.1 Random and pseudo-random numbers 399

C.2 Uniform random deviates . 401

C.3 Using random numbers for probability tests 403

C.4 Non-uniform random deviates . 404

C.5 The classical random walk . 406

C.6 Random walk and diffusion . 412

TABLE OF CONTENT 9

D Lattice computation 419

D.1 Nearest-neighbour templates . 420

D.2 Periodic boundary conditions . 423

D.3 Random walk on lattices . 425

E Index terms 435

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

10 TABLE OF CONTENT

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

Chapter 1

Introduction: what is

complexity?

“There is all the difference in the world between knowing about and

knowing how to do” J. Evans, The History and Practice of Ancient

Astronomy, 1997

1.1 Complexity is not simple

If turbulence is the graveyard of theories, then complexity is surely the tombstone

of definitions. Many books on complexity have been written, and the braver of

their authors have attempted to define complexity, with limited success. Being

nowhere as courageous I have simply decided not to try. Although complexity is

the central topic of this book, I hereby pledge to steer clear of any attempt to

formally define it.

naturalcomplexity-2.tex, July 28, 2016 11 Natural Complexity, Paul Charbonneau, Université de Montréal

12 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

This difficulty in formally defining complexity is actually surprising, because

we each have our own intuitive definition of what is “complex” and what is not,

and we can usually decide pretty quickly if it is one or the other. To most people

a Bartok string quartet “sounds” complex, and a drawing by Escher “looks”

complex. Such intuitive definitions can even take an egocentric flavor, i.e., an

Escher drawing is complex because “I could not draw it” or a Mozart piano piece

complex because “I could not play it”.

The many guises of complex systems to be encountered further in this book of-

ten involve many (relatively) simple individual elements interacting locally with

one another. This characterization —it should definitely not be considered a

definition— does capture a surprisingly wide range of events, structures or phe-

nomena occurring in the natural world, that most of us would intuitively label as

complex. It even applies to many artificial constructs and products of the human

mind. While novels by Thomas Pynchon are typically replete with oddball char-

acters, events therein are for the most part constrained by the laws of physics

and usually follow a relatively straightforward timeline. What makes Pynchon’s

novels complex is that they involve many, many such characters interacting with

one another. The complexity arises not from the characters themselves, however

singularly they may behave, but rather from their mutual interactions over time.

Likewise, many of Escher’s celebrated drawings1 are based on tiling of relatively

simple pictorial elements, which undergo slow, gradual change across the draw-

1See http://www.mcescher.com/gallery/transformation-prints for reproductions of

artwork by Maurits Cornelis Escher.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

1.1. COMPLEXITY IS NOT SIMPLE 13

ing. The complexity lies in the higher level patterns that arise globally from

the mutual relationship of the neighbouring pictorial units, which are themselves

(relatively) simple.

Nice and fine perhaps, but turning this into a formal definition of complexity

remains an open challenge. One can turn the problem on its head by coming

up instead with a definition of what is not complex, i.e., a formal definition of

“simple”. Again purely intuitive and/or egocentric definitions are possible, such

as “simple =my 5-year old could do this”. Like complexity, simplicity is to a good

part in the eye of the beholder. I am a physicist by training and an astrophysicist

and teacher by trade; I am well aware that my own personal definition of what

is “simple” does not intersect fully with that of most people I know. Yet such

divergences of opinions are often grounded in the language use to describe and

characterize a phenomenon.

Consider for example the game of billiard, known more colloquially as pool2.

Even without any formal knowledge of energy and momentum conservation, a

beginner develops fairly rapidly a good intuitive feel for how the cue ball should

hit to propel a targeted numbered ball into a nearby pocket; reliably executing

the operation is what requires skill and practice. Now, armed with Newton’s

laws of motion, and knowing the positions of the pocket and two participating

balls, the needed impact point of the cue ball can be calculated to arbirarily high

2The reader unfamiliar with this game will find on the following Wikipedia

page just enough information for making sense the foregoing discussion:

https://en.wikipedia.org/wiki/Eight-ball

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

14 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

accuracy; the practical problem posed by the production of the proper trajectory

of the cue ball, of course, remains... Whichever way one looks at it, the collision

of two (perfectly spherical) billiard balls is definitely simple, provided it takes

place on a perfectly flat table.

If physical laws allow in principle the computation of the exact trajectories of

two colliding billiards balls, the same laws applied repeatedly should also allow

generalization to many balls colliding in turn with one another. Experience shows

that the situation rapidly degrades as the number of balls increases. I have not

played billiard much, but still enough to state confidently that upon starting the

game, no single billiard break is ever exactly alike another, despite the fact that

the initial configuration of the 15 numbered balls (the “rack”) is always the same

and geometrically regular —close packing in a triangular shape. The unfolding of

the break depends not just on speed, trajectory angle and impact position of cue

ball, but also on the exact distances between each ball in the rack and whether

one ball actually touches another, i.e., on the exact position of each ball. For

all practical purposes, the break is unpredictable, because it exhibits extreme

sensitivity to the initial conditions, even though the interaction between any pair

of colliding balls is simple and fully deterministic.

Is complexity then just a matter of sheer number ? If the definition of com-

plexity is hiding somewhere in the interactions between many basic elements,

then at least from a modelling point of view we may perhaps be in business. If

the underlying physical laws are known, computers nowadays allow us to simu-

late the evolution of systems made up of many, many components, to a degree of

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

1.2. RANDOMNESS IS NOT COMPLEXITY 15

accuracy presumably limited only by the number of significant digits with which

numbers are encoded in the computer’s memory. This “brute force” approach,

as straightforward as it may appear in principle, is plagued by many problems,

some purely practical but others more fundamental. Looking into these will prove

useful to start better pinning down what complexity is not.

1.2 Randomness is not complexity

If we are to seriously consider the brute force approach to the modelling of com-

plex systems, we first need to get a better feel for what is meant by “large num-

ber”. One simple (!) example should suffice to quantify this important point.

Consider a medium-size classroom, say a 3 meter-high room with a 10× 10m

floor. With air density at ρ = 1.225 kg m−3, this 300m3 volume contains 367 kg

of N2 and O2 molecules, adding up to some 1028 individual molecules. Written

out long that number is

10000000000000000000000000000

It does not look so bad, but this is actually a very large number, even by as-

tronomical standards; just consider that the total number of stars in all galaxies

within the visible universe is estimated to be in the range 1022—1024. Another

way to appreciate the sheer numerical magnitude of 1028 is to reflect upon the

fact that 1028 close-packed sand grains of diameter 0.25 mm —“medium-grade

sand” according to the ISO 14688 standard, but quality beach stuff nonetheless—

would cover the whole surface of the Earth, oceans included, with a sandy layer

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

16 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

1 kilometer thick. That is how many molecules we need to track —positions and

velocities— to “simulate” air in our classroom.

At this writing, the supercomputers with the largest memory can hold up to

∼ 103 TB = 1015 B in RAM. Assuming 64 bit encoding of position and velocity

components, each molecule requires 48B, so that at most 2 × 1013 molecules

can be followed “in-RAM” 3. This is equivalent to a cubic volume element of

air smaller than a grain of very fine sand. We are a long way from simulating

air in our classroom, and let’s not even think about weather forecasting! This

is a frustrating situation: we know the physical laws governing the motion and

interaction of air molecules, but don’t have the computing power needed to apply

them to our problem.

Now, back to reality. No one in his/her right mind would seriously advocate

such a brute force approach to atmospheric modelling, even if it were techni-

cally possible, and not only because brute force is seldom the optimal modelling

strategy. Simply put, complete detailed knowledge of the state of motion of ev-

ery single air molecule in our classroom is just not useful in practice. When I

walk into a classroom, I am typically interested in global measures such as tem-

perature, humidity level, and perhaps the concentration gradient of Magnum 45

aftershave so as to pinpoint the location of the source and expell the offending

emitter.

3Molecules also have so-called internal degrees of freedom, associated with vibrational and

rotational excitation, but for the sake of the present argument these complications can be safely

ignored.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

1.2. RANDOMNESS IS NOT COMPLEXITY 17

It is indeed possible to describe, understand and predict the behavior of gas

mixtures such as air, through the statistical definition of global measures based on

the physical properties of individual molecules and of the various forces governing

their interactions. This statistical approach stands as one of the great successes

of nineteenth century physics. Once again a simple example can illustrate this

point.

The two panels atop Figure 1.1 display two different realizations of the spa-

tially random distribution of N = 300 particles within the unit square. Even

though the horizontal and vertical coordinates of each particles are randomly

drawn from a uniform distribution in the unit interval, the resulting spatial dis-

tributions are not spatially homogeneous, showing instead clumps and holes,

which is expected considering the relatively small number of particles involved.

Viewing these two distributions from a distance, the general look is the same,

but compared closely the two distributions differ completely in detail —not one

single red particle on the left is at exactly the same position as any single green

particle on the right.

Consider now the following procedure: from the center of each unit square,

draw a series of concentric circles with increasing radii r; the particle number

density (ρ, in units of particles per unit area) can be computed by counting the

number of particles within each such circle, and dividing by its surface area πr2.

Mathematically this would be written as follows:

ρ(r) =
1

πr2

N∑

n=1







1 if x2
n + y2n ≤ r2 ,

0 otherwise .

(1.1)

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

18 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

Figure 1.1: Going from the microscopic to the macroscopic scale. The top panels

show two distinct random distributions of N = 300 particles on the unit square.

The bottom panel shows the result of using eq. (1.1) to calculate the particle

density, based on a series of circles of increasing radii, concentric and centered on

the middle of the unit square, now for two distinct random distributions of N =

107 particles. Note the logarithmic horizontal axis. The resulting density curves

differ completely for radii smaller than a few times the mean inter-particular

distance δ = 0.0003, but converge to the expected value 107 particles per unit

area for radii much larger than this distance (see text).

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

1.2. RANDOMNESS IS NOT COMPLEXITY 19

Clearly as the radius r is made larger, more and more particles are contained

within the corresponding circles, making the sum in eq. (1.1) larger, but the area

πr2 also increases, so it is not entirely clear a priori how the density will vary

as the radius r increased. The bottom panel of Figure 1.1 shows the results of

this exercise, applied now to two realizations of not 300 but N = 107 particles

again randomly distributed in the unit square. The statistically uniform packing

of N = 107 particles in the unit square implies a typical inter-particle distance of

order δ ≃ 1/
√
N ∼ 0.0003 here. For radii r in eq. (1.1) of this order or smaller, the

computed density value is critically dependent on the exact position of individual

particles, and for r < δ is it quite possible that no particle is contained within the

circle, leading to ρ = 0. This is what is happening for the red curve on Fig. 1.1

up to r ≃ 0.0001, while in the case of the distribution associated with the green

curve it just so happens that a clump of particles is located at the center of the

unit cube, leading to abnormally large values for the density even for radii smaller

than δ. Nonetheless, as r becomes much larger than δ, both curves converge to

the expected value ρ = 107 particles per unit area.

Figure 1.1 illustrates a feature that will be encountered repeatedly in subse-

quent chapters of this book, namely scale separation. At the microscopic scale

(looking at the top panels of Fig. 1.1 up close) individual particles can be dis-

tinguished, and the description of the system requires the specification of their

positions, and eventually their velocities and internal states, if any. In contrast,

at the macroscopic scale (looking at the top panels of Fig. 1.1 from far back),

global properties can be defined that are independent of details at the microscopic

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

20 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

scale. Of course, if two systems are strictly identical at the microscopic level, their

global properties will also be the same. What is more interesting is when two

systems differ at the microscopic level, such as in the two top panels of Fig. 1.1,

but have the same statistical properties (here x and y coordinates uniformly dis-

tributed in unit interval); then their physical properties at the macroscopic scale,

such as density, will also be the same.

It is worth reflecting a bit more upon this whole argument, to fully appreciate

under which conditions global properties such as density can be meaningfully

defined. Considering the statistical nature of the system, one may be tempted

to conclude that what matters most is that N be large; but what do we mean

by “large” ? Large with respect to what ? The crux is really that a good

separation of scale should exist between the microscopic and macroscopic. The

inter-particle distance δ (setting the microscopic scale) must be much smaller

than the macroscopic scale L at which global properties are defined; in other

words, N should be large enough so that δ ≪ L. The two vertical dashed lines

on Figure 1.1 have been drawn to indicate the scale boundaries of the microscopic

and macroscopic regimes; the exact values of r chosen are somewhat arbitrary,

but a good separation of scale implies that these two boundaries should be as far

as possible from one another. In the case of air in our hypothetical classroom,

δ ≃ 3× 10−9 m, so that with a macroscopic length scale ∼ 1m, scale separation

is very well satisfied.

What happens in the intermediate scale regime, i.e., between the two dashed

lines on Fig. 1.1, is an extremely interesting question. Typically, meaningful

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

1.2. RANDOMNESS IS NOT COMPLEXITY 21

global properties cannot be defined, and N is too large to be computationally

tractable as a direct simulation. In closed thermodynamic systems (such as air

in our classroom), also lurking somewhere in this twilight zone of sorts is the

directionality of time: (elastic) collisions between any two molecules are entirely

time-reversible, but macroscopic behavior, such as the spread of olfactively un-

pleasant aftershave molecules from their source, is not, even though it ultimately

arises from time-reversible collisions. Fascinating as this may be, it is a different

story, so we should return to complexity since this is complex enough already.

If largeN and scale separation are necessary conditions for the meaningful def-

inition of macroscopic variables, they are not sufficient conditions. In generating

the two top panels of Fig. 1.1, particles are added one by one by drawing random

numbers in the unit interval to set their horizontal (x) and vertical coordinates

(y). The generation of the (x, y) coordinates for a given particle is entirely inde-

pendent of the positions of particles already placed in the unit square; particle

positions are entirely uncorrelated. We will encounter repeatedly in subsequent

chapters situations where the “addition” of a particle to a system is entirely set

by the locations of particles already in the system. Particle positions are then

strongly correlated, and through these correlations complexity can persist at all

scales up to the macroscopic.

To sum up the argument: while systems made up of many interacting ele-

ments may appear quite complex at their microscopic scale, there are circum-

stances under which their behavior at the macroscopic scale can be subsumed

into a few global quantity for which simple evolutionary rules can be constructed

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

22 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

or inferred experimentally. The take-home message here is then the following: al-

though complex natural systems often involve a large number (relatively) simple

individual elements interacting locally with one another, not all systems made

up of many interacting elements exhibit complexity in the sense to be developed

throughout this book. The 1028 air molecules in our model classroom, depiste

their astronomically large number and ever occurring collisions with one another,

collectively add up to a simple system.

1.3 Chaos is not complexity

Complex behavior can actually be generated in systems of very few interacting

elements. Chaotic dynamics is arguably the best known and most fascinating

generator of such behavior, and there is no doubt that patterns and structures

produced by systems exhibiting chaotic dynamics are “complex”, at least in the

intuitive sense alluded to earlier.

Practically speaking, generators of chaotic dynamics can be quite simple in-

deed. The logistic map, a very simple model of population growth under limited

carrying capacity of the environment, provides an excellent case in point. Con-

sider a biological specie with a yearly reproduction cycle, and let xn measure the

population size at year n. Under the logistic model of population growth the

population size at year n+ 1 is given by

xn+1 = Axn(1− xn) , n = 0, 1, 2, ... (1.2)

where A is a positive constant, and x0 is the initial population. Depending on

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

1.3. CHAOS IS NOT COMPLEXITY 23

the chosen numerical value of A, the iterate sequence x0, x1, x2, ... can converge to

zero, or to a fixed value, or oscillate periodically, multiperiodically or aperiodically

as a function of the iteration number n. These behaviors are best visualized by

constructing a bifurcation diagram, as on the bottom left panel of Fig. 1.2 below.

The idea is to plot successive values of xn produced with a given value of A,

excluding if needed the transient phase during which the initial value x0 converges

to its final value or set of values, and repeating this process for progressively

larger values of A. Here for values of 1 < A < 3, the iterate sequences converges

to a fixed non-zero numerical value, which gradually increases with increasing

A; this leads to a slanted line in the bifurcation diagram, as successive values

of xn for a given A are all plotted atop on another. Once A exceeds 3 the

iterates alternate between two values, leading to a split into two branches in the

bifurcation diagram. Further increases of A lead to successive splittings of the

various branches, until the chaotic regime is reached, at which point the iterate

xn varies aperiodically. This is a classical example of transition to chaos through

a period-doubling cascade.

The bifurcation diagram for the logistic map is certainly complex in the ver-

nacular sense of the word; most people would certainly have a hard time drawing

it with pencil and paper. There is in fact much more to it than that. The series

of nested closeups on Fig. 1.2 zoom in on the end point of the period-doubling

cascade, on a branch of the primary transition to chaos. No matter the zooming

level, the successive bifurcations have the same shape and topology. This self-

similarity is the hallmark of scale invariance, and marks the bifurcation diagram

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

24 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

Figure 1.2: Bifurcation diagram for the logistic map (bottom left), as given by

eq. (1.2). The first bifurcation from the trivial solution xn = 0 occurs at A = 1,

off to the left on the horizontal scale. The other three frames show successive

nested closeups (red→blue→green) on the the period doubling cascade to chaos.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

1.3. CHAOS IS NOT COMPLEXITY 25

as a fractal structure. We will have a lot more to say on scale invariance and

fractals in subsequent chapters, as these also arise in the many complex systems

to be encountered throughout this book.

Chaotic systems such as the logistic map also exhibit structural sensitivity,

in the sense that they can exhibit qualitative changes of behavior when control

parameters —here the numerical constant A— undergoes small variations. For

example, in the case of the logistic map, increasing A beyond the value 3.0 causes

the iterate xn to alternate below a low and high value, whereas before it converged

to a single numerical value. In the chaotic regime the map is also characterized

by sensitivity to initial condition, in that the numerical difference between the

xn’s of two sequences differing by an infinitesimally small amount at n = 0 is

amplified exponentially in subsequent iterations.

Many complex systems to be encountered in the following chapters exhibit

similar sensitivities, but for entirely different reasons, usually associated with the

existence of long range correlations established within the system in the course

of its prior evolution, through simple and local interactions between their many

constitutive elements. The cleanest examples of chaotic systems, in contrast, in-

volve a few elements (or degrees of freedom), subject to strong nonlinear coupling.

Although such chaotic system generate patterns and behavior that are complex

in the intuitive sense of the word, in and of themselves they are not complex in

the sense to be developed in this book.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

26 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

1.4 Open dissipative systems

One common feature of systems generating complexity is that they are open and

dissipative. Billiard can serve us well once again as providing a simple example

of these notions. After a billiard break, the moving balls eventually slow down

to rest (with at least one hopefully falling into a pocket in the process). This

occurs because of kinetic energy loss due to friction on the table’s carpet, and

not-quite-elastic collisions with the table’s bumpers. The system jointly defined

by the moving balls is closed, because it is subjected to no energy input after the

initial break, and is dissipative because that energy is slowly lost to friction (and

ultimately, heat) until the system reaches its lowest energy equilibrium state: all

balls at rest.

Imagine now that the billiard table in located inside a ship sailing a rough

sea, so that the table is ever slowly and more or less randomly tilted back and

forth. Following the break, the balls may slow down to some extent, but will

not come to rest since they intermittently pick up energy from the moving table.

They will also sometimes temporarily lose kinetic energy, of course, for example

when finding themselves moving “uphill” due to an unfavorable tilt of the table.

But the point is that the balls will not stop moving (well, until they all end up in

pockets) no matter how long we wait. A player somehow unaware of the ship’s

rock-and-roll would undoubtedly wonder at the curiously curved trajectories and

spontaneous acceleration and decceleration of the moving billiard balls... and

perhaps conclude that his/her seventh Piña Colada was one too many.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

1.4. OPEN DISSIPATIVE SYSTEMS 27

In this seafaring billiard situation the equilibrium state is one where, on aver-

age, the table’s motion injects energy into the system at the same rate as it gets

dissipated into heat by friction. The system is still dissipative but is now also

open, in that it benefits from an input of energy from an external source. At equi-

librium, there is as much energy entering the system as is being dissipated, but

the equilibrium state is now more interesting: the balls are perpetually moving

and colliding, a consequence of energy moving through the system.

A most striking property of open dissipative system is their ability to gen-

erate large-scale structures or patterns persisting far longer than the dynamical

timescales governing the interactions of microscopic constituents. A waterfall pro-

vides a particularly simple example; it persists with its global shape unchanged

for times much, much longer that the time taken by an individual water molecule

passing through it. As a physical object, the waterfall is obviously “made up” of

water molecules, but as a spatiotemporal structure the identity of its individual

water molecules is entirely irrelevant. Yet, block off the water supply upstream,

and the waterfall disappears on the (short) timescale it takes a water molecule to

traverse it. The waterfall persists as a structure only because water flows through

it, i.e., the waterfall is an open system.

This line of argument carries over to systems far more intricate than a “sim-

ple” waterfall. Consider for example the Earth’s climate; now that is certainly a

complex system in any sense of the word. Climate collects a very wide range of

phenomena developing on an equally wide range of spatial and temporal scales:

the seasonal cycle, large-scale atmospheric wind patterns such as the jet stream,

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

28 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

oceanic currents, recurrent global patterns such as El Niño, tropical storms, down

in scales to thunderstorm and tornadoes, to name but a few. Solar radiative en-

ergy entering the atmosphere from above is the energy source ultimately power-

ing all these phenomena. Yet, globally the Earth remains in thermal equilibrium,

with as much energy absorbed on the dayside than radiated back into space over

its complete surface in the course of a day. Earth is an open system, with solar

energy flowing in and out. If the sun were to suddenly stop shining, the pole-

equator temperature gradient would vanish and all atmospheric and oceanic fluid

motions would inexorably grind to a halt, much like the billiard balls eventually

do after a break on a fixed table. Everything we call climate is just a tempo-

rary channelling of a small part of the “input” solar radiative energy absorbed

by Earth, all ultimately liberated as heat via viscous dissipation and radiated

back into space. The climate maintains its complexity, and generates persistent

large-scale weather patterns —the equivalent of our waterfall— by tapping into

the energy flowing through the Earth atmosphere, surface and oceans. Earth is

an open dissipative system on a very grand scale.

Most complex systems investigated in this book, although quite simple in

comparison to Earth’s climate, are open dissipative systems in the same sense.

They benefit from an outside source of energy, and include one or more mecha-

nisms allowing to evacuate energy at their boundary or dissipate it internally (or

both).

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

1.5. NATURAL COMPLEXITY 29

1.5 Natural complexity

Although I have wiggled away from formally defining complexity, considering the

title of this book I do owe it to the reader to at least clarify what I mean by

natural complexity, and how this relates to complexity in general.

Exquisitively complex phenomena can be produced in the laboratory under

well-controlled experimental conditions. Only in the field of physics, phase tran-

sitions and fluid instabilities offer a number of truly spectacular examples. In

contrast, the systems investigated throughout this book are idealizations of nat-

urally occurring phenomena characterized by the autonomous generation of struc-

tures and patterns at macroscopic scales that are not directed or controlled at

the macroscopic level or by some agent external to the system, but arise in-

stead “naturally” from dynamical interactions at the microscopic level. This is

one mouthful of a characterization, but it does apply to natural phenomena as

diverse as avalanches, earthquakes, solar flares, epidemics, and ant colonies, to

name but a few.

Each chapter in this book presents a simple (!) computational model of such

natural complex phenomena. That natural complexity can be studied using sim-

ple computer-based models may read like a compounded contradiction in terms,

but in fact it is not, and this relates to another key word in this book’s title:

modelling. In the sciences we make models —whether in the form of mathe-

matical equations, computer simulations, or laboratory experiments— in order

to isolate whatever phenomenon is of interest from secondary “details”, so as to

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

30 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

facilitate our understanding of the said phenomenon. A good model is seldom

one which includes as much detail as possible for the system under study, but is

instead one just detailed enough to answer our specific questions regarding the

phenomenon of interest. Modelling is thus a bit of an art, and it is entirely legit-

imate to construct distinct models of the same given phenomenon, each aiming

at understanding a distinct aspect.

To many a practicing geologist or epidemiologist, the claim that the very sim-

ple computational models developed in the following chapters have anything to

do with real earthquakes or real epidemics may well be deemed professionally of-

fending, or at best dismissed as an infantile nerdy joke. Such reactions are quite

natural, considering that still today in most hard sciences explanatory frame-

works tend to be strongly reductionist, in the sense that explanations of global

behaviors are sought and formulated preferentially in terms of laws operating at

the microscopic level. My own field of inquiry, physics, has in fact pretty much

set the standard for this approach. In contrast, in the many complex systems

modeled in this book, great liberty is often taken in replacing the physically cor-

rect laws by largely ad hoc rules more or less loosely inspired by the real thing.

In part because of this great simplification at the microscopic level, what these

models do manage to capture is the wide separation of scales often inherent to

the natural systems or phenomena under consideration. Such models should be

thus considered as complementary to conventional approaches based on rigourous

ab initio formulation of microscopic laws, which often end up severely limited in

the range of scales they can capture.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

1.6. ABOUT THE COMPUTER PROGRAMS LISTED IN THIS BOOK 31

This apology of simple models is also motivated, albeit indirectly, by my

pledge not to formally define complexity. Instead, you will have to develop your

own intuitive understanding of it, and if along the way you come up with your

own convincing formal definition of complexity, all the better! To pick up on the

quote opening this introductory chapter, there is all the difference in the world

between theory and practice, between knowledge and know-how. This finally

takes us to the final key word of this book’s title: handbook. This is a “how-to”

book; its practical aim is to provide material and guidance to allow you to learn

about complexity through hands-on experimentation with complex systems. This

will mean coding and running computer programs, and analyzing and plotting

their output.

1.6 About the computer programs listed in this

book

My favorite book on magnetohydrodynamics opens its preface with the statement:

“Prefaces are rarely inspiring and, one suspects, seldom read”. I very much

suspect so as well, and consequently opted to close this introductory chapter

with what would conventionally be preface material, to increase the probability

that it actually be read because it is really important stuff.

If this book is to be a useful learning tool, it is essential for the reader to

code up and run programs, and modify them to carry out at least some of the

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

32 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

additional exercises and computational explorations proposed a the end of each

chapter, including at least a few of the Grand Challenges. Having for many years

taught introductory computational physics to the first-semester physics cohort at

my home institution, I realize full well that this can be quite a tall order for those

without prior programming experience, and, at first, a major obstacle to learning.

Accordingly, in developing the models and computer codes listed throughout this

book I have opted to retain the same design principle as in the aforementioned

introductory class:

1. No programming prerequisites; detailed explanations accompany every com-

puter code listed.

2. The code listings for all models introduced in every chapter must fit on one

page, sometimes including basic graphics commands (a single exceptions to

this rule does occur, in chapter 10).

3. All computer programs listed use only the most basic coding elements,

common to all computing languages: arrays, loops, conditional statements,

and functions. Appendix A provides a description of these basic coding

elements and their syntax.

4. Computing language-specific capabilities, including pre-defined high-level

functions, are avoided to the largest extent possible.

5. Clarity and ease of understanding of the codes themselves is given prece-

dence over run-time performance or “coding elegance”.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

1.6. ABOUT THE COMPUTER PROGRAMS LISTED IN THIS BOOK 33

Each chapter provides a complete code listing (excluding plotting/graphics

commands) allowing to reproduce simulation results presented therein. These

are provided in the programming language Python, even though most of the

simulation codes introduced throughout this book were originally designed in the

C or IDL programming languages. The use of Python is motivated primarily

by (1) its availability as free-of-charge, public domain software, with excellent

on-line documentation, (2) the availability of outstanding public-domain plotting

and graphics libraries, and (3) its rising “standard” status for university-level

teaching. Regarding this latter point, by now I am an old enough monkey to have

seen many such pedagogical computing language rise and fall (how many out there

remember BASIC ? APL ? PASCAL ?...). However, in view of the third design

principle above, the choice of a computing language should be largely irrelevant,

as the source codes4 should be easy to “translate” into any other computing

languages. This wishful expectation was subjected to a real-life reverse test in

the summer of 2015: two physics undergraduates in my department worked their

way through an early, C-version of this book, recoding everything in Python.

Both had some prior coding experience in C, but not in Python; nonetheless few

difficulties were encountered with the translation process.

The above design principle also have significant drawbacks. The simulation

4Strictly speaking what I refer to here as “source codes” should be called “scripts”, since

Python instructions are “interpreted”, rather than compiled and executed. While well aware

of the distinction, throughout this book I opted to retain the more familiar descriptor “source

code”.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

34 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

codes are usually very sub-optimal from the point of view of run-time speed.

Readers with prior programming experience, or wishing to develop it, will find

many hints for more efficient computational implementations in some of the ex-

ercises included at the end of each chapter. Moreover, the codes are often not

as elegant as they could be from the programming point of view. Experienced

programmers will undoubtedly find some have a FORTRAN-esque flavor, but so

be it. Likewise, seasoned Python programmers may be shocked by the extremely

sparse use of higher-level Python library functions, which in many cases could

have greatly shortened the coding and/or increase run-time execution speed.

Again, this simply reflects the fact that code portability and clarity have been

given precedence.

A more significant but unfortunately unavoidable consequence of my self-

imposed requirement to keep computational (as well as mathematical and phys-

ical) prerequisites to a minimum is that some fascinating natural complex phe-

nomenon had to be excluded from consideration in this book; most notably per-

haps, anything related to fluid turbulence or magnetohydrodynamics, but also

some specific natural phenomena such as solar flares, geomagnetic substorms,

Earth’s climate, or the workings of the immune system, or of the human brain,

if we want to think really complex. Nonetheless, a reader working diligently

through the book and at least some of the suggested computational explorations

should come out well-equipped to engage in the study and modelling of these and

other fascinating instances of natural complexity.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

1.7. SUGGESTED FURTHER READINGS 35

1.7 Suggested further readings

Countless books on complexity have been published in the last quarter century,

at all levels of complexity (both mathematically and conceptually speaking!).

Among the many available non-mathematical presentations of the topic, the fol-

lowing early best-seller still offers a very good and insightful broad introduction

to the topic:

Gell-Mann, M., The quark and the Jaguar, W.H. Freeman (1994).

For something at a similar introductory level but covering more recent develop-

ments in the field, see e.g.:

Mitchell, M., Complexity: a guided tour, Oxford University Press (2009).

At a more technical level, the following remains a must-read:

Kauffman, S.A., The Origin of Order, Oxford University Press (1993).

With regards to natural complexity and the hands-on, computational approach

to the topic, I found much inspiration in and learned an awful lot from:

Flake, G.W., The computational beauty of Nature, MIT Press (1998).

Complexity is covered in chapters 15 through 19, but the book is well worth

reading cover to cover. In the same vein, the following is a classic not to be

missed:

Resnick, M., Turtles, termites and traffic jams, MIT Press (1994).

Statistical physics and thermodynamics is a standard part of the physics cursus.

In my department the topic is currently taught using the following textbook:

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

36 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

Reif, F., Fundamentals of Statistical and thermal physics, reprint Waveland

Press (2009).

Good non-mathematical presentations aimed at a broader audience are however

far harder to find. Of the few I know, I would recommend chapter 4 in

Gamow, G., The great physicists from Galileo to Einstein, 1961, Dover reprint

(1988).

The literature on chaos and chaotic dynamics is also immense. At the non-

technical level, see for example:

Gleick, J. Chaos: making a new science, Viking Books (1987).

For readers fluent in calculus, I would recommend:

Mullin, T., (ed.) The Nature of Chaos, Oxford University Press (1993),

Hilborn, R.C., Chaos and Nonliner Dynamics, 2nded., Oxford University Press

(2000).

The logistic model of population growth is discussed in detail in chapters 5 and 6

of Mullin’s book. The functional and structural relationship between chaos and

complexity remains a nebulous affair. Those interested in the topic can find food

for thought in:

Prigogine, I., and Stengers, I., Order out of Chaos, Bantam Books (1984),

Kaneko, K., Chaos as a source of Complexity and Diversity in Evolution, in

Artificial Life, ed. C. Langton, MIT Press (1995).

The M.C. Escher foundation maintains a wonderful Web site, where reproductions

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

1.7. SUGGESTED FURTHER READINGS 37

of Escher’s art can be viewed and enjoyed; see

http://www.mcescher.com/

Anyone interested in Escher’s use of symmetry and transformations should not

miss

Schattschneider, D., Escher: Visions of Symmetry, 2nd ed., Abrams (2003).

Finally, next time you have a good block of reading time in front of you and are

in the mood for a mind-bending journey into complexity in the broadest sense of

the word, fasten your seat belts and dive into

Hofstadter, D.R., Gödel, Escher, Bach, Basic Books (1979).

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

38 CHAPTER 1. INTRODUCTION: WHAT IS COMPLEXITY?

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

Chapter 2

Iterated growth

The bewildering array of complex shapes and forms encountered in the natural

world, from tiny crystals to living organisms, often results from a growth process

driven by the repeated action of simple “rules”. In this chapter we examine this

general idea in the specific context of cellular automata, (hereafter abbreviated

CA), which are arguably the simplest type of computer programs conceivable.

Yet they can sometimes exhibit behaviors that, by any standard, can only be

described as extremely complex.

Cellular automata also exemplify, in a straightforward computational context,

a recurring theme that runs through all instances of natural complexity to be

encountered in this book: simple rules can produce complex global “patterns”

that cannot be inferred or predicted even when a complete, a priori knowledge

of these rules is at hand.

naturalcomplexity-2.tex, July 28, 2016 39 Natural Complexity, Paul Charbonneau, Université de Montréal

40 CHAPTER 2. ITERATED GROWTH

2.1 Cellular automata in one spatial dimension

Imagine a one-dimensional array of contiguous cells, sequentially numbered by

an index j starting at j = 0 for the leftmost cell. Each cell can be “painted”

either white or black, with the rule for updating the jth cell depending only on

its current color and those of the two neighbouring cells at positions j − 1 and

j + 1. Consider now the following graphical procedure: at each iteration, the

CA looks like a linear array of cells that are either black or white. If we now

stack successive snapshots of this row of cells below one another, we obtain a two

dimensional spatiotemporal picture of the CA’s evolution, in the form of a (black

& white) pixellized image such as formed on the CCD of a digital camera, except

that each successive row of pixels captures an iteration of the growth process,

rather than the vertical dimension of a truly two-dimensional image.

The simple question is then: starting from some given initial pattern of white

and black cells, how will the array evolve in response to the repeated application

of the update rule to every cell of the array ? As a first example, consider the

following very simple CA rule:

• First Rule: Cell j becomes (or stays) black if one or more of the neighbour

triad [j − 1, j, j + 1] is black; otherwise it becomes (or stays) white.

The top panel of Figure 2.1 shows the first 20 iterations of a CA abiding to

this rule, starting from a single black cell in the middle of an otherwise all-white

array. On this spatiotemporal diagram, the sideways growth of the CA translates

into a black triangular shape expanding by one cell per iteration from the single

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

2.1. CELLULAR AUTOMATA IN ONE SPATIAL DIMENSION 41

initial black cell. Starting again from a single black cell but adopting instead the

following, equally simple second rule:

• Second Rule: Cell j becomes (or stays) black if either or both of its

neighbours j− 1 and j+1 are black; otherwise it stays (or becomes) white.

yields the pattern plotted on the bottom panel Figure 2.1. The global shape is

triangular again, but now the interior is a checkerboard pattern of white and black

cell alternating regularly in both the spatial and temporal dimensions. With just

a bit of thinking, these two patterns could certainly have been expected on the

basis of the above two rules.

But is it always the case that simple CA rules lead to such simple, predictable

spatiotemporal patterns? Consider now the following update rule:

• Third Rule: Cell j becomes (or stays) black if one and only one of its two

neighbours j − 1 or j + 1 is black; otherwise it stays (or becomes) white.

This is again a pretty simple update rule, certainly as simple as our first and

second rules. The top panel of Figure 2.2 shows the pattern resulting from the

application of this rule to the same initial condition as before, namely a single

black cell at array center. The globally triangular shape of the structure is again

there, but the pattern materializing within the structure is no longer so simple.

Many white cells remain, clustered in inverted triangles of varing sizes but orga-

nized in an ordered fashion. This occurs because our third rule implies that once

the cells have reached an alternating pattern of white/black across the full width

of the growing structure, as on iterations 3, 7, and 15 here, the rule forces the

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

42 CHAPTER 2. ITERATED GROWTH

CA to reverts to all-white at the next iteration, leaving only two black cells at its

right and left extremities. Right/left symmetrical growth of new black cells then

resumes from these points, replicating at each end the triangular fanning pattern

produced initially from the single original black cell. Growth thus proceeds as a

sequence of successive branching, fanning out, and extinction in the interior.

The bottom panel of Figure 2.2 displays 512 iterations of the same CA as on

the top panel, with the cell boundaries now omitted. Comparing the top and

bottom panels highlights the fundamental difference between the “microscopic”

and “macroscopic” views of the structure. On the scale at which the CA is

operating, namely triad of neighbouring cells, a cell is either white or black. On

this microscopic scale the more conspicuous pattern to be noticed on the top

panel of Fig. 2.2 is that blacks cells always have white cells for neighbours at

right, left, up and down, but no so such “checkerboard” constraint applies to

white cells (unlike on the bottom panel of Fig. 2.1). At the macroscopic level,

on the other hand, the immediate perception is one of recursively nested white

triangles. In fact, the macroscopic triangular structure can be considered as being

made from three scaled-down copies of itself, touching at their vertices; each of

these three copies, in turn, is made up of three scaled-down copies of itself, and

so on down to the “microscopic” scale of the individual cells1.

1This structure belongs to a class of geomerical objects known as Sierpinski triangles. It

can be constructed by a number of alternate geometrical procedures. The simplest consists in

drawing a first triangle, then partitioning it into 4 smaller triangles by tracing three straight

line segments joining the edge centers, then repeating this process for the three outer triangles

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

2.1. CELLULAR AUTOMATA IN ONE SPATIAL DIMENSION 43

This type of recursive nesting is a hallmark of self-similarity, and flags the

structure as a fractal. For now you may just think of this concept as capturing

the fact that successive zooms on a small part of a structure always reveal the

same geometrical pattern, like with the bifurcation diagram for the logistic map

encountered in chapter 1 (cf. Fig. 1.2). More generally, self-similarity is a char-

acteristic feature of many complex systems, and will be encountered again and

again throughout this book.

Consider finally a last, fourth CA rule, hardly more complicated than our

third:

• Fourth Rule: Cell j becomes (or stays) black if one and only one of the

triad [j − 1, j, j + 1] is black, or if only j and j + 1 are black; otherwise it

stays (or becomes) white.

This rule differs from the previous three in that it now embodies a directional

bias, being asymmetrical with respect to the central cell j: a white cell at j−1 and

blacks cells at j and j + 1 will leave j black at the next iteration, but the mirror

configuration, j−1 and j black and j+1 white, will turn j white. The top panel

of Figure 2.3 shows the first 20 iterations of this CA, as usual (by now) starting

from a single black cell. The expected symmetrical triangular shape is there again,

but now the interior pattern lacks mirror symmetry, not surprisingly so perhaps,

considering that our fourth rule itself lacks right/left symmetry. But there is

more to it than that. Upon closer examination one also realizes that the left

so produced, and so on. The CA, in contrast, generates the same macroscopic structure via a

directional iterative spatiotemporal growth process.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

44 CHAPTER 2. ITERATED GROWTH

side of the structure shows some regularities, whereas the right half appears not

to. This impression is spectacularly confirmed upon pushing the CA to a much

larger number of iterations (bottom panel). On the right the pattern appears

globally random. As with our third rule, inverted white triangles of varying sizes

are generated in the course of the evolution, but their spatial distribution is quite

irregular and does not abide to any obvious recursive nesting pattern. On the

left, in contrast, the pattern is far more regular, with well-defined structures of

varying periodicities recurring along diagonal lines running parallel to the left

boundary of the structure.

With eight possible three-cell permutations of two possible states (white/black,

or 0/1, or whatever) and evolution rules based on three contiguous cells (the cell

itself plus its right and left neighbours), there exist 256 possible distinct evolu-

tionary rules2. Even if always starting from a single active cell, as on Fig. 2.1,

these various rules lead to a staggering array of patterns, going from triangular

wedges, repeating checkerboard or stripe patterns, simple or not-so-simple pat-

terns propagating at various angles, nested patterns (as on Fig. 2.2), mixtures of

2Describing CA rules in words, as done so far, can rapidly becomes quite awkward. A much

superior and compact description can be made using a 8-bit binary string, with each bit giving

the update (black= 0 and white= 1, say) associated with one of the eight possible permutations

of black/white on three cells. As a bonus, interpreting each such string as a binary coding of an

integer yields a number ranging from 0 to 255, which then uniquely labels each possible rule.

Chapter 3 of the book by Wolfram cited in the bibliography describes this procedure in detail.

Under this numbering scheme the four rules introduced above are numbered 254, 250, 90, and

30, respectively.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

2.1. CELLULAR AUTOMATA IN ONE SPATIAL DIMENSION 45

order and disorder (as on Fig. 2.3), all the way to complete randomness. You get

to explore some of these in one of the suggested computational exercises proposed

at the end of this chapter.

These 256 1D CA rules can be divided fairly unambiguously into four classes,

according to general properties of the end state they lead to that are independent

of the initial condition3.

• Class I CAs evolve to a stationary state; our First rule (Fig. 2.1) offers

an example, although keep in mind that the stationary state need not be

all-black or all-white.

• Class II CAs evolve into a periodic configuration, where each cell repeatedly

cycles through the same set of states (which may differ from one cell to the

next). Our second rule is a particularly simple examplar of this class.

• Class III CAs evolve into a non-periodic configuration. Even though Figure

2.2 looks quite regular, our third rule belongs in fact to this class, as you

get to verify in one of the computational exercises suggested at the end of

this chapter.

• Class IV CAs collect everything else that does not fit into the first three

3The classification is best established through the use of a random initial condition where

every cell in the initial state is randomly assigned white or black with equal probability. In

such a situation it is also necessary to introduce periodic boundary conditions, as if the 1D CA

were in fact defined on a closed ring: the last, rightmost cell acts as the left neighbour of the

first, leftmost cell; and vice-versa.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

46 CHAPTER 2. ITERATED GROWTH

classes; they are also, in some sense, the more interesting rules, in that they

yield configurations that are neither stationary, periodic, nor completely

aperiodic.

Figure 2.4 gives a minimal source code in the Python programming language

for running the 1D two-state CA of this section, with a value zero for white cells

and one for black cells. The CA evolution is stored in the 2D array image, the

first dimension corresponding to time/iteration, and the second to the spatial

extent of the CA (line 8). This code uses a single black cell at lattice center for

initial condition (line 9), and is set up to run the third rule introduced above. The

condition “one and only one of the nearest neighbours being black” is evaluated

by summing the corresponding numerical values of the cells (line 14); if the sum is

one, then node j turns black at the next iteration (value “1” in array image, line

15), otherwise remaines white (initialized value “0”). Periodicity is enforced in

the spatial direction (lines 18–19; see §D.2 for further detail on this). Upon com-

pletion of the CA’s evolution over the preset number of iterations, the structure

produced is displayed using the imshow() function from the matplotlib.pyplot

graphics library (lines 22–23).

2.2 Cellular automata in two spatial dimensions

Cellular automata are readily generalized to two (or more) spatial dimensions, but

the various possible lattice geometries open yet another dimension (figuratively

speaking!) to the specification of the CA and its update rules. It will prove

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

2.2. CELLULAR AUTOMATA IN TWO SPATIAL DIMENSIONS 47

useful to adopt an alternate but entirely equivalent formulation of CA based on

a lattice of interconnected nodes, conceptually equivalent to the center of cells on

Fig. 2.1–2.3. Figure 2.5 illustrates the idea, for different types of two-dimensional

lattices using different connectivities between neighbouring nodes.

On Cartesian lattices in two spatial dimensions (panels A and B), connectiv-

ity typically involves either only the 4 nearest neighbours (in red) at right/left-

/top/down of a given node (in black), or also the four neighbours along the two

diagonals (panel B)4. Anisotropic connectivities, as on panel C, can be reinter-

preted as changes in lattice geometry; upon introducing a horizontal displacement

of half an internodal distance per row and compressing vertically by a factor

sin(π/3) ≃ 0.866, as shown on panel D, one obtains a regular triangular lattice

with 6-neighbour connectivity. From the point of view of CA evolutionary rules,

the two lattices in C and D are topologically and operationally equivalent. What

is interesting in practice is that whether triangular or cartesian, these lattices can

all be conveniently stored as two-dimensional arrays in the computer’s memory,

and the “true” geometry becomes set by the assumed connectivity.

We first restrict ourselves to the following very simple 2D CA rule:

• A node becomes active if one and only one of its neighbours nodes is also

active.

Note that such a rule has no directional bias other than that imposed by the

4The top/bottom/right/left 4-neighbour connectivity on a Cartesian lattice is sometimes

referred to the von Neumann neighbourhood, and the 8-neighbour connectivity as the Moore

neighbourhood. See §D.1 for more on these matters.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

48 CHAPTER 2. ITERATED GROWTH

lattice geometry and connectivity: any one active node will do. However, a

noteworthy difference with the 1D CA rules considered previously is that here,

once activated a node remains activated throughout the remainder of the iterative

process. Nonetheless, as far as rules go, this is probably about as simple as it

could get in this context. Figure 2.6 lists a minimalistic Python source code for

this automaton, defined on a triangular lattice with 6-neighbour connectivity.

Note the following:

1. The code is structured as an outer temporal loop running a preset number

of temporal iterations n iter (lines 16–28), inside of which two nested loops

over each lattice dimension (lines 20–21) carry out the activation test.

2. The connectivity is enforced through the use of the 1D template arrays dx

and dy in which are hardwired the relative location, measured in lattice

increments, of the connected neighbours (lines 9–10); these 1D arrays are

then used to access the 2D array image which stores the state of the CA

proper (lines 23–24).

3. If a cell is to become active at the next iteration, its new state is temporarily

stored in the 2D work array update (line 26), which is reset to zero at the

beginning of each temporal iteration (line 18); only once all nodes have

been tested is the lattice array image updated (line 30). This synchronous

update is necessary, otherwise the lattice update would depend on the order

in which nodes are tested in the first set of lattice loops, thus introducing

an undesirable spatial bias that would distort growth.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

2.2. CELLULAR AUTOMATA IN TWO SPATIAL DIMENSIONS 49

Consider now growth beginning from a single occupied node (the “seed”) at

the center of a triangular lattice. The first three steps of the iterated growth

process are illustrated via the color-coding of lattice nodes on Fig. 2.5D. Starting

from a single active node, the next iteration is a hexagonal ring of 6 active nodes

(in red) surrounding the original active node (in black). At the next iteration

only the six nodes colored in orange abide to the 1-neighbour-only activation

rule, but on the following iteration each of these 6 “branches” will generate an

arc-shaped clump of 3 active nodes (in yellow) at its extremity. Figure 2.7 picks

up the growth at iteration 5 (top left), with subsequent frames plotted at a

cadence of 3 iterations. As the six “spines” grow radially outwards, the faces of

the growing structure eventually fill inwards from the corners, until a hexagonal

shape is produced; from that point on growth can only pick up again at the six

corners, and later towards the centers of the faces, eventually adding another

“layer” to the growing structure. The broken concentric white hexagons within

the structure plotted in the bottom right corner of Fig. 2.7 are the imprint of this

layered growth process. Evidently, here the 6-fold symmetry of the connectivity

remains reflected in the global, “macroscopic” shape of the growing structure;

this could perhaps have been expected, but certainly not the intricacies of details

produced within the structure itself. In fact there is much more to these details

than meets the eye; step back a bit to view the bottom right structure from

a distance, and it will be hardly distinguishable from the middle left structure

viewed at normal reading distance. This is again an indication of self-similarity.

All this being said, looking at Figure 2.7 the first thing that comes to mind

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

50 CHAPTER 2. ITERATED GROWTH

is of course: snowflakes! It might appear ludicrous to suggest that our very

artificial computational setup —triangular lattice, neighbour-based growth rule,

etc— has anything to do with the “natural” growth of snowflakes, but we will

have occasions to revisit this issue in due time.

A similar 2D CA simulation can be run on a Cartesian lattice with 8-neighbour

connectivity, starting again with a single active node at lattice center. All that

is needed is to append two elements to the stencil arrays dx and dy in the code

listed on Fig. 2.6. The first four steps of the growth process are again indicated

by the nodal color coding on Fig. 2.5B. The first iteration produces a 3× 3 block

of active nodes but at the next iteration our one-neighbour rule makes growth

possible only along diagonals quartering this 3×3 block (orange nodes). The next

iteration (yellow nodes) generate a 5-node 90-degree wedge about each of the four

extrusions generated at the preceding iteration; except for the 4-fold symmetry,

this is essentially the same growth pattern observed in 6-fold symmetry on the

triangular lattice (Fig. 2.5D). Figure 2.8 picks up the growth process at iteration

5, and subsequent frames are plotted on a 3-iteration cadence, as on Fig. 2.7.

Growth now proceeds from the corners of the squares, which spawn more squares

at their corners, and so on as the structure keeps growing, once again in a self-

similar fashion.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

2.3. A ZOO OF 2D STRUCTURES FROM SIMPLE RULES 51

2.3 A zoo of 2D structures from simple rules

We henceforth restrict ourselves to a Cartesian lattice with 8-neighbours connec-

tivity, and introduce a generalized 8-neighbour activation rule as follows: a node

becomes active if either n1 or n2 neighbouring nodes are active; We also include

in the rule the number s of “seed” active nodes used to initialize the growth

process. We write all this as:

(n1, n2) + s 1 ≤ n1, n2 ≤ 8 , n1 < n2 . (2.1)

A specific example will likely help more than further explanations: the rule (1, 5)+

1 means that we start from one active node (s = 1); a node becomes active if either

1 or 5 neighbouring nodes are active; and remains inactive otherwise, namely if it

has either 0, 2, 3, 4, 6, 7 or 8 active neighbours. Once again, no directional bias

is introduced, as it does not matter where the 5 active nodes (say) are located in

the 8-node group of neighbouring nodes. Under this notation, the rules used to

grow the structure on Fig. 2.7 would be written as (1) + 1.

Figure 2.9 shows a sample of structures grown using various such rules, as

labeled. The variety of structures produced even by this narrow subset of rules

is quite staggering, including again self-similarity, mixture of order and disorder,

compact structures porous or solid, etc. Some rules, such as (3, 6) + 5, do not

even generate regular outward growth, as extrusions fold back inward to fill deep

crevices left open in earlier phases of the iterated growth process.

Staring as these and other structures generated by other specific incarnation of

the 2-member rule (2.1), one is naturally tempted to extract some general trends;

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

52 CHAPTER 2. ITERATED GROWTH

for example, Rules beginning with “1” produce squares that grow by spawning

more squares at their corners, in a manner qualitatively similar to the basic (1)+1

rule; the numerical choice for n2 affects primarily the internal pattern. Rules

beginning with a “2’, on the other hand, produce diamonds-shaped structures,

with ordered and disordered internal regions, growing along their 4 approximately

linear faces; the numerical choice for n2 affects mostly the relative importance of

ordered and disordered regions in the interior. Rules with a “3” produce compact

structures, sometimes solid sometimes porous, with various patterns of symmetry

about vertical, horizontal or diagonal axes present at the global scale. Now, if

you find this convincing on the basis of Fig. 2.9, try running a simulation for rule

(3, 7) + 5 and reconsider your position!

The overall conclusion of our relatively limited explorations of two-dimensional

CA remains the same as with the one-dimensional CA considered previously: sim-

ple, microscopic growth rules can produce macroscopic structures ranging from

highly regular to highly “complex”, and very, very few of these structures could

have been anticipated knowing only the lattice geometry and the growth rules.

2.4 Agents, ants and highways

In the “classical” CAs considered thus far, the active elements are the lattice

nodes themselves, and so are fixed in space by definition. Another mechanism

for iterated growth involves active elements moving on and interacting with the

lattice (and/or with each other), according once again to set rules. Henceforth,

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

2.4. AGENTS, ANTS AND HIGHWAYS 53

such active elements will be defined as “Agents”. For example, an agent known

as an “ant” moves and operates on a lattice as follows, from one iteration to the

next:

• Move forward;

• If standing on a white node, paint it black and turn right by 90 degrees;

• If standing on a black node, paint it a whiter shade of pale (meaning white)

and turn left by 90 degrees;

These are pretty simple behavioral rules, yet they hold surprises in stock for us.

Figure 2.10 gives a simple numerical implementation of these behavioral rules.

As with most codes listed throughout this book, logical clarity and readability

have been given precedence over programming elegance, code length, or run-time

speed, and computing language-specific capabilities are systematically avoided.

Note the following:

1. The code is again structured as an outer temporal loop running a preset

number of temporal iterations n iter (starting on line 15).

2. The two arrays x step and y step store the x- and y-increments associated

with the four possible displacements, in the order down, left, up, right (lines

8–9). These are used to update the ant’s position on the lattice (ix, iy)

as per the ant’s direction, stored in the variable direction. Under this

ordering convention, turning right requires incrementing direction by +1

(line 24), and left by −1 (line 28).

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

54 CHAPTER 2. ITERATED GROWTH

3. The modulus operator “%” is used to enforce periodicity for the ant’s posi-

tion (lines 19–20) and stepping direction (lines 25 and 29). The instruction

a % b returns the remainer of the division of a by b, e.g., 7%3 = 1, 2%3 = 2,

3%3 = 0. See §A.3 for more on the use of the modulus operator in Python.

4. The change in the lattice state at the ant’s position is first calculated (vari-

able update) and the lattice updated (line 31) only once the if...else con-

struct is exited. This is needed because the lattice state at the ant’s position

sets the operating condition of this logical structure, so changing its value

within its blocks of instructions is definitely not a good idea in most pro-

gramming languages.

The top panel on Figure 2.11 shows the structure built by a single ant moving

on a 300×300 lattice, starting at the location marked by the red dot, and initially

pointing North (top of the page). The initial state of the lattice is all-white nodes.

These are the parameter setting and initial conditions implemented in the code

listed in Fig. 2.10. The first few thousands of iterations, shown in the inset

framed in red, produce if not a strictly random, at least highly disordered clump

of white and black nodes. But after a bit more than 10000 time steps, a switch to

a different behavior takes place. The ant now executes a periodic series of steps,

involving a lot of backtracking but also a net drift velocity along a diagonal

with respect to the lines of the Cartesian lattice, leaving behind in its trail a

highly ordered, spatially periodic pattern of white and black nodes (see green

inset). This behavior has been dubbed “highway building”, and it could hardly

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

2.4. AGENTS, ANTS AND HIGHWAYS 55

have been expected on the basis of the ant’s simple behavioral rules. Highway

building always proceeds along 45 degree diagonals, and once started would go

on forever on an infinite size lattice. The fact that the highway points here to the

South-East on Fig. 2.11 is determined by the initial condition: all-white nodes

and the ant pointing North.

In practice simulations such as on Fig. 2.11 are carried out on a finite size

lattice, on which horizontal and vertical periodicity is enforced. So here, pushing

the simulation farther would eventually lead to the ant (and its highway) leaving

the lattice near the SE corner, to reappear near the NW corner, still heading

SE, eventually hitting the structure it just built. This throws the ant into a

fit; disordered (re)painting prevails for a while, forming a structure statistically

similar to that characterizing the first 104 iterations, but after many thousands

of iterations highway building resumes, in a direction orthogonal to that of the

original highway, to the SW here. As the lattice fills with blotches of disorder and

stretches of highways crossing each other, highway building becomes increasingly

difficult, and if the evolution is pushed sufficiently far, on any finite-sized lattice

the end result is randomness.

Highway building is a pretty delicate process that is easily disturbed. The

bottom panel of Figure 2.11 shows what happens when a small number of ran-

domly selected lattice nodes are painted black before the ant starts moving. At

first the evolution proceeds as before, and highway building towards the SE be-

gins, but soon the ant hits one of the randomly distributed black node, triggering

disordered painting. Highway building eventually resumes, still towards the SE,

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

56 CHAPTER 2. ITERATED GROWTH

until another black node is encountered, triggering another, shorter disordered

episode that ends with highway building resuming now towards the NE; and so

on over the 51000 iterations over which this specific simulation was pursued.

2.5 Emergent structures and behaviors

We have barely scratched into the realm of structures and behaviors that can be

produced by CA and CA-like systems. Nonetheless, the take-home message of

this chapter should be already clear: very simple rules can produce very complex-

looking structures. But should we really be calling these structures “complex”

if their generating rules are simple? Or do we remain tied to an intuitive defini-

tion of “complex” relying on our visual perception of structures and behaviors?

Students of complexity have been rattling their brains over that one for quite a

while now.

Consider the measure known as algorithmic complexity ; namely the length

of the smallest computer program that can generate a given output —a spatial

pattern, a time series, a network, whatever. It may appear eminently reasonable

to suppose that more complex patterns require longer programs; simulating the

evolving climate certainly requires a much longer code (and a lot more computer

time!) than simulating the harmonic oscillation of a frictionless pendulum. It

seems to make sense, but we need to look no further than the simple 1D CAs

investigated in §2.1 to realize the limitations of this measure of complexity. The

CAs of Figs. 2.1, 2.2 and 2.3 can be produced by programs of exactly the same

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

2.6. EXERCISES AND FURTHER COMPUTATIONAL EXPLORATIONS 57

length, yet they could hardly be considered “equally complex”.

Our brief foray into cellular automata also highlights a theme that will recur

throughout this book and that is almost universally considered a defining fea-

ture of natural complexity: emergence; this term is used to refer to the fact that

global structures or behaviors on macroscopic scales cannot be reduced to (or

inferred from) the rules operating at the microscopic level of individual compo-

nents making up the system; instead, they emerge from the interactions between

these components. Synthetic snowflakes and ant highways are such examples of

emergence, and are by no means the last to be encountered in this book.

2.6 Exercises and further computational explo-

rations

1. Use the 1D CA code of Figure 2.4 to explore the behavior of the four CA

rules introduced in §2.1 when starting from a random initial condition, i.e.,

each cell is randomly assigned black or white color with equal probability.

If needed see §C.2 for a quick start on generating uniformly distributed

random deviates in Python. Make sure also to enforce periodic boundary

conditions (see §D.2).

2. The aim of this exercise is to explore further the patterns produced by 1D

CA rules, all of which relatively easy to implement in the source code of

Fig. 2.4. The following 5 individual rules produce patterns qualitatively

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

58 CHAPTER 2. ITERATED GROWTH

distinct from those already examined in §2.1. Unless the pattern looks

really trivial, make sure to run the CA for enough iterations to ascertain

its long-term behavior.

• Cell j becomes (or stays) black only if both j − 1 and j are white;

otherwise the cell stays (or becomes) white.

• Cell j becomes (or stays) black if any two cells of the triad [j−1, j, j+1]

are black, or if both j− 1 and j are white; otherwise the cell stays (or

becomes) white.

• Cell j becomes (or stays) white if j − 1 and j are both black, or if the

triad [j−1, j, j+1] are all white; otherwise the cell stays (or becomes)

black.

• Cell j becomes (or stays) black if cell j−1 and at least one of the pair

[j, j+1] are black, or if the triad [j−1, j, j+1] are all white; otherwise

the cell stays (or becomes) white.

• Cell j becomes (or stays) white if j +1 and j are both white, or if the

triad [j−1, j, j+1] are all black; otherwise the cell stays (or becomes)

black.

The last two rules, in particular, should be iterated over many hundreds

of iteration over a large lattice; the patterns produced are particularly in-

triguing. You should also run these five rules starting from a random initial

condition. To which CA class does each belong ?

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

2.6. EXERCISES AND FURTHER COMPUTATIONAL EXPLORATIONS 59

3. Modify the code of Fig. 2.6 to introduce 2-member rules such as those

used to produce Fig. 2.9 on the 6-neighbour triangular lattice. Explore the

growth produced by the set of rules (1, 2) + 1 through (1, 6) + 1. Is lattice

structure always imprinted on global shape ?

4. Modify the code of Fig. 2.6 to operate on a Cartesian 8-neighbour lattice,

and explore the sensitivity to initial conditions for rules (3, 4) + n and

(3, 5) + n. More specifically, consider the growth produced by using either

n = 3, 4 or 5 active nodes, organized either linearly, as a 2× 2 block, as a

diamond-shaped 5-node block, etc. Is the geometry of the initial condition

imprinted on global shape ?

5. The Game of Life is one of the most intensely studied 2D cellular automaton.

It is defined on a two-dimension Cartesian lattice periodic horizontally and

vertically, with eight-neighbour connectivity. Each lattice node can be in

one of two possible states, say “inactive” and “active” (or 0 and 1; or white

and black; or dead and alive, whatever), and evolves from one iteration to

the next according to the following rules:

• if an active node has less than two active neighbours, it becomes in-

active;

• if an active node has more than three active neighbours, it becomes

inactive;

• if an inactive node has three active neighbour, it become active;

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

60 CHAPTER 2. ITERATED GROWTH

• if a node has two active neighbours, it remains in its current state.

This automaton can generate “organisms”, i.e. shape-preserving structures

moving on the lattice, in some cases interacting with one one another or

with their environment to produce even more intricate behaviors. Modify

the code of Fig. 2.6 to incorporate the above rules, and run simulations

starting from a random initialization of the lattice in which each node is

assigned active or inactive status with equal probability.

6. The Grand Challenge for this chapter is to explore the behavior of another

interesting ant-like agent, known as the “termite”. Termites move ran-

domly on a lattice on which “wood chips” (i.e. black) have been randomly

dispersed. The termite’s behavioral rules are the following:

• Random walk until coming up against a wood chip;

• if currently carrying a wood chip, drop it at current position (i.e., next

to the one just bumped into), and resume random walk;

• else, pick up the chip bumped into, and resume random walk.

Code this up, perhaps starting from the “ant” code of Fig. 2.10. Section

D.3 may prove useful if you need a kickstart on how to code up random

walk on a lattice. How is the distribution of wood chips evolving with time

? Does this change if you let loose more than one termite on the lattice ?

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

2.7. FURTHER READINGS 61

2.7 Further readings

Pretty much anything and everything that could be written on cellular automata

can be found in

Wolfram, S., A new kind of science, Wolfram Media Inc. (2002).

The material covered in §2.1 and 2.2 follows rather closely parts of chapters 2

and 8 of this massive tome. The Wikipedia page on Cellular Automata includes

a good discussion of the history of CA research, with copious references to the

early literature (viewed March 2015).

For a succinct and engaging introduction to virtual ants and similar compu-

tational insects, see

Resnick, M., Turtles, Termites and Traffic Jams, MIT Press (1994).

as well as chapter 16 in

Flake, G.W., The computational beauty of Nature, MIT Press (1998).

Chapter 15 of this volume also offers a nice introduction to cellular automata,

including the Game of Life. As far as I know, the general notion of an “Agent”

has been borrowed from economics and introduced in complexity science by John

Holland; for more on this concept see:

Holland, J.H., Hidden Order, Reading: Addison-Wesley (1995).

Some years ago the term Artificial Life was coined to define a category for com-

putational ants, termites, turmites, boids, and other similarly designed compu-

tational critters, as well as those appearing in John Conway’s Game of Life. The

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

62 CHAPTER 2. ITERATED GROWTH

following collection of papers remains a great overview of this computational

zoology and its underlying motivations:

Langton, C. (ed.), Artificial Life, MIT Press (1995).

Langton is actually the designer of the ant agent starring in §2.4. The Wikipedia

page on Langton’s ant is worth viewing; it also provides examples of extensions

to multiple states ants, as well as a good sample of references into the technical

literature:

http://en.wikipedia.org/wiki/Langton%27s ant (viewed March 2015)

Finally, and not to be missed, a detailed study of the real thing:

Gordon, D.M., Ant encounters: interaction networks and colony behavior,

Princeton University Press (2010).

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

2.7. FURTHER READINGS 63

Figure 2.1: The first 20 iterations of a 1D cellular automaton abiding to the

first (top) and second (bottom) update rules introduced in the text, in both

cases starting from a single black cell at the center of the array (iteration 0, on

top). The horizontal direction is the “spatial” dimension of the 1D CA, and

time/iteration runs downwards.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

64 CHAPTER 2. ITERATED GROWTH

Figure 2.2: The top panel is identical in format to Figure 2.1, but shows now the

structure produced after 20 iterations by the third CA update rules introduced

in the text. The bottom panel shows the same CA, now pushed to 512 iterations,

with cell boundaries removed for clarity.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

2.7. FURTHER READINGS 65

Figure 2.3: Identical in format to Figure 2.2, but now for the fourth CA update

rule introduced in the text.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

66 CHAPTER 2. ITERATED GROWTH

1 # 1D 2-STATES CELLULAR AUTOMATON

2 import numpy as np

3 import matplotlib.pyplot as plt

4 #---

5 N=129 # Size of 1D CA

6 n_iter=64 # Number of iterations

7 #---

8 image=np.zeros([n_iter,N],dtype=’int’) # Initialize lattice to white

9 image[0,N/2]=1 # But set central node to black

10

11 for iterate in range(1,n_iter): # Iteration loop

12

13 for j in range(1,N-1): # Lattice loop

14 if image[iterate-1,j+1]+image[iterate-1,j-1] == 1: # Third rule

15 image[iterate,j]=1 # Turn node black

16 # End of lattice loop

17

18 image[iterate,0]=image[iterate,N-2] # Enforce periodicity

19 image[iterate,N-1]=image[iterate,1]

20 # End of iteration loop

21

22 plt.imshow(image,interpolation="nearest") # Display structure

23 plt.show()

24 # END

25

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

2.7. FURTHER READINGS 67

Figure 2.5: Example of some lattices and associated nodal connectivities, as

indicated by the line segments connecting the central black node to its nearest-

neighours in red. The meaning of orange- and yellow-colored nodes in (B) and

(D) will be elucidated further below.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

68 CHAPTER 2. ITERATED GROWTH

1 # 2D 2-STATES CELULAR AUTOMATON ON TRIANGULAR LATTICE

2 import numpy as np

3 import matplotlib.pyplot as plt

4 #---

5 N=24 # Size of 2D CA

6 n_iter=10 # Number of iterations

7 n_neighbour=6 # Number of connected neighbours

8 #---

9 dx=np.array([1, 0,1,-1,0,-1]) # nearest neighbour template

10 dy=np.array([-1,-1,0, 1,1, 0])

11 image=np.zeros([N,N],dtype=’int’) # Initialize lattice to white...

12 image[N//2,N//2]=1 # ...except central node to black

13 plt.scatter(N//2,N//2) # Set up plot, with central node

14 plt.axis([0,N,0,N])

15 plt.axes().set_aspect(’equal’)

16 for iteration in range(1,n_iter): # Iteration loop

17

18 update=np.zeros([N,N],dtype=’int’) # Set/reset evolution array

19

20 for i in range(1,N-1): # Lattice loops

21 for j in range(1,N-1):

22 cumul=0

23 for k in range(0,n_neighbour): # Loop over nearest-neighbour

24 cumul+=image[i+dx[k],j+dy[k]]

25 if image[i,j]==0 and cumul==1: # Only one active neighbour

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

2.7. FURTHER READINGS 69

Figure 2.7: Structure growth generated by the 2D cellular automaton with the

simple one-neighbour rule on an hexagonal, 6-neighbour lattice. The top left

image shows the structure after 5 iterations, and the other images display the

subsequent evolution on a 3-iteration cadence, the growth sequence being obvious.

In the notation of §2.3 this rule is written as (1) + 1.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

70 CHAPTER 2. ITERATED GROWTH

Figure 2.8: Structure generated by the 2D cellular automaton with the simple

rule (1)+1, now on a cartesian, 8-neighbour lattice. The top left image shows the

structure after 5 iterations, and the other images display the subsequent evolution

on a 3-iteration cadence, the growth sequence being again obvious.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

2.7. FURTHER READINGS 71

Figure 2.9: A zoo of structures grown by the 2D cellular automaton on a cartesian

8-neighbour lattice operating under a variety of rules, as labeled. All automata

executed over 100 iterations, except for the bottom three, for which 200 iterations

were executed.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

72 CHAPTER 2. ITERATED GROWTH

1 # HIGHWAY BUILDING BY LANGTON’S ANT

2 import numpy as np

3 import matplotlib.pyplot as plt

4 #--

5 N =300 # Lattice size

6 n_iter=20000 # Number of temporal iterations

7 #--

8 x_step=np.array([0,-1,0,1]) # Template arrays for steps

9 y_step=np.array([1,0,-1,0])

10 image=np.zeros([N,N],dtype=’int’) # Initialize lattice array, all white

11 ix=N//4 # Ant’s starting position in x

12 iy=N//4 # Ant’s starting position in y

13 direction=1 # Ant’s starting direction, North

14

15 for iteration in range(0,n_iter): # Temporal loop

16

17 ix+=x_step[direction] # Ant moves

18 iy+=y_step[direction]

19 ix=(N+ix) % N # Enforce periodicity in x

20 iy=(N+iy) % N # Enforce periodicity in y

21

22 if image[iy,ix] == 0: # On a white node

23 update=1 # Paint it black...

24 direction+=1 # ...and turn right...

25 direction=direction % 4 # ...but stay within step array

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

2.7. FURTHER READINGS 73

Figure 2.11: Highway building by an “ant agent” in a clean (top, 20000 iterations)

and noisy (bottom, 51000 iterations) background environment. The solid dots

show the starting (red) and ending (green) position of the ant, with the inset

on the top panel providing closeups of the lattice about these two points. The

lattice is assumed periodic in both the horizontal and vertical. See §D.2 for more

on periodic boundaries conditions on lattices.
naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

74 CHAPTER 2. ITERATED GROWTH

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

Chapter 3

Aggregation

The structures generated by the cellular automata of the preceding chapter grew

according to lattice-base rules that are both artificial and completely determinis-

tic. By contrast, naturally occurring inanimate structures typically grow by ac-

cretion of smaller size components, in a manner often far more random than deter-

ministic. Interplanetary dust grains grow by accretion of individual molecules, as

well as coalescence with other dust grains. Ice crystals and snowflakes grow by ac-

creting individual water molecules, a process often seeded by a dust grain —some

having fallen into the atmosphere from interplanetary space ! As spectacularly

exemplified by snowflakes, randomly-driven accretion can sometimes produces

structures combining surprisingly high geometrically regularity and complexity.

naturalcomplexity-2.tex, July 28, 2016 75 Natural Complexity, Paul Charbonneau, Université de Montréal

76 CHAPTER 3. AGGREGATION

3.1 Diffusion-limited aggregation

We focus here on one specific accretion process, known as diffusion-limited aggre-

gation (hereafter DLA). The idea is quite simple: particles move about randomly,

but stick together when they come into contact; clumps of particles produced in

this manner grow further by colliding with other individual particles, or clumps

of particles. Over time, one or more aggregates of individual particles will grow.

That is to be expected by the very nature of the aggregation process, but the

shape of the aggregates so produced turns out to be nothing like whatever one

might have expected.

Conceptually, simulating diffusion-limited aggregation is simple. Diffusion

and random walks are the macroscopic and microscopic representations of the

same thermodynamically irreversible process. This equivalence is discussed at

some length in Appendix C (see §C.6). A random walk is defined as a succession

of steps taken in directions that vary randomly from one step to another, in a

manner entirely independent of the orientation of prior steps. All that is needed

to simulate a random walk is really a random number generator1. Accordingly,

in a DLA simulation M random walking “particles” are left to do their usual

thing, but whenever any two come within some pre-set interaction distance, they

stick together. Computationally, this means checking M2/2 pairwise distances

at every temporal iteration. This ∝ M2 scaling rapidly makes the calculation

1Section §C.5 of Appendix C provides an introduction to the mathematical description and

statistical properties of random walks.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

3.2. NUMERICAL IMPLEMENTATION 77

computationally prohibitive at large M . Turning to random walks on a lattice

(see §D.3) neatly bypasses this problem, since all that needs to be done is to check,

for each particle, its nearest neighbour nodes on the lattice for the presence of a

“sticky” particle; the pairwise proximity test now scales as ∝ M .

In the specific implementation of DLA considered in this chapter, one or more

fixed “sticky” particles are placed on the lattice, serving as seeds for the growth

process. Random walking particles sticking on these seed particles stop moving

upon contact, and become sticky themselves.

3.2 Numerical Implementation

The source code listed in Figure 3.1 implements the lattice-based approach to

DLA just described, again in a manner far from the most computationally ef-

ficient, but at least easy to read and understand. The simulation operates in

two spatial dimensions on a N × N Cartesian lattice, but its generalization to

three spatial dimension is straightforward —although the visualisation of results

is not. In addition to two arrays x[n walkers] and y[n walkers] containing

respectively the horizontal and vertical coordinates (in lattice units) of each par-

ticle, we also introduce a 2D array grid, which holds values “0” for an empty

node and “1” if the node is occupied by one (or more) random walking particle.

Note that this array must be updated every time a particle makes a move. Ele-

ments of the grid array will also be assigned the numerical value “2” wherever

a node is occupied by an immobilized sticky particle. Note the following:

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

78 CHAPTER 3. AGGREGATION

1 # DIFFUSION-LIMITED AGGREGATION ON A CARTESIAN LATTICE

2 import numpy as np

3 import matplotlib.pyplot as plt

4 #---

5 N =128 # Lattice size

6 max_iter =100000 # Max number of temporal iterations

7 n_walkers=1000 # Number of random walkers

8 #---

9 x_step=np.array([-1,0,1,0]) # Template arrays for random walk

10 y_step=np.array([0,-1,0,1])

11 dx =np.array([-1,0,1,0,-1,1,1,-1]) # Template arrays for sticking

12 dy =np.array([0,-1,0,1,-1,-1,1,1])

13 grid =np.zeros([N+2,N+2],dtype=’int’) # Lattice array

14 x =np.zeros(n_walkers,dtype=’int’) # Walker x-coordinate in nodal unit

15 y =np.zeros(n_walkers,dtype=’int’) # Walker y-coordinate in nodal unit

16 status=np.ones(n_walkers,dtype=’int’) # Walker status array: all mobile

17 for i in range(0,n_walkers): # Place walkers on lattice

18 x[i]=np.random.random_integers(0,N-1)

19 y[i]=np.random.random_integers(0,N-1)

20 grid[x[i],y[i]]=1

21 grid[N//2,N//2]=2 # Introduce sticky central node

22

23 iteration,n_glued=0,0 # Counters

24 while (n_glued < n_walkers) and (iteration < max_iter):

25 for i in range(0,n_walkers): # Loop over walkers

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

3.2. NUMERICAL IMPLEMENTATION 79

1. The code is structured as two nested loop: an outer temporal loop (starting

on line 24), and an inner loop (starting on line 25) running over the M

particles.

2. Although the lattice is of size N × N , the 2D array grid has dimensions

(N + 2) × (N + 2) (line 13); the rows and columns 0 et N + 1 are “ghost

nodes” introduced to avoid overflowing array bounds when testing near-

est neighbours, without having to introduce a series of specific conditional

statements to modify nearest-neighbour definitions for nodes at the edges

of the lattice. See §D.1 for more on ghost nodes and lattice boundary

conditions.

3. Initialisation consists in randomly distributing the particles on the lattice,

by assigning them horizontal and vertical positions in the integer arrays

x[j] and y[j] (lines 18–19). The corresponding position in the 2D array

grid is initialized to “1” (line 20), to flag the node as being occupied by a

moving particle, grid having been initialized to zero beforehand (line 13).

4. An array status assigns a tag to each random walking particle: “1” if the

particle is mobile, and “2” once it got stuck next to a sticky particle (line

37). The inner loop then checks for sticky neighbours only for particles still

mobile (if status[j]==1, line 26).

5. The DLA process begins by assigning “sticky” status to the node located

at the center of the lattice (line 21).

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

80 CHAPTER 3. AGGREGATION

6. The outer temporal loop repeats until all particles have been aggregated

(i.e., while(n glued < n walkers ...), or until preset maximum num-

ber of temporal iterations (max iter) has been reached.

7. The lattice is considered periodic, so that the positions of particles leaving

the lattice are reset to the opposite edge (lines 30–31), as with the ant of

§2.4.

8. The test for sticky-neighbour uses two arrays, dx and dy, each of length 8,

containing a stencil for the relative positions in x and y of the 8 nearest

neighbours nodes (top+down+right+left+4 diagonals; lines 11–12). Here

two bits of Python-specific syntax and operators are used, which are not

available in all computing languages (line 35): the indexing dx[:] means

“loop over all elements of dx”; and the somewhat self-explanatory condi-

tional statement of the type if 2 in dx[:] means “if the value 2 is found

in any element of array dx”. Note how elements of grid are accessed in this

manner here, but through mathematical operations calculating the corre-

sponding nodal positions within the indexing of grid.

9. In order to speed up calculations, here two random walking particles are

allowed to occupy the same node, which is unconventional for particles-on-

lattice simulations.

10. The final aggregate is displayed by passing the array grid as argument to

the imshow function from the library matplotlib (lines 45–46).

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

3.3. A REPRESENTATIVE SIMULATION 81

The DLA algorithm of Fig. 3.1 is very inefficient, in that it spends a lot of

time random-walking particles which are very far from the aggregate, in particular

early on in the simulation. A much better run-time performance can be obtained

by injecting particles one by one, at random positions along the perimeter of

a growing circle circumscribing the growing aggregate. One of the suggested

computational exercise at the end of this chapter leads you through the design

of a faster DLA code based on this idea.

3.3 A representative simulation

Figure 3.2 shows a specific example of a two-dimensional DLA aggregate, grown

here from a single “sticky” seed particle located at the center, with 20000 random

walking particles initially distributed randomly over the computational plane.

This is the setup up implemented in the code of Figure 3.1. The aggregate grows

outwards from its seed, as expected, but its shape is anything but an amorphous

clump. Instead, the aggregate generates a series of outward projecting branches,

themselves spawning more branches, and so on to the edge of the structure. The

particles making up the aggregate on Fig. 3.2 are color-coded according to the

order in which they were captured by the growing aggregate, as indicated at

right. Looking carefully at Fig. 3.2, you should be able to see that growth takes

place through capture and successive branching almost always occurring at or

near the tips of existing branches. Unlike with the structures encountered in the

preceding chapters, which grew according to deterministic lattice-based rules,

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

82 CHAPTER 3. AGGREGATION

Figure 3.2: Growth of a dendritic structure by diffusion-limited aggregation. Here

20000 particles have random-walked on a 2D cartesian lattice of size 1024×1024,

with a single “sticky” seed particle placed at lattice center at the first iteration.

The colors indicate the order in which the free particles have aggregated: red for

the first 103 particules, orange for the next 103, and so on following the color

code indicated at right.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

3.3. A REPRESENTATIVE SIMULATION 83

here the geometry of the lattice is not reflected in the growing structure, unless

one zooms in all the way to the scale of the lattice itself.

Growth by branching is readily understood once one realizes that any asperity

forming on the growing aggregate tends to capture more random walking par-

ticles than a plane surface. As shown on Figure 3.3, on a 2D cartesian lattice,

there is one and only one way to stick to a plane surface, namely a step directed

perpendicularly towards that surface, as illustrated on Figure 3.3A. An asperity,

on the other hand, can be reached from many directions, as shown on Figure

3.3B, and so will tend to capture more random walking particles and continue

growing. Moreover, once two neighbouring dendrites have started to grow, the

space in between will be hard to reach, because particles executing a random

walk will be more likely to stick to one or the other dendrite, than reaching their

branching point. Indeed, on Figure 3.3B the immediate diagonal neighbours of

the branching point (open black circles) are simply inaccessible, because any par-

ticle reaching either of its two neighbouring node will stick there and proceed no

further. The end results is successive growth and branching, rather than homo-

geneous or statistically uniform filling of the lattice. This effective “exclusion”

of nodes neighbouring existing branching points is loosely akin to the operation

of the 1-neighbour-only activation rule used in some of the 2D cellular automata

investigated in §2.2.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

84 CHAPTER 3. AGGREGATION

3.4 A zoo of aggregates

So we understand the dendritic shape of DLA aggregates. Yet other factors come

into play in determining the type of structure produced. Figures 3.4 and 3.5 show

results of 2 DLA simulations again on a regular 2D 1024× 1024 lattice, this time

with 32 sticking particles introduced at random locations on the first iteration of

the simulation. The two simulations only differ in the number of moving particles

placed on the lattice: 5× 104 for Fig. 3.4 and four times more for Fig. 3.5.

Thirty aggregates of varying sizes and shapes can be counted on Figure 3.4.

This is two fewer than the initial number of sticky particles, a consequence of

two “fusion” events between pairs of growing aggregates taking place early in the

course of the simulation. Each aggregate shows the same overall branching struc-

ture as on Fig. 3.2, but now their global shape is less “circular”. This is because

of the finite number of particles available to sustain growth; aggregates growing

close to one another will “compete” for the available supply of random walking

particle along the direction linking their geometrical centers. As a result, aggre-

gates will grow preferentially in directions where no other aggregates are located.

The close group of three aggregates at mid-height along the left edge of Fig. 3.4

offers a nice illustration of this pattern. For the same reason, aggregates growing

in (relative) isolation will tend to reach a larger final size. Similar asymmetric

growth is observed in many biological organisms, such as sponges or corals, with

growth taking place preferentially in directions of greater nutrient concentration.

Although one would be hard pressed to ascertain this visually, there are 25

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

3.5. FRACTAL GEOMETRY 85

individual aggregates on Figure 3.5. Here the initial density of random walk-

ing particle is quite high: 200000, for 1024 × 1024 lattice nodes, meaning that

about one node in five initially contains a particle. Growth then proceeds very

quickly, but even in this case the resulting structures retain the dendritic shape

characteristic of DLA aggregates generated at lower densities.

The aggregates resulting from the DLA process are not just visually spectac-

ular; they also possess some rather peculiar geometrical properties, most notably

self-similarity and scale invariance. Investigating these properties will first re-

quire a detour through fractal geometry, to which we now turn.

3.5 Fractal geometry

Consider the iterated growth procedure illustrated on Figure 3.6. Starting with

a seed line segment of unit length (n = 0, on top), divide this segment in three

sections of equal length. Raise an equilateral triangle from the middle segment,

as shown on the n = 1 curve. Now repeat this process for the four line segments

of this n = 1 curve, thus leading to the n = 2 curve; and so on for n = 3, n = 4,

etc, as shown on Fig. 3.6 up to n = 6. The curve resulting from this process as

n keeps increasing is known as the Koch fractal2.

The Koch fractal is visually pretty, but it also possesses some rather peculiar

mathematical properties. The length of each straight line segment decreases by

2If an equilateral triangle is used as a germ, yet another pretty kind of synthetic snowflake

is produced: the Koch snowflake Try it!

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

86 CHAPTER 3. AGGREGATION

a factor of 3 at each iteration, as per the rules of the growth process; but the

number of these line segments increases by a factor of four at each iteration.

Consequently, the total length L of the curve increases with the iteration count

n as

L(n) = 4n ×
(
1

3

)n

=
(
4

3

)n

. (3.1)

Since 4/3 > 1, the length of the curve will diverge to infinity as n increases;

expressed mathematically:

lim
n→∞

L(n) → ∞ . (3.2)

Inspection of Fig. 3.6 may suggest that this divergence is rather slow, and there-

fore irrelevant in practice —after all, infinity is much farther away than anyone

can think. Still, it is an easy exercise to calculate that starting from a seed line

segment of length L(0) = 5 cm, already at n = 100 the “unfolded” Koch fractal is

long enough to wrap around the Earth about 4000 times! Now, try to think this

through; the infinitely long Koch fractal has well-defined start and end points,

namely the two ends of the original seed line segment. How can an infinitely long

line have a beginning and an end ? Moreover, this infinitely long line is contained

within the definitely finite-sized page of this book. How can an infinitely long

line be circumscribed within a geometrical figure like a rectangle, which has a

finite perimeter ?

Such mathematical monsters, as the mathematician Helge von Koch used to

call the fractal that now bears his name, cannot be casually dismissed as such,

because they do occur in the natural world. The fluid dynamicist Lewis Fry

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

3.5. FRACTAL GEOMETRY 87

Richardson found out the hard way when he tried to measure the length of the

British coastline. Working with topographic maps of decreasing scale, he had

to come to grips with the fact that the total measured length of the coastline

just kept increasing as the map scale decreased, instead of converging to a finite

value as he was originally expecting. Yet Britain is most definitely an island,

with a clearly finite surface area; a finite surface area bounded by an infinitely

long perimeter. Welcome to the bewildering world of fractal geometry...

Loosely speaking, the Koch fractal and the British coastline are “more” than

lines, but “less” than surfaces. Geometrically speaking, they are thus objects

which should be assigned a dimension between one and two, i.e., a fractional

dimension; thus the name “fractal”.

Now back to DLA; no matter how complex its shape, the aggregate of Fig. 3.2

is made up of a finite number of individual particles located in a plane, so each

particle can be tagged by two numbers, for example its line and column integer in-

dices on the lattice. On the basis of this parametric definition of dimensionality, it

must therefore be declared a two-dimensional object; so would the CA-generated

structures of Figs. 2.5 and 2.9. This would also be true if the particles were packed

in the shape of square. Yet the DLA aggregate really does not look anything like

a solid square, or a pancake, or whatever. The challenge is thus to find a way to

quantify this difference.

Consider the two simple geometrical objects illustrated on Figure 3.7: a line

and a square. Both are constructed by placing a finite number of particles (in red)

on a 2D Cartesian grid similar to that used for the above DLA simulations. It

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

88 CHAPTER 3. AGGREGATION

is only on the macroscopic scale, much larger than the microscopic scale defined

by the lattice spacing, that these two objects can be called “line” and “square”3.

Introduce now the same procedure used in §1.2 to evaluate the number density

of randomly distributed particles: from the geometrical center of each structure,

draw a series of concentric circles of increasing radii R. For each of these circles,

count the number of particles it contains, and call this the “mass”, denoted

hereafter M . Obviously M increases with R. For a straight line of contiguous

particles, as on Fig. 3.7A, M would grow linearly with R, while for a solid square,

as on Fig. 3.7B, the growth would be quadratic, i.e., M ∝ R2. In both cases this

growth can be expressed as a power law :

M(R) ∝ RD , D ≥ 0 . (3.3)

with D = 1 for a line of particles, and D = 2 for a solid square. The power law

index D thus provides a measures the object’s dimensionality. Note that eq. (3.3)

can be expected to hold only for radii significantly larger than the inter-particle

distance on Fig. 3.7, and smaller than the global scale of the objects.

Figure 3.8 shows what happens when this mass-radius method is applied to

the DLA aggregate of Fig. 3.2, with the circle’s center coinciding with the original

sticky particle used to seed the aggregate. The axes being logarithmic, the linear

relationship holding in the gray shaded area indicates that mass still increases

3To gain an intuitive grasp of this distinction, step back and look at Figure 3.7 from an

increasing distance and see how far you need to stand to “lose” the granularity of these two

geometrical objects.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

3.5. FRACTAL GEOMETRY 89

as some power of the circle radius4. This power law holds well for spatial scales

smaller than the size of the aggregate, but significantly larger that the distance

between two particles, as set by the lattice spacing. This time the logarithmic

slope is D = 1.665; even though the aggregate has grown on a two-dimensional

plane, it has a spatial dimension between one and two, in other words it is “more”

than a line but “less” than a surface; again a fractal!

The mass-radius method for determining the fractal dimension is trickier to

apply to objects which do not have a well-defined geometrical center. A more

robust method is box counting, which is particularly appropriate to structures

defined on lattices or as pixellized images. Box counting operates as follows.

Imagine trying to cover the aggregate of Fig. 3.2 with a tiling of contiguous

squares of size M × M , the measuring unit being here the internodal distance

on the lattice (i.e., M = 8 means a square covering up a 8 × 8 block of nodes).

Figure 3.9 illustrates this procedure, for box sizes of M =8, 16, 32 et 64. Now,

for each value of M , count the number B(M) of such boxes required to cover the

aggregate. Whether a box covers one or many particles making up the aggregate,

it always contributes +1 to the box count. The smallest meaningful box size is

M = 1, in which case the count is equal to the number of particles making up

4Start with the power-law relation M/M0 = RD; taking the logarithm on both sides yields

log(M/M0) ≡ logM − logM0 = logRD ≡ D logR, so that

logM = D logR+ logM0 ,

which is a linear relationship between logM and logR, with D as the slope and logM0 the

intercept.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

90 CHAPTER 3. AGGREGATION

the aggregate. The largest meaningful box size is of the order of the linear size

of the aggregate; any larger box size would always return a box count B = 1,

independently of box size.

Figure 3.10 is an example of a user-defined Python function which performs

a boxcount calculation on a 2D array “grid” of size N ×N provided through its

argument list. Upon successful completion the function returns three quantities:

the number of scales used for the analysis (the integer n scales), and two arrays

of this size holding the scale size M in nodal units (array scale) and correspond-

ing boxcount B (array n box). This could be called directly at the end of the

DLA code presented on Fig. 3.1, via the instruction:

n scales,scale,n box=boxcount(N,grid,2)

Now onto the fractal dimension. Figure 3.11 plots the box count as a function of

resolution r (= 1/M), defined as the inverse of the scale of measurement M (i.e.,

high resolution ≡ small measuring scale). Logarithmic axes are used once again,

and the straight line fit indicates that the box count is related to the resolution

via a power law, here of the form

N(r) ∝ rD , D = 1.591 . (3.4)

This again holds over a range in resolution bracketed by the size of the aggregate

(r small) and the lattice scale (r large). As before, the logarithmic slope on

Fig. 3.11 directly yields the power-law index D, which is again a measure of the

fractal dimension of the aggregate. This version of the fractal dimension is here

equal to D = 1.591.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

3.6. SELF-SIMILARITY AND SCALE INVARIANCE 91

Should we be concerned that the fractal dimensions obtained from the mass-

radius relation (D = 1.665) differs from that extracted from box counting (D =

1.591)? Not really. Whatever method is used, here it pertains to a specific aggre-

gate produced by an equally specific realization of the DLA process. To obtain

a truly accurate determination of the fractal dimension of DLA aggregates in

general, one would need to generate many such aggregates through statistically

independent realizations of the DLA process, combine the box counts and calcu-

late D. For DLA aggregates, the result turns out to be D = 1.6 independently

of the method used, as it should be. This idea of ensemble averaging is discussed

in more detail in the next chapter.

3.6 Self-similarity and scale invariance

The defining characteristics of fractal geometry are self-similarity and scale in-

variance. Loosely speaking, this means that a fractal structure always “looks the

same” upon zooming closer and closer in. We encountered this already in §1.3

with the bifurcation diagram for the logistic map (Fig. 1.2); with the cellular

automaton of Fig. 2.2; as well as with the Koch fractal of Fig. 3.6. Figure 3.12

illustrates this effect, for our now familiar DLA aggregate of Fig. 3.2. No matter

what the zooming levels is, one just sees irregular branches giving rise to more

irregular branches, themselves spawning more smaller branches, all the way to

the scale of the lattice. Only at that scale can it be clearly perceived that the

simulation is carried on a cartesian lattice with sticking on the 8 nearest neigh-

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

92 CHAPTER 3. AGGREGATION

bours, i.e., vertically, horizontally and diagonally. Of course, scale invariance also

breaks at the global scale of the aggregate (top left), where a “growing center” is

readily identified, and the finite size of the structure becomes apparent.

The break in scale invariance at the lowest and largest spatial scales character-

izing the structure is quite typical. It already showed up on Figs. 3.8 and 3.11, in

the departure of the measurement data points from the power-law relationships.

The range in which this relationship holds effectively defines the scale-invariant

regime. Indeed, the very existence of a power-law regime in the distribution of

some measure of a structure is usually taken as an indicator of scale invariance5.

But what is responsible for scale invariance ? This is a complex (!) question, to

which we shall often return in later chapters. In the DLA context, scale invari-

ance reflects self-similarity in the growth process: branches grow by spawning

more branches, through a sticking process that operates locally and “knowns”

nothing about the global properties of the growing aggregate.

Nature is replete with scale invariant structures hard to described using con-

ventional Euclidian geometry, unlike most technological constructs. A car engine

5At a purely mathematical level, a power-law is said to be scale-invariant for the following

reason: start with a generic power law f(x) = f0x
−α and introduce a new scale of measurement

x′ = ax (this could be as simplistic as switching from centimeters to meters as a unit for x, in

which case a = 10−2). Then we have

f(x′)/f0 = (x′)−α = (ax)−α = a−αx−α .

Defining f ′

0 = f0a
−α, the power law remains of the form f(x′)/f ′

0 = x−α, i.e., neither the

power-law form or index have been altered by the change of scale.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

3.7. EXERCISES AND FURTHER COMPUTATIONAL EXPLORATIONS 93

fully taken apart will yield a lot of flat or curved plates, cylinders, disks, rods,

pierced hexagons, and so on; now, try to go build a snail shell out of regular 2×4

Lego blocks6, and while doing so you should have ample time to reflect upon the

fundamental differences between these two geometrical classes of objects.

3.7 Exercises and further computational explo-

rations

1. Distribute particles on a Cartesian lattice (A) along a line, and (B) filling

a square block, as on Fig. 3.7. Apply the mass-radius method to these two

objects, produce plots similar to Fig. 3.8, and verify that D = 1 in the

former case, and D = 2 in the latter.

2. A simple modification to the DLA code of Fig. 3.1 can greatly increase

its run-time speed. The idea is to inject a single particle per iteration, at

some ramdomly chosen location on a circle circumscribing the growing DLA

aggregate. You need to implement the following modifications:

(a) Initializations consists in placing a single sticky particle at lattice cen-

ter (x, y) = (N/2, N/2); set the circle radius to R = 2;

(b) At each iteration pick a random angle θ ∈ [0, 2π] and place a single

random-walking particle on the lattice node closest to the position

(x, y) = (N/2 +R cos θ,N/2 +R sin θ).

6Readers of a younger generation may try to pick up this challenge on Minecraft instead.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

94 CHAPTER 3. AGGREGATION

(c) If a particle sticks, calculate its distance d with respect to the initial,

central sticky particle; if this distance is larger than R, reset R = d+1.

(d) Once the injection circle hits the sides of the lattice, stop injecting

particles but keep running the simulation until all remaining random-

walking particles have aggregated.

3. Use the Python code of Fig. 3.1 to explore the effect of varying the initial

particle density, the latter defined as the total number of random walking

particles divided by the total number of available lattice nodes. At what

density can you finally produce an amorphous solid object ? Using the box

counting method on your sequence of aggregates, determine whether or not

their fractal dimension is influenced by the initial particle density.

4. Grow some DLA aggregates starting from a row of sticking particles located

along one edge of the lattice. Do so for a uniform random initial distribution

of moving particles; and a Gaussian initial distribution centered on the

middle of the lattice (if needed see Appendix C on how to produce Gaussian

distributions of random deviates). Experiment with different values for the

density of random walking particles, or for the location of the initially sticky

particles.

5. Modify the Python code of Fig. 3.1 (or better, the alternate version you

built in exercise 2) so that moving particles only stick if they have a sticking

particle at one of their four closest neighbours, top/down/right/left, i.e.,

excluding diagonal neighbours. Using a single sticking particle as seed, as on

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

3.8. FURTHER READINGS 95

Fig. 3.2, reflect upon the impact this change has on the overall appearance of

the resulting DLA aggregate, and contrast this with the impact of a similar

change on the deterministic growth rules used to produce the structures on

Fig. 2.9.

6. And now for the Grand Challenge: set up and carry out a DLA simulation

on a 6-neighbour triangular lattice, starting from a single sticky particle at

lattice center. This really only implies altering the template arrays dx and

dy in the code listed on Fig. 3.1 (or the faster version designed in exercise

2; see also Fig. 2.5 for inspiration). Determine the fractal dimension of the

resulting aggregate (the mass-radius method will be fine here). Is the fractal

dimension dependent on the assumed lattice topology ? Think carefully

about the best way to apply the mass-radius and/or box counting methods

on such a lattice; you may start by taking yet another look at Fig. 2.5.

3.8 Further readings

The DLA model introduced in this chapter essentially follows:

Witten, T.A.Jr, & Sanders, L.M., Diffusion-limited aggregation, a kinetic

critical phenomenon, Phys. Rev. Lett., 47, 1400-1403 (1981).

The Wikipedia page on diffusion limited aggregation is rather minimal, but does

include a nice photograph of a copper sulfate aggregate grown in the laboratory

through DLA (March 2015):

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

96 CHAPTER 3. AGGREGATION

http://en.wikipedia.org/wiki/Diffusion-limited aggregation

A multitude of good books are available on fractal geometry. The following is

amongst the most influential early discussion of the subject, and is still well worth

reading:

Mandelbrot, B., The fractal geometry of Nature, Freeman (1982).

At the textbook level, try

Falconer, K., Fractal Geometry, John Wiley & Sons (2003).

I also found the following web page quite informative (viewed June 2016):

http://users.math.yale.edu/public html/People/frame/Fractals/

I gained much inspiration and insight on naturally occurring fractal geometry

from the following two books, which I thus take the liberty to cite even though

they may not be the optimal references on the topic:

Prusinkiewicz, P., & Lindenmayer, A., The algorithmic beauty of plants,

Springer (1990),

Flake, G.W., The computational beauty of Nature, MIT Press (1998).

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

3.8. FURTHER READINGS 97

Figure 3.3: Capture of particles (A) on a plane surface, and (B) on the tip of a

branch. Linked red solid dots represent aggregated particles, and open red circles

lattice nodes on which an incoming particle would be captured. In (A), each fixed

particle controls one such node (red dotted line), itself only accessible from the

node vertically above (black arrow). In (B), in contrast, the aggregated particle

at the end of the branch controls five capture sites, which jointly are accessible

from seven distinct steps. Note also that the two empty lattice nodes drawn as

black open circles in (B) cannot be reached, because particles would inevitably

stick at a neighbouring nodes one step earlier.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

98 CHAPTER 3. AGGREGATION

Figure 3.4: Aggregates in a DLA simulation involving 50000 particles on a 1024×

1024 lattice, with 32 randomly distributed particles assigned “sticky” status prior

to the first iteration.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

3.8. FURTHER READINGS 99

Figure 3.5: Same simulation as on Fig. 3.4 but for four times more particles

(200000). There are 25 individual aggregates here, 7 less than the initial 32

sticky particles because of fusion between some growing aggregates in the course

of the simulation. Try pedalling your way out of that maze...

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

100 CHAPTER 3. AGGREGATION

Figure 3.6: The first six iterations in the “growth” of the Koch fractal. The seed

(n = 0) is a straight line segment spanning [0, 1]. At each iteration an equilateral

triangle is raised from the central third of the line segment, towards the “outside”

of the structure. The length L of each curve is indicated at right. The bottom

image is 27× zoom on the small region delimited by the red rectangle on the

n = 6 iteration. Note how this zoom is identical to the n = 3 iteration.
Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

3.8. FURTHER READINGS 101

Figure 3.7: The mass-radius method for determining the dimension of two objects

having geometrically simple shapes at the global scale, but made up of individual

particles at the microscopic scale: (A) a line, and (B) a solid square. The mass

M(R) is defined here as the number of particles contained in a circle of radius

R centered on each object. Note how, on each plot, the mass returned for the

two outermost circles would be the same, indicating that the global scale of the

objects has been reached (see text).

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

102 CHAPTER 3. AGGREGATION

Figure 3.8: Mass-radius relationship for the DLA aggregate of Fig. 3.2. The

logarithmic slope is now 1.665, which, geometrically speaking, places this struc-

tures between the “line” and the “square”, in other words somewhere between a

one-dimensional object (D = 1, lower dotted line) and a two-dimensional object

(D = 2, upper dotted line). The gray shaded area indicates the range used to

compute the slope (see text).

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

3.8. FURTHER READINGS 103

Figure 3.9: Four successive doubling steps of the box counting method, as applied

to the DLA aggregate of Figure 3.2. Each iteration doubles the linear size M of

the gray squares used to cover the structure.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

104 CHAPTER 3. AGGREGATION

1 # BOX COUNTING FUNCTION FOR FRACTAL INDEX CALCULATION

2 def boxcount(n,grid,occ_val):

3 # Input is 2D array "grid", of size nxn; value =2 means occupied node

4 n_scales=1 # Calculate number of scales

5 while (2**n_scales < n) and (n_scales < 100): n_scales+=1

6 scale=np.zeros(n_scales) # Will hold all box size values

7 n_box=np.zeros(n_scales) # Will hold the boxcount

8

9 for iscale in range(0,n_scales): # Loop over allowed scales

10 block_size=2**(iscale+1) # Block size for this scale

11 n_block=n//block_size # Number of blocks for this scale

12 n_box[iscale]=0

13 for i in range(0,n_block): # Loop over first dimension

14 i1=block_size*i # i-range of this block

15 i2=block_size*(i+1)

16 for j in range(0,n_block): # Loop over second dimension

17 j1=block_size*j # j-range of this block

18 j2=block_size*(j+1)

19 if occ_val in grid[i1:i2,j1:j2]: # At least 1 occupied node

20 n_box[iscale]+=1 # Increment box count

21 # End of lattice loops

22 scale[iscale]=block_size

23 print("scale {0}, boxcount {1}.".format(scale[iscale],n_box[iscale]))

24 # End of scale loop

25 plt.scatter(1./scale,n_box) # Simple version of Fig 3.11

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

3.8. FURTHER READINGS 105

Figure 3.11: Determination of the fractal dimension of the DLA aggregate of

Fig. 3.2 by the box counting method. As before, the fractal dimension is given

by the logarithmic slope of the boxcount B versus r, as determined on a range

of resolution (r = 1/M) bracketed by the size of the structure (small r) and the

lattice interval (large r).

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

106 CHAPTER 3. AGGREGATION

Figure 3.12: Self-similarity in the DLA aggregate of Figure 3.2. The two suc-

cessive zooms each magnify by a factor of four in linear size. The color coding

indicates the order in which the particles have aggregated, following the color

scheme explicited on Fig. 3.2.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

Chapter 4

Percolation

We saw in the preceding two chapters that rule-based growth, whether in cellular

automata or through DLA, can lead to the buildup of complex structures, some-

times exhibiting fractal geometry. We now examine another lattice-based system

where similarly complex structures can arise from pure randomness. Percolation

usually refers to the passage of liquid through a porous or granular medium. In

its more abstract form, as developed in this chapter, it has become an exemplar of

criticality, a concept in statistical physics related to phase transitions. An iconic

example of the latter is liquid water boiling into water vapor, or freezing to ice.

Superficially, the simple lattice-based model introduced in this chapter bears

no relation whatsoever to boiling water or to the flow of fluids through porous

media. Yet it does capture the essence of the critical behavior characterizing

these systems; such is the power of physical and mathematical abstraction.

naturalcomplexity-2.tex, July 28, 2016 107 Natural Complexity, Paul Charbonneau, Université de Montréal

108 CHAPTER 4. PERCOLATION

4.1 Percolation in one dimension

Consider a one-dimensional lattice of length N , i.e., a chain of N nodes each

connected to its immediate right and left neighbours, with the exception of the

two nodes at the ends of the lattice, which have only one neighbour. Figure 4.1

shows a N = 64 example. Each node has a probability p of being occupied (with

of course 0 ≤ p ≤ 1). This occupation probability is the same for all nodes, and

is independent of neighbouring nodes being empty or occupied; in other words,

each node is statistically independent of all others on the lattice. For a very large

lattice (N → ∞), the expected number of occupied nodes tends towards pN , but

at any finite N deviations from this expected values are anticipated, and may be

substantial for small N . This is indeed the case on Figure 4.1, where the p = 0.3

lattice contains here fewer occupied nodes than at p = 0.2.

If p is small, only a few nodes on the lattice will be occupied, and most will

have empty nearest-neighbour nodes. But as p is increased, the likelihood of

having neighbouring nodes occupied also increases. Define a cluster as a set of

contiguous occupied nodes, delineated by one empty node at each end. With p

the probability of a node being occupied, 1 − p is the probability of the node

being empty. The probability of having at least one cluster of length s is thus:

(1− p)× p× p× p× ...
︸ ︷︷ ︸

s times

×(1− p) = ps(1− p)2 . (4.1)

This expression tends towards zero for very large clusters (s → ∞), even in the

limit p → 1. This reflects the fact that one empty node somewhere is enough

to “break” a cluster otherwise of length s → ∞. Nonetheless, at some finite N

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

4.1. PERCOLATION IN ONE DIMENSION 109

the probability of having a cluster of size s increases with p, as one would have

expected.

Let sk measure the size, i.e. the number of occupied nodes, for the kth cluster

on the lattice, and denote by S the size of the largest such cluster1:

S = max(sk) , k = 0, 1, 2, 3... . (4.2)

Consider now what happens as p is gradually increased. As long as relatively few

nodes are occupied, one may expect that existing clusters will grow by “tacking”

an new occupied node at one of their extremities. The probability of this hap-

pening increases linearly with p, so one would expect S ∝ p for p small. This

expectation is borne out on Fig. 4.1: S grows from 2 to 4 to 5 to 6 as p increases

from 0.1 to 0.2 to 0.3 to 0.4. However, once a substantial fraction of lattice

nodes are occupied, many clusters of significant sizes exist on the lattice, and a

new growth process emerges: fusion of two prexisting clusters separated by one

empty node, once that node becomes occupied. As p continues to increase and

the lattice fills up, fusion of ever larger clusters becomes increasingly frequent,

and leads to a very rapid growth of S. It can be shown that in the limit N → ∞,

the size of the largest cluster grows according to

lim
N→∞

S =
1 + p

1− p
. (4.3)

This indicates that the size of the largest cluster tends to infinity in the limit

p → 1. In other words, the largest clusters reaches a size comparable to that of

1To be consistent with Python’s array indexing convention (see Appendix A), the K clusters

on the lattice are numbered from 0 to K − 1. Sorry...

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

110 CHAPTER 4. PERCOLATION

the whole system. The numerical value of p at which this happens is called the

percolation threshold, hereafter denoted pc. For one-dimensional lattices, pc = 1

for the very simple reason that only one empty lattice node is enough to “break”

the infinite cluster. This conclusion would have been easy to anticipate with-

out all this probabilistic mumbo-jumbo; but it was important to go through it

nonetheless, because things become a lot trickier —and complex !— for lattices

in more than one spatial dimension.

4.2 Percolation in two dimensions

Let’s move to two-dimensional lattices, and see how much of what we learned in

one dimension carries over. In what follows we restrict ourselves to regular carte-

sian lattices with top/bottom/left/right nearest-neighbour connectivity. Each

node on the lattice is identified by a pair of integer (i, j) flagging its “vertical”

and “horizontal” location, respectively (if needed see Appendix D for more on lat-

tice definition and notation). Except for nodes located at the lattice boundaries,

the four nearest neighbours of node (i, j) are

(i+ 1, j)
︸ ︷︷ ︸

bottom

, (i− 1, j)
︸ ︷︷ ︸

top

, (i, j + 1)
︸ ︷︷ ︸

right

, (i, j − 1)
︸ ︷︷ ︸

left

. (4.4)

Here is a small source code in the Python programming language that defines such

a 2D lattice of size 128× 128, and fills it with occupation probability p = 0.59:

1 # CREATES AND FILLS A 2D CARTESIAN PERCOLATION LATTICE

2 import numpy as np

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

4.2. PERCOLATION IN TWO DIMENSIONS 111

3 import matplotlib.pyplot as plt

4 #--

5 N=128 # Lattice size

6 p=0.59 # Occupation probability

7 np.random.seed(1234) # Seed for random number generator

8 #--

9 lattice=np.zeros([N,N],dtype=’int’) # A 2D NxN lattice initialized to zero

10

11 for i in range(0,N): # Lattice loops

12 for j in range(0,N):

13 if np.random.uniform() < p: # Occupy this node

14 lattice[i,j]=1

15 plt.imshow(lattice,interpolation="nearest")

16 plt.show() # Display lattice

17 # END

Note that the value “1” is used to identify an occupied node, empty nodes

being set at “0”. Clusters are now defined as groups of contiguous occupied

nodes separated from other clusters or single occupied nodes by empty nodes. The

percolation threshold is now defined as the value of p at which the largest clusters

spans the whole lattice, in the sense that it “connects” one lattice boundary to

its counterpart on the facing boundary.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

112 CHAPTER 4. PERCOLATION

Figure 4.2 shows three examples of two-dimensional regular cartesian lattices

of size N ×N = 64× 64, with occupation probabilities p = 0.25, 0.50, and 0.75.

At p = 0.25, the lattice contains a large number of small clusters or isolated

occupied nodes. Their spatial distribution is random but statistically uniform.

It is quite clear here that no single cluster spans the whole lattice, so we are

obviously below the percolation threshold. At p = 0.75 the lattice looks like a

porous objects, a bit like a sponge, containing many small holes distributed again

randomly but in a statistically uniform manner. Here one single very large cluster

fills the lattice and contains the majority of occupied nodes. This indicates that

we are beyond the percolation threshold. The p = 0.5 case is more ambiguous,

at least visually. Are we seeing a dense clump of large clusters, or a highly

fragmented solid structure? That lattice would have to be studied carefully to

verify whether or not one cluster extends from one end of the lattice to another.

But Figure 4.2 already allows to draw one interesting conclusion: unlike in the

one-dimensional case, here the percolation threshold pc < 1. This is because in

two spatial dimension, an empty node can be bypassed.

4.3 Cluster sizes

If building a 2D percolation lattice can be done in a few lines of Python code,

identifying and sizing clusters is a much more complex endeavour. There are

many algorithms available to do this, and the bibliography at the end of this

chapter includes a few good references for those wishing to delve into the state of

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

4.3. CLUSTER SIZES 113

the art. The algorithm introduced in what follows is far from the most efficient,

but it is relatively easy to code and conceptually simple to understand.

Imagine tagging an occupied node with a specific color, say green; starting

from this newly colored node, color green all occupied nodes that are nearest-

neighbours, and then their nearest neighbours, and so on until no uncolored

nearest-neighbours are found. Then move to the next as-yet uncolored occupied

node, and repeat this process with a new color tag. Continue in this manner

until no uncolored occupied node is left on the lattice, and each cluster will end

up tagged with a unique color.

The Python code on Figure 4.3 is a direct implemention of this simple algo-

rithm. This user-defined function could be called directly at the end of the small

code presented at the beginning of this section, and the clusters plotted, through

the instruction

n cluster,size cluster,tag cluster,map cluster=findcluster(N,lattice)

Algorithmically, this function operates along the lines described above:

1. The first step is to copy the N× N lattice into a working array map cluster

of size (N+ 2)× (N+ 2), thus leaving a padding of unoccupied ghost nodes

(value = 0) along its perimeter. This is carried out on line 9 through

the implicit looping allowed by the “i1:i2” array index syntax in Python,

which means “access elements starting at index value i1 up to position

i2 (meaning, index i2-1! see §A.2 for more on this if needed). This will

allow the nearest-neighbour check to be carried for all nodes using the same

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

114 CHAPTER 4. PERCOLATION

relative template, much as in the DLA code of Fig. 3.1; otherwise, boundary

nodes would need to be treated differently, increasing coding complexity.

See §D.1 for more on the use of ghost nodes.

2. The algorithm is built on two nested outer loops, each running on one

dimension of the lattice (lines 12–13), scanning it line by line;

3. At each node scanned within the outer loops, a test verifies whether the

node is occupied (value 1) and not yet assigned to a cluster (line 16). If so,

a unique numerical tag (variable iic) is assigned to it (line 17).

4. If and only if a new tag has been generated, a new “inner” lattice scan is

initiated (line 21–32). Each occupied node having a nearest neighbour with

identifier iic is tagged with that same identifier (lines 27–29). A while loop

construct (starting at line 21) ensures that the inner lattice scan is repeated

until no untagged occupied node is found with a iic-tagged neighbour in

the course of a complete scan.

5. By the design of the algorithm, the cluster being tagged can only enlarge

by one nodal distance horizontally and/or vertically from its starting node

at each iteration of the while loop. Consequently, the inner lattice scan

spans an increasing range of nodes with each iteration (lines 23–24), with

the use of min/max to avoid out-of-bounds array indexing on the array

map cluster. Note also that the order in which the lattice is scanned

implies that all nodes with index jj<j have already been tagged, so that

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

4.3. CLUSTER SIZES 115

the range of the inner loop on line 25 begins at j1=j.

6. The nearest-neighbour check uses the two 4-neighbour template arrays dx

and dy, verifying whether any of the nearest neighbour already has been

tagged with the value iic (line 28). Note here the use of the Python-specific

construct if iic in ...”, which means “if value icc is found in the set

of array elements following”; if needed, see §A.5 for an equivalent set of

Python instructions using only simple for and if instructions.

7. At the end of the inner lattice scan, the number of nodes tagged with value

iic is stored in the array size cluster (line 33), and the outer lattice scan

resumes from where it had been interrupted, until a new untagged occupied

node is located, in which case step 3 begin anew, or the outer scan reaches

the end of the lattice.

8. At the end of the outer lattice scan, the integer variable n cluster contains

the number of clusters identified the array size cluster contains the size

(measured in number of nodes) of each of these clusters, in the order of their

tagging, and the array tag cluster the corresponding numerical value of

the tags. Nodal values in the lattice array map cluster now contains, at

occupied nodes, the tag value iic associated with each cluster, instead of

the value 1 originally indicating an occupied node (as per line 29). These

are the quantities returned by the function (line 43).

9. The size cluster and tag cluster arrays are assigned a length of N2/2

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

116 CHAPTER 4. PERCOLATION

(lines 6–7), which is equal to the most clusters than can be fit on a N ×N

lattice, namely clusters all of size one distributed as a checkerboard pattern.

Figure 4.4 illustrates the operation of this cluster-tagging algorithm, here for

a small 16× 16 lattice at occupation probability p = 0.58. In the top left frame,

five clusters have already been tagged, as indicated by distinct colors, and the 12

frames cover successive tagging steps (iterations of the while loop) within the

outer lattice loop, starting from a untagged occupied node at the upper left (in

green).

This algorithm is (relatively) easy to code but inefficient in a number of ways,

notably the fact that the outer and inner sets of loop spend a lot of time revis-

iting nodes that are unoccupied or have already been tagged. A more efficient

approach, relatively straightforward to code in Python, would be to first build a

list of occupied nodes, and replace the two sets of loops at lines 12–13 and 25–26

by a single loop over elements of that list. Elements of the array grid are tagged

as before, but nodes are then removed from the list as they are tagged.

Figure 4.5 shows the end result of the tagging algorithm of Fig. 4.3, here

for a 512 × 512 lattice at p = 0.59. Upon completion of the tagging algo-

rithm, locating and tracing the largest cluster simply requires searching the ar-

ray size cluster for its largest element, retrieving the associated tag number

from the array tag cluster, and finally extracting the correspondingly numbered

nodes from the cluster map array map cluster. These jointly form the largest

cluster, colored in black on Fig. 4.5. The top panel on Figure 4.6 shows how the

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

4.3. CLUSTER SIZES 117

size S of that largest cluster increases with the occupation probability p, still for

a N ×N = 512×512 lattice. What is plotted is actually the mean largest cluster

size 〈S〉, averaged over M = 10 realizations of the lattice at each value of p (solid

dots), with the vertical line segments indicating the standard deviation σS about

the mean:

〈S〉 = 1

M

M∑

m=1

Sm , σS =

(

1

M

M∑

m=1

(Sm − 〈S〉)2
)1/2

. (4.5)

As when computing the fractal dimension of DLA aggregates in the preceding

chapter, such ensemble averaging is carried out to ensure that the plotted varia-

tion is representative, and not distorted by the idiosyncracies of a specific lattice

configuration, each percolation lattice being as unique as the seed provided to

the random number generator upon initialization (if needed see §C.2 on this seed

business). As expected, the size S of the largest cluster grows with the occupation

probability2. For p ∼< 0.2, linear growth (dashed curve) fits the numerical data

tolerably well, but already in the range 0.2 ∼< p ∼< 0.6 growth becomes super-

exponential (i.e., upwards curvature in this log-lin plot). This reflects successive

pairwise fusion of existing clusters, through the occupation of single nodes that

had remained empty at lower p values. Sometimes occupying just one more node

is all it takes. The rapid saturation at p ∼> 0.6 is set by the size of the lattice,

which limits here the largest cluster to a maximal size of 512× 512 (dotted line).

The bottom panel on Figure 4.6 shows the same results as on the top panel,

except that now the size of the largest cluster has been normalized by the expected

2Note that throughout this chapter the term “growth” is used even though it does not arise

from the action of a dynamical process, such as in chapters 2 and 3.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

118 CHAPTER 4. PERCOLATION

number of occupied nodes on the lattice at each value of p, i.e.:

F (p) =
S(p)

pN2
, (4.6)

This measures the fraction of occupied nodes belonging to the largest cluster,

and it highlights something interesting; as long as p ∼< 0.5, F (p) remains close to

zero, even though the absolute size of the largest cluster is growing significantly

(cf. top panel, and its logarithmic vertical axis!) In other words, the largest

cluster becomes bigger, but does not particularly stand out as compared to other

clusters on the lattice. At the end of the range, p ∼> 0.65, the largest cluster

includes almost all occupied nodes, which we expected already. But what is

striking is the sharpness of the transition between these two regimes. Around

p = 0.55, F (p) grows very rapidly, already approaching saturation close to unity

at p ≃ 0.65. Indeed, around p = 0.6 the growth of S appears to diverge, in the

(calculus) sense that dF/dp → ∞. The exact value of p at which this takes place

defines the percolation threshold for this 2D lattice. At this threshold, the largest

cluster contains on average half of the occupied nodes:

S(pc) =
1

2
pcN

2 . (4.7)

For a four-nearest neighbour two-dimensional Cartesian lattice, the percolation

threshold turns out to be at pc = 0.592746. Unlike in the 1D case, there ex-

ist no equivalent to eq. (4.3), and the percolation threshold must be evaluated

numerically.

Enough (for now) with the largest cluster, and let’s turn to the popula-

tion of all clusters on the lattice. This information is contained in the array

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

4.3. CLUSTER SIZES 119

size cluster returned by the cluster tagging code listed in Fig. 4.3. We now

want to get a measure for the range of clusters sizes found of the lattice. Towards

this end the most useful mathematical object is the probability density function

(hereafter PDF) of cluster sizes.

Mathematically, the PDF f(s) is defined such that f(s)∆s gives the probabil-

ity of finding on the lattice a cluster of size between s and s+∆s. Figure 4.7 plots

such probability density functions of cluster sizes on a N ×N = 512× 512 lattice

with p = 0.3 (red), 0.59 (green) et 0.7 (blue). In essence, these discrete PDFs

thus measure, in each simulation, the frequency of clusters having size falling

within each of the histogram bins3. Like most PDFs to be encountered later

throughout this book, the PDFs on Fig. 4.7 are plotted in so-called histogram

mode, to emphasize their fundamentaly discrete nature: a count of clusters in a

given size range ∆s is an integer number and characterizes a finite size range.

In the first case, p = 0.3, the PDF drops rapidly as s increases, reflecting the

fact that the lattice is populated by small clusters (as on Fig. 4.2, left panel). At

p = 0.7, one gigantic cluster contains nearly all occupied nodes (as on Fig. 4.2,

right panel). This single supercluster accounts for the single blue histogram

column at s ≃ 2 × 105. The remaining clusters are small ones dispersed in the

cavities of the supercluster, and their PDF closely resembles that of clusters at

p = 0.3. The case p = 0.59 is very close to the percolation threshold, and stands

3Readers unfamiliar with this concept should really read Appendix B before proceeding any

further. Note also that the PDFs plotted on Fig. 4.7 are constructed using logarithmically-

constant bin sizes ∆s, as described in §B.5.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

120 CHAPTER 4. PERCOLATION

out in that its PDF takes the form of a power law spanning essentially the whole

range of cluster sizes accessible on the lattice:

f(s) = f0s
−α , α > 0 , (4.8)

here with α ≃ 1.85. What is truly remarkable is that the numerical value of

this exponent is independent of lattice size, as shown on Figure 4.8. In going

from small lattices of a few 103 nodes to lattices in excess of 106 nodes, the PDF

retains the same power-law shape and logarithmic slope; all that changes is the

extension of the distribution to ever larger sizes, the cutoff always occurring at

of very near the expected size pcN
2/2 for the largest cluster at the percolation

threshold. The power-law index α = 1.85 is said to be universal for this class of

two-dimensional Cartesian lattices with 4-nearest-neighbour connectivity. These

PDFs are again ensemble averages of 10 realizations of the percolation lattice at

each value of occupation probability. Each PDF is constructed from combining

cluster counts for all 10 realizations, and then the power-law index α = 1.85 is

calculated for this joint PDF4.

4.4 Fractal clusters

A robust power-law PDF is indicative of scale invariance in the structure being

measured. We have already encountered scale invariance in our discussion of

4Note that this is not the same as averaging the 10 power-law indices associated with the

individual PDFs for each member of the ensemble, since a power-law is a nonlinear function of

its independent variable, here size occurrence frequency f(s)

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

4.5. IS IT REALLY A POWER LAW ? 121

fractal geometry in the preceding chapter. Could clusters on a lattice at the

percolation threshold be fractal objects ? Let us look into that.

Figure 4.9 displays the largest cluster found on a 512 × 512 lattice, for oc-

cupation probabilities ranging from p = 0.57 to 0.6, as labeled. At p = 0.57

the largest cluster is still significantly smaller than the lattice, already spans it

at = 0.59, and fills it in sponge-like manner at p = 0.6. The shape of these

clusters are noteworthy. Close to the percolation threshold, the clusters are very

filamentary and contain many large cavities, which contains smaller clusters also

with cavities, also containing smaller clusters, and so on down to the scale of the

lattice interval (see Fig. 4.5), in the same classical scale invariant manner as in

the DLA aggregate on Fig. 3.2. Clusters are indeed fractal objects, with a dimen-

sion somewhere between 1 and 2. Their fractal index varies with the occupation

probability p, the numerical value being smallest at the percolation threshold.

Because of their highly irregular shape, the fractal dimension of clusters is best

computed using the box counting method introduced in §3.5.

4.5 Is it really a power law ?

Power-law PDFs pop up everywhere in measurements of “event sizes” in nat-

urally occurring phenomena: for example, avalanches, forest fires, earthquakes,

solar flares, to name but a few which will be encountered in subsequent chap-

ters. The implied scale invariance holds important clues as to the underlying

dynamical processes driving these events, and consequently a reliable empirical

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

122 CHAPTER 4. PERCOLATION

determination of power-law form (4.8) and associated index α is important.

The power-law index α = 1.85 characterizing the PDFs on Fig. 4.8 was

obtained by a linear least-squares fit on the 2048 × 2048 PDF in the range

10 ≤ s ≤ 105, with the fit carried out in the log-log plane and equal weight

assigned to each histogram bin. This very simple method has its limitations and

must be used with proper caution. If the PDF extends over many orders of mag-

nitude in the measured variable (here over 5 orders of magnitude in s) and is

built from a great number of measured events (here over 106 for the 10-member

ensemble), the inferred power-law index typically turns out fairly accurate; this is

often no longer the case for steeper power-law PDFs spanning only a few orders of

magnitude and/or built from a smaller sample of measured events. Some robust

statistical approaches have been designed, which allow reliable determination of

power law indices even under these circumstances. See §B.6 for more on these

matters.

The fractal structure of percolation clusters will certainly not extend to the

very smallest cluster sizes possible; a cluster of size two is definitely a line; so are

one third of clusters of size 3, the other two thirds having the shape of 90◦ wedges;

and so on. Scale invariance will surely break down before reaching the smallest

cluster size, like it did when zooming in on the DLA aggregates (viz. Fig. 3.12).

Likewise, the finite size of the percolation lattice will inevitably distort the shape

of the largerst clusters. This effect is clearly visible on Fig. 4.9 where, close to

the percolation threshold (p = 0.59, bottom left), parts of the largest cluster are

clearly deformed due to the presence of the lattice boundaries. Scale invariant,

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

4.6. CRITICALITY 123

power-law behavior is thus expected to break down at the high end of the cluster

size distribution as well. This is why the fit on Fig. 4.8 is carried out using only

data in the range 10 ≤ s ≤ 105.

4.6 Criticality

Let’s summarize what we have learned so far about 2D percolation. At and only

at the percolation threshold pc, the following holds:

1. The sizes of clusters are distributed as a power-law;

2. The linear dimension of the largest cluster is ≃ N ;

3. The largest cluster collects a fraction F = 0.5 of all occupied nodes;

4. The growth rate of 〈S〉 diverges (d〈S〉/dp → ∞) in the limit p → pc;

5. The rms deviation of the size of the largest cluster, relative to the mean

value, is largest;

6. The fractal dimension of the largest cluster reaches its smallest numerical

value.

These behaviors characterize what is known in statistical physics as a critical

system. The operational defining characteristic of a critical system is its global

extreme sensivity to a small perturbation in the system. Phase transition in water

is the typical example, whereby water at 100 degrees Celcius transits from liquid

to gaseous; there is no such thing as a pot of half-boiling water; either the whole

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

124 CHAPTER 4. PERCOLATION

pot is boiling, or it is not, and under so-called standard atmosphere conditions

the transition point is at exactly 100◦ C. A tiny fraction of a degree below 100,

and the water is liquid; a tiny fraction of a degree above, and the water is already

vapor. But exactly at 100◦C, adding a tiny increment of heat will trigger the

phase transition5.

The link with percolation is with the behavior of the largest cluster as a func-

tion of the occupation probability. When p < pc, adding an occupied node will

perhaps enlarge a cluster; when p > pc there is already a large cluster spanning

the lattice, and adding to it one more occupied node will not change much. But

exactly at p = pc, adding a single node may connect two existing large clusters

to generate a cluster spanning the whole lattice. If we think of the latter as a

porous medium (occupied node=material, empty node=hole), the system goes

suddenly from permeable to impermeable. If the lattice is viewed as some com-

posite material made of electrically conducting grains (occupied nodes) embed-

ded in a non-conducting matrix (empty nodes), then at the percolation threshold

the system goes suddenly from non-conducting to electrically conducting. Other

well-studied examples include magnetization at the Curie point, polymerisation

of colloidal liquids, superfluidity in liquid Helium, to name but a few.

In all these systems critical behavior materializes when a control parameter

is very finely tuned to a specific value —pc = 0.59274 for percolation on a 4-

neighbour 2D Cartesian lattice; temperature 100◦C for boiling water, etc— by

5In the language of statistical physics, one would say that the correlation length of a per-

turbation becomes comparable to the size of the system.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

4.7. EXERCISES AND FURTHER COMPUTATIONAL EXPLORATIONS 125

a mechanism external to the system. The need for such finely tuned external

control may suggest that criticality is unlikely to develop spontaneously in natural

systems, which are typically not subjected to finely tuned external control.

It turns out that many natural systems can reach a critical state autonomously,

through the action of their own dynamics; and, as a matter of fact, the following

chapter introduces one.

4.7 Exercises and further computational explo-

rations

1. Go back to take a look at Figure 3.5; would you say this “lattice” is at the

percolation threshold ? why ?

2. This mathematical task is to show that in the regime of small p, the largest

cluster on a 1D lattice grows linearly with p; specifically:

lim
p≪1

S = lim
p≪1

1 + p

1− p
≃ 1 + 2p . (4.9)

3. Construct a series of 1D percolation lattices of length N = 128, with oc-

cupation probability ranging from p = 0.1 to p = 0.9 in steps of 0.1, like

on Fig. 4.1. For each value of p, construct 10 such lattices, each using a

different seed for the random number generator controlling the loading of

the lattice (see §4.2 and Appendix C). Now, for each p value, determine

the mean number of occupied nodes, as averaged over the ten realizations

of the lattice, and compare it to the expected value pN . Then, calculate

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

126 CHAPTER 4. PERCOLATION

the mean size of the largest cluster 〈S〉 for each p, again averaged your ten

lattice realizations, and plot this mean value as a function of p. Identify the

value of p at which the growth process switches from single-node addition

to cluster fusion.

4. Generate a 2D 256×256 Cartesian percolation lattice at p = 0.59, following

the procedure described in §4.2, and use the code listed on Fig. 4.3 (or some

equivalent) to extract the largest cluster. Use the box counting method

introduced in the preceding chapter to determine its fractal index. Repeat

the procedure at a few other values of p on either side of the percolation

threshold, and verify that the fractal dimension of the largest cluster is

smallest at p = pc.

5. Generate a ten member ensemble of 64× 64 2D Cartesian percolation lat-

tices at p = 0.59, and build the cluster size PDF for this dataset, us-

ing logarithmically-constant bin sizes, as described in §B.5. Estimate the

power-law index by a linear least-squares fit to the logarithm of bin count

versus logarithm of size. Now estimate the power-law index (and associated

standard error) using the maximum likelihood estimator described in §B.6.

How well do the two values compare ?

6. And now the Grand Challenge! Percolation lattices can be used to study

a phenomenon known as anomalous diffusion. The idea is as follows: first

generate a 2D 512 × 512 lattice at its percolation threshold, identify the

largest cluster, and place an “ant”-like agent (see §2.4) on an occupied node

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

4.7. EXERCISES AND FURTHER COMPUTATIONAL EXPLORATIONS 127

near the center of this cluster. At each temporal iteration, the ant selects

randomly one of the four possible directions up/down/right/left, and steps

to that location only if the node is occupied; otherwise the ant remains in

place until the next temporal iteration. So, in essence the ant is moving

randomly in a “labyrinth” defined by the cluster of which the starting node

is part. At each iteration n, calculate the (squared) displacement

D2
n = (xn − x0)

2 + (yn − y0)
2

from the ant’s starting position (x0, y0). You may let the ant move over a

preset number of time steps, but do stop the calculation if the ant reaches

the edge of the lattice.

(a) Repeat the above simulation process for 10 distinct realizations of your

percolation lattice, and plot the ensemble-average root-mean-squared

distance
√

〈D2
n〉 versus iteration count.

(b) Repeat all of the above for lattices above and below the percolation

threshold (at p = 0.5 to p = 0.7, say).

“Normal” diffusion is characterized by a displacement 〈dn〉 ∝
√
n (see Ap-

pendix C if needed). In which range of occupation probability p can diffu-

sion be deemed most “anomalous”?

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

128 CHAPTER 4. PERCOLATION

4.8 Further readings

Much has been written on percolation as an exemplar of criticality. At this

writing the classical reference remains:

Stauffer, D., & Aharony, A., Introduction to percolation theory, 2nd ed., Tay-

lor & Francis (1994),

but see also chapter 1 in

Christensen, K., & Moloney, N.R., Complexity and Criticality, London: Im-

perial College Press (2005).

The following offers a grand tour of phase transitions and related behaviors in a

variety of physical, biological and even social systems:

Solé, R.V., Phase transitions, Princeton University Press (2011).

There is also much to be learned from the following book, for those with the

appropriate mathematical skills:

Sornette, D., Critical phenomena in natural sciences, Springer (2000);

Chapter 12 deals specifically with percolation, but the first four chapters also con-

tain a wealth of useful information on critical systems and the statistical proper-

ties of variables distributed as power laws, or other distributions with power-law

tails. Algorithms for cluster labeling exist, that are far more efficient than that

introduced in §4.2; see the aforecited Stauffer & Aharony book, and also:

Newman, M.J.E., & Ziff, R.M., Phys. Rev. Lett., 85(19), 4104–4107 (2000)

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

4.8. FURTHER READINGS 129

as well as the following Santa Fe Institute working paper by the same authors

(viewed June 2016):

http://www.santafe.edu/media/workingpapers/01-02-010.pdf

On statistically proper techniques for assessing the probability of power-law be-

havior and determination of their indices from experimental data, see

Clauset, A., Shalizi, C.R., Newman, M.E.J., SIAM Review, 51(4), 661–703

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

130 CHAPTER 4. PERCOLATION

Figure 4.1: Percolation lattices in one spatial dimension. Each line represents

a N = 64 lattice, with occupied nodes in black and empty nodes left as open

circles. The occupation probability p increases from bottom to top in steps of

0.1, as indicated at left. The number of occupied nodes is listed at right, followed

by the value p×N expected statistically, within parentheses.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

4.8. FURTHER READINGS 131

Figure 4.2: Two-dimensional regular cartesian lattices of size N ×N = 64× 64,

with occupation probabilities p = 0.25, 0.5, et 0.75. Occupied nodes are filled in

black, and empty nodes are left white.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

132 CHAPTER 4. PERCOLATION

1 # FUNCTION FINDCLUSTER: TAGS AND PLOTS PERCOLATION CLUSTERS ON A 2D LATTICE

2 # lattice is supposed of size NxN with nodal value 1 indicating an

3 # occupied node and a value 0 for an empty node

4 def findcluster(N,lattice):

5 dx,dy=np.array([-1,0,1,0]),np.array([0,-1,0,1]) # Template arrays

6 size_cluster=np.zeros(N*N/2,dtype=’int’) # Cluster size array

7 tag_cluster =np.zeros(N*N/2,dtype=’int’) # Cluster tag array

8 map_cluster =np.zeros([N+2,N+2],dtype=’int’) # Cluster map array

9 map_cluster[1:N+1,1:N+1]=lattice[:,:] # Pad lattice with zeros

10 n_cluster,iic=0,100 # Counter, first tag

11

12 for j in range(1,N+1): # Outer lattice scan

13 for k in range(1,N+1):

14 size,add_to_size=0,0 # Initialize counters

15

16 if map_cluster[j,k] == 1: # Initiate new tagging

17 map_cluster[j,k]=iic # New cluster tag

18 size+=1 # First node of cluster

19 add_to_size+=1

20

21 while(add_to_size > 0) # Tagging in progress

22 add_to_size=0

23 j1,j2=j,min(N,j+size) # Range of inner scan

24 k1,k2=max(1,k-size),min(N,k+size)

25 for jj in range(j1,j2+1): # Inner lattice scan

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

4.8. FURTHER READINGS 133

Figure 4.4: The cluster tagging algorithm of Fig. 4.3 in action, here on a 16× 16

lattice at p = 0.58. The nodal position (0, 0) is at top left in each frame. The outer

and inner lattice scans proceed line by line from top to bottom (loop indices j and

jj) in the code of Fig. 4.3, and from left to right in each line (loop indices k and

kk). Colored squares correspond to occupied nodes already tagged to a cluster,

while gray squares indicated as-yet untagged occupied nodes and white squares

empty nodes. In the top left frame a new tagging inner loop has just started at

the left extremity of the third line of the lattice (nodal position (j, k) = (2, 0)),

and the bottom-neighbour node has just been tagged (both in green). The next

11 frames show successive steps of the tagging process, each corresponding to an

iteration of the while loop at line 21 in Fig. 4.3, the sequence being obvious.

At the end of the tagging process (bottom right), a cluster of 44 nodes has been

tagged “green”. The outer lattice scan would now resume, back in the third

column with the node (j, k) = (2, 1). The next tag would be initiated at node

(2, 6), for a size-2 cluster.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

134 CHAPTER 4. PERCOLATION

Figure 4.5: The 661 largest clusters on a 512 × 512 lattice at pc = 0.59. Un-

occupied sites are left white, gray indicates occupied nodes that are not part

of one of the 661 largest clusters. The largest cluster, plotted in black, collects

S = 53537 of the 154867 occupied nodes, and spans the whole lattice. Notice

how holes in the larger clusters contain smaller clusters, themselves with holes

containing even smaller clusters, and so on down to single occupied nodes. The

matplotlib instructions at the end of the cluster tagging function on Fig. 4.3

generate essentially this type of display.
Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

4.8. FURTHER READINGS 135

Figure 4.6: The top panel shows the growth of the largest cluster on a 512× 512

lattice, as a function of the occupation probability p. Note the logarithmic vertical

axis. Each solid dot is an average over 10 statistically independent realizations

of the lattice at the same value of p, with the vertical line segments indicating

the standard deviation σS about the the ensemble mean 〈S〉 (see eqs. 4.5). The

dashed curve corresponds to linear growth, and the dotted line indicates the

largest possible cluster size possible on the lattice, here 512 × 512 = 2.62 × 105.

The bottom panel plots the same numerical results, but for S normalized by the

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

136 CHAPTER 4. PERCOLATION

Figure 4.7: Probability density functions (PDF) of cluster sizes on a 512 × 512

lattice for p = 0.3 (red), 0.59 (green) et 0.7 (blue). Note the similarity between

the PDFs at p = 0.3 and p = 0.7, the crucial difference being the presence of the

lone blue histogram bin at s ≃ 2×105, corresponding to the single largest cluster

covering most of the lattice at p = 0.7.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

4.8. FURTHER READINGS 137

Figure 4.8: Cluster size PDFs near the percolation threshold, for 10-member

ensembles of statistically independent realizations of lattices ranging in size from

N × N = 64 × 64 to 2048 × 2048, as color coded. The vertical tick marks in

the upper right indicate the expected size (S = pcN
2/2) for the largest cluster

on each lattice, and the dashed line is drawn with a logarithmic slope of −1.85,

which on such a log-log plots gives directly the exponent α in eq. (4.8).

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

138 CHAPTER 4. PERCOLATION

Figure 4.9: The largest clusters on a 512×512 lattice, for occupation probabilities

p = 0.57, 0.58, 0.59, and 0.6. Over this very restricted range, a small increase in

p leads to a pronounced increase in the size of the largest cluster.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

Chapter 5

Sandpiles

The sky is blue, the sun is high, and you are sitting idle on a beach, a cold beer in

one hand and a handful of dry sand in the other. Sand is slowly trickling through

your fingers, and as a consequence a small conical pile of sand is slowly growing

below your hand. Sand avalanches of various sizes intermittently slide down the

slope of the pile, which is growing both in width and in height but maintains the

same slope angle.

However mundane this minor summer vacation event might appear, it has be-

come the icon of Self-Organized Criticality (hereafter SOC), an extremely robust

mechanism for the autonomous development of complex, scale-invariant behav-

iors and patterns in natural systems. SOC will be encountered again and again

in subsequent chapters, hiding under a variety of disguises, but here we shall first

restrict ourselves to an extremely simple computational idealization of that iconic

summertime pile of sand.

naturalcomplexity-2.tex, July 28, 2016 139 Natural Complexity, Paul Charbonneau, Université de Montréal

140 CHAPTER 5. SANDPILES

5.1 Model definition

The sandpile model is a lattice-based cellular automaton-like system evolving

according to simple, discrete rules, local in space and time. Here we consider a

one-dimensional lattice made up of N nodes with right+left neighbour connec-

tivity, as in 1D percolation (see Fig. 4.1). This lattice is used to discretize a

real-valued variable Sn
j , where the subscript j identifies a node on the lattice and

the superscript n denotes a temporal iteration. Initially (n = 0) we set

S0
j = 0 , j = 0, ..., N − 1 . (5.1)

This nodal variable is subjected to a forcing mechanism, whereby at each tempo-

ral iteration a small increment s is added to the variable S, at a single randomly

selected node:

Sn+1
r = Sn

r + s , r ∈ [0, N − 1] , s ∈ [0, ε] , (5.2)

where r and s are extracted from a uniform distribution of random deviates

spanning the given ranges, and the maximum increment ε is an input parameter

of the model. The physical system inspiring this simple model is a pile of sand, so

you may imagine that Sn
j measures the height of the sandpile at the position j on

the lattice at time n, and the forcing mechanism amounts to dropping sand grains

at random locations on the pile. Obviously, the sandpile will grow in height in

response to this forcing... at least at first.

Now for the dynamics of the system; as the pile grows, at each temporal

iteration the magnitude of the slope associated with each nodal pair (j, j + 1) is

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

5.1. MODEL DEFINITION 141

calculated:

znj = |Sn
j+1 − Sn

j | , j = 0, ..., N − 2 . (5.3)

If this slope exceeds a preset critical threshold Zc, then the nodal pair (j, j+1) is

deemed unstable. This embodies the idea of static friction between sand grains in

contact, which can equilibrate gravity up to a certain inclination angle, beyond

which sand grains start toppling downslope. A redistribution rule capturing this

toppling process is applied so as to restore stability at the subsequent iteration.

Here we use the following simple rule:

Sn+1
j = Sn

j + (S̄ − Sn
j)/2 , Sn+1

j+1 = Sn
j+1 + (S̄ − Sn

j+1)/2 , (5.4)

where

S̄ = (Sn
j+1 + Sn

j)/2 . (5.5)

This rule displaces a quantity of sand from the node with the higher Sn
j value to

the other, such that the local slope znj is reduced by a factor of two. Figure 5.1 il-

lustrates this redistribution process. If ε ≪ Sj, Sj+1, then the critical slope is only

exceeded by a small amount, and the above rule will always restore local stability.

It is left as an easy exercise in algebra to verify that this rule is conservative, in

the sense that sand is neither created or destroyed by the redistribution:

Sn+1
j + Sn+1

j+1 = Sn
j + Sn

j+1 , (5.6)

and that the quantity δSn
j of sand displaced is given by

δSn
j =

znj
4

, (5.7)

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

142 CHAPTER 5. SANDPILES

as indicated by the green boxes on Fig. 5.1. But now, even if the pair (j, j + 1)

was the only unstable one on the lattice at iteration n, the redistribution has

clearly changed the slope associated with the neighbouring nodal pairs (j − 1, j)

and (j + 1, j + 2) since Sn
j and Sn

j+1 have both changed; and it is certainly

possible that one (or both) of these neighbouring pairs now exceeds the critical

threshold Zc as a result. This is the case for the pair (j + 1, j + 2) in the specific

configuration depicted on Fig. 5.1. The redistribution rule is applied anew to

that unstable nodal pair; but then the stability of its neighbouring pairs must

again be verified, and the redistribution rule applied once again if needed, and

so on. This sequential process amounts to an avalanche of sand being displaced

downslope, until every pair of contiguous nodes on the lattice is again stable with

respect to eq. (5.3).

Now the boundary conditions comes into play. At the last node of the lattice,

at every iteration n we remove any sand having accumulated there due to an

arriving avalanche:

Sn
N−1 = 0 . (5.8)

This is as if the sandpile reached to the edge of a table, with sand simply falling

off when moving beyond this position. No such removal takes place at the first

node, which may be imagined as being due to the presence of a containing wall.

The boundary condition (5.8) turns out to play a crucial role here. Because the

redistribution rule is conservative, and in view of the inexorable addition of sand

to the system mediated by the forcing rule, the boundary is the only place where

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

5.2. NUMERICAL IMPLEMENTATION 143

sand can be evacuated from the system.

In light of all this, one may imagine that a stationary state can be reached,

characterized by a global slope equal to Zc, with avalanches moving sand to the

bottom of the pile at the same (average) rate as the forcing rule is loading the

pile. As we shall see presently, a stationary state is indeed reached, but presents

some characteristics one would have been very hard pressed to anticipate on the

basis of the simple rules introduced above.

5.2 Numerical implementation

The source code listed in Figure 5.2 gives a minimal numerical implementation of

our one-dimensional sandpile model, “minimal” in the sense that it favors coding

clarity over computational efficiency and coding economy. Note the following:

1. The array sand[N] is our discrete variable Sn
j , and contains the quantity

of sand at each of the N nodes of the lattice at a given iteration. Here this

is initialy set to zero at all nodes (line 10).

2. The simulation is structured as one outer temporal loop, and this loop is

set up to execute a predetermined number of temporal iteration n iter

(starting at line 14);

3. Each temporal iteration begins with an inner loop over each of the N −

1 pairs of neighbouring nodes on the lattice (starting on line 17). First

the local slope is calculated (line 18), then tested for stability (line 19),

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

144 CHAPTER 5. SANDPILES

and wherever the stability criterion is violated, the quantity of sand that

must be added or removed from each node to restore stability, as per the

redistribution rule (5.4), is accumulated in the array move (lines 21–22),

without updating array sand at this stage. This update is only carried out

once all nodes have been tested, by adding the content of move to sand

(line 27). This synchronous update of the nodal variable is important,

otherwise a directional bias is introduced in the triggering and propagation

of avalanches;

4. Addition of sand at a random node (lines 29–30) only takes place if the

lattice was found everywhere stable at the current iteration. This is known

as a “stop-and-go” sandpile, and is meant to reflect a separation of timescale

between forcing and avalanching, the former being assumed to be a much

slower process than the latter.

5. At the end of each iteration, the mass of the pile and mass displaced by

avalanches, to be defined shortly in eqs. (5.9) and (5.10) below, are stored

in the arrays mass and tsav; these time series will be needed in analyses

to follow.

6. Note another piece of Python-specific coding on line 33: the instruction

np.sum(sand), using the summing function from the numpy library, returns

the sum of all elements of array sand; this could be easily replaced by a

loop sequentially summing the elements of the array.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

5.3. A REPRESENTATIVE SIMULATION 145

7. The matplotlib intructions on lines 38–45 produce a simplified version of

Fig. 5.4 further below.

5.3 A representative simulation

Let’s look at what this code does for a small 100-node lattice, initially empty

(i.e., S0
j = 0 ∀j), with the driving amplitude set at ε = 0.1 and the critical slope

at Zc = 5. Figure 5.3 illustrates the growth of the sandpile during the first 106

iterations. Recall that sand is being dropped at random locations on the lattice,

but in a statistically uniform manner, so that at first the pile remains more or

less flat as it grows. However, the “falloff” boundary condition imposed on the

right edge drains sand from the pile, so that the pile develops a right-leaning

slope, first close to its right edge but gradually extending farther and farther to

the left. In contrast, at the left edge the “wall” condition imposed there implies

that sand just accumulates without falling off. Consequently the pile remains flat

there until the slope growing from the right reaches the left edge. This occurs

here after some 850000 temporal iterations. In this transient phase the system

has not yet reached statistical equilibrium: averaged over many iterations, more

sand is added to the pile than is evacuated at the open boundary.

This all make sense and could have been easily expected, doesn’t it, given the

model’s setup? So why having bothered to run the simulation? Well, to begin

with, careful examination of Fig. 5.3 reveals that one very likely expectation

did not materialize. The dotted line indicates the slope corresponding to the

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

146 CHAPTER 5. SANDPILES

set critical slope Zc = 5. In the statistically stationary state, the pile ends

up with a slope significantly smaller (here by about 7%) than Zc = 5. This

equilibrium slope defines the angle of repose of the sandpile. But why is the

pile stopping to grow before the critical slope is reached ? This is is due to

the stochasticity imbedded in the forcing mechanism, which leads to some nodal

pairs going unstable before the pile as a whole has reached the critical slope

Zc. As a consequence, the system stabilizes at an average slope smaller than Zc,

approaching Zc only in the limit ε → 0. But this is just the beginning of the

story.

It will prove useful to define a few global quantities in order to characterize

the temporal evolution of the lattice. The most obvious is perhaps mass, namely

the total quantity of sand in the pile at iteration n:

Mn =
N−1∑

j=0

Sn
j . (5.9)

Figure 5.4A shows a time series of this quantity, starting at the beginning of the

simulation. Mass first grows with time during the transient phase, but eventually

saturates at a value subjected to zero-mean fluctuations. These are better visible

on the inset, showing a zoom of a small portion of the time series. The shape

is quite peculiar. In fact, the line defined by the Mn time series is self-similar,

with a fractal dimension larger than unity. On this zoom mass is seen to grow

linearly, at a well-defined rate set by the magnitude of the forcing parameter

ε, but this growth is episodically interrupted by sudden drops, occurring when

sand is evacuated from the pile when avalanches reach the open boundary at

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

5.3. A REPRESENTATIVE SIMULATION 147

the end of the lattice. The resulting fractal sawtooth pattern reflects the slow,

statistically uniform loading and rapid, intermittent discharge. The sandpile is

now in a statistically stationary state: the mass is ever varying, but its temporal

average over a time span much larger than the mean time interval between two

successive avalanches remains constant.

Another interesting quantity is the mass displaced at iteration n in the course

of an ongoing avalanche:

∆Mn =
N−2∑

j=0

δSn
j , (5.10)

where δSn
j is given by eq. (5.7). Keep in mind that this quantity is not necessarily

equal to Mn+1 − Mn, since an avalanche failing to reach the right edge of the

sandpile will not lower the total mass of the pile, even though sand is being

displaced downslope. Nonetheless, it is clear from Fig. 5.4 that the total mass

of the sandpile varies very little even when a large avalanche reaches the right

boundary; the largest drop visible in the inset on Fig. 5.4A amounts to a mere

0.2% of the sandpile mass. This is because only a thin layer of sand along

the slope is involved in the avalanching process, even for large avalanches. The

underlying bulk of the sandpile remains “frozen” after the sandpile has reached

its statistically stationary state.

Figure 5.4B shows the segment of the ∆Mn time series corresponding to the

epoch plotted in the inset on part (A). This time series is again very intermittent,

in the sense that ∆Mn = 0 except during short “bursts” of activity, corresponding

to avalanches. These avalanches are triggered randomly, and have widely varying

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

148 CHAPTER 5. SANDPILES

sizes, ranging from one pair of nodes to the whole lattice.

Figure 5.5 illustrates the spatiotemporal unfolding of avalanches over 2000

iterations in the statistically stationary state of the same simulation as on Fig. 5.4.

The vertically-elongated images at center and right each show a 1000-iteration

segment, the right being the continuation of the central one, with time running

vertically upwards. The horizontal is the “spatial” dimension of the 1D lattice,

the open boundary being on the right. The square pixellized images on the left

are two closeups each capturing the onset and early development of an avalanche.

The color scale encodes the quantity of displaced sand, with green corresponding

to zero. The purple/pink shades delineate the avalanching regions. Note how

avalanches start always at a single nodal pair, following the addition of a sand

increment at a single node, and typically expand downslope (here toward the

right) as well as upslope (towards left) in subsequent iterations. The smaller

avalanches often remain contained within the slope (bottom of middle image),

but the larger one typically reach all the way to the open boundary and discharge

sand from the pile. The constant inclination angle of propagating avalanches

in such diagrams reflects the one-node-per-iteration propagation speed of the

avalanching front, as set by the local redistribution rule.

The aggressively pastel color scale used to generate Fig. 5.5 was chosen so as

to visually enhance substructures building up within avalanching regions. The

most prominent pattern at the lattice scale is checkerboard-like, and simply re-

flects the fact that the stability and redistribution rules introduce a two-node

spatial periodicity in the lattice readjusment. Of greater interest are the long-

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

5.4. MEASURING AVALANCHES 149

lived substructures emanating from the avalanching front and propagating verti-

cally upwards in the avalanching regions. These are quite striking on the central

and right image on Fig. 5.5. They are triggered by small variations in the slope

characterizing stable regions in which the avalanching is progressing. These irreg-

ularities are responsible for avalanches, even large ones, sometimes stopping prior

to reaching one of the other lattice boundaries. Morphologically, they also bear

some similarity to the spatiotemporal structures that can build up in two-states

1D cellular automata of the type investigated in §2.1.

5.4 Measuring avalanches

Figures 5.4B and 5.5 illustrate well the disparity in avalanche size and shape.

This is worth looking into in greater detail. We begin by defining three global

quantities characterizing each avalanche, all computable from the time series of

displaced sand (array tsav in the simulation code listed on Fig. 5.2):

1. Avalanche energy1 E: the sum of all displaced mass ∆Mn over the duration

of a given avalanche;

2. Avalanche peak P : the largest ∆Mn value produced in the course of the

avalanche.

1“Energy” is used here somewhat loosely, yet clearly the redistribution rules involve displac-

ing sand downslope, as indicated by the green boxes on Fig. 5.1, thus liberating gravitational

potential energy, and justifying the analogy.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

150 CHAPTER 5. SANDPILES

3. Avalanche duration T : the number of iterations elapsed between the trig-

gering of an avalanche and the last local redistribution that follows;

These three quantities can be easily extracted from the time series of displaced

mass (array tsav in the Python code listed on Fig. 5.2). The idea is to identify the

beginning of an avalanche as a time step iterate for which tsav(iterate)> 0

but tsav(iterate-1)= 0; likewise, an avalanche ends at iteration iterate-1

if tsav(iterate-1)> 0 but tsav(iterate)= 0. The following user-defined

Python function shows how to code this up:

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

5.4. MEASURING AVALANCHES 151

1 # FUNCTION MEASURE_AV: EXTRACTS ENERGY, PEAK AND DURATION OF AVALANCHES

2 def measure_av(n_iter,tsav):

3 n_max_av=10000 # maximum number of avalanches

4 e_av=np.zeros(n_max_av) # avalanche energy series

5 p_av=np.zeros(n_max_av) # avalanche peak series

6 t_av=np.zeros(n_max_av) # avalanche duration series

7 n_av,sum,istart,avmax=-1,0,0,0.

8 for iter in range(1,n_iter): # loop over time series

9 if tsav[iterate] > 0. and tsav[iterate-1] == 0.:

10 sum,avmax=0.,0.

11 istart=iterate # a new avalanche begins

12 if n_av == n_max_av-1: # safety test

13 print("too many avalanches")

14 break # break out of loop

15 n_av+=1 # increment avalanche counter

16 sum+=tsav[iterate] # cumulate displaced mass

17 if tsav[iterate] > avmax: # check for peak

18 avmax=tsav[iterate]

19 if tsav[iterate] <= 0. and tsav[iterate-1] > 0: # this avalanche ends

20 e_av[n_av]= sum # avalanche energy

21 p_av[n_av]= avmax # avalanche peak

22 t_av[n_av]= iterate-istart # avalanche duration

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

152 CHAPTER 5. SANDPILES

23

24 # end of loop over time series

25 return n_av,e_av,p_av,t_av

26 # END FUNCTION MEASURE_AV

This function could be called, for example, after the outer loop in the sandpile

code of Fig. 5.2. Note the safety test (lines 12–14) exiting the loop so as to avoid

the avalanche counter n av becoming larger than n max av, which would cause

out-of-bounds indexing of the arrays e av, p av and t av. Upon exiting from the

loop, the variable n av contains the number of avalanches in the time series array

tsav, and the arrays e av, p av and t av contain the associated energy E, peak

displaced mass P , and duration T of each of these avalanches.

Although large avalanches moving more sand tend to last longer and reach

higher peak discharge rates, the quantities E, P and T are correlated only in a

statistical sense. Figure 5.6 shows the correlation between avalanche size E and

duration T for 15019 avalanches having occurred in a 5 × 106 iteration segment

of a simulation on a N = 1000 lattice. Overall E does increase with T , but

the distribution of avalanche data shows some rather peculiar groupings, most

notably along diagonal lines in this correlation plot. Moreover, all data fall within

a wedge delimited by lines with slopes of +1 and +2 in this log-log plot.

Consider a lattice everywhere at the angle of repose, with the addition of a

small random increment at node j bringing one nodal pair infinitesimally beyond

the stability threshold. Equation (5.7) then yields a displaced mass δSn
j = Zc/4;

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

5.4. MEASURING AVALANCHES 153

this is the smallest avalanche that can be produced on the lattice; it is the “quan-

tum” of displaced mass (or energy) for this system, hereafter denoted δM0. Now,

suppose that this redistribution destabilizes the downslope pair (j, j + 1), but

not its upslope counterpart (j − 1, j); with the lattice everywhere at the angle

of repose, our quantum of displaced mass will move down the slope, one node

per iteration, until it is evacuated at the open boundary. If the original unstable

nodal pair is M nodes away from the open boundary, this avalanche will have

duration T = M and energy E = M × δM0; consequently, E = δM0 T , a linear

relationship. If the initial avalanche destabilizes both neighbouring pairs but no

other pair upslope, then two quanta of mass will move down the slope, leading

to E = 2δM0 T . And so on for higher numbers of mass quanta. The duration

of such avalanches is clearly bounded by the size of the lattice. These are the

line-like avalanches on Fig. 5.5, and they map onto the straight line groupings

with slope +1 on Figure 5.6. The avalanche whose onset is plotted on the bot-

tom left closeup on Fig. 5.5 belongs to the fourth such family (four mass quanta

moving out to the open boundary). These families represent the quantized “en-

ergy levels” accessible to the avalanches. The upper bounding line with slope

of +2 is associated with avalanches spreading both upslope and downslope; all

nodes in between avalanche repeatedly until stabilization occurs at the ends of the

avalanche front, or mass is evacuated at the boundary. These are the avalanches

taking the form of solid wedges on Fig. 5.5. In such cases the number of avalanch-

ing nodes increases linearly with T , so that the time-integrated displaced mass

will be ∝ T 2. The locality of the redistribution rules precludes avalanches from

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

154 CHAPTER 5. SANDPILES

growing faster on this 1D lattice, which then explains why the avalanche energies

are bounded from above by a straight line of slope +2 on Figure 5.6. Of course,

any intermediate avalanche shape between lines and wedges is possible, and so

the space between the two straight lines is also populated by the avalanche data.

Incidentally, there is a lesson lurking here: just because a system is deemed to ex-

hibit “complexity” does not mean that some aspects of its global behavior cannot

be understood straightforwardly !

Even though the correlations between avalanche parameters exhibit odd struc-

ture, their individual statistical distributions are noteworthy. Figure 5.7A and B

show the probability density functions (see Appendix C) for E and P , for simula-

tions carried out over lattices of size N = 100, 300, 1000 and 3000, but otherwise

identical (Zc = 5, ε = 0.1, and redistribution given by eq. (5.4)). The PDFs take

the form of power laws, with logarithmic slope independent of lattice size; as the

latter increases, the distribution simply extends farther to the right.

This behavior we have encountered before in chapter 4, in the size distribution

of clusters on 2D lattices at the percolation threshold. (cf. Fig. 4.8). Here this

invariant power-law behavior of materializes only in the statistically stationary

phase of the simulation. It indicates that avalanches are self-similar, i.e., they

do not have a characteristic size. This scale invariance reflects the fact that at

the dynamical level, the only thing distinguishing a large avalanche from a small

one is the number of lattices nodes involved; the same local rules govern the

interaction between nodes. But in the percolation context, we also argued that

scale-invariance appeared only when the system had reach a critical state; could

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

5.5. SELF-ORGANIZED CRITICALITY 155

this also be the case here ?

5.5 Self-organized criticality

It is truly remarkable that of all the possible ways to move sand downslope at

the same average rate as sand addition by the forcing rule, so as to achieve a

statistically stationary state, our sandpile model “selects” the one characterized

by scale-free avalanches. Because many natural systems behave in this manner,

the sandpile (real or idealized) has become the icon for avalanching behavior in

general, and for the concept of self-organized criticality in particular.

We saw in chapter 4, in the context of percolation, that a system is deemed

critical when the impact of a small, localized perturbation can be felt across the

whole system. Recall how at the percolation threshold, occupying one more node

on the lattice can connect two pre-existing clusters, forming a single large cluster

spanning the whole lattice; as a result the system suddenly becomes permeable,

electrically conducting, whatever, whereas prior to that it was impermeable, or

insulating, etc. You should also recall that this extreme sensitivity only material-

ized at the percolation threshold, so that critical behavior required external fine

tuning of a control parameter, which in the case of percolation is the occupation

probability p. Moreover, it is only at the percolation threshold that clusters on

the lattice exhibited scale invariance (viz. Fig. 4.7).

So where is the criticality here ? With the sandpile, the equivalent of the

percolation threshold is the angle of repose of the pile. If the slope is inferior

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

156 CHAPTER 5. SANDPILES

to this, as when the sandpile is still growing, then local addition of sand may

trigger small, spatially confined avalanches, but certainly nothing spanning the

whole lattice. If the global slope angle is larger than the angle of repose, then

the lattice is already avalanching vigorously. Only at the angle of repose can the

addition of a small bit of sand at a single random node do anything between (1)

nothing, and (2) trigger an avalanche running along the whole slope. However,

and unlike with percolation, here the angle of repose is reached “naturally” as

a consequence of the dynamical evolution of the system —namely the forcing,

stability, and redistribution rules— through interactions between a large number

of lattice nodes over time, without any fine tuning of external parameters. The

critical state is here an attractor of the dynamics. For this reason, systems such

as the sandpile are said to be in a state of self-organized criticality, to distinguish

them from conventional critical systems which rely on external fine tuning of a

control parameter.

Much effort has gone into identifying the conditions under which a system

can exhibit self-organized critical behavior. At this writing there exist no general

theory of self-organized critical systems, but the following characteristics appear

sufficient —and possibly even necessary. A system must be:

1. open and dissipative,

2. loaded by slow forcing,

3. subjected to a local threshold instability...

4. ...which restores stability through local readjustement.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

5.6. EXERCISES AND FURTHER COMPUTATIONAL EXPLORATIONS 157

However restrictive this may appear, the number and variety of natural sys-

tems that in principle meet these requirements is actually quite large. Joining

avalanches and other forms of landslides are forest fires, earthquakes, hydrologi-

cal drainage networks, geomagnetic substorms, and solar flares, to mention but

a few. Some of these we will actually encounter in subsequent chapters. More

speculative applications of the theory have also been made to species extinction

and evolution by punctuated equilibrium, fluctuations and crashes of stock mar-

kets, electrical blackouts on power grids, and wars. See the references listed in

the bibliography at the end of this chapter for more on these matters.

5.6 Exercises and further computational explo-

rations

1. Verify that the redistribution rule given by eq. (5.4) does lead to eq. (5.7).

2. Modify the 1D sandpile simulation code of Fig. 5.2 to keep track of the

mass falling off the pile at its right edge. This will be a distinct avalanching

time series from the displaced mass time series tsav. Once the statistically

stationary state has been reached, use this new “falloff” time series to

calculate the corresponding avalanche parameters E, P and T , as in §5.4

above, and construct the corresponding probability density functions (as on

Fig. 5.7). Are falloff avalanches scale invariant? How well does the “falloff

E” correlate with the “avalanching E” as defined in §5.4 ?

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

158 CHAPTER 5. SANDPILES

3. Use the 1D sandpile simulation code of Fig. 5.2 to verify that the statis-

tically stationary self-organized critical state is independent of the initial

condition; more specifically, try various types of initial conditions such as,

for example, an initial sandpile at the angle Zc, or already at the angle of

repose, or an initial sandpile loaded uniformly at some fixed height, etc.

4. Carry out 100-node simulations using different ε (ε = 0.01, 0.1 and 1,

say). Are the angles of repose the same ? Making sure to have reached

the statistically stationary state before beginning your analyses, construct

PDF of slope values (as given by eq. 5.3) as extracted from a single non-

avalanching iteration of each simulation; are these PDFs dependent on the

value of ε ? Then construct the PDF of avalanche energy E for the same

three simulations; are they the same ?

5. The 1D sandpile code listed on Fig. 5.2 is very inefficient from the compu-

tational point of view; most notably perhaps, at every iteration it checks

all lattice nodes for stability, even if a perturbation s has only been added

at a single randomly selected node at the preceding iteration (see eq. 5.2).

An easy way to improve on this is to modify the start and end points of

the loop over the lattice nodes so that stability is checked only at the three

nodes [r − 1, r, r + 1], where r is the random node at which a perturba-

tion is added. The reader with prior coding experience may instead try

the really efficient algorithmic approach, which is to keep a list of nodes

either avalanching or subject to forcing, and run the stability checks and

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

5.7. FURTHER READINGS 159

redistribution operations only on list members and their immediate neigh-

bours. This is fairly straightforward in Python, which contains a number of

computationally efficient list manipulation operators and functions. This

may sound like a lot of work to speed up a simulation code, but when gen-

eralizing the avalanche model to two or three (or more) spatial dimensions,

such “trick” will mean waiting 10 minutes for the simulation to run, rather

than 10 hours (or more). Which takes us naturally to...

6. The Grand Challenge for this chapter is to design a two-dimensional version

of the sandpile model introduced herein. Your primary challenge is to

generalize the stability criterion (eq. 5.3) and redistribution rule (eq. 5.4)

to 2D. Begin by thinking how to define the slope to be associated with a

2 × 2 block of nodes. Measure the avalanche characteristics E, P and T

once the SOC state has been reached, and verify that these are distributed

again as power-laws. Are their index the same as in the 1D case ? You

should seriously consider implementing in your 2D sandpile code at least

the first of the speedup strategies outlined in the preceding exercise.

5.7 Further readings

The concept of Self-Organized Criticality was coined by Per Bak, who became

its most enthusiastic advocate as a theory of (almost) everything. His writing on

the topic are required reading:

Bak, P., Tang, C., Wiesenfeld, K., Physical Review Letters, 59, 381 (1987),

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

160 CHAPTER 5. SANDPILES

Bak, P., How Nature Works, New York: Springer/Copernicus (1996),

but see also:

Jensen, H.J., Self-Organized Criticality, Cambridge University Press(1998).

and, at a more technical level:

Turcotte, D.L., Rep. Prog. Phys., 62(10), 1377–1429 (1999)

Sornette, D., Critical phenomena in natural sciences , Berlin: Springer (2000)

Hergarten, S., Self-organized criticality in Earth systems, Berlin: Springer

(2002)

Aschwanden, M.J. (ed.), Self-organized criticality systems, Berlin: Open Aca-

demic Press (2013)

Finally, for a good reality check on the behavior of real piles of real sand:

Duran, J., Sands, Powders, and Grains, New York: Springer (2000)

It turns out that real piles of real sand seldom exhibit the SOC behavior char-

acterizing the idealized sandpile models of the type considered in this chapter.

However, some granular materials do, including rice grains; see chapter 3 in the

book by Jensen listed above.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

5.7. FURTHER READINGS 161

Figure 5.1: Action of the redistribution rules given by eqs. (5.4). The dark gray

columns indicate the nodal values (sand height) for a quartet of contiguous nodes,

with the black solid dots linked by solid lines indicating the slope, as given by

eq. (5.3) and with thicker line segments flagging slopes in excess of the threshold

Zc (depicted by the triangular wedge at top left). Here the nodal pair (j, j + 1)

exceeds this critical slope, so that the redistribution alters the nodal values as

indicated by the two red vertical arrows. This is equivalent to moving by one

nodal spacing downslope the quantity of “sand” enclosed by the upper green box,

as indicated by the green arrow. This adjustment leads to the new slopes traced

by the red dots and solid lines, which here is now unstable for the nodal pair

(j+1, j+2). This would lead to another readjustment at the next iteration (see

text).

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

162 CHAPTER 5. SANDPILES

1 # SLOPE-BASED SANDPILE MODEL IN ONE DIMENSION

2 import numpy as np

3 import matplotlib.pyplot as plt

4 #--

5 N=101 # Lattice size

6 E=0.1 # Peak forcing increment

7 critical_slope=5. # critical slope

8 n_iter=200000 # Number of temporal iterations

9 #--

10 sand=np.zeros(N) # Lattice, initially empty

11 tsav=np.zeros(n_iter) # Avalanche time series

12 mass=np.zeros(n_iter) # Sandpile mass time series

13

14 for iterate in range(0,n_iter): # Temporal iteration

15 move=np.zeros(N) # Initialize diplaced sand array

16

17 for j in range(0,N-1): # Loop over lattice

18 slope=abs(sand[j+1]-sand[j]) # Eq (5.3): slope between j,j+1

19 if slope >= critical_slope: # Pair j,j+1 is unstable

20 avrg=(sand[j]+sand[j+1])/2.

21 move[j] +=(avrg-sand[j])/2. # Eq (5.4) sand moved to/from j

22 move[j+1]+=(avrg-sand[j+1])/2. # Eq (5.4) sand moved to/from j+1

23 tsav[iterate]+=slope/4. # Eq (5.7) cumulate displaced mass

24 # end of lattice loop

25

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

5.7. FURTHER READINGS 163

Figure 5.3: Growth of a one-dimensional sanpile constrained by a wall on its left

edge, as produced by the code listed on Fig. 5.2, here starting from an empty

N = 100 lattice and with parameter values Zc = 5 and ε = 0.1. The dotted line

indicates a slope of Zc. Each curve is separated from the preceding one by 105

iterations, as color-coded from bottom towards the top.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

164 CHAPTER 5. SANDPILES

Figure 5.4: Panel (A) shows a time series of total mass Mn, as given by eq. (5.9)),

for a simulation with parameter values N = 100, Zc = 5, and ε = 0.1 and initial

condition S0
j = 0. The inset shows a zoom of the time series in the statistically

stationary phase of the simulation, highlighting its fractal shape. Panel (B) is

a time series of displaced mass ∆Mn, as given by eq. (5.10), spanning the same

time interval as the inset on panel (A).

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

5.7. FURTHER READINGS 165

Figure 5.5: Spatiotemporal map of avalanches cascading across the lattice, in a

2000-iteration long segment in the statistically stationary phase of the simulation

plotted in Fig. 5.4. The image displays the displaced mass δSn
j as a function of

node number running horizontally, and time running vertically from bottom to

top. The open boundary coincides with the right edge of each image. The image

on the right is the temporal continuation of that in the middle, and the two pixel-

lized images on the left are closeups on the early phases of two avalanches. Green

corresponds to zero displaced mass (stable slope), and shades light blue through

purple to red are avalanching regions. This rather unusual pastel color scale

was picked to better illustrate the substructures developing within avalanching

regions (see text).naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

166 CHAPTER 5. SANDPILES

Figure 5.6: Correlation between avalanche size E (displaced mass) and duration

T in the statistically stationary phase of a sandpile simulation on a N = 1000 1D

lattice. The dotted lines bracketing the avalanche data have slopes of +1 and +2

in this log-log plot, corresponding respectively to the relationships E ∝ T and

E ∝ T 2.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

5.7. FURTHER READINGS 167

Figure 5.7: Probability density function of (A) avalanche energy E and (B)

avalanche peak P , in the statistically stationary states of the sandpile model for

varying lattice sizes, as indicated. The PDF of avalanche duration T resembles

that for P in (B), except for a steeper logarithmic slope. Note the logarithmic

scales on both axes. In all cases the PDFs take the form of power laws, with a

flattening at small values of E and P , and a sharp drop at high values, occurring

at progressively larger values of E and P for larger lattices. Note, however, that

the logarithmic slope is independent of lattice size. Compare this to Fig. 4.8.
naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

168 CHAPTER 5. SANDPILES

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

Chapter 6

Forest Fires

Chapter 4 introduced some of the remarkable properties of randomly produced

percolation clusters. These clusters were entirely static, “frozen” objects, their

structure determined once and for all by the specific realization of random devi-

ates used to fill the lattice.

Can any “natural” process generate dynamically something conceptually re-

sembling a percolation cluster? The answer is yes, as exemplified by the forest

fire model investigated in this chapter. Its ecological inspiration is probably as

far removed as it could be from flow through porous media or phase transitions,

yet at a deeper level it does represent an instance of dynamical percolation.

6.1 Model definition

The forest fire model is, fundamentally, a probabilistic cellular automaton. Stick-

ing again to a 2D Cartesian lattice, each node (i, j) is assigned a state si,j which

naturalcomplexity-2.tex, July 28, 2016 169 Natural Complexity, Paul Charbonneau, Université de Montréal

170 CHAPTER 6. FOREST FIRES

can take one of three possible values: “empty”, “inactive”, and “active”. Starting

from an empty lattice (si,j = 0 for all i, j), the nodal variable evolves in discrete

time steps (sni,j → sn+1
i,j) according to a set of local rules, some of a stochastic

nature:

1. Rule 1: An empty node can become occupied with probability pg (stochas-

tic);

2. Rule 2: An inactive node can be activated with probability pf (stochastic);

3. Rule 3: An inactive node becomes active if one or more of its nearest

neighbours was active at the preceding iteration (deterministic);

4. Rule 4: Active nodes becomes empty at the following iteration (determin-

istic).

The ecological inspiration of the model should be obvious: inactive nodes repre-

sent trees; active nodes are burning trees; Rule 1 is tree growth; Rule 2 is a tree

being ignited by lightning; Rule 3 is fire jumping from one tree to a neighbouring

tree; and Rule 4 is destruction of a tree by fire. You have probably anticipated

already that successive ignition of trees by a burning neighbour can lead to the

propagation of a burning “front” across the lattice, i.e., an “avalanche” of burning

trees. This expectation is certainly borne true, but as with the simple sandpile

model considered in the preceding chapter, the spatiotemporal evolution of the

system holds quite a few surprises in store for us.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

6.2. NUMERICAL IMPLEMENTATION 171

6.2 Numerical implementation

The Python source code listed on Figure 6.1 is a minimal implementation of

the forest fire model, again in the sense that it sacrifices coding conciseness and

execution speed to conceptual clarity and readability. The overall structure is

similar to the sandpile code of Fig. 5.2, but the simulation is now performed on

a 2D Cartesian lattice of size N × N . Burning (active) nodes are assigned the

numerical value “2”, while occupied (inactive) nodes are set to “1” and empty

nodes to “0”. The temporal iteration is governed by the outer fixed-length loop

starting on line 15, inside of which all the coding action is really sitting. Take

note of the following:

1. The simulations begins with an empty lattice: all nodal values in grid are

set to zero (line 12), using Python/numnp’s array creation-and-initialization

function zeros.

2. As with the DLA code of chapter 3, the 2D arrays grid and update are

padded with an outer frame of ghost nodes which always remain empty, but

allow nodes at the real edges of the lattice to be tested for ignition in the

same manner as interior nodes. Consequently, even though the lattice array

is of size (N+ 2)× (N+ 2), loops over the lattice run from 1 to N; meaning

in Python, range(1,N+1) on lines 19–20, as per the loop range and array

element numbering conventions in the Python programming language. See

§D.1 if needed.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

172 CHAPTER 6. FOREST FIRES

1 # FOREST-FIRE MODEL ON 2D CARTESIAN LATTICE

2 import numpy as np

3 import matplotlib.pyplot as plt

4 #---

5 N =100 # Lattice size

6 p_g =1.e-3 # Growth probability

7 p_f =1.e-5 # Lightning probability

8 n_iter=25000 # Number of temporal iterations

9 #---

10 dx=np.array([-1,0,1,1,1,0,-1,-1]) # Template arrays

11 dy=np.array([-1,-1,-1,0,1,1,1,0])

12 grid=np.zeros([N+2,N+2],dtype=’int’) # Initialize lattice: no trees

13 trees=0 # Tree counter

14

15 for iterate in range(0,n_iter): # temporal iteration

16 update=np.zeros([N+2,N+2],dtype=’int’) # evolution array

17 burn=0 # burning tree counter

18 # scan lattice to flag which trees must grow, ignite or vanish

19 for i in range(1,N+1):

20 for j in range(1,N+1):

21 if grid[i,j] == 1: # there is a tree on this node

22 if 2 in grid[i+dx[:],j+dy[:]]: # 1 or more burning neighbour

23 update[i,j]=1 # ignite

24 burn+=1

25 if np.random.uniform() < p_f: # lightning strikes (maybe)

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

6.2. NUMERICAL IMPLEMENTATION 173

3. Ghost nodes retain the value zero throughout the simulation; you may think

of this as equivalent to the simulation domain being enclosed within four

scrupulously well-maintained fire trenches.

4. Once again the nodes that are to grow a tree, catch fire, or turn empty, are

first identified in the first block of for loops, and the needed changes (+1

for tree growth, line 33; +1 for igniting an existing tree, either by lightning

(line 23) or via a burning neighbour (line 26); and −2 for a burned tree

vanishing (line 29), are stored in the 2D array evol. This work array is

reset to zero at the beginning of each temporal iteration (line 16).

5. The lattice update is later carried out synchronously, at the end of the

temporal iteration loop (line 37).

6. The relative coordinates of the 8 nearest neighbours to any node are stored

in the template arrays dx and dy (lines 10–11). See §D.1 if needed.

7. Note again on line 22 the Python-specific instruction if 2 in grid[i+dx[:],j+dy[:]]:

and its built-in implicit loop, to check whether there is at least one burning

tree in the set of nearest-neighbour to node (i, j), as defined by the template

arrays dx and dy.

8. Note that lightning can still strike while a fire is burning; this model is

operating in “running” rather than “stop-and-go” mode.

In case you did not notice it already, this forest fire model is at the core of the

algorithm introduced in chapter 4 for the tagging of clusters on the percolation

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

174 CHAPTER 6. FOREST FIRES

lattice (if you are not convinced, compare Figs. 4.3 and 6.1). Occupied nodes are

the trees; tree growth is turned off, and random ignition by lightning strikes is

replaced by systematic ignition of as-yet untagged occupied nodes. The ensemble

of trees burned by each such ignition is a cluster, and the largest fire maps the

largest cluster on the lattice.

Getting back to to the forest fire model per se, clearly the rules governing

the lattice evolution are quite simple, and only Rule 3 actually involve nearest-

neighbour contact. Moreover, the model involves only two free parameters,

namely the tree growth probability pg and the lightning probability pf . Nonethe-

less, as these two parameters are varied the model can generate a surprisingly

wide range of behaviors, hard to anticipate on the basis of its defining dynamical

rules.

6.3 A representative simulation

Figure 6.2 shows the triggering, growth and decay of a large fire in a representative

forest fire model simulation on a small 100 × 100 lattice, with parameter values

pg = 10−3 and pf = 10−5. This simulation had been running already for many

thousands of iteration, and so had reached a statistically stationary state1. The

Figure shows a sequence of snapshots taken ten iterations apart, going left to

right from top to bottom. A few iterations prior to the second snapshot, lightning

1In this forest fire model this is best ascertained by tracking the total number of trees on the

lattice, until it levels off to a stable mean value. Note also that whatever the initial condition,

the duration of the initial transient increases rapidly with decreasing pg and pf .

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

6.3. A REPRESENTATIVE SIMULATION 175

has struck a bit up and left from lattice center. Fire activity propagates from

node to node, at an average speed determined by the density of trees but never

exceeding one lattice spacing (horizontally and/or vertically) per iteration, as per

Rule 3. The combustion front is initially almost circular, but later evolves into

a far more convoluted shape as the fire sweeps across the lattice, reflecting the

substantial spatial variations of tree density in the pre-fire lattice configuration.

This heterogeneity is itself a consequence of previous fires having burned across

the lattice in the more or less distant past (viz. the last snapshot on Fig. 6.2).

Even though fires are triggered by a stochastic process (Rule 2 above), past fire

activity influences the evolution of current fires.

Figure 6.2 illustrates well the disparity of timescales characterizing the forest

fire model. The shortest is the “dynamical” timescale characterizing the propa-

gation of the fire from one node to a neighbouring node; namely one temporal

iteration. The next timescale is that associated with tree growth, and is given by

p−1
g = 103 iterations here. Starting with an empty 100 × 100 lattice, this means

that on average 10 new trees would grow at each temporal iteration. The first

three snapshots in the last row exemplify quite well how much longer than the

dynamical timescale this is: they must be scrutinized very carefully to notice

the ≃ 300 new trees having appeared in the course of the 30 iterations spanned

by these snapshots. The spontaneous activation probability —lightning strikes—

usually determines the longest timescale. The expected time interval between

two successive activations is of the order of (p×N2 × pf)
−1, where N is the lin-

ear size of the lattice and p the mean occupation probability in the statistically

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

176 CHAPTER 6. FOREST FIRES

Figure 6.2: A sequence of snapshots, taken 10 iterations apart, of a 100 × 100

lattice in a simulation of the forest fire model running with pg = 10−3 et pf =

10−5. Empty nodes are left white, nodes occupied but inactive are green, and

active nodes are red. Here lightning has struck a bit left and up of the lattice

center, two iterations prior to the second snapshot. The resulting burning front

subsequently sweeps through a large fraction of the lattice. The bottom right

frame shows the location of all trees having burned in this fire. Notice also the

small fire, triggered by a second lightning strike, ignited in the upper left portion

of the lattice a few iterations prior to the eleventh frame (third column in third

row from top). A mpeg animation of this Figure will be available

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

6.3. A REPRESENTATIVE SIMULATION 177

stationary state; this is defined as the number of live trees divided by N2, the

total number of lattice nodes2. Here, with N = 100, p ∼ 0.2 and pf = 10−5, a

lightning strike is expected every 50 iterations on average, but it must be kept

in mind that following a large fire such as on Fig. 6.2, p can fall much below its

mean value calculated over the duration of the simulation.

The bottom right panel on Figure 6.2 shows the “cluster” of all trees burned

in the 105-iteration long fire covered by the other frames. Overall this maps well,

but not perfectly, to the tree density characterizing the top left panel of Fig. 6.2,

just prior to fire onset. Note how this cluster of burned trees contains “holes”

in which clumps of trees have survived the fire, as the burning front became

more convoluted. The shape of this cluster should remind you of the percolation

clusters encountered in chapter 4; and yes, you hopefully guessed it, this cluster

of burned trees is a fractal.

Figure 6.3 now shows now a segment of the time series of burning trees, in the

same simulation. The large fire of Fig. 6.2 is the largest of the three fires visible

on this time series, starting at iteration 3055. Fires clearly span a wide range in

size, and their activity can show significant temporal variability in the course of

a given fire. As one might have expected, large fires destroying large number of

trees tend to burn longer and flare up more strongly, but the correlation between

these fire measures is far from perfect; on Fig. 6.3, the third fire lasts only a few

2Here the occupation probability p is not an input parameter, as in percolation, but a

characteristic of the statistically stationary state attained by the simulation; but even then,

only to a first approximation (more on this shortly).

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

178 CHAPTER 6. FOREST FIRES

Figure 6.3: Time series of the number of burning trees in the simulation of

Fig. 6.2, with the large fire starting at at iteration 3055 being the one captured

by that sequence of snapshots. Next to each fire are listed the total number of

burned trees (E), peak number of burned trees at any single iteration (P) and

fire duration (T).

iterations more than the second, but destroys almost three times as many trees.

6.4 Model behavior

The numerical choices made for the growth and activation probabilities pg and

pf can lead to widely varying behaviors in the spatiotemporal evolution of the

system. This is illustrated on Figures 6.4 and 6.6, which show time series of the

number of occupied nodes that are inactive (i.e., occupied by a tree; Na, in green)

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

6.4. MODEL BEHAVIOR 179

and active (burning trees; Nf , in red), for four different combinations of pg et pf

values. If pf ∼ pg (top panel of Fig. 6.4, with pg = pf = 10−4), then trees are

struck by lightning at a frequency comparable to their growth rate. The total

number of trees remains approximately constant, and numerous small fires are

always burning here and there, without ever becoming large because the density

of trees is too small; with Na hovering around 1500, only 15% of the 104 lattice

nodes are occupied at any given time, meaning that few pairs of trees stand on

neighbouring nodes. If pg is raised to 10−2 (bottom panel on Fig. 6.4), trees

grow much faster and their density is roughly twice larger. Not only can fires

now spread, but in fact trees are now growing so rapidly that once ignited, a fire

never stops because new growth behind the burning front replenishes the forest

at a rate comparable to the time it takes the fire to move across the lattice, here

of the order of 100 iterations.

These parameter regimes are of course ecologically unrealistic, but represent

classes of possible behavior for this model that are quite interesting in their own

right. Figure 6.5 shows a snapshot of a 1024× 1024 lattice in the rapid regrowth

regime (pg = 10−2), where a few dozen random lightning strikes have taken place

in the first 100 iterations, but lightning has been artificially “turned off” after-

wards. Moving burning fronts (in red) are ubiquitous across the lattice, growing,

shrinking, fragmenting, merging, and interacting with one another, and often de-

velop into approximately circular arcs, with their tips curling back inwards, in

the manner of a spiral with a large opening angle3. The density of trees (in green)

3We will encounter in chapter 11 a cellular automaton behaving similarly, when discussing

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

180 CHAPTER 6. FOREST FIRES

Figure 6.4: Time series for the number of active (red) and inactive (green) oc-

cupied nodes, for various combinations of pg and pf , in a regime where these

growth and activation probabilities are relatively high. Both of these simulations

are run on a 100× 100 lattice, and the time series plotted are extracted far into

the statistically stationary state.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

6.4. MODEL BEHAVIOR 181

Figure 6.5: Snapshot of a 1024 × 1024 lattice, for a simulation with pg = 10−2,

pf = 10−5, but with lightning artificially turned off after the first 50 iterations. In

this parameter regime, trees grow so fast that once ignited, fire persists through-

out the simulation, with burning fronts expanding, fragmenting, shrinking and

interacting with one another. Note how the curve burning fronts often show a

tendency to spiral inwards at their extremities.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

182 CHAPTER 6. FOREST FIRES

at any location on the lattice undergoes a recurrence cycle of slow growth at a

rate set by pg up to value approaching unity, then a sudden drop to zero as the

burning front moves through, followed by slow growth anew. This general type

of recurrence cycle will be encountered repeatedly in subsequent chapters.

Let’s get back to the more ecologically realistic situation where trees grow

slowly and fires are rare events. Figure 6.6 shows what happens if the growth

and activation probabilities are lowered to the much smaller values pg = 10−3 and

pf = 10−6, respectively. The lattice now has enough time to really fill up before

lightning strikes again. But when the ignition finally happens, almost every tree

has at least one nearest neighbour, so the fire sweeps almost the whole lattice

clean. This leads to a quasiperiodic “load/unload” recurrence cycle whereby, at

more or less regular intervals, the whole forest is destroyed, and regrowth must

start from zero or nearly so. On the top panel of Figure 6.6, when lightning

strikes there are around 5000 occupied nodes, out of a possible grand total of

100 × 100 = 104. The corresponding occupation probability is therefore ≃ 0.5,

which pretty much guarantees that every tree has a neighbour. The fact that a

few hundred trees remain at the end of a large fire is in part a boundary effect; on a

100×100 lattice, 392 nodes are boundary nodes that have three fewer neighbours

than interior nodes, and the 4 corner nodes even fewer. These boundary nodes

are thus harder to reach for an ongoing fire.

At low pf , the only way to break the load/unload cycle so prominent on

the top panel of Fig. 6.6 is if tree growth is sufficiently slow so that the lattice

excitable systems and reaction-diffusion chemical reactions.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

6.4. MODEL BEHAVIOR 183

Figure 6.6: Identical in format to Figure 6.4, but now for simulations operating

in the regime where the activation probability pf is very small. Compare the

bottom plot to the inset on Fig. 5.4A.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

184 CHAPTER 6. FOREST FIRES

does not have time to completely fill up between two successive lightning strikes.

Keeping pf = 10−6 but lowering pg to 10−4 yields the solution plotted on the

bottom panel of Fig. 6.6. Fires, when they occur, can still be quite large, but

they are now triggered far less regularly and exhibit a wide range in size. Note

also the fractal sawtooth pattern of the time series for occupied nodes, which

shows an uncanny resemblance to the mass time series in the sandpile model of

the preceding chapter (cf. the inset on Fig. 5.4A).

In cases like on Fig. 6.6, where one or more fires are not burning continuously

somewhere on the lattice (as they do on Fig. 6.5), it is possible to characterize

each individual fire as we did avalanches in the sandpile model, through the

variables E, P and T , defined respectively as:

1. E: the total number of trees burned in the fire,

2. P : the peak number of trees burned at any one iteration in the course of

the fire,

3. T : the fire duration, measured in temporal iterations.

These quantities are correlated with one another, in that large fires tend to

last longer, but we know already from Fig. 6.3 that a perfect correlation is not to

be expected. Figure 6.7 shows the probability density functions of fire sizes (E),

for the two simulations of Fig. 6.6. At pg = 10−3 the distribution is approximately

gaussian, centered here around fire size 4800, but with a long, flat non-Gaussian

tail extending to much smaller fires and a narrow, tall peak at very small fire size

(off scale to the left on Fig. 6.7A). In this pf ≪ 1 regime, lowering the growth

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

6.4. MODEL BEHAVIOR 185

probability from pg = 10−3 to pg = 10−4 leads to a transition from a Gaussian

distribution, with a relatively well-defined mean, to a power-law of the form:

f(E) = f0E
−α , α > 0 , (6.1)

here with α = 1.07. For such power-law PDF it can be shown that the average

fire size 〈E〉 is given by:

〈E〉 = f0
2− α

[

E2−α
max − E2−α

min

]

, (6.2)

where Emin and Emax are the smallest and largest fires that can be produced by

the simulation, here 1 and 104, respectively (see Appendix B for the calculation

of averages from a PDF). With Emin ≪ Emax (which is usually the case on large

lattices) and α < 2, this is well approximated by:

〈E〉 ≃ f0E
2−α
max

2− α
, [α < 2] . (6.3)

This is because with α < 2 the exponent 2−α in eq. (6.2) is positive, so that the

first term in the square brackets ends up much larger than the second. The oppo-

site would be true if α > 2. In the regime pg ≪ 1, pf ≪ pg, the first case prevails,

and therefore the largest fires dominate the evolution of the (eco)system4.

Whatever their shape, PDFs are defined such that f(E)dE measures the

occurrence probability of a fire of size between E and E+dE. In the ecologically

realistic pg ≪ 1 regime, any one node contributes only one burned tree to a given

fire; the situation was different in the sandpile model of the preceding chapter,

4The same holds for the Earth’s crust, with the largest earthquakes contributing the most

to the relaxation of tectonic stresses; more on this in chapter 8.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

186 CHAPTER 6. FOREST FIRES

Figure 6.7: Probability distribution of fire size E, for the two simulations of

Fig. 6.6. The distribution in (A) is tolerably well fit by a Gaussian, except for

its flat, low amplitude tail extending to small fire sizes. The distribution in (B)

is well described by a power law with index −1.07.
Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

6.4. MODEL BEHAVIOR 187

where a node could topple repeatedly in the course of the same avalanche (see

Fig. 5.5 if you’re not convinced). Here, if a fire destroys E trees, it is because

lightning hit somewhere within a cluster containing E connected trees. However,

the probability that a cluster of size E be hit by randomly distributed lightning

strikes is also proportional to the cluster size. Therefore, the probability density

function of cluster sizes must be distributed as∝ E−(α+1) if the probability density

function of fire sizes is ∝ E−α; with α = 1.07 for the simulation of Fig. 6.7B, this

implies that clusters of trees are distributed as a power-law with index −2.07.

Recall from chapter 4 that percolation clusters show a scale-invariant power-law

size distribution only at the percolation threshold (viz Fig. 4.7). Can we then

conclude that the forest-fire lattice is at the percolation threshold ?

It turns out to be significantly more complicated than that. Unlike in clas-

sical percolation, the tree density, equivalent to the occupation probability in

percolation, is not constant across the lattice in the forest fire model. This is il-

lustrated on Fig. 6.8, showing a snapshot of the distribution of trees (black dots)

in a pg = 10−4, pf = 10−7 simulation, now on a much larger 1024× 1024 lattice.

The mean density of trees is only approximately constant within irregularly-

shaped domains, with significant jumps occurring at the boundaries separating

contiguous domains. These domains have been carved by prior fires having swept

through the lattice. Tree growth, as mediated by Rule 1, is random but statisti-

cally homogeneous in space, so that the mean density of a given (large enough)

domain is proportional to the time elapsed since the end of the last major fire

having swept through that domain. Each individual domain behaves effectively

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

188 CHAPTER 6. FOREST FIRES

Figure 6.8: Snapshot of a forest-fire simulation on a 1024 × 1024 lattice, with

parameters pg = 10−4 and pf = 10−7. Each small black dot is a tree, so that

the resulting pointillist gray shading provides a visual measure of tree density.

Burning trees are plotted in red. Note how tree density, as measured visually by

the level of gray shading, is approximately constant within contiguous domains,

relatively well-delineated but very irregularly-shaped. The lighter areas are the

scars of the more recent fires, and often contain dense clumps of surviving trees,

corresponding to “holes” within the former clusters destroyed by fire. On this

snapshot two fires are burning, a large one near lattice center and a smaller one

near bottom.
Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

6.5. BACK TO CRITICALITY 189

as a separate percolation lattice, with slowly increasing occupation probability.

Immediately following a fire, the occupation probability is close to zero, but grows

linearly with time, eventually reaching the percolation threshold (pc = 0.4072 for

a Cartesian lattice with 8-neighbours connectivity). Recall that the likelihood of

a single cluster taking over the lattice increases very rapidly once moving beyond

this threshold (see Fig. 4.6), so that lightning, when and wherever it hits, is likely

to wipe out the whole domain in a single fire. The shape and size of domains

evolves slowly in the course of the simulation, because part of a domain may

be destroyed by fire before reaching the percolation threshold (lightning hitting

“early”), or by fusion with neighbouring domains if both have exceeded signifi-

cantly the percolation threshold prior to one igniting (lightning hitting “late”).

Clearly, the probability density function of fire sizes is determined by the past

history of fires, going back at least a few p−1
g iterations. Since typically pg ≪ 1,

the system is said to exhibit long temporal correlations.

6.5 Back to criticality

Running forest fire model simulations for various combinations of growth and ac-

tivation probabilities pg and pf , one soon realizes that in the portion of parameter

space satisfying the double limit:

pf ≪ pg , pg ≪ 1 , (6.4)

the probability density function of fire sizes (and durations) always assumes a

power-law shape. Moreover, in that regime the power-law index is always the

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

190 CHAPTER 6. FOREST FIRES

same, and, for large enough lattices, is independent of lattice size. In other

words, the corresponding values of α are universal, and involve no fine tuning of

control parameters. In this regime, the forest fire model exhibits self-organized

criticality.

In terms of the conditions for SOC behavior identified at the end of chapter

5, slow forcing is tree growth; the threshold instability (with respect to lightning

strike) is the presence of a tree on the node hit by lightning; redistribution is the

propagation of fire to neighbouring trees. The system is open, because new trees

are continuously added to the lattice, and dissipative, because a mechanism (fire)

removes trees from the lattice.

But why should it matter whether wildfires represent an instance of SOC ? It

turns out to matter a lot, when you decide to actively manage wildfires.

6.6 The pros and cons of wildfire management

As I write these lines, life is slowly returning to the 1,500,000+ acres of land (over

6000 square kilometers) charred by the Spring 2016 Fort McMurray wildfire in

Northern Alberta. It is currently lining up to rank as the costliest natural disaster

in Canadian history. Amazingly enough, “only” two people died, in a car collision

during the town’s evacuation. Sometimes the toll gets worst. I lived in Colorado

back in 1994 and vividly recall the Storm King Mountain wildfire near Glenwood

Springs, which on July 6 claimed the lives of 14 firefighters who could not escape

a rapidly moving firefront. And if this was not bad enough, a century ago an

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

6.6. THE PROS AND CONS OF WILDFIRE MANAGEMENT 191

estimated 223 Northern Ontario residents suffered the same fate when half a

dozen small communities were swept by the 29 July 1916 Matheson wildfire. The

dangers of wildfires, and wildfire fighting, are not to be taken lightly. This is

serious business.

In Canada as in the United States, until recently and to some extent still now,

wildfire management consisted in putting out potentially dangerous wildfires as

quickly as possible, when the fire is still small. It sure seems to make a lot of sense.

This type of fire management practice is easy to incorporate in the simulation

code of Fig. 6.1. For example, introduce a time-dependent extinction probability

(pe) which decrease with the current number of burning trees (nb) as

pe(t) =







0.2/nb(t) if nb ≤ 10

0 otherwise

. (6.5)

Now, when a fire is triggered and begins to grow, at every subsequent temporal

iteration a probability test forces simultaneous extinction of all burning nodes

with probability pe. As the fire grows beyond a few tens of simultaneously burning

nodes, this probability will tend to zero, reflecting the fact that real wildfires

become very hard to extinguish once they really get going.

Considering that even large fires start off small, this procedure will clearly

reduce the number of fires burning on the lattice over a set time span. However,

because the PDF of fire sizes has a power-law shape, most extinguished fires

would have remained small anyway Extinguishing them thus leaves more fuel for

subsequent fires; whenever one manages to grow to a size where it probability

of being extinguished goes to zero as per eq. (6.5), the forest is more densely

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

192 CHAPTER 6. FOREST FIRES

packed with trees than it would have been had the earlier small fires not been

extinguished. As a consequence, the total number of fires decreases, but the size

of the largest fires may well increase! Not at all the desired outcome of good

wilfire management. The Grand Challenge for this chapter leads you through a

quantitative investigation of this phenomenon.

6.7 Exercises and further computational explo-

rations

1. The time series on the bottom of Fig. 6.4 shows a very clear periodicity;

can you determine what sets the period here ?

2. Run two forest fire simulations using the parameter values on Fig. 6.6. Make

sure to run your simulations long enough to generate a few hundred fires at

least. Calculate the fire measures E, P and T , as on Fig. 6.3, and examine

how these correlate against one another for your ensemble of fires. In both

cases examine also if fire size E correlates with the time elapsed since the

end of the previous fire, or with the size of the previous fire.

3. The aim here is to have you test some modifications to the Forest-Fire

model, and examine their impact. Work with a 100 × 100 lattice, and try

at least one of the following (and the more the better!):

(a) Modify the Python source code of Fig. 6.1 so that it operates in “stop-

and-go” rather than “running” mode, i.e., no tree is allowed to grow

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

6.7. EXERCISES AND FURTHER COMPUTATIONAL EXPLORATIONS 193

as long as a fire is burning anywhere on the lattice. In which parts of

parameter space does this alter the global behavior of the model ?

(b) Modify the Python source code of Fig. 6.1 so that fire propagates only

to the four nearest neighbours top+down+right+left. Does this alter

the global behavior of the model ?

(c) Modify the Python source code of Fig. 6.1 so that the growth proba-

bility increases linearly with the number n of occupied neighbouring

nodes, for example pg → pg(1+n). Does this alter the global behavior

of the model ?

(d) Modify the Python source code of Fig. 6.1 to introduce periodic bound-

ary conditions in the horizontal and vertical (see Appendix D for more

detail on implementing such boundary conditions on a lattice). Set

pf = 10−5 and explore the types of patterns generated at pg = 10−3

and 10−2.

4. The forest fire model is ideally suited to investigate an interesting variation

on percolation sometimes known as dynamical percolation. The idea is to

replace the initial condition in the forest-fire model of Fig. 6.1 by a clas-

sic percolation lattice with occupation probability p (see the small Python

code at the beginning of §4.2). Now turn off tree growth and lightning, but

as an initial condition set on fire all nodes along the left edge of the lattice,

and run the model until the fire extinguishes. Repeat the process for 10

distinct random realizations of your percolation lattice, and keep track of

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

194 CHAPTER 6. FOREST FIRES

the fraction or runs for which the fire reaches the right edge prior to ex-

tinction. Repeat for varying p and construct a plot showing the fraction of

“successful” realizations versus p. How does this plot compare to the bot-

tom panel on Fig. 4.6 ? How would you estimate the percolation threshold

pc from such ensemble averaging ?

5. The numerical implementation of the Forest-Fire model listed on Fig. 6.1

is extremely inefficient in many respects. For example, just consider the

fact that every empty node of the lattice is subjected to the tree growth

probability test at every temporal iteration; for a N ×N lattice, since trees

grow only on empty nodes (Rule 1), it would much faster to “grow” a tree

at pg×Ne randomly selected empty nodes, where Ne is the number of empty

nodes at the current iteration. Modify the Python source code of Fig. 6.1

to operate in this manner. And, if you feel up to some more serious coding,

see Exercise 5 in chapter 5 for more ideas.

6. And finally for the Grand Challenge: wildfire mitigation and management!

The idea is to implement the strategy outlined in §6.6 into the basic code

of Fig. 6.1. Work off a 128 × 128 lattice in the SOC regime of Fig. 6.6:

pg = 10−4 and pf = 10−6. Examine how the PDF of fire sizes varies as you

increase the probability of extinction, i.e., replace the numerical factor 0.2

in eq. (6.5) by the values 0.1, 0.2, 0.3 and 0.5. Run the simulations for the

same number of temporal iterations in all cases. Is the PDF getting steeper

or flatter as the probability of extinction increases ? How about the size of

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

6.8. FURTHER READINGS 195

the largest fires ? How would you go about designing an “optimal” wildfire

management strategy in the context of this model ? Note: in the context of

this Grand Challenge you will be trying to obtain accurate determinations

of the power-law index of the PDFs at each extinction probability; you may

consider calculating this index following the maximum likelihood approach

described in §B.6. Make sure to exclude the initial transient phase from

your analyses, and to push the simulations far enough in time to have many

hundreds of fires to build your PDFs from, even in the simulation with the

fewest fires.

6.8 Further readings

The forest-fire model introduced in this chapter is due to:

Drossel, B., & Schwabl, F., Self-organized critical forest-fire model, Phys. Rev. Lett.,

69(11), 1629–1632 (1992).

A comprehensive review of its properties can be found in:

Hergarten, S., Wildfires and the Forest-Fire Model, in Self-organized critical-

ity systems, ed. M. J. Aschwanden, Berlin: Open Academic Press,

357–378 (2013).

I know of no good textbook dedicated to the mathematical modelling of wildfires,

but the topic is sometimes covered in textbooks on mathematical modeling in

general. I did find the Wikipedia page on wildfire modeling well-balanced and

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

196 CHAPTER 6. FOREST FIRES

quite informative, and it also includes many good references to the technical

literature (consulted November 2014):

http://en.wikipedia.org/wiki/Wildfire modeling

On the comparison of real wildfire data with an improved SOC-type models akin

to that considered in this chapter, including fire management strategies, see

Yoder, M.R., Turcotte, D.L., & Rindle, J.B., Phys. Rev. E, 83, 046118 (2011)

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

Chapter 7

Traffic Jams

Avalanches on a sandpile and forest fires on a lattice both represent a form of

complex collective behavior emerging from simple interactions between a large

number of equally simple interacting elements. There is no directed purpose in

the toppling of a sand grain, or the ignition of a tree by a neighbouring burning

tree.

Complex collective behavior can also emerge from the interactions of system

elements that do behave in a purposeful manner, and in some cases this collective

behavior may even appear to run counter to the purpose driving these individ-

ual interacting elements. The occurrence of traffic jams in the flow of moving

automobiles is fascinating example, and is the focus of this chapter.

naturalcomplexity-2.tex, July 28, 2016 197 Natural Complexity, Paul Charbonneau, Université de Montréal

198 CHAPTER 7. TRAFFIC JAMS

7.1 Model definition

The basic model design is once again conceptually quite simple. A line ofN cars is

moving in the same direction along a single-lane one-way road. The agents driving

the cars slow down if they come too close to the car ahead of them, accelerate if

the distance allows it, and respect the speed limit. No passing or backing up is

allowed. Think about it a bit; these are pretty realistic and conventional “driving

rules”. More specifically, and with the positions and speed of the kth car at time

tn henceforth denoted by xn
k et vnk (k = 0, ..., N − 1), the speed adjusment rules

are the following:

1. At each time step (n), each driver (k) “calculates” (or eyeballs...) its dis-

tance δ to the car ahead:

δ = xn
k+1 − xn

k (7.1)

2. If δ < 5, the car slows down:

vn+1
k = vnk − 3 (7.2)

3. If δ > 5, the car speeds up:

vn+1
k = vnk + 1 (7.3)

4. The car speed must always remain bound in [0, 10], 10 being the speed

limit, and the lower bound precluding backing up.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

7.2. NUMERICAL IMPLEMENTATION 199

5. Each car moves according to the standard prescription for uniform speed

(that is, uniform within a given temporal iteration):

xn+1
k = xn

k + vnk ×∆t . (7.4)

In all that follows, we will set ∆t = 1 without any loss of generality.

6. And here is the crux. Every once in a while, due to an incoming text

message, a change of CD, a squirrel crossing the road, or just for the sheer

fun of being a royal pain in the patookus, some random bozo agent (k = r)

slams on the brakes:

vn+1
r = vnr − 3 , r ∈ [0, N − 1] . (7.5)

Unlike with normal braking, here this rare (hopefully) random occurrence

takes place independently of the distance to the car ahead. This is also the

only one of the six driving rules which is not fully deterministic.

7.2 Numerical Implementation

The Python source code listed on Figure 7.1 offers a simple implementation of

the above traffic model. Take note of the following:

1. The simulation is once again structured around an outer temporal loop

(starting at line 16) enclosing three sequential inner loops over the N cars

(starting at lines 18, 27, 31);

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

200 CHAPTER 7. TRAFFIC JAMS

1 # DISCRETE TRAFFIC MODEL ON A ONE-WAY STRAIGHT ROAD

2 import numpy as np

3 import matplotlib.pyplot as plt

4 #---

5 N=300 # number of cars

6 p_bozo=0.1 # probability of random braking

7 n_iter=2000 # number of temporal iterations

8 #---

9 v=np.zeros(N) # zero initial speeds for all cars

10 x=np.zeros(N) # car positions

11 mean_v=np.zeros(n_iter) # time series of mean speed

12 x[0]=1 # first car at x=1

13 for k in range(1,N): # initialize car positions

14 x[k]=x[k-1]+np.floor(np.random.uniform(3.,14.))

15

16 for iterate in range(0,n_iter): # temporal loop

17

18 for k in range (0,N-1): # first car loop: update speeds

19 dx=x[k+1]-x[k] # distance to next car ahead

20 if dx < 5: # too close: slow down

21 v[k]=max(0,v[k]-3)

22 if dx > 5: # far enough: speed up

23 v[k]=min(10,v[k]+1)

24 if x[N-1]-x[N-2] <= 10: # special case: lead car

25 v[N-1]=min(10,v[N-1]+1)

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

7.3. A REPRESENTATIVE SIMULATION 201

2. Car positions are initialized as random-valued positive increments; here in

the range 3 ≤ xk+1 − xk ≤ 17 (line 14), for a mean inter-car distance of 10

units. This procedure ensures that x1 < x2 < x3 < x4 < ... < xN;

3. The change in car velocities is first computed for all cars in the first two

inner loops, and only then are the car positions calculated and the array x

updated, in the third inner loop (lines 31–32);

4. Safety tests using the Python functions min and max ensure that the speed

cannot exceed 10 (lines 23 and 25), or fall below zero (line 21), respectively.

5. Similarly, a “safety test” (line 32) ensures that no car can get closer than

one unit from the car ahead.

6. Car number N, in the lead, does not have a car ahead of itself; consequently

it adjusts its speed according to the distance to the following car (line 24–

25).

7.3 A representative simulation

Figures 7.2 and 7.3 show results for a typical simulation, here for an ensemble

of 300 cars initially at rest and distributed randomly, with a mean spacing of 10

units. This is actually the same initial condition set up in the source code of

Fig. 7.1. Both Figures show the trajectories, position versus time, for all cars

(Fig. 7.2) or subset thereof (Fig. 7.3). The first Figure focuses on the first 1000

temporal iterations of the simulation, while the second extends much farther, to

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

202 CHAPTER 7. TRAFFIC JAMS

104 iterations. On such plots, horizontal streaks are symptomatic of cars at rest,

i.e., traffic jams.

Early in the simulation (Fig. 7.2), traffic is a total mess because the initial

spacing between cars is too small. Cars are continuously braking, triggering more

braking in the cars following. As the first cars ahead of the lineup start to in-

crease their speed and move ahead of the mess, cars behind them eventually

do the same, until all cars have managed to pick up speed and increase the dis-

tance between each other, which occurs here after about 1300 temporal iterations.

Loosely speaking, we can define this as the beginning of the “fluid” phase of the

simulation, whereas the hopeless jam characterizing the first ∼ 103 iterations will

be referred to as the “solid” phase. It is clear on both these Figures that even

when the simulation is far into its fluid phase, jams of varying sizes still occur

intermittently. Most of these are caused by a random bozo braking, but such

an individual perturbation will sometimes have little effect, while at other times

a jam implying almost all cars is produced, for example the jam beginning at

(x, t) ≃ (7000, 500) on Fig. 7.2. Note that here with 300 cars and a bozo proba-

bility of 0.1, on average 30 random braking events take place at every temporal

iteration, which is substantial.

The inset on Fig. 7.2 shows the trajectory of a specific car, in green, having just

managed to free itself from a major jam having affected nearly the whole system,

and subsequently hitting the back of, to later extract itself from, two smaller

jams. Upon careful examination of this inset it becomes clear that individual

cars are either moving at or close to the speed limit, or are at rest or nearly

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

7.3. A REPRESENTATIVE SIMULATION 203

Figure 7.2: Trajectories of all cars in the simulation, defined as the variation of

their position (vertical axis) versus time (horizontal axis), as produced by the

Python code of Fig. 7.1, with all 300 cars initially at rest. The simulation evolves

according to two fairly distinct phases, the first being one of ubiquitous traffic

jams, transiting towards a state in which all cars move at the same average speed,

but with traffic jams of varying sizes still occurring intermittently. The green line

shows the trajectory of the car initially located a quarter of the way behind the

leading car. The dotted line show the slope corresponding to the speed limit

v = 10. The inset zooms in on a large traffic jam, and shows than even in a jam,

car trajectories never cross (no passing allowed on a single lane one-way road!).

7.1.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

204 CHAPTER 7. TRAFFIC JAMS

so, stuck in a jam. It is also noteworthy that the temporal duration of a jam is

substantially longer than the time any single car spends stuck in it (take another

look at the green trajectory in the inset to Fig. 7.2). This happens because cars

free themselves from the jam one by one at its downstream end, while other cars

pile up at its upstream end. As a consequence, once triggered the jam grows

backwards in x with time, even though no car ever moves backwards here.

In position versus time plots such as on Figs. 7.2 and 7.3, the slope of the

car trajectories gives the average speed of the ensemble of cars. This is indicated

by the two parallel dashed lines bracketing the car trajectories on Fig. 7.3. The

corresponding slope is very well-defined and remains constant in the fluid phase

of the simulation. Note however that it is significantly smaller than the slope

expected for a car moving uniformly at the speed limit, which is indicated here

by the dotted line. In other words, even though cars could all in principle move

at the speed limit, through their interactions they settle in a mean state where

their ensemble average speed is significantly smaller than the speed limit1. You

should recognize this type of collective “sub-optimality” as something we have

encountered already, and if not go take a look again at Fig. 5.3.

1This is not due to random braking of individual cars; with a bozo probability of 0.1 and

re-acceleration to full speed requiring three iterations, the average speed of an isolated (non-

interacting) car would be 9.4 here.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

7.4. MODEL BEHAVIOR 205

7.4 Model behavior

We need to get a bit more quantitative in our attemps to understand how this

model behaves. Two interesting global quantities are the mean speed for all cars:

〈v〉 = 1

N

N−1∑

k=0

vk , (7.6)

and the mean distance between successive cars in the lineup:

〈δ〉 = 1

N − 1

N−2∑

k=0

(xk+1 − xk) =
xN−1 − x0

N − 1
. (7.7)

The mean density of cars is simply the inverse ratio of this expression:

ρ =
N − 1

xN−1 − x0

. (7.8)

Knowing these two quantities, one can compute the car flux (Φ):

Φ = ρ× 〈v〉 ; (7.9)

This measures the average number of cars passing a given position x∗ per unit

time.

Figure 7.4 shows time series of the three quantities 〈v〉, ρ and Φ for the simu-

lation of Figure 7.2. All three vary markedly in the early part of the simulation,

until the transition to the fluid phase at t ≃ 1300. Note however that the mean

density and flux of cars only really stabilize starting around t ≃ 2000. This

indicates that reaching a statistically stationary state still requires a significant

amount of time after transiting from the solid to fluid phase.

A noteworthy property of this statistically stationary state is that its global

characteristics such as mean speed, density, etc., are independent of the initial

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

206 CHAPTER 7. TRAFFIC JAMS

condition for the simulation. The mess of monster traffic jams characterizing

what we dubbed the solid phase of the simulation certainly suggests that the

initial condition imposed here is far from optimal, in terms of getting the traffic

going. Nonetheless, cook up whichever initial condition you can think of, with

the traffic rules used here and for a large enough number of cars, the system

always stabilizes at the same statistically stationary values of 〈v〉, ρ and Φ as on

Figure 7.4.

The evolution towards such robust mean car speeds (and densities) would

also suggest that most cars end up travelling most of the time at or near that

speed, in other words the distribution of car speeds is Gaussian-like and centered

on its mean value 〈v〉. This is not at all the case, as one can immediately see

from Figure 7.5. This shows the probability density function of car speeds2,

built from all cars at all iterations far into the statistically stationary fluid phase

of the simulation (t > 3500). The distribution is in no way Gaussian, or even

symmetrical about its mean value (vertical line segment at ≃ 8.6), but instead

spans the whole allowed range, with its peak at v = 10 and secondary peaks at

v = 7 and v = 0. The v = 7 peak is a direct consequence of the braking rule

(eq. (7.2)), which decrements speed by three units, acting on the primary peak

at v = 10.

What this distribution expresses is worth expliciting and reflecting upon. Cars

spend over 60% of their time moving at the speed limit v = 10, and only 4% of

2Since car speed is defined as an integer in the range 0 ≤ vnk ≤ 10, this distribution is

fundamentally restricted to 11 bins.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

7.5. TRAFFIC JAMS AS AVALANCHES 207

their time stuck in a traffic jam of whatever size, which is really not so bad after

all (although for most people, myself included, the stress level generated by the

time spent in the jams would be disproportionately much higher). Note also that

while a “mean car speed” can be defined unambiguously from a mathematical

point of view, in itself it does not provide a very useful information regarding

the state of a specific car, even in a statistical sense. This stands in contrast to

a situation where the car speeds would have been distributed as a Gaussian, in

which case the mean speed also coincides with the most probable speed. This is

not the case on Figure 7.5, where the most probable speed is v = 10, significantly

higher than the mean speed.

7.5 Traffic jams as avalanches

You probably have already figured out that the buildup of a traffic jam in these

simulations is akin to an avalanche of successive braking events. Moreover, at the

dynamical level nothing fundamentally distinguishes small jams from large ones;

all that changes is the number of cars involved. Could we not then expect jams

to exhibit some form of scale invariance ? let’s look into that.

Some care is warranted in defining the “size” of a traffic jam; the number of

cars involved is obviously an important factor, but so is the temporal duration

of the jam, which, as we already noted, is typically larger than the time any

individual car spends stuck in it. A jam is a pseudo-object, in that cars are

continuously piling up at the back of the jam, and others removed at its front.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

208 CHAPTER 7. TRAFFIC JAMS

Much like a waterfall, which retains its shape despite the fact that water is flowing

through it, a large traffic jam retains its “identity” for a length of time usually

much larger than the time any one car spends moving through it. Traffic jams

are spatiotemporal structures and must be treated as such.

Consider the following procedure: we build a rectangular pixellized “image”

where there are as many pixels horizontally as there are cars, and as many pixels

vertically as there are temporal iterations. Each pixel (k, n) in the 2D image is

assigned an integer value between zero and ten, set equal to the speed of car k at

iteration n, i.e., vnk . Figure 7.6 shows the results of this procedure, in the form of

three successive 1000 iteration-long blocks laid side by side, with color encoding

speed according to the scale at right. This representations illustrates well the fact

that traffic jams are structures that exist in space and time, and their backward

propagation, one car at a time, becomes particularly striking.

Now, the idea is to define a traffic jam as a cluster of pixels with value zero,

contiguous in car number space (horizontally) and time (vertically). Figure 7.7

illustrates the idea, for a 300-iteration long segment corresponding to the middle

portion of the central column on Fig. 7.6. Clusters of halted cars evidently span

a wide range of sizes, going from a single pixel up to slanted structures stretching

over many hundreds of iterations and collecting in excess of 103 pixels. In some

cases pixels that appear to “belong” to the same jam, as per their location along

the same slanted streak of pixels, end up broken into a string of smaller groups.

Some smaller jams also occasionally merge into larger ones, but the model’s

governing rules makes it difficult for a jam to spawn secondary branches, a rare

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

7.6. CAR TRAFFIC AS A SOC SYSTEM ? 209

occurrence restricted to very small jams. Figure 7.7 seriously begins to smell of

scale invariance. And you will undoubtedly recall that back in chapter 4, when

investigating percolation, we introduced an algorithm (based in fact on the forest

fire model of chapter 6), that can assign a unique numerical tag to each such

cluster. Because of the tendency of jams to shift backward one car per time

step, here we define contact with any of a pixel’s eight nearest neighbours, i.e.,

including diagonally, as the criterion for tagging pixels to the same clusters. This

involves only a minor modification to the cluster-tagging code of Fig. 4.3.

Figure 7.8 show the probability density function of traffic jam sizes, built

from the 3441 distinct jams tagged in the last 8000 iterations of our now familiar

simulation of Figs. 7.2 and 7.3. The first 2000 iterations have been omitted so as

to restrict the statistics to the stationary fluid phase. Once again, the sizes are

distributed as a well-defined power law spanning here over two orders magnitude

in size, with logarithmic slope −1.58. This power-law form supports —but does

not rigorously prove— our growing suspicion that traffic jam are scale-invariant

spatiotemporal structures.

7.6 Car traffic as a SOC system ?

Scale invariance is a hallmark of critical systems, but its presence is certainly

not a proof for the presence of criticality; the aggregates of chap. 3 were scale

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

210 CHAPTER 7. TRAFFIC JAMS

invariant, but the DLA process has nothing to do with criticality3. On the other

hand, our traffic model does show a key defining feature of critical systems: in its

statistically stationary state, one small perturbation (a randomly braking bozo)

has a finite probability of affecting the whole system, through the triggering of a

jam bringing all cars to a grinding halt, from first to last. This is akin to a lattice

at the percolation threshold, where the appearance of a single additional occupied

node can produce a cluster spanning the whole lattice. Moreover, and now unlike

percolation, here this state arises autonomously through the interactions between

a large number of moving cars. If it is criticality, then it is also self-organized

criticality.

The lofty objective of traffic engineering is to ensure a smooth flow of automo-

tive traffic, subject to the additional desirable practical goal that all participating

drivers get to where they want to go as quickly and painlessly as possible4. One

would strongly suspect that traffic jams represent a major obstacle towards this

goal. Can these traffic jams be avoided ? Obviously, one possibility is to ensure a

spacing between cars large enough for a random braker to have time to accelerate

back to the speed limit before the next car behind has caught up and is forced

to brake. However, such a state would be characterized by a low density of cars,

and therefore a low flux even if all car fly along smoothly at the speed limit. If

3Or does it ? If you are keen on the issue, read and and reflect upon the Witten & Sanders

paper cited at the end of chapter 3.
4My home town, Montréal, seems to operate under a different method; or perhaps there is

just no method at all...

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

7.6. CAR TRAFFIC AS A SOC SYSTEM ? 211

the objective is to get a very large volume of commuter traffic into town, this

will not do. One could try the opposite approach and pack cars as closely as

possible behind one another, thus reaching high densities and therefore high flux;

but such a state will always produce a huge jam as soon as a bozo decides to

brake for nothing, causing a massive slowdown of a great many cars, with the flux

dropping precipitously as a consequence, and recovery to a fluid phase a lengthy

process. Is there a working solution to this flux maximisation problem ? The

answer is thought to be yes, and we have been staring at it all along.

It has been conjectured that the stationary state attained by these traffic

simulations, despite the jams of all sizes occurring across the system, actually

maximizes the flux of cars in the presence of random brake-slamming bozos,

as compared to any other carefully engineered traffic state5. In other words,

a scale-invariant distribution of traffic jams is the system’s emergent strategy

for minimizing the global impact of randomly braking bozos. Certainly nothing

of this sort could have been anticipated on the basis of the simple traffic rules

defining the model. You actually get to test some aspects of this remarkable

conjecture in some of the computational explorations suggested below.

5This is a conjecture in the sense that no-one has yet been able to rigorously prove it, as far

as I know anyway; but no-one has managed to offer a clear counterexample either.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

212 CHAPTER 7. TRAFFIC JAMS

7.7 Exercises and further computational explo-

rations

1. It was stated back in chapter 5 that the necessary conditions for SOC were

(in short): a slowly-driven open system subjected to a self-stabilizing local

threshold instability. Can you identify these elements in the traffic model

considered in this chapter ? How could you argue that this is yet another

instance of an open dissipative system ?

2. This one lets you explore some parameter dependencies of the traffic model

introduced in this chapter.

(a) Generate a series of traffic simulations with varying numbers of cars

(30, 100, 300, 1000 and 3000, say). Investigate whether the mean

speed, density and car flux in the fluid phase depend on the total

number of cars.

(b) Use the code of Fig. 7.1 to produce a set of traffic simulations with

increased probability of random braking (variable p bozo), but oth-

erwise identical. Examine the effect on the mean speed attained in

the fluid phase of the simulation. Do you always see a reasonably

well-defined transition from “solid” to “fluid” ?

3. Try to engineer an initial condition which will minimize the duration of the

“solid” phase of traffic. The idea is of course to distribute a set number of

cars on a set length of road; what you can play with is the position and

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

7.7. EXERCISES AND FURTHER COMPUTATIONAL EXPLORATIONS 213

initial speeds of the cars. Are the mean speed and car density attained in

the statistically stationary fluid state dependent on the initial condition ?

4. Change the acceleration and braking rules (i.e., the magnitude of the incre-

ment and decrement in speed), and examine the impact of such changes on

the upstream/downstream motion of jams. Can you infer a simple math-

ematical relationship between these model parameters (microscopic rules)

and the motion of jams (macroscopic behavior) ?

5. A commuter’s nightmare version of our traffic jam model can be produced

by having the cars move along a circular one-way ring-road. Your first task

is to modify the Python code of Fig. 7.1 accordingly. Think this one through

carefully; you can do this by changing a single line of code in Fig. 7.1, once

you define the length of the road perimeter. How does the model behave as

compared to the original straigth road version introduced in this chapter ?

6. The Grand Challenge for this chapter is two-pronged. You have to work

with the ring-road version of the model, as described in the preceding ex-

ercise.

(a) Examine how the mean speed and car flux in the statistically station-

ary state vary as a function of car density (as controlled by the number

of cars placed on the ring-road), for a fixed road perimeter. Does this

remind you of something ? If not, go back and reread chapter 4, then

come back and determine the percolation threshold for this ring road.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

214 CHAPTER 7. TRAFFIC JAMS

(b) The dynamical rules defining the traffic model introduced in this chap-

ter are invariant under an inversion of car velocities, vk → −vk for all

k. Modify the ring-road version of the model so that initial car speeds

are set randomly at either +1 or −1 equiprobably. Adjust the driving

rules accordingly, and in particular add a “chicken” rule: whenever

two cars are about to collide face-on, reverse the speed of the slowest

car (and set both speeds to zero if they have the same speed). Use

an initial car density sufficiently low for a fluid phase to be eventualy

attained (as per your investigations in (a)). Carry out an ensemble of

simulations with distinct random initializations, and verify that in the

end state both senses of driving (clockwise and counterclockwise) are

equally probable. This represents an instance of symmetry breaking :

nothing in the dynamical rules favors one sense of rotation over the

other; the direction of the global flow of cars emerges from the (sym-

metrical) dynamical rules acting on the low amplitude “noise” of the

initial condition.

7.8 Further readings

There exists a vast literature on the mathematical modeling of traffic flow. The

following (advanced) textbook offers a good survey of the current state-of-the-art:

Treiber, M., & Kesting, A., Traffic flow dynamics, Springer (2013)

The traffic model studied in this chapter essentially follows that proposed by:

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

7.8. FURTHER READINGS 215

Nagel, K., & Paczuski, M., Emergent traffic jams, Phys. Rev. E, 51, 2909

(1995)

but see also chapter 3 in

Resnick, M., Turtles, Termites and Traffic Jams, MIT Press (1994).

My first encounter with the mathematical modelling of traffic jams was in chapter

5 of the following delightful book, which the mathematically-inclined should not

miss:

Beltrami, E., Mathematics for dynamical modeling, San Diego: Academic

Press (1987).

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

216 CHAPTER 7. TRAFFIC JAMS

Figure 7.3: Same as Fig. 7.2, but covering a temporal interval ten times longer,

and with only 11 car trajectories plotted, for clarity. The gray shaded area at the

lower left is the range covered by Fig. 7.2. The dotted line is again the trajectory

of a car moving at the maximum speed v = 10, and the two dashed line mark

the average speed of the ensemble of cars in the fluid phase of the simulation.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

7.8. FURTHER READINGS 217

Figure 7.4: Time series of mean speed 〈v〉, mean density ρ, and car flux Φ, in

the simulation of Figures 7.2 and 7.6. Even though the fluid phase begins around

t ≃ 1300, statistical stationarity is reached much later, around t ≃ 2000.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

218 CHAPTER 7. TRAFFIC JAMS

Figure 7.5: Probability density function of car speeds, built from the speeds of all

cars at each temporal iteration far into the fluid phase (t > 3500) of the simulation

plotted in Figs. 7.2 and 7.3. The vertical line segment at v ≃ 8.6 indicates the

mean speed, and the secondary peak at v = 7 is a direct consequence of the

braking rule (v → v− 3) for cars moving at the speed limit, and which dominate

the distribution (see text).

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

7.8. FURTHER READINGS 219

Figure 7.6: Traffic jams in the simulation of Figs. 7.2 and 7.3. What is plotted

on each of the three color-coded images is the speed of the cars as a function

of car number (running horizontally) and time (running vertically from bottom

to top), for three successive 1000-iteration chunks of the simulation in its fluid

phase. Zero speed is black, going through blue and red up to v = 10 in yellow,

as per the 11-steps color scale at right.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

220 CHAPTER 7. TRAFFIC JAMS

Figure 7.7: Clusters of vnk = 0 cars for a 300 iteration long segment of the

simulation corresponding to the middle part of the central column on Fig. 7.6.

Note the merging of small jams into the larger jam running at left.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

7.8. FURTHER READINGS 221

Figure 7.8: Probability density function for the sizes of the 3441 distinct traffic

jams tagged in the last 8000 iterations of the simulation plotted in Figs. 7.2 and

7.3. The distribution is well-fit by a power law with index −1.58.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

222 CHAPTER 7. TRAFFIC JAMS

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

Chapter 8

Earthquakes

Earthquakes are scary, because they are powerful and (as yet) unpredictable, and

can have consequences going far beyond rattling the ground under our feet; just

in recent years, think of the earthquake-triggered December 2004 killer tsunami

in the Indian ocean, or the March 2011 failure of the Fukushima nuclear power

plant in Japan, or the hundreds of thousand people left homeless by the April

2015 earthquake in Nepal. This is serious business.

It is now understood that the Earth’s crust is broken into a dozen or so

major tectonic plates, about 100 km thick, floating on a deep fluid layer of molten

rocks called the asthenosphere. Horizontal fluid motions are ubiquitous in the

outer astenosphere, due to thermally-driven convection in the Earth’s interior.

These flows produce a horizontally-oriented viscous force at the bottom of tectonic

plates, which is opposed by static friction at the boundaries between adjacent

plates moving relative to one another. These regions of high static stress are

known as fault lines. As the viscous force builds up, the rock first deforms

naturalcomplexity-2.tex, July 28, 2016 223 Natural Complexity, Paul Charbonneau, Université de Montréal

224 CHAPTER 8. EARTHQUAKES

elastically, but there comes a point where static friction and deformation can

no longer offset forcing. The plates abruptly move, producing what we call an

earthquake.

The energy released by earthquakes is quantified by their magnitude m, es-

sentially a logarithmic measure of seismic wave amplitudes. A long-known, re-

markable property of earthquake energy release is that the distribution of their

magnitudes takes the form of a power-law. More specifically, the number N of

earthquakes having a magnitude larger than m in a given area and time interval

is given by the celebrated Gutenberg-Richter Law:

N(> m) ∝ m−b , (8.1)

where b ≃ 1 in most locations1. This power-law is taken to reflect scale-invariance

in the dynamics of earthquakes, a property that can be reproduced using a simple

mechanical model to which we now turn.

8.1 The Burridge-Knopoff model

The Burridge-Knopoff stick-slip model of seismic faults is a mechanical construct

defined as a two-dimensional array of blocks interconnected by springs to their

four nearest neighbours, sandwiched in the vertical between two flat plates (see

Figure 8.1). Each block can be tagged by a pair of indices (i, j) measuring its

relative position in x and y in the array. The blocks rest on the bottom plate

1Equation 8.1 is a cumulative PDF; the usual bin count-based PDF would be ∝ m−(b+1).

If needed, see Appendix B for more on cumulative PDFs.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

8.1. THE BURRIDGE-KNOPOFF MODEL 225

and are each connected to the top plate by another set of leaf springs. Figure

8.1 illustrates this arrangement for a block (i, j) and its four nearest neighbours

(i − 1, j), (i + 1, j), (i, j − 1) and (i, j + 1). The bottom plate is assumed to be

at rest, but the top plate moves in the positive x-direction at a constant speed

V . This is the model’s analog to the moving astenosphere fluid and the viscous

force it impresses on the plates. The motion of the upper plate will gradually

stretch the leaf springs, thus inexorably increasing the x-component of the force

acting on each block. The model assumes that Hooke’s Law holds, meaning that

the force is linearly proportional to the stretching of each spring:

Fx = K∆x , (8.2)

where K is the spring constant and the displacement ∆x ≡ xi,j is here set equal

to the distance between the block center and the anchoring point of its leaf spring

on the top plate (see Fig. 8.1). The spring constants of the inter-block springs

and leaf springs are not necessarily the same, and are respectively denoted K and

KL in what follows.

The x-component of the total force acting on block (i, j) is given by the sum

of the contributions from the spring connected to the four nearest-neighbours,

plus that of the leaf spring:

F n
i,j = K(xn

i−1,j − xn
i,j) +K(xn

i+1,j − xn
i,j) +K(xn

i,j−1 − xn
i,j) +K(xn

i,j+1 − xn
i,j)−KLx

n
i,j

= K(xn
i−1,j + xn

i+1,j + xn
i,j−1 + xn

i,j+1 − 4xn
i,j)−KLx

n
i,j (8.3)

where, in anticipation of developments to follow, the superscript “n” indicates

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

226 CHAPTER 8. EARTHQUAKES

Figure 8.1: The Burridge-Knopoff sliding-block model of earthquakes, displayed

here in top and side views. The bottom plate is assumed fixed and the top plate

moves with a constant speed V . Leaf springs are traced in green, and inter-block

springs in red. The block displacements (x) are measured from the anchoring

points of the leaf spring on the top moving plate, indicated by green dots on the

top-view diagram.Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

8.1. THE BURRIDGE-KNOPOFF MODEL 227

time2. Missing from this expression is the static friction force acting between

the block and the lower plate on which it rests. As long as this can equilibrate

the force mediated by the springs, given by eq. (8.3), every block in the system

remains at rest.

Because the displacement of the top plate increases inexorably the force trans-

mitted by the leaf springs to the blocks, there will inevitably come a point when

the friction force cannot counteract the spring forces, and a block will slip. The

key idea here is that upon slippage, the block (i, j) rapidly settles at an equilib-

rium position where the net spring force is zero:

F n+1
i,j = K(xn

i−1,j + xn
i+1,j + xn

i,j−1 + xn
i,j+1 − 4xn+1

i,j)−KLx
n+1
i,j = 0 , (8.4)

again with superscript n+1 denoting the time after slippage. The change in the

total spring force acting on block (i, j) is thus:

δFi,j ≡ F n+1
i,j − F n

i,j = (4K +KL)(x
n+1
i,j − xn

i,j) (8.5)

Since F n+1
i,j = 0 by prior assumption (namely, eq. (8.4)), the right hand side of this

expression must be equal to −F n
i,j. Consider now the neighbouring block (i+1, j),

say. Assuming only block (i, j) had undergone slippage, the corresponding change

in the total force acting on block (i+ 1, j) is simply

δFi+1,j = K(xn+1
i,j − xn

i,j) . (8.6)

2Because the displacements x are measured from the anchoring points of the leaf spring,

in general they will be negative quantities (like the five illustrative displacements on Fig. 8.1).

Consequently, a term like −KLx
n
i,j in eq. (8.3) is positive-signed, indicating that the leaf spring

pulls the block in the positive x-direction, as it should.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

228 CHAPTER 8. EARTHQUAKES

This must be equal to δFi,j, as per Sir Newton’s celebrated action-reaction dy-

namical Law; eq. (8.5) can thus be used to substitute for xn+1
i,j − xn

i,j in eq. (8.6),

which immediately leads to:

δFi+1,j = αF n
i,j , (8.7)

where

α =
K

4K +KL

. (8.8)

Therefore, the force on block (i + 1, j) varies by an amount proportional to the

force acting on block (i, j) before slippage, a result which also holds for the

other three nearest neighbour blocks3. The numerical value of the proportionality

constant α is set by the ratio of spring constants; note in particular that:

lim
K≪KL

α → 0 , lim
K≫KL

α → 1

4
. (8.9)

Is turns out to be possible to design a simple sandpile-like model in which the

rules can be unambiguously related to the physical laws at play in the Burridge-

Knopoff sliding block model. The key is to use the total force Fi,j acting on block

(i, j) as a nodal variable, rather than its position.

As with the 1D sandpile model considered in chapter 5, the Olami-Feder Chris-

tensen (hereafter OFC) model is a lattice-based cellular automaton-like system

3In general the slipping block would also move in the y-direction, unless xi,j+1 = xi,j−1; this

can ignored here because the y-displacement will average to zero after many slipping events,

a consequence of the fact that the forcing by the upper plate is aligned with the x-direction.

Also, note that eq. (8.8) is only valid for “interior” blocks; those at the edges and corners of

the block system would have α = K/(3K +KL) and α = K/(2K +KL), respectively.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

8.1. THE BURRIDGE-KNOPOFF MODEL 229

evolving according to simple rules discrete in space and time. In keeping with

the Burridge-Knopoff sliding block picture we consider here a two-dimensional

Cartesian lattice made up of N ×N nodes with right+left+top+down neighbour

connectivity, This lattice is used to discretize a real-valued variable F n
i,j, where

the subscript pair (i, j) identifies each node and the superscript n now denotes a

discrete temporal iteration.

The nodal variable is subjected to a deterministic forcing mechanism, whereby

at each temporal iteration, a small increment δF is added to the force variable

F at every node on the lattice:

F n+1
i,j = F n

i,j + δF , ∀ i, j . (8.10)

This captures the slow displacement of the top plate in the Burridge-Knopoff

model, which inexorably increases the force transmitted to all blocks through

their leaf spring. Whenever the total force on the block exceeds some preset

threshold Fc,

F n
i,j > Fc , (8.11)

corresponding physically to the friction force between the blocks and the bot-

tom plate, the node relaxes to a zero-force state by redistribution to its nearest

neighbours:

F n+1
i,j = 0 , (8.12)

F n+1
nn = F n

nn + αF n
i,j , 0 ≤ α ≤ 0.25 , (8.13)

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

230 CHAPTER 8. EARTHQUAKES

where nn ≡ (i + 1, j) (i− 1, j) (i, j + 1) (i, j − 1), and α is in fact the very same

proportionality constant appearing in eqs. (8.7)–(8.8), i.e., it measures the frac-

tion of the force acting on the unstable node that is lost to the upper plate,

rather than being redistributed to the nearest neighbours. This redistribution

evidently restores local stability to node (i, j), but as in the sandpile model of

chap. 5, one or more of the nearest neighbours can be pushed beyond the sta-

bility threshold by the redistribution of the nodal variable, possibly leading to

avalanches of nodal destabilisations cascading across the lattice. Figure 8.2 il-

lustrates schematically this redistribution process, in a situation where node j

exceeds the stability threshold through the addition of a forcing increment δF

(left panel). The subsequent redistribution (right panel) pushes node j+1 above

the stability threshold, which will lead to a new redistribution of a nodal quantity

αF n+1
j+1 to nodes j and j+2 at the next iteration, restoring the lattice to stability.

Notwithstanding the fact that it is defined here on a two-dimensional rather

than one-dimensional lattice, the OFC model may look like a mere thematic

variation on the simple sandpile model introduced in chapter 5, with the stability

criterion defined in terms of the nodal values themselves, rather than their slope

(or gradient, in 2D). The apparently minor differences between the two model

setups are in fact profound at the level of their physical implications, and, as we

shall see in the remainder of the present chapter, lead to markedly distinct global

behaviors.

One key difference is that for α < 0.25 in eq. (8.13), the OFC model is non-

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

8.1. THE BURRIDGE-KNOPOFF MODEL 231

conservative: the sum of the nodal variable Fi,j is smaller after a redistribution

event than it was prior to it. Recall that the choice α = 0 corresponds to a

complete decoupling of the blocks with one another (the spring constant K = 0),

in which case the force F n
i,j at an unstable node is entirely transfered to the

upper plate though the leaf spring. It is only at the opposite extreme α = 0.25,

implying a ratio of spring constantsKF/K ≪ 1, that all of F n
i,j is transmitted only

to neighbouring blocks during a slippage event, which then makes redistribution

conservative.

Another key difference is that the driving, stability and redistribution rules

of the OFC model are all completely deterministic. The only stochasticity is

introduced in the initial condition, where at n = 0 the nodal variable is set

to some uniformly distributed random value within the allowed range of stable

values:

F 0
i,j = r , i, j = 1, ..., N , r ∈ [0, Fc] . (8.14)

The OFC sandpile model is usually taken to operate in stop-and-go mode,

meaning that driving is interrupted during avalanches and resumes only once the

system is everywhere stable. The implied separation of timescales between the

driving and avalanching processes is very well justified in the Earthquake context,

with mean displacement speeds for tectonic plates of about a centimeter per year

(roughly the speed at which our nails grow), versus meters per second for slippage

during earthquakes.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

232 CHAPTER 8. EARTHQUAKES

8.2 Numerical implementation

The numerical implementation of the OFC model used in what follows, as listed

in Fig. 8.3, closely follows that of the 1D sandpile model in terms of overall code

structure.

1. The simulation executes a preset number of temporal iterations, as set by

the value of the variable n iter (loop starting on line 20).

2. Once again that stability check and redistribution are executed one after

the other within the outer temporal loop, so as to achieve synchronous

update of the nodal variable.

3. The lattice arrays force and move are assigned sizes (N+2)×(N+2), even

though the lattice is of size N × N (lines 13 and 21). The extra rows and

columns are ghosts nodes along the perimeter of the lattice, introduced so as

to avoid out-of-bound indexing (index< 0 or> N−1) during redistribution.

The lattice loops therefore run from from index values 1 to N (lines 16–17

and 23–24). The force on ghost nodes retain a value of zero throughout the

simulation.

4. As with the forest-fire code of Fig. 6.1, two integer arrays, dx and dy,

are used to define a nearest-neighbour template relative to any node (i, j)

(lines 11–12); implementing eq. (8.13) is then carried out via an implicit

loop over the elements of these template arrays, by using them to index the

move array (line 27).

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

8.3. A REPRESENTATIVE SIMULATION 233

5. Forcing takes place at all nodes (line 34), but only if no node was found

unstable at the current iteration.

As with most Python codes introduced in the preceding chapters, this imple-

mentation favors readability over computationally efficiency. Since the driving is

deterministic, the current state of the (non-avalanching) lattice determines en-

tirely how many forcing iterations are required before the next toppling occurs;

taking advantage of this fact can lead to huge speedup, the more so the smaller

the δF . One of the computational exploration exercise at the end of this chapter

offers a few hints on how to take advantage of this property of the OFC model.

8.3 A representative simulation

As usual, we first examine in some detail one specific representative simulation,

here on a 128×128 lattice and parameter values Fc = 1, δF = 10−4 and α = 0.15,

the latter implying markedly non-conservative redistribution, as 40% of the nodal

variable is “lost” every time a node topples. A good measure of avalanche size

E here is the amount of force dissipated in the course of all redistribution events

occurring during the avalanche. In practice, an equivalent measure is simply the

total number of toppling nodes (counting all repeated toppling as such), since

all redistribution events dissipate essentially the same quantity of nodal variable,

namely (1− 4α)× Fc, provided δF/Fc ≪ 1.

Figure 8.4 shows portions of the avalanche size time series for our represen-

tative simulation, after it has reached its statistically stationary state. The top

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

234 CHAPTER 8. EARTHQUAKES

panel shows a 40000 iteration-long segment, the middle panel 2×105 iterations, up

to 2×106 at bottom. Avalanches covering a wide variety of sizes are seen to occur,

here ranging from one toppling up to 4000 for the largest avalanche in the bottom

panel. The top time series shows a very clear recurrence of the same avalanching

pattern, with period here ≃ 10960 iterations. Careful examination of the time

series reveals that it is not exactly periodic, with changes in the temporal pat-

terns of the smaller avalanches. Going to longer time spans (middle and bottom

panels) reveals that episodes of nearly-periodic behavior have a finite temporal

duration, gradually transiting from one recurrent avalanching pattern to another.

The middle panel shows one such transition, in which the largest avalanche in the

recurring pattern goes from a size of 750 in the first third of the sequence, up to

1800 in its final third. Nonetheless, over much longer time spans (bottom panel)

there is a clear periodicity present in the recurrence of the largest avalanches,

despite large variations in their peak sizes during quasi-periodic subintervals.

Figure 8.5 shows time series of the nodal force Fi,j at three selected node in

the lattice’s interior. The recurrence cycle is now strikingly apparent. Nodal

values rise slowly, at the same rate for all nodes, in response to forcing, but these

slow rises are interrupted by upwards jumps by a quantity αFc = 0.15 here,

when the node receives a force increment from a neighbouring avalanching node,

and drops to zero when the node itself exceeds the stability threshold. Here the

blue and green nodes topple in response to an avalanching nearest-neighbour,

while the red node reaches the stability threshold via forcing. The colored line

segments on the top panel of Fig. 8.4 indicates the times when the three sample

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

8.3. A REPRESENTATIVE SIMULATION 235

nodes of Fig. 8.5 are avalanching. None of the three nodes participate in the

largest periodic avalanches, but the blue and green nodes do take part in smaller

recurrent avalanches still large enough to be distinguishable on the scale of this

plot.

The recurrence period of ≃ 10960 iterations is conspicuously close to the time

t = (δF)−1 = 104 iterations required for forcing alone to take a node from zero up

to the stability threshold. This is only part of the story though, because all nodes,

in the course of their buildup, jump up a few times in response to an avalanching

neighbour. Moreover, the model is operating in stop-and-go mode under a single

temporal iteration loop; iterations spend avalanching must be subtracted from

the recurrence period if comparing it to the forcing timescale. In this specific

simulation, 63% of iterations are spent avalanching somewhere on the lattice, so

that the “corrected” recurrence period measured in forcing steps is in fact 4000

iterations, leading to a growth of Fi,j by 0.4 under pure forcing. The remainder is

produced by avalanching neighbours, consistent with Fig. 8.5. Put differently, in

the course of a recurrence cycle, an “average” node receives four increment +0.15

from avalanching neighbour, and the rest from the deterministic driving process,

consistent with Fig. 8.5.

We are still faced with a puzzle: how can a purely deterministic evolution

using a totally random initial condition produce (quasi)periodic global behavior

on (relatively) short timescales, but aperiodic on longer timescales? The nodal

coupling mediated by the redistribution rule is the culprit. Figure 8.6 shows the

lattice initial condition (top left), and at three times separated by 106 iterations,

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

236 CHAPTER 8. EARTHQUAKES

much later in the simulation, as labeled. The random initial pattern gives way to

a patchwork of domains of varying sizes, within which many nodes have the same

value or share a small set of values. These domains vary in shape and size as the

simulation unfolds, as they interact with one another through avalaching taking

place at their boundaries. These spatial domains of contiguous similar nodal

values are directly reflected in the recurrent avalanching patterns of Fig. 8.4.

Whether a domain is destabilized through a neighbouring avalanche or because

all nodes hit the stability threshold at the same time through slow forcing, the

whole domain collapses to zero and rebuilds anew. The larger the domain, the

larger the associated avalanche. We encountered something like this already with

the Forest-Fire model of chapter 6 (cf. Fig. 6.8). The slow evolution of domain

sizes and boundaries is what leads to the gradual transitions between different

recurrent avalanching patterns, as exemplified by the middle panel on Fig. 8.4.

8.4 Model behavior

There are three parameters defining model behavior: the conservation parameter

α, forcing parameter δF , and threshold Fc; at a given α, all that matters is

the ratio δF/Fc; hereafter we continue to use Fc = 1, as in the representative

simulation just considered, without loss of generality. The choice of δF is largely

irrelevant to the avalanching dynamics, as long as it is small enough, in the sense

of δF ≪ αFc, corresponding to slow forcing. The adopted value of δF does set the

mean inter-avalanche waiting time, though, and therefore the overall timescale of

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

8.4. MODEL BEHAVIOR 237

the simulation.

Running the OFC model with different values of α soon reveals that the

numerical value of this parameter has an important influence on the size and

recurrence period of avalanches. In the limiting case of no inter-nodal coupling

(α = 0), each nodal value grow linearly at a rate (δF) per iteration, starting

from its (random) initial condition, and subsequently avalanches independently of

neighbouring nodes at exactly every (δF)−1 iterations. The system is completely

periodic, all avalanches are of size one (unless two nodes have an initial condition

that differ by less than δF), and the random initial pattern is forever frozen into

the system. This is no longer the case when redistribution couples avalanching

nodes (α > 0). As α increases, the recurrence period diminishes, from 6435

iterations at α = 1.0, 4002 at α = 1.5, down to 2165 iterations at α = 0.2. This

trends makes sense in light of our earlier discussion of Fig. 8.5. The higher α, the

larger the upward jump in nodal value in response to an avalanching neighbour.

Correspondingly fewer forcing iterations are then required to reach the stability

threshold. The recurrent avalanching patterns disappear gradually as α → 0.25,

and are nowhere to be found at α = 0.25

Whatever the value of α, periodic behavior is due to the presence of spatial

subdomains of identical nodal values on the lattice (viz. Fig. 8.6). It is easy to

understand how a large domain of contiguous nodes sharing the same nodal value

will remain “synchronized” over extended periods of time. How that synchroniza-

tion sets in, starting from a purely random initial pattern, is what begs for an

explanation.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

238 CHAPTER 8. EARTHQUAKES

Consider two neighbouring nodes F(1), F(2) with force values

F n
(1) = F̄ +∆ , F n

(2) = F̄ −∆ , → |F n
(2) − F n

(1)| = 2∆ . (8.15)

Now suppose that both nodes are avalanching simultaneously; as per the re-

distribution rules (8.12) and our synchronous nodal updating procedure, their

post-redistribution value will not be F(1) = F(2) = 0, but rather

F n+1
(1) = α(F̄ −∆) , F n+1

(2) = α(F̄ +∆) , → |F n+1
(2) − F n+1

(1) | = 2α∆ ,(8.16)

assuming again here Fc = 1 without loss of generality. The difference in nodal

values prior and after the redistribution has thus decreased, by a factor α (≤

0.25)4. Once the two nodes are synchronized (in the sense F n
(1) = F n

(2), so that

∆ = 0 in eq. (8.15)), redistribution will maintain synchrony, and so will the

deterministic forcing mechanism embodied in eq. (8.10); only the input from a

third neighbouring avalanching node can break it. In other words, once a spatially

extended portion of the lattice is synchronized, it can only be destroyed at its

boundary; the more extended the synchronized region, the longer it is likely to

persist, as boundary perturbation make their way inwards in successive recurrence

cycles.

It is a remarkable fact that despite the model’s (quasi)periodic temporal be-

havior, avalanches in the OFC model remain scale-invariant. This is illustrated

4This is typical of isotropic linear diffusive processes, which tend to even out gradients in

the diffusing quantity. Indeed here the net quantity of “force” transported from the higher- to

lower-valued node by the redistribution rule is (1− α)2∆ which is linearly proportional to the

initial difference 2∆ in nodal value, in line with classical Fickian diffusion.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

8.5. PREDICTING REAL EARTHQUAKES 239

on Fig. 8.7, showing probability density functions of avalanche sizes for simula-

tions using α = 0.1, 0.2 and 0.25. The latter is conservative, and is characterized

by a power-law spanning over four orders-of-magnitude in avalanche size, with

logarithmic slope −1.19. Non-conservative simulations (α < 0.25) retain the

power-law shape, with the logarithmic slope steepening and the upper cutoff

moving to smaller sizes as α decreases. These trends are readily understood

upon noting that for a statistically stationary state to be maintained, the nodal

variable must be either dissipated locally or evacuated at the boundaries, at the

same average rate as the forcing increases it. Low levels of dissipation thus re-

quire more avalanches to discharge at the boundaries, while at higher levels of

dissipation avalanches can more easily stop somewhere in the interior of the lat-

tice. Consequently, large avalanches become more common as α → 0.25, which

translates into a flatter power-law for their size distribution.

8.5 Predicting real earthquakes

Large earthquakes are extremely destructive, either by themselves or through the

tsunamis they often generate. They are, arguably, the one type of global natural

hazard one would most like to be able to predict. Not surprisingly, seismolo-

gists, mathematicians, as well as a wide assortment of quacks, have been at it for

years and years. In part because such a large volume of data is available, some

earthquake prediction schemes have been proposed, based on purely statistical in-

ferences or artificial intelligence-based expert systems. Such techniques typically

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

240 CHAPTER 8. EARTHQUAKES

strive to identify robust precursors signals in time series of seismic data. Much

like the lattice-based model introduced in this chapter, these prediction tech-

niques are based on highly simplified representations of the physical processes

underlying the target phenomenon —if they are at all present in the model. In-

stead, they operate by training on real-world data, by learning to “recognize”, in

the data, patterns that have predictive values.

Consider now the consequences of earthquake magnitude being distributed

as a power-law, as per the Gutenberg-Richter law. Most events are small, and

the larger events, which are those one would very much like to predict, are rare.

Therefore the seismic data record, as voluminous as it may be, contains mostly

small events. The number of large events available to train expert system ends

up being rather small, the more so the larger the target event size. This is (at

least in part) why reliable earthquake prediction schemes are still lacking despite

many decades of data collection and research efforts.

The Gutenberg-Richter law is characterized by logarithmic slope b ∼ −1 for

a cumulative distribution, implying ≃ −2 for probability density functions such

as plotted on Fig. 8.7. Taken at face value, the OFC model would then indicate

that plate tectonics operates in the non-conservative regime, with α somewhere

in the range 1.5–2.0. This is a parameter range where recurrent avalanching

behavior sometimes occurs. This possibility is supported to some extent by seis-

mic data, which show that certain tectonic faults, including the (in)famous San

Andreas fault in California, generate large “characteristic” earthquakes which

exhibit quasiperiodicity in their temporal pattern of occurrence.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

8.6. EXERCISES AND FURTHER COMPUTATIONAL EXPLORATIONS 241

Quasiperiodicity is an extremely attractive property from the point of view of

earthquake forecasting, and you get to try your hand at it in the Grand Challenge

for this chapter. But beware, this is a serious and dangerous business. A team

of six Italian government seismologists found out the hard way when they were

prosecuted and found guilt of manslaughter for having failed to predict the April

2009 earthquake that destroyed the small town of L’Aquila5. Bear also in mind

that the OFC sandpile is a model of the Burridge-Knopoff model of seismic fault;

when you’re making predictions using a model of a model, caution is definitely

warranted, even if you don’t live in Italy.

8.6 Exercises and further computational explo-

rations

1. Fill in the missing mathematical steps leading from eq. (8.3) to (8.8)

2. Compute the probability density functions (PDF) of avalanches sizes for

simulations using α = 0.2 and δF = 10−4 on lattice sizes 32× 32, 64× 64,

and 128 × 128. Compare the logarithmic slopes and large-size cutoffs. Be

careful to build your PDFs from a time series segments in the statistically

stationary state; this may require up to 107 iterations for the larger lattice

size (but see next Exercise)!

5Rational thinking —or perhaps just plain common sense— eventually prevailed, and the

conviction was finally overturned in November 2014 by an appeal court.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

242 CHAPTER 8. EARTHQUAKES

3. Knowing the value of the forcing parameter δF and the largest nodal value

F n
i,j on the (non-avalanching) lattice at iteration n, one can easily compute

the number of iterations required before the triggering of the next avalanche:

(Fc −max(F n
i,j))/δF . This result can be capitalized upon to accelerate the

simple-minded code of Fig. 8.3. Do it, and estimate the speedup factor.

4. Introduce in the model a mildly stochastic non-conservative redistribution,

by drawing anew a value of α uniformly distributed in the range 0.14 ≤ α ≤

0.16 at each toppling node. Is this enough to break the quasiperiodicities

of the avalanche time series ?

5. Construct correlation plots between avalanche sizes (E) and duration (T)

for a set of three simulations using α = 0.15, 0.2 and 0.25. Can you infer a

mathematical equation that captures the (statistical) relationship between

these two quantities?

6. And now for the Grand Challenge: Earthquake prediction ! Extract a

2×105 iteration-long segment of the avalanche time series in the statistically

stationary state of a α = 0.15, δF = 10−4 simulation. Using the first

105 iterations, compute the maximum avalanche size, recurrence period of

avalanches, and whatever other potentially useful quantity you may think

of. Then, try to forecast the timing and size of the larger avalanches (size

larger than 20% of the maximum avalanche size determined previously) in

the second half of your time series. Here a “good forecast” means getting the

timing of the earthquake right within 102 iterations, and amplitude within

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

8.7. FURTHER READINGS 243

±25% of the “observed” value. Keep also track of false alarms, when you

predict a large earthquake that does not occur, and misses, when you fail to

predict an earthquake that does occur. This is a pretty open-ended Grand

Challenge, you get to decide when to stop!

8.7 Further readings

I am no expert on earthquakes, which is perhaps why I found the Wikipedia page

on the topic informative and a very good read (consulted December 2014):

http://en.wikipedia.org/wiki/Earthquake

The Web page of the U.S. Geological Survey also contains a wealth of interesting

information on earthquakes, and provides access to all kinds of earthquake-related

data:

http://earthquake.usgs.gov/earthquakes/

On the Burridge-Knopoff model and its sandpile-like reformulation, see:

Carlson, J.M., & Langer, J.S., Phys. Rev. A, 40, 6470 (1989),

Olami, Z., Feder, H.J.S., & Christensen, K., Phys. Rev. Lett., 68, 1244 (1992),

Hergarten, S., Self-Organized Criticality in Earth Systems, Berlin: Springer,

chap. 7 (2002).

The description of the Burridge-Knopoff model in §8.1 is closely inspired by the

presentation in §3.10 of the following book, which also offers a an illuminating

mathematical analysis of the OFC model:

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

244 CHAPTER 8. EARTHQUAKES

Christensen, K., & Moloney, N.R., Complexity and Criticality, Imperial Col-

lege Press (2005).

On more elaborate modeling and analyses of earthquakes, a good recent entry

point in the literature is

Sachs, M.K., Rundle, J.B., Holiday, J.R., Gran, J., Yoder, M., Turcotte,

D.L., & Graves, W., Self-organizing complex earthquakes: scaling

in data, models and forecasting, in Self-organized criticality sys-

tems, ed. M. J. Aschwanden, Berlin: Open Academic Press, 333–

356 (2013)

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

8.7. FURTHER READINGS 245

Figure 8.2: Action of the redistribution rule given by eqs. (8.12)—(8.13), here

simplified to one spatial dimension. The lattice is everywhere stable (Fj < Fc)

at the beginning of iteration n (left panel), but uniform forcing (black arrow,

viz. eq. (8.10)) pushes node j above the stability threshold Fc (dashed line). At

the subsequent iteration (right panel), node j is reset to zero and only a fraction

αF n
j of its former value F n

j is redistributed to neighbouring nodes. Note that

forcing stops during avalanching, i.e., this is a “stop-and-go” model. Compare to

Fig. 5.1 for the 1D sandpile model of chapter 5, where stability is based on the

value of the slope.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

246 CHAPTER 8. EARTHQUAKES

1 # OLAMI-CHRISTENSEN-FEDER 2D LATTICE MODEL FOR EARTHQUAKES

2 import numpy as np

3 import matplotlib.pyplot as plt

4 #--

5 N =64 # lattice size

6 f_thresh=5. # force threshold

7 delta_f =1.e-4 # forcing amplitude

8 alpha =0.15 # conservation parameter

9 n_iter =100000 # number of temporal iterations

10 #--

11 dx=np.array([-1,0,1,0]) # template arrays

12 dy=np.array([0,-1,0,1]) # template arrays

13 force=np.zeros([N+2,N+2]) # force array

14 toppling=np.zeros(n_iter,dtype=’int’) # toppling time series

15 totalf=np.zeros(n_iter,dtype=’int’) # total force time series

16 for i in range(1,N+1):

17 for j in range(1,N+1):

18 force[i,j]=f_thresh*(np.random.uniform()) # random initial force

19

20 for iterate in range(0,n_iter): # temporal iteration

21 move =np.zeros([N+2,N+2]) # reset evolution array

22 # scan lattice to flag which nodes must redistribute and reset to zero

23 for i in range(1,N+1):

24 for j in range(1,N+1):

25 if force[i,j] >= f_thresh: # node i,j is unstable

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

8.7. FURTHER READINGS 247

Figure 8.4: Three segments of increasing lengths extracted from the time series of

avalanche size in a simulation executed on a 128× 128 lattice, with conservation

parameter α = 0.15 and forcing parameter δF = 10−4. The top panel spans

4× 104 iterations, the middle 5 times more, and the bottom another factor of 10

more. The shaded areas indicate the temporal range covered by the preceding

panel. The colored line segments on the top panel indicate the toppling times for

three selected lattice nodes (viz. Figure 8.5 below). The avalanche energy time

series exhibit a clear periodic behavior, here with a period of ≃ 10960 iterations.
naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

248 CHAPTER 8. EARTHQUAKES

Figure 8.5: Time series of the force value at three selected nodes on the lattice,

in the same simulation as on Fig. 8.4 (128× 128, Fc = 1, δF = 10−4, α = 0.15).

These three time series span the same interval as the top panel on Fig. 8.4. The

sampled nodes are (i, j) = (64, 64), (32, 32), and (64, 76) in red, green, and blue,

respectively. The slanted dotted lines indicate a growth rate of δF = 10−4 per

iteration, corrected for the mean fraction of iterations spent avalanching.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

8.7. FURTHER READINGS 249

Figure 8.6: Four snapshots of the OFC lattice, for the same simulation as on

Figs. 8.4 and 8.5 (δF = 10−4, α = 0.15). The color scale encodes the magnitude

of the force Fi,j at each node. The top left frame shows the purely random initial

condition (Fi,j randomly distributed in the interval [0, 1]), and the other three

frames are sampled at a cadence of 106 iteration, as labeled. Note the buildup of

large “domains” of equals values in Fij, slowly changing shape as the simulation

proceeds... and compare with Fig. 6.8.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

250 CHAPTER 8. EARTHQUAKES

Figure 8.7: Probability density functions of avalanche energy in simulations with

varying values of the conservation parameter α, as color-coded. All distribution

have a well-defined power-law range, with logarithmic slope flattening with the

conservation parameter: −3.34 at α = 0.1, −1.92 at α = 0.2, up to −1.18 at

α = 0.25. The dotted line segments indicate the energy range over which these

slopes are computed. All three simulations are executed on a 128 × 128 lattice,

with forcing parameter δF = 10−4. These distributions are based on 5 × 106

iteration-long segments, during which over 106 avalanches have taken place in

each simulation.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

Chapter 9

Epidemics

Whether your favorite is the Black Death in the Middle Ages, AIDS in the 1980’s,

or the 2014 Ebola outbreak in Africa, all epidemics are scary (like earthquakes!).

Perhaps it is the thought that even the strongest amongst us can be felled, almost

randomly, by an organism that cannot even be seen or felt; or the fact that

huddling together, a most natural human reflex in times of duress, is exactly

what we should not be doing during an epidemic.

It turns out that the epidemic spread of contagious diseases shares many char-

acteristics with some of the apparently unrelated systems considered in preceding

chapters. Let’s dive in and look into that.

9.1 Model definition

Contagious diseases are often said to spread “like wildfires”, and this is precisely

the basic idea underlying the model of epidemic spread considered in this chapter.

naturalcomplexity-2.tex, July 28, 2016 251 Natural Complexity, Paul Charbonneau, Université de Montréal

252 CHAPTER 9. EPIDEMICS

More specifically, the model is constructed by adding random walk on a lattice to

the the forest-fire model of chapter 6. The algorithm is as follows: a preset number

M of random walking agents move on a 2D Cartesian lattice of size N ×N , with

two or more agents allowed to meet on the same lattice node. A contagious agent

is now introduced at some random location on the lattice. Perhaps fortunately

for himself (but certainly not for the remainder of the population), the sick agent

does not keel over immediately, but survives during L temporal iterations, and

infects any other random walking agent met on any lattice node during that time

period. These newly infected agents immediately become contagious and also

have a post-infection life span of L iterations, and so will likely also infect other

agents met on other lattice nodes in the subsequent L iterations. Sick walkers fall

dead on the spot L iterations after being infected, remain immobile thereafter

(no zombies!), and immediately cease to be contagious.

As you may well imagine, this algorithm can lead to an “avalanche” of infec-

tion events propagating across the lattice; but, as usual, looking into how this

comes about will reveal some interesting subtleties... and complexities!

9.2 Numerical implementation

Figure 9.1 is a minimal Python source code implementing the epidemic “algo-

rithm” just described. Take good note of the following:

1. The simulation is structured within an outer conditional (while) loop (start-

ing on line 24), which will iterate until the number of infected walkers (tt

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

9.2. NUMERICAL IMPLEMENTATION 253

1 # EPIDEMIC SPREAD IN A POPULATION OF RANDOM WALKERS ON A LATTICE

2 import numpy as np

3 import matplotlib.pyplot as plt

4 #---

5 N =128 # lattice size

6 M =4000 # number of random walkers

7 L =20 # lifetime parameter

8 max_iter=10000 # maximum number of iterations

9 #---

10 x_step =np.array([-1,0,1,0]) # template arrays

11 y_step =np.array([0,-1,0,1])

12 x,y =np.zeros(M),np.zeros(M) # walker (x,y) coordinates

13 infect =np.zeros(M) # walker health status

14 lifespan=np.zeros(M) # time left to live

15 ts_sick =np.zeros(max_iter) # time series of sick walkers

16 for j in range(M): # place walkers on lattice

17 x[j]=np.random.random_integers(0,N)

18 y[j]=np.random.random_integers(0,N)

19 lifespan[j]=L

20 jj=np.random.random_integers(0,M-1) # infect one random walker

21 infect[jj]=1

22 n_sick,n_dead,iterate=1,0,0 # various counters

23

24 while (n_sick > 0) and (iterate < max_iter): # temporal iteration

25 for j in range(0,M): # loop over all walkers

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

254 CHAPTER 9. EPIDEMICS

ninfect) falls to zero, or a preset maximum number of temporal iterations

(max iter) has been reached. Upon termination of this loop, the value of

the variable iterate yields the duration of the epidemic.

2. Four 1D arrays of length M store the information characterizing each ran-

dom walker: x[M], y[M], infect[M], and lifespan[M] (lines 12–14). The

(x, y) position on the lattice of the jth walker is stored in elements x[j]

et y[j]; its medical status is stored in infect[j], where a value “0” indi-

cates a healthy walker, “1” an infected walker, and “2” a deceased, immobile

walker. The element lifespan[j] is the life span of the walker, i.e., the

number of temporal iteration it has left to live.

3. Initialisation consists in randomly distributing the M walkers on the lattice

(lines 17–18), and assigning infected status (infect[jj]=1) to a randomly

chosen single one (lines 20–21).

4. Only the live walkers (whether healthy or infected, infect[j]<2) move on

the lattice (line 26). The 2D random walk is done in the usual manner (lines

27–29), but here a combinaison of min/max operations ensure that walkers

on edge nodes cannot leave the lattice (lines 30–31); Are we starting to feel

nervous... ? put otherwise, the walkers are trapped on a square-shaped

island.

5. Once walker j becomes infected, the corresponding array element lifespan[j]

is decremented by one at each subsequent temporal iteration (line 33); when

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

9.3. A REPRESENTATIVE SIMULATION 255

lifespan[j] hits zero (line 34), walker j is declared dead (infect[j]=2;

second if statement in the inner loop).

6. For each infected walker (last if statement in the walker loop), another

inner loop (starting on line 38) tests for coincidence in the x and y lattice

coordinates with any other healthy (infect[k]==0) walker (line 39), in

which case infection occurs (infect[k]=1 on line 41).

7. Counter variables n sick and n dead accumulate the number of infected

and dead walkers on the lattice at each temporal iteration, and are written

to screen at each iteration.

8. Upon termination of the epidemic, a time series of the number of sick walk-

ers (previously accumulated in array ts sick), is plotted against iteration

count, like the red curve on Fig. 9.2 below.

Here again it would be possible to take advantage of the operators and func-

tions for list manipulation provided by Python to design a computationally more

efficient version of this simulation. One of the exercises at the end of this chapters

offers hints on how to get started.

9.3 A representative simulation

As is now customary, we first look in some detail at the characteristics of a specific

simulation before launching into the study of the model’s behavior. Figure 9.2

shows a time series of the number of infected (red line) and healthy (green line)

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

256 CHAPTER 9. EPIDEMICS

individual walkers in a simulation beginning with M = 4000 random walkers

moving on a 128×128 lattice, including one randomly selected infected individual.

The lifespan parameter is set here at L = 20 temporal iterations. Even though the

epidemic begins with a single infected individual, it spreads here rather rapidly,

with some 50 individuals already infected by the time the original sick individual

keels over at iteration 20. By iteration 100 the epidemic looks like it is waning,

but it then picks up again, in fits and starts, to reach it peak with 73 infected

individuals at iteration 262. This is followed by 5 more or less distinct epidemic

surges, before the last infected individual finally dies at iteration 919, marking

the end of this simulated epidemic.

Figure 9.3 shows the spatiotemporal spread of the epidemic, this time by

plotting a color-coded symbol at the final resting place of each infected individual

in the simulation. The color code, explicited by the color bar, gives the iteration

at which each individual was infected. The line segments connect each infected

individual with the other having transmitted the disease; note that on this plot

these are at distinct spatial locations, since individual are not plotted at the

location where they were infected. Here the original infected individual was

located very near the lower edge of the lattice (indicated by the orange circle),

thus with fewer walkers within its 20 iteration range than if it had been located

in the interior. Nonetheless, in this specific instance the epidemic does manage

to spread, early on more or less in all directions. The resulting circular “epidemic

front” first increases in radius, but soon breaks into two distinct subfronts, one

heading vertically upwards and the other meandering to the right and eventually

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

9.4. MODEL BEHAVIOR 257

extinguishing in the bottom right corner of the lattice. The first front fares better

(so to speak), as it spreads upwards to the top of the lattice, with yet another

sub-front backtracking downwards to end very near the point of origin of the

epidemic. Here the epidemic has thus “percolated” from one end of the lattice

to the other, so that this type of process is akin to dynamical percolation.

Qualitatively speaking, the epidemic surges on the time series of Fig. 9.2 and

the spatially distinct infection focii on Fig. 9.3 are both features observed in

real epidemics. Because no new random walkers are introduced on the lattice

(ruthless quarantine in effect!), the epidemic inevitably ends as it destroys its

own propagation vector. In the case of the simulation displayed on Figs. 9.2

and 9.3, the epidemic ends after 919 iterations, with over a third of the initial

population killed off; we are in the general ballpark of the Black Death here, with

an estimated 25% of Europe’s population decimated between 1347 and 1350.

9.4 Model behavior

It does not take much profound thinking to realize that a key factor in epidemic

spread is the density of random walkers moving about on the lattice. The higher

that density, the more likely an infected agent is to meet and infect at least one

healthy colleague before dropping dead, and in doing so, sustain the epidemic.

The initial population density (ρ) is simply defined as the ratio of the M walkers

to the number of available lattice nodes (N×N), and equivalent to an occupation

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

258 CHAPTER 9. EPIDEMICS

probability:

ρ =
M

N2
. (9.1)

Figure 9.4 shows results from a series of epidemic simulations, all with a lifespan

parameter L = 20, and computed for varying initial population density. These are

again ensemble average results; for each value of ρ, K statistically independent

realizations are carried out, by changing the seed of the random number generator

controlling the distribution of the initial population and random walk steps. For

each individual simulation, one can compute the duration Tk and death rate

0 ≤ µk ≤ 1, the latter being simply the ratio of deaths to the initial population

size. The solid dots plotted on Fig. 9.4 are the values of µ and T averaged over

each ensemble of K = 20 simulations at a given value of ρ, denoted in what

follows as 〈T 〉 and 〈µ〉:

〈µ〉 = 1

K

K∑

k=1

µk , 〈T 〉 = 1

K

K∑

k=1

Tk . (9.2)

A quantitative measure of the variability in epidemic spread is offered by the

root-mean-square standard deviations about these ensemble averages:

σµ =

(

1

K

K∑

k=1

(µk − 〈µ〉)2
)1/2

, σT =

(

1

K

K∑

k=1

(Tk − 〈T 〉)2
)1/2

. (9.3)

The vertical line segments on Fig. 9.4 are drawn over the range 〈µ〉 ± σµ and

〈T 〉 ± σT , at each value of ρ.

Figure 9.4 certainly indicates that the average death rate 〈µ〉 increases with

population density, as expected, but the form of the variation should remind

you of the growth of the largest cluster on a percolation lattice (compare with

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

9.4. MODEL BEHAVIOR 259

Fig. 4.6, bottom panel). As with the percolation problem, the variance is also

largest at values of ρ where the average death rate varies most rapidly. This large

variability also carries over to epidemic duration, which also peaks at the value of

ρ around which the death rate increases the fastest. The subsequent decrease of

the epidemic duration reflects the fact that even at very high population density,

the model design is such that the epidemic front can advance a most by one

nodal spacing per temporal iteration. This leads to a saturation of the epidemic

duration at ≃ 2×N = 256, indicated by the dashed line segment on the bottom

panel of Fig. 9.4; this is the total number of steps required on a 4-neighbour

Cartesian lattice to travel from one corner of the lattice to the opposite corner.

Examination of the high variability around ρ = 0.25 soon reveals that the

high rms deviation results from the epidemic simply failing to pick up in a subset

of the simulations. In other words, the distribution of death rates or duration

does not at all look like a Gaussian centred on the mean value —yet another

reminder of the potential interpretative pitfalls of eqs. (9.3). The vertical gray

bands on Figure 9.4 span the range going from the lowest to highest values of

death rate and duration, in each 20 member set of simulations at each initial

density. For low (ρ ∼< 0.15) and high (ρ ∼> 0.35) density, this range is quite

narrow and well-centered on the mean value; but in between a much wider span

is observed. Typically, in the range 0.2 ∼< ρ ∼< 0.3, a given epidemic can fail

to take off altogether, due to the injected sick agent keeling over after L = 20

iterations before infecting anyone, or persist for many hundreds of iterations and

achieve a high death rate. Even at the relatively high density of ρ = 0.305, here

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

260 CHAPTER 9. EPIDEMICS

one individual simulation has failed to produce an epidemic, while seventeen of

the other realizations decimate over half the initial population. Evidently, what

happens very early in the simulation is crucial.

At the beginning of the simulation, with a mean density ρ = M/N2 and

all walkers moving independently of one another, the probability of two walkers

meeting on the same node at one iteration is given by ρ2. If one walker is infected,

the probability that it does not meet a healthy walkers in L iterations is thus

(1− ρ2)L; therefore, the probability p that the infected agent meets at least one

healthy member of the population is

p = 1− (1− ρ2)L . (9.4)

For the L = 20 simulations used to construct Figure 9.4, we have p = 0.18 at

ρ = 0.1, rising to p = 0.56 already at ρ = 0.2, p = 0.85 at ρ = 0.3, up to

p = 0.97 at ρ = 0.4. This indicates that the odds of the epidemic getting going

exceeds 50-50 once the initial density reaches ≃ 0.2. Between ρ = 0.2 and 0.3,

there is still a fair chance that early on the first or first few infected agents die

before infecting others in the population, but when the epidemic does get going

a large number of agents will end up being infected. One can thus expect greater

variability in the epidemic duration and death toll in this range. Beyond ρ = 0.3,

the spread of infection is almost certain, and large epidemics invariably ensue.

These probabilistic inferences are in general agreement with the numerical results

of Fig. 9.4.

The above analysis is limited by the fact that in reality a sick walker can

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

9.4. MODEL BEHAVIOR 261

infect more than one healthy individual. For example, in the specific simulation

of Figs. 9.2 and 9.3, the average infection rate is almost exactly one per infected

walker, but a large fraction (40%) of infected walkers actually died without trans-

mitting the disease, 34% of sick walkers infected only one population member,

17% managed to infect 2, and so on with the 2 most “efficient” infectors each

managing to transmit the disease to 6 healthy population members; once again,

nothing like a Gaussian distribution.

Ultimately, for the epidemic to grow, the total infection rate must exceed the

death rate, but how many healthy walkers will be infected by a given sick walker

depends on the local density of healthy walker, itself influenced by the prior

presence or absence of infected walkers in the vicinity. Figure 9.5 displays the

epidemic spread for the simulation of Fig. 9.3 (at left), as well as for a higher initial

density simulation (ρ = 0.488, at right). Now only the “infection links” between

infected and infector are plotted, this time as a function of the x-nodal position

of the walkers’ final resting place, with time running vertically upwards. The

branching structure of the epidemic spread is now clearly visible, and, especially

for the lower initial density simulation, has a definite self-similar look. One

can also pick up a definite maximal inclination for the spreading branches in

these space-time diagrams, indicative of a well-defined peak propagation speed.

The dashed line segments are “guides to the eye” serving to indicate this peak

propagation speed, which here increases almost linearly with initial population

density.

The left panel on Figure 9.5 illustrates well why simulations such as this one

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

262 CHAPTER 9. EPIDEMICS

exhibit the most variability on Fig. 9.4. At this initial density the epidemic is just

barely able to propagate across the lattice. Just as a single infection event starts

the epidemic at the beginning of the simulation, here much later in the simulation

often a single infection event determines whether the epidemic will extinguish

itself or flare up again. This is the case with the ρ = 0.24 simulation of Fig. 9.5A,

in which the single infection event having taken place at (x, t) = (18, 282) is

responsible for the further spread of the epidemic for another 650 iterations; had

this infection not taken place, the epidemic would have ended with the extinction

of its right branch, around iteration 380. Think about it: all it would have taken

is one random step in a different direction.

The epidemic spread at the higher density ρ = 0.49 (right panel on of Fig. 9.5)

is more regular, as the epidemic front progresses steadily across the lattice, leaving

only dead walkers in its wake. Figure 9.6 offers yet a different view of epidemic

propagation at high density. The top panel is a series of snapshots, 20 iterations

apart, showing the spatiotemporal evolution of the spatial density of sick agents.

This is computed simply by dividing up the 128×128 lattice in 16×16 contiguous

blocks of 8×8 nodes, and computing the number of sick agents in each such block.

The resulting 16× 16 array is then rendered in grayscale. The epidemic spreads

as a more or less circular wavefront, like ripples at the surface of a pond in which

a rock has been thrown. For each such snapshots, one can compute the distance

of each infected agent from the starting point of the epidemic, namely the node

on which the initial single infected agent was located. The red circular arcs on

the snapshots are centered on this location and drawn with a radius equal to

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

9.4. MODEL BEHAVIOR 263

the mean distance of all infected agents. The wavefront thickens and develops

internal structure (i.e., density “clumps”), but retains its circular shape until the

lattice boundaries are encountered. The bottom plot shows how this mean radius

varies with time. From about iteration 80 onwards, the relationship is linear,

indicating a radial expansion of the epidemic front at a constant speed of ≃ 0.6

nodal spacing per temporal iteration. An approximately constant propagation

speed is a characteristics of many observed epidemics in homogeneous population

density environments; introduced in Italy by ship around December 1347, in

the following three years the Black Death propagated steadily northward across

mainland Europe by about 300 kilometer per year.

Considering that infected agents spread the disease through their random

walk on the lattice, a constant propagation speed is a curious result; the root-

mean-square displacement in a random walk increases as the square root of the

number of steps taken (see C.5 if in a need of a refresher on the statistics of

random walks). This square-root law is plotted as a dash-dotted line on Fig. 9.6.

It offers a reasonable representation of epidemic spread in the first 20 iterations

or so (see inset), but afterwards grossly underestimates the propagation speed.

This is because infection does not spread through a single sick agent stumbling

its way through the lattice, but rather through a sequence of successive infection

events. This is like a row of toppling dominos, where the toppling wave travels

much farther than any individual domino.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

264 CHAPTER 9. EPIDEMICS

9.5 Epidemic self-organization

The infection rate can be measured by keeping track of how many healthy walk-

ers are infected by each sick walker in the course of the simulation1. The cor-

responding probability density functions are plotted on Figure 9.7, for the two

representative simulations plotted on Fig. 9.5 (ρ = 0.244 and 0.488), together

with a third representative simulation with ρ = 0.366, in all three cases with

L = 20. These are global statistics, built using all infection events irrespective of

when they occurred during the epidemics.

What is truly remarkable on Figure 9.7 is that despite very different death

rates, durations, and patterns of epidemic spread (as per Fig. 9.5), all three dis-

tributions have very similar shapes. Even more remarkable, they also all have

a mean infection rate equal to unity, meaning one infected per infector, to bet-

ter than one part in 103. Because the population density is rapidly reduced in

the vicinity of epidemic fronts, locally the epidemic extinguishes itself, leading

to a form of self-regulation which continuously maintains the epidemic at the

edge of termination. Put differently, through local interactions (infection) and

diffusive-like spreading (random walk) of infected individuals, and no matter the

population density, once (and if) it gets going, the epidemic self-organizes dy-

namically around a marginal infection rate of exactly unity; a result both neat

and unexpected, isnt’t it !

1In the epidemiological literature this is called the “reproduction number”.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

9.6. SMALL-WORLD NETWORKS 265

9.6 Small-world networks

In all epidemic simulations we have considered thus far, infection is a purely

local process, as infected agents can only infect healthy agents located in their

immediate spatial vicinity, as determined by the range of their random walk

before they fall dead. This may be an appropriate first-order model for the

spread of the Black Death in the Middle Ages, but is inappropriate for the spread

of pandemics in our modern world. Viruses can now hitch an airplane ride and

travel halfway across the world within a single day. This is why airports have

become the front line of the battle against pandemics.

Pretty much everybody, out of sheer boredom, has at least once stared at the

map of airline routes at the back end of that infamous airline magazine inevitably

found-in-the-pocket-of-the-seat-in-front-of-you (it still makes better reading that

the safety card). The airline routes are idealized as smooth curves linking one city

to another, even though few planes would ever follow exactly this path. When

planning a trip, connectivity often takes precedence over geographical proximity.

What often matters most in choosing a ticket is how many links there are between

the departure and arrival cities, as defined by the airline’s network of connecting

flights. A trip’s effective “distance” is no longer measured in kilometers, but

rather as the number of links required to go from one city to another. As a

resident of Montréal, a hub-city for Air Canada, I am in fact “closer” to London

(U.K.) than I am from London (Ontario): 5 nonstop and 62 one-stop flights

per day for the former, versus 9 flights per day for the latter, all one-stop; and

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

266 CHAPTER 9. EPIDEMICS

connections is what seasoned air travellers are most eager to keep to a minimum,

because the probability of your trip (and/or luggage) going to pots because of

flight delay or cancellation increases rapidly the more connections a trip involves.

Figure 9.8 depicts four possible networks linking N = 12 nodes. Their equidis-

tant spacing along the perimeter of a circle is for plotting purposes only, and ir-

relevant for everything that follows. The network in (A) is locally-connected, and

a periodic equivalent of the nearest-neighbour 1D percolation lattice introduced

in §4.1 and 1D sandpile model of chapter 5. This network has 12 links, and the

node-to-node distance varies from 1 to 6 links, with an average travel distance of

3.27 links for the network as a whole. The network in (B), in contrast, is fully

connected; it has N × (N − 1) = 132 links, and an average travel distance of 1

link by construction. This is the dream of any semi-regular air traveller, but an

airline adopting this model would face huge operating costs.

The network in (C) is a single-hub network, with all nodes connected only to

a hub node, here node 0. This network has N − 1 = 11 links, and average travel

distance of 1.92 links.

The random-looking network in (D) has 13 links, for an average travel distance

of 2.76 links. The largest average single-node travel distance is 3.5 links to/from

node 2, the smallest 1.6 to/from node 6, the longest pairwise distance is 5 links,

occurring between nodes 2 → 7 and 3 → 7. The pattern of node linking is

random, but not in the sense of a uniform random distribution; 5 nodes have

only 1 link, 3 nodes have 2 links, 3 have 3 links, and node 6 has 6 links, acting

here as kind of hub. This network was constructed by first assigning a number of

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

9.6. SMALL-WORLD NETWORKS 267

link to each node by drawing this number from a power-law distribution spanning

the range [1, N], then picking random nodes onto which to connect these links.

Such a network is scale invariant, and, for reasons be elucidated further below,

is known as a small-world network.

The fully-connected network may have the smallest average travel distance,

but if links are “expensive”, the total cost is best defined as this mean travel time

multiplied by the total number of links in the network. Typically, a measure of

this type is what an airline would strive to minimize. For the four networks

of Fig. 9.8 this comes out at 39.2, 132.0, 21.1 and 35.9 for A, B, C, and D,

respectively. The single-hub network is most cost-effective under this definition,

with the small-world network coming in second and the local network not too

far behind. The fully-connected network ends up the most inefficient, by a large

factor.

In the real world, connection efficiency (however defined) is not the end of the

story; redundancy is another extremely important factor. If one link is broken

or one node taken offline for the local network of Fig. 9.8A, the average travel

distance goes up to 4.33 but all nodes remain connected. However, break a

second link and a part of the network becomes isolated from the rest. The fully-

connected network in (B) is largely impervious to the loss of one or a few links: the

travel time between the disconnected two nodes simply increasing by 1 link, and

the rest of the network remains unaffected. Typically, a large number of links

must be broken before a node becomes isolated; such a network is maximally

redundant. In the single-hub network (C), losing a link or the node it connects

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

268 CHAPTER 9. EPIDEMICS

to affects only this node, unless failure occurs at the hub; then all nodes lose

connection to one another. Single-hub networks have a single point of failure.

This is why large airlines operate more than one hub, even if this is less cost-

efficient than single-hub operation. When operating in single-hub mode, all it

takes is one good snowstorm or bomb threat to paralyze the whole network. The

small-world network on Fig. 9.8D is more robust in this respect. Like in the

single-hub network, nodes with a single link to the network become isolated if

that link breaks; but here even in the worst-case scenario of hub-node 6 going

offline, only nodes 1,2,8,9 becomes isolated, since nodes 4 and 10 can pick up at

least some of the traffic normally going through node 6.

You can now imagine what happens if you populate each node with a group

of agents, each having a small but finite probability of travelling to another node,

and infect one such agent with some horribly contagious disease (and in case you

cannot, the Grand Challenge closing this chapter will lead you through it). Hub

nodes become critical, and this is where one would concentrate efforts for the

detection and quarantine of sick individuals (and perhaps vaccination of healthy

ones), in order to avoid a pandemic.

Scale-free networks pop up everywhere. The pattern of links between Web

Pages has been argued to be a scale free network; likewise with the pattern of ci-

tations of scientific papers; and the connectivity pattern of electrical power grids.

The brain’s interconnected neurons arguably make up the ultimate complex net-

work, and it may well be scale-free (although this remains to be demonstrated).

At a more munane level, try drawing on a piece of paper the network of your own

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

9.7. EXERCISES AND FURTHER COMPUTATIONAL EXPLORATIONS 269

social relations, including not just a link betwen you and them, as in a single-

hub network, but also links between mutual friends and acquaintances, as well

as links to their friends and acquaintances you are aware of even though they are

not part of your own imemdiate social network. Unless you live in Antarctica

or are a true mountaintop ermit, pretty soon you will end up with a scale-free

network of the small-world variety; and if you have on hand a very large piece of

paper you will soon realize that anyone can connect to pretty much anyone else

through a surprisingly small number of links. This is why we feel that “it’s such

a small world” when we meet a perfect stranger and find out she happens to be

good friends with the younger brother of another friend of ours living abroad;

and this is also why such networks are known as “small world” networks.

Anyhow, you may go ahead and add “catching a contagious disease” to your

list of good reasons to avoid connecting flights; but keep all of this also in mind

before dropping in on a friend, the next time you come down with a very nasty

flu.

9.7 Exercises and further computational explo-

rations

1. The time series of infected walkers on Fig. 9.2 shows relatively well-defined

surges of duration of order 102 iterations. Such repeating surges are actu-

ally often observed in real epidemics. Can you figure out what sets this

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

270 CHAPTER 9. EPIDEMICS

characteristic timescale ?

2. In discussing the dependence of epidemic characteristics on the initial pop-

ulation density, the resemblance between the top panel of Fig. 9.4 and the

bottom panel of Fig. 4.6 was noted, suggesting that epidemic spread might

be related to percolation, and thus criticality. If this is criticality, what

is the control parameter here? Could this be self-organized criticality ?

Would you say that the branching structure on the left panel on Fig. 9.5 is

a fractal ?

3. Use the simulation code of Fig. 9.1 to examine how the spread of epidemics

varies with the value of the lifespan parameter L, at initial population

densities ρ = 0.25 and ρ = 0.5.

4. Carry out 100 statistically distinct simulations using the parameter set-

tings used on Figs. 9.2 and 9.3. Construct histograms of epidemic duration

and total deaths. Are these distributions Gaussian-like ? Are they even

approximately symmetrical about their mean value ?

5. This one is for readers with coding experience in Python —or interested in

developing it. Restructure the simulation code of Fig. 9.1 so that it operates

on lists of healthy and sick walkers, rather than always looping on the whole

population (including dead walkers) at every temporal iteration (viz. lines

25 and 38). This is most easily done by taking advantage of Python’s list

manipulation operators and functions, adding newly infected walkers to the

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

9.7. EXERCISES AND FURTHER COMPUTATIONAL EXPLORATIONS 271

“sick” list, removing from it dead walkers, etc. Think carefully how you

would go about modifying the internal loops within the outer temporal loop

on Fig. 9.1.

6. Your Grand Challenge is to simulate epidemic spread on a small-world

network. You may use the network of Fig. 9.8D, or design your own, larger

scale-free network. On each of the network’s k = 1, ..., N nodes, place nk

agents, where nk can be the same on all nodes (100, say), or vary from one

node to another acording to your favorite recipe. Conceptually, each of these

node is a “city”, a bit like a coarse-grained version of the nearest-neighbour

lattice used for the simulations presented in this chapter. At every temporal

iteration a sick agent has a probability pi (≪ 1) to infect another agent on

the same node, and a probability pt (also ≪ 1) to travel to a randomly

chosen linked node. As in the lattice-based simulations considered in this

chapter, once infected an agent has a finite lifetime L. Introduce a single sick

agent on a randomly selected node, and follow the spread of the epidemic,

for various values of pi, pt and initial nodal population. Once you have

identified a parameter regime where the epidemic invariably takes off, fix

the value of these parameters and introduce a vaccination campain on the

primary hub node. The idea is that a randomly selected fraction f of the

nodal population is vaccinated and cannot be infected or carry the disease.

Determine the vaccination fraction f required to prevent epidemic spread

with better than 90% probability.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

272 CHAPTER 9. EPIDEMICS

9.8 Further readings

Many historical accounts of epidemics are available in the popular literature. I

have certainly not read them all, but so far my favorite remains:

Zinsser, H., Rats, Lice and History (1935) [available as 1996 reprint Black

Dog & Leventhal Publishers]

Also well worth reading in this context is l’Oeuvre au Noir (translated in English

as The Abyss), by Marguerite Yourcenar. Readers fluent in higher mathematics

may be interested in comparing the model introduced in this chapter to the

more conventional statistical and differential equation-based approaches to the

modeling of epidemic spread. Good entry points into this vast literature are

Daley, D.J., & Gani, J., Epidemic Modeling: An introduction, Cambridge

University Press (1999).

Murray, J.D., Mathematical Biology, Berlin: Springer, chaps. 19, 20 (1989)

Part four of Mitchell’s book cited in the bibliography to chapter 1 offers an

engaging and non-technical general introduction to the science of networks. At a

more technical level, see

Watts, D.J., Small Worlds: The dynamics of networks between order and

randomness, Princeton University Press (2003)

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

9.8. FURTHER READINGS 273

Figure 9.2: Time series of infected (red) and healthy (green) random walkers in a

simulation carried out on a 128× 128 lattice initially populated by 4000 random

walkers, with the life span of infected walker set at L = 20 iterations. Here the

duration of the epidemic is 919 temporal iterations, significantly above average

for these parameter settings; yet at the end of the epidemic, the population is

reduced to 62% of its initial value, which is almost exactly the average death toll

for these parameter settings (more on all of this in §9.4 below). Note the multiple

successive surges in the evolution of the epidemic, a characteristic commonly

observed in real epidemics... and compare to Fig. 6.3.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

274 CHAPTER 9. EPIDEMICS

Figure 9.3: Epidemic spread for a simulation on a 128× 128 lattice populated by

4000 random walkers, with the lifetime of infected walker set at L = 20 iterations

(same simulation as on Fig. 9.2). The solid dots indicate the final resting place

of dead walkers, color-coded according to the iteration at which they became

infected, as indicated by the color bar, and the line segments connect each dead

walker to the walker from whom infection was picked up. The simulation was

initialized with the introduction of a single infected walker, here very near the

bottom edge of the lattice, as indicated by the orange circle. In this simulation

1534 walkers fell to the epidemic, very close to the average for this initial popu-

lation density and lifetime parameter. A mpeg animation of this Figure will be

available

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

9.8. FURTHER READINGS 275

Figure 9.4: Variation of the death rate (top) and epidemic duration (bottom),

as a function of initial population density. Each solid dot corresponds to the

mean of 20 statistically independent realizations of each simulation, with the

vertical line segment indicating the ± one standard deviation about that mean

(see eqs. 9.3). For each density value, the gray bands indicate the minimum and

maximum values occurring in this 20 member set. All simulations executed on

a 128× 128 lattice, with the lifespan of infected walker set at L = 20 iterations.

Compare the top panel to the bottom panel of Fig. 4.6
naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

276 CHAPTER 9. EPIDEMICS

Figure 9.5: Another view of epidemic spread, now with time running vertically

upwards and the dead walkers distributed according to their horizontal nodal

position on the lattice. Only the “infection links” are plotted, for clarity. Panel

(A) at left is for the same simulation as on Fig. 9.3. Note the self-similar branching

structure, and how this epidemic would have ended around iteration 280, had it

not been for the single infection event taking place at (x, t) = (18, 282). Panel

(B), at right, shows an epidemic spread in a simulation with twice the initial

population density as in (A). Note the different vertical (temporal) scales on

both panels. The dashed oblique lines are guide to the eye indicating propagation

speeds of 0.33 node per iteration at left, and 0.6 node per iteration at right. The

death rates for these simulation are 38.8% in (A), and 98.2% in (B).

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

9.8. FURTHER READINGS 277

Figure 9.6: Spread of the epidemic wavefront in the ρ = 0.49 solution of Fig. 9.5B.

The sequence of snapshots on top show a grayscale rendering of the density of

infected agents, on a 20-iteration cadence, as labeled. The red circular arcs are

centered on the starting point of the epidemic, and drawn with the mean distance

of the infected agents measured from that point. The bottom panel shows the

variation with time of this distance (solid line), along with the root-mean-square

displacement for a two-dimensional random walk (dash-dotted line). The solid

dots identify the 10 snapshots plotted on top, and the inset is a closeup on the

first 20 iterations.
naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

278 CHAPTER 9. EPIDEMICS

Figure 9.7: Probability density functions of infection rates for the two specific

simulations of Fig. 9.5, having ρ = 0.244 and ρ = 0.488, and a third with an

intermediate initial population density ρ = 0.366, as color-coded. The three

correspondingly color-coded vertical line segments indicate the means of the dis-

tributions, in all cases equal to unity to better than a part in 103. All three

distributions are very much alike in shape.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

9.8. FURTHER READINGS 279

Figure 9.8: Four possible static networks connecting 12 nodes. The locally-

connected network in (A) introduces links only between nearest-neighbours, while

the fully-connected network in (B) is at the opposite extreme, with each node

being connected to every other node. In the single-hub network in (C) all nodes

connect to each other via node 0. The random-looking “small-world” network in

(D) belongs to the class of scale-free networks, with the number of links into each

node distributed as a power-law (see text).

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

280 CHAPTER 9. EPIDEMICS

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

Chapter 10

Flocking

There is safety in numbers. Some of this is psychological, but it also harks

back to basic geometry: because the surface to volume ratio of compact objects

decreases with increasing size, the number of individuals exposed to predators

at edges of a large animal flock is small compared to those protected within its

interior, the more so the larger the flock. Add the deterrent of perhaps looking

like a dangerously large animal under suboptimal viewing conditions, and the

possibility of group manoeuvers confusing an approaching predator, and you have

a potential evolutionary advantage. That the advantage is real and not just

potential is confirmed by the fact that a wide variety of living creatures have

evolved this behavioral strategy, including many species of mammals (herds),

birds (flocks), fishes (schools), and insects (swarms).

Models of flocking have also been used to understand —and control— the

movement of dense human crowds in socially extreme situations. Indeed, the

flocking model introduced in this chapter closely follows one developed with the

naturalcomplexity-2.tex, July 28, 2016 281 Natural Complexity, Paul Charbonneau, Université de Montréal

282 CHAPTER 10. FLOCKING

specific aim of understanding global crowd movements in the so-called mosh pits

at Heavy Metal rock concerts. Human crowd movement (and management) thus

provides the context of the simulations described in what follows.

10.1 Model definition

The flocking model considered here is defined in two spatial dimensions on the

periodic unit square: x, y ∈ [0, 1]. N agents are moving within this domain, under

the influence of four forces. The forces acting on any agent j are the following:

1. Repulsion: In a flock or crowd, the bodily sizes of participating individ-

uals sets a typical lower limit to the distances between individuals (e.g., a

shoulder width). To pack a crowd tighter would requires a substantial ex-

ternal force, which would typically meet an equally substantial resistance.

This property is modeled here by introducing a short-range repulsion force,

which is very intense within a range set by an interaction distance r0, but

falls very rapidly at larger distance:

Frep
j = ǫ

N∑

k=1







(1− rjk/(2r0))
3/2r̂jk rjk ≤ 2r0 , j 6= k

0 otherwise

. (10.1)

Here rjk is the distance between agents j and k, and r̂jk is a unit vector

pointing from k towards j. The parameter ǫ sets the magnitude of this

repulsion force. All simulations considered below use a spatial range r0 ≪ 1.

2. Flocking: In a crowd, many people behave like sheeps, blindy following

others around them down well-trodden corridors into the valley of steel...

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

10.1. MODEL DEFINITION 283

or wherever. Here this ovine tendency is modeled by introducing a flocking

force which tends to align the velocity vector of agent j with that of the

group of individuals located within a flocking radius rf of its own location.

Mathematically:

Fflock
j = αV̄/

√
V̄ · V̄ , (10.2)

where

V̄ =
N∑

k=1







vk rjk ≤ rf , j 6= k

0 otherwise

(10.3)

measures the vectorially summed velocity of all k agents located within rf

of agent j, and the parameter α sets the magnitude of this flocking force.

In all simulations that follow we use rf ≥ 4r0, reflecting the fact that in

a crowd we typically only see (and react to) other that are relatively close

to us, these being still more numerous than those in immediate bumping

range.

3. Self-propulsion: In some contexts, e.g., a protest march, some individuals

are purposefully trying to move at some finite speed. This is modeled here

through a self-propulsion force, defined mathematically as:

Fprop
j = µ(v0 − vj)v̂j , (10.4)

where v0 is the target velocity of agent j, and the parameter µ sets the

magnitude of the self-propulsion force. The speed of agent j is

vj =
√

v2x,j + v2y,j , (10.5)

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

284 CHAPTER 10. FLOCKING

and v̂j is a unit vector aligned with its current velocity:

v̂x,j ≡
vx,j
vj

x̂ , v̂y,j ≡
vy,j
vj

ŷ . (10.6)

In all simulations discussed in this chapter we set µ = 10. Note that setting

v0 = 0 will tend to deccelerate agent j, not exactly what one think of

as “self-propulsion”, but this is not unrealistic in a crowd; depending on

context many people just naturally slow down to a standstill unless they

are being actively pushed around.

4. Random: Finally, agents can be subjected to small —or not-so-small—

perturbations of whatever origin. This is modeled through a randomly-

oriented force:

Frand
j = ηηηηj , (10.7)

where each component of ηηηη is extracted from a distribution of random

deviate uniform in the range [−η, η].

The total force acting on agent j is thus the vector sum of these four forces:

Fj = Frep
j + Fflock

j + Fprop
j + Frand

j , (10.8)

which will induce an acceleration according to Sir Isaac Newton’s celebrated third

law of motion:

aj =
Fj

M
. (10.9)

We can suppose that all agents have a mass M = 1, without loss of generality.

From one time step to the next, agents move and adjust their speed according

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

10.1. MODEL DEFINITION 285

to:

xj(t+∆t) = xj(t) + vj(t)∆t , vj(t+∆t) = vj(t) +
Fj(t)

M
∆t , (10.10)

with ∆t the time step1. Most simulations reported upon in this chapter use a time

step ∆t = 0.01. The initial condition usually consists in randomly distributing

a fixed number of individual on the unit square, and assigning each a randomly-

oriented velocity with magnitude in some preset interval. The domain is deemed

periodic in x and y, meaning, for example, that any agent moving beyond x >

1 immediately reappears at the left side of the domain, with the same speed

(magnitude and orientation) as when leaving from the right; and similarly for

agents exiting at x < 0, y < 0 or y > 1. Geometrically, it is as if the agents

were moving on the surface of a torus, much like the lattice-painting ant agents

encountered way back in §2.4.

1These expressions result directly from the application of the Euler explicit first-order finite

difference formula to the differential form of Newton’s Laws of motion. Positional accuracy

could be improved by writing

xj(t+∆t) = xj(t) + vj(t)∆t+
1

2

Fj(t)

M
(∆t)2 ;

However, this yields an algorithm where velocities are evaluated less accurately than positions,

an unwanted feature in situations where the force F depends not just on x but also on v, which

is the case here.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

286 CHAPTER 10. FLOCKING

10.2 Numerical implementation

Figure 10.2 provides a listing for a Python code that implements the above simu-

lation algorithm. This code looks deceptively simple, as it consists of little more

than initializations and implementation of eqs. (10.10); this is because all the

action —and coding intricacies— are contained in the user-defined Python func-

tions buffer and force, which are invoked to calculate the total force acting on

every agent at every temporal iteration. Source listings of these functions are

given on Figs. 10.3 and 10.42. While positional and velocity periodicities are easy

to implement (lines 40–41 in Fig. 10.2), the calculation of the repulsion and flock-

ing forces near domain boundaries is where the challenge lies. This is handled as

a two-step process, through the user-defined functions buffer and force.

The first step, handled by the function buffer, is to replicate agents located

closer to a boundaries than the range of the flocking force, so that they can

effectively contribute to the flocking (and repulsion) forces felt by agents located

close to the opposite boundary. The idea is illustrated on Figure 10.1. Here

16 agents (solid black dots) populate the unit square (in black). Define now

a buffer area (gray shading) corresponding to the periodic unit domain with

its x and y boundaries expanded outwards by a distance equal to the flocking

radius rf . Particles within the unit square but closer than rf to a boundary get

replicated one unit away inside this buffer, in the direction ooposite to that of

2One may note that these program sub-units are as intricate than the primary code calling

it. This is a common situation in real simulation codes , where one strives to define functional

sub-units so as to maintain a visually clear logical flow within each program unit.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

10.2. NUMERICAL IMPLEMENTATION 287

the nearby boundary. This replication process is indicated by the color coding of

replicated agents on Fig. 10.1. Note how agents located close to a corner of the

unit square spawn three replicants: horizontally, vertically and diagonally. Here

the computation of the flocking (and repulsion) forces acting on any one of the

16 original agents located within the unit squares could now involve up to 15+20

other agents, real or replicants.

Examine carefully the two functions listed on Figs. 10.3 and 10.4 and note

the following:

1. The job carried out by function buffer is to construct expanded arrays

xb, yb, vxb, vyb for the positions and velocity of agents and replicates, as

per Fig. 10.1 and accompanying discussion. The buffer width rb is passed

through the function’s argument list when invoked by the main program

(line 33 on Fig. 10.2), where it is set to the flocking radius rf .

2. The (modified) position and velocity of every such replicated agent are in-

troduced at position nb of the above expanded arrays, with nb incremented

by one every time a replicated agent is added. At the end of this operation,

the arrays xb, yb, vxb, vyb contain nb (> N) agents, distributed in the

interval [−rb, 1 + rb] in x and y.

3. The force acting on agent j is calculated based on its distance to every other

agents, including replicants; this means that the j-indexed loop starting at

line 5 in the force function of Fig. 10.4 runs from 0 to N− 1, i.e., only over

the N “real” agents located within the unit square; whereas the k-indexed

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

288 CHAPTER 10. FLOCKING

Figure 10.1: Construction of a buffer zone (gray shading) with replicated agents

(colored open circles), to ensure proper calculation of the flocking and repulsion

forces experienced by agents (solid black dots) distributed over a periodic unit

domain (black square). Any agent located closer than the flocking radius from a

boundary (solid dots with colored ring) gets replicated a unit distance away in

the opposite direction, as captured here by the color coding. Note how agents

located close to a corner get replicated thrice. For the specific distribution of 16

agents in the unit square shown here, a total of 20 replicants have been created.
Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

10.2. NUMERICAL IMPLEMENTATION 289

1 # FLOCKING SIMULATION ON THE UNIT SQUARE

2 import numpy as np

3 import matplotlib.pyplot as plt

4 #---

5 N =350 # Number of agents

6 n_iter=1000 # Number of temporal iterations

7 dt =0.01 # Time step

8 r0 =0.005 # Range of repulsion force

9 eps =0.1 # Amplitude of repulsion force

10 rf =0.1 # Range of flocking force

11 alpha =1.0 # Amplitude of flocking force

12 v0 =0.0 # Target speed

13 mu =10. # Amplitude of self-propulsion force

14 ramp =0.5 # Amplitude of random force

15 #---

16 # The buffer and force functions of Figs. 10.3 and 10.4 should go here

17 #---

18 x,y =np.zeros(N),np.zeros(N) # Positions of agents

19 vx,vy=np.zeros(N),np.zeros(N) # Velocities of agents

20 fx,fy=np.zeros(N),np.zeros(N) # Forces on agents

21 xb =np.zeros([4*N]) # Define buffer zone arrays

22 yb =np.zeros([4*N])

23 vxb=np.zeros([4*N])

24 vyb=np.zeros([4*N])

25 for j in range(0,N): # Initialize positions and velocities

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

290 CHAPTER 10. FLOCKING

1 # BUFFER FUNCTION: INTRODUCE REPLICATE AGENTS OUTSIDE OF UNIT SQUARE,

2 # IN A SQUARE BUFFER EXTENDING OUTWARD BY A DISTANCE rb

3 def buffer(rb,x,y,vx,vy):

4 xb[0:N],yb[0:N] =x[0:N],y[0:N] # Initialize buffer arrays

5 vxb[0:N],vyb[0:N]=vx[0:N],vy[0:N]

6 nb=N-1 # Already have N real agents

7 for k in range(0,N): # Add replicants to buffer

8 if (x[k] <= rb): # Close to left

9 nb+=1

10 xb[nb]=x[k]+1.

11 yb[nb],vxb[nb],vyb[nb]=y[k],vx[k],vy[k]

12 if (x[k] >= 1.-rb): # Close to right

13 nb+=1

14 xb[nb]=x[k]-1.

15 yb[nb],vxb[nb],vyb[nb]=y[k],vx[k],vy[k]

16 if (y[k] <= rb): # Close to bottom

17 nb+=1

18 yb[nb]=y[k]+1.

19 xb[nb],vxb[nb],vyb[nb]=x[k],vx[k],vy[k]

20 if (y[k] >= 1.-rb): # Close to top

21 nb+= 1

22 yb[nb]=y[k]-1.

23 xb[nb],vxb[nb],vyb[nb]=x[k],vx[k],vy[k]

24 if (x[k] <= rb and y[k] <= rb): # Close to bottom left

25 nb+= 1

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

10.2. NUMERICAL IMPLEMENTATION 291

1 # FORCE FUNCTION: CALCULATE TOTAL FORCE ACTING ON ALL AGENTS

2 # Values for r0,eps,rf,alpha,v0,mu,ramp set in calling program

3 def force(nb,xb,yb,vxb,vyb,x,y,vx,vy):

4

5 for j in range(0,N): # Loop over real agents

6 repx,repy,flockx,flocky,nflock=0.,0.,0.,0.,0

7 for k in range(0,nb): # Loop over agents+replicants

8 d2=(xb[k]-x[j])**2+(yb[k]-y[j])**2 # Squared distance j,k

9 if (d2 <= rf**2) and (j != k): # k contributes to flocking

10 flockx+=vxb[k]

11 flocky+=vyb[k]

12 nflock+=1

13 if (d2 <= 4.*r0**2): # k contributes to repulsion

14 d=np.sqrt(d2) ; # Distance between j and k

15 repx+=eps*(1.-d/(2.*r0))**1.5 *(x[j]-xb[k])/d # Eq (10.1)

16 repy+=eps*(1.-d/(2.*r0))**1.5 *(y[j]-yb[k])/d

17 # End of loop over agents and replicants

18

19 normflock=np.sqrt(flockx**2+flocky**2) # Denominator in Eq (10.2)

20 if (nflock == 0): normflock=1. # To avoid 0/0 division

21 flockx=alpha*flockx/normflock # Flocking Eq (10.2)

22 flocky=alpha*flocky/normflock

23 vnorm =np.sqrt(vx[j]**2+vy[j]**2) # Speed of agent j

24 fpropx=mu*(v0-vnorm)*(vx[j]/vnorm) # Self-propulsion Eq (10.4)

25 fpropy=mu*(v0-vnorm)*(vy[j]/vnorm)

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

292 CHAPTER 10. FLOCKING

loop within force (lines 7–16 on Fig. 10.4) runs from 0 to nb− 1.

4. There are now N×(nb−1) pairs of (distinct) agents between whom distance-

based forces must be calculated, at every temporal iteration. This calcula-

tion better be as efficient as possible. A first test (line 9) checks whether

agent k is within the flocking radius rf of agent j; if so the flocking force is

calculated, and then a second test (line 13) verifies if k is also within 2r0 of

j, in which case its contribution to the repulsion force is also calculated. A

consequence of this construct is that the first if will be executed nb times

per real agent, but the second only a few times since, typically, only a few

agents are within a radius rf of agent j.

5. The calculation of the flocking and repulsion forces includes a test (in line 9)

that prevents computing the repulsion force of an agent on himself should

j = k. Look again at eq. (10.1) and imagine what would happen without

this exclusion...

6. If no agent is within the flocking radius rf of agent j, then the calculation

of the flocking force will produce a division by zero, since we then have the

norm
√
V̄ · V̄ = 0 in eq. (10.2); to avoid this problem the counter variable

nflock tallies up the number of agents within rf of agent j (line 12); if this

is zero, then the norm (local variable normflock) is artificially set to unity

(line 20), so that the flocking force will be zero, rather than whatever you

get from dividing zero by zero (with many computing languages you would

get that (in)famous NaN...).

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

10.3. A BEHAVIORAL ZOO 293

7. The x- et y- components of the flocking and repulsion forces are calculated

separately and accumulated in the local variables flockx, flocky, repx, et

repy. It is only upon exiting the k-indexed inner loop that the total forces

are calculated, including the contributions of the purely local self-propulsion

(lines 24–25) and random (lines 26–27) forces.

8. Upon returning control to the calling program unit, the final step consists

in using eq. (10.10) to update the position and velocity arrays for all agents

j (lines 36–39 on Fig. 10.2), with periodicity enforced (lines 40–41), and

without forgetting that we have assumed all agents to have a unit mass

(M = 1 in eq. 10.9). Note here the use of mathematical operators acting

on numpy arrays, rather than array elements within a loop.

Even with the little tricks introduced here, such brute force computing of

distances between all pairs of agents can become prohibitively expensive as N

gets very large. There exists algorithms far more efficient for this, developed

for so-called N -body simulations. The interested reader will find a few good

entry-point references at the end of this chapter.

10.3 A behavioral zoo

With four forces acting in the simulations and the large number of numerical

parameters defining their respective ranges and magnitude, it is no surprise that

the model can produce a very wide range of global behaviors. For convenience

and later reference, Table 10.1 lists all model parameters and the corresponding

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

294 CHAPTER 10. FLOCKING

Table 10.1: Model parameters (Active/Passive where appropriate)

Description Equation Fig. 10.5 Fig. 10.6 Fig. 10.7 Fig. 10.8

r0 Repulsion radius (10.1) 0.05 – 0.025 0.025

ǫ Repulsion amplitude (10.1) 25 0 25 25

rf Flocking radius (10.2) – 0.1 0.1 0.1

α Flocking amplitude (10.2) 0 1 1 0.1/1

v0 Target velocity (10.4) 0 0 0.02/0 0.05/0.02

µ Self-propulsion amplitude (10.4) 10 10 10 10

η Random force amplitude (10.7) 1,3,10,30 0.1 0.1/0 10/0.1

N Number of agents 100 342 114—456 342

numerical values used in the various sets of simulations presented in the remainder

of this chapter.

Rather than taking our customary detailed look at one specific simulation,

in the present context it will prove more useful to first consider a few simple

simulations demonstrating the action of a subset of forces, to better appreciate

the behavior of subsequent simulations.

Figure 10.5 shows snapshots of four simulations with the flocking force turned

off, and self-propulsion acting to brake the individuals to rest (target speed v0 = 0

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

10.3. A BEHAVIORAL ZOO 295

Figure 10.5: Four simulations driven only the repulsion and random forces, with

self-propulsion acting as a brake (v0 = 0). All simulations have r0 = 0.05, ǫ = 25,

α = 0, µ = 10, and a random force amplitude η increasing from left to right, as

labeled. The top row shows the distribution of agents, with the line segments

indicating the orientation and magnitude of their velocity vectors. The bottom

panels show a trajectories of four selected agents over a time interval 100∆t = 2

in the course of the simulation.

in eq. (10.4)); numerical values for other model parameters are given in the

caption and listed in the fourth column of Table 10.1. What varies in this sequence

is the magnitude of the random force, increasing from left to right, as labeled. The

top row shows the position of all agents after an elapsed time interval t = 20,

from an initial condition consisting of 100 agents randomly distributed on the

unit square, with randomly-oriented initial velocities. As long as the the random

force remains relatively small (η = 1, left column), the repulsion force rapidly

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

296 CHAPTER 10. FLOCKING

pushes the agents into a quasi-equilibrium, geometrically-ordered configuration

in which the total repulsion force on any agent vanishes. Because the repulsion

force is isotropic, the resulting global end state must also be, which here leads to

a close-packing hexagonal pattern. Here this pattern includes some “defects” and

“holes”, because a few additional agents would be needed here to construct a truly

regular periodic hexagonal “crystal”. At low η the individual agents also move

about their equilibrium position under the action of the random force, damped

by the action of the self-propulsion force which acts here as a brake (v0 = 0). As

the trajectories plotted in the bottom row show, this motion is hardly discernable

at η = 1, but already at η = 3 it is sufficient to produce noticeable perturbations

in the hexagonal configuration. At η = 10 the random force is large enough for

pairs of “colliding” agents to occasionally exchange positions, leading to slow,

irregular pseudo-random drift across the domain. At η = 30 the simulation is

now in a “fluid” phase, with agents describing what for all intents and purposes

is a 2D random walk.

In general, the spatial density of agents distributed over the domain is a key

parameter in these types of simulations. In view of the short range and high

intensity of the repulsion force (viz. eq. (10.1)), one can consider that each agent

bodily occupies a “surface” ≃ πr20. The compactness coefficient (C) is defined

as the ratio of the total surface collectively occupied by agents to the available

surface. Since the simulation is defined on a unit square, we have:

C = πNr20 . (10.11)

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

10.4. SEGREGATION OF ACTIVE AND PASSIVE FLOCKERS 297

For the N = 100 simulations of Fig. 10.5, with r0 = 0.05, this gives C = 0.785,

confirming the visual impression that agents are pretty tightly packed.

Figure 10.6 shows a simulation now driven only by the flocking force, with self-

propulsion acting as a brake (v0 = 0). Repulsion is turned off (ǫ = 0), and a small

random force is included (η = 0.1). The first snapshot, taken at t = 0.5, shows

how the initial random velocities are rapidly damped by the braking force, but

with the flocking force already starting to align velocity vectors of neighbouring

agents. By t = 1.0 the flocking force has led to a general acceleration of most

agents, with groups of agents merging to produce a clockwise vortex at left, which

persists until about t = 2, by which time agents are moving as a long sinuous

stream. The periodic boundary conditions lead to a “collision” at t = 6 as the

upwards moving front of the stream at right merges with its middle part leaving

the domain diagonally through the bottom left corner to reappear at the upper

right. This causes a merging of the stream into a single, denser flock, which ends

up moving at constant speed along a straight line pointing approximately North-

West here (t = 30). This final streaming direction is ultimately determined by

the initial condition, with all directions being in principle equiprobable.

10.4 Segregation of active and passive flockers

The variety of behaviors that can be generated in our flocking model becomes even

larger if we allow for the coexistence of agents following distinct sets of dynamical

rules; think, for example, of a bunch of riot-control law-enforcers moving into a

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

298 CHAPTER 10. FLOCKING

crowd of protest marchers; or of a group of belated concert goers trying to push

their way to the front of the general admittance floor. In such a situation we can

identify “active” agents, trying to do something, and “passive” agents, not doing

much until they get pushed around or hit on the head. Such a dual-population

of agents is readily accommodated within the simulation code of Figs. 10.2 and

10.4, by introducing suitable arrays of length N for the model parameters that

have different values for the two types of agents.

An interesting and important question in crowd management is to understand

under which circumstances two intermingled populations of active and passive

agents can spontaneously segregate, by regrouping into distinct flocks. Figure

10.7 shows snapshots taken far into a set of four simulations, in all cases including

the same number Na = 45 of active agents, in red, and an increasing number

of their passive cousins, in green. Except for the numbers of passive agents,

all simulations use the same parameter values, as listed in Table 10.1 under

“Fig. 10.7”. Here active agents only differ in having a finite target velocity

v0 = 0.02 and being subjected to a small random force η = 0.1.

At low compactness (C ≤ 0.25) the self-propulsing active agents flock into

a long stream that clears a path through the passive agents, most of the latter

remaining at rest unless they happen to be pushed around by an active agent. At

intermediate compactness (C ≃ 0.5), sustained flocking turns out to be difficult,

as small flocks of active agents continually merge and separate again as they en-

counter channels between passive groups. Once compactness reaches two thirds

(for this parameter regime), the groups of motionless, passive agents are suffi-

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

10.4. SEGREGATION OF ACTIVE AND PASSIVE FLOCKERS 299

ciently dense and massive to strongly resist entry by a self-propelled active agent,

which ends up again favoring the formation of a large flock of active agents collec-

tively succeeding in opening a channel through the crowd. The system behaves

here like a two-phase flow, with the active agents percolating through a largely

inert irregular matrix. At even higher compactess (rightmost panel), isolated

active agents can become trapped in the close-packed “cristalline” assemblage of

passive agents.

The global behavior, namely the capacity of the active agents to flock, clearly

shows a non-trivial relationship to compactness, as a consequence of the dynam-

ical rules governing the interactions. This can be appreciated upon examining

the velocity distributions of all agents, plotted in the bottom row of Fig. 10.7

in the form of polar plots, where each color-coded line corresponds to the veloc-

ity vector of one agent. At low compactness the velocities of active agents are

strongly co-aligned, which provides a sustained flocking force maintaining the

motion. Significant scatter is present at high compactness, mostly due to agents

at the edges of the flock being deflected by collisions with the solid walls of pas-

sive agents on either side of the open channel cut by the flock of active agents.

The largest scatter is found at intermediate compactness, a consequence of the

fact that active agents fail to form a persistent large flock.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

300 CHAPTER 10. FLOCKING

10.5 Why you should never panic

Imagine this: it’s a nice Sunday afternoon and your favorite home team is facing

the arch-enemy from elsewhere for a spot on the semi-finals, so the stadium is

packed solid. About halfway into the game a fire breaks out; or an earthquake

suddenly starts rattling hard; or the PA system turns on to page Agent Smith to

go meet the quarantine team at entrance A-8, quickly and without touching any-

one or anything please, because your Ebola test turned out positive; or whatever.

At any rate, such events are more likely than not to trigger a mass movement

towards the stadium’s exits. We all know the drill: stay calm, walk fast but

don’t run, no pushing, and do not use the elevators. However, based perhaps

on experience —and if not, at least on what we learned from our examination of

traffic flow in chapter 7— we also know that a few panicked bozos running around

randomly and bumping into people can seriously disrupt what would otherwise

be an orderly evacuation.

Our flocking model is ideally suited to investigate the perturbing effects of pan-

icked individuals on collective, ordered motion. We consider again two types of

agents: (1) strongly flocking (α = 1) “calm” agents, subjected to self-propulsion

to a moderate “walking” speed (v0 = 0.02) and small random force (η = 0.1),

and (2) “panicked” agents striving for running speed (v0 = 0.05), undergoing

sudden and erratic changes in direction, modeled here through a large random

force (η = 10), and far less interested in flocking (α = 0.1). All other parameter

values as listed in the rightmost column of Table 10.1. The idea is thus to carry

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

10.5. WHY YOU SHOULD NEVER PANIC 301

out simulations at relatively high compactess, C = 0.67, varying the proportion

f = Np/N of panicked agents in the population, with this ratio f remaining fairly

small.

Figure 10.8 shows a sequence of simulations where the fraction of panicked

agents increases from zero (at left) to a mere 5% (at right). In the absence of

panicked agents, a generally constant cruising speed is reached, with the self-

propulsion force equilibrating the flocking force. The small dispersion in the

orientation of velocity vectors again reflects the action of the weak random force,

and the intermittent action of the repulsion force resulting from inhomogeneities

in the spatial distribution of the moving flock of agents. As one would have

expected, this dispersion gradually increases as more and more panicked agents

are introduced in the simulation. Notice how panicked agents tend to carve out

“holes” for themselves within the moving flock of calm agents, a phenomenon

observed in real crowds. This is due to the repeated collisions with surrounding

calm agents, driven by the random force and mediated by the repulsion force.

Probably not expected at all is the fact that even a few percent of panicked

agent can induce long-term, global changes in the moving flock, more specifically

significant changes in the spatial orientation of its motion. This is further il-

lustrated on Figure 10.9, showing trajectories of a single calm agent in each of

the four simulations of Fig. 10.8, plus two others at higher fraction of panicked

agents, as labeled. Even at the highest panicked fraction, these trajectories re-

main representative of the moving flock as a whole. It is remarkable that even

as little as 2% of panicked agents can cause a deflection of the moving flock by

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

302 CHAPTER 10. FLOCKING

almost 45 degrees. Of course different deflections would be produced if different

random initializations were used, but the trends observed on Fig. 10.9 are robust:

flock deflection increases rapidly with increasing fractions of panicked agents, and

sets in very early in the simulation. At the highest fractions of panicked agents,

the net distance travelled also decreases markedly, which is not a good thing if

rapid evacuation of the crowd is hoped for.

Written in big bright letters on the backside of the authoritative Hitchhiker’s

Guide to the Galaxy is the well-known first rule of galactic survival: DON’T

PANIC. Our flocking simulations demonstrate that this dictum also bears follow-

ing even in more Earthly stressful circumstances.

10.6 Exercises and further computational ex-

plorations

1. The force function of Fig. 10.4 could run twice faster by taking into account

the fact that the repulsion and flocking forces of agent k on agent j is equal

in magnitude but opposite in direction to the repulsion and flocking forces

of agent j on agent k —as per Newton’s famous action-reaction principle.

Give it a go!

2. Carry out a sequence of simulations like those plotted on Figure 10.5. For

each compute the final total kinetic energy, namely the sum of (1/2)M v2

over the whole population at your last time step, and examine how this

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

10.6. EXERCISES AND FURTHER COMPUTATIONAL EXPLORATIONS 303

varies with η. Is the transition from “solid” to “fluid” taking place abruptly

or gradually ? Could this “phase transition” be considered an instance of

a critical phenomenon ?

3. Construct a new set of simulations such as on Fig. 10.7, but decrease gradu-

ally the amplitude of the flocking force (parameter α) for the active agents.

At which value of α do you cease to form flocks ? Is the transition abrupt

or gradual ? Does it depend sensitively on compactness ?

4. The formation of long-lasting coherent structures, such as the (transient)

vortex of Fig. 10.6, also takes place in two-population versions of the model.

Try to look for such structures in simulations at high compactness (0.9 ≤

C ≤ 1.0), and a proportion of active agents Na/N = 1/3. Active agents

have small but finite target velocities (v0 = 0.02) and random force (η =

0.1), while passive agents have v0 = 0 and η = 0. You may vary the

magnitude of the flocking force (parameter α) and self-propulsion amplitude

(µ) for active and passive agents. For the other model parameters, use the

values listed in Table 10.1 for Figure 10.7.

5. Another important task in crowd control is how to intervene so as to get

a large compact crowd of passive or disoriented individual to start moving

collectively in a specific direction. The idea is basically the same as on

Fig. 10.7, namely to introduce a population of self-propelled active agents

in a dense group of passive agent. Modify the self-propulsion force so that

the target speed of active agents is oriented in the positive y-direction (say),

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

304 CHAPTER 10. FLOCKING

and use the difference in the average y-component of the velocity of the

passive and active agents as a measure of “coupling”. Identify in which

portion of the model’s parameter space this coupling is the strongest. Use

the same parameter values as in the simulations of Fig. 10.7, but explore

the effects of varying v0, α, µ and/or η for the active agents. How sensitive

are your results to compactness ?

6. The Grand Challenge for this chapter is a real fun one: repeat the simula-

tion of Fig. 10.6, but add now a single, rapidly moving (v0 = 0.5) strongly

flocking (α = 5) “predator” agent which generates a long-range repulsive

force (r0 = 0.1, say) in the flocking “prey” agents. Give the predator (and

only the predator) a flocking radius 50% larger than its repulsion radius, so

it can “see” and track the prey before scaring it away. Adding a moderate

random force (η = 1) to the predator yields nicer results. You should ob-

serve flock shapes and evolution resembling observations, including arched

thinning flocks dividing to “confuse” the predator.

10.7 Further readings

The flocking model introduced in this chapter is taken from:

Silverberg, J.L., Bierbaum, M., Sethna, J.P., & Cohen, I., Collective Mo-

tion of Humans in Mosh and Circle Pits at Heavy Metal Concerts,

Phys. Rev. Lett., 110, 228701 (2013).

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

10.7. FURTHER READINGS 305

The following is also very interesting on the broader topic of crowd behavior and

management:

Moussaid, M., Helbing, D., & Theraulaz, G., How simple rules determine

pedestrian behavior and crowd disasters, Proc. Nat. Acad. Sci.,

108, 6884–6888 (2011).

There exists a vast biological and ecological literature on flocking; at the non-

mathematical level I much enjoyed:

Partridge, B.L., The structure and function of fish schools, Scientific Ameri-

can, 246(6), 114–122 (1982),

Feder, Toni, Statistical physics is for the birds, Physics Today, 60(10), 28

(2007).

On algorithms for N -body simulations I found the following very informative,

even though it focuses on gravitational problems:

Trenti, M., Hut, P., N-body simulations (gravitational), Scholarpedia, 3(5),

3930 (2008),

This is available online, open access (March 2015):

http://www.scholarpedia.org/article/N-body simulations (gravitational)

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

306 CHAPTER 10. FLOCKING

Figure 10.6: Flock formation in a simulation driven only by the flocking force,

with the self-propulsion force acting as a brake (v0 = 0). The parameter values

for these simulations are listed in the fifth column of Table 10.1. Note that

the various frames are not equally spaced in time. Keep also in mind that the

simulation domain is periodic in x and y. A mpeg animation of this Figure will

be available

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

10.7. FURTHER READINGS 307

Figure 10.7: Flock formation in a sequence of simulations with compactness

increasing from left to right, as labeled. The top row of panels show the spatial

distributions of active (red) and passive (green) agents after an elapsed time of 50

time units. The bottom panels show the corresponding polar diagrams of agent

velocities, measured in units of the active agent’s target speed v0, and with the

dotted circles indicating multiples of v0 in steps of unity. The large colored dots

indicate the mean speed of active and passive agents. The parameter values for

these simulations are listed in the sixth column of Table 10.1.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

308 CHAPTER 10. FLOCKING

Figure 10.8: Similar in format to Figure 10.7, but this time for a sequence of

C = 0.67 simulations with an increasing fraction of “panicked” agents (in red).

The snapshots are taken at time t = 50, and all simulations use again the exact

same initial condition for the positions and velocities of all agents, irrespective

of their “panicked” or “calm” status. A mpeg animation of this Figure will be

available

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

10.7. FURTHER READINGS 309

Figure 10.9: Trajectories of a randomly selected “calm” agent in the simulations

of Figure 10.8, augmented by two simulations using panicked fractions of 10 and

20%, as labeled. The dotted circles are draw at radii = 2, 4 and 6, centred on the

initial position of the selected agents. For plotting purposes the unit square has

been replicated so as to show trajectories in “physical” space. All trajectories

cover the same time span, namely 50 time units.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

310 CHAPTER 10. FLOCKING

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

Chapter 11

Pattern Formation

11.1 Excitable systems

Many physical, chemical and biological systems can be categorized as excitable;

in the simplest such systems, two “components” interact in such a way as to alter

each other’s state, through (nonlinear) processes of inhibition or amplification.

Starting from a homogeneous rest state, many systems of this type can spon-

taneously generate persistent spatiotemporal patterns when subjected to some

perturbation. Examples abound in chemistry, notably with autocatalytic chemi-

cal reactions. Consider the following generic chemical reaction chain taking place

in a fully-mixed environment:

A → X (11.1)

B +X → Y +D (11.2)

2X + Y → 3X (11.3)

naturalcomplexity-2.tex, July 28, 2016 311 Natural Complexity, Paul Charbonneau, Université de Montréal

312 CHAPTER 11. PATTERN FORMATION

X → C (11.4)

The first reaction produces reactant X by dissociation of some compound A

available in large quantities; A thus provides a constant-rate source of X. The

second second reaction produces a second reactant Y from X through a reaction

involving a compound B also available in large quantities. The third reaction is

the critical one; it converts Y back to X through a three-body reaction involving

twoX; the overall rate is therefore proportional to the square of the concentration

of X in the mixture, times the concentration of Y . This one is the autocatalytic

reaction in the chain: X reacts with itself to produce more of itself. The fourth

reaction represents the “spontaneous” dissociation of X at come fixed rate, and

acts as a sink of X. The chain as a whole converts A and B to C and D, with

X and Y being produced and destroyed as intermediate steps in the chain.

If the concentrations of A and B are held fixed in the mixture (e.g., by contin-

uous replenishment and stirring), it can be shown that there exists an equilibrium

state where the concentrations of X and Y also remain fixed, at values

Xeq = A , Yeq = B/A , (11.5)

assuming all four above reactions have the same time constants and with reverse

reaction rates set to zero. In this equilibrium state, the second reaction produces

Y at the same rate as the third one destroys it, so that the concentration of X

stabilizes at a level such that the chain as a whole simply converts A and B to C

and D at a constant rate. However, for some values of A and B this equilibrium

state turns out to be unstable, and this is due to the nonlinearity characterizing

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

11.1. EXCITABLE SYSTEMS 313

the third, autocatalytic reaction in the chain. Because reaction 3 proceeds at a

rate proportional to X2, while the second reaction is instead linearly proportional

to X, an increase of whatever origin in the concentration of X will favor the

third reaction over the second. The concentration of X will thus keep increasing,

leading to a runaway production ofX; this runaway cannot go on forever, because

it also depletes Y , at a rate higher than the second reaction can replenish it. As

Y plummets to a low concentration, reaction 3 turns off, and Y starts rebuilding

through the second reaction, a reaction now favored by the high concentration of

X in the mixture. This leads to a chemical oscillation whereby the concentrations

of X and Y wax and wane periodically. Such chemical oscillations are observed

in the laboratory, the Belousov-Zhabotinsky reaction being the classical example.

In that case the excitation variable X is the concentration of bromic acid, and

the recovery variable Y is the concentration of some suitable metallic ion, such

as ferroin.

In the above reaction chain X acts as an activation variable, and Y as a re-

covery variable, and systems capabe of producing such nonlinear oscillations (or

runaway) when perturbed away from their equilibrium state are deemed excitable.

Their dynamical behavior becomes particularly interesting when excitation in-

volves a threshold.

Figure 11.1 illustrates schematically the workings of an activation-recovery

cycle in a generic excitable system, with X as the excitation variable and Y the

recovery variable. The system possesses a stable rest state, stable in the sense that

small perturbations in either X or Y are damped so that the system remains in

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

314 CHAPTER 11. PATTERN FORMATION

this rest state. However, a sufficiently large perturbation in the excitation variable

X (dotted arrow) can push the system into a post-activation state characterized

by a value of X that now allows the growth of Y . The growth of the recovery

variable Y is however restricted to a finite range, and when the upper end of this

range is attained (saturation), de-excitation takes place. This drives X back to a

value at which Y can no longer grow. Typically, during this refractory stage the

system cannot be excited, and both X and Y simply return to the rest state.

In many situations of interest the activation variable reacts to system changes

on a much faster timescale than does the recovery variable; the former can thus

be assumed to take on one of two possible states, active or inactive, and the

period of the activation-recovery cycle becomes set by the reaction timescale for

the recovery variable Y . In other words, on Fig. 11.1 the horizontal displacements

are “fast”, while vertical displacements are “slow”1

1Figure 11.1 is a simplified, schematic representation of the phase space plot for a system of

two coupled nonlinear differential equations of the generic type:

∂X

∂t
= f(X,Y)

∂Y

∂t
= g(X,Y) ;

in the case of the reaction chain considered above, f(X,Y) = A − (B + 1)X + X2Y and

g(X,Y) = BX − X2Y . The rest state corresponds to the intersection of the two nullclines

f(X,Y) = 0, g(X,Y) = 0. In situations where the activation variable X reacts rapidly and

remains in quasi-equilibrium (dX/dt ≃ 0), the phase space path for the inhibition-recovery

cycle follows the f = 0 nullcline in response to (slow) variations in the recovery variable Y . If

the f = 0 nullcline is multivalued in X for some range of Y , then the system can also “jump”

horizontally from one branch of the nullcline to another, resulting in the type of activation-

recovery cycle illustrated on Fig. 11.1.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

11.2. THE HODGEPODGE MACHINE 315

Quite obviously, triggering the activation-recovery cycle requires some mech-

anism to push the excitation variable X beyond its activation threshold. This

mechanism can certainly be external to the system. In the context of autocat-

alytic chemical reactions, for example, this could be as simple as a Agent Smith

pouring more chemicals into the test tube. A far more interesting situation is

one in which the system is spatially-extended and characterized by chemical con-

centration gradients. Diffusion can them move chemicals from regions of higher

concentration to neighbouring regions of lower concentration, an in doing so ac-

tivate the system away from the rest state in spatially localized regions of the

domain2.

Dynamically similar activation-recovery cycles have observed in contexts other

than chemical reactions. A particularly interesting example is provided by elec-

trically excitable biological tissues, such as the heart muscle or nerve axons, for

which membrane potential acts as the excitation variableX, and cross-membranic

ionic currents define the recovery variable Y .

11.2 The hodgepodge machine

The mathematical investigation of pattern formation in reaction-diffusion systems

was initiated by Alan Turing, during the final years of his tragically short life.

2In such a case the temporal evolution of X and Y can be described mathematically by a

pair of coupled partial differential equations, with the coupling nonlinearity as in footnote 1,

and linear diffusion terms for X and Y , typically of the usual Fickian variety (∝ ∇2X and

∇2Y).

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

316 CHAPTER 11. PATTERN FORMATION

Not only was Turing an outstanding mathematician, but in the late 1940’s and

early 1950’s he also had access to one of the earliest working computer, operating

at the University of Manchester in England. He used this opportunity to carried

out numerical solutions of coupled nonlinear reaction-diffusion partial differential

equations, at the time a complete terra incognita since such systems are largely

impervious to conventional pencil-and-paper mathematical techniques. Turing

could show that reaction-diffusion systems can spontaneously generate spatial

patterns, which he dubbed “chemical waves”. In 1952, and once again well ahead

of his time, he proposed that such chemically-driven spatial patterns formation

represented a key mechanism for morphogenenis in the developing embryo.

Even with the staggering increase in computing power having taken place

since Turing’s pioneering investigations, the mathematical and numerical investi-

gation of spatially-extended nonlinear reaction-diffusion equations remain a very

computationally demanding endeavor. The hodgepodge machine is a simple cel-

lular automaton that captures much of the pattern-forming behavior of the class

of coupled systems of nonlinear reaction-diffusion partial differential equations of

the type Turing investigated, as well as of other excitable systems in the broader

sense.

The model is defined over a two-dimensional regular Cartesian lattice, with

8-nearest-neighbour connectivity (top+down+right+left+diagonals). The state

variable s, representing the concentration of a chemical reactant, is defined as

a positive integer quantity restricted to the range 0 ≤ s ≤ A, where A is the

activation threshold. A nodal value s = 0 corresponds to the rest state, s = A is

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

11.2. THE HODGEPODGE MACHINE 317

the active state, and integer values in between represent recovery states. Denoting

sni,j the state value of node (i, j) at temporal iteration n, we first define the

following quantities:

• Na: the number of neighbouring nodes that are in the active state (sni,j = A)

at the current iteration

• Nr: the number of neighbouring nodes that are in recovery states (0 <

sni,j < A) at the current iteration

• S: the sum of nodal values over all neighbouring nodes, including node si,j

itself:

S =
i+1∑

l=i−1

j+1
∑

m=j−1

snl,m . (11.6)

Each node evolves from one temporal iteration to the next according to the

following three (relatively) simple rules:

• Rule 1: if a node is in the rest state (sn = 0), its state at the next iteration

is given by:

sn+1 = min
(
Nr

r
+

Na

a
,A
)

. (11.7)

• Rule 2: if a node is in the recovery stage (0 < sn < A), its state at the

next iteration is given by:

sn+1 = min
(

S

Nr + 1
+ g , A

)

. (11.8)

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

318 CHAPTER 11. PATTERN FORMATION

• Rule 3: if a node is activated (sn = A), it transits to the rest state at the

next iteration:

sn+1 = 0 . (11.9)

Here r, a and g are all positive constants, and the resulting numerical values for

sn+1 are truncated to the nearest lower integer when computing Rules 1 and 2,

since the state variable s is an integer quantity.

How do these rules relate to the excitation-recovery cycle of Fig. 11.1? First,

the state variable s is to be associated with the recovery variable Y . Because of

its truncation to the lowest integer, Rule 1 captures the activation threshold

dynamics represented by the dotted arrow, with the numerical values of the

parameters r and a setting the value of this threshold. This is a “fast” process, as

it operates in a single temporal iteration, and the resulting value of s represents

the post-activation state. The acceleration parameter g in Rule 2 sets the rate at

which s grows once activated, i.e., is sets the upwards climbing speed along the

right edge of the phase space path. As long as g ≪ A, this can be considered a

“slow” process, in that many temporal iterations are required to travel up from

the post-activation state to saturation. The activation threshold A is equivalent

to the saturation value of Y . Rule 3 amounts to saying that the transition from

this upper portion of the path back down to the rest state is “fast”, i.e., it takes

place in a single temporal iteration.

Consider first the behavior of a single node in the recovery phase (0 < s0 < A),

surrounded by 8 inactive nodes (s = 0); such a lattice state could only result from

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

11.2. THE HODGEPODGE MACHINE 319

the initial condition, as Rule 1 above would normally preclude an isolated resting

node from entering the recovery phase. But assuming such an initial state (s0) can

be prepared, with Nr = 0 and S = s0 Rule 2 yields s1 = S/(Nr +1)+ g = s0+ g.

Pursuing the iterative process we then have s2 = s1 + g = s0 + 2g, s3 = s0 + 3g,

etc. This describes a linear growth of sn, at a rate set by the value of g, that

will continue until the activation threshold A is reached. The same behavior

would characterize a group of neighbouring nodes all sharing the same value of

s, because then Nr = 8 and S = 9sn, so that once again sn+1 = sn + g; all nodes

would grow linearly in time with slope g, activate in synch, and start growing

anew from a value sn = 8/a, as per Rule 1. The resulting cycle of recovery,

activation, and return to the rest state results in a periodic sawtooth pattern

similar to the nodal evolution in the OFC Earthquake model (see Fig. 8.5) in the

absence of redistribution by neighbouring avalanching nodes.

One crucial difference with the OFC model, however, lies with the fact that

in the hodgepodge machine, redistribution between nodes takes place not just

when nodes are activating, but operates throughout the whole recovery phase,

via the diffusive behavior built into Rule 2. With g = 0 and for a recovering node

surrounded by other recovering nodes (Nr = 8), Rule 2 becomes sn+1
i,j = S/9, i.e.,

si,j adopts the mean value of its neighbourhood3.

3This is akin to linear (Fickian) diffusive processes, which in the steady state must sat-

isfy Laplace’s equation ∇2s = 0; using centered second-order finite differences on a regular

equidistant Cartesian grid, one can show that such steady-state solutions must satisfy

si,j =
1

4
(si−1,j + si+1,j + si,j−1 + si,j+1) .

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

320 CHAPTER 11. PATTERN FORMATION

The diffusive behavior of the hodgepodge is illustrated on Figure 11.2, dis-

playing a succession of horizontal cuts through the middle of a 100× 100 lattice,

starting from an initial condition comprised of a 20 × 20 block of nodes with

s = 250 at lattice center, and s = 0 everywhere else. This solution uses parame-

ter values a = r = 0.1, A = 255, and g = 0. On this 1D cut the initial condition

(in black) shows up as a rectangular shape which spreads laterally and flattens

with time, adopting a Gaussian-like shape. This is exactly the behavior expected

from classical linear (Fickian) diffusion. At the outer edge of this spreading struc-

ture, nodes having initially s = 0 are pushed into the recovery phase, producing

a recovery front propagating outward at a speed of one node per iteration. Each

resting node hit by this front finds itself with three neighbours in the recovery

stage, and so jumps to a nodal value Nr/r = 30, as per Rule 1. Here because

g = 0 and all surrounding nodes have the same value s = 30, once pushed into

the recovery state nodes experience no further growth4.

Now enters a non-zero acceleration parameter g. As soon as the recovery

front hits a node, growth at a rate set by g begins. Once activated, each node is

i.e., si,j is equal to the average of its four nearest-neighbours, top/down/right/left.
4Readers familiar with the modelling of diffusive processes may note some unexpected fea-

tures on Fig. 11.2, particular in the late evolutionary phases. The lateral broadening of the

central bumps seems to come to a standstill around iteration 100, after which slow inward

shrinking ensues; this is not a behavior expected of linear diffusion. The culprit is the trun-

cation to the lowest integer applied to the computation of Rule 2, which effectively acts as

a sink term, slowly “removing” chemicals from the system. In other words, diffusion in the

hodgepodge machine is non-conservative.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

11.2. THE HODGEPODGE MACHINE 321

surrounded by other nodes either just activated or beginning their recovery phase,

so all grow at essentially the same rate. However, because the front propagates

outwards one node per iteration, each node lags its predecessor by one g-sized

step in the growth process. The presence of this systematic lag results in a

outward-propagating sawtooth waveform, dropping to zero and beginning anew

when nodes reach the activation threshold, a direct reflection of the temporal

sawtooth pattern locally characterizing the evolution of each node.

Figure 11.3 shows four snapshots of a simulation with parameter values a =

r = 0.1 and g = 10, now on a 200 × 200 lattice and starting from the same

“central block” initial condition of Fig. 11.2. The top row of images shows a

greyscale coding of the state variable s at iterations 50, 60, 70 and 80, going from

left to right. The four spreading planar wave fronts emanating from the lattice

center are quite obvious, and show curvature only near their intersections of the

four phase front. The bottom plot shows horizontal cuts across the lattice center,

the outward progagating sawtooth pattern being now most obvious.

For a propagating plane wavefront, activation of resting nodes ahead of the

front drives their state up to a value s = 3/a, after which they grow by an

increment g at each iteration until they reach the activation threshold; if diffusion

is neglected, the period of this activation-recovery cycle is then (A−3/a)/g ≃ 22

for the parameter values used on Fig. 11.3. Because the front advances by one

node per iteration, the corresponding wavelength of the propagating sawtooth

wave is then 22 nodes, in agreement with the wave pattern observed on Fig. 11.3.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

322 CHAPTER 11. PATTERN FORMATION

11.3 Numerical implementation

Figure 11.4 offers a simple implementation of the hodgepodge machine in the

Python programming language. The overall code structure closely resembles

the OFC CA encountered in chapter 8 (cf. Fig. 8.3), the primary differences

being at the level of lattice state updates (lines 34–45), which are carried out

here according to eqs. (11.7)—(11.9), rather than the simpler eqs. (8.10)—(8.13).

Both models use a random initial condition (lines 26–28) and enforce synchronous

update of the lattice. Note however that periodic boundary conditions are used

here, in contrast to the “frozen” boundary conditions of the OFC model. This

is implemented via the user-defined function periodic, which operates on a 2D

array given as argument (here named internally grid (see Fig. D.3) but does not

return an explicit result. Note the use of Python’s elif keyword, a contraction of

the usual else...if construct. Finally, because the state variable is an integer, the

computations of Rules 1 (line 45) and 2 (line 41) truncate to the lowest integer

via the Python integer conversion function int5. Likewise, the use of Python’s

min function ensures that sn+1
i,j ≤ A even if a or r are set at very small values.

5I have coded up the hodgepodge machine in C, IDL and Python, and kept finding small

but puzzling differences in some parts of parameter space; they turned out to be related to the

manner in which these various computing languages deal with truncation and conversion to

integers. So be warned.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

11.4. WAVES, SPIRALS, SPAGHETTIS, AND CELLS 323

11.4 Waves, Spirals, Spaghettis, and Cells

The operation of the hodgepodge machine combines a local activation-recovery

cycle with spatial spreading and entry into the recovery phase mediated either

by neighbour proximity or diffusion. These processes, as embodied in the hodge-

podge machine, are not particularly complicated, yet they can lead to a staggering

array of patterns and behaviors as the model’s defining parameters are varied.

Figure 11.5 shows four examples, in all cases starting from a random initial con-

dition where the state nodal variable is drawn randomly at each node from the

interval [0, A]. These four solutions are all computed on a 128× 128 lattice, with

A = 255 and other model parameters as listed over each snapshot, the latter all

taken after 500 iterations6. Horizontal and vertical periodicity is enforced at the

lattice boundaries.

The solution displayed on Fig. 11.5A (top left) produces irregularly shaped

activation fronts propagating across an otherwise diffuse profile for the state

variable. In this parameter regime the hodgepodge machine behaves a bit like

the forest fire model of chapter 6 in some portions of its parameter space. One

important difference here is that the evolution of any given node is quasiperiodic,

6The choice of color table can have a large impact on the structures visible when displaying

the state variable as an 8-bit pixellized image, as on Fig. 11.5. The grayscale adopted here

(direct grayscale for panels A and B, reverse grayscale for C,D) is the most neutral, but you

can have fun with this by exploring the various pre-defined color tables that can be supplied

as an optional argument to the matplotlib function imshow in the code of Fig. 11.4. Don’t be

afraid to follow your innate artistic impulses, have fun with it!

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

324 CHAPTER 11. PATTERN FORMATION

with a mean periodicity of 42.6 iterations for this specific solution, a feature to

which we shall return shortly. The low value of g implies that diffusion (Rule 2)

dominates the evolution except in the immediate vicinity of an activation front.

In the solution displayed on Fig. 11.5B (top right) activation fronts are still

present, but now propagate with a well-defined wavelength, much as on Fig. 11.3,

and are organized spatially in the form of spreading spiral waves with focii dis-

tributed randomly across the lattice. Geometrically intricate patterns are pro-

duced when spirals spreading from neighbouring focii meet, with the wavefronts

merging, interfering and annihilating each other. Some spiral focii occasionally

disappear while others appear through fragmentation of existing spiral fronts in-

teracting with one another. Production of new spirals often takes place from the

tips of broken wavefronts, and both sense of rotation are equiprobable. The nodal

recurrence period corresponds to the revolution period for the spirals, equal to

9.6 iterations for this solution.

Figure 11.5C (bottom left), displays an entirely different pattern, which is

perhaps best describe as thick overcooked spaghettis. No wave-like propagation

is taking place here; instead the spatial pattern remains frozen as the nodal vari-

able increases to the activation threshold; however, after the nodes activate, a

new spaghetti pattern is produced, and another anew after the next activation

cycle, which for this solution has a period of 12 iterations. There is a qualita-

tive behavioral similarity here with the spatial domains developing in the OFC

earthquake model (see Fig. 8.6) where the spatial shape of domains evolve only

at their boundaries, from one avalanching cycle to the next.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

11.4. WAVES, SPIRALS, SPAGHETTIS, AND CELLS 325

The solution displayed on Figure 11.5D (bottom right) evolves similarly, going

through sequences of spatially-steady patterns growing to activation, then re-

emerging with a new spatial distribution. For these parameter values the pattern

includes many large cell-like structures, some double-walled, some with more

intricate internal structure. In this part of the model’s parameter space, solutions

are sometimes encountered where only small cells are first produced, and as the

solution goes through successive collective activation cycles, one “supercell” with

complex internal structure slowly takes over the domain, only to later desintegrate

again into small cells, this long spatiotemporal quasi-cycle then beginning anew.

The four solutions displayed on Figure 11.5 only sample a small subset of

spatial patterns that can be produced by the hodgepodge machine. Other types

of spatial patterns include diffuse cloud-like structures, structured binary noise,

mixtures of homogeneous and inhomogeneous regions, and so on; and that is

without even playing with the threshold parameter A or nearest-neighbour tem-

plate! Moreover, in many parts of parameter space the hodgepodge machine also

shows sensitivity to the choice of initial condition. All this complexity arises in

a CA defined by 4 primary numerical parameters. How can this be ?

As a first step towards answering this question, consider now Figure 11.6,

showing time series segments of the state variable sn for a node located at lattice

center, for the four hodgepodge simulations of Fig. 11.5. These four solutions

have recurrence period increasing with decreasing value of g, as per our earlier

discussion, so that in constructing this plot “time” (measured in iterations) is

divided by the recurrence period of each solution. The horizontal axis becomes

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

326 CHAPTER 11. PATTERN FORMATION

a measure of cycle phase, and on such a plot all solutions have a mean period of

unity. All four time series exhibit basically the same sawtooth pattern, namely

gradual, quasilinear growth to the activation threshold, followed by a rapid, 1-

iteration drop to the rest state once this threshold is reached. Solutions with lows

values of r show some curvature or even spikes at the beginning of the recovery

phase, as a consequence of the rapid upward jump produced by eq. (11.7), More-

over, the solutions are not strictly periodic, as is readily noted upon examination

of Fig. 11.6 for solution A (in blue), and D (in green), the latter also exhibiting

significant variations in the duration of the resting phases.

Still, how can the nodal time series be so similar, when the spatial patterns

of the solutions displayed on Fig. 11.5 are so different ? We should first note

that because the recurrence cycle periods are not the same for the four solutions

of Figs. 11.5 and 11.6, diffusion has more time to operate during the recovery

stage of the longer cycle solutions than in their more rapidly cycling cousins.

The most important factor, however, is the relative spatial phase of neighbouring

nodes: by how much is each node lagging each of its eight neighbours in the

activation-recovery cycle, and does this lag have any directional bias ? Much

insight into these questions can be obtained by comparing and contrasting planar

and spiralling wavefronts, the exercise to which we now turn.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

11.5. SPIRALLING OUT 327

11.5 Spiralling out

Spirals are arguably the most visually striking and intriguing patterns produced

by the hodgepodge machine. They also have attracted the most attention, be-

cause spiral waves are observed in many types of excitable systems. These include

the Belousov-Zhabotinsky reaction and other similar chemical reaction-diffusion

systems, but also biological systems such as slime molds and starving amoeba

colonies. It has also been suggested that some classes of cardiac arythmia could

be associated with the breakup of the electrical wavefronts normally propagating

across the heart muscles into localized spiral waves, induced by tissue damage.

The remainder of this chapter thus focuses on understanding the generation of

spiral waves in the hodgepodge machine.

It will prove useful to first go back to the planar wavefronts of Fig. 11.3; more

specifically, let’s focus on the vertically-oriented planar wavefront propagating to

the right on the sequence of four snapshots. Except near corners of expanding

square wavefront, nodes connected in the direction parallel to the wavefront all

cycle in phase. Phase difference only materialize between nodes in the propa-

gation direction of the planar wavefront. This occurs because each node has 2

neighbours (top and down) sharing the same value of the state variable, three

having the same higher value (at left), and another three the same lower value

(at right; this lateral ordering reverses only at activation). The hodgepodge rules

then ensure that vertical invariance is preserved, and the same of course holds for

horizontal invariance in the vicinity of vertically-propagating plane wavefronts.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

328 CHAPTER 11. PATTERN FORMATION

Note that the square form of the spreading wave is not set by the square pattern

of the initial condition used to generate the solution displayed on Fig. 11.3. For

these parameter values, activity propagates one node per iteration also along di-

agonals; in other words, in terms of geometrical distance a planar activation front

inclined by 45 degrees with respect to the lattice gridlines propagates faster than

horizontal or vertical wavefronts, by a factor
√
2. This implies that the circular

wavefront initially produced by a circle-shaped initial condition will inexorably

evolve into a square spreading wave7. Diffusion, on the other hand, tends to

smooth out gradients, and so it will tend to turn sharp corners into curved arcs.

The persistence of curved wavefronts thus reflects a balance between propagation

(Rule 1) and diffusion (the diffusive part of Rule 2).

Consider now a node in the rest state (s = 0), located just behind a prop-

agating planar activation wavefront (s = A); such a node just entered the rest

state at the preceding iteration If the parameter a ≤ 3, then Rule 1 will push

it into the recovery state at the next iteration (remember that Rule 1 truncates

to the lowest integer!). If on the other hand a > 3, then the node will stay in

the rest state, and the lattice will remain forever inactive after the passage of

the wavefront, unless diffusion from elsewhere is efficient enough to trigger entry

into the recovery phase. This latter situation is akin to the radial spread of the

epidemic wavefront on Fig. 9.6, behind which no surviving agents remain, so that

the epidemic cannot “re-activate” behind the front unless enough healthy random

7A similar squaring of burning fronts takes place in the Forest-Fire model of chapter 6, when

the density of trees through which the burning front moves is sufficiently high.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

11.5. SPIRALLING OUT 329

walking agents stumble their way back into the decimated area.

All of this become more interesting if, for whatever reason, the wavefront

breaks. Nodes located behind the last active node of the wavefront and having

just entered the rest state may now have neighbours that are in the recovery

stage (0 < s < A), in which case Rule 1 can lead to re-activation provided r

is small enough. The effect will be to extend the wavefront beyond its original

tip, but this extension will lag in time (unless g ∼ A), meaning that it will curl

back inwards towards the region located behing the bulk of the planar wavefront,

eventually leading to re-activation in those regions. This is the mechanism leading

to the development of spiral waves in some regions of the hodgepodge machine’s

parameter space.

Figure 11.7 shows a closeup on the core of one of the spirals developing in the

simulation displayed on Fig. 11.5B. These ten frames span one revolution of the

spiral. However, the bottom right snapshot is not quite identical to top left. This

is because the recurrence period (viz. Fig. 11.6) for this solution is 9.4 iterations

rather than 9.0. Examine closely the evolution of the activation front (in red) in

the core of the spiral, and see in action the process of wavefront extension and

curling just described. In particular, notice how the inside end of the radially

expanding activation front always grows towards its left (as measured with respect

to its local, approximately radial propagating direction), into a region containing

recovering nodes approaching the saturation threshold (light gray).

By the above logic, a planar wavefront segment should curl inwards at both

ends, and one can imagine the curling ends to eventually meet and regenerate a

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

330 CHAPTER 11. PATTERN FORMATION

new planar wavefront. Such a system can be viewed as a pair of couterrotating

spiral cores. Figure 11.8 shows the evolution of two such pairs interacting with

one another. Near the center of the first frame (top left), a short, approximately

planar activation front is propagating towards the bottom right corner. The

curling back inwards of its tips is clearly apparent on the subsequent five frames,

persisting until the upper tip merges with the activation front generated by an-

other spiral core. The merging produces a new approximately planar wavefront,

propagating downwards (frames 7 to 10) until another merging event with the

lower curling tip of the first wavefront finally regenerates the original wavefront

propagating towards the borrom right corner.

This curling back of activation wavefronts can actually be observed in other

systems investigated in some of the preceding chapters: they materialize in some

parts of parameter space for the forest-fire model of chapter 6 (viz. Fig. 6.5), as

well as in the epidemic spread model of chapter 9. As the saying goes, finding

these regions of parameter space is left as an exercise!

Take a last look at Fig. 11.5B; there are pretty much as many spirals rotating

clockwise than counterclockwise. The location of the cores and sense of rotation

of these spirals are determined by the specific realization of the random initial

conditions. In a given region of the lattice, the spatially extended patterns reflects

the action of the hodgepodge machine’s dynamical rules working off this initial

condition. These rules are isotropic, implying that nothing in their formulation

favors one sense of rotation over another; the emergence of two senses of rotation

is another instance of spontaneous symmetry breaking.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

11.6. SPONTANEOUS PATTERN FORMATION 331

11.6 Spontaneous pattern formation

The formation of statistically stable, persistent patterns from a random initial

condition represents yet another instance of order emerging from disorder. Equi-

librium thermodynamics does not allow this, so the explanation of pattern forma-

tion by the hodgepodge machine must again be sought in terms of open dissipative

systems.

How can the hodgepodge machine be deemed “open” and “dissipative”? The

dissipative aspect is related to the non-conservative nature of the diffusive process

embodied in eq. (11.8), as already discussed in relation to Fig. 11.2. The “open”

aspect is harder to pinpoint, and its exact form depends on the nature of the

excitable system under consideration. For the hodgepodge machine, it is hidden

in the manner in which the activation-recovery cycle of Fig. 11.1, involving the two

dynamical variables X and Y , has been reduced to tracking a single quantity (s)

related to the recovery variable Y , whose evolution is determined by evolutionary

rules defined with fixed numerical values for parameters r, a and g. This implies

an external regulatory mechanism that maintains constant operating conditions

for the system, i.e., the system is not closed.

Nothwithstanding such interpretative subtleties, in remains quite remarkable

that the wonderful array of spatiotemporal patterns produced by the hodgepodge

machine results only from coherent spatial variations in the phase of the nodal

recurrence cycle of neighbouring nodes. Any one single node does the same

thing as its neighbours: activate, grow slowly to saturation, and then fall back

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

332 CHAPTER 11. PATTERN FORMATION

to the rest state; and with a cycle period that is the same for all nodes. The

spatial phasing leading to pattern is established and sustained by the interplay

of threshold-based excitation, growth, and diffusive local spreading. The latter

being in essence the macroscopic manifestation of a microscopic random walk

(see §C.6), the hodgepodge machine is truly producing (large-scale) order out of

(small-scale) disorder, not just via the initial condition but also via its underlying

“microscopic physics”.

11.7 Exercises and further computational ex-

plorations

1. Similarities between behaviors observed in the hodgepodge machine and

the forest-fire model of chapter 6 have been noted repeatedly in this chap-

ter. Try to find values of the hodgepodge parameters a, r, g and A that

best mimic the behavior of the forest-fire model in the limit where pg is

(relatively) high and pf is very small (see, e.g., Fig. 6.5).

2. Repeat the simulations of Figure 11.5 using the following initial conditions:

(a) a circular block of nodes with s0 = 250 sitting at lattice center;

(b) a thick line segment (a 10 × 100) block of nodes s0 = 250 sitting at

lattice center;

(c) a few one-node wide straight lines of s0 = 250 nodes set at random

angles with respect to the lattice gridlines (these lines are allowed to

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

11.7. EXERCISES AND FURTHER COMPUTATIONAL EXPLORATIONS 333

intersect);

How dependent is the behavior of the hodgepodge machine on the initial

condition?

3. Our discussion of wave propagation in the hodgepodge machine simulations

of Fig. 11.3 has not considered the effect of diffusion, and the aim of this

exercise is to do just that.

(a) Repeat the simulation of Fig. 11.3 for smaller and larger values of g. Is

wave propagation always possible ? How is the wavelength and wave

propagation speed varying with g (keeping a = r = 0.1) ?

(b) Diffusion can be eliminated altogether from the hodgepodge machine

by replacing Rule 2 by sn+1 = min(sn + g, A). Repeat your previous

set of experiments with this diffusionless Rule 2. How are your results

altered ?

4. Using the same hodgepodge parameter values as on Figure 11.5B, design an

initial condition that produces a single spiral with its core at lattice center.

How can you control the spiral’s direction of rotation ?

5. Explore the behavior of the following two variants of the hodgepodge ma-

chine:

(a) Redefine Rules 1 and 2 so that only the closest four neighbours (top+down+right+left)

are involved.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

334 CHAPTER 11. PATTERN FORMATION

(b) Redefine Rules 1 and 2 so that they involve a more spatially-extended

neighbourhood, namely all nodes in the range (i ± 2, j ± 2) of node

(i, j), namely 24 neighbours, with the same weight given to each.

Can you still produce spiral waves under these setups ? Simple and/or

complex cells ?

6. The Grand Challenge for this chapter is a real bear, in fact borderlining se-

riously on a true research project: generalizing the hodgepodge machine to

three spatial dimensions. The required coding developments are straight-

forward, and fundamentally the behavior of the 3D hodgepodge machine is

still defined by the same four parameters a, r, g and A as in its 2D cousin.

However, visualizing results pretty much requires some skills (or learning

effort) in 3D data rendering and visualization. Explore the spatial patterns

produced by the 3D hodgepodge machine for varying parameter values. If

you manage to produce double coiled helices, let someone know because

you may be on to something big!

11.8 Further readings

An engaging and accessible discussion of excitable systems can be found in chap-

ter 3 of

Goodwin, B., How the Leopard changed its spots, Simon & Schuster (1994).

Autocatalytic chemical reactions and reaction-diffusion equations are discussed

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

11.8. FURTHER READINGS 335

in numerous mathematical biology and chemistry textbooks, for example:

Murray, J.D., Mathematical Biology, Berlin: Springer (1989).

Specifically on the Belousov-Zhabotinsky reaction, I found the following article

very informative:

Zhabotinsky, A.M., Belousov-Zhabotinsky reaction, Scholarpedia, 2(9), 1435

(2007),

This is available online, open access (March 2015):

http://www.scholarpedia.org/article/Belousov-Zhabotinsky reaction

Turing’s groundbreaking 1952 paper on pattern formation in reaction-diffusion

systems still makes for a fascinating read; it is reprinted in chapter 15 of:

Copeland, B.J. (ed.), The Essential Turing, Oxford University Press (2004).

On the hodgepodge machine, see

Gerhardt, M., Schuster, H., A cellular automaton model of excitable media in-

cluding curvature and dispersion, Science, 247, 1563–1566, (1990)

Dewdney, A.K., The hodgepodge machine makes waves, Scientific American,

225(8), 104–107, (1988)

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

336 CHAPTER 11. PATTERN FORMATION

Figure 11.1: Schematic representation of an activation-recovery cycle in the [X, Y]

phase space of a generic excitable system. Here X and Y represent the excitation

and recovery variables, respectively. The rest state is stable with respect to small

perturbations in either X or Y , but a large perturbation exceeding the activation

threshold for the variable X (dotted arrow) can initiate a large excursion in

phase space, which represents the only dynamically allowed path from the post-

activation state back to the rest state.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

11.8. FURTHER READINGS 337

Figure 11.2: Diffusive behavior in the hodgepodge machine, for parameter values

r = 0.1, a = 0.1 and g = 0. The initial condition is s = 200 in a 20 × 20 block

of nodes at the center of a 100 × 100 lattice, and s = 0 elsewhere. The various

color-coded lines are horizontal cuts through the middle of the lattice, plotted

and color-coded on a 10-iteration cadence, as listed.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

338 CHAPTER 11. PATTERN FORMATION

Figure 11.3: Wave generation and spreading in the hodgepodge machine, for

parameter values a = 0.1, r = 0.1 and g = 10. The initial condition is s = 250

within a 20 × 20 block of nodes at the center of a 200 × 200 lattice, and s = 0

elsewhere. The four panels on top show a grayscale representation of sj,k at

iterations 50 (framed in blue), 60 (purple), 70 (red), and 80 (green). The bottom

panel shows the corresponding horizontal cuts along the center of the lattice, at

the same four epochs, as color-coded.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

11.8. FURTHER READINGS 339

1 # PATTERN FORMATION BY THE HODGEPODGE MACHINE ON A 2D LATTICE

2 import numpy as np

3 import matplotlib.pyplot as plt

4 #--

5 N =128 # Lattice size

6 AA=255 # Activation threshold

7 a =1.0 # Activation parameter

8 r =5. # Recovery parameter

9 g =30. # Acceleration parameter

10 n_iter=423 # Number of iterations

11 #--

12 # FUNCTION PERIODIC: enforces periodicity (see Fig D.3)

13 def periodic(N,grid):

14 grid[1:N+1,0] =grid[1:N+1,N] # Horizontal periodicity

15 grid[1:N+1,N+1]=grid[1:N+1,1]

16 grid[0,1:N+1] =grid[N,1:N+1] # Vertical periodicity

17 grid[N+1,1:N+1]=grid[1,1:N+1]

18 grid[0,0],grid[N+1,N+1]=grid[N,N],grid[1,1] # The four corners

19 grid[0,N+1],grid[N+1,0]=grid[N,1],grid[1,N]

20 # END OF FUNCTION PERIODIC

21 #--

22 # MAIN PROGRAM

23 dx=np.array([-1, 0, 1,1,1,0,-1,-1]) # Template arrays

24 dy=np.array([-1,-1,-1,0,1,1, 1, 0])

25 state =np.zeros([N+2,N+2],dtype=’int’) # Lattice array

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

340 CHAPTER 11. PATTERN FORMATION

Figure 11.5: A sample of spatial patterns generated by the hodgepodge machine,

starting from a random initial condition. All these simulations are carried out on

a 128×128 lattice, with A = 255; other parameter values as listed. The temporal

recurrence period for these solutions are P = 42.6, 9.6, 12.0 and 10.0 iterations

respectively, going from (A) through (D). A mpeg animation of panels (A) and

(B) will be available

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

11.8. FURTHER READINGS 341

Figure 11.6: Time series of the state variable s sampled at the center of the

lattice, for the four simulations of Fig. 11.5. The time series are plotted in units

of cycle phase, and a phase offset has been artificially introduced so that all peaks

line up. These time series closely resemble each other, even though the spatial

patterns they produce do not (see text).

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

342 CHAPTER 11. PATTERN FORMATION

Figure 11.7: Closeup on a spiral core spanning a full revolution of the spiral.

Frames are spaced one temporal iteration apart, with time running from left to

right and top to bottom. Active nodes (sni,j = A) are colored in red, with black

corresponding to resting nodes (sni,j = 0) and the gray scale spanning the recovery

range [1, A− 1], from dark to light. Parameter values as on Fig. 11.5B. A mpeg

animation of this Figure will be available

Figure 11.8: Interaction of spiral waves in the same simulation as in Fig. 11.7.

The interacting spiral waves are generated here by two pairs of counter-rotating

cores. Parameter values as on Fig. 11.5B. Compare to the shape of burning fronts

on Fig. 6.5. A mpeg animation of this Figure will be available
Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

Chapter 12

Epilogue: natural complexity

“There are things to hold on to. None of it may look real, but some

of it is. Really”. Thomas Pynchon, in Gravity’s Rainbow

“What I cannot create, I do not understand” R.P. Feynman, 1988

12.1 A hike on slickrock

This is far from our first hiking trip in Southeastern Utah, but this one Easter

trip has a new twist to it: our thirteen year old son, an avid unicyclist, has taken

his mountain unicycle along to test his skills on the world-renowned slickrock

mountain bike trails of the Moab region. Day two finds us parked up Sand Flats

road, on the barren plateau overlooking the Colorado river and Moab valley, at

the trailhead of the legendary slickrock loop.

This place is a burning hell in summer months, but in early April it makes for

quite a pleasant hike, with impressive views down into the surrounding canyons.

naturalcomplexity-2.tex, July 28, 2016 343 Natural Complexity, Paul Charbonneau, Université de Montréal

344 CHAPTER 12. EPILOGUE: NATURAL COMPLEXITY

But up where we are it is really pretty much all slickrock, and the few small trees

and shrubs are few and far in between. Grasses, cactuses and wildflowers do

manage to grow here and there in patches of soil and debris having accumulated in

cracks and shallow depressions in the rock, but by far the most common biological

presence, besides mountain bikers, is lichen.

Lichens are one of the earliest and most successful symbiotic experiment of

the biological world. Lichen is really algae and fungus teaming up in a mutu-

ally beneficial relationship; the algae makes food through photosynthesis, while

the fungus provides structural support and anchoring, and gathers moisture and

nutrients from the environment. The deal works, and very well, as varieties of

lichens are found in the most extreme environments, from the arctic tundra to

the driest deserts.

The desert environment is indeed very harsh, and most lichens I see on the

rocks look pretty dried up, and, I’m guessing, are long dead. I don’t know much

about lichens, but I’m presuming growth takes place mostly in the Spring, while

the porous sandstone surface still holds some moisture and the sun is not yet

scorching the rocks. I have since learned that the lichens I am seeing belong

to the family of crustose lichens, which usually grow radially outward on their

substrate. I do see plenty of more or less circular patches of varying colors and

sizes. I also see lichen rings. Upon examination, it just looks like the central part

dried up, died, and flaked off, leaving a ring-shape structure. It does makes sense.

In some cases regrowth has taken place inside an existing ring, presumably in a

later wet season, leading to a pattern of concentric irregular rings. This makes

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

12.1. A HIKE ON SLICKROCK 345

Figure 12.1: Crustose lichen on the desert slickrock of Southeastern Utah. The

true vertical dimension of the image is about 40 centimeters. Photograph by

yours truly.

sense also, I’m guessing. Figure 12.1 shows some particularly nice examples,

captured in the Fiery Furnace area of Arches National Park.

But what really catches my attention are the spirals. They may not be the

most common pattern characterizing the growth of crustose lichen on slickrock,

but they show up often enough, in different types of lichens, on different types

of rocky surfaces inclined at widely varying angles with respect to gravity or the

noon sun. The more spirals I see the more I see a pattern in there, something

robust. As we make our way across the rocky landscape, I find myself pointing

my camera to the ground with increasing frequency. Fortunately for me, passing

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

346 CHAPTER 12. EPILOGUE: NATURAL COMPLEXITY

mountain bikers are too awestruck at our son careening up and down the double-

black-diamond mountain bike trails on his unicycle to become concerned enough

with my combination of foreign accent and odd photographic behavior to dial the

Homeland Security hotline.

The top image on Figure 12.2 shows an example of some of the spiral-shaped

patterns I photographed. I soon start to notice instances of double spirals-like

structure, such as on the middle and bottom photographs on Fig. 12.2, where

the growth front curls back inwards symmetrically about some bisecting axis,

morphologically similar to those generated by the hodgepodge machine in the

“spiral” region of its parameter space (see Fig. 11.8). A few such structures are

also visible on Fig. 12.1, if you look carefully.

How can this be ? Lichen growth requires moisture, but also depletes water

from the rock’s surface. There is probably some nonlinearity in there somewhere.

Can water be considered the activation variable, and lichen growth a recovery

variable tracing an activation-recovery cycle ? Or would it be the other way

around ? Looking closely at the rock texture and color ahead and behind the

lichen “front” reveals a definite asymmetry, faintly visible on the top photograph

on Fig. 12.2 especially around the spiral core. This looks very much like what the

recovery variable does on either side of the wavefronts produced by the hodge-

podge machine.

By then my mind is racing, dreaming up excitable systems and reaction-

diffusion dynamics. I am well aware that I am engaging in a dangerous exercise,

namely forcing a known explanation on an intuitive hunch; but the visual evidence

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

12.1. A HIKE ON SLICKROCK 347

Figure 12.2: Example of spiral patterns and inward curling growth fronts in

various type of crustose lichen of Southeastern Utah. Compare to Fig. 11.8.

Photographs by yours truly.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

348 CHAPTER 12. EPILOGUE: NATURAL COMPLEXITY

seems just too compelling for this to be a morphological convergence without any

common dynamical origin. I sure the hell wish I knew more about lichen growth.

That same evening, watching the sunset over Canyonlands from the porch of

our rental cabin halfway up the LaSal mountains, it slowly dawns on me that

my spontaneous and free-wheeling speculations on lichen growth and form have

strangely paralleled an experience lived centuries ago by another physicist, also

looking for a break, and also out for walk.

12.2 Johannes Kepler and the unity of Nature

History has not recorded the exact why or when, but one morning in the winter

of 1609, Johannes Kepler decided to take the day off. For more than a decade

he had labored relentlessly to produce a working model of planetary orbits from

the store of unprecedently accurate astronomical observations of Tycho Brahe.

He had arrived in Prague ten years before, to be employed as Brahe’s senior

assistant. Following the untimely death of his boss in 1601, Kepler finally secured

full and unrestricted access to the needed data, as well as inheriting the job

of Imperial Mathematician to Emperor Rudolph II. Professionally secure and,

perhaps more importantly, freed from pressures to vindicate Brahe’s pet planetary

model, Kepler embarked on a computational effort that would overthrow basic

astronomical tenets that had endured for over two millennia.

Today Kepler is remembered primarily for having deduced from Brahe’s obser-

vations the three laws of planetary motions that bear his name. This may appear

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

12.2. JOHANNES KEPLER AND THE UNITY OF NATURE 349

entirely in line with astronomical tradition, which up to the times of Kepler and

Galileo had primarily sought accurate mathematical description of planetary mo-

tions. In reality, Kepler did break from astronomical tradition, perhaps even more

so than Galileo, by seeking physical causes for the numbers, motions and overall

arrangement of the six solar system planets known at the time. His writings,

very much in the stream-of-consciousness style and often veering into downright

geometrical mysticism, do not exactly make for easy reading today, and I suspect

must have also baffled many an early seventeenth century astronomer.

Already in his 1596 book entitled Mysterium Cosmographicum, Kepler had

put forth a daring hypothesis relating natural order to geometry. His idea was

that the relative sizes of planetary orbits could be deduced from the nesting

pattern of the five regular platonic solids. In later years he went on to consider

the relation of planetary orbital periods to frequency ratios of musical harmonies,

and even the possibility that a magnetic field emanating from the rotating sun

was responsible for carrying the planets along their orbits. These ideas may

appear naive in retrospect, but they do reveal a sharp and inquisitive mind bent

on explaining astronomical facts, in the most modern sense of the word.

Who knows what Kepler was actually thinking about when he started walking

the street of Prague on that winter morning in 1609. But what was initially a

casual walk soon took an unexpected turn. Kepler himself later described the

event:1.

1All quotations taken from the English transation of Kepler’s 1611 booklet entitled the

six-cornered snowflake, listed in the bibliography.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

350 CHAPTER 12. EPILOGUE: NATURAL COMPLEXITY

“Just then by a happy chance water-vapour was condensed by the

cold into snow, and specks of down fell here and there on my coat,

all with six corners and feathered radii. Upon my word, here was

something smaller than any drop, yet with a pattern.” (p. 7)

Being the astronomer that he was, he marvels “it comes down from heaven and

looks like a star”. Figure 12.3 shows photographs of snowflakes having formed

under varying meteorological conditions. No single snowflake is ever exactly alike

another, and there exists, for all intent and purposes, an infinity of shapes in-

termediate between the thin 6-pointed “needle-star” (top left) to solid hexagonal

plates (bottom right)2.

Marveling at the delicate shapes of snowflakes on his sleeves, Kepler rapidly

notices that all the single snowflakes he observes are planar structures harboring

six highly similar branches. He immediately formulates an absolutely typical

Keplerian question: Why six ? which is soon joined by another: Why flat ?

Kepler, an accomplished mathematician, goes on to consider the close-packing

of spherical water droplets in the plane, noting that the resulting hexagonal

pattern has the same six-fold symmetry as his snowflakes. This could in principle

“explain” both the observed planar structure and symmetry. Despite being firmly

anchored in geometry, for Kepler this is not an appropriate physical explanation.

He wants to know what drives this orderly assemblage of water droplets, and

no other, upon condensation and freezing. Kepler argues that this organizing

principle (he calls it facultas formatrix) cannot reside in the water vapor, which

2This would be a good time to go back and take another look at Figure 2.7 !

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

12.2. JOHANNES KEPLER AND THE UNITY OF NATURE 351

Figure 12.3: Photographs of snowflakes having formed under varying atmospheric

conditions. All these snowflakes are planar, except for the columnar cristal at

bottom left (seen here in side view). Public domain images, taken from the won-

derful Web site www1.odn.ne.jp/snow-crystals/English index.html (April

2015).
naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

352 CHAPTER 12. EPILOGUE: NATURAL COMPLEXITY

is diffuse and shapeless; nor can it be found in the individual water droplets

themselves, which are spherical and unstructured. Kepler goes on to consider

critically a number of working hypotheses, but rejects them one after the other as

inadequate, to finally conclude with a daring statement, grounded in his profound

belief in the unity of Nature:

“...the cause of the six-sided snowflake is none other than that of

the ordered shapes of plants and of numerical constants (...) I do

not believe that even in a snowflake this ordered pattern exists at

random.” (p. 33)

Today we understand that the 6-fold symmetry of snowflakes is a reflection of

the cristalline assemblage of water molecules in horizontally offset planar layers

such that the oxygen atoms define the vertices of space-filling tetrahedra. The

resulting assemblage of oxygen and hydrogen atoms in this cristal lattice hap-

pens to be the configuration that minimizes the free energy of the system. There

you go. Under most meteorological conditions, growth occurs preferentially at

the edges of the planar layers, rather than perpendicular to them, thus explain-

ing the two-dimensional shape of (most) snowflakes3. However, the manner in

which the 2D growth takes places is influenced by surface diffusion along the

outer planar surfaces of the growing cristal, and turns out to exhibit a very sen-

sitive dependence to air temperature. Laboratory experiments have shown that

3In some temperature ranges, snowflakes grow as prismatic columns of hexagonal cross-

section, often capped at each end by a wider hexagonal plate; see the bottom left panel on

Fig. 12.3.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

12.2. JOHANNES KEPLER AND THE UNITY OF NATURE 353

changes by as little as one degree Celcius can trigger, e.g., a transition from solid

hexagonal slowflakes to 6-branches dendritic cristals. It is quite sobering to re-

flect upon the fact that more than four centuries after Kepler’s pioneering foray

into cristallography, the morphogenesis of the common snow cristal is still not

adequately understood in quantitative physical terms.

Kepler rejected atomism (in part for religious reasons), so that he would

find the above explanation for the flatness and 6-fold symmetry of snowflakes

profoundly shocking, even though at the end of his 1611 book on the topic he

presciently defers the explanation of snow cristals to “...the attention of metal-

lurgists and chemists”. However, the atomistic groundings of the modern view of

snowflake structure would likely not have been Kepler’s strongest objection. At

the end of his concluding essay accompanying the 1966 English translation of Ke-

pler’s book on snowflakes, Lancelot Law Whyte cogently encapsulates the most

fundamental aspect of Kepler’s views on the unity of Nature by formulating, in

contemporary physical language, a question Kepler himself would have certainly

approved for hitting the nail right on the head:

“We should not expect complete knowledge of highly complex sys-

tems, but it is reasonable to require of science a simple explanation of

simple observations. If the hexagonal snowflake is highly complex, is

there no shortcut from the postulates of physics to our visual observa-

tions ? What in the ultimate laws produces visually perfect patterns

?” (p. 63)

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

354 CHAPTER 12. EPILOGUE: NATURAL COMPLEXITY

Whyte aptly entitled his concluding essay “Kepler’s unsolved problem”; I

could have well done the same with this chapter, because another fifty years later

Kepler’s problem is still not solved, but nowadays is considered to belong to the

realm of the sciences of complexity.

The parallel between my hike on slickrock and Kepler’s morning walk in

Prague could be brought to a didactic climax if I were now to state that the

said hike is what motivated the writing of this book; but this would be a lie.

My interest in complex systems originates farther back in time, with a physical

phenomenon truly extraterrestrial: solar flares.

12.3 From lichens to solar flares

Solar flares are the manifestation of extremely rapid and spatially localized re-

lease of magnetic energy in the extended atmosphere of the sun, known as the

corona. Because they can generate copious emission of highly energetic radiation

and relativistic beams of electrically charged particles which can pose a threat to

astronauts and even space hardware, their prediction is a priority in the devel-

oping discipline known as Space Weather. Fig. 12.4 shows an example of a large

flare, viewed here in the extreme ultraviolet domain of the electromagnetic spec-

trum. This electromagnetic radiation is invisible to the eye and —fortunately for

all of us surface-dwelling life forms— is completely absorbed in the very high at-

mospheric layers of the Earth. The image on Fig. 12.4 was captured from space,

by the EIT instrument onboard the Earth-orbiting Solar and Heliospheric Obser-

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

12.3. FROM LICHENS TO SOLAR FLARES 355

vatory. The flare causes the very bright EUV emission seen close to the solar limb

at right. Fainter emission is also seen all over the solar disk, often in the form of

filamentary, loop-like structures extending above the solar surface. These trace

lines of force of the sun’s magnetic field, which structures the otherwise diffuse

coronal plasma. Kepler was actually right about the sun having a magnetic field

extending into interplanetary space!

The pattern of ultraviolet emission on Fig. 12.4 is certainly complex in the

visual sense, but there is more to it than that. The “size” of a flare can be

quantified through the total energy released over the course of the event, which

can be inferred from observations such as Fig. 12.4. Flare sizes span many orders

of magnitude in energy release, and turn out to be distributed as a power-law,

with a logarithmic slope that is independent of overall solar activity levels, and is

the same as inferred from flare-like emission observed in stars other than the sun.

There is by all appearances something universal in flare energy release, something

that is not sensitively dependent on details. Does this start to sound familiar ?

It did to Edward Lu, a fellow postdoc in the early 1990’s at the High Alti-

tude Observatory of the National Center for Atmospheric Research in Boulder,

Colorado. Already well-versed in flare physics through his doctoral research, Ed

saw a connection with self-organized criticality and sandpile models, which at the

time were spreading like wildfire in statistical physics. Teaming up with Russell

Hamilton of the University of Illinois, the pair developed a three-dimensional

sandpile model, in essence similar to that introduced in chapter 5. They iden-

tified the nodal variable with the coronal magnetic field, and used curvature of

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

356 CHAPTER 12. EPILOGUE: NATURAL COMPLEXITY

the nodal variable, rather than slope (or gradient) to define a stability criterion

(viz. eq. 5.3). This choice was physically motivated, as it could be related to

electrical currents induced by stretching and bending of magnetic fieldlines, al-

ready known to be conducive to the trigger of a dynamical plasma instability

known as magnetic reconnection. The latter was captured through simple but

physically motivated local conservative redistribution rules, conceptually equiv-

alent to eq. (5.4) but differing in details. Lu and Hamilton could show that

upon being subjected to slow random forcing, much like in the simpler sandpile

model of Chapter 5, magnetic energy release occurs in the form of scale-invariant

avalanches, characterized by a power-law size distribution with a logarithmic

slope comparing favorably to observations.

I remember very well Ed’s enthusiam at the time, and how hard he tried

to “sell” his model to other flare researchers, not to mention funding agencies.

Unfortunatly he was too far ahead of his times, and the response he received all

too often was along the line of “it’s... interesting, but is it really physics ?”. The

idea did percolate slowly through the field in the following decade, by which time

many a solar physicist had followed in Ed’s trailblazing footsteps, and many more

have since. In the meantime Ed had become and astronaut and was personally

experiencing space weather on NASA’s space shuttle and on the International

Space Station. So it goes.

Such avalanches of magnetic reconnection events, if that is really what flares

are, are not restricted to the sun and stars. Large flares, such as that shown on

Fig. 12.4, are often accompanied by the ejection of magnetized coronal plasma.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

12.4. EMERGENCE AND NATURAL ORDER 357

These ejecta travel through the interplanetary environment, plowing up the solar

wind along the way. Upon impinging on the Earth’s magnetosphere, they trigger

geomagnetic storms, the most spectacular manifestation of which being auro-

ral emission, i.e., Northern (and Southern) lights. Substantial auroral emission

also accompanies the so-called geomagnetic substorms, spontaneous and scale-

invariant energy release events originating in the Earth’s magnetotail, without

any obvious solar trigger. It appears that substorms are closely akin to solar

flares, in that they are driven by similar processes of magnetic fieldline stretch-

ing and bending, leading to avalanches of spatially localized destabilization and

magnetic energy release. Scale invariant energy release is also observed in a

number of more exotic astrophysical objects such as cataclysmic variable stars,

pulsars, blazars, and accretion disks around black holes. Self-organized critical

avalanche-type models for these objects have been developed, and offer an at-

tractive explanatory framework for their pattern of energy release. In all cases,

instances of natural complexity on the grandest of scales.

12.4 Emergence and natural order

Snowflakes, plants, arithmetically and geometrically significant numbers; Kepler

had no qualms assuming that inorganic, organic and even mathematical sys-

tems share some common fundamental organizing principles. Running implicitly

through this book is an assumption somewhat akin to Kepler’s, in that similarly

structured simple computational models, all ultimately based on large numbers of

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

358 CHAPTER 12. EPILOGUE: NATURAL COMPLEXITY

elements (or agents) interacting through (usually) very simple rules, can capture

emergent natural phenomena and processes as diverse as solar flares, avalanches,

earthquakes, forest fires, epidemics, flocking, and so on. Rules at the microscopic

levels are simple; patterns and behaviors at the macroscopic level are not. How

do we bridge the gap between the microscopic and the macroscopic ? And under

which conditions can the latter be reduced to the former ?

Understanding —and even predicting— the behavior of a macroscopic system

on the basis of the physical rules governing the interactions of its microscopic con-

stituents has been carried out successfully in many cases. For example, one of the

many great successes of nineteenth century physics is the reduction of thermody-

namics to statistical mechanics. Macroscopic properties of gaseous substances,

such as pressure and temperature, as well as their variations in response to ex-

ternal forcing, can be calculated precisely knowing the nature of the forces acting

between individual atoms or molecules of the gas. Even entropy, the somewhat

esoterical thermodynamical measure of disorder in a macroscopic system, can be

unambiguously related to the number of microstates available in the phase space

of the system’s microscopic constituents. Here the microscopic rules are simple,

and lead to simple “laws” at the macroscopic level —even though the intervening

physico-mathematical machinery may not be so simple!

However, and even within physics, which deals typically with systems far

simpler than organic chemistry or biology, this reductionist program often fails.

Knowing everything about the quantum physics of a single water molecule H2O

would already be one tough Grand Challenge in an advanced graduate course

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

12.4. EMERGENCE AND NATURAL ORDER 359

on quantum mechanics; yet this microphysical knowledge, in and of itself, would

be of little help in understanding why water flowing down a stream breaks into

persistent swirls and vortices. What is it, lurking somewhere between the micro-

scopic and the macroscopic, that evades reductionism ?

Leaving the realm of physics, things rapidly get a lot worst, and we might

as well jump immediately to what is arguably the most extreme example. Neu-

rophysiologists are still a long way from understanding the working details of a

single neuron, but even if they did, I don’t think anyone would ever claim that

a single neuron can “think”. By all appearances, a great many neurons are re-

quired, and what seems to matters most are not so much the neurons themselves,

but rather their pattern of synaptic interconnections. Still, can the 1014—1015

interconnections of the 1010—1011 neurons in the human brain explain conscious-

ness ? How many water molecules does it take to make a waterfall ? Are these

two questions really one and the same ? Is it just, somehow, a matter of sheer

numbers ?

The “spontanous” appearance of complex macroscopic behaviors irreducible

to microscopic rules is now usually refered to as emergence. One can certainly

argue that if the arising macroscopic behavior is unexpected, it simply means

that we did not really understand the consequences of our imposed microscopic

rules. In my opinion, writing off emergence in this way would be a spectacularly

misguided instance of throwing away the baby with the bathwater. As simple

as the computational models explored throughout this book may be, they do

capture perhaps the essence of that elusive emergent something, that sometimes

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

360 CHAPTER 12. EPILOGUE: NATURAL COMPLEXITY

happens somewhere between the microscopic and macroscopic. Understanding

that something is what the science of complexity is really about. When emergence

has been explained, complexity will have been explained also.

Emergence is, almost by definition, a non-reductionist concept. Understand-

ing it may require new ways to formulate questions and assess answers. Whether

it is really “A New Kind of Science” is a matter of opinion. I have more than

a few colleagues who would still today reply “it’s... interesting, but is it really

physics ?” As far as I am concerned, it still fits comfortably within my preferred

definition of science as a way of knowing.

12.5 Into the abyss: your turn

So, what is complexity ? I opened chapter one of this book by promising to

keep clear of any formal definition of complexity, and I will resolutely stick to my

word. My hope remains that by working your way through this book, coding

up and running the various models for yourself, and trying your hand at of

the computational exercises and Grand Challenges, you have learned something

useful and are coming out of it better equipped to tackle systems even more

complex. There is certainly no lack of those all around us in the natural world.

The science of complexity is still young, and its future remains wide open. I

do believe that it has something vital to contribute to humankind’s most funda-

mental interrogations on the origin of life, the nature of consciousness, or perhaps

even the very existence of matter in the universe.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

12.6. FURTHER READINGS 361

Now everybody—

12.6 Further readings

The following is an excellent English translation of Kepler’s little book on snowflakes,

accompanied by insightful short essays on Kepler’s philosophy of science and con-

tributions to cristallography:

Kepler, J., The six-cornered snowflake, trans. and reprint, Oxford University

Press, 1966.

On snowflakes in general, see

Bentley, W.A., & Humphreys, W.J., Snow crystals, reprint of 1931 McGraw-

Hill by Dover Press, 1963.

Nakaya, U., Snow crystals, natural and artificial, Harvard University Press,

1954.

If you happen to be curious about lichens, I found the Wikipedia page on the

topic quite informative:

http://en.wikipedia.org/wiki/Lichen (viewed April 2015)

On solar flares, see the web pages of the SoHO and SDO (Solar Dynamics Ob-

servatory) space missions:

http://sohowww.nascom.nasa.gov/ (viewed April 2015)

http://sdo.gsfc.nasa.gov/ (viewed April 2015)

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

362 CHAPTER 12. EPILOGUE: NATURAL COMPLEXITY

For a detailed presentation of self-organized criticality as an explanatory frame-

work for energy release in various astrophysical systems, see

Aschwanden, M., Self-organized criticality in astrophysics, Springer, 2011.

Many authors have written on emergence as the key to complexity. On this

general topic I always much appreciated the writings of John Holland. If you feel

up to it try:

Holland, J.H. Emergence: from chaos to order, Addison-Wesley, 1998.

and/or his book Hidden Order, listed in the bibliography to chapter 2. On science

as a way of knowing, see the aptly entitled:

Moore, J.A., Science as a way of knowing, Harvard University Press, 1993.

Finally, should you ever decide to try hiking, canyoneering or mountain biking (or

even unicycling) in the Moab area, keep an eye out for those spiralling crustose

lichens !

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

12.6. FURTHER READINGS 363

Figure 12.4: A large solar flare (X28 on the NOAA classification scheme) observed

by the EIT instrument onboard the solar observing satellite SoHO, a joint mission

of NASA and the European Space Agency. The image shows radiative emission

in the Extreme Ultraviolet, at a wavelength of 195Å. This is a false-color image,

in which the intensity of EUV emission in each pixel is arbitrarily assigned a

shade of green from a pre-defined color table (solar flares are not particularly

green!). This flare, which occurred near the solar limb on 4 November 2003, is

in all likelihood the strongest ever observed in the space era; we don’t know for

sure because the EUV emission was so intense it saturated the CCD imager, as

evidenced here by the white horizontal streaks extending right and left of the

flaring area.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

364 CHAPTER 12. EPILOGUE: NATURAL COMPLEXITY

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

Appendix A

Basic elements of the Python

programming language

This appendix is not meant to be a comprehensive introduction to the Python

programming language. It only aims at presenting, and sometimes providing

additional explanations regarding, the use (and possible misuse) of the basic

elements of Python on which the codes presented throughout this book are built.

The developers of Python and assorted Python libraries have done a pretty superb

job at providing online documentation, URLs to which being provided at the end

of this appendix. Also, never hesitate to google a Python query, you are very

likely to get the answer you need (and then some...).

With a few exceptions, only syntax elements common to most computing

languages are used throughout this book, to ease translation for those wanting to

work with a computing language other than Python; going all-out Python could

have made many coding constructs more elegant and compact, run faster, but

naturalcomplexity-2.tex, July 28, 2016 365 Natural Complexity, Paul Charbonneau, Université de Montréal

366
APPENDIX A. BASIC ELEMENTS OF THE PYTHON PROGRAMMING

LANGUAGE

also harder to decipher for non-Python-savvy users. This being said, I found a

few Python-specific contructs so useful that I ended up using them; in all cases

their functionality is explained in what follows, and alternate code fragments

omitting their use are also provided.

Raw Python is actually a pretty minimal language for the purpose of numeri-

cal computation, but these limitations are readily bypassed by the use of various

Python libraries. All Python codes provided in the chapters of this book use

functions from the numpy library. Python libraries are still rapidly evolving, but

at this point in time numpy is a standard. I generally steered clear of high-level

functions for scientific computation, to facilitate portability to other computing

languages. If you think you need those, look into the scipy Library.

A.1 Code structure

Python is really a scripting language, so that Python source codes, which should

really be called “scripts”, are not “compiled” but rather “interpreted”. The

distinction may be profound from the computer science point of view, but for the

user the most important consequence is that a Python source code is interpreted

strictly sequentially, line by line.

Coding certainly carries one’s style, and there is definitely satisfaction to be

had in writing an elegant source code. Style may be personal, but some standard

good programming habits should also be adopted. For example, judicious defini-

tion of functions as program subunits is a very good programming practice, as it

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

A.1. CODE STRUCTURE 367

often helps to highlight the overall logic of the code, and favors code modularity.

The so-called PEP8 style guide for Python code (see URL at the end of this

Appendix) offers useful guideline on nearly all aspect of Python programming

A typical self-contained Python source code, such as those presented through-

out this book, is structured like this:

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

368
APPENDIX A. BASIC ELEMENTS OF THE PYTHON PROGRAMMING

LANGUAGE

1 # ONE OR MORE COMMENT LINES EXPLAINING BRIEFLY WHAT THIS CODE DOES

2 import numpy as np # import (and rename) numpy library

3 import matplotlib.pyplot as plt # import (and rename) matplotlib library

4 ...

5 #--

6 PI=3.1415926536 # define constants

7 ...

8 #--

9 # THIS IS A USER-DEFINED FUNCTION

10 def my_first_function(x,y):

11 ... # Python instructions calculating z

12 return z

13 # END FIRST FUNCTION

14

15 # THIS IS ANOTHER USER-DEFINED FUNCTION

16 def my_second_function(z):

17 ... # Python instructions calculating s

18 return s

19 # END SECOND FUNCTION

20 #---

21 # MAIN PROGRAM

22 ... # Assorted Python instructions,

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

A.1. CODE STRUCTURE 369

23 z=my_first_function(x1,y1) # including calls to my_first_function, etc.

24 # END

For a more complete working example see the hodgepodge code listing on Fig. 11.4.

A few things worth nothing here:

1. You’ll have guessed already that “#” is the comment character in Python.

Adding descriptive comments to lines of code is always a good idea. Leaving

a line blank has no impact on code execution, but can improve readability,

which is also a good idea. In codes of significant length I like to separate

functions from constant definition, programs, etc, by a comment line of

“——”, but that’s just me.

2. It is often practical to rename libraries upon import; here for example, the

numpy library is internally renamed as np, so that invoking the numpy func-

tion array() can now be done as np.array() instead of numpy.array().

The advantage of such renaming is perhaps more apparent when invoking

functions from a Library with a longer name, for example matplotlib.pyplot...

3. The set of instructions associated with a function are identified only by

being indented to the right with respect to the def header. I highly rec-

ommend adding a comment line, as in the above example, to explicitly flag

the end of instructions lines pertaining to a function.

4. User-defined Python functions can return more than one value via their

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

370
APPENDIX A. BASIC ELEMENTS OF THE PYTHON PROGRAMMING

LANGUAGE

return statement; e.g., the return fx,fy instruction in the force function

on Fig. 10.4.

5. In Python user-defined functions, the return statement is optional; func-

tions can operate internally on their arguments, which are then modified

upon terminating the function.

6. If you opt to lump everything in a single source file, function definitions

must appear before being invoked the first time. Consequently, in the above

global code structure example the second user-defined function could call

the first, but not the other way around.

7. Any variable declared and initialized prior to the definition of functions and

main program, such as the constant PI in the above code fragment, is global

and as such can be used (but not modified) by any program subunit that

follows.

8. Unlike functions, the main program need not be assigned a name. Nostal-

gic C programmers (like me) desperately longing for int main(void) can

include a comment line with “MAIN”, as in the above example.

Python’s numpy library includes the usual set of pre-defined mathematical

functions such as sin(), cos(), log(), sqrt(), etc. If you need it it most likely

exists within Python. Typing the first thing that comes to mind will often get

you what you want, otherwise simply fall back on the online documentation.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

A.2. VARIABLES AND ARRAYS 371

A.2 Variables and arrays

Python supports the usual variable types: float, integer, character, boolean, etc.

Variable types need not be explicitly defined, i.e., in interpreting the instruction

a=1 Python will assign integer status to the variable a, but would assign floating-

point status if the instruction had read a=1.0.

In Python, variable and function names can be longer than you ever want

them to be. Lower and uppercase characters are distinct, i.e., variables named

aa and AA are not the same objects. As in all computing languages, Python

reserves certain character strings as keywords for its own internal purposes. You

won’t need much Python programming experience to figure out than naming a

variable for, if, else, def, return, etc., is probably not a good idea. Some

reserved Python keywords are not as intuitively obvious; once upon a time I got

in trouble naming a variable del, the Python keyword used to delete an element

from a list, and the error message I received was not exactly transparent... Other

non-intuitive keywords names, all to be avoided as variable names, include break,

class, in, is, lambda, nonlocal, pass, try, and yield. To this black list must

be added the character strings identifying Python’s pre-defined functions such as

min, max, range, etc.

Raw Python supports lists, but the fixed length arrays commonly used in nu-

merical computation are created through specific functions in the numpy Library.

Only three are used in this book, and what they actually do depends on the

argument provided; for example:

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

372
APPENDIX A. BASIC ELEMENTS OF THE PYTHON PROGRAMMING

LANGUAGE

1. dx=np.array([-1,0,1,0]) creates a 1D array of length 4 named dx, con-

taining the four integer values −1, 0, 1, 0;

2. grid=np.zeros([N,M]) creates a 2D array named grid of size N × M ,

i.e., of length N in the first dimension (rows/vertical) and M in the second

(columns/horizontal) and fills it with the (float) value zero; very useful for

initialisation; The default variable type is float.

3. status=np.ones(M, dtype=’int’) creates a 1D array of length M named

status, and fills it with the integer value 1; also very useful for initialisation.

Arrays can also be defined implicitly through mathematical operations, or

the return of a function. For example, if a has already been defined as a 1D

array of length N , the instruction b=a will create an second array b of length N

and fill it with the corresponding elements of a. Likewise, in the code fragment

presented above, if z returned by the first function is a 2D array of size N ×N ,

the instruction:

q=my_first_function(x,y)

will create a 2D N × N array named q and fill it with the elements of the local

array z calculated internally within that function.

Individual array elements are accessed through their index, giving their posi-

tion within the array. Python numbers elements of an array of length N from 0

to N − 1, so that a[1] accesses the second element of array a, a[N-1] the last,

and a[N] will blow you out of array bounds. You get used to it eventually...

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

A.3. OPERATORS 373

A.3 Operators

Python includes all the basic arithmetical operators, using the usual keyboard

symbols +,-,*,/ for addition, substraction, multiplication and division, respec-

tively. Note that unlike in many computing languages, in Python explicit integer

division such as 7/2 will return 3.5, rather than 3; in other words, implicit con-

version to real-type will take place. If you really want to divide two integers and

get a truncated integer result, you must use Python’s integer division operator

//, e.g., 7//2 will return 3 as an integer.

Python allows a very flexible use of the value assignment operator =, for

example the one-line instruction a,b,c=0,1.,0 sets a = 0 (integer), b = 1 (float),

and c = 0 (integer). Powers use the old FORTRAN syntax **, i.e. a**2 is the

same as a*a, and fractional exponent are allowed, so that, e.g., a**(1/3) returns

the cube root of a.

Python also includes many other arithmetical operators, some quite useful,

for instance the additive/multiplicative decrement/increment operators +=, -=,

*=, and /=, corresponding to:

a+=b equivalent to a=a+b

a-=b equivalent to a=a-b

a*=b equivalent to a=a*b

a/=b equivalent to a=a/b

Another very useful operator is the modulus %, such that a%b returns the remainer

of the division of (positive) integer a by (positive) integer b. This is particularly

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

374
APPENDIX A. BASIC ELEMENTS OF THE PYTHON PROGRAMMING

LANGUAGE

useful to enforce periodicity to random walks on lattices (see, e.g., the ant code

listed in Fig. 2.10). Consider the instruction

ix=(N+ix) % N

As long as 0 ≤ ix < N, then N ≤ N+ ix < 2N, so that the above instruction will

leave the value of ix unchanged; but if ix < 0, then this instruction will add N

to ix; and will substract N if ix ≥ N.

Under Python’s numpy module, arithmetical operators can also act on arrays.

For example, if a and b are two 1D array of length N, the instruction

c=a+b

creates an array c also of length N, and sets its elements equal to the pairwise

sum of the elements of a and b. This is equivalent to the instructions:

c=np.zeros(N)

for i in range(0,N):

c[i]=a[i]+b[i]

This works only if the arrays have the same dimensions and lengths, otherwise

Python will return a run-time error. However, one useful Python/numpy-legal

possibility used in this book is to add a scalar to every element of an array.

For example, in the earthquake code of Fig. 8.3, lattice driving takes place by

adding the same scalar increment delta f to every element of the 2D array force

through the instruction:

force[:,:]+=delta_f

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

A.4. LOOP CONSTRUCTS 375

where the “:” symbol signifies “all elements of this array dimension”1

A.4 Loop constructs

Python supports the usual two basic loop constructs: fixed-length (for) loops

and conditional (while) loops. The basic syntax for a fixed-length loop is the

following:

for i in range(0,N):

...

where “...” stands for one or more lines of syntactically-correct Python in-

structions. This loop would repeat N times, with the loop index variable i run-

ning from 0 to N − 1; that is, not from 0 to N , as the colloquial meaning of

“range” would normally suggest. A third, optional parameter can be provided

to range, controlling the size of the increment for the loop control variable;

writing the above as for i in range(0,N,2) would run the loop with values

i = 0, 2, 4, 6, 8, ...N − 1 (or N − 2 if N is even). It takes a little while to get used

to this convention, but it works, and has at least the merit of being compatible

with array indexing, in which elements of an array of length N are also indexed

from 0 to N − 1.

1The shorter instruction force+=delta f would be Python-legal as well, and achieve the

same result. I find this to be potentially confusing when reading the code, and so such syntax

is avoided everywhere in this book.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

376
APPENDIX A. BASIC ELEMENTS OF THE PYTHON PROGRAMMING

LANGUAGE

The fixed-length loop structure just described runs over a preset number of

iterations determined by the two arguments given to range(). In some situations

it might not be possible to determine a priori the number of iterations required

by a loop. For example, in the DLA simulations of chapter 3, the temporal

iteration needs only run until all particles are stuck, or, in the epidemic simulation

of chapter 9, until the number of infected individuals has fallen to zero. The

appropriate temporal loop contruct in such a case would be, as in the epidemic

code of Fig. 9.1:

max_iter=100000 # maximum number of iterations

...

iterate=0 # iteration counter

while (n_infect > 0) and (iterate < max_iter): # temporal loop

... # line(s) of Python instructions

iterate+=1 # increment iteration counter

end of temporal loop

Note that the loop control condition includes a safety test ensuring that the loop

cannot run forever, if some algorithmic design flaw or coding mistake were to

cause n infect to never fall to zero2.

Something equivalent to conditional loops can be also constructed using the

break instruction, which prematurely exits an ongoing loop and picks up execu-

tion with the first instruction following the end of the loop. As a specific example,

2I highly recommend developing this to a reflex when coding while loops

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

A.4. LOOP CONSTRUCTS 377

the conditional loop above could be written instead as:

max_iter=100000 # maximum number of iterations

...

for iterate in range(0,max_iter): # temporal loop

... # line(s) of Python instructions

if n_infect == 0: break # break out of loop prematurely

end of temporal loop

Such use of the break statement to build conditional loops is often not con-

sidered good programming style, but it can be useful in some circumstances.

A particularly objectionable (IMHO) feature of loop syntax in Python is that

the block of instructions acted upon by the loop is identified only by being in-

dented with respect to the loop instruction, which means, e.g., that:

for i in range(0,N):

a=i+1

print("a= {}.".format(a))

will not produce the same output as

for i in range(0,N):

a=i+1

print("a= {}.".format(a))

In the first case the value of a would be printed to screen at every iteration

of the loop, but in the second case only the last value would, after exiting the

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

378
APPENDIX A. BASIC ELEMENTS OF THE PYTHON PROGRAMMING

LANGUAGE

loop. If the loop controls only a few lines of instructions, this indentation-based

loop delimiting syntax is tolerable; but for loop containing many instructions, or

other nested loops or conditional blocks of instructions, the code logic can become

harder to follow. As a compromise, in many of the codes listed in this book I

have added a comment line to explicitly mark the end of long instruction blocks

associated with loops or conditional statements, as exemplified in the while loop

example above.

Note finally that if a loop controls a single line of instruction, all can be

written on the same line, as on line 6 in the boxcount code of Fig. 3.10:

while (2**n_scales < n) and (n_scales < 100): n_scales+=1

Like many modern programming languages, Python also supports a form of

implicit loop defined using the symbol “:”, used to access subset of contiguous

array elements. For example, if A is an array of dimension 1 and length N ,

writing A[i1:i2] accesses elements i1 to i2-1 of the array. This may seem

straightforward, but where it becomes potentially confusing is in a statement

like A[0:10] which accesses the 10 elements indexed from 0 to 9 of array A,

rather than the 11 elements indexed from 0 to 10. To make things worse, this

convention is different in many other computing languages, where the equivalent

of the Python A[0:10] syntax would mean “access array elements indexed 0

through 10 inclusively”, now for a total of 11 elements. Seasoned Matlab and

IDL programmers, beware!

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

A.5. CONDITIONAL CONSTRUCTS 379

This being said, the syntactic shorcuts allowed by the use of “:” are just too

useful to skip. Consider for example the following instruction in the source code

for cluster tagging listed in Fig. 4.3:

map_cluster[1:N+1,1:N+1]=lattice[:,:]

In a single instruction line, this copies the N × N array lattice in the larger

(N + 2) × (N + 2) array map cluster, leaving all edge values (ghost nodes) of

map cluster at their initialized zero value. This instruction is thus equivalent to

the double loop construct:

for i in range(0,N):

for j in range(0,N):

map_cluster[i+1,j+1]=lattice[i,j]

A.5 Conditional constructs

Python includes all the usual if ... and if ... else ... conditional contructs, with

logical conditions expressed in terms of the (self-explanatory) operators <, >, <=,

>=, as well as the somewhat less self-explanatory == and != for “equal to” and

“not equal to”, respectively. Conditional statements contructed in this manner

can be combined using the usual and and or logical operators. Two examples

should suffice to illustrate the concept, the first taken from the epidemic code of

Fig. 9.1; the block of instruction following

if (infect[k] == 0) and (k != j):

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

380
APPENDIX A. BASIC ELEMENTS OF THE PYTHON PROGRAMMING

LANGUAGE

are executed provided both condition within parentheses are satisfied (i.e., evalu-

ate to Boolean TRUE)3. The second example is taken from the earthquake code

of Fig. 8.3:

if toppling[iterate] > 0:

force+=move

else:

force[:,:]+=delta_f

Here the 2D lattice force is updated by addition of the 2D array move if at least

one toppling has occured (first block of instructions), otherwise the scalar incre-

ment delta f is added at every node of the lattice (second block of instructions).

As with loop contructs, the blocks of instructions controlled by the conditions

are only delimited by being indented to the right (I really hate this!), but a single

condition-controlled instruction can be included after the colon “:” as a single

instruction.

Python does not include a straightfoward case (or switch) construct; these

must be built using sequential if or nested if ... else statements, or the Python

contracted version elif. See the lattice update rules in the hodgepodge code listed

in Fig. 11.4 for a specific example.

One type of Python-specific conditional instruction is so useful that I opted

to make use of it in some of codes listed in this book. For example, in Fig. 4.3:

3The parentheses “(...)” are optional but I highly recommend their use in such com-

pounded conditional expressions.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

A.6. INPUT/OUTPUT AND GRAPHICS 381

if iic in map_cluster[jj+dx[:]],kk+dy[:]]:

... # instruction(s) subject to conditional execution

This searches for the presence of the value iic in any one of the nearest neighbours

of node [jj,kk], as defined by the four element pairs stored in the template

arrays dx and dy. This single instruction is here equivalent to the construct

ifound=0

for i in range(0,4):

if map_cluster[jj+dx[i],kk+dy[i]] == iic:

ifound=1

if ifound == 1:

... # instruction(s) subject to conditional execution

A.6 Input/Output and graphics

Python includes the usual set of functions for writing or reading to files, printing

to screen, or reading keyboard input. The only one used in the codes listed

throughout this book is the basic “print to screen” function print; see, e.g., line

43 in the DLA code of Fig. 3.1 for a specific example. “Pretty printing” with

full control over format is of course possible. See the Python documentation for

more on all this I/O stuff.

The output of most simulations described throghout this book is usually best

displayed as pixellized images (for any simulation defined over a lattice), or even

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

382
APPENDIX A. BASIC ELEMENTS OF THE PYTHON PROGRAMMING

LANGUAGE

better, animation of such images. The Python Library matplotlib contains

many user-friendly graphical functions that do exactly this. See the URL pro-

vided further below. Most codes included in this book include only very basic

plotting instructions, all using matplotlib.

Some simulations, for example the forest fire model of chapter 6, the flocking

simulations of chapter 10, or the hodgepodge spiral simulations of chapter 11,

are most definitely best appreciated as animations; unfortunately there is as yet

no really easy way to do this in Python. The closest is the matplotlib function

funcAnimation, but it requires encapsulating the simulation time steps as a

function to be called by the animation function. I opted to leave this out of the

codes provided throughout this book, but it is definitely worth the effort. Note

also that pre-computed animation files for some of these simulations are available

from the Princeton University Press web site at:

http://wherever

A.7 Further readings

The official Home Page of the Python programming language is

https://www.python.org

It gives (free) access to the software, provides download and installation instruc-

tions, user’s guides and beginner’s tutorial, as well as many code example. Their

Python tutorial contains pretty much everything you need to know (and a lot

more) to work through this book:

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

A.7. FURTHER READINGS 383

http://pythonprogramminglanguage.com

The PEP8 style guide is also available there:

https://www.python.org/dev/peps/pep

Two other excellent Python ressources are

Langtangen, H.P., A primer on scientific programming with Python, 4th ed.,

Springer (2014),

Swaroop, C.H., A byte of Python, http://www.swaroopch.com/notes/python/,

as well as the Python tutorial from Code Academy:

https://codeacademy.com

For programming beginners, the Python tutor is excellent:

https://pythontutor.com

On the numpy and matplotlib Python Libraries, see:

http://numpy.org,

http://matplotlib.org,

At this writing, the easiest way to get started downloading and installing these

(and other) Python Libraries is through either one of the following open plat-

forms:

http://scipy.org

https://www.continuum.io

No point procrastinating, start downloading now!

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

384
APPENDIX A. BASIC ELEMENTS OF THE PYTHON PROGRAMMING

LANGUAGE

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

Appendix B

Probability density functions

Probability density functions (hereafter PDF) measure the probability of finding a

measurement between some specified interval of possible values for the measured

quantities. As an analysis and interpretative tool they are used repeatedly in

this book, and a basic understanding of their construction and interpretation is

essential. This is the aim of this Appendix. Section B.1 introduces the idea at the

pre-calculus level through a simple example, while the following sections require

a working knowledge of the calculation of derivatives and integrals of functions

of a single variable.

B.1 A simple example

The following list of numbers are the grades (in percent) obtained a few years

ago by my cohort of N = 83 undergraduate students at the mid-term exam of

naturalcomplexity-2.tex, July 28, 2016 385 Natural Complexity, Paul Charbonneau, Université de Montréal

386 APPENDIX B. PROBABILITY DENSITY FUNCTIONS

my introduction to computational physics class:

[46, 84, 70, 66, 41, 82, 69, 59, 28, 81, 88, 82, 83, 33, 27, 51, 62, 72, 87, 55, 66, 68, 55, 86,

75, 74, 56, 81, 60, 44, 84, 86, 75, 34, 96, 45, 57, 79, 81, 52, 24, 38, 74, 89, 68, 85, 85, 45,

62, 96, 45, 40, 48, 90, 46, 57, 33, 71, 67, 82, 94, 43, 16, 88, 46, 91, 82, 55, 71, 86, 77, 63,

81, 78, 59, 84, 100, 69, 92, 69, 44, 64, 88]

Let gk represent the grade obtained by the kth student. The class average 〈g〉 for

this exam is simply given by the sum of all grades divided by the class size:

〈g〉 = 1

N

N∑

k=1

gk , (B.1)

which for the above data is 〈g〉 = 66.3. To what degree is this number really rep-

resentative of students grades ? This information can be obtained by constructing

the PDF of the grades.

For such a discrete dataset, an approximation to the PDF can be built by

constructing a histogram. This consists in dividing the allowed range of the

measured variable —here grades between 0 and 100%— into contiguous bins

each spanning a range of grades, and counting how many data point fall in each

bin; e.g. counting how many students have a grade between 60% and 64.99%,

between 65% and 69.99%, etc. This defines a discrete function

hm(g; b) , m = 1, ...,M , (B.2)

where b is the bin size and hm the count in the mth bin. The number of bins is

simply M = 100/b, i.e., the numerical extent of the data, here 100, divided by

the binsize.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

B.1. A SIMPLE EXAMPLE 387

Figure B.1: Histograms for my mid-term exam dataset, for bin sizes of 2 (dark

gray), 5 (gray) and 10 (light gray). The vertical dashed line segment is the class

average computed using eq. (B.1).

Figure B.1 shows histograms of the above data, for bin sizes of 2, 5 and 10,

and with the class average indicated by the vertical dashed line segment1. The

numerical values of the histogram bins obviously depends on the choice of bin size;

for a dataset of a given length, the wider the bins the higher the corresponding

counts, and some bins can of course remain empty. No matter the bin size, in all

cases the sum of counts in all the bins is always equal to the class size N = 83,

1Since a histogram is, fundamentaly, a discrete function of the measurement variable, it

is customary to plot it into so called histogram mode, i.e., as a piecewise-constant function,

varying discontinuously at bin boundaries.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

388 APPENDIX B. PROBABILITY DENSITY FUNCTIONS

in other words, the histogram can be normalized:

1

N

M∑

m=1

hm = 1 . (B.3)

Knowing hm also allows an alternate procedure to compute the class average:

〈g〉 = 1

N

M∑

m=1

hm × bm , (B.4)

where bm is the grade value at the center of bin m.

Python’s numpy library includes a function named numpy.histogram() which

accepts as input an array of values, such as my mid-term exam grades above, and

returns an array containing histogram bin counts (10 equidistant bins by default).

It is also possible to set the bin number, sizes and ranges through the function’s

argument list; see the SCIPY/NUMPY documentation (URLs provided at the

end of Appendix A).

To turn the counts of Fig. B.1 into a probability, we need to divide it by the

class size N = 83, and to turn it in a probability density we also need to divide it

by the bin size. This last step is required so that the quantity hm×b measures the

probability p of finding, in the grade dataset, a grade falling between the bounding

values of each corresponding bin. This is the very definition of a probability

density. Figure B.2 shows the result of this procedure for the histogram of bin

size b = 5 from Figure B.1, and defines the discrete PDF for this dataset. Its

detailed shape is obviously influenced by the chosen bin size, and some of the finer

structure also reflect specificities of the underlying dataset; Fig. B.2 would not be

identical if I had used mid-term exam data for a different year, even though my

average grade for the mid-term exam in this course always hovered around 65%.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

B.1. A SIMPLE EXAMPLE 389

Figure B.2: Discrete probability density function constructed from the gray his-

togram of Fig. B.1 (bin size = 5). The shapes are of course identical on both

plots, only the vertical scale is altered, from raw counts to probability density.

The finite size of the dataset also guarantees that the PDF will not be smooth,

and this would remain the case even if I opted to minimize my grading time by

assigning purely random grades in the allowed range (more on this point in §C.2

below). But since I do not engage in such accelerated grading practices, the PDF

of Fig. B.2 does capture something about students’ performance (as well as my

grading performance, presumably). Note how the most probable grade, i.e. the

bin with the highest probability density (0.0289 for the bin 80—85%), is not that

spanning the average grade (bin 65–70%, with a probability density of 0.0193),

reflecting the fact that this distribution is asymmetric about its mean value. I

have observed such an asymmetry almost every year I taught this course; it was

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

390 APPENDIX B. PROBABILITY DENSITY FUNCTIONS

something real.2

B.2 Continuous PDFs

In the limit of very large datasets and infinitesimally small bin size (in the calculus

sense), the PDF can be considered a smooth, continuous function f(x), where

the quantity f(x)dx measures the probability of finding a measurement in the

interval [x, x+dx]. The equivalent of (B.3) becomes the normalization constraint:

∫

f(x)dx = 1 , (B.5)

and the equivalent of (B.4) is then:

〈x〉 =
∫

f(x) x dx . (B.6)

In both cases the integral must cover the full range of the variable x.

2In fact, my grade PDFs often could be reasonably well-fit by a combination of two Gaus-

sians, one very broad and centered around 60%, the other much narrower and centered around

80%. These could be traced pretty directly to two distinct group of students in the class:

Physics major students, taking the course in their first semester, and Physics-Math double-

major students, taking the class in the third semester. The latter group dominated the PDF

peak around 85%, indicating rather unambiguously that my mid-term exams favored them un-

fairly. Seeing this pattern repeat itself year after year, I eliminated the mid-term exam from

the course evaluation.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

B.3. SOME MATHEMATICAL PROPERTIES OF POWER-LAW PDFS 391

B.3 Some mathematical properties of power-law

PDFs

Probability density functions of event sizes taking the form of power-laws are

common in many of the natural and simulated systems considered in this book,

so they deserve a bit more attention. Such a power-law PDF is written as:

f(x) = f0x
−α , α > 0 , x ∈ [x0, xM] . (B.7)

where the constant f0 is set by the normalization constraint (B.5). Without loss

of generality we can set the normalization interval of the PDF to the range [1,∞],

so that the substitution of (B.7) into (B.5) yields:

f0 = lim
xM→∞

α− 1

1− (xM)1−α
. (B.8)

Evidently, the normalization is only possible provided α > 1, otherwise f0 → ∞

in the limit xM → ∞. For normalizable PDFs we have

f0 = α− 1 α > 1 . (B.9)

in the xM → ∞ limit. Consider now a situation where the variable x is extracted

from measurements spanning the range [x0, xM], as described by a normalizable

power-law PDF (α > 1). In such a situation the normalization constant becomes

f0 = (α− 1)xα−1
0 , and the mean value of the variable calculated via eq. (B.6) is

〈x〉 = f0
α− 2

(x2−α
0 − x2−α

M) , (α 6= 2) . (B.10)

In many cases the PDF spans many orders of magnitude in the variable x, i.e.,

x0 ≪ xM . We can then distinguish two regimes:

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

392 APPENDIX B. PROBABILITY DENSITY FUNCTIONS

1. 1 < α < 2: this implies 2−α > 0, so that the term involving xM dominates

in (B.10). We then have

〈x〉 = f0
2− α

x2−α
M . (B.11)

2. α > 2: this implies 2 − α < 0, so that the term involving x0 dominates

(B.10), in which case:

〈x〉 = f0
α− 2

x2−α
0 . (B.12)

The special case α = 2 is “left as an exercise”, as we like to say in the business...

These two distinct regimes, as delineated by the value of the power-law index

α, have important consequences when constructing a PDF from a finite set of

individual measurements. Note in particular that for α < 2 the average event

size is determined by the largest measured event. These being rare if the PDF is

a power law, computing the mean event size from an experimental or numerical

dataset containing too few events could lead to a gross underestimate of the

mean value. This is no longer the case if α > 2, since the mean value is then

dominated by the smaller, more frequent events, which will be well-represented

even in a (relatively) small dataset. If α < 1, the mean value cannot even be

mathematically defined.

B.4 Cumulative PDFs

Sometimes observational data are represented through a cumulative PDF f(> x),

such that f(> x)dx measures the probability of finding a measured value larger

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

B.5. PDFS WITH LOGARITHMIC BIN SIZES 393

than x. Our encounter with the Gutenberg-Richter Law in chapter 8 offered one

example. If x is distributed as a power-law, then we have

f(> x) =
∫

∞

x
f0x

−αdx = x1−α , (B.13)

where the second equality holds only if the distribution can be normalized, re-

quiring α > 1 so that f0 = α − 1. In such a situation, the cumulative PDF is

also a power-law, with an index differing by unity as compared to the index of

the usual non-cumulative PDF.

B.5 PDFs with logarithmic bin sizes

If the PDF of a measured variable takes the form of power-law, the tail of a PDF

constructed from measurements will contain very few events, and so will be very

“noisy”, making it difficult to reliably infer the numerical value of the power-

law exponent α. This is illustrated on Figure B.3, for PDFs constructed from a

set of N = 300 data points extracted from a power-law distribution with index

α = 1.75. In panel (A) the PDF uses a bin size b = 10 and is plotted using the

usual linear axes. Because the PDF falls off very rapily with increasing x, here

most points end up concentrated in the first bin (0 ≤ b < 10). When replotting

the same data using logarithmic axes, as on Panel (B), bins for x > 100 either

contain only one point, or none at all. Fitting a straight line to this PDF looks

like a pretty risky proposition. Turning to the cumulative version of the PDF,

as shown on Fig. B.3C, improves the situation somewhat, in that the the middle

of this distribution could conceivably by fitted with a straight line to yield the

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

394 APPENDIX B. PROBABILITY DENSITY FUNCTIONS

Figure B.3: Plotting can make such a difference... PDFs for the same data

are plotted on these four panels, built from a set of 300 synthetic data points

extracted from a power-law distribution with index α = 1.75. Panel (A) plots

the PDF on a standard plot with linear horizontal and vertical axes, with a bin

size of 10 used in constructing the PDF. Panel (B) plots the exact same data,

using now logarithmic axes, and panel (C) plots the cumulative PDF of the same

data, plotted again on logarithmic axes. The resolutely reckless could consider

fitting a straight line through the middle decade of the distribution. Panel (D)

plots a PDF of the same data still, now constructed using a logarithmic bin size

of log(b) = 0.2 and plotted again on logarithmic axes. A straight line fit can now

be contemplated with some measure of confidence. The dashed lines indicate the

true slope of the distribution from which the N = 300 data were drawn (minus

unity for the cumultive PDF in C, as per eq. (B.13)).

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

B.5. PDFS WITH LOGARITHMIC BIN SIZES 395

exponent α−1 (= 0.75 here, and indicated by the dashed line segment). However,

choosing the start end end points of the fitting regions will be very tricky unless

the PDF spans many orders of magnitude in the measured variable.

One way around this difficulty is to introduce bin sizes that increase with x.

A particularly simple way to achieve this is to construct the histogram function

of the logarithm of the measurement variable:

y = log(x) , → dy =
dx

x
, (B.14)

and then use a bin size constant in y. Whatever the variable we use to construct

the PDF, the normalization constraints (B.5) always hold, so that:

∫

f(x)dx =
∫

f(y)dy =
∫ f(y)

x
dx , (B.15)

the second equality resulting from eq. (B.14). We thus conclude that

f(x) =
f(log x)

x
. (B.16)

In other words, we are correcting the counts (and associated probabilities) by

accounting for the fact that the bin size increases linearly with x. In this way,

even if the PDF is constructed as f(log x) with logarithmically constant bins,

for a power-law PDF plotting f(log x)/x versus x using logarithmic axes will still

yield a straight line, with the slope corresponding to the index α of the underlying

PDF ∝ x−α for the original measurement variable. Figure B.3D shows the result

of this procedure, the the same underlying data as on Panels (A) and (B). A

linear fit (on the log-log plot representation) can now be envisioned with some

measure of optimism.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

396 APPENDIX B. PROBABILITY DENSITY FUNCTIONS

From Fig. 4.8 to 8.7, all power-law PDFs encountered throughout this book

are constructed and plotted in this manner. When the measured variable spans

many orders of magnitude and N is vary large, a straight linear least-squares fit

can then return a reasonably accurate estimate of the power-law index α. If either

of these conditions is not satisfied however, the inferred value of α may deviate

significantly from the underlying “true” value; fortunately, it is (relatively) easy

to do better.

B.6 Better fits to power law PDF

Compared to the dashed line indicating the true logarithmic slope of the distri-

bution from which the synthetic data were drawn, the PDF on Fig. B.3 looks

pretty good in a “chi-by-eye” sense. Yet a formal linear least-squares fit with

equal weight assigned to each bin yields α = 1.697± 0.051, somewhat lower than

the true underlying value α = 1.75. Maybe that’s “good enough”; or maybe not.

Remember the dangers of earthquake prediction encounter at the end of chapter

8...

A proper statistical approach to this fitting problem would be to infer the

index for the power-law distribution which has the highest likelihood of having

generated the measured data. If x is a continuous variable and its PDF normal-

izable (i.e., α > 1), this maximum likelihood estimator for α is:

α = 1 +N

(
N∑

n=1

ln
xn

xmin

)−1

, (B.17)

where xmin is the lower bound of the range within which power-law behavior

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

B.6. BETTER FITS TO POWER LAW PDF 397

holds, as determined empirically from the data or on theoretical grounds. The

associated standard error (σ) on α is given by

σ =
α− 1√

N
, (B.18)

For the synthetic data of Fig. B.3 and with xmin = 1, the above expressions yield

α = 1.744 ± 0.043, much closer to the target 1.75 than a linear least-squares fit

to the log-log plot of logarithmically binned data in (D).

In dealing with real data (including measurements from lattice-based simu-

lations), two difficulties must be dealt with. The first is the choice of xmin in

eq. (B.17). Consider for example the PDF of percolation cluster sizes plotted on

Fig. 4.8. As argued in §4.5, the self-similar fractal structure cannot be expected to

extend down to clusters of size one. Looking at Fig. 4.8, picking xmin = 10 might

be a reasonable “chi-by-eye” choice; a higher value would obviously be safer, but

this would also mean running the risk of throwing away more potentially useful

data, a problem that can become ever more acute the steeper the power-law.

Here again, statistically sound approaches are available to pick a proper xmin (see

bibliography at the end of this Appendix).

A second potential difficulty arises from the fact that the upper end of the

distribution of percolation cluster sizes is likely to be affected to some extent

by the finite size of the lattice, in the sense that the size of the PDF cannot

be expected to drop instantaneously to zero at exactly the largest percolation

cluster size pcN
2/2. Different strategies exist to augment such power laws with

an upper cutoff, finite-size scaling function. Its defining parameters must then

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

398 APPENDIX B. PROBABILITY DENSITY FUNCTIONS

be fit simultaneously with those of the power-law, which usually results in a

nonlinear fitting problem even if carried out in log-log space. See, e.g., the book

by Christensen & Moloney cited in the bibliography of chapter 4.

This second difficulty usually does not arise when working with real-world

data, for which a hard upper limit is seldom expected. For example, the largest

earthquake ever measured, the 22 May 1960 earthquake in Chile, scored 9.5 on

the Richter magnitude scale; yet nothing in plate tectonics precludes in principle

more energetic earthquakes; they simply have not occurred since the beginning

of the earthquake magnitude record. Likewise, the solar flare of Fig. 12.4 is in

all likelihood the largest observed during the space era, but the observations of

”superflares” up to 104 time more energetic on stars other than the sun confirms

that nothing close to the upper limit has yet been observed on the sun —and, as

with earthquakes, we can only hope it stays that way.

B.7 Further readings

Most statistics textbooks discuss at some levels probability density funtions. See

for example

James, F., Statistical Methods in Experimental Physics, 2e ed., World Scien-

tific (2006).

Roe, B.P., Probability and Statistics in Experimental Physics, Springer (1992).

On the inference of power-law behavior in experimental data, see

Clauset, A., Shalizi, C.R., Newman, M.E.J., SIAM Review, 51(4), 661–703

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

Appendix C

Random numbers and walks

C.1 Random and pseudo-random numbers

A sequence of numbers is said to be random if the numerical value of each member

in the set is entirely independent of the numerical value of the other members of

the set. Once upon a time I enlisted by then 6-year old son to roll a standard

6-faced die twelve times in a row, twice so; the results were the two sequences:

4− 2− 6− 3− 4− 4− 2− 6− 1− 5− 2− 6 ,

6− 6− 1− 2− 3− 3− 5− 6− 3− 6− 2− 3 .

You may note that the second sequence does not include a single “4”. This is not

so surprising as one may think, considering that the probability of not rolling a

4 is 1 − 1/6 = 5/6, so that the probability of not rolling a 4 twelve times in a

row is (5/6)12 = 0.112. This is small, but certainly not astronomically so (unlike

your odds of winning at the lottery, which are). If indeed each throw is entirely

naturalcomplexity-2.tex, July 28, 2016 399 Natural Complexity, Paul Charbonneau, Université de Montréal

400 APPENDIX C. RANDOM NUMBERS AND WALKS

independent of the preceding throw, then the odds of obtaining exactly one of

these sequences is (1/6)12 = 4.6 × 10−10, which is in fact exactly the same as

obtaining one of the following two sequences, which most people would judge,

incorrectly, to be far less probable:

1− 2− 3− 4− 5− 6− 1− 2− 3− 4− 5− 6 ,

6− 6− 6− 6− 6− 6− 6− 6− 6− 6− 6− 6 .

Now, if you roll a die a very great many times (N , say), then you would expect

to roll “1” N/6 times, “2” N/6 times also, and so on to “6”. If you get different

numbers, then you should really take a closer look at that die. For an unloaded

die, every roll is independent of the others, and every one of the six possible

outcomes is equiprobable. In other words, the die is a generator of random

integers uniformly distributed in the interval [1, 6], and die-throwing is categorized

as a stationary memoryless random process.

How do you achieve the same thing on a computer ? At first glance this may

appear nonsensical, considering that a computer program is entirely determinis-

tic; on a given architecture, an executable program will always return the same

output upon being presented with the same input. This means that a computer

program autonomously simulating successive throws of a die will always produce

the same sequence. In other words, the results of the nth “throw” will be entirely

determined by the state of the computer’s memory following the (n− 1)th throw,

this being true for all throws. Successive throws in the sequence are completely

correlated; we could be no farther from a a memoryless random process.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

C.2. UNIFORM RANDOM DEVIATES 401

The way out of this paradox is to accept the fact that successive throws will

be perfectly correlated, but design our die-throwing algorithm so that, over a

long sequence of throws,

1. Every throw value is equiprobable;

2. There is no statistical correlation between successive throws; in other words,

a “1” anywhere in the sequence is as likely to be followed by a ‘1”, a ‘2”, a

“3”, etc.

It is this statistical uniformity of the sequence that defines its random status,

although the term “pseudo-random” is usually preferred, to distinguish it from

truly random sequences, such as die throw, coin flips, or radioactive decay.

C.2 Uniform random deviates

Many simulation codes listed in this book require either a random number gen-

erator which returns floating-point numbers uniformly distributed in some fixed

interval, or integers distributed uniformly in some range [0, N]. Python’s numpy

library contains such generators (and many others). Generic random number

generators exist in most programming languages. The theoretical, arithmetical,

statistical and computational underpinnings of the generation of pseudo-random

numbers are rather intricate and would fill many pages, but this would not be

particularly useful here. For the purpose of working through this book, all you

need know is that pseudo-random number generators do exist, some are better

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

402 APPENDIX C. RANDOM NUMBERS AND WALKS

than others, a few are downright crappy, and by now the truly objectionable

among these have gone extinct.

As an example, what follows is two distinct ways to generate the computa-

tional equivalent of rolling a six-faced die:

import numpy as np

...

roll=np.random.random_integers(1,6)

...

Note that here, the upper and lower bounds given are inclusive (unlike the

range() function controlling unconditional loops in Python), so that the above

call will return 1, 2, 3, 4, 5 or 6 equiprobably. The other way is:

import numpy as np

...

roll=np.random.choice([1,2,3,4,5,6])

...

Sometimes if is necessary to generate distinct sequences of random numbers,

for example when testing different realization of a stochastic process for the pur-

pose of ensemble averaging; many such instances can be found in this book.

The numpy Library includes a function named numpy.random.seed(), which al-

lows to set the numerical value of the seed for subsequent calls to any one of

Python/numpy’s random number generators, by passing a specific integer value

as argument, e.g., numpy.random.seed(1234).

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

C.3. USING RANDOM NUMBERS FOR PROBABILITY TESTS 403

C.3 Using random numbers for probability tests

The ability to generate random numbers uniformly distributed in the unit interval

allows a simple numerical implementation of probability tests, in simulations

involving stochastic rules. In the forest fire model of chapter 6, for example,

a tree on a lattice node can be ignited by lightning with probability pf . For

each such tree, the “decision” to ignite or not can be encapsulated in a one-line

conditional statement:

if np.random.uniform() < p_f: # lightning strikes (maybe)

Since successice draws of the random number r (as produced by np.random.uniform()≡

r) are uniformly distributed in [0, 1], then for pf = 10−5 (say) on average one in

105 draw will satisfy r < pf . Consequently, on average one in every 105 trees

will be ignited by lightning at each temporal iteration. If the lattice is very large

and contains a number of trees ≫ p−1
f , then many trees will be ignited at each

iteration; in the opposite situation, ignition events will be separated in time,

with the wait-time between successive lightning strikes distributed exponentially

in the regime pf ≪ pg.

The above procedure effectively draws pseudo-random numbers from a prob-

ability density function (see Appendix B) of the form:

f(x) =







1 0 < x ≤ 1

0 otherwise

, (C.1)

which satisfies the normalization condition B.5. However, the discrete PDF for

a sequence of N pseudo-random number, constructed following the procedure

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

404 APPENDIX C. RANDOM NUMBERS AND WALKS

described in §B.1, will only converge to eq. (C.1) in the limit N → ∞. Figure C.1

illustrates this convergence, for N -member sequences of pseudo-random numbers

with N increasing from 300 in (A) to 300000 in (D). In all cases the bin size is

b = 0.05, so that M = 20 bins are required to cover the interval. These PDF

being normalized, the expected value of every bin, in the limit N → ∞, is unity.

Clearly, fluctuations about this expected value decrease rapidly as N increases.

This decrease can be quantified by computing the root mean squared deviation

about the expected value:

σ =

(

1

M

M∑

m=1

(hm − 1)2
)1/2

. (C.2)

The dotted lines on On Fig. C.1 indicate the range ±σ about the expected value

of unity. As with any stationary memoryless random process, σ varies as 1/
√
N .

C.4 Non-uniform random deviates

In some situations it can be useful or even necessary to produce sequences of

pseudo-random numbers extracted from non-uniform probability distributions.

Python’s numpy library contains many functions producing various common dis-

tributions of random deviates. If you only have access to a function providing

uniform random deviates, it is still possible to generate other types of distribu-

tions, through a technique known as the transformation method. What follows

only states a few useful results. In all cases r is a random deviate extracted from

a uniform unit distribution, r ∈ [0, 1[, and is x the sought deviate from another

distribution.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

C.4. NON-UNIFORM RANDOM DEVIATES 405

To get uniform random deviates in the range [a, b], a simple linear rescaling

does the job:

x = a+ (b− a)r , r ∈ [0, 1] , x ∈ [a, b] . (C.3)

In this case the mean of the distribution is 〈x〉 = (a + b)/2. This can also be

achieved by the Python/numpy function call x=numpy.random.uniform(a,b).

An exponential deviate in the range x ∈ [0,∞] is given by

x = −λ ln r , r ∈ [0, 1] , x ∈ [0,∞] . (C.4)

Note that for r ∈ [0, 1], ln(r) < 0; the minus signs in eq. (C.4) is important, don’t

forget it ! Here the parameter λ sets the scale of the exponential falloff; Smaller

values of λ give a more steeply peaked distribution, and larger values a flatter

exponential distribution. In all cases the mean value of the distribution, as given

by eq. (B.6), is 〈x〉 = λ, even though the most probable value is zero.

Under Python’s numpy Library, the function call x=numpy.random.exponential(scale)

produces such exponential deviates, but do note here scale≡ 1/λ in the above

expressions.

For a power law PDF (see eq. B.7) normalized to unity in the range [1,∞],

the required transformation is:

x = r1/(1−α) , r ∈ [0, 1] , x ∈ [1,∞] , α > 1 . (C.5)

The artificial data used to generate the PDFs on Figure B.3 were generated in

this manner.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

406 APPENDIX C. RANDOM NUMBERS AND WALKS

The function numpy.random.power(a) in Python’s numpy Library can be used

to produce power-law deviates, but BEWARE, its argument a corresponds to 1−α

under the power-law definition used throughout this book, viz. eq. (B.7).

Another useful PDF is the Gaussian (or normal) distribution1; Gaussian dis-

tributions of random deviates can be easily generated through the Box-Muller

transformation: which produce two Gaussian deviates x1, x2 from two uniform

deviates r1, r2 via the relations:

x1 =
√

−2 ln r1 cos(2πr2) , x2 =
√

−2 ln r1 sin(2πr2) , r1, r2 ∈ [0, 1] , x ∈ [−∞,∞] .(C.6)

The deviates so generated fill a Gaussian distribution of zero mean and unit

variance. If the deviates need to be centered about a non-zero mean value (x0,

say) with a standard deviation σ 6= 1, then they should be rescaled as

g∗1 = x0 + σ × g1 , g∗2 = x0 + σ × g2 . (C.7)

The function call g=numpy.random.normal(x0,sigma) in Python’s numpy Li-

brary can be used to produce Gaussian deviates of mean value x0 and standard

deviation σ.

C.5 The classical random walk

A random walk describes the changing position of an agent taking successive

steps, all of the same length s, but oriented randomly, in the memoryless sense

1Statistical theory would state that in the absence of cheating and with fair grading, and

in the limit of infinite class size (Ackpht!), the PDF of my mid-term exam grades plotted on

Fig. B.2 should be a Gaussian centered on the class average!

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

C.5. THE CLASSICAL RANDOM WALK 407

that not only is the orientation of step n random, but it is also entirely indepen-

dent of the orientation of previous steps.

Consider first a one-dimensional random walk, where the displacement is con-

strained to lie along a line (think of a very narrow road with high fences on both

sides, or a very long doorless corridor within a building). The displacement at

step n, measured with respect to some starting position, is denoted Dn, and the

two equiprobable steps are sn = ±1. By definition we can write:

Dn = Dn−1 + sn , n = 0, 1, 2, 3... (C.8)

Note already that the total distance walked, n × s, is not the same as the dis-

placement measured from the origin; two steps to the right followed by two to

the left add up to zero displacement, even though four steps have been taken.

The squared displacement is then

D2
n = (Dn−1 + sn)

2 = D2
n−1 + s2 + 2Dn−1sn . (C.9)

Now consider a group of M agents, all starting at the same position and each

engaging in a (collisionless) random walk. Introduce now the ensemble average,

denoted by the brackets 〈...〉, defined over this whole group:

〈x〉 = 1

M

M∑

m=1

x(m) , (C.10)

Under this notation, the quantity 〈Dn〉 can be interpreted as the average dis-

placement of the group as a whole. Averaging is a linear operator, in the sense

that

〈x+ y〉 = 〈x〉+ 〈y〉 , 〈ax〉 = a〈x〉 , (C.11)

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

408 APPENDIX C. RANDOM NUMBERS AND WALKS

where a is any numerical coefficient. Because of this linearity, applying our

averaging operator to eq. (C.9) yields:

〈

D2
n

〉

=
〈

D2
n−1 + s2 + 2Dn−1sn

〉

=
〈

D2
n−1

〉

+
〈

s2
〉

+ 2〈Dn−1sn〉 . (C.12)

If no communication or interaction takes place between agents and consequently

they have no way to get in step with one another, then for a large enough group

of agents 〈sn〉 = 0 since right- and left-directed steps are equiprobable. Moreover,

for a memoryless process the distribution of steps ±1 at iteration n is entirely

uncorrelated to the distribution of displacements Dn−1 at the prior step. This

implies:

〈Dn−1sn〉 = 〈Dn−1〉〈sn〉 = 0 . (C.13)

This results is critical for all that follows. Equation (C.12) now becomes:

〈

D2
n

〉

=
〈

D2
n−1

〉

+ s2 . (C.14)

Setting D0 = 0 without loss of generality, we have:

〈

D2
1

〉

= s2 , (C.15)

〈

D2
2

〉

=
〈

D2
1

〉

+ s2 = 2s2 , (C.16)

〈

D2
3

〉

=
〈

D2
2

〉

+ s2 = 3s2 , (C.17)

... = ... (C.18)

and so, after n steps:

〈

D2
n

〉

= n s2 . (C.19)

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

C.5. THE CLASSICAL RANDOM WALK 409

If the (discrete) variable n is interpreted as a temporal iteration, this expression

indicates that the mean quadratic displacement increases linearly with time, so

that

√

〈D2
n〉 = s

√
n . (C.20)

This is called the root-mean-squared displacement. It is important to understand

that even though this increases with time, the mean displacement 〈Dn〉 vanishes

at all times. The distinction is easier to understand by simulating a great many

random walks and constructing distribution functions for the positions of the

walkers. An example is shown on Figure C.2, for a simulation involving 1000

1D random walkers, all starting at x = 0. The distributions are constructed

and plotted after 1000, 3000, 10000 and 30000 steps, as color-coded. It is clear

from these plots that the mean of each distribution, i.e., 〈Dn〉, always remains

very close to zero, even after 30000 steps, and that all time the most probable

displacement, coinciding with the peak value of the PDF, is also essentially zero.

Yet, equally obviously, the distribution spreads outwards with time, so that the

probability of finding a large displacement, either positive or negative, increases

with time.

The colored thin lines are least-squares fits to these distributions, computed

by adjusting the parameter σ of the Gaussian PDF:

f(x) =
1√
2πσ

exp

(

−x2

σ2

)

. (C.21)

This parameter is a measure of the width of the Gaussian distribution (the full

width at half-maximum is 1.176 × σ, with 68.3% of all measurements contained

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

410 APPENDIX C. RANDOM NUMBERS AND WALKS

within ±σ of the mean). Here σ can be shown to increase with time as
√
n, which

is the same pseudo-temporal dependence arrived at when computing directly the

root-mean-squared displacement (C.20).

All of these results carry over to random walks in more than one spatial

dimension. The displacement Dn and and step sn become vector quantities, and

eq. (C.8) must be replaced by

Dn = Dn−1 + sn , n = 1, 2, 3... (C.22)

where the step sn still has unit length but is oriented randomly in space. The

mean square displacement at step n becomes

D2
n = (Dn−1 + sn) · (Dn−1 + sn) = D2

n−1 + s2 + 2Dn−1 · sn . (C.23)

Once again, if the step orientation is truly random and uncorrelated to the dis-

placement vector at the prior step, then averaged over a large ensemble of walkers

〈Dn−1 · sn〉 = 0. Why this is so is exemplified on Figure C.3, showing the first 18

steps of a 2D random walk beginning at (x, y) = (0, 0), with a step length |s| = 1

and the thick red line showing the rms displacement vector after the eighteenth

step, i.e., D18. This vector makes an angle θ18 with respect to the x-axis of a

Cartesian coordinate system centered on (0, 0), as indicated by the dotted lines.

The nineteenth step will land the walker somewhere on the green circle of unit

radius centred on the walker’s position at the eighteenth step. Where on this

circle the walker will actually land is entirely random, i.e., the angle α19 of its

next step with respect to a local coordinate system centered on D18 can be any-

thing between 0 and 2π, equiprobably. Now, the angle between the displacement

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

C.5. THE CLASSICAL RANDOM WALK 411

vector D18 and s19 will be given by s19 −D18, so that

D18 · s19 = D18s19 cos(α19 − θ18) ; (C.24)

At this point in the walk the angle θ18 is already set, at some value between 0

and 2π; whereas α19 is drawn randomly from a uniform distribution spanning

[0, 2π[. Trigonometric functions being periodic, it is as if the angle α19− θ18 were

also drawn from a uniform distribution spanning [0, 2π[; its cosine is therefore

as likely to turn out positive than negative, both identically distributed, which

ensures that an ensemble average of the above scalar product will always vanish

—even though it almost never would for a single walker. The same reasoning will

hold if both angle α19 and θ18 were also drawn independently from their allowed

range. This evidently also holds for any step n, and leads to the conclusion

that the ensemble average 〈Dn−1 · sn〉 = 0. Therefore, the ensemble average of

eq. (C.23) becomes:

〈

D2
n

〉

=
〈

D2
n−1

〉

+ s2 , (C.25)

just as in the case of the 1D random walk (cf. eq. C.14). Everything else proceeds

as before and leads again to eq. (C.19). This is a truly remarkable property of ran-

dom walks: no matter the dimensionality, the root-mean-squared displacement

always increases as
√
n.

Figure C.4 illustrates a few 2D random walks, each over 100 steps, with the

circle drawn at the radius corresponding to the root-mean-square displacement,

R =
√

〈D100〉 = 10s. This Figure highlights once again the fact that the rms

displacement is a statistical measure, obtained from an ensemble average over a

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

412 APPENDIX C. RANDOM NUMBERS AND WALKS

very large number of walkers; the displacement of a given individual walker can

deviate substantially from eq. (C.25), while remaining bound in [0, n× s].

C.6 Random walk and diffusion

The gradual spreading observed in the distribution of random walkers on Fig. C.2

is prototypical of diffusive processes, and this turns out to me more than a mere

visual analogy.

Let’s stick to 1D random walks and consider what happens at some arbitrary

position x0; only walkers within the range x0 − |s| < x < x0 + |s| have a chance

to cross x0 at the next step, but then again only if they happen to step in the

needed direction (s = +1 for walkers in x0 − |s| < x < x0, and s = −1 for those

in x0 < x < x0 + |s|). Both stepping directions being equiprobable, on average

only half the walkers on each side will then cross x0. Denote by δN(x0) the net

number of walkers crossing x0 from the right to the left. This quantity will be

given by:

δN(x0) =
1

2
N(x0 − |s|)− 1

2
N(x0 + |s|) , (C.26)

(a negative value for δN would then mean that the net flow of walkers is from

left to right). Now let N(x0, t) be the number of walkers standing somewhere in

the full interval x0 − |s| < x < x0 + |s| at time t. That number, at time t +∆t,

will then be given by N(x0, t) plus the net number having entered from the left

side at x0−|s|, minus the number having walked out to the right across the right

boundary x0 + |s|. Evaluating eq. (C.26) at x0 − |s| and x0 + |s| instead of just

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

C.6. RANDOM WALK AND DIFFUSION 413

x0 then leads to:

N(x, t+∆t) = N(x, t) + δN(x− s)− δN(x+ s)

= N(x, t) +
((

1

2
N(x− 2s)− 1

2
N(x)

)

−
(
1

2
N(x)− 1

2
N(x+ 2s)

))

= N(x, t) +
1

2
(N(x+ 2s)− 2N(x) +N(x− 2s)) , (C.27)

where the “0” index on x and the absolute value on s have both been dropped

to lighten the notation. Dividing the right- and left-hand sides of this expression

by ∆t and rearranging terms, we get:

N(x, t+∆t)−N(x, t)

∆t
=

1

2

(

(2s)2

∆t

)

×
(

N(x+ 2s)− 2N(x) +N(x− 2s)

(2s)2

)

.(C.28)

Note that both the numerator and denominator of the RHS have been multiplied

by the quantity 2s2; this mathematicaly legal but by all appearances arbitrary

manoeuver was carried out so that the quantity within the second set of parenthe-

ses on the right-hand side is identical to a second-order centered finite difference

formula for the second derivative of N with respect to x, with a spatial discreti-

sation increment 2s; while the term on the left-hand side is a first-order forward

difference formula for the time derivative of N , with time step ∆t. If these in-

terpretations are accepted, then eq. (C.28) can be viewed as a finite difference

discretisation of the partial differential equation:

∂N(x, t)

∂t
= D

∂2N(x, t)

∂x2
, (C.29)

where D is a diffusion coefficient, here given by:

D =
1

2

(2s)2

∆t
. (C.30)

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

414 APPENDIX C. RANDOM NUMBERS AND WALKS

Equation (C.29) is the well-known classical linear diffusion equation, which repre-

sents a macroscopic description of a random walk; it also describes the spreading

of perfume (or other) smell in a room where the air is at rest, the slow diffusive

mixing of cream in a coffee that is not being stirred, as well as a host of other

common mixing and dilution processes. Equation (C.29) holds provided the flux

of the diffusing quantity is proportional to the (negative) concentration gradient

of the diffusive substance, which is known as linear (or Fickian) diffusion. The

physical link with the random walk arises from the random motion of perfume

or cream molecules, continuously colliding with molecules making up the back-

ground fluid (air or water). Here is one of these instances when understanding

the microscopic behavior, namely the the random walk, allows to calculate the

macroscopic behavior, i.e., diffusion.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

C.6. RANDOM WALK AND DIFFUSION 415

Figure C.1: Probability density functions constructed from sequences of N ran-

dom numbers uniformly distributed in the interval [0, 1], with N increasing by

successive factors of 10 going from (A) through (D). The horizontal dotted lines

indicate the range ±1σ about the expected value f(x) = 1.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

416 APPENDIX C. RANDOM NUMBERS AND WALKS

Figure C.2: Temporal spreading of the distribution of 1000 1D random walkers, all

originally located at x = 0. The thin lines are Gaussian best-fit to the distribution

data, color-coded correspondingly.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

C.6. RANDOM WALK AND DIFFUSION 417

Figure C.3: The first 18 steps of a two-dimensional random walk in the plane,

with unit-length step sn. The numbered solid dots indicate the successive posi-

tions of the walker. The nineteenth step will land somewhere on the green circle

centered on 18. Where it will land on that circle, i.e. the spatial orientation of

that nineteenth step, is entirely independent of the length and orientation of the

current displacement vector D18 (red line segment).

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

418 APPENDIX C. RANDOM NUMBERS AND WALKS

Figure C.4: Four 2D random walks of 100 steps each. The starting point is

indicated by a black dot at center, and the circle indicates a displacement D ≡
√
D ·D =

√
n = 10.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

Appendix D

Lattice computation

Most computational implementations of the complex systems explored in this

book are defined over lattices, sets of interconnected nodes on which the dy-

namical variables of the problem are represented. There are two interconnected

concepts that need to be distinguished: lattice geometry and connectivity. Ge-

ometry is set by the relative positions of lattice nodes in physical space; con-

nectivity refers to the coupling between nodes, i.e., which neighbouring nodes

interact with any given node. The foregoing discussion is framed in the context

of two-dimensional lattices, but generalization to higher dimensionality is usually

straightforward.

When carrying our numerical simulations on lattices, nodal values are usu-

ally stored as arrays in the computer’s memory, having the same dimension and

lengths as the said lattices, i.e., nodal values on 128 × 128 lattice are stored in

a 2D array having length 128 in each dimension. The syntax for defining such

arrays is described in §A.2. From the user’s point of view (but not in the com-

naturalcomplexity-2.tex, July 28, 2016 419 Natural Complexity, Paul Charbonneau, Université de Montréal

420 APPENDIX D. LATTICE COMPUTATION

puter’s RAM), two-dimensional arrays are thus defined in terms of rows (first

array dimension) and columns (second dimension), as with a matrix, which ef-

fectively represents a form Cartesian geometry. Storing, accessing and plotting

nodal values for a Cartesian lattice is thus algorithmically trivial.

Lattice geometries other than Cartesian can still be stored in 2D arrays, by

suitable choice of connectivity. The idea was already illustrated on panels (C)

and (D) of Fig. 2.5: with appropriate horizontal shifting of nodal positions, a

2D Cartesian lattice with anisotropic 6-neighbour connectivity can be reinter-

preted as a triangular lattice with isotropic 6-neighbour connectivity. Geometry

is secondary (except when plotting!), and connectivity is the key.

D.1 Nearest-neighbour templates

Setting connectivity for a lattice is best accomplished using a nearest-neighbour

template. This gives the relative positions of nearest neighbours with respect to a

given nodal position (i, j). For example, on a Cartesian lattice the four nearest-

neighours of a node (i, j) are located at bottom, right, top, and left; or, in terms

of nodal numbering: (i+1, j), (i, j+1), (i−1, j) and (i, j−1). This can be stored

in two one-dimensional integer arrays of length 4, one for each lattice dimension.

Under Python/numpy this is initialized as follows:

dx=np.array([1,0,-1,0])

dy=np.array([0,1,0,-1])

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

D.1. NEAREST-NEIGHBOUR TEMPLATES 421

This is known as the von Neumann neighbourhood. Including the four diago-

nal neighbours yields the Moore neighbourhood, which would be defined by the

template arrays:

dx=np.array([0,1,0,-1,-1,1,1,-1])

dy=np.array([-1,0,1,0,-1,-1,1,1])

For the 6-neighbour triangular lattice of Fig. 2.5, the template arrays are:

dx=np.array([0,1,0,-1,-1,1])

dy=np.array([-1,0,1,0,1,-1])

Whatever the connectivity, lattice operations can use these template arrays to

efficiently retrieve nearest-neighbour information. For example, with nodal values

stored in a 2D array named grid, calculating the sum of nodal values for all

nearest-neighbours of node (i, j) under the von Neumann neighbourhood could

be coded like so:

sum_nn=0.

for k in range(0,4): sum_nn+=grid[i+dx[k],j+dy[k]]

or equivalently, by invoking the sum() function from Python’s numpy library:

sum_nn=np.sum(grid[i+dx[:],j+dy[:]])

These instructions would be typically embedded within two loops for the indices

i and j, thus scanning all lattice nodes. There is one pitfall to this stragegy: as

shown on Figure D.1, still for the von Neumann neighbourhood, it will fail for

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

422 APPENDIX D. LATTICE COMPUTATION

nodes at the boundaries of the lattice, which only have three nearest-neighbours

(and only two for the four corner nodes).

There are ways out of this difficulty, or course. The most straightforward in

principle is to treat boundary nodes separately, e.g. though the use of suitably

modified template arrays used only for boundary nodes. However, this lead to

cumbersome extra coding that significantly lengthens a simulation code and re-

duces its readability. A better strategy is to make use of ghost nodes, as shown

on Figure D.2. The 10 × 10 lattice of Fig. D.1 is now padded on all sides with

a layer of additional nodes (open gray cicles). This expanded lattice is now of

size 12× 12, but computations associated with the model’s dynamical rules only

take place in the interior 10 × 10 block of nodes corresponding to the original,

unpadded lattice. Unlike on Fig. D.1, using the 4-neighbour template on the red

node, now numbered (i, j) = (7, 10), will not exceed array length in the horizontal

since j + 1 = 11, which is now legal 1.

Which numerical value is to be assigned to ghost nodes is dependent on the

boundary conditions of the problem. In the earthquake model of chapter 8, for

example, the ghost nodes are simply set to zero and retain that value throughout

the whole simulation. This is as easy as it gets. In the hodgepodge machine

1Some computing languages allow the use of negative integers to index array elements, so

for example here each dimension of the 12× 12 lattice could have the nodes numbered from −1

to 10, so that the green and red nodes retain their original numbering (i, j) = (3, 2) and (6, 9),

as on Fig. D.1. I stayed away from this cleaner numbering strategy for reasons of portability

to languages that do not allow such generalized array indexing.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

D.2. PERIODIC BOUNDARY CONDITIONS 423

simulations of chapter 11, on the other hand, the ghost nodes are used to enforce

periodic boundary conditions, as detailed in the following section.

D.2 Periodic boundary conditions

In some lattice-based models introduced in this book, periodic boundary con-

ditions are imposed on the lattice. Sometimes this is dictated by the geometry

of the problem. Consider for example ants walking on the surface of a sphere.

Using latitude-longitude coordinates, an ant waking eastward and crossing longi-

tude 360◦ must instantly “reappear” at longitude zero, because both correspond

to the same point on the sphere. Longitudinal periodicity is then mandatory.

Imagine now ants walking on the surface of a torus. Longitude is again periodic,

but now so is the “latitudinal” direction, since an ant starting in the equatorial

plane and walking “North” will travel a circular path that will bring it back to

its starting point. When simulating such a walk, the torus can thus be mapped

to a square with periodicity enforced both horizontally and vertically. This is the

geometric interpretation to be ascribed to the highway building ant of §2.4, and

to the flocking simulation of chapter 10.

In other instances periodic boundary conditions are used simply because we

cannot specify boundary values, and doing so arbitrarily would perturb the evolu-

tion of the system. This is the case with the hodgepodge machine simulations of

chapter 11. Enforcing periodic boundary conditions then implies that the simu-

lated domain is but a “tile” that repeats itself across space to infinity, exactly like

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

424 APPENDIX D. LATTICE COMPUTATION

on a tiled floor (made of identical tiles, and without the infinity part...). In such

a situation, we must simply accept the fact that the simulation cannot gener-

ate or accommodate structures that have length scales larger than the simulated

periodic unit.

Figure D.3 shows how ghost nodes can be used to enforce periodic bound-

ary conditions. The true boundary nodes of our now familiar original 10 × 10

lattice have been colored according to the side they belong to, with four more

distinct colors used for the corner nodes. If the original lattice were to be repli-

cated horizontally and vertically to tile the whole space under the assumption

of periodicity (as for the unit square domain on Fig. 10.1), then the top row of

ghost nodes (open blue circles plus corner nodes) are really the “same” nodes

as the bottom row of the original 10 × 10 lattice (solid blue nodes plus corner

nodes, boxed in blue). Vertical periodicity can therefore be enforced by copying

the ten nodal values of this row (boxed in blue) to the corresponding nodes of

the top row of ghost nodes, as indicated by the blue arrow. The same applies

for the top row of the original 10 × 10 lattice (purple), which gets copied into

the bottom row of ghost nodes. The same procedure is used in the horizontal

direction, as indicated by the color coding on the Figure. Note how each corner

nodes in the 10× 10 lattice get copied thrice into ghost nodes: once horizontally,

once vertically, and once diagonally to the opposite corner of the 12× 12 lattice.

The function periodic, given within the code on Figure 11.4, gives a compact

algorithmic implementation of this procedure..

Periodicity in one spatial dimension amounts to assuming that the 1D domain

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

D.3. RANDOM WALK ON LATTICES 425

is a closed ring, which is much easier to implement; see for example the one-

dimensional cellular automaton code of Fig. 2.4.

D.3 Random walk on lattices

Random walks can be defined over a lattice, with walkers constrained to move

from one node to a randomly selected nearest-neighbour node, according to some

suitably defined neighbour template. All that is needed is to generate a random

integer to pick an element of the appropriate template arrays. The following

code fragment shows how to set up a random walk of N steps, here on a 2D

Cartesian lattice with 4-neighbour connectivity, and with the walker starting at

the (arbitrary) nodal position (i, j) = (5, 5) on the lattice:

import numpy as np

N=100 # number of random walk steps

dx=np.array([0,1,0,-1]) # template arrays for 4-neighbours

dy=np.array([-1,0,1,0])

...

i,j=5,5 # initial nodal position of walker

for k in range(0,N): # walk N steps

r=np.random.choice([0,1,2,3]) # random integer between 0 and 3 inclusive

i+=dx[r] # take one random step

j+=dy[r]

...

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

426 APPENDIX D. LATTICE COMPUTATION

An example is shown on Figure D.4. The first 18 steps of the walk are shown,

and reveal some occasional backtracking (steps 2–3–4 and 13–14–15). Note also

that after the sixth step, the walker is actually back at its starting position.

This may appear to be a strongly constrained type of random walk, but when

simulating many such random walks on the lattice over a great many steps, the

orientation of the displacement vector is effectively random, and its ensemble

averages 〈D〉n = 0 and 〈D2〉 ∝ n, just like in a classical random walk (see §C.5).

Moreover, on length scales much larger than the inter-nodal distance, the spa-

tial distributions of walkers are essentially the same in both cases. Figure D.5

illustrates this, now for four 400-steps random walks on a larger lattice, still with

4-neighbour connectivity. For displacements much larger than the microscopic

scale set by the inter-nodal distance, the spatial distribution of end points is sta-

tistically undistinguishable from that associated with a conventional 2D random

walk (cf. Fig. C.4).

Random walks on lattice become particularly useful when simulating a system

where many walkers moving simultaneously on the lattice interact locally in some

way (e.g., the healthy and sick agents in the epidemic propagation simulations of

chapter 9). Knowing the position (i, j) of a walker on the lattice, only this node

(or nearest-neighbour nodes) must be checked for the presence of another walker.

In a classic random walk, this would involve instead the calculation of ≃ N2/2

pairwise distances, to pick which walkers are within some set distance inside of

which the interaction takes place (as for the repulsion and flocking forces in the

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

D.3. RANDOM WALK ON LATTICES 427

flocking simulations of chapter 10). This becomes computationally prohibitive

for very large N . There exist strategies and algorithms to reduce this number,

but they are too complex (!) to get into even in this book.

Another, related attractive feature of random walks on lattices is the possi-

bility to accommodate a simplified representations of “collisions” between two

walkers. The idea is illustrated on Fig. D.6. Often, at a given temporal iteration

only a small fraction of lattice nodes are occupied by random walkers (black solid

dots). Every one of these would normally take its next step to one of the four

possible positions indicated by the stencil of four green circles centered on each

walker, as indicated on the Figure for only six walkers. The idea is to void the

step if it were to land the walker on a lattice node already occupied by another

walker; in such a situation the walker remains on his node until a new random

step is attempted at the next temporal iteration. The allowed steps for six se-

lected walkers on Fig. D.6 are indicated by the thick green line segments. The

fact that walkers cannot move to an occupied node represents a form of collision,

since two walkers on neighbouring nodes cannot cross but instead tend to move

away from each other, in a statistical sense. The flow of fluids can be simulated

in this manner. Chapter 8 of Wolfram’s book on cellular automata (cited at the

end of chapter 2) presents a few nice examples. See also the Wikipedia pages on

Lattice gas automaton and lattice Boltzmann methods.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

428 APPENDIX D. LATTICE COMPUTATION

Figure D.1: Use (green) and misuse (red) of a 4-neighbour nearest-neighbour

template on a 10 × 10 Cartesian lattice. Nodes are numbered by a pair of in-

dices (i, j), starting at the top left corner and increasing downwards and to the

right. The template functions well for interior nodes (black) but will lead to

out-of-bound array indexing for boundary nodes (grey) unless alternate reduced

template arrays are introduced for boundary nodes, or additional conditional

instructions (if...else) are added within the code.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

D.3. RANDOM WALK ON LATTICES 429

Figure D.2: The same lattice as on Fig. D.1, but now surrounded by a layer of

ghost nodes (open gray circles). The full lattice is now of dimensions 12×12, but

now the 4-neighbour template can be used on all nodes of the imbedded original

10× 10 lattice even for the (true) boundary nodes (solid gray circles). Compare

to Figure C.3

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

430 APPENDIX D. LATTICE COMPUTATION

Figure D.3: Enforcing periodic boundary conditions via ghost nodes. The bound-

ary nodes of the original 10× 10 lattice (solid gray nodes on Fig. D.1) are copied

to the ghost node layer (open circles) on the opposite side of the enlarged 12×12

lattice, following the color coding given. Note how the corner nodes of the 10×10

lattice get copied into three distinct ghost nodes. Interior nodes (in solid black)

remain unaffected by this whole procedure.

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

D.3. RANDOM WALK ON LATTICES 431

Figure D.4: The first eighteen steps in a random walk on a 2D Cartesian lattice

with 4-neighbour connectivity, starting at lattice center. Successive nodal posi-

tions are numbered, and the thick red line segment indicates the displacement

vector Dn at step 18. The nineteenth step will land the walker on one of the

four nodes circled in green, which one being chosen randomly, in a manner inde-

pendent of the current position or direction of past steps (see text). Compare to

Figure C.3

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

432 APPENDIX D. LATTICE COMPUTATION

Figure D.5: Four 400-steps random walks on a lattice with 4-neighbour connec-

tivity, The starting point is indicated by a black dot at center, and the circle

indicates a displacement D ≡
√
D ·D =

√
n =

√
400 = 20. Compare to Figure

C.4

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

D.3. RANDOM WALK ON LATTICES 433

Figure D.6: Displacement rules for random walks on a lattice in which walkers

are not allowed to move to a node already occupied by another walker. Here 50

walkers (black solid dots) are distributed on a 20×20 lattice. For a subset of six,

the four target nodes are indicated by green circles, and allowed moves by thick

green line segments.

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

434 APPENDIX D. LATTICE COMPUTATION

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

Appendix E

Index terms

• Agents

– definition

– ants

– termites

– active vs passive

– panicked

– replicants

– as car drivers

– as flockers

• Agent Smith

• Artificial life

• Avalanches

naturalcomplexity-2.tex, July 28, 2016 435 Natural Complexity, Paul Charbonneau, Université de Montréal

436 APPENDIX E. INDEX TERMS

– size measures

– falloff

– in OFC earthquake model

– in sandpile model

– in traffic model

– in epidemic model

– random trigger

• Bak, Per

• Bifurcation diagram

• Billiard (a.k.a. pool)

• Black Death

• Boundary conditions

– open

– closed

– periodic

• Bozos

• Brute force

• Burridge-Knopoff stick-slip model

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

437

• Cellular Automaton (CA)

– definition

– 1D vs 2D

– rules

– classes

– probabilistic

– two-states

– hodgepodge machine

– simulating fluid flows

• Clusters

– in percolation

– in Forest-fire models

– in traffic models

– tagging algorithm

– self-similarity

• Compactness coefficient

• Complexity

– difficulty to define

– intuitive vs algorithmic

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

438 APPENDIX E. INDEX TERMS

– and fractals

– at edge of chaos

– visual

– and origin of life

– and consciousness

• Criticality

– defined

– and phase transitions

– control parameter

– and fluctuations

• Crowd control

• Danger

– of earthquake prediction

– of squirrels crossing the road

– of panicking

– of huddling together

– of dividing by zero

– of photographing slickrock

– of taking the wrong step

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

439

– of bad lighting

– of connecting flights

– of skipping preface

– of excessive theorizing

• Diffusion

– anomalous

– equivalence to random walk

– Fickian

– in OFC model

– in hodgepodge machine

– on surfaces

– partial differential equation

– of a Gaussian profile

– coefficient

• Diffusion-limited aggregation (DLA)

• Ebola

• Emergence

• Ensemble averaging

• Forest fire management

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

440 APPENDIX E. INDEX TERMS

• Forcing

– stochastic

– deterministic

• Fractals

• Fractal dimension

– as power law

– by mass-radius relation

– by box counting

– of percolation cluster

– of DLA aggregates

– of forest fires

• Friction

– as threshold mechanism

– in sandpile

– vs self-propulsion

– in earthquake model

• Game of Life

• Geomagnetic substorms

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

441

• Ghost nodes

• Gutenberg-Richter Law

• Growth

– rule-based

– seed

– by accretion

– by branching

– by fusion

– probabilistic

• Highway building

• Hofstadter, Douglas

• Holland, John

• Hooke’s Law

• Kepler, Johannes

• Koch fractal

• Langton, Chris

• Lattice

– definition

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

442 APPENDIX E. INDEX TERMS

– Cartesian

– triangular

– connectivity

– 1D vs 2D

– boundary conditions

– nearest-neighbour template

– vs network

• Lichens

• Logistic map

• Mistakes

– random

– due to bad lighting

– due to noisy background

• Modelling

• Moore neighbournood

• Newton’s Laws of motion

• OFC: See Sandpile: Olami-Feder-Christensen

• Open dissipative systems

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

443

– billiard example

– climate example

– chemical example

• Order from disorder

• PDF: see Probabiliy density function

• Percolation

– in 1D

– in 2D

– dynamical

– threshold

– as exemplar of critical phenomena

– and anomalous diffusion

• Pink Floyd

• Predator-prey

• Probability density functions (PDF)

– definition

– in sandpile model

– in Forest-Fire model

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

444 APPENDIX E. INDEX TERMS

– in traffic model

– Gaussian

– Power-law

– averaging using

– and histograms

– of earthquake size

• Procol Harum

• Pynchon, Thomas

• Python code

– for 1D CA

– for 2D CA

– for ants and highways

– for diffusion-limited aggregation

– for box counting

– for cluster tagging

– for 1D sandpile

– for forest fire model

– for traffic model

– for earthquake model

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

445

– for epidemic model

– for flocking model

– for hodgepodge machine

• Random numbers

– computational impossibility

– uniformly distributed

– exponentially distributed

– Gaussian distributed

– Power-law distributed

– seed

• Random walk

– defined

– equivalence to diffusion

– on lattice

– root-mean-squared displacement

– 1D vs 2D

• Reaction-diffusion chemistry

• Recurrence cycle

• Reductionism

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

446 APPENDIX E. INDEX TERMS

• Redundancy

• Richardson, Lewis Fry

• Rolling Stones

• Safety in numbers

• Sandpile

– 1D vs 2D

– stop-and-go

– running

– on the beach

– conservative vs non-conservative

– Olami-Feder-Christensen (OFC)

– covering the Earth

– stochastic redistribution rules

• Scale separation

• Science defined

• Self-organized criticality (SOC)

– defined

– necessary conditions

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

447

– in sandpile model

– in forest-fire model

– in traffic model

– in earthquake model

– in natural systems

• Self-similarity

– defined loosely

– defined formally

– and scale invariance

• Sierpinski triangles

• Small-world network

• Snowflakes

• SOC: see Self-organized criticality

• Solar flares

• Solid vs fluid phases

• Space weather

• Spaghettis

• Stars in galaxies

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

448 APPENDIX E. INDEX TERMS

• Statistical stationarity

• Symmetry breaking

• Synchronous updating

• Time series

– periodic

– quasiperiodic

– aperiodic

– fractal

– intermittent

• Torus geometry

• Traffic engineering

• Turing, Alan

• Universality

• Waterfall

• Waves

– in epidemic model

– in forest fire model

– in hodgepodge machine

Natural Complexity, Paul Charbonneau, Université de Montréal naturalcomplexity-2.tex, July 28, 2016

449

– spiral

– spreading

– chemical

– sawtooth

• Wolfram, Steven

naturalcomplexity-2.tex, July 28, 2016 Natural Complexity, Paul Charbonneau, Université de Montréal

