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1. Introduction
The internal energy density of an aggregate of particles in the continuum

fluid limit is a very delicate thing. Like the coefficient of viscosity, the dielectric
properties of the fluid, the opacity and emissivity, one might anticipate that it
requires some definite working knowledge of the microphysics. That fact that
it can he handled, and in fact even computed, without such detailed knowledge
is a somewhat curious and quite remarkable fact. And it underscores the power
and generality of the subject of thermodynamics—a topic which contains only
three laws (one of which is more of a calibration of a scale than an actual law)
and which has none-the-less managed to fill volumes and volumes of books and
treatises and journals for almost two centuries.

2. Perhaps Way Too Much Thermodynamics
The first law of thermodynamics, and the only one we will have much need

for, is simply a statement of the conservation of energy for a system. It is usually
framed in the context of vessels or boxes of some largely unspecified material
which have a volume V [dimensions: cm3] and contain a certain amount of
energy E [dimensions: gm cm2 sec−2 — or ergs]. One is allowed to add or
extract some heat Q [dimensions: ergs] from the box by various means, and to
apply forces to change the volume of the box which exerts an outward pressure
p [dimensions: gm cm−1 sec−2]. Then the first law says

δQ = dE + pdV ,

the heat added to the material in the box (δQ ≥ 0) can go into increasing the
energy contained in the box and/or supplying energy for the box to do work on
its surroundings if it expands dV ≥ 0. Thats it.

I’ve put a δ in front of the Q because we recognize this as a Pfaffian and
we don’t actually know if it is the total differential of some scalar function. For
this to be so, recall that we would need

∂p

∂E
=

∂1

∂V
= 0 .

The chances that the pressure of the unspecified contents of the box might be
independent of the energy contained in the box seems pretty remote. So, we
know from Pfaff’s Theorem that there is an integrating factor that will convert
δQ to a dS, say, and we call that integrating factor the absolute temperature T
[dimensions: deg K — degrees Kelvin]:

dS =
1

T
δQ =

1

T
dE +

p

T
dV .
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We call S [dimensions: erg K−1] the entropy. And by design, we also know that

∂

∂V

1

T
=

∂

∂E

p

T

because, S = S(E, V ).
The box contains a certain mass of material, say M [dimensions: gm], and so

we can divide Q, S, E and V by the constant M to get q, s, e and v, respectively.
And the equivalent first law

de = Tds− pdv

now reckoned on a per unit mass basis. This completely equivalent way of
looking at this system turns out to be more portable for our purposes. And
since v is the volume per unit mass, it’s reciprocal is ρ the mass per unit volume,
and ρe is the energy per unit volume, or, what looks like a very reasonable
approximation to the internal energy density of the material in the box. Which
is what, after all, we are inerested in!

Notice that the pressure and the temperature do not end up being replaced
by small letters (of course, the pressure already is a small letter, but you get
the point) but remain the same. While we are thinking of all these quantities
as thermodynamic variables or state parameters, p and T are extensible in the
sense that they just don’t care how much mass is actually in the box, or how
big the box happens to be, in this sense they characterize the total system
viewed as a whole, not merely as the sum of some parts. This makes them
quite special as we shall see. As we noted earlier in the discussion of Euler’s
Equation, the fact that p is a constant for an entire box means that it is in
mechanical equilibrium, there are no large scale flow fields present because there
are no pressure gradients. The fact that T is a constant means that the box is
also in thermal equilibrium, there are no temperature gradients and conduction
of heat within the box. Indeed part of the reason thermodynamics will turn
out to be so effective is this implicit assumption that the system in question, no
matter what it happens to be, has settled down into mechanical and thermal
equilibrium.

Of course de is a total differential, so Pfaff tells us that

T (s, v) =

(
∂e

∂s

)
v

, and p(s, v) = −
(
∂e

∂v

)
s

= ρ2
(
∂e

∂ρ

)
s

,

where, since e = e(s, v), the first partial derivative is taken at constant specific
volume v or density ρ, while the second is taken at constant entropy. So these
two extensive quantities that represent some wholistic description of the system
inside the box are the first partial derivatives of the energy per unit mass with
respect to the specific entropy and the specific volume. And in principle, they
too obviously can depend upon s and v. Therefore:

dT = Zds− Y dv
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dp = Y ds−Xdv

where

X(s, v) ≡ ∂2e

∂v2
, Y (s, v) ≡ − ∂2e

∂s∂v
, Z(s, v) ≡ ∂2e

∂s2
.

The fact that Y appears twice in these equations is because(
∂p

∂s

)
v

+

(
∂T

∂v

)
s

= 0 ,

i.e., de is a total differential.
While the state of a system in thermal and mechanical equilibrium is com-

pletely specified by (s, v), the behavior of the system as one (slowly) pushes on
the walls to change the volume, or (gradually) adds or extracts heat, is specified
by the three functions X,Y, Z. So they describe how the system gets from one
state to another if it maintains mechanical and thermal equilibrium as it passes
through intermediate states. If this is not the case, that is to say, a nuclear
bomb is set off next to the box, then the system accesses states that are not in
mechanical and thermal equilibrium and all bets are off.

As we demonstrate in the Appendix to this Scene, the functions X, Y and Z
can be related to more familiar quantities like the the specific heats at constant
density cV and constant pressure cp and the adiabatic sound speed

a2 ≡
(
∂p

∂ρ

)
s

taken at constant entropy (which we denote by a to avoid confusion with the
speed of light c). We prefer to leave them in this generic form because it sim-
plifies notation considerably.

Now here is why all of this matters. If we assume that our radiating mag-
netofluid is locally, on very small spatial scales well below the scales we are
treating, in both mechanical and thermal equilibrium, then we may take the
first law

de+ pdv = Tds = δq

and apply it to each tiny parcel of fluid which is assumed to locally, at least, be
in thermal and mechanical equilibrium (e.g., LTE). Since

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0 ,

and v = 1/ρ it follows that

∂v

∂t
+ u · ∇v − v∇ · u = 0 .

So regarding the first two terms of this equation as the Lagrangean time deriva-
tive following a parcel of fluid that remains in LTE as it is (slowly) influenced
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by its surroundings (passing always through a sequence of LTE states) we have,
from the first law of thermodynamics,

∂e

∂t
+ u · ∇e+

p

ρ
∇ · u =

δq

δt
= T

(∂s
∂t

+ u · ∇s
)
,

where δq/δt is the heat added to a parcel of fluid by thermal conduction say,
or viscous dissipation, or radiative heating, or perhaps ohmic dissipation, as it
moves along its trajectory!

Voilà!
So we have to determine this local heating function δq/δt. But in terms of

this function, we now have an equation for the internal energy per unit mass:

∂e

∂t
+ u · ∇e+

p

ρ
∇ · u =

δq

δt
,

or the specific entropy
∂s

∂t
+ u · ∇s =

1

T

δq

δt
,

or the temperature

∂T

∂t
+ u · ∇T +

Y

ρ
∇ · u =

Z

T

δq

δt
,

or the pressure
∂p

∂t
+ u · ∇p+

X

ρ
∇ · u =

Y

T

δq

δt
.

Of course there is only one independent equation amongst these four, since we
only require two thermodynamic variables to describe our LTE parcel of fluid,
and we already have one in

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0 .

So, you are free to take your pick of which one you would actually like to solve.
Notice in particular that because δq is not an exact differential, we do not solve
an equation for this quantity, but instead use it as a source term that leads
to a change in the specific entropy of the fluid. And also observe that the
three functions X,Y, Z make their presence felt if we choose not to work with
the energy per unit mass as our second thermodynamic variable. Finally, in
keeping with the no free lunch theorem, if we choose to solve the equation for
the pressure, which is after all what we are after to have as many equations as
unknowns, we require knowledge of both the X and Y functions.

In case this is not enough thermodynamics for you, there is an Appendix
waiting with even more remarkable things that can be deduced for a perfect and
not-so-perfect gas.

3. Conservation of Energy
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At any rate, we take

∂e

∂t
+ u · ∇e+

p

ρ
∇ · u =

δq

δt
,

from our sojourn into thermodynamics and develop here an expression for δq/δt.
Multiplying this equation by ρ and the continuity equation by e and adding, we
obtain

∂

∂t
ρe+∇ · ρeu + p∇ · u = ρ

δq

δt
,

or
∂

∂t
ρe+∇ · (ρe+ p)u− u · ∇p = ρ

δq

δt
,

which is the desired equation for the internal energy of the fluid. As expected
we can increase or decrease this internal energy by adding or removing heat, or
compressing or rarefacting it. So far so good.

The work done compressing or rarefacting the material comes at the expense
of the kinetic energy density, so we must next set about obtaining an expression
for

∂

∂t

1

2
ρ|u|2 =

1

2

(
ρu · ∂u

∂t
+ u · ∂

∂t
ρu
)
,

which we can obtain from Scene 2. The algebra is straightforward but somewhat
tedious, so we’ll just quote the result

∂

∂t

1

2
ρ|u|2 +∇ · 1

2
ρ|u|2u = −u · ∇p+ u · [∇�+ ρ(g + aEM + aR)] .

Adding this equation to the equation for the internal energy density above, gives
an equation for the total energy density of the material:

∂

∂t

(
1

2
ρ|u|2 + ρe

)
+∇ ·

[
u ·
(

1

2
ρ|u|2 + ρe+ p− �

)]
= ρ

δq

δt
− �:∇u+

ρu · (g + aEM + aR) .

Recall, from Scenes 1, 3, and 4 that we have previously identified

aG = g = −∇Φ ,

aEM =
1

ρ

(
δE +

1

c
J×B

)
,

and

aR = − 1

ρc

∫ ∞
0

dν

∮
dn n[ην − χνIν ] ,

by conservation of total momentum. So these terms are in some sense “known”
in terms of the gravitational, electromagnetic, and radiation fields.
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Notice that we took part of the viscous contribution to the kinetic energy
equation and moved it into a energy flux, and left the remainder on the left side
of the total energy equation. We can write term on the left as

σij
∂ui
∂xj

=
1

2
σij

(
∂ui
∂xj

+
∂uj
∂xi

)
because � is a symmetric tensor. But, recall that

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ δij

(
ζ − 2

3
µ

)
∇ · u ,

therefore

�:∇u =
µ

2

(
∂ui
∂xj

+
∂uj
∂xi

)(
∂ui
∂xj

+
∂uj
∂xi

)
+

(
ζ − 2

3
µ

)
(∇ · u)2 ,

is a nonnegative quantity often referred to as the viscous dissipation function.
Obviously, ρδq/δt must include this term as it accounts for the transfer of kinetic
energy density to the internal (heat) energy density through viscous dissipation.

As usual, it is the term ρu · g, and the gravitational field, which continues
to be our bête noire. It is no wonder that the replacement of Newton-Poisson
by General Relativity was such a heralded event. Again, we find two different
expressions for this contribution depending upon whether the gravitational po-
tential Φ is supplied by material outside of the domain of interest, or generated
through Poisson’s Equation by the density ρ inside the system. In either case,
we can simply multiply the continuity equation by Φ to get

−ρu · g =
∂

∂t
ρΦ +∇ · ρΦu− ρ∂Φ

∂t
.

The first term on the right is the potential energy of the material in the grav-
itational field. The second term is the divergence of the energy flux associated
with the movement of the material in the gravitational potential.

If we neglect the self-gravitation of the matter in our system, then the last
term on the right side of the equation accounts for the fact that the universe
outside of our system can do work on, or have work done to it by, the material
in our system. We have to leave this term as it is, and accept the fact that
our system is not closed, but can transfer energy with the universe external to
it by this term, which, in the end, we must find some way to specify. Usually,
the way to specify this term is to say that the externally applied gravitational
field does not change in time, so ∂Φ/∂t ≡ 0, and this term vanishes. Now, our
system is, in fact, closed.

If we include self-gravity, on the other hand, this equation is still correct as
it stands, but the last term does not in general, vanish because ρ depends upon
t. One of the exercises at the end of this Scene leads you through the derivation
of the following result

ρ
∂Φ

∂t
=

1

2

∂

∂t
ρΦ−∇ · 1

8πG

(
∂Φ

∂t
∇Φ + Φ∇∂Φ

∂t

)
,
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which is correct only for a self-gravitating system! The first term on the right side
of this equation, cancels half of the contribution back in our original equation,
and the second term is an energy flux carried by the gravitational field. Notice
that the gravitational field only gets to store energy (the first term) by virtue of
there being matter around, although (the second term) it can transport energy
without there necessarily being any matter present in the exact location where
the transport is taking place. To simplify the notation, we’ll designate this
energy flux by G(x, t), so

ρ
∂Φ

∂t
=

1

2

∂

∂t
ρΦ−∇ ·G .

So, our final result, which encompasses all possibilities, is

−ρu · g =
2− γ

2

∂

∂t
ρΦ +∇ · (ρΦu + γG)− ρ∂Φext

∂t
.

Here, Φext(x, t) is a solution of Lapace’s Equation and is the gravitational po-
tential supplied by all the matter external to our system, and γ is a Boolean
variable which is equal to 0 if self-gravity is ignored, and is equal to 1, otherwise.
Notice that when γ = 1 we can have an external gravitational field in addition
to our self-gravity if we so choose.

We can now use this result in our total energy equation to eliminate the
gravitational term from the right side and replace it by the time derivative of
an energy density and the divergence of an energy flux as follows

∂

∂t

(
1

2
ρ|u|2 + ρe+

2− γ
2

ρΦ

)
+∇·

[
u ·
(

1

2
ρ|u|2 + ρ[e+ Φ] + p− �

)
+ γG

]
=

ρ
δq

δt
− �:∇u + ρu · (aEM + aR) + ρ

∂Φext

∂t
.

We are now ready to finish with our identification of ρδq/δt. First we recall
from Scene 3, the energy conservation statement for the electromagnetic fields,

∂

∂t

( |E|2 + |B|2

8π

)
+∇ · S = −J ·E .

Adding this equation to the total energy equation for the material, we have a
total energy equation for the combined matter and electromagnetic fields:

∂

∂t

(
1

2
ρ|u|2 + ρe+

2− γ
2

ρΦ +
|E|2 + |B|2

8π

)
+

∇ ·
[
u ·
(

1

2
ρ|u|2 + ρ[e+ Φ] + p− �

)
+ γG + S

]
=

ρ
δq

δt
− �:∇u + ρu · (aEM + aR)− J ·E + ρ

∂Φext

∂t
.
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And finally, from Scene 4, we need the energy conservation equation for the
radiation field:

∂E

∂t
+∇ · F =

∫ ∞
0

dν

∮
dn [ην − χνIν ] .

Again, adding this equation to the previous energy equation gives the final
equation for the conservation of energy between the combined material, electro-
magnetic and radiation fields:

∂

∂t

(
1

2
ρ|u|2 + ρe+

2− γ
2

ρΦ +
|E|2 + |B|2

8π
+ E

)
+

∇ ·
[
u ·
(

1

2
ρ|u|2 + ρ[e+ Φ] + p− �

)
+ γG + S + F

]
=

ρ
δq

δt
− �:∇u + ρu · (aEM + aR)− J ·E +

∫ ∞
0

dν

∮
dn [ην − χνIν ] + ρ

∂Φext

∂t
.

Now, because energy must be conserved, and the only work that can be done
on our system is through the external gravitational potential, it must be the
case that

0 = ρ
δq

δt
− �:∇u + ρu · (aEM + aR)− J ·E +

∫ ∞
0

dν

∮
dn [ην − χνIν ] .

This is a very beautiful result! And, it allows us to finally determine all the
right sides of the equivalent thermodynamic equations for the matter:

∂e

∂t
+ u · ∇e+

p

ρ
∇ · u =

δq

δt
,

∂s

∂t
+ u · ∇s =

1

T

δq

δt
,

∂T

∂t
+ u · ∇T +

Y

ρ
∇ · u =

Z

T

δq

δt
,

∂p

∂t
+ u · ∇p+

X

ρ
∇ · u =

Y

T

δq

δt
.

Well, almost! There is one additional transport process which astrophysical
radiating plasmas possess and that is the capacity to transport energy by means
of thermal conduction. And generally speaking, if viscous effects are important
in a given situation, thermal conduction effects are likely to be equally impor-
tant, if not more so. A theory of thermal conduction, like viscous dissipation,
again requires a sojourn into the world of microphysics. But the bottom line
is that we can incorporate a wide variety of microphysical processes by making
the replacement

ρ
δq

δt
→ ρ

δq

δt
+∇ · � · ∇T ,

where �(x, t) is the (symmetric) thermal conductivity tensor [dimensions: gm
cm sec−3 deg K−1].
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Therefore, our final expression for heat added or subtracted from the mate-
rial is

ρ
δq

δt
= ∇ · � · ∇T + �:∇u− ρu · (aEM + aR) + J ·E−

∫ ∞
0

dν

∮
dn [ην − χνIν ] ,

and the total energy conservation equation for our entire system reads

∂

∂t

(
1

2
ρ|u|2 + ρe+

2− γ
2

ρΦ +
|E|2 + |B|2

8π
+ E

)
+

+ ∇ ·
[
u ·
(

1

2
ρ|u|2 + ρ[e+ Φ] + p− �

)
+ γG + S + F− � · ∇T

]
= ρ

∂Φext

∂t
.

An even more beautiful result!!
But not just beautiful...extremely useful for sorting things out and getting

our priorities straight! There are five terms in the expression for the total
energy density of the system: material kinetic, material thermal, gravitational,
electromagnetic and radiative. It is cosmically unlikely that all of these terms
are the same size everywhere and at all times. The ratios of these terms are
dimensionless numbers which help to order the relative importance of the terms.
Any one of the terms can be taken as the standard and the relative importance
of the remainder assessed in terms of that standard. If one can determine that
a certain dimensionless ratio is tiny everywhere and at all times (a somewhat
more probable proposition than all of these terms being the same size), then
it may be permissible to simplify the analysis by dropping the recessive term
initially and then checking a posteriori that such an omission is consistent with
the outcome.

The choice of standard is arbitrary, but we’ll take the internal (thermal)
energy of the matter, which for an ideal gas, depends only on the temperature
and the number density

ρe =
3

2
NkBT = 2.071× 10−16

(
N

1 cm−3

)(
T

1 deg K

)
erg cm−3

where kB is Boltzmann’s constant. Our material may not be an ideal gas, but for
the purpose of estimating the size of various terms this proves to be a reasonable
starting point.

If it is in thermal equilibrium with the material—again, another assumption
that is often (but not always!) not unreasonable for an order of magnitude
estimate—the radiation field is isotropic and has a frequency distribution given
by the Planck Function,

Jν = Bν [T ] =
2hν3

c2
1

exp(hν/kBT )− 1
,

where h is Planck’s Constant. The energy density in the radiation field, E is
4π/c times the integral of Jν over all ν:

E =
8π5k4B
15c3h3

T 4 ≡ aRT 4 = 7.564× 10−15
(

T

1 deg K

)4

erg cm−3 .
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Hence the ratio

ρe

E
= 2.738× 10−2

(
N

1 cm−3

)(
T

1 deg K

)−3
,

tells us that in hot tenuous astrophysical systems, the radiation field can hold
more energy than the thermal part of the material. Convesely in cool and
dense regimes, the energy density in the radiation field is negligible (which, see
below, need not imply that the radiation field itself is negligible!). In the solar
atmosphere, this ratio is 104, and it drops to 500 in the core of the Sun. In
neither case is the radiation energy density a major factor in solar dynamics. In
an O star atmosphere, however, this ratio can be as low as 10−1. Notice that
under the same assumptions the ratio of the thermal pressure of the material p
to the radiation pressure P ≡ |P| is

p

P
=

2
3ρe
1
3E

= 5.476× 10−2
(

N

1 cm−3

)(
T

1 deg K

)−3
.

Other energy density ratios can be assessed in a similar fashion, for example,

8πρe

|B|2 + |E|2
= 5.204× 10−15

(
N

1 cm−3

)(
T

1 deg K

)(
1 Gauss

max(|B|, |E|)

)2

.

Finally the ratio of the thermal to the kinetic energy density of the material
is 2ρe/ρ|u|2 , which is proportional to the inverse square of the Mach Number,
since the energy per unit mass is itself proportional to the sound speed.

One can approach the eight terms that contribute to the energy flux in a
similar fashion. We can take the material enthalpy flux

(ρe+ p)|u|

as our standard. For the radiation field we can estimate

|F| ≈ 1

4
aRcT

4 ≡ σRT 4

from the emission from a blackbody, to obtain (again for an ideal gas and
radiation field in thermal equilibrium at the same temperature T ),

(ρe+ p)|u|
|F|

=
20|u|

3c

(ρe
E

)
= 1.825× 10−1

(
|u|
c

)(
N

1 cm−3

)(
T

1 deg K

)−3
.

Because |u|/c can be quite small in many situations, this ratio can actually
be much less than unity, while the ratio of energy densities is much greater than
unity. In orther words, the radiation field can be very effective at transporting
energy (relative to the enthalphy flux) even though it has little energy density
(relative to the thermal energy reservoir)! This, indeed, is one of the essen-
tial reasons that we care about RMHD even in fairly pedestrian astrophysical
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situations! This dimensionless ratio—modulo the usual overall factor of unity—
is referred to as the Boltzmann Number. Indeed, authors sometimes settle on
different order-unity numerical factors in front of this and other dimensionless
constants as it suits their needs. This is fine, because we are really interested in
identifying situations in which these dimensionless constants are much greater or
much less than one. In any event, we can conclude that small Boltzmann Num-
bers mean that radiation is important for energy transport in an astrophysical
system.

If you compute the ratio of the material enthalpy flux to the (electromag-
netic) Poynting vector |S|, you will see that there is no analogous tiny factor
multiplying the rato of the energy densities. The reason is in MHD, for example,
|E| ∼ |u||B|/c, and in the opposite limit of EHD the same result holds with
|E| and |B| exchanged. This reflects the fact that these quasistatic electric and
magnetic fields are intimately tied into the material.

Another interesting dimensionless energy flux ratio

(ρe+ p)|u|
|� · ∇T |

is the Peclet Number. It tells us whether thermal conduction is important
(small Peclet Numbers). In the solar corona, which is extremely optically-thin,
radiation no longer interacts much with the material, and thermal conduction
replaces radiation as the dominant method of energy transfer.

The ratio
|u|2

2|�|
,

is (again to within factors of unity) the Reynolds Number. It usually arises in
the dimensional analysis of the Navier Stokes Equations, as we saw in Scene 2,
but it appears here as well in energy transport. And finally the Prandtl Number
is the ratio of the Peclet Number to the Reynolds Number.

There are many more dimensionless numbers that can be extracted, obvi-
ously, and some of them have names. Nomenclature is not what is critical here.
Rather, an astrophysical system with five energy reservoirs and eight methods
of transporting energy is an absolute nightmare to make sense of even—and one
might in fact venture to say, especially—computationally where round off and
significant digits bring their own headaches.

4. Saha, Boltzmann, and Chemical Potentials
Now we take a brief interlude to tarnish this beautiful result. But with more

words and less equations. We remarked earlier that p and T are extensible
thermodynamic variables and that when they are constants across an entire
system that system is in mechanical and thermal equilibirum respectively. There
is a third type of extensible variable, called chemical potentials, that must come
into play when the individual objects that make up the matter have some sort
of internal structure, and that allows them to carry, or better find themselves
in, a series of states of internal energy, or, perhaps are allowed to adhere to one
another and form aggregates. In all such cases, the individual entities in our
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fluid can have energy associated with them that is different from their random
thermal kinetic energy. The energy e that resides in

∂e

∂t
+ u · ∇e+

p

ρ
∇ · u =

δq

δt
,

takes account only of the random thermal motions (thermal kinetic energy) of
the individual constituents that make up the fluid.

To make matters concrete, in real astrophysical plasmas, atoms and molecules
have a series of internal energy levels. Molecules can form or be disassociated,
and atoms can be ionized any number of times and recombine. And then the Hy-
drogen atom can actually bind a second electron very weakly, to form (massive)
negatively charged objects, called anions.

One can, and many do, try to continue using the thermodynamic approach
by generalizing the first law of thermodyanics to

de = Tds− pdv − µidN i ,

where one includes as many thermodynamic chemical potentials µi and number
densities of “chemical” constituents N i required to completely account for the
relevant species of molecules, ions and atoms. It is workable but can sometimes
be more awkward than simply addressing the kinetics and microphysics directly.
What is useful about the thermodynamic description is the sense of chemical
equilibrium, which is achieved if the potentials µi are constant across a system.

As systems are knocked out of equilibrium by some impact or impulse, the
return to equilibrium often takes place over several diferent times scales. In
many systems, mechanical equilibrium is achieved first—flows develop and re-
duce pressure gradients to some modest level. Next, thermal equilibrium is
achieved—energy is transported by various processes to reduce temperature
gradients across the system. Finally, chemical equilibrium is achieved—the pop-
ulation levels of the various components adjust to come into a balance such that
destruction and creation of species through forward and backward reactions is
in a detailed balance.

In astrophysical systems we are for the most part interested in tracking the
dynamical relaxation towards a mechanical equilibrium. However, often systems
are continually forced in such a fashion that pressure equilibration across an
astrophysical system is never achieved. RMHD is aimed precisely at describing
these situations. Tracking astrophysical systems on longer thermal time scales
proves often to be much more difficult because it is necessary to find some way
to average over dynamic (mechanical) time scales, or to carry out a numerical
simulation for a very very long time. And chemical equilibration is even harder.

All of these concepts are valid at a local level in a fluid. Just as we assume via
LTE that a given parcel of fluid has a well definied (more or less) constant pres-
sure and temperature, we must likewise assess whether it has achieved chemical
equilibrium as well.

In many astrophysical applications chemical equilibrium is not achieved
rapidly enough even in small volumes. The lack of detailed balance has dra-
matic impacts on the radiation field in particular, through the opacity and
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source function. For this reason, it usually makes sense to eschew the thermo-
dynamic approach and chemical potentials and work directly with the relevant
microphysics.

In practice, the microphysics approach, starts with

∂e

∂t
+ u · ∇e+

p

ρ
∇ · u =

δq

δt
,

which is correct as far as it goes for the random kinetic (thermal) motions
of the different species present in the fluid (assuming, which is generally the
case, that their thermal “temperatures” have all equilibrated), and invokes some
combination of adding an additional internal energy density that is nonthermal
in character and appropiately modifying what is now considered a catch-all term
δq/δt.

If, and only if, chemical equilibrium is in force, then the population of bound
energy levels in a given entity (be it a molecule, atom, or ion) is given by
Boltzmann’s Equation, and the relative number densities of different species are
related by Saha’s Equation (and its generalizations). Both of these equations
require the specification of a temperature, which should be the thermal kinetic
temperature shared by all the entities. This implementation continues to be
termed LTE—local thermodynamic equilibrium, although technically speaking
it is local thermal and “chemical” equilibrium.

When this extended LTE cannot be achieved then the situation is dramati-
cally more complicated and it is necessary to track the time-dependence of the
number densities of the species and perhaps the internal energy level popula-
tions. This is not necessarily difficult to do in principle, but in practice it is
terribly complicated and requires a variety of microphysics rate coefficients. In
keeping with our program in these lectures, we will be satisfied at this point to
simply refer you to the bibliography where you can find some very accessible
treatments of these approaches.

5. The Tensor Virial Equations
We’ve seen how the conservation of mass, momentum and energy has been

essential for sorting out how matter, and the three fields gravitation, electromag-
netic and radiation interact dynamically in astrophysical systems. It’s natural
to inquire if there are other conservation laws, or similar constructs, which can
provide additional isights and possibly constraints on how systems evolve.

The answer is “yes”—and the tensor virial equations are one, but certainly
not the only, step in this direction. The idea here is to define a collection of
moments of the system according to

Imno···ijk··· (t) ≡
∫
dx ρ(x, t) xixjxk · · ·um(x, t)un(x, t)uo(x, t) · · · ,

where you can have as many indices on top, and on the bottom, that you like.
Notice that the angular momentum resides in one of these objects! This is a little
bit like an extended version of thermodynamics, since our moments describe the
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system as a whole, and, in particular,

I(t) ≡M(t) =

∫
dx ρ(x, t) ,

is just the total mass of the system. The mass conservation equation then tells
us that

dM

dt
= −

∮
dS · ρu ,

where the surface integral is taken over the outer boundary of the system, pos-
sibly at infinity. This surface term does the honorable thing of accounting for
mass loss or gain through the outer boundary of the system due to a wind, or
accretion. This is not a very profound result obviously, but its still nice to see
it emerges from this program without much effort.

Next come Ii and Im.

Ii(t) ≡
∫
dx ρ(x, t) xi ≡M(t)X(t)

defines the center of mass of the system X(t). To compute the time derivative
of this quantity we again make use of the continuity equation

dIi
dt

= Ii(t)−
∮
dSj ρujxi .

The surface terms makes perfect sense, but what to make of the other term? To
compute dIi/dt we need the momentum conservation equation, which we take
from Scene 2:

∂

∂t
ρu +∇ ·

(
p1− �+ ρuu

)
= ρ(g + aEM + aR) .

Which then gives

dIi

dt
=

∫
dx ρ(gi + aEMi + aRi )−

∮
dSj (ρujui − σij + pδij) .

Now Ii(t) are the three components of the momentum of the material for the
entire system. The surface term shows that we can again lose or gain net momen-
tum through the outer boundary of the system, and the second term indicates
that the three fields can impart net linear momentum to the material. However,
remember that for the self-gravitational part of g this term is equivalent to the
divergence of the G tensor, and so

dIi

dt
=

∫
dx ρ([gext]i + aEMi + aRi )−

∮
dSj (Gij + ρujui − σij + pδij) ,

so, in fact, only the externally supplied gravitational field can affect the net
momentum of the matter—a very nice result!
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Now we can use this result in our equation for the center of mass to obtain

d2Ii
dt2

=

∫
dx ρ([gext]i + aEMi + aRi )−

∮
dSj stuffij ,

where I haven’t bothered to write out all the terms that appear in the integrand
of the surface integral. For compact astrophysical systems, the surface terms
always vanish, but when there are winds or accretion, they do not. This is just
Newton’s law of motion for the entire ensemble of matter. Again, nice, but still
not profound.

Profundity begins to emerge when we look at the next set of moments with
two indices. The easy one is the moment of inertia:

dIij
dt

= Iji + Iij −
∮
dSk ρxixjuk ,

and the more laborious calculation is the time-derivative of the mixed moment

dIji
dt

=

∫
dx ρxi([gext]j + aEMj + aRj )−

∫
dx Tij −

∮
dSl xiTlj

where
Tij ≡ Gij + ρujui − σij + pδij ,

can be loosely called the stress energy tensor. Combining these equations gives

d2Iij
dt2

− 2

∫
dx Tij = −

∮
dSl stuff lij +

+

∫
dx ρ

[
xi([gext]j + aEMj + aRj ) + xj([gext]i + aEMi + aRi )

]
.

Now we do have something profound. Consider for example a compact sys-
tem, with no external gravity and let’s forget about the radiation and electro-
magnetic fields for the moment. Then, summing the diagonal of the moment of
intertia tensor, we obtain (Einstein summation)

d2Iii
dt2

= 2

∫
dx (3p+ ρ|u|2 +Gii) .

Notice that because the trace of the viscous stress tensor is zero, this term is
absent from the sum of the diagonal components of this moment. Now, recall
from Scene 2 that for a self-gravitating fluid

Gij =
1

8πG

(
2
∂Φ

∂xi

∂Φ

∂xj
− δij

∂Φ

∂xk

∂Φ

∂xk

)
,

hence
d2Iii
dt2

= 2

∫
dx

(
3p+ ρ|u|2 − 1

8πG
|∇Φ|2

)
.
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This result is called the virial theorem. A compact system can remain com-
pact only if the left side of this equation is less than or equal zero! Gravity, of
course, does the honorable thing of trying to hold the system together, while the
pressure (disordered motions) and flows (ordered motions) are doing the oppo-
site. Systems which cannot keep the right side of this equation from becoming
positive, must generally develop winds and expand.

For a compact radiating magentofluid, of course, it is necessary, and partic-
ularly fascinating, to figure out what the term∫

dx ρ
[
xi(a

EM
j + aRj ) + xj(a

EM
i + aRi )

]
,

is doing. To help us here, we need to recall the momentum conservation results
from Scenes 3 and 4 as follow:

1

c2
∂S

∂t
+∇ · M = −δE− 1

c
J×B = −ρaEM ,

1

c2
∂F

∂t
+∇ · P =

1

c

∫ ∞
0

dν

∮
dn n[ην − χνIν ] = −ρaR ,

which gives after a little algebra,

d2Iii
dt2

= 2

∫
dx

(
3p+ ρ|u|2 − 1

8πG
|∇Φ|2 + Pii +

1

8π
[|E|2 + |B|2]

)
+O(c−2) .

In so far that the contributions of the electromagnetic and radiation fields to the
moment of inertia of our system are generally far smaller than the contribution
provided by the material, the O(c−2) terms can almost always be discarded.
Fnally, the trace of the radiation pressure tensor is the energy density of the
radiation field, E, so our final result is

d2Iii
dt2

= 2

∫
dx

(
3p+ ρ|u|2 − 1

8πG
|∇Φ|2 + E +

1

8π
[|E|2 + |B|2]

)
.

Among the many conclusions you can start to draw from this, one that stands
out in particular, is that using magnetic fields to try to confine an astrophysical
system against the tendency for kinetic and thermal energy to cause it to expand
is not going to work. The only contribution to the integrand with a negative
sign is the self-gravity.

6. Summing it all Up
Perhaps it is worth a moment and some space to recapitulate what we have

accomplished in these first five Scenes.
By carefully considering the conservation equations for the matter and the

gravitational, electromagnetic, and radiation fields, respectively, and, demand-
ing that overall mass, (vector) momentum, and energy be conserved for all four
systems taken together, we derived explicit expressions for how momentum and
energy are exchanged between the material and the three fields.
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Specifically, we find the mometum equation for matter is

∂

∂t
ρu +∇ ·

(
p1− �+ ρuu

)
= ρ(g + aEM + aR) ,

where
ρaG = ρg = −ρ∇Φ ,

ρaEM = δE +
1

c
J×B ,

and

ρaR = −1

c

∫ ∞
0

dν

∮
dn n[ην − χνIν ] ,

describe the exchange of momentum with the gravitational, electromagnetic,
and radiation fields, respectively.

Auxiliary equations, Poisson’s Equation for Φ, Maxwell’s Equations for E
and B, and the equation of radiative transfer Iν complete the specification of
the problem once a closure prescription for {δ,J, χν , ην , p,�} in terms of other
known quanities is provided.

The (internal) energy equation for the matter is

∂

∂t
ρe+∇ · ρeu + p∇ · u = ρ

δq

δt
,

where

ρ
δq

δt
= ∇ · � · ∇T − �:∇u + ρu · (aEM + aR)− J ·E +

∫ ∞
0

dν

∮
dn [ην − χνIν ] .

This adds only two additional quantities to our closure list, which finally
stands at {δ,J| χν , ην | p, T, �, �}. I’ve divided the closure issues into three
compartments. The first is electromagnetic in nature and depends upon the
plasma physical state of the material and its response to imposed electric and
magnetic fields. The second is radiative in character and hinges upon precisely
how the matter and radiation are able to interact. The third is essentially
thermodynamical, and can be resolved in terms of kinetic theory and statistical
mechanics.

The most effective and reliable means to attain closure involves understand-
ing these various processes as they operate in the comoving frame of the mate-
rial. This is in turn complicated by the fact that observers in the laboratory and
comoving frames measure different physical quantities because of the Lorentz
Transformations, or better, the overall requirement that light travels at the
speed c in every inertial frame of reference.

In the next Act, we derive and motivate the Lorentz Transformations, and
then we return to the closure problem and put these results to use.

7. Exercises

Exercise 1: GRAVITATIONAL ENERGY FLUX
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Fill in the missing steps to derive

G =
1

8πG

(
∂Φ

∂t
∇Φ + Φ∇∂Φ

∂t

)
.

(Hint: Look at Ogilvie [O 1] or Kulsrud [K 1], if you get stuck.)

Exercise 2: THAT VICIOUS DISSIPATION FUNCTION
Is the expression,

�:∇u =
µ

2

(
∂ui
∂xj

+
∂uj
∂xi

)(
∂ui
∂xj

+
∂uj
∂xi

)
+

(
ζ − 2

3
µ

)
(∇ · u)2 ,

really non-negative? The first term certainly is, but what about the second
term, particuarly when ζ > 2µ/3?

8. Further Reading
As we have encountered previously, there is no shortage of material out there

on thermodynamics in all its guises. I’ve mostly followed Eckart [E 1] and Shu
[S 1] in my treatment presented here. If you did want to delve just a little
deeper, an essential read is
?[H 3] Kerson Huang, Statistical Mechanics, (New York, NY: John Wiley &
Sons; 1965), xiii+470.

The virial equations and their tensor extension have a single monograph
devoted to them,
?[C 4] George W. Collins, II, The Virial Theorem in Stellar Astrophysics, (Tuc-
son, AZ: Pachart Publishing House1978), viii+135,
which, unfortunately for me, I find inscrutable. So just in case you are like me,
here are two other selections which are much easier to decipher:
[CF 1] S. Chandrasekhar & E. Fermi, “Problems of gravitational stability in
the presence of magnetic fields”, Astrophysical Journal, 118, 116-41, 1953,
[P 7] Eugene N. Parker, “Tensor virial equations”, Physical Review, 96(6),
1686-90, 1954.

Ionization is treated in a wholistic, i.e., chemical potential, fashion by Mihalas
& Mihalas [MM 1] and again by Shu [S 1]. Also, any monograph that deals
with stellar interiors has to find a way to handle it in this macroscopic sense.
However, in stellar photospheres, and abundance determinations the compre-
hensive approach presented in the second Appendix is required. The MURaM
simulation, for example, uses this latter approach. This material I have lifted
and modified from a notational perspective from a very beautiful but hard to
find early article by Dimitri Mihalas,
?[M 5] Dimitri Mihalas, “The calculation of model stellar atmospheres”, in
Berni Alder, Sidney Fernbach & Manuel Rotenberg, eds., Methods in Compu-
tational Physics. Volume 7: Astrophysics, (New York, NY: Academic Press; 1967),
pp. 1-52.

Finally, I need to provide some references for the technical data needed to
actually make use of the ideas presented in Appendix B. Mihalas [M 5] provides
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the necessay fits to the Υ’s for Hydrogen, which contain the Partition Functions
as part of the package. He cites
[V 1] M.S. Vardya, “Physical atmospheric parameters for late-type stars”, As-
trophysical Journal, 133, 107-29, 1961,
as the source of his fits. You will also find
[I 1] Alan W. Irwin, “Polynomial partition function approximations for 344
atomic and molecular species”, Astrophysical Journal Supplement Series, 45,
621-33, 1981,
of use. I am sure in today’s data intensive age there are entire software pack-
ages or data bases that compute all of these partition functions and statistical
equilibrium population levels for an arbitrary admixture of every conceivable
element and molecule under the Sun. If you find them, let me know, please.

9. Appendix A: The Perfect Gas (for all occasions)
Although few gases are actually perfect, many of them have high aspirations

and often manage to fit the bill for the most part. Perfect gases also permit
substantial progress in analytic methods, which can be useful for understanding
how real gases behave. Here we record some essential formulae appropriate for
a perfect gas. What makes the perfect gas so perfect, is that we can actually
write down exact expressions for all the thermodynamic quantities instead of
relying on differential (Pfaffian) relations.

Let m [dimensions: gm] denote the mass of the identical particles which
make up the gas (or more generally the mean mass of the different particles
which make up the gas). Then the energy per unit mass is

e(s, v) =

(
3π~2

m8/3

)
v−2/3 exp

[
s

cV
− 5

3

]
,

is simply proportional to the temperature

e(s, v) =
3kB
2m

T (s, v) ≡ cV T =
3

2

p(s, v)

v
,

where cV is the specific heat at constant volume, and kB is Boltzmann’s con-
stant. From this last result we obtain the equation of state

p(s, v) =
2e

3v
=

(
5kB
2m
− 3kB

2m

)
ρT (s, v) ≡ (cp − cV )ρT ,

where, ρ = 1/v, and cp is the specific heat at constant pressure, which is also a
constant.

With these in hand, it is now straightforward to compute the second partial
derivatives of e:

X(s, v) =
5

3

p(s, v)

v
,

Y (s, v) =
p(s, v)

cV
,
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Z(s, v) =
T (s, v)

cV
.

A familiar example of an imperfect gas, is water, a.k.a., a liquid! In par-
ticular, salt water makes up a substantial fraction of our home planet. Often
oceanographers treat salt water as being incompressible. To see why this is the
case, a good working equation of state for salty water is

v(p, S, T ) = v∞(T )− κ1S +
λ(T )

p+ p0(T ) + κ2S
,

where S is the salinity.
When the salinity is zero, this expression takes the simpler form

p(v, T ) =
λ(T )

v − v∞(T )
− p0(T ) ,

where

λ = 1788.316 + 21.55053

(
T

1◦C

)
− 0.4695911

(
T

1◦C

)2

+ · · · bar cm3

gm

p0 = 5918.499 + 58.05267

(
T

1◦C

)
− 1.1253317

(
T

1◦C

)2

+ · · · bar

v∞ = 0.6980547−7.435626×10−4
(

T

1◦C

)
+3.704258×10−5

(
T

1◦C

)2

+· · · cm3

gm

and a bar = 106 gm cm−1 sec−2.
It is now an interesting exercise to compute the isothermal compressibility

κT ≡
1

ρ

(
∂ρ

∂p

)
T

for our atmosphere (more or less an ideal gas although for a variety of reasons
we won’t go into here the ratio of specific heats cp/cV is more like 7/5 than 5/3)
and water, at room temperature and one atmosphere of pressure!

10. Appendix B: The Less Perfect Gas—Ionization
For an ideal gas, with a constant ratio of specific heats, γ = cp/cV , the

closure relation is simply
p(e, ρ) = (γ − 1)ρe ,

where we typically have in mind γ = 5/3. We have the continuity equation to
determine ρ and the internal energy equation to determine e, and the pressure
follows directly from this relation. For an ideal gas we also know all the second
partial derivatives X,Y , and Z, so, if we choose, we can evolve the temperature
T instead of the internal energy per unit mass e. and use the closure relation

p(ρ, T ) = (cp − cV )ρT .
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Variables that are advanced in time via evolution equations, like ρ and e are
called prognostic, while those that are computed at each time step, like p and
T are called diagnostic.

There are many slipshod and haphazard ways to treat ionization in astro-
physics. These cludges work fairly well if your gas is fully ionized or barely
ionized, and if it consists only of Hydrogen and maybe some Helium. But if you
are going to bother with partial ionization because it is an important ingredient
of your problem then it pays to do it right from the start. Incidentally, the
MURaM calculation we have been analyzing in these notes is an example of
the latter sort of situation: the ionization is highly variable, most of the free
electrons near the base of the photosphere are being supplied by Iron, Sodium
and Potassium and neutral Hydrogen is actually picking up some of these free
electrons to make a curious anion (a negatively charged ion) that turns out to be
the dominant source of opacity for wavelenths greater than 200 - 300 nm. Oh,
and did I forget to mention that there is molecular Hydrogen floating about?

So, following Dimitri Mihalas, who did everything the correct way, I present
here his fairly robust scheme for dealing with ionization. The essential assump-
tion inherent in this method is LTE—local thermodynamic equilibrium. The
relative populations of the ionization stages and the excited levels within an
atom/ion obey the Boltzmann and Saha Equations, which means that they
depend essentially only upon two quantities, the temperature T (x, t) and the
electron number density Ne(x, t) or equivalently the partial pressure contributed
by the free electrons, pe(x, t) ≡ NekBT . These are diagnostic variables.

This is both good and bad. Good because only two macroscopic quantities
are involved. Bad because our RMHD equations are set up to evolve the den-
sity ρ(x, t) and the internal energy per unit mass e(x, t), and need the entire
pressure p(x, t) not simply the part due to the electrons on their own. Bad,
also, because we can’t obtain an evolution equation for the temperature T (x, t)
without knowledge of Y and Z functions, which, a priori, are not known to us.
Indeed, by getting the ionization right, we should be able to deduce what these
two functions are.

So, what to do? The approach is essentially to use the RMHD to tell us what
the prognostic variables ρ(x, t) and e(x, t) are, and how they evolve to the next
time step, and concurrently to determine self-consistently what, T (x, t), pe(x, t)
and p(x, t) have to be. This is in some sense the determination of an “equation
of state” for p(x, t) but with the necessity to carry along the temperature and
the electron pressure as auxiliary diagnostic variables at each time step. So, in
fact, we never will be able to write down a statement like

p(ρ, e) = some function(ρ, e, T, pe, · · · )

but when the dust settles we will know ρ and e from the RMHD, and p, pe, and
T from the ionization algorithm.

To see how this works, we will break the problem into two separate pieces.
And then it should be clear how you can combine them to deal with the full
problem. First we will consider the case where our material consists only of Hy-
drogen, but allow for the formation of the anion of Hydrogen and the Hydrogen
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molecule. Second, we will permit an arbitrary admixture of additional ele-
ments, but will assume ionization only for every element including Hydrogen—
no molecules or anions.

α. Just Hydrogen
In stellar atmospheres, particularly cool stars, Hydrogen can exist in five

different incarnations: H, H+, H−, H2, H+
2 , where H+ is just a bare proton, and

H− is the fascinating anion of Hydrogen. To each, we can assign a number den-
sity, and a partial pressure. The five number densities cannot be independent,
but must give the correct mass density, at the current time and every position
in the simulation:

ρ(x, t) = mpN
H+

+mH [NH +NH−
] +mH2

[NH2 +NH+
2 ] +meN

e .

The last term in this expression can usually be dropped.
Electron accounting provides a second relationship between the six number

densities:
Ne = NH+

+NH+
2 −NH−

.

Next we observe that each of the following “chemical” reactions must come
into local thermodynamic equilibrium:

H + e↔ H−

H+ + e↔ H

H +H ↔ H2

H +H+ ↔ H+
2

meaning that the rates in each direction are the same and the number densities
have equilibrated.

This in turn provides us with four independent relationships between the
number densities of the constituents in each reaction, and the temperature T .
So, we now have six equations for the seven unknowns—the seven being the
temperature, T and the six number densities. The last required relationship is
that we must have the correct internal energy per unit volume at the current
time and every position in the simulation:

e(x, t) =
3

2

p(x, t)

ρ(x, t)
+ edissociation(x, t) + elevel occupation(x, t) ,

e(x, t) = ethermal(x, t) + edissociation(x, t) + elevel occupation(x, t) ,

where the last two term can be written explicitly in terms of the appropriate
number densities and information about the energy levels and the dissociation
energies of the two Hydrogen molecules, the Hydrogen atom, and the Hydrogen
anion.

The first term is just the thermal kinetic energy with (1/2)kBT per transla-
tional degree of freedom, i.e.,

p(x, t) = [NH+

+NH +NH−
+NH2 +NH+

2 +Ne]kBT .
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Therefore, with ρ and e given from the RMHD equations at a given time
step, we can in principle solve this system of seven inhomogeneous equations
in the seven unknowns, and then subsequently determine the total gas pressure
from the last equation above. We can then advance the RMHD equations to
the next time step, where this system of equations is solved anew.

A few remarks and observations will be helpful at this point. First, the
expressions for the equilibrium number densities for the four reactions have
been computed, tabulated and fit by various approximations. They are of the
form, using the first reaction as an example,

NHNe

NH−N0
= ΥH+e↔H−

(T )

where the expression on the right side of this equation is a dimensionless function
of the equilibrium temperature, T , and

N0 ≡ 2
(2πmekBT )3/2

h3

is a fiducial number density. Various fits for the four Υ’s are provided by Mi-
halas [M 5] and Vardya [V 1]. Unlike the other three equations, these four
are nonlinear. Second, the capacity of the material to store energy in excited
energy levels and through the binding energies of ionization and dissociation
can have some very novel effects on the RMHD. If only the random thermal en-
ergy option existed, when a parcel of material is adiabatically compressed, the
thermal energy, pressure and density all increase and act in a fashion to resist
the compression. If instead the work done on the material goes into pumping up
the population of internal energy levels overlying the ground state, then there
may be little comparable increase in pressure. Similarly if the work done goes
into dissociation, then each new particle adds a whopping (3/2)kBT to the pres-
sure. Third, if LTE does not hold, then we are forced to carry along prognostic
evolution equations for each of the six number densities which must be solved
concurrently with the rest of the RMHD equations. Fourth, notice that we have
left off the recombination reaction

H+
2 + e↔ H2 .

Can you explain why?

β. Ionization Only
In this example, we will allow for a complete cosmic mix of all sort of elements

and ions, but, to keep matters in hand, no molecules or anions will be permitted.
The number densities we need to track now proliferate at an alarming rate,
however, so do the number of equivalent Υ’s. And indeed, they keep pace in
such a fashion that we will have as many equations as unknowns when all is
said and done.

The additional information we need to supply a priori is the fractional abun-
dance of each element. This can be approached in two equivalent ways. Either
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we give the fractional abundance relative to Hydrogen, in which case we have
one fewer fractional abundance than elements, or, we give the fractional abun-
dance relative to the total of all the elements, in which case we have as many
fractional abundances as elements, however, they all have to add up to one.
Both ways are equivalent, but, the actual fractional abundances are different, of
course. The remainder of the information, ionization potentials, energy levels
and so forth are in principle known in advance from the atomic physics, and we
must simply access that information as we need it.

Anticipating that we will have to deal with some admixture of elements
in our matter, we let NZ(x, t) be the number density of atoms/ions with Z
protons in the nucleus (we don’t worry about isotopes, you can if you wish).
So, Z=1 is Hydrogen, Z=2 is Helium, and so forth, or, we can also just use the
atomic symbol, so NHe ≡ N2 is the number density of Helium and NC ≡ N6

is the number density for Carbon. We shall also again need the number density
of electrons in what follows, Ne. All of these capital N ’s have dimensions of
cm−3.

A given element Z has Z states of ionization (including unionized or neutral).
To distinguish them we add a subscript to obtain NZ

j (x, t) for the number
density of element Z in the j-the state of ionization. We let j = 0 denote
neutral, j = 1 single ionized and so forth. (If we had an anion, we could use
j = −1.) Hence our first result is simply bookkeeping:

NZ =
∑
j

NZ
j ,

where j ranges over the allowed values. In practice, only j = 0 and j = 1 are
usually necessary in the solar photosphere or chromosphere, because the higher
stages of ionization cost too much energy. This is not true in stellar coronae.

Next we must be aware that each ion contributing to NZ
j can be in any one

of a number of internal energy levels described by several quantum numbers.
For our purposes it suffices to lump them into a single index α which can be
used to number the energy levels in increasing order above the ground state.
The ground state will be denoted by α = 0 and α = 1 is the first excited state,
and so forth. Since there are degeneracies several combinations of quantum
numbers may in fact contribute to the same α and this can be accounted for
by a numerical factor, called the statistical weight gZj,α of the atomic level with

energy εZj,α [dimensions: erg] above the ground state. By convention, εZj,0 ≡ 0.
Our second result is again simply bookeeping:

NZ
j =

∑
α

NZ
j,α(x, t) ,

the number densities in all the available energy levels added together must give
the number density of the element Z in its j-th state of ionization.

Admittedly at this point we have a vast collection of number densities to
track. But now we get some help.
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We are now ready for our first nontrivial result, which is, in LTE, the ratio of
the number densities in adjacent energy levels is given by Boltzmann’s Equation:

NZ
j,α+1

NZ
j,α

=
gZj,α+1

gZj,α
exp

(
εZj,α − εZj,α+1

kBT

)
,

where T (x, t) is the common temperature of the gas and the radiation. Notice
that the right side of this equation depends only on the temperature (which is
currently unknown of course, as it was for the pure Hydrogen example above),
and atomic structure information which is known to us.

Since the satistical weights and the energy level spacings are all tabulated,
once we know the temperature we know the relative populations. Next we want
to find the ratios relative to the ground state instead of adjacent levels. To do
this we daisy-chain this formula as many times as required to obtain

NZ
j,α+1

NZ
j,0

=

(
NZ
j,α+1

NZ
j,α

)(
NZ
j,α

NZ
j,α−1

)
· · ·

(
NZ
j,2

NZ
j,1

)(
NZ
j,1

NZ
j,0

)
,

which “telescopes” to the simple result

NZ
j,α+1

NZ
j,0

=
gZj,α+1

gZj,0
exp

(
−
εZj,α+1

kBT

)
.

Again, the right side of this equation depends only upon the (unknown) tem-
perature and the (known) atomic parameters.

Using this result in our bookkeeping sum we obtain

NZ
j =

∑
α

NZ
j,α =

NZ
j,0

gZj,0

∑
α

gZj,α exp

(
−
εZj,α
KBT

)
≡
NZ
j,0

gZj,0
UZj [T ] ,

which serves to define UZj [T ], which is called the partition function. It too is
tabulated for a range of temperatures and popular values of Z and the lowest
values (generally 0 and 1) of j.

Therefore we have our final result

NZ
j,α+1

NZ
j

=
gZj,α+1

UZj ,
exp

(
−
εZj,α+1

kBT

)
≡ fZj,α+1[T ],

which is the fraction of the population that lives in the α+1 energy level! Notice
that at the appropriate time, this will allow us to compute elevel occupation.

So far we haven’t ionized anything, but that comes next, and this detour
was helpful to introduce the concept of the partition function and telescoping.
The analog of Boltzmann’s Equation for ionization is Saha’s Equation:

NZ
j+1

NZ
j

Ne

N0
=
UZj+1

UZj
exp

(
−
εZj→j+1

kBT

)
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Here, εZj→j+1 is the energy required to ionize from the ground state (α = 0) of
the atom in the j-th state of ionization to the ground state of the ion in the
j + 1-th state of ionization. Ne is the electron number density, and

N0 ≡ 2
(2πmekBT )3/2

h3

is a fiducial number density. The new wrinkle here is that in addition to the
temperature we also need to know the electron number density to actually com-
pute anything. This was not needed to determine the energy level populations.
In fact the last step of our process will be to solve for the electron number den-
sity. However, as before, the right side of this equation still depends only upon
the (unknown) temperature and the (known) atomic parameters.

We can again make use the telescoping concept to obtain

NZ
j+1

NZ
0

=

(
NZ
j+1

NZ
j

)(
NZ
j

NZ
j−1

)
· · ·
(
NZ

2

NZ
1

)(
NZ

1

NZ
0

)
,

or
NZ
j+1

NZ
0

=
UZj+1

UZ0

(
N?
Ne

)j+1

exp

(
−
εZ0→j+1

kBT

)
.

The right side now depends upon two unknows, the temperature and the electron
number density.

The bookkeeping requirement yields

NZ =
∑
j

NZ
j ,

and an ionization analogue of the partition function, say V Z [T,Ne]:

NZ
j+1

NZ
=
UZj+1

V Z

(
N?
Ne

)j+1

exp

(
−
εZ0→j+1

kBT

)
≡ fZj [T,Ne] .

One does not find tables of V Z [T,Ne] anywhere because it is a simple polynomial
in Ne. The nontrivial temperature dependences are in the UZj [T ] partition
functions.

Now we are set, because if the only thing going on is ionization (non-negative
values of j) and we have no molecules to worry about, it follows that

Ne =
∑
Z

NZ
Z∑
j=1

jfZj [T,Ne]

provides the required equation for Ne, if the temperature is specified and we
know the relative abundances of the various elements. For example if NA is the
number density of atoms of all types, then

NA =
∑
Z

NZ ≡ NA
∑
Z

fZ
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in terms of fractional abundances of the elements, fZ , which we must supply.
Which leaves just NA as the remaining unknown. But it can be related back

to the (unknown) gas pressure and the (known) density by

p(x, t) = (Ne +NA)kBT

and
ρ(x, t) = meN

e +NA
∑
Z

mZf
Z .

Finally the very last equation needed to close the system is, as before,

e(x, t) =
3

2

p(x, t)

ρ(x, t)
+ edissociation(x, t) + elevel occupation(x, t) ,

or
e(x, t) = ethermal(x, t) + edissociation(x, t) + elevel occupation(x, t) .

11. Appendix C: RMHD’s 58 Terms
The energy density of the material is

1

2
ρ|u|2 + ρe ,

and the energy flux is

u ·
(

1

2
ρ|u|2 + ρe+ p− �

)
− � · ∇T .

The energy density of the gravitational field is

2− γ
2

ρΦ

where γ = 1 if self-gravity is ignored and 0 if the Newton-Poisson Equation

∇2Φ = 4πGρ

is retained, and the energy flux vector for the gravitational field is

ρΦu + γG .

The energy exchange with the material is

ĖM→G − ĖG→M = −ρu · g = ρu · ∇Φ .
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