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1. Introduction
This Scene is somewhat more mathematical and much more philosophical in

nature than the previous five. It is predicated upon our assertion that it is always
best to work out the microphysics in the rest, or comoving frame, of the fluid and
the experimentally derived knowledge that observers in motion relative to one
another agree on some things but have different opinons on, and measurements
of, other things. Therefore it is essential that we know how various quantities
measured in the comoving frame transform into the laboratory frame where we
are solving our equations of RMHD.

If we get these frame or coordinate system transformations wrong, then, at
best, we end up solving the wrong problem, correctly. A pretty useless endeavor.

The required transformation are, in fact, the Lorentz Transformations of
special relativity. This Scene attempts to explain and motivate why in fact these
are the correct and indeed the only transformations which relate quantities in
the comoving and laboratory frames. To do so, it is necessary to develop some
background in the mathematics of groups, algebraic fields, and vector spaces.
With these tools and their logical consequences, the Lorentz Transformations
emerge in a very straightforward and in some sense inevitable fashion.

Therefore, the reader who is quite content to accept that the Lorentz Trans-
fomations are the de facto means to connect physical quantities measured in the
comoving and laboratory frames can simply pass over this Scene and move on
to the next without serious repercussions.

2. Vector Spaces
The three space dimensions that we live in, up-down, north-south, east-west,

say, is a familiar example of a three-dimensional Euclidean space. In this section
we set about answering the question of what, precisely, is it about our three-
dimensional world that makes it a Euclidean space (as opposed to some other
space).

Our spatial surroundings is an example of a mathematical structure called
a vector space. The elements, or vectors, of the vector space are simply all the
possible locations, or points, in this space. In keeping with our notation, we will
denote individual points by boldface Latin letters, say, x, y and so forth, but
we need not insist that x = (x1, x2, x3). This is simply a particular concrete
representation of x in some coordinate system derived from a specific basis. We’ll
get to these concepts shortly. But, in fact, vector spaces can be very flexible
and quite abstract in terms of the things they represent and describe. A vector
space is a set V of elements, x, y, z, etc, that comes equipped a single binary
operation, called vector addition, denoted by +, that associates with any pair
of vectors x and y a third vector z = x+ y = y + x which is also an element of
the vector space V.

1



Indeed, mathematically speaking, for any set S, with elements x, y, z, etc.,
there are properties, or laws, that one would like any binary operation—denoted
here generically by ◦—to possess. In order of increasing sophistication, we can
list the following familiar laws:

I . Closure Law : ∀ x, y ∈ S, x ◦ y ∈ S ,

II . Associative Law : ∀ x, y, z ∈ S, x ◦ (y ◦ z) = (x ◦ y) ◦ z ,

III . Identity : ∃ e◦ ∈ S |, ∀x ∈ S, e◦ ◦ x = x ◦ e◦ = x ,

IV . Inverse : ∀ x ∈ S, ∃ x◦ ∈ S | x ◦ x◦ = x◦ ◦ x = e◦ .

V . Commutative Law : ∀ x, y ∈ S, x ◦ y = y ◦ x .

Read the symbol ∀ as “for every”, ∃ as “there exists”, ∈ as “contained in”,
and | as “such that”. A set which is endowed with a single binary operation
satisfying the first four of these laws is called a group. And if the fifth law is
also valid, it is called a commutative, or an Abelian group. You can convince
yourself that the set of all real numbers, R, is a group under both addition and
multiplication separately (provided you set 0 aside when considering multipli-
cation only), but that the set of all integers, Z, is a group under addition only
but not multiplication.

A vector space is therefore a group with respect to vector addition. This
is a recurring theme in mathematics, viz., many mathematical structures can
be viewed as simultaineously possessing within them other, generally less so-
phisticated mathematical structures. Vector addition is a commutative binary
operation because the order in which the vectors are added does not matter.
Vector addition is also associative, in the sense that (x + y) + z = x + (y + z).
There is a special unique element of the vector space, denoted by 0, and called
the identity vector, with the property that 0 + x = x, for every vector x. The
last property of vector addition is: for every x 6= 0 there is a unique vector,
which we will suggestively write as y = −x such that x + (−x) = 0, called the
inverse of x. Obviously, x is the inverse of −x. These properties satisfied by
vector addition are simply another way of saying that a vector space is, or has
the structure of, an Abelian or commutative group.

A vector space, however, is richer in its algebraic structure than simply
being an Abelian group. Every vector space comes equipped with a distinct set
of auxiliary objects, called an algebraic field, of scalars. Here, scalars will be
represented by Greek letters, α, β, and so forth to distinguish them from the
elements of the vector space.

A field is an algebraic structure, like a group, but one which has two binary
operations. A set S, with elements x, y, z, etc., and two binary operations,
dentoted generically by ◦ and �, is an algebraic field, if S is an Abelian group
with respect to ◦, and S with the identity e◦ omitted, is also an Abelian group
with respect to �, and, moreover

VI . Distributive Law : ∀ x, y, z ∈ S, x� (y ◦ z) = (x� y) ◦ (x� z) ,
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VII . Cancellation Law : ∀ x, y ∈ S, x� y = e◦ ⇐⇒ x = e◦ ∧ y = e◦.

Notice that e� 6= e◦, so that the two identity elements are distinct.
The real numbers—with the associations + = ◦, × = �, e◦ = 0, and

e� = 1—are an algebraic field, and they are usually the scalar field of choice for
most vector spaces, and especially for Euclidean spaces. For some set of vectors,
say V, to be a vector space over the field of scalars F, the following must be true

for all x,y ∈ V and α, β ∈ F, αx + βy = βy + αx ∈ V .

That is, not only can we can add vectors together, but we can also multiply
them by scalars from our field F and the outcome of these operations has to be
another vector in our vector space. This ability to “stretch” a vector out, or
turn it around by multiplying it by a positive or negative scalar is the essential
aspect of a vector space that sets it apart from other algebraic structures.

The identity vector 0 ∈ V must not be confused with the scalar 0 that lives
in F, however, it certainly can be created by using 0, as in

0 = 0x , for all x ∈ V .

Likewise, for every x ∈ V , the unique additive inverse y = −x = −1x, in terms
of scalar multipliation by the additive inverse of the multiplicative identity from
the field F . The final property necessary for the definition of a vector space is
the distributive law

α(x + y) = αx + αy , (α+ β)x = αx + βx .

If the points around us in our three-dimensional world are the vectors, and
the real numbers are the scalars, and the usual addition of vectors is the binary
operation of addition, then our three-dimensional space is clearly a vector space.

A basis for a vector space, B = {e1, e2, ..., en}, is any maximal set of elements
selected from V such that the only solution to the equation

α1e1 + α2e2 + · · ·+ αnen = 0,

with the αi selected from F, is α1 = α2 = · · · = αn = 0, and, if any other vector
en+1 is appended to B then this equation has solutions for some αi 6= 0 ∈ F .
The integer, n, is the dimension of the space. Every basis of an n-dimensional
vector space must have n elements. It follows that every vector b ∈ V has a
unique representation in terms of n scalars in each basis, B:

b = β1e1 + β2e2 + · · ·βnen ,

and the scalars (β1, β2, ..., βn) are the coordinates of b reckoned in this particular
basis.

For every basis, B, we can associate with each element of b ∈ V a unique
(ordered) set of n-scalars from F, and so every n-dimensional vector space over F
is equivalent to the cartesian product of F⊗F⊗··· ≡ F

n. Thus, we often designate
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our three-dimensional Euclidean Space as R3, and as a preferred (selected from
the large number of) basis we take the ei to be (unit) vectors in the three
orthogonal (Cartesian) directions (up, east, north). However, it is worth noting
that any basis is as good as any other, and there are infinitely many to choose
from. The concept of many independent bases is a fundamental aspect of vector
spaces that distinguishes them from other algebraic structures like groups and
fields.

To make a vector space, V, a Euclidean vector space, it is necessary for us
to take F = R, and to create some additional geometric structure by defining
an inner product, or equivalently, a bilinear functional from V × V → R. We’ll
use a dot between the two boldface vectors to denote this inner product. We
require that the inner product satisfy:

x · y = y · x

(αx + βy) · z = αx · z + βy · z

x · x ≥ 0 , x · x = 0 ⇐⇒ x = 0 ,

for all α, β ∈ R and all x,y, z ∈ V.
A vector space equipped with an inner product, and indeed there can, like

bases, be many inner products to choose from, is called an inner product space.
An inner product space is necessarily a normed space, because the inner product
can be used to define a norm, which is a mapping from V → R

+ according to

|x| ≡
√
x · x .

Like inner products, there are many additional choices for norms besides this
one. Also, it is possible to have vector spaces that are normed but which do not
have an inner product. A norm must satisfy three conditions,

|x| = 0 ⇐⇒ x = 0 ,

|αx| = |α||x| ,

and the triangle inequality

|x + y| ≤ |x|+ |y| .

A Euclidean vector space is therefore a normed inner product space where
the norm is defined in terms of the inner product as above. A norm constucted
from an inner product is a Euclidean Norm, and this is precisely what makes
our three-dimensional world Euclidean. The Cauchy-Schwarz inequality follows
directly from the definition of our norm and inner product,

|x · y| ≤ |x||y|

This enables us to define an angle θ between two vectors x and y by

cos θ ≡ x · y
|x||y|

.
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We say two vectors are orthogonal if their inner product is precisely 0. A collec-
tion of vectors is said to be orthonormal if they are all mutually orthogonal and
have a norm equal to 1. Any basis can be converted into an orthonormal basis
in any number of ways. Orthonormal bases are particularly useful because they
give rise to orthogonal coordinate systems for vector spaces equipped with an
inner product.

A normed space is necessarily also a metric space, because the norm can
be used to define a measure of distance, d(x,y) ≡ |x − y|, between any two
vectors in the vector space. The distance between two vectors, is a mapping
from V × V → R

+, which satisfies:

d(x,y) = d(y,x) ≥ 0 ,

d(x,y) = 0 ⇐⇒ x = y ,

and
d(x, z) ≤ d(x,y) + d(y, z) .

With the concepts of norms, distances and angles, we now have rudiments of
geometry and geometrical constructions in place as well as the ability to define
topologies and topological concepts essential for doing calculus and analysis.

3. Euclidean Geometry
The mathematician Felix Klein felt that geometry was essentially the idea

of what sorts of things are invariant, or preserved, under a specified set of lin-
ear symmetry transformations from a given space to itself. The type of space
you have is specified once you tell me what all the linear transformations—or
symmetries—are, and what are the aspects of the space that these transforma-
tions preserve.

A linear transformation from an n-dimensional vector space Vn(R) to another
m-dimensional vector space Um(R), say A,B,C, etc., which we can write as

A : Vn(R)→ U(R)

or
A : x 7→ y or Ax = y, for x ∈ Vn(R) and y ∈ Um(R),

satisfy the property
A(αx + βz) = αAx + βAz ,

for all x and z in V.
So first, it is essential that the two vector space share the same auxiliary set

of scalars, here R, but as usual, any field F will do. Second, remember that both
Ax and Az are two vectors that live in the vector space U . So this definition is
a statement about what must always be true in the image vector space.

Of the many linear transformations available to us, the ones from a vector
space V to itself are of particular interest. And of these, the subset of all linear
transformations which are one-to-one,

Ax = Ay ⇐⇒ x = y ,
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and onto
∀x,∃y such that x = Ay ,

form a group, GLn[F], called the general linear group of dimension n over the
vector space Vn(F). Since, as we have demonstrated, Vn(F) and F

n are con-
nected by an isomorphism, the group applies to all Vn(F) and the reference to
any particular Vn(F) can be omitted.

The binary operation for the group GLn[F], whose elements we will continue
to denote by italicized upper case Latin letters, A,B,C, etc., is composition, or
successive application of linear transformations:

Cx = B(Ax) = (AB)x .

The unique identity linear transformation is

Ix = x

and the one-to-one and onto properties imply that if

x = Ay

then there is another unique element in GLn[F], call it A−1 such that

y = A−1x .

Which completes our demonstration that GLn[F] is in fact a group.
Although

AA−1 = A−1A , and AI = IA

for all A, the General Linear group is not commutative. Finally, we can deduce
that for all A ∈ GLn[F],

A0 = 0

[hint: use the fact that 0 = 0x for any x].
If B is any basis for Vn(F), then we can associate with each A ∈ GLn[F] a

unique set (or array) of scalars

{Aij}ni,j=1

drawn from F such that, if

b = β1e1 + β2e2 + · · ·βnen ∈ V(F),

then
g = Ab

implies
g = γ1e1 + γ2e2 + · · ·γnen ∈ V(F),

where
γi = Aijβj OR γi = Ajiβj .
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Different authors will take one or the other of these two depending upon whether
they want to think of the Aji as elements of a matrix with j indexing rows and i
indexing columns—corresponding to the second of the two choices above. We’ll
go with the second choice to remain consistent with matrix theory.

But, in either case, every basis B generates a unique representation of A in
terms of a square array—or “matrix”—of scalars drawn from F. Because A is
one-to-one and onto, the deteminant of this matrix det[A] 6= 0 . Therefore the
matrix array in invertible and the inverse is the representation of A−1 in this
basis! In Act I Scene 1, we provided an explicit formula for the determinant of
A when n = 3.

The Special Linear Group SLn[F] is a subset, and indeed a subgroup (mean-
ing to say it can stand along on its own as a group), of GLn[F] with the property
that in any basis, A ∈ SLn[F] ⇐⇒ det[A] = 1. These linear transformations
preserve the volume and orientation of any parallelpiped formed by three non-
colinear vectors x, y and z.

They do not, however, preserve the angles between these vectors or distances.
The subset (and again, subgroup) of SLn[F] which achieves this desired result
is the Special Orthogonal Group SOn[F], with the additional restriction that the
transpose of the matrix A, witten AT is also the inverse of A. That is if A is
associated with the array of scalars {Aij} then A−1 is associated with the array
{Aji}.

SOn(R) is also known as the n-dimensional rotation group, because it de-
scribes rigid body rotations about the origin 0. It’s larger sibling, the Orthogonal
Group On[R] relaxes the requirement det[A] = 1 to det[A] = ±1. The orthogo-
nal group continues to preserve angles, and distances, but not orientation, as it
includes reflections through various 2-dimensional planes that pass through the
origin.

What makes our space Euclidean, of course, is the notion of angle, distance
and orientation, which everyone, no matter how they set up their local coor-
dinate system, should agree upon. And so returning to Klein’s program, the
Special Orthogonal Group SO3[R] of rotations in three dimensions is (part of!)
the symmetry group of Euclidean three-space—it is the largest subset of all the
general linear transformations from our Euclidean three-space to itself, which
preserve angles, distances and orientation. Stated another way, individuals can
orient their coordinate axes, or choose their bases, however they wish, and they
will all agree on things like the sum of the angles of a triangle adding up to
180 degrees, parallel lines never meeting, and so on. This is a very useful and
powerful property, because we do not want to be slaved to using someone else’s
coordinate system and axes to carry out our investigations.

We said “part of” above, because despite its immense size, all the linear
transformations of GLn[R] leave the origin 0 fixed. Our space is not just
isotropic—in the sense that we can orient our axes any way we like—but it
is also homogeneous in that it extends indefinitely in all directions and so there
really is no priviledged spot that all can agree deserves to be called the origin.
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An affine transformation, such as,

ϕy : x 7→ x + y

for any fixed y ∈ V = R
n also preserves distances, angles and orientation, but

simply shifts the 0 by an amount y. The collection of all φy, if we call this
Tn[R] = R

n the n-dimensional group of affine translations, form a group under
the operation of composition of translations. The identity affine transfomation
is

ϕ0 : x 7→ x + 0 = x = Ix

and has the same effect on x (specifically, no effect) as the identity element
I ∈ SOn[R]. But otherwise these two groups SOn[R] and Tn[R] have no other
elements in common.

To construct the complete symmetry group of n-dimensional Euclidean Space,
the Euclidean Group En, we simply “join” these two groups together:

En = SOn[R]
⋃

Tn[R] .

Voilà!

4. Galilean Space-Time
Time, of course, adds another dimension to our experience. And so we must

add an orthogonal dimension to our Euclidean three-space, to create a four-
dimensional space-time. In so doing, we do not want to destroy or adversely
impact the Euclidean geometry of three-space which was so carefully constructed
in the previous section. This suggests that we will want to seek some additional
stand-alone group(s) that we can “join” to the rotations and translations. The
4-dimensional Euclidean Group, E4, by the way, cannot be the symmetry group
of Galilean Space-Time! (Why?)

So now we confine our attention to three spatial Euclidean dimensions, and
one time dimension. Our vector space for the Galilean space-time can be written
as the direct Cartesian product R3⊗R. With time come the notions of motion,
velocity, acceleration, jerk and so forth. In addition to coordinate axes and
origins, we will all have to work with “clocks” to measure time.

Newton’s formulation of dynamics is centered on the concept of accelera-
tion. Remember the mantra: objects remain in motion unless acted upon by
a force, then they are subject to acceleration, etc. And so acceleration needs
to be something that is left invariant by the symmetry group that describes
our Galilean space-time. Distance already is an invariant because of embedded
3-dimensional Euclidean geometry, and so this implies that time must be an
invariant as well. We can choose the origin of time however we like, so, we can
immediately add in the group T1[R] of affine time transformations

ϕτ : t 7→ t+ τ ,

for t, τ ∈ R by incrementing T3[R] → T4[R] or joining through a union, take
your pick.
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Velocities, however, need not be invariant under the transformation group.
Indeed, in the comoving frame, by definition, the fluid is at rest, but in the
laboratory frame the same fluid appears to be in motion. Consider, therefore,
the linear transformation

ψu : (x, t) 7→ (x− ut, t)

where u ∈ R
3. This linear transformation from R

3 ⊗ R to itself preserves dis-
tances, angles, orientation, and accelerations. The set of all ψu also form a
group. The inverse of ψu is ψ−u, and the identity is

ψ0 : (x, t) 7→ (x− 0t, t) = (x, t) .

Notice that this is the same identity as each of the following

I : (x, t) 7→ (Ix, t) = (x, t) ,

ϕ0 : (x, t) 7→ (x + 0, t) = (x, t) ,

ϕ0 : (x, t) 7→ (x, t+ 0) = (x, t) .

The set of all ψu is sometimes referred to as the boost group. We’ll give it
the label GB3[R] which stands for Galilean Boosts, in three directions—this is
not a standard notation but it serves our purposes here.

Therefore the full Galilean Group of symmetry transformations on a 3+1
dimensionsal space-time is

G = SO3[R]
⋃

T3[R]
⋃

GB3[R]
⋃

T1[R] ,

where we have added an additional copy of the translation group to account for
the fact that time is homogeneous and we can set the origin of time arbitrarily
as we did for the origin of our three-dimensional Euclidean space. The Galiliean
Group is the disjoint union of four subgroups: rotations in 3-space, translations
in 3-space, acceleration preserving boosts in 3(+1) space-time, and translations
in time.

The G group is called a continuous group, or a Lie Group, because it takes
(count ’em) ten continuous real variables to index its vast (uncountable in fact)
number of elements: 4 translational parameters, 3 boost parameters, and 3
rotation angles. Because the subgroup SO3[R] is not commutative, the overall
Galilean group is not commutative either, even though the other subgroups are
commutative within themselves.

The final step in the Klein program is the assertion, which we leave unproved,
that any two viable sets of space-time coordinates (x, t) and (x′, t′), say, for doing
Newtonian physics in this 3+1 space-time are connected by a unique element
(and its inverse) from the group G.

Nice!

5. Minkowski Space-Time
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Maxwell’s Equations, unlike Newton’s laws of motion and gravity, are not
invariant under the action of the Galilean Group. The simplest way to see this is
to recall from Scene 3 that the wave equations for the vector and scalar potentials
require that light propagate at the velocity c. This is true in any set of viable
spacetime coordinates one cares to employ. In otherwords, light travels at the
same speed c in every viable set of spacetime coordinates! To belabor the point
to perhaps tedium suppose that instead of working in the unprimed laboratory
frame of Scene 3, I choose to ride along at a uniform velocity on an Air Canada
flight from Denver to Montreal and use light to read a magazine on board the
plane. I don’t use your laboratory coordinates in Montreal (unprimed) but my
own (x′, t′). This is fine since there is an element of the Galilean Group of the
previous section that tells us how to translate my coordinates to yours (being
the unprimed ones). My Maxwell Equations are:

∇′ ·E′ = 4πδ′ , c∇′ ×E′ = −∂B
′

∂t′
,

∇′ ·B′ = 0 , c∇′ ×B′ = 4πJ′ +
∂E′

∂t′
,

and I follow through all the mathematical developments of Scene 3 with primes
on all my quantities (not c however!) and I end up with a wave equation for
photons (

∇′2 − 1

c2
∂2

∂t′2

)
φ′ = −4πδ′(x′, t′) ,(

∇′2 − 1

c2
∂2

∂t′2

)
A′ = −4π

c
J′(x′, t′) ,

which travel at c in my frame of reference. But this can’t be! Because velocities
are not invariant under Galilean boosts and you, in Montreal, have written out
all these equations without primes to describe the light in my airplane cabin
and you know the photons are travelling at c in your frame of reference, not
mine.

The resolution of this paradox is that Maxwell’s Equations as they are writ-
ten above, are not invariant in form under the action of the Galilean Group. If
we replace them by

∇′ ·E′ = 4πδ′ , c∇′ ×E′ = −∂B
′

∂t′
,

∇′ ·B′ = 0 , c∇′ ×B′ = 4πJ′ ,

or
∇′ ·E′ = 4πδ′ , c∇′ ×E′ = 0 ,

∇′ ·B′ = 0 , c∇′ ×B′ = 4πJ′ +
∂E′

∂t′
,

then we do have invariance under the Galilean Group! (Try it!) But, alas, we
don’t have any photons. So we have several options here. We get rid of photons
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(not good). We agree that in Montreal, for example, the Maxwell Equations
are what they are and all of us moving with respect to Montreal will need to
use different electromagnetic equations depending upon our velocity relative to
that city (not good either). We give up on the Galilean Group and go looking
for something else (not great, but better than the other two choices).

A closer look reveals that Maxwell’s Equations are in fact invariant under
the action of the transformations in the Galilean subgroups SO3, T3, and T1—it
is the boost group GB3 which causes the inconsistencies. It would be nice to
find a different subgroup for boosts that preserves both Newton and Maxwell,
but since we are restricted in our program to linear transformations there is
insufficient freedom to accomplish this. Therefore, you can have one, or you can
have the other, but, alas, you cannot have both.

The (3 dimensional) Lorentz “Group” of boosts, L, ensures that light travels
at the same speed c, in all viable coordinate systems, but, it causes accelera-
tions to appear to be different from coordinate system to system. The “group”
is unique up to an isomorphism. In otherwords there is one and only one set
of transformations which is a “group” and which accomplishes this desired ob-
jective. (The reason I am putting quotes around “group” will become clear
shortly.) The elements of the one-dimensional subgroup (no quotes are needed
here!) where all the action takes place are

ψu : (x, t) 7→
(
γ[x− ut], γ[t− ux/c2]

)
,

where

γ =
1√

1− u2/c2
.

Although it is slightly less obvious at first sight than it was for the Galilean
boosts, GB3, this set of ψu for u ∈ R is also a group, with ψ−u again being
the inverse of ψu and ψ0 being the identity element. Frequently these mappings
are called the Lorentz Transformations between the two coordinate (x, t) and
(x′, t′) ≡

(
γ[x− ut], γ[t− ux/c2]

)
.

The Lorentz Transformations leave the two components of x transverse to
u unaffected. So we can take account of this fact, by enlarging the scope and
dimension of the “group” elements:

ψu : (x, t) 7→
(
x + u{[(γ − 1)(u · x)/u2]− γt}, γ[t− u · x/c2]

)
,

where

γ =
1√

1− u2/c2
, u = |u| ,

and u ∈ R3, now.
We now find a very interesting thing—the collection of all linear transfor-

mations ψu, L, is not actually a group. There is an identity, ψ0 and ψ−u is the
inverse of ψu, but when u and v are not parallel to one another, then

ψvψu, ψuψv /∈ L ,
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however,

ψvψu, ψuψv ∈ L
⋃

SO3[R] .

The successive application of two nonparallel Lorentz Transformations is equiv-
alent to the combination of another Lorentz Transformation and a rotation from
SO3[R].

The full symmetry group of the Minkowski space-time, is the Poincaré
Group,

P = SO3[R]
⋃

L
⋃

T3[R]
⋃

T1[R] ,

where L by itself, while a subset, is not a subgroup—all the other subsets are
subgroups as well. For comparison

G = SO3[R]
⋃

GB3[R]
⋃

T3[R]
⋃

T1[R] .

Notice, too, that I did not give L a field argument R, because, afterall u is
restricted to the interior of an open ball in R

3 with a radius of c.
Like the Galilean Group, the Poincaré group also requires 10 continuous

parameters to uniquely determine each element. Finally, notice that in the
limit u� c, one recovers the elements of GB3 as the leading order behavior of
the elements of L.

This is an absolutely remarkable and important result, because it indicates
that our conventional notion of space-time, being heavily steeped in Newton
and Galileo, is an accurate protrayal of Minkowskian physics that moves very
slowly. But, if Maxwell’s Equations are indeed correct as they stand, then there
is a very different notion of our space-time for things that move rapidly and for
photons which travel at the speed of light in every viable coordinate system. It
also represents a symmetry breaking, because GB3 is a subgroup of G, while L
is not a subgroup of P.

6. Summary
It is curious that at a very basic level, the essential four-dimensional space-

time that underlies both Galilean and Minkowski space-times is essentially the
very same vector space! What is different is the symmetry group of transforma-
tions which is employed to connect the allowable bases and associated coordinate
systems in which the laws of physics are deemed to be operative and invariant.
For Newton (and, so to speak Galileo), everyone needed to agree on the same
forces and accelerations no matter where they set up their experiments and
coordinate systems (so long as they were inertial coordinate systems). But in
this case, light travels at different speeds for everyone moving relative to each
other, which is inconsistent with Maxwell’s Equations being the same in every-
one’s coordinate system. We get Minkowski and Poincaré if we instead require
that everyone uses the same Maxwell Equations in their set ups and coordinate
systems. They will not, then, agree on accelerations, and forces, with these
discrepencies (between inertial coordinate systems) increasing with the relative
rectilinear speeds between the two systems.
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Since, as far as anyone has been able to ascertain by careful and devious
experiments, light does travel at the same speed in all inertial reference frames,
and, discrepencies in forces and accelerations increasing with relative velocity
have been verified, it seems that given a choice, we must choose the Minkowski
space-time as the better representation of the universe we inhabit.

In Minkowski space-time, we agree on the invariance of Maxwell’s Equations—
which requires, a revision of Newton’s laws of motion that becomes more pro-
nounced with increasing relative speed—but we do not in particular need to
agree upon things like the actual magnitudes and orientations of electric and
magnetic fields, charge, and current densities that enter into these equations!
The Poincaré Group is set up only to ensure the invariance of Maxwell’s Equa-
tions and the fact that light travels at the same speed in every inertial frame.
Nothing more can be asked of it, as their are no additional degrees of freedom
left in the specification of the 10-parameter Poincaré Group. So if electric fields
are invariant, that is nice, but there is no guarantee they will be. And in fact,
they are not.

Stepping back and thinking a little more generally, if observers in differ-
ent inertial frames will observe the same phenomenon and measure different
electromagnetic fields and sources, they may also measure different, densities,
pressures, gravitational potentials, temperatures, frequencies and wavelengths,
etc. Already in Galilean space-time different inertial observers observed the
same object in motion and concluded it was traveling at different velocities. In
Minkowski space-time the same is true but with the interesting twist that now
they conclude that for something, light, they actually measure the same speed
(but not necessarily the same velocity).

What it remains to do, and we take this up in the next Scene, is to deduce
the relationships between physical quantities measured in two different inertial
reference frames which are connected by an element of the Poincaré Group.

7. Exercises

Exercise 1: THE SMALLEST THREE DIMENSIONAL VECTOR SPACE!
The three-dimensional Euclidean vector space is a very familiar, and also a
very large vector space, because, the field of real numbers R is itself a very
big set of scalars. So big in fact, that it is not possible to make a listing of
all the real numbers, which, at least we could do for the integers, another set,
that we denote by Z = {0, 1,−1, 2,−2, 3,−3, ...} (which is not an algebraic
field. Why?). To construct the smallest three dimensional vector space, we
should try to use the smallest possible field for our scalars, which turns out to
be Z2 = {0, 1}, containing only two scalars, 0 and 1. All the usual ways in
which you multiply and add zero and one work just as you expect with the one
exception that because there is no “2”, we require that 1 + 1 = 0. That is, one
is its own inverse under addition, and, cunningly enough, also its own inverse
under multiplication since 1 · 1 = 1.
(A) Convince yourself that Z2 and the obvious generalization Z3 = {0, 1, 2} are
in fact algebraic fields, but that as it stands Z4 = {0, 1, 2, 3} is not a field! For
bonus points look at Z5 (which is a field) and Z6 (which is not a field) and see
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if you can guess why Zp is an algebraic field if and only if p is a prime number.
(B) By definition, a three dimensional vector space has a basis with three lin-
early independent elements, B = {e1, e2, e3}. Therefore convince yourself that
the three dimensional vector space over the field Z2 has just 23 = 8 unique
elements! Then list them in terms of their coordinates with respect to the basis
B. Remember that one of them has to be the identity 0 element. [Hint: every
element must be its own invese!] Therefore the smallest possible vector space
in three dimensions must have 8 unique elements—you cannot make anything
smaller. It is equivalent to one of the five Platonic solid with 6 faces, 12 edges
and 8 vertices (being the elements of the vector space)—also known as a cube.
The other 4 Platonic solids are the tetrahedron (4 vertices), octahedron (6 ver-
tices), icosahedron (12 vertices) and the dodecahedron (20 vertices). For bonus
points convince yourself that only one of these can be equivalent to a three di-
mensional vector space over some finite field [hint: see the discussion in part (D)
below, and note that the octahedron is the dual of the cube under the exchange
of faces with vertices.]
(C) If we retain our three dimensional basis B = {e1, e2, e3}, but use all of
the integers Z as our scalar field, then we have shown that a three dimensional
lattice of points, like we might find in a crystal or structured solid, is, in fact,
another (bigger) three-dimensional vector space Z3—but still only a very tiny
part of our full Euclidean space! Lattices and variables that can take only two
states, on = 1, and off = 0, are the essential ingredients of Boolean Algebra and
communication theory.
(D) See if you can modify slightly the rules of addition and multiplication to
find a way to make the set of four distinct elements {0, 1, a, a−1} into a field
[hint: assume a a−1 = 1]. Your success is consistent with a theorem that states
that finite fields exist only if the number of elements in the field is an integer
power of a prime number. Therefore, the success you had in making a set of
4 = 22 elements into a field cannot be repeated for a set with 6 elements. There
are no finite fields with 6, 10, 12, ..., etc, elements.

8. Further Reading
I agonized again over how little or how much to put in this Scene or even

whether to bother with it all, period. Still, I persisted since I have often been
uncomfortable the way the Lorentz Transformations are pulled out of thin air in
MHD and to a lesser extent in radiative transfer. I’ve tried to strike a balance
between difficult mathematical concepts and practical implications. Too often
what is left unsaid in most books and monographs on these topics is exactly
what I was looking for. I tried to state some of these things here.

Mihalas & Mihalas [MM 1] does quite a nice job of developing a completely
relativistic approach to RHD (Radiation Hydrodynamics—remember, no MHD
or electromagnetism is present in their treatment). It’s systematic and builds
nicely. It repays careful study many times over. To add in the MHD to their
treatment, I suggest
[L 3] André Lichnerowicz, Relativistic Hydrodynamics and Magnetohydro-
dynamics, (New York, NY: W.A. Benjamin; 1967), ix+196.
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Also useful, particularly if you like his style, is
[L 4] A. Lichnerowicz, Elements of Tensor Calculus, (New York, NY: John Wi-
ley & Sons; 1962), vii+164,
which picks up where we leave off at the end of §2 and §3 and introduces the
machinery of calculus on manifolds.

An all-around reference for many of the things covered here and later in the
mathematical Appendix to this Opera is the encyclopedic and often accessible
(and often not accessible in my opinion) magnum opus by Roger Penrose
[P 8] Roger Penrose, The Road to Reality. The Complete Guide to the Laws
of the Universe, (New York, NY: Alfred A. Knopf; 2005), xxviii+1099.

The following papers provide interesting perspectives on Galilean non-invariance
of Maxwell’s Equations:
[BL-L 1] M. Le Bellac & J.-M. Lévy-Leblond, “Galilean electromagnetism”, Il
Nuovo Cimento, 14B(2), 217-34, 1973,
[PFM 1] Giovanni Preti, Fernando de Felice & Luca Masiero, “On the Galilean
non-invariance of classical electromagnetism”, European Journal of Physics, 30,
381-91, 2009,
[R 4] Germain Rousseaux, “Forty years of Galilean electromagnetism (1973-
2013)”, European Journal of Physics Plus, 128, 81, 2013.

Of the many many technical books on symmetry and Lie groups, perhaps a
reasonable starting place is
[GMS 1] I.M. Gelfand, R.A. Minlos & Z. Ya. Shapiro, Representations of the
Rotation Group and Lorentz Groups and Their Applications, (Mineola, NY: Dover
Publications; 2018), xviii+384.

9. Appendix A: Relativistic RMHD
Under the action of the Poincaré Group, Maxwell’s Equations are invariant

in form. That is, if in Montreal you are solving

∇ ·E = 4πδ , c∇×E = −∂B
∂t

,

∇ ·B = 0 , c∇×B = 4πJ +
∂E

∂t
,

and on my Air Canada flight I am solving

∇′ ·E′ = 4πδ′ , c∇′ ×E′ = −∂B
′

∂t′
,

∇′ ·B′ = 0 , c∇′ ×B′ = 4πJ′ +
∂E′

∂t′
,

we’ll both get the right answer! Similarly if I am using

1

c

∂I ′ν′

∂t′
+ n′ · ∇′I ′ν′ = η′ν′ − χ′ν′I ′ν′ .

and you are using
1

c

∂Iν
∂t

+ n · ∇Iν = ην − χνIν .
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we’ll again get the “same” results.
But we’ll get “different” results, if, for example you use

∂u

∂t
+ u · ∇u +

1

ρ
∇p− 1

ρ
∇ · � = g ,

and I try to use

∂u′

∂t′
+ u′ · ∇′u′ + 1

ρ′
∇′p′ − 1

ρ′
∇′ · �′ = g′ ,

to describe the air flow in the Air Canada cabin. Because the Air Canada
flight is at best travelling at a speed of 600 mph = 2.6822 ×104 cm sec−1 and
c ≈ 3 × 1010 cm sec−1 we can live happily with these differences unless we are
keeping more than 6 significant digits in our calculations. The Parker Solar
Probe will reach speeds approaching 700 times that of my Air Canada flight,
so if I was on board the spacecraft we would start to get concerned if we were
keeping more than 3-4 significant digits. Actually, I’d be a lot more concerned
about a whole lot of other things, but that is besides the point.

When typical flows speed in an astrophysical problem begin to approach
a percent or so of the speed of light, then one must use the relativistically
correct equations for the material and the gravitational field instead of their
nonrelativistic limits, like

∂u

∂t
+ u · ∇u +

1

ρ
∇p− 1

ρ
∇ · � = g ,

for example.
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