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1. Introduction
We concluded Act I with the so-called “closure problem”: how to determine

the quantities in the three compartments labelled, electromagnetic, radiative
and thermodynamic {δ,J| χν , ην | p, T,�, �}. We also indicated that the first
method of choice is to attempt to ascertain these relationships in the comov-
ing frame of the material, and then to Lorentz Transform these results to the
laboratory frame.

While our previous Scenes all dealt with matters which progressed fairly
logically and contained little in the way of surprises, or “aha!” moments, the
closure aspect of our problem is very much based on intuition, insight, and a
great deal of artistic license. Sometimes, seemingly silly, or hopelessly simplistic,
prescriptions will give the right results. And other times the most careful and
cunningly designed closure schemes end in abject failure. It’s definitely live and
learn.

Our program is to treat each compartment separately and share with you
some of the more useful and interesting closure schemes, along with some mo-
tivation as to when and where they might be expected to work, and not work
for you.

2. Electrodynamics: MHD, EHD and Ohm’s Law
The Lorentz Transformations between a frame at rest (unprimed) and one

moving relative to this frame at a constant velocity u (the comoving primed
frame) for the electromagnetic fields are:

E′ = E +
1

c
u×B

B′ = B− 1

c
u×E

correct to order u/c. In fact, in what follows we shall only retain terms at this
order in u/c, therefore the Lorentz Factor,

√
1− u2/c2 ≈ 1, from here on.

These forms result from the fact that relativistically, the electric and mag-
netic fields combine to form the various components of a 4-tensor, whereas the
charge density δ and the electric current density J are components of a 4-vector.
To the same order in u/c, they transform according to:

J′ = J− δu

δ′ = δ − 1

c2
u · J .

A constituitive relation, the so-called Ohm’s Law, reckoned in the comoving
frame of the fluid is necessary to express the electric current density in terms of
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the remaining quantities in Maxwell’s Equations. For simplicity, we adopt the
simple scalar expression

J′ = σE′

where the electric conductivity σ has dimensions of sec−1.
This prescription generally “works” when collisions are frequent between the

constituents of the gas. Frequent compared to what? Well certainly any dynam-
ical time scale associated with the macroscopic flows. But also frequent com-
pared to the inverse of the electron gyrofrequency: e|B|/mec, and the plasma
frequency

√
4πNee2/me. In more general situations, when the gyrofrequency

constraint is not satisfied, σ is a tensor (not to be confused with the viscous
stress tensor) and the current density can also depend upon the magnetic field
B′. In situations where electrons and ions do not collide frequently enough
(owing to their disparate masses), although they run into their own kind with
sufficient rapidity, more modifications are required to Ohm’s Law. To be en-
tirely consistent with our notation, we should probably place a prime on σ to
indicate that it is a comoving frame quantity—but we won’t.

In terms of quantities evaluated in the rest frame of the fluid, this expression
reads

J = δu + σ

(
E +

1

c
u×B

)
,

correct to order u/c. In the limit that σ →∞ we must have

E→ −1

c
u×B +O(σ−1) ,

and we must look elsewhere (i.e., Ampère’s Equation) to obtain information
about J. In the opposite limit σ → 0 we find

J→ δu +O(σ)

and we must look elsewhere (i.e., Faraday’s Equation) to find the scaling between
E and B.

Making no assumption about the size of σ, the divergence of Ampère’s Equa-
tion

c∇×B = 4πJ +
∂E

∂t
,

combined with Gauss’s Law
∇ ·E = 4πδ

results in the conservation of charge:

∂δ

∂t
+∇ ·

(
δu + σ

[
E +

1

c
u×B

])
= 0 .

And the curl of Ampère’s Equation provides an evolution equation for the mag-
netic field

1

c

∂2B

∂t2
−∇×

(
4πδu− c∇×B + 4πσ

[
E +

1

c
u×B

])
= 0 ,
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where Faraday’s Law has been used to eliminate the curl of the electric field.
If the conductivity is a function of position, then these two evolution equa-

tion must be supplemented by Gauss’s and Faraday’s Laws to determine the
solenoidal and irrotational compoenents of E. Otherwise, if the conductivity
can be taken as a constant, these two equations may be reduced to,

∂δ

∂t
+∇ · δu + 4πσδ = −σ

c
∇ · (u×B)

and

1

c

(
∂

∂t
+ 4πσ

)
∂B

∂t
−∇×

(
4πσ

c
u×B− c∇×B

)
= 4π∇× δu ,

a coupled pair of evolution equations for the magnetic field and the electric
charge density. In deriving these equations we have assumed only that u2/c2 �
1, the scalar Ohm’s law holds in the rest frame of the fluid, and the electrical
conductivity is not a function of position or time. The limiting behavior of this
system of equations depends critically upon the size of the electrical conduc-
tivity, σ, relative to the inverse of the characteristic fluid time scale τ ≡ L/U ,
where ∇ · u ≈ U/L,

In the zero conductivity limit, for which σ � U/L, this system of equations
reduces to the electromagnetic wave equation,

1

c

∂2B

∂t2
− c∇2B = 4π∇× δu

with the advective motion of the electric charge density (equivalently the current
J) as a source term. Where the source term is non zero—usually termed the
near field induction zone— it is balanced by the Laplacian of the magnetic field,
so

|B| ≈ ULδ

c
≈ U

c
|E| � |E|.

Where the source terms vanishes—in the far field—the spatial variation of B
now becomes the electromagnetic wavelength cτ (not L), so there is a balance
between the Laplacian and the second time derivative. The remaining equation
simply expresses the conservation of electric charge,

∂δ

∂t
+∇ · δu = 0 .

This limit is sometimes referred to as ideal Electrohydrodynamics, or EHD, and
arises in solid state physics, but almost never in astrophysics.

In the opposite limit of infinite conductivity, for which σ � c2/UL, we obtain
the magnetic induction equation

∂B

∂t
= ∇× (u×B) ,
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which indicates that the magnetic field is frozen into the fluid. The remaining
equation is simply a statement of the electric charge density in the laboratory
frame:

δ = − 1

4πc
∇ · (u×B) =

1

4π
∇ ·E =

1

c2
u · J =

1

4πc
u · ∇ ×B .

On account of the fact that both the electric field E′ and the charge density δ′

vanish in the comving fame, they must, according to the Lorentz Transforma-
tions, have nonzero values in the laboratory frame. This limit is also known as
ideal Magnetohydrodynamics or MHD, where

|B| ≈ cLδ

U
≈ c

U
|E| � |E| .

It of course is the limiting case that is found most often in astrophysics. The
retention of finite σ terms in either limit provides a resistive, or dissipative,
extension to both EHD and MHD.

The determination of the scalar conductivity, σ, or more complicated forms
of the generalized Ohm’s Law lives in the realm of plasma physics and kinetic
theory. As our philosophy in these notes has been to focus on the macroscopic,
it will suffice here to simply provide an all purpose formula that will suffice for
ionized gases dominated by Hydrogen,

σ ≈ 107
(

T

1 deg K

)3/2

sec−1 ,

or in terms of the magnetic diffusivity

η ≡ c2

4πσ
≈ 5× 1012

(
T

1 deg K

)−3/2
cm2 sec−1 .

These formulae provide ample justification for the dominance of the MHD (as
opposed to EHD) limit in astrophysical settings and the general neglect of the
resistive dissipation of magnetic fields.

3. Radiation: LTE, Planck, Kramers and Their Friends
The photon’s frequency ν and direction of propagation n combine to form a

4-vector for the momentum of a photon. Thus the Doppler Shift in frequency
between frames is

ν′ = ν
(

1− n · u
c

)
+ · · · ,

and the aberration is

n′ =
ν

ν′

(
n− u

c

)
=
[
n
(

1 +
n · u
c

)
− u

c

]
+ · · · ,

correct to order u/c. The additional term (containing two factors of n) in the
last expression is on account of the fact that the product νn transforms as the
spatial part of the 4-vector, not n itself. Notice because n′ is a two-dimensional
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vector, and as each component of n′ carries a factor of ν/ν′, the photon phase
space volume element

νdνdn = ν′dν′dn′

is an invariant under the Lorentz Transformation. A very useful fact when
comparing moments.

The transformation properties between the specific intensity I ′ν′(x
′, t′;n′),

and Iν(x, t;n), and here I write out all the dependencies to impress upon you
that all these quantities are undergoing transformations between the two frames,
is simple in form but not so simple to derive

I ′ν′(x
′, t′;n′)

ν′3
=
Iν(x, t;n)

ν3
,

another Lorentz invariant. This result can be derived from the premise that
while observers in two different frames disagree about many things—photon
frequency, propagation direction, volumes, simultaneity and so forth—they must
agree on the number of photons present. And finally the analogous invariant
associated with the opacity must be

ν′χ′ν′(x
′, t′;n′) = νχν(x, t;n) ,

in order for the transfer equation to be invariant under the Poincaré Group.
From these two expressions, it follows that the emissivity must transform like

η′ν′(x
′, t′;n′)

ν′2
=
ην(x, t;n)

ν2
.

These three results are key! Suppose, in the simplest of all possible circum-
stances, that the opacity is isotropic (i.e., independent of n′) in the comoving
frame, let’s call it simply χ′ν′ ≡ χ0(ν′). Then in the laboratory frame, the
opacity is not isotropic

χν(n) =
(

1− u · n
c

)
χ0(ν′)

but contains an additional term proportional to the fluid velocity, u, and it
depends upon the Doppler shifted frequency. Since the Doppler shift is small
in some sense, if χ0(ν′) is a fairly smooth function (which it decidedly is not in
the vicinity of a spectral line) then we can replace χ0(ν′) by its Taylor series
expansion about the frequency ν in the laboratory frame:

χν(n) =
(

1− u · n
c

)[
χ0(ν) + (ν′ − ν)

dχ0

dν
+

1

2
(ν′ − ν)2

d2χ0

dν2
+ · · ·

]
.

Neglecting terms of order u2/c2 we find

χν(n) = χ0(ν)− u · n
c

[
χ0(ν) + ν

dχ0

dν

]
+ · · · .
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We now have succeeded in expressing the right side of the equation in terms of
photon characteristics in the laboratory frame.

In more realistic situations, for example, we need to use the Doppler Shift
and aberration formulae in the functional forms for the opacity in the comoving
frame to derive the correct opacity in the laboratory frame! Rest assured, this
is not something you would like to simply intuit from first principles unless you
are very very good at it!

A simple, but still applicable form for the isotropic emissivity in the comov-
ing frame is

η′ν′ ≡ κ0(ν′)Bν′ [T
′] + σ0(ν′)J ′ν′ ,

where
χ′ν′ ≡ χ0(ν′) = κ0(ν′) + σ0(ν′) .

The first term accounts for LTE thermal emission according to the Planck Func-
tion, while the second permits isotropic scattering. Thomson scattering of pho-
tons by free electrons is a familiar process which can be described in this fashion.

To determine the emissivity in the laboratory frame, ην(n) we proceed as
we did for the opacity by first using the transformation formula

ην(n) =
(

1 + 2
u · n
c

)
[κ0(ν′)Bν′ [T

′] + σ0(ν′)J ′ν′ ] ,

and then expressing the quantities in square brackets in terms of the photon
characteristics in the laboratory frame. The thermal emission term can again
be Taylor series expanded about ν. We again retain terms of order u/c, and
are helped by the fact that the discrepency between the temperatures in the
laboratory frame and the comoving frames differ to leading order by u2/c2,
hence we can set T ′ = T in the Planck Function. The scattering term is more
complicated owing to the presence of the mean intensity in the comoving frame:

J ′ν′ =
1

4π

∮
dn′ I ′ν′(n

′) =
1

4π

∮
dn′

(
ν′

ν

)3

Iν(n).

Neglecting terms of order u2/c2 this simplifies to

J ′ν′ =
1

4π

∮
dn′

(
1− 3

u · n
c

)
Iν(n).

We now need to transform dn′ to dn. The fast and dirty way to do this is to
use the invariance of the volume element

νdνdn = ν′dν′dn′

to infer that

dn′ =
( ν
ν′

)2
dn .

The careful way to do this is to set up the integration over solid angles using u
as the polar axis and defining the polar angles ϑ for n and ϑ′ for n′. Then, the
aberration formula

n′ =
[
n
(

1 +
n · u
c

)
− u

c

]
+ · · · ,
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implies

cosϑ′ = cosϑ
(

1 +
u

c
cosϑ

)
− u

c
.

Either way, one finds

J ′ν′ =
1

4π

∮
dn′

(
1− u · n

c

)
Iν(n) = Jν −

1

c
u ·Hν + · · ·

correct to order u/c. Using the Taylor series expansion for the factor σ0(ν′) we
have, collecting all our results and omitting terms of order u2/c2

ην(n) = κ0(ν)Bν [T ] + σ0(ν)Jν −
1

c
σ0(ν)u ·Hν+

u · n
c

[
3κ0(ν)Bν [T ] + Jν

(
2σ0(ν)− ν dσ0

dν

)
− d

dν

(
νκ0(ν)Bν [T ]

)]
+ · · · ,

which combined with

χν(n) = κ0(ν) + σ0(ν)− u · n
c

[
κ0(ν) + σ0(ν) + ν

dκ0
dν

+ ν
dσ0
dν

]
+ · · · .

completes our specification of the right side of the transfer equation in the labo-
ratory frame. Pause and savor the result—we have journeyed a long way to get
here! The velocity-dependent contributions are rich in physics and implications.

Although we have provided a basic working program for the source function,
we have not said anything about the opacity up to this juncture. Like the
electrical conductivity, this is a very complex microscopic calculation involving
all sorts of issues like material composition, degree of ionization and so forth.
Again, in keeping with our philosophy, the best approach is to provide you with
some working rules of thumb that will not get you into terrible trouble. If you
need to do better, then you need to look into the microphysics.

In any case, a fairly careful consideration of the transfer of radiation in astro-
physics suggests that there are three distinct sources of opacity which dominate
at low (3000 K ≤ T ≤ 8000 K), intermediate (2 × 104 K ≤ T ≤ 107.5 K) and
high (T ≤ 107.5 K) temperature regimes. At high temperatures, things are the
simplest, since most elements are fullly ionized and scattering from free elec-
trons dominates the opacity. At intermediate temperatures bound-free (and to
a lesser extent free-free) absorption/emission of photons by atoms and ions is
much more important than scattering from free electrons (which are starting
to become scarcer as the temperature decreases). First ionization of most ele-
ments is still fairly complete. The formula used here is named after Kramers
who was the first to attempt to derive it. And finally, at the lowest temper-
atures, in what must have struck people as a cruel twist of fate, bound-free
absorption/emission off the negatively charged anion of Hydrogen, H−, is the
leading source of opacity!

Ingenious fits have been derived for these quantities in terms of three compo-
sitional parameters, X,Y , and Z: the fractional abundances of Hydrogen (X),
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Helium (Y ) and everything else (Z), which must sum to one, X + Y + Z = 1.
For the solar atmosphere we can use X = 0.7381, Y = 0.2485 and Z = 0.0134.

Here they are:(
χ

ρ

)
H−
≈ 1.1× 10−25Z1/2

(
ρ

1 gm cm−3

)1/2(
T

1 deg K

)77/10

cm2 gm−1 ,

and, yes, that is 77/10,(
χ

ρ

)
Kramers

≈ 4×1025(1+X)(Z+0.001)

(
ρ

1 gm cm−3

)(
T

1 deg K

)−7/2
cm2 gm−1 ,

(
χ

ρ

)
Thomson

≈ 0.2(1 +X) κR(ρ, T ) cm2 gm−1 ,

where

1

κR(ρ, T )
≡

[
1 + 2.7× 1011

(
ρ

1 gm cm−3

)(
T

1 deg K

)−2][
1 +

(
T

4.5× 108 deg K

)43/50
]

is a relativistic correction which accounts for the fact that the Thomson cross
section goes over to the Klein-Nishina cross section when the energy of the
photon starts to become comparable to the rest mass of the electron. And, by
the way, the scattering is no longer isotropic in the rest frame of the electrons.

Finally for those of you who really like to work in cold environments, between
1500 K and 3000 K, molecules like H2O and CO provide most of the opacity
and the requisite formula is again very simple(

χ

ρ

)
H2O,CO

≈ 0.1 Z cm2 gm−1 .

As you notice, there is a gap in our formulae. Between 8000 K and 2×104 K
it is necessary to interpolate between the H− and Kramers opacities. And this is
particularly difficult because Kramers assumes complete ionization of the major
constituents, while partial ionization applies in this temperature gap. One of
the previous homework exercizes in Act I Scene 4 allows you to use MURaM to
carry out this interpolation. Otherwise, there is no recourse except to dig into
the literature on opacity tables.

Notice that Thomson scattering can be retained all the way into the inter-
mediate temperature regime and the gap provided we use

0.2(1 +X) =
NeσT
ρ

where

σT =
8π

3

(
e2

mec2

)2

= 6.6525...× 10−25 cm2
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is the Thomson cross section. The right side of the previous equation, where
Ne is the electron number density [dimensions: cm−3], is always true, while
the right side is correct when there is full ionization of Hydrogen. Hence, as
the temperature decreases toward 104 K and below, the left side of this equa-
tion becomes increasingly inaccurate as the few free electrons are provided by
Sodium, Potassium and Iron, and Hydrogen is actually working at cross pur-
poses by populating the H− anion with some of these electrons donated by the
low ionization potential metals.

4. Transport: Know Who’s Carrying the Energy vs Momentum
Here are some useful expressions for the transport coefficients for viscosity

µ = 1.2× 10−16
(

T

1 deg K

)5/2

gm cm−1 sec−1 ,

and thermal conduction

κ = 2× 10−6
(

T

1 deg K

)5/2

gm cm sec−3 deg K−1 .

They are valid for fully ionized Hydrogen, but will work reasonably well under
solar atmospheric conditions. If you are working in the neutral part of the
Earth’s atmosphere, the following approximation is not bad,

κ = 102

[
43.8 +

1

20

(
T

1 deg K

)
+ 16590

( p

1 bar

)( T

1 deg K

)−1]
gm cm sec−3 deg K−1 .

To compare the efficacy of thermal conduction and viscosity in transporting
energy, we form the dimensionless number

|u · �|
|� · ∇T |

≈ µu2

κT
= 6× 10−11

(
T

1 deg K

)−1(
u

1 cm/sec

)2

,

which indicates that except at very high flow speeds and extremely low tempera-
tures, viscosity is less important than thermal conduction. (For those who relish
dimensionless numbers, this is essentially the product of the Prandtl Number
and the square of the Mach Number.) For example, let’s take T = 105 K where
Hydrogen is fully ionized, then we need flow speeds u ≈ 0.01c in order that this
ratio is close to one. The reason for this is that free electrons are very efficient at
carrying energy, but it requires the less mobile protons to carry the momentum.
In thermal equilibrium, the proton thermal speed is smaller than the electron
thermal speed by

√
me/mp ≈

√
1836 = 43.

Conversely for an ideal gas composed of neutral Hydrogen, say, this imbal-
ance is not so lopsided, because the same particle, the Hydrogen atom, has
to transport both the energy and the momentum. This underscores the im-
portance of understanding the basic microphysics of your material before you
decide which terms to keep and which to discard.
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5. Summary
This Scene has provided a quick and dirty approach to closing our RMHD

equations by deriving some rules of thumb for estimating {δ,J| χν , ην | p, T,�, �}.
This is microphysics pure and simple. It is a whole other course in fact.

And it brings down the curtain on our second Act of this Opera.
The two equations to take away from all of this are the expressions developed

in §3 for what the emissivity and the opacity look like in the laboratory frame if
they are supposed to be isotropic in the comoving frame. Each comes equipped
with terms proportional to the fluid velocity u. Had we gone beyond the first
order in u/c, there would be terms quadratic in u as well. Luckily, for my ability
to LATEX these equations, we stopped where we did. In any case, practically, if
one needs terms at this order, one should be treating the problem from a fully
relativistic formulation to begin with.

You have now, in the immortal words of my late father, enough information
to be able to hang yourself—figuratively speaking of course. Well, at any rate,
you have enough information and insight on astrophysical systems where gravity,
radiation and large-scale electromagnetic fields play meaningful roles, to be
able to assess any problem you come across and make some sensible decisions
about how to ascertain solving the questions that such systems pose. You
may not actually be able to answer those questions—such systems can be very
complicated as we have seen—but what you will not do is make the mistake of
handling them incorrectly. And this, my friends, is actually quite a remarkable
talent to have. You have many colleagues who do not share this talent with
you. Use it well.

In the third Act, which follows, therefore, I present no libretto for you.
Instead, I will share some references to the small sample of problems which I
will treat in the lecture. But you can write the libretto yourself at this point,
and my assistance is no longer required. Congratulations!

But, P.S., don’t skip the Appendix as a critical final plot twist is revealed...

6. Exercises
None! Take a break...you earned it.

7. Further Reading
The classic reference on transport coefficients for astrophysical plasmas is

[S 6] Lyman Spitzer, Jr., Physics of Fully Ionized Gases, 2nd Edn, (New York,
NY: John Wiley & Sons; 1962), xii+176,
which is dated, out-dated and has been superseded on so very many fronts. But
all of these advances post-Spitzer require that one invest significant time and
effort in understanding the microsphysics. Parker’s Conversations [P 3] comes
closest in spirit to Spitzer’s approach of getting the most out of a minimal in-
vestment in machinery and formalism. Both Shu [S 1] and Mihalas & Mihalas
[MM 1] also try to stay out of the weeds on this topic. For machinery, formal-
ism, and weeds, Gombosi [G 1] and Vincenti & Kruger [VK 1] are good places
to start.

Speaking of weeds, the computation of opacities and effective equations of
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state (which you will notice we quietly avoided in this Scene) for different ad-
mixtures of elements is an entire industry on its own. Try, for example,
[BL 1] P. Burger & H.J.G.L.M. Lamers, “Analytical espressions for the Rosseland-
mean opacity and electron scattering in stellar atmospheres”, Astronomy & As-
trophysics, 218, 161-6. 1989.
If you look through the Collected Bibliography, several of the entries will stand
out as places where you can begin to get a sense of the scope of this industry.
Because I have not mentioned them so far, and they are deserving of mention
to be sure, the two volumes
[CG 1] John P. Cox (with R. Thomas Giuli), Principles of Stellar Structure.
Volume I: Physical Principles. Volume II: Applications to Stars., (New York, NY:
Gordon and Breach Science Publishers; 1968), xxliv+1327,
are an essential component of any astrophysicist’s library. Their importance
can be appreciated from the following anecdote. Professor David B. Guenther,
now of St. Mary’s University in Halifax, Nova Scotia, and I were both postdocs
together in the early 1980’s in Boulder. David spied the two volumes of Cox’s
magnum opus on my shelf and offered me in trade the entire 8 volumes (volume
4 came in two separate bindings at the time—so this is a 9:2 trade) in hardback
of Landau & Lifshitz’s Course of Theoretical Physics. Speaking of which, I have
not mentioned this series, along with the 9th volume entitled Physical Kinetics,
where Landau goes missing in action. They are amazing of course and you
should own them all and read them from cover to cover. My professors at
the University of Chicago were fond of saying that not a single word in these
volumes (this, being before the 9th appeared) can be attributed to Landau,
and not a single idea can be credited to Lifshitz. Perhaps they were being too
harsh. Incidentally, there is a four volume set that covers the same material by
another Russian named Benjamin G. Levich, a student of Lev Landau’s, entitled
Theoretical Physics published in 1971 by Elsevier, which is in some sense even
nicer than the full gamut of Landau & Litshitz.

The so-called calculus of variations is a beautiful subject that has many
applications. As physics students we encounter it first in mechanics, when the
concepts of Lagrangeans, Hamiltonians and principles of least action emerge
from Newton’s quasi-engineering approach of driving accelerations with forces.
And, of course, we carry these concepts over into quauntum mechanics when
we wite HΨ = EΨ. From a purely mathematical viewpoint, however, the
calculus of variations has to do with finding the extrema of functionals, which
are mappings from vector spaces of functions, usually a Hilbert Space meaning
that there is an inner product defined on the function space, to a scalar field,
like R. For this mathematical approach, try Chapter IV of
[CH 1] R. Courant & D. Hilbert, Methods of Mathematical Physics. Volume I.
(New York, NY: Interscience Publishers; 1953), xv+561,
and
[A 1] A.M. Arthurs, Complementary Variational Principles, (Oxford, UK: Claren-
don Press; 1970), ix+95.

A book that is extremely rich in content, and which ties together so many
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of the different concepts we have introduced in this Opera is
[A 2] V.I Arnold, Mathematical Methods of Classical Mechanics, (New York,
NY: Springer-Verlag; 1984), x+462.

Finally, variational methods are discussed by [DK 1], [GKP 1], [GS 1], [K
1], [KD 1], [O 1], [P 8], [R 1], [S 1] and [W 1].

If you are still reading these notes at this point, you have earned a treat.
J.B.—or John Bradbury—Sykes was a man of many talents: astrophysicist,
crossword puzzle champion, linguist and translator. He painstakingly translated
the entire Landau & Lifshitz series, into English, for example. And if you have
an eye for detail, you will notice that he helped Professor Davison with his book
on neutron transfer. J.B. also had an exceedingly fine sense of humor, which
led to the following hilarious parody of a typical Chandrasekhar paper:
[C 5] S. Candlestickmaker, “On the imperturbability of elevator operators.
LVII”, Quarterly Journal of the Royal Astronomical Society, 13, 63-6, 1972.

8. Appendix A: Variational Principles & Energy Principles
This topic needed to go somewhere in the first two Acts of this Opera and

somehow it ended up here. It is not particularly essential to anything that
comes before or after, but it is something that one needs to be familiar with at
a minimum. So, consider this the minimum.

Consider a Hilbert space, H, whose elements are functions y : [a, b] → R,
where [a, b] = {x ∈ R|a ≤ x ≤ b, a, b ∈ R}. A functional J [y] on H is a mapping
J : H → R. Of interest here, are functionals of the form

J [y] ≡
∫ b

a

dx L(y,y′, x) ,

where y′ ≡ dy/dx. So the functions in our Hilbert Space must be (twice) differ-
entiable (at a minimum). We call L the density associated with the functional
J , and require that it, too, be differentiable with respect to its three arguments.
A concrete example would be

L =
1

2
(y′

2
+ y2) ,

which is differentiable any number of times.
For a given {J,L} we now seek those elements y ∈ H which render J sta-

tionary with respect to small variations around y, subject to the condition that
y(a) = α and y(b) = β. Let z be such an element, and ξξξ some other element in
H. If we put y = z + ξξξ in the above expression for L we have

L =
1

2
(z′

2
+ z2) + z′ξξξ′ + zξξξ +

1

2
(ξξξ′

2
+ ξξξ2) .

Substituting this expression in the definition of the functional, we have

J [z]− J [ξξξ] =

∫ b

a

dx (z′ξξξ′ + zξξξ) + z′(b)ξξξ(b)− z′(a)ξξξ(a)−
∫ b

a

dx (z′′ − z)ξξξ .
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Since J [ξξξ] = O(ξξξ2), the right side of this equation must vanish for J to be
stationary for deviations from the desired solution z. Because y(a) = z(a) = α
and y(b) = z(b) = β, it follows that ξξξ(a) = ξξξ(b) = 0.

Since ξξξ is otherwise arbitrary, we require(
d2

dx2
− 1

)
z = 0

subject to the boundary conditions

z(b) = β, z(a) = α .

The solution is

z = β
sinh(x− a)

sinh(b− a)
+ α

sinh(b− x)

sinh(b− a)
,

and because J [ξξξ] ≥ 0 for arbitrary ξξξ, this z in fact minimizes the functional.
For an arbitrary, L(y′,y, x), we have

J [z + ξξξ] =

∫ b

a

dx ξξξ

(
∂L

∂z
− d

dx

∂L

∂z′

)
+

1

2!

∫ b

a

dx

(
ξξξ′

2 ∂2L

∂z′2
+ 2ξξξ′ξξξ

∂2L

∂z∂z′
+ ξξξ2

∂2L

∂z2

)
+

1

3!

∫ b

a

dx

(
ξξξ′

3 ∂3L

∂z′3
+ 3ξξξ′

2
ξξξ
∂3L

∂z∂z′2
+ 3ξξξ′ξξξ2

∂3L

∂z2∂z′
+ ξξξ3

∂3L

∂z3

)
+ · · ·

where the structure of the remaining terms in the “· · · ” is clear. For our concrete
example above, the third and all higher terms vanish. J is stationary if the first
term is zero, which yields the so-called Euler-Lagrange Equation:

∂L

∂z
=

d

dx

∂L

∂z′
,

a second-order ordinary differential equation for z, subject to the boundary
conditions

z(b) = β, z(a) = α .

The sign of the second term indicates whether this stationary point is an
extrema (if it is positive or negative definite for all ξξξ) or a point of inflection.
There is a very beautiful theorem which provides a necessary requirement for
the second term to be positive defiinite, called Legendre’s Condition. And the
third term can be used to study wave-wave coupling problems!

This is the simplest of all variational problems. We can generalize this
discussion in three different directions (simultaneously in fact if desired) to
create a richer and more complicated theory. First. we can increase the order
of the derivatives of y which appear in the density

L(y(n),y(n−1), · · ·y′′,y, x) .
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Second, we can increase the number of independent variables, x→ {x1, x2, · · ·xm}
and y′ → {y′1,y′2, · · · ,y′m}, where y′m ≡ ∂y/∂xm, which appear in the den-
sity,

L(y′1,y
′
2, · · · ,y′m,y, x1, x2, · · ·xm) .

Third we can increase the number of dependent variables that appear in the
density y→ {y1,y2, · · ·yi}

L(ẏ1, ẏ2, · · · ẏi,y1,y2, · · ·yi, x) .

where ẏi ≡ dyi/dx. The replacement “y = z+ξξξ” now yields a very complicated
sum for J and a rich variety (and number!) of Euler-Lagrange Equations.

The variational approach to RMHD employs a combination of the last two of
the three generalizations. In place of the single independent variable x above, we
use the full 3+1 (that is four) dimensional space-time, so dx→ dxdt. In place of
the single dependent variable y we use the three components of the Lagrangean
mapping Xi(x

′, t), that assigns a fluid element originally at position x′ at time
t = 0 to a position x = X(x′, t) at some later time t ≥ 0. So, our density may
contain up to 4 independent variables, 3 dependent variables, 4×3 first partial
derivatives of the dependent with respect to the independent variables, for a
grand total of 19 arguments.

With this in mind, it then comes as a major surprise (to me at least) to
discover than RMHD can be obtained by finding the extrema of the functional

JRMHD[X] =

∫
dxdt

{
1

2
ρ|u|2 − ρ(e+ Φ)− 1

8π
(|E|2 + |B|2)− c

4π
J

}
,

over some appropriate subset of space-time. The governing equations for X(x′, t)
follow from the analogous Euler-Lagrange Equation. More amazing yet, is that
the stabiity of an extema, say X = Z, of this functional can be determined by
analyzing the second term in the analogous expansion of JRMHD[Z + ξξξ]. Such
an analysis is sometimes called the energy principle particularly for MHD. And,
better yet, the third term in the analogous expansion can be used to determine
mode-mode coupling between stable perturbations (i.e., waves) that live on the
extrema solution Z!

All really good Opera’s often have that “aha!” moment near the end of the
second Act. Ours is no exception. The “aha!” moment for us is the realization
that the expression on the right of the equation

HRMHD =
1

2
ρ|u|2 + ρ(e+ Φ) +

1

8π
(|E|2 + |B|2) +

c

4π
J

is immediately recognized as the total energy density of the material, gravita-
tional, electromagnetic, and radiation fields! The quantity on the left of this
equation is then the Hamiltonian Density corresponding to the Lagrangean Den-
sity,

LRMHD ≡
1

2
ρ|u|2 − ρ(e+ Φ)− 1

8π
(|E|2 + |B|2)− c

4π
J .
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Therefore, the internal material energy, gravitational, electromagnetic and ra-
diation fields can be thought of as storing potential energy that can be turned
into kinetic energy of the material and vice-versa! Pause and reflect upon this
poignant moment as the curtain drops on Act II.

While all of this is true, the apparent simplicity of this amazing sequence of
plot revelations is unfortunately illusory. To express any particular term that
appears in the RMHD Lagrangean Density

LRMHD ≡
1

2
ρ|u|2 − ρ(e+ Φ)− 1

8π
(|E|2 + |B|2)− c

4π
J

in terms of X and all of its partial derivatives is not a trivial undertaking.
Remember, from Act I Scene 1, that the density varies as the inverse of the
determinant of the Jacobian J of the mapping, ∂Xi/∂x

′
j ,

ρ(x′, t) =
ρ0(x′)

J(x′, t)
=
ρ(x′, 0)

J(x′, t)
,

and if
∂B

∂t
= ∇× (u×B) ,

then

Bk(x′, t) =
Bj(x

′, 0)

J(x′, t)

∂Xk

∂x′j
,

where B0(x′) = B(x′, t = 0) is the initial magnetic field. While

u(x′, t) =
∂X

∂t
,

the derivation of the required expressions for the internal energy per unit mass,
the gravitational potential, and the mean intensity are much more elaborate.
Notice too that all of the expressions we have derived so far depend upon the
initial set of coordinates x′, suggesting that we may wish to transform the
integration domain from the initial to the current position of a fluid element,

dx =
1

|J(x′, t)|
dx′ .

To pursue these matters further, consult Ogilvie [O 1], Keppens & Demaerel
[KD 1] and Webb [W 1], for example.
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