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1. Introduction
Electromagnetic radiation spans a truly remarkable range of frequencies,

wavelengths and energies:

Band [ν]Hz [λ]cm [ε]eV [ε]erg [T ]deg K

radio 106.5 104 10−7.9 10−19.7 10−3.8

µ− waves 109.5 10 10−4.9 10−16.7 10−0.8

infrared 1013.5 10−3 10−0.9 10−12.7 103.2

visible 1014.8 10−4.3 100.4 10−11.4 104.5

x− ray 1018 10−7.5 103.6 10−8.2 107.7

γ − ray 1020.5 10−10 106.1 10−5.7 1010.2

all of which can, and have, been profitably treated via the statistical methods
of radiative transfer.

2. The Transfer Equation
The equation of radiative transfer for the specific intensity Iν(x, t;n) [di-

mensions: erg cm−2 sec−1 Hz−1 ster−1 ] is

1

c

∂Iν
∂t

+ n · ∇Iν = ην − χνIν .

Here, ν ≡ ω/2π [dimensions: Hz] is the frequency, and n ≡ k/|k| [dimensions:
ster] is the unit vector parallel to the wavevector, of the photon, and c is the
speed of light. The left side of this equation is the continuity equation for
photons—if the right side is absent, then the number of photons is conserved.
The interaction of photons with the material is accounted for by the right side
of this equation. The second terms quantifies the destruction of photons. The
quantity, χν(x, t;n) [dimensions: cm−1] is the opacity and is assumed to be
non-negative. The creation of photons is described by the emissivity ην(x, t;n)
[dimensions: erg cm−3 sec−1 Hz−1 ster−1 ], which will also be non-negative in
what follows. Both the emissivity and the opacity must be determined from
some knowledge, or specification, of the microphysics of how photons intereact
with the material.

Formally, one can always define the source function, Sν(x, t;n), by dividing
the emissivity by the opacity

Sν ≡
ην
χν

which has the same dimensions as Iν . Sometimes it is preferable to work with
Sν instead of ην , but the outcome is the same no matter which choice is made.
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When the radiation does not interact with the matter, we say the medium
is (very) optically-thin, and we are left with

1

c

∂Iν
∂t

+ n · ∇Iν = 0 ,

a first-order linear PDE for one dependent variable Iν and seven independent
variables x, t, ν, and n. The methods presented in the Appendix E of Scene 1
indicate that any function of x− ctn, ν and n (the six integrals of the motion)
is a solution of this equation!

This is easy. Complications abound, however, when the right side of this
equation is not zero.

3. Momentum and Energy Equations
The transfer equation is the continuity equation for photons! Its moments,

taken over the frequency and wavenumber of the photons, are conveniently the
momentum and energy density carried by the radiation field! To appreciate
why this is the case, notice that Iν is the energy per unit time that crosses a
planar surface of area dS carried by photons with wavenumbers in a solid angle
dn steradians, with frequencies in an interval dν Hz. Each photon individu-
ally makes a contribution hνc [dimensions: erg cm sec−1], where h is Planck’s
constant, to this energy flux, and therefore the number density of photons is

1

hνc
Iν(x, t;n) .

Obviously the combination of (n, ν) is basically equivalent to p = ~k which is
the momentum of a photon.

The energy density in the radiation field (per unit frequency and solid angle)
is just Iν/c. Therefore if we simply integrate the transfer equation over all solid
angles dn and all frequencies dν, we immediately arrive at

∂E

∂t
+∇ · F =

∫ ∞
0

dν

∮
dn [ην − χνIν ] ,

where

E(x, t) ≡ 1

c

∫ ∞
0

dν

∮
dn Iν ,

and

F(x, t) ≡
∫ ∞
0

dν

∮
dn n Iν ,

are the energy density and the energy flux carried by the radiation field—a very
nice and compact result! The right side of this equation, which is unknown
until the microphysics is brought into the formulation, represents the exchange
of energy between the radiation and the material.

The same arguments used above indicate that the momentum density carried
by the radiation field is simply F/c2, therefore multiplying the transfer equation
by n/c and integrating gives the conservation of momentum

1

c2
∂F

∂t
+∇ · P =

1

c

∫ ∞
0

dν

∮
dn n[ην − χνIν ] ,
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where

P(x, t) ≡ 1

c

∫ ∞
0

dν

∮
dn nn Iν ,

is the (symmetric) radiation pressure tensor. Again, the right side of this equa-
tion which expresses the transfer of momentum between the material and the
radiation field, cannot be determined without specifying the microphysics.

4. Solving the Transfer Equation. Part 1
In any event, when we do get around to determining the opacity and the

source function by some means, it will be necessary to solve the transfer equation

1

c

∂Iν
∂t

+ n · ∇Iν = χν [Sν − Iν ] .

This turns out to be, in practice, an incredibly difficult problem because, in
general Sν itself will depend upon Iν in an extremely complicated fashion. So
to gain some facility with the properties of the transfer equation, in this section
we will analyze

1

c

∂Iν
∂t

+ n · ∇Iν + χνIν = χνSν ,

with some reasonably representative choices for χν and Sν .
This, of course, is another quintessential example of a first-order PDE in

(count ‘em) seven independent variables and one dependent variable for a grand
total of eight xi in the parlance of the Appendix E of Scene 1. However, since ν
and n appear merely as parameters, we know they are integrals of the motion.
And n lives on the unit sphere, so it is two-dimensional, therefore we can reduce
our problem to four xi. A serious improvment in outlook!

Still, before jumping into Pfaffians, it is useful to make a few general ob-
servations about this equation. Consider the case where the source function
vanishes everywhere. First, it is linear and homogeneous in I (we are going to
drop the ν since it is a conserved parameter for the remainder of this section),
so if I starts out non-negative, it can never become negative. Second, absent
a source term, the material simply destroys photons and so no matter how we
start things out, the end state is that I ≡ 0 and all the radiation is gone—eaten
by the material or escaped to infinity. Third, we always need to keep the middle
term in this equation, but the ratio of the first to the third terms can be, de-
pending on circumstances, very very large or incredibly small. The inverse of χ
can be regarded as the mean-free-path of a photon before it interacts with, and
in this case, gets destroyed by, the material. For the first term to be comparable
in size to the third, the radiation field must exhibit sensible temporal variations
on the time it takes a photon to traverse one mean-free-path travelling at c.
Because in practice c is so large, and 1/c so small, this equation is singular. A
photon traverses a typical mean-free-path of 10 km at the solar photosphere,
say, in 30 µsec, and so for the first term to figure in our analysis, we would
need to be concerned with variations in the radiation field on this (or shorter)
time scales. Which we aren’t. Therefore it is traditional to omit this first term
entirely in most treatments.
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Another way to appreciate this same point is to think about releasing (via
the source term S) a large number of photons from some point x in the solar
photosphere at an instant of time. The first term in this equation will turn on
immediately and become important for the next few hundred µsec and things
will then settle into a quasi steady state and this term will become negligible
again. So we need to retain this term if we wish to track how the radiation field
equilibrates to (rapid!) forcing by the material.

On the other hand, it could be a serious mistake to go back to the equation
of energy (and to a lesser degree momentum) conservation and rub out the time
derivative contribution based on this argument. The reason is that the energy
density in the radiation field can become comparable to the energy density in
the material at high temperatures present in O and B stars, say, and rubbing
out this term will create errors in energy conservation. Photons have very little
momentum per unit energy, so it is almost always safe to omit the time derivative
of F unless one is dealing with extreme astrophysical situations.

Given χ(x, t;n) and S(x, t;n) everywhere, our goal is to determine I(x, t;n)
from

1

c

∂I

∂t
+ n · ∇I + χI = χS ,

one n at a time (and, also, one ν at a time). We can do this because different
n’s (like different ν’s) are not coupled (e.g., they are integrals of the motion)
when S(x, t;n) is provided to us ab initio.

To be precise, our problem is to pick an n and a point y, say, where we
want to determine I(y, t;n), for all t, based on complete knowledge of χ and
S. Before doing the math, perhaps it is worth taking a moment simply to
sort out what we have to end up with. For the sake of argument, let’s take
t = 0. All the photons that pass through our point y traveling in the direction
n have to be created on the spot by S or have just arrived from behind us
coming from the −n direction. Of this second part of the photon population,
we can go back and figure out precisely where they had to be at any earlier time
t = −t0, because they all travel at the same speed c. Of course, the photons
that get to us are the“lucky” ones who have not been subsequently absorbed
over the distance ct0 which they had to travel. And, along the way, they have
picked up companions due to contributions from S which are aligned and timed
appropriately. Therefore the number of photons of this second type we have
depends upon the behavior of the opacity and the source function at previous
times and locations in the negative −n direction consistent with the fact that
they all travel at the constant velocity, c. Stated another way, when we go
back and integrate behind us along the line of sight, we must use the retarded
time appropriate for each location when we reckon the opacity and the source
function! This, of course, is precisely what we found for the solutions of the
electromagnetic wave equations, from which we built photons, so it is satisfying
that the same physics is imbedded in the equation of radiative transfer! A very
nice, and in retrospect, perhaps completely obvious, result! Ok, now let’s do
the math.

There are three more integral of the motions, related to the fact that photons
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travel at the speed of light in the direction n. So, to exploit this symmetry, we
replace the four the independent variables x and t by the expressions

x = y + sn + x⊥

t =
1

c
(η + s)

in terms of two new independent variables s and η, (both are real numbers) and
the two components of x that are orthogonal to n. The inverse transformations
are obviously

s = n · (x− y) ,

η = ct− n · (x− y) .

Using the chain rule to convert the (x, t) derivatives to the (x⊥, s, η) coordinates
we obtain

∂I

∂s
+ χI = χS ,

the single derivative being taken at fixed η and x⊥, which, are the three addi-
tional integrals of the motion!

Physically, we have taken advantage of the fact that the intensity of radiation
at point y in the n direction can only depend upon photons approaching (from
the negative s direction) along the (one-dimensional) line described by

x = y + sn ,

and so we used the mathematics to eliminate the extraneous parts of the transfer
equation. Mathematically, we have identified a particular (one-dimensional)
manifold of our four-dimensional Galilean space-time where all the action takes
place.

This equation has essentially the same form as the equation

dI

ds
+ χI = χS ,

which is the standard form of the transfer equation, omitting the time derivative,
used in the standard treaments of time-independent radiative transfer! It’s nice
that we can get to more or less the same place retaining the full equation with
no approximation. The solution of our equation

∂I

∂s
+ χI = χS ,

can proceed along similar lines, but, with some subtle and very fascinating
nuances, because, afterall d/dt 6= ∂/∂t.

It still makes sense (following the time-independent approach) to define a
dimensionless quantity called the optical depth by

τ(s, η) =

∫ 0

s

ds′χ(y + s′n, (s′ + η)/c;n) .
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Distinct from the optical depth in the standard time-independent treatment,
this optical depth depends upon the time (through η) and the past behavior of
the opacity along the trajectory of a photon! For example, should the opacity
have become very large somewhere behind the point y at some time in the past,
there will be a future time at the point y where the intensity will drop reflecting
that fact that a large number of photons were absorbed before they could get
to y. Physically, this equation says that we use the opacity at the retarded time
as we integrate forward toward y along the n direction.

Replacing the the s-derivative (at constant η) in favor of a τ derivative gives

∂I

∂τ
= I − S ,

consistent with our definition that τ = 0 at x = y, and τ increases as one looks
farther back along the negative s-direction. Be careful with sign conventions
here, as we could equally have picked an optical depth with a different sense.

Integrating back from τ = 0 to a finite optical depth, τ0 we get

I = eτ−τ0 I0 +

∫ τ0

τ

dτ ′eτ−τ
′
S′ ,

where I0 is the specific intensity at the optical depth

τ0(η) = τ(s0, η) =

∫ 0

s0

ds′χ(y + s′n, (s′ + η)/c;n) ,

where s0 is that distance behind the point y where we eventually reach the back
end of a cloud, or atmosphere, through which the radiation is passing. Therefore,
at this point we are not only free to, but in fact, obligated to indicate what the
incident radiation I0 looks like impinging upon the cloud/atmosphere in the n
direction back at s0. The solution at y is obtained by setting τ = 0. Therefore,
if τ0 � 1 little information about I0 manages to survive at y.

We’ve placed a “′” on the S to indicate that it too has to be evaluated at the
retarded time at the appropriate optical depth for that time. This is somewhat
easier than trying to explicitly write down the exact x. Problem solved! As the
dust settles, its worth considering a few points.

First, if nothing depends upon time then any time is as good as any other
time—and there being no time like the present, so to speak, we can evaluate the
opacity and the source function at the current time and forget about photon
trajectories and retarded time. We then obtain the standard result quoted in
all the usual textbooks. The same is true in an asymptotic sense if we turn on
the opacity and the source functions everywhere at some time t0 and maintain
them at these values for all future times. The radiation field approaches the
steady-state solution as the initial transients are absorbed and propagate away.
The exact solution derived here allows one to estimate how long it takes to get
to this steady-state depending upon where you are in the cloud/atmosphere.

Second, in the same fashion that very little of I0 is present in I(τ) if τ0 − τ
is in excess of even modest values like 5-10, little of the source function mat-
ters beyond τ ′ − τ unless it increases as dramatically as the exponential factor
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declines. When such dramatic behavior is not in play, that is when the source
function varies slowly compared to the exponential of the optical depth, I de-
pends for the most part on the local value of S and perhaps one or at most two
of the derivatives of S with respect to optical depth. This is very nice when it
occurs, because then the radiation field depends on local (as opposed to global)
conditions. In such situations we say the radiation field is optically-thick. We
may then employ a Taylor series expansion of the source function about the
(local) point τ :

S(τ ′, t′) = S(τ, t) + (τ ′ − τ)S(1)(τ, t) +
1

2!
(τ ′ − τ)2S(2)(τ, t) + · · · ,

where t′ is the retarded time, of course. The essential point is that the S(n)

depend upon partial derivatives of S with respect to τ and t, evaluated at the
same τ and t where we are computing I and so they may be moved outside of
the integral. At each order n, the remaining integral can be evaluated in terms
of the Incomplete Gamma Function, as follows:∫ τ0

0

dw wne−w ≡ n!− Γ(n+ 1, τ0) = n!−
∫ ∞
τ0

dw wne−w .

Most authors will simply point out that the last integral has to be small for large
τ0 and move on, but, there is some utility, I think, in being precise and seeing
how the mathematics permits us to say what this really means in practice. The
Incomplete Gamma Function has the power series expansion

Γ(n+ 1, τ0) = n!− τn+1
0

n+ 1
1F1(n+ 1;n+ 2;−τ0) ,

where

1F1(a; b;x) = 1 +
a

b
x+

a(a+ 1)

b(b+ 1)

x2

2!
+
a(a+ 1)(a+ 2)

b(b+ 1)(b+ 2)

x3

3!
+ · · · ,

is called the Confluent Hypergeometric Function. It has many relatives where
the two ‘1’ subscripts can be replaced by other integers. And it contains other
well known functions, such as

ex = 1F1(a; a;x) ,

as special cases. In any event, the series for Γ(n+ 1, τ0) converges for all values
of τ0 but is fairly useless when, as in our case, we are contemplating largish
values of τ0. Then, the asymptotic formula

Γ(n+ 1; τ0) ∼ τn0 e−τ0
(

1 +
n

τ0
+
n(n+ 1)

τ20
+ · · ·

)
,

quantitatively confirms our suspicions that the Incomplete Gamma Function is
exponentially small compared to the n!, and it tells us precisely what “largish”
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means. As is true with all asymptotic series, this series is convergent for no
value of τ , (which is why we use a ∼ instead of an =) but, instead the terms in
parenthesis will successively decrease in size until one reaches the N -th term,
say, and then they will increase in size beyond this term. Stopping just short of
this N -th term gives us the best approximation we can attain for the Incomplete
Gamma Function, and the N -th term indicates how big our margin of error is.
In practice for this process to yield useful results we will need τ0 � n, otherwise
we arrive at the magic N -th term rather quickly. This tells us that for this
whole procedure to make sense, we need S(n) to get small with n since, were
this not the case, eventually no matter how big τ0 is we would reach an n in our
expansion when it is no longer big enough for the integral to be n!.

Thirdly, we have to repeat this over and over again for all the y’s, n’s and
ν’s of interest, which are not even a countable sets of objects that you could
list. So, to be honest, all this effort has only gotten us I at one place (well to be
fair, we do have the solution at all the places behind it at retarded times, and
in front of it at advanced times with a little ingenuity) in one direction, for one
frequency and one time. Ouch! At this rate we are going nowhere fast.

5. Solving the Transfer Equation. Part 2
To speed things up, so speak, there are essentially two distinct directions one

could go at this point. In real world applications, you’ll find that the opacity
and the source function are usually extremely complicated functions of position,
time, frequency, and photon wavenumber. So accepting the inevitability of
this fact, the next steps are to devise cunning, robust and efficient numerical
algorithms to obtain sufficiently accurate solutions of the transfer equation for a
given application. This is an entire course of study, and if this is where you see
your future, the bibliography will give some places to start with this approach.

The second approach, which we pursue here, is to adopt some idealized, but
not completely ludicrous, parameterized behaviors for these two functions, χ
and S, and push the mathematics a little farther to understand the underlying
physics of radiative transfer. This is often useful especially when used in concert
with the previous direction.

Of the various approximations we might consider, taking the interaction of
the radiation with the underlying material to be isotropic, or independent of
photon propagation direction n is powerful, and, often is not a bad approxima-
tion in many astrophysical circumstances. This could be on account of the fact
that the scatterers/absorbers are really spherically symmetric, or because there
is no preferred orientation for anisotropic scatter/absorbers. Both will give the
same result, albeit, perhaps with different numerical values.

Andy yet—sigh—this is still not sufficient to get us all the y’s, n’s in one
handy formula. We must also specialize to static planar, or spherical geometries.
They apply to real situations where spatial variations in two (transverse) spatial
coordinates are on very much larger scales when compared to the variations in
the third, orthogonal, direction. As such geometries are frequently reasonable
approximations to actual astrophysical systems, it makes sense to study them
and be familiar with their properties. Cylindrical geometry is also amenable to
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analysis, but to be honest it is hard to dream up astrophysical situations which
closely resemble cylinders. Spherical geometry often looks locally planar, except
for situations in which the net optical depth across the sphere is less than or
equal a number of order unity—this rarely occurs in astrophysical situations,
although geophysically, clouds can often have this property as they are forming.

So we will confine our attention to Cartesian slab geometry, for which the
time-independent transfer equations (at any given frequency ν, which we con-
tinue to suppress in the notation) is

µ
∂I

∂z
+ χI = χS

where µ = n·êz and just to be definite, we shall assume that the slab of material
lives somewhere in the half-space z ≤ 0. If χ = χ(z) is some function of depth
into the slab, then as before, it behooves us to mathematically incorporate this
variation into an optical depth coordinate measured from the surface z = 0 into
the slab according to

τ(z) =

∫ 0

z

ds χ(s) , for z ≤ 0 ,

to obtain

µ
dI

dτ
= I − S ,

which, save for the factor of µ, is precisely the same equation we encountered
in the previous section. On the other hand, if χ can be treated as a con-
stant independent of position, then in the next section we will indicate how
a more powerful approach can be adopted! Astrophysically, the gravitational
stratification of systems generally precludes any sensible attempt to adopt a
position-independent opacity. Geophysically, clouds, again, will often behave in
this fashion.

The innocuous factor of µ makes a huge impact! For µ > 0, we integrate
inward into the slab from τ until we reach the back surface of the slab at some
optical depth, say τ0, to obtain

I(τ, µ) = e
τ−τ0
µ I0 +

1

µ

∫ τ0

τ

dτ ′e
τ−τ′
µ S[z(τ ′)] , 1 ≥ µ > 0 ,

where I0(z0, µ) is the specific intensity incident, or shining upon, the back of
the slab located at z = z0 (remember z0 is negative by out conventions).

Conversely for µ < 0 we integrate outward from the point τ to the (other)
surface of the slab at z = 0

I(τ, µ) = − 1

µ

∫ τ

0

dτ ′e
τ−τ′
µ S[z(τ ′)] , − 1 ≤ µ < 0 .

We can also incorporate some intensity shining inward on this face of the slab
as well, if that is desirable, in an obvious fashion. We will skip it here.
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A few subtleties are worth noting here. First, the point µ = 0 must be
handled with some measure of care through a limiting process from both positive
and negative µ hemispheres. Second, if we are given the source function as
it varies with depth into the slab, then to affect the integration we need to
transform it to the optical depth scale. Third, a finite value for τ0 implies that
the slab is of finite extent in z. A semi-infinite slab has τ0 → ∞ and provided
I0 doesn’t do anything silly we drop the first term in the expression for I when
0 < µ ≤ 1. We’ll carry on with the semi-infinite slab, so

I(τ, µ) = +
1

µ

∫ ∞
τ

dτ ′e
τ−τ′
µ S[z(τ ′)] , 1 ≥ µ > 0 .

This constitutes a complete solution to our problem, which can then be mapped
back on to a physical z scale by inverting the optical depth. Since ν does not
appear explicitly in the solution, we can incorporate any ν dependence we like
into χν(z) and Sν(z) using the same formulas.

Since S and χ are independent of µ, we can readily compute the moments

J(τ) =
1

2

∫ 1

−1
dµ I(τ, µ) ≡ Λτ [S(τ ′)]

H(τ) =
1

2

∫ 1

−1
dµ µ I(τ, µ) ≡ Φτ [S(τ ′)]

K(τ) =
1

2

∫ 1

−1
dµ µ2 I(τ, µ) ≡ Xτ [S(τ ′)]

as functionals, or equivalently integrals, over S(τ) with different kernel functions
of (τ − τ ′). In otherwords, these are convolution integrals. This is not too
surprising because I(τ, µ) is itself a a convolution integral with an exponential
kernel.

Just like there are table of integrals, there are extensive tables of what the
operators Λτ , Φτ and Xτ do to various S(τ)’s. We provide some references in
the bibliography. Use them, don’t try to do all these integrations yourself.

Now comes the interesting complication that underscores an essential quality
of radiating fluids. As we shall demonstrate in a subsequent chapter, if the
radiation field and the material are in local thermodynamic equilibrium (LTE)
at the same temperature T (z) in the slab, then two thing must be true. First,
the source function must be equal to the Planck Function

Sν(z) = Bν [T ] =
2hν3

c2
1

exp[hν/kBT (z)]− 1
,

where h is Planck’s Constant, kB is Boltzmann’s Constant, and c is the speed
of light. (This is an exceedingly powerful result!) Second, the mean intensity
must equal the source function, which equals the Planck Function. In our slab-
geometry, this means

J(τ) =
1

2

∫ 1

−1
dµ I(τ, µ) ≡ Λτ [J(τ ′)] ,
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or equivalently
S(τ) = Λτ [S(τ ′)] ,

implying that we are no longer free to specify the source function, but, in fact,
we need to solve for it! This is a real game changer.

This convolutional integral equations is known as Milne’s Integral Equation.
And once this equation is solved, we can find T (τ) from the frequency-integrated
Planck Function:

B[T ] ≡
∫ ∞
0

dν Bν [T ] ≡ σR
π
T 4 =

2π4k4B
15h3c2

T 4

where σR is the Stefan-Boltzmann Constant.
Of course, this equation has been solved, indeed—and here’s the rub—there

are entire books devoted to determining the solution and documenting its be-
havior.

6. Solving the Transfer Equation. Part 3
Consider finally the situation we alluded to above, in which we may take χ

to be a strict constant, say χ0 just to avoid confusion. And as we did at the
conclusion of the previous section, we shall assume LTE. Then directly from the
transfer equation, one may derive

S(x) = χ0

∫
dx′

e−χ0|x−x′|

|x− x′|2
[S(x′) +Q(x′)] ,

which is valid in any geometry! Notice that without the exponential factor, this
looks somewhat like our solultion to Poisson’s Equation in Scene 1, except we
have an additional power of |x − x′| in the denominator and the exponential.
The additional term Q(x′) is included in case there are some externally supplied
photons from sources that have nothing to do with LTE and the material. This
term would represent say a lighthouse in a fog bank, and the S would describe
the scattering of this light by the fog.

Whole books do not need to be written about this equation or how to solve
it. This (three-dimensional) convolutional kernel has an analytic Fourier Trans-
form and so the method of choice is to Fourier Transform this equation using
the convolution theorem for Fourier Transforms. The transformed equation is
algebraic.

7. Exercises

Exercise 1: THE CASIMIR EFFECT
Consider this highly-idealized, but hopefully, very illuminating problem. Two
parallel infinitely conducting plates are initially separated by a distance L. In
between these two plates is vaccuum, that is, no matter so ρ = 0. The plates
have equal and opposite surface charge densities, σ [dimensions: esu cm−2] and
so there is a uniform electric field E filling the gap between the plates. Both
plates are at the same temperature T , and are in thermal equilibirum with a
radiation field that fills the gap between the plates and which is also at the same
temperature T as the plates.
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(A) The plates attract each other due to the electric field, and the radiation
field exerts a pressure P = P (T )1 that tries to push the plates apart. Enforcing
mechanical equilibrium, find a relationship between σ, L, and T , say

Leq(T, σ) .

(B) Now suppose that you apply a force to hold the plates apart at a distance L
greater than Leq, while keeping the temperature and the surface charge density
fixed. Taking this initial state to be in thermal and mechanical equilibirum, at
t = 0 you let go of the plates. Assume that the back of the plates are thermally
insulated. What is the final separation of the plates and the temperature of the
radiation field? How long does it take to reach this final state?
(C) A purely quantum electrodynamic process is the so-called Casimir Effect.
It states that the vaccuum fluctuations which take place in the gap between the
plates will on average produce at attractive force between the plates even when
there is no charge on the plates and no electromagnetic field between them! The
Casimir force per unit area is

hcπ

480L4
,

where, h is Planck’s constant. How close would the two charged plates have to
be in order that the neglected quantum electrodynamic effects embodied in the
Casimir Force would invalidate our purely classical treatment of this problem?

Exercise 2: STIMULATED EMISSION
If you muse over the Planck Function

Bν [T ] =
2hν3

c2
1

exp[hν/kBT ]− 1
,

for awhile, and think back to the discussion in the very beginning of the Opera
on photon occupation numbers and Bose-Einstein statistics, it will strike you
that the factor

2hν3

c2

has the same dimension as Iν . This “threshold” specific intensity is associ-
ated with the relative importance of stimulated emission relative to spontaneous
emission.
(A) In Pomraning [P 5], pp. 44-7, you’ll find the equation of radiative transfer
written as:

1

c

∂Iν
∂t

+ n · ∇Iν = ην

[
1 +

c2

2hν3
Iν

]
− χνIν ,

where ην and χν are the emissivity and the opacity, corrected for stimulated
emission—stimulated emission being described by the second term in square
brackets. Verify that

ην = χνBν [T ]
(

1− e−
hν
kBT

)
χν = χν

(
1 +

c2

2hν3
Bν [T ]

)
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are the necessary LTE relationships between the emissivity and opacity for spon-
taneous emission/absorption, and their counterparts which take account of stim-
ulated emission/absorption, in order that Iν = Bν [T ] causes the right side of
Pomraning’s radiative transfer equation to vanish.
(B) Discuss the limiting behavior of the right side of Pomraning’s equation when
hν/kBT � 1 and there are large numbers of photons in a unit phase-space cell
of size h3. Does this provide any insight on when to use Maxwell’s Equations
instead of the equation of radiative transfer in describing the electromagnetic
field? What is the situation when hν � kBT?
(C) Usually, stimulated emission is presented in the context of the emission
and absorption of radiation in very narrow spectral windows associated with
specific atomic transiitions, where one encounters the famous Einstein A and
B coefficients. This is covered very nicely in the lecture notes by Rob Rutten,
cited below. The generalization of these ideas to continuum processes is due to
Milne.

Exercise 3: DIFFUSION APPROXIMATION
Substitute the Taylor series expansion

S(τ ′) = S(τ) + (τ ′ − τ)
dS

dτ
+ (τ ′ − τ)2

1

2!

d2S

dτ2
+ · · · ,

into the two exprssions for the specific intensity

I(τ, µ) = +
1

µ

∫ ∞
τ

dτ ′e
τ−τ′
µ S(τ ′) , 1 ≥ µ > 0 ,

I(τ, µ) = − 1

µ

∫ τ

0

dτ ′e
τ−τ′
µ S(τ ′) , − 1 ≤ µ < 0 ,

valid for the semi-infinite slab with no light shining on it from the outside.
(A) Convince yourself that

I(τ, µ) =

∞∑
k=0

µk
dkS

dτk

[
1− θ(−µ)

1

k!
Γ(1 + k;−τ/µ)

]
,

where θ(x) is the Heaviside step function which is 1 when x > 0 and 0 when
x < 0, and Γ(z, ζ) is the Incomplete Gamma Function.
(B) Now use this result to show

J = S +
1

3

d2S

dτ2
+ · · ·

H =
1

3

dS

dτ
+

1

5

d3S

dτ3
+ · · ·

K =
1

3
S +

1

5

d2S

dτ2
+ · · ·

and comment on the content of the “· · · ”—how close can one be to the surface
τ = 0 before all of this goes terribly wrong?

13



(C) The diffusion approximation usually gets additional help because each
higher τ -derivative of S is generally much smaller than the previous one. The
Eddington Approximation amounts to asserting

K =
1

3
S

and neglecting the higher order derivatives. Use this result in the moment
equations to arrive at a diffusion equation for the energy density in the radiation
field:

∂E

∂t
= ∇

(
c

3χ
∇E

)
+ χ[4πS − cE] .

What is F?

Exercise 4: STILL MORE MURaM
Go back to Figure 6 provided at the end of Scene 2, and notice that the average
temperature declines linearly, or very nealy so, with altitude in the lower half
of the simulation.
(A) Use

S(τ) =
σR
π
T 4

in your expression for F above to obtain

F3 = −16σRT
3

3χ

∂T

∂x3
.

(B) Estimate d〈T 〉/dx3 from Figure 6, and use the fact that MURaM has

〈F3〉 ≈ 6.3× 1010 erg cm−2 sec−1

to say something about 〈χ〉, which is the inverse of the photon mean-free-path.
(C) Now take a gander at Figure 10. Where the mean temperature has a linear
gradient, we can safely assume [as you probably did in part (B)] that

〈Tn〉 ≈ 〈T 〉n .

But this is certainly not the case in the upper one-third of the computational
domain. What is happening here?

8. Further Reading
Radiative transfer as a subject has somewhat fallen out of favor in modern

physics and astrophysics curricula, perhaps, in part, because it has the reputa-
tion of being terribly dry, very classical in outlook, and incredibly parsimonious
in yielding useful analytic results or examples of pedagogical value in teaching.
Today, radiative transfer, while an essential component of lots of investigations
invariably enters as a large numerical “black box” of a code, based on short-
characteristics, lambda-interation and a host of clever schemes to increase the
pace of convergence.
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With these caveats in mind, and in keeping with my leitmotif of “if you could
only own one book, or have one book on a desert island”, my offering here is
?[M 4] Dimitri Mihalas, Stellar Atmospheres, (San Francisco, CA: W.H. Free-
man and Company; 1970), xiv+463.
This is the first edition. The distinguished astrophysicist, Ivan Hubeny, has
recently released a much enlarged and heavily revised n-th revision as
[HM 1] Ivan Hubeny & Dimitri Mihalas, Theory of Stellar Atmospheres.
An Introduction to Astrophysical Non-Equilibrium Quantitative Spectroscopic
Analysis, (Princeton, NJ: Princeton University Press; 2015), xvi+923,
which definitely bridges the gap between the classical and modern incarnations
of radiative transfer, but at the price of losing some of the clarity and elegance
of the more compact first edition.

Equally as useful, albeit from a very very different perspective, is the truly
amazing contribution by
?[RL 1] George B. Rybicki & Alan P. Lightman, Radiative Processes in Astro-
physics, (New York, NY: John Wiley & Sons; 1979), xv+382,
so, in fact, take both of these books if you are planning on spending a lot of time
on a deserted island.

A very very close second (third?) to the Mihalas/Rybicki-Lightman combo,
and much cheaper any way you look at it, is Rob Rutten’s lecture notes which
are available as a 275 page pdf on-line
https://www.staff.science.uu.nl/∼rutte101/rrweb/rjr-edu/coursenotes/

Of the various classical treatises on radiative transfer, the following four are
worth the effort to find in a used bookstore,
?[K 2] V. Kourganoff (with I.W. Busbridge), Basic Methods in Transfer Problems.
Radiative Equilibrium and Neutron Diffusion, (Oxford, UK: Clarendon Press;
1952), xv+281,
[S 5] V.V. Sobolev, A Treatise on Radiative Transfer, (Princeton, NJ: D. Van
Nostrand Company; 1963), xi+319,
[G 4] R.M. Goody, Atmospheric Radiation. I. Theoretical Basis, (Oxford, UK:
Clarendon Press; 1964), xi+436,
?[D 2] B. Davison (with J.B. Sykes), Neutron Transport Theory, (Oxford, UK:
Clarendon Press; 1957), –+450.

For an authoritative discussion of the Milne Equation for the plane-parallel
problem, see
[H 2] Eberhard Hopf, Mathematical Problems of Radiative Equilibrium, (Cam-
bridge, UK: Cambridge University Press; 1934), viii+105,
[B 4] I.W. Busbridge, The Mathematics of Radiative Transfer, (Cambridge, UK:
Cambridge University Press; 1960), x+143.

Of course, Shu [S 1] and Mihalas & Mihalas [MM 1] are also very good
sources for this same material. Finally, here we should also record the other
monographs and treatises devoted to radiation hydrodynamics. All of them are
worth looking at for the different perspectives they take and various approaches
to the same basic issues. In no particular order,
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?[P 5] Gerald C. Pomraning, The Equations of Radiation Hydrodynamics, (Mi-
neola, NY: Dover Publications; 2005), x+286,
?[P 6] Shih-I Pai, Radiation Gas Dynamics, (New York, NY: Springer-Verlag;
1966), viii+229,
?[C 3] John Castor, Radiation Hydrodynamics, (Cambridge, UK: Cambridge
University Press; 2004), xii+355.

9. Appendix A: Spherical Geometry
The derivation of the transfer equation in spherical geometry involves some

subtleties which are handled very nicely in Chapter II of Pomraning [P 5].
In addition to the spherical coordinates r, θ, φ, we define µ = n · x/|x| as the
cosine of the polar angle between the photon direction of propagation n and the
radial unit vector êr = x/|x|. The second azimuthal propagation angle, ϕ, is
the angle between the projection of n onto the two-dimensional tangent plane
perpendicular to x at x, and some fiducial direction lying in this plane, which
could be north, south, east or west, take your pick, but remain consistent.

We shall be content simply to quote the result here:

1

c

∂Iν
∂t

+ µ
∂Iν
∂r

+

√
1− µ2

r

(
cosϕ

∂Iν
∂θ

+
sinϕ

sin θ

∂Iν
∂φ

)

+
1− µ2

r

∂Iν
∂µ
−

(√
1− µ2 sinϕ cot θ

r

)
∂Iν
∂ϕ

= ην − χνIν ,

for the specific intensity Iν(r, θ, φ, t;µ, ϕ). For spherical symmetry we may take
∂/∂θ = ∂/∂φ = ∂/∂ϕ = 0, resulting in

1

c

∂Iν
∂t

+ µ
∂Iν
∂r

+
1− µ2

r

∂Iν
∂µ

= ην − χνIν ,

which is much less daunting in appearance, for a simple function Iν(r, t;µ).
Of course, you do not want to even think about what this might look like in

oblate spheroidal coordinates.

10. Appendix B: A Short Table of Lambda Operators
The Lambda Operator,

F (τ) = Λτ [f(t)] ≡ 1

2

∫ ∞
0

dt f(t)E1(|t− τ |)

is an operator or a mapping that assigns to every “integrable” function f(t)
defined for t ∈ [0,∞) another function F (t). The vector space of integrable
functions so defined on this interval is an example of an infinite dimensional
vector space, or simply a function space. Alternatively, the Lambda Operator
can be thought of an an integral transform.

The kernel of the integral transform, is the n = 1 incarnation of a family of
functions

En(z) ≡
∫ ∞
1

dt t−ne−zt
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called the Exponential Integral Function, with an uncanny resemblence to the
Gamma Function

Γ(z) ≡
∫ ∞
0

dt tz−1e−t

which interpolates the factorial function. But that’s about where the similarities
end. However, the Incomplete Gamma Function introduced in §4

Γ(z, ζ) ≡
∫ ∞
ζ

dt tz−1e−t .

is more directly related.
The members of this family satisfy a simple recurrence relation

En(z) =
1

n− 1

[
e−z − zEn−1(z)

]
, n = 2, 3, 4, · · · .

One also has

E1(z) = − log z − γ −
∞∑
k=1

(−z)k

k k!
,

where γ, like e and π is a fundamental mathematical constant, called Euler’s
constant. It is usually defined through a limiting process as

γ ≡ lim
n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)
= 0.5772 15664...

similar to

e ≡ lim
n→∞

(
1 +

1

n

)n
= 2.7182 81828...

(can you find a similar limit expression for π?). Notice that E1(z) diverges loga-
rithmically as z → 0, but this is no cause for concern because such a divergence
is integrable.

The series for E1(z) converges for all values of z, but, for largish z it converges
too slowly to be of any practical use. Just as we did for the Incomplete Gamma
Function in §4, we can find a asymptotic series that provides a much better
estimate at large z,

En(z) ∼ e−z

z

(
1 +

n

z
+
n(n+ 1)

z2
+
n(n+ 1)(n+ 2)

z3
+ · · ·

)
.

This series converges for no values of z, but, if |z| � n, the terms will decrease
in magnitude to a very small value before they begin their inexorable rise and
blow the sum out of the water. The sum up to that small value is our best
available approximation to En(z) from the asymptotic series.

With these preliminaries out of the way, on to the table:

Λτ [1] = 1− 1

2
E2(τ)
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Λτ [t] = 1!

[
1

1

τ

1!
+

1

2
E3(τ)

]
Λτ [t2] = 2!

[
1

3
+

1

1

τ2

2!
− 1

2
E4(τ)

]
Λτ [t3] = 3!

[
1

3

τ

1!
+

1

1

τ3

3!
+

1

2
E5(τ)

]
Λτ [t4] = 4!

[
1

5
+

1

3

τ2

2!
+

1

1

τ4

4!
− 1

2
E6(τ)

]
Λτ [t5] = 5!

[
1

5

τ

1!
+

1

3

τ3

3!
+

1

1

τ5

5!
+

1

2
E7(τ)

]
Λτ [t6] = 6!

[
1

7
+

1

5

τ2

2!
+

1

3

τ4

4!
+

1

1

τ6

6!
− 1

2
E8(τ)

]
and you can now fill in the entry for an arbitrary power of t—our brains are so
adept at seeing patterns! Also useful are

Λτ [e−at] =
e−aτ

2a

[
log
|a+ 1|
|a− 1|

− E1(τ − aτ)

]
+

1

2
E1(τ) ,

and

Λτ [q(t)] = q(τ)− 1

2
E3(τ)

where q(τ) is the Hopf Function. Therefore any multiple of

τ + q(τ) = Λτ [t+ q(t)]

is a solution of Milne’s Integral Equation!
Armed therefore with these results for arbitrary powers and exponentials,

you can build your own favorite source function S(τ) for the slab and compute
the mean intensity J(τ) at any location!

It is worth noting in passing that the other two operators are also expressible
in terms of the exponential integral functions:

1

2
Φτ [f(t)] ≡

∫ ∞
τ

dt f(t)E2(t− τ)−
∫ τ

0

dt f(t)E2(τ − t) ,

1

2
Xτ [f(t)] ≡

∫ ∞
0

dt f(t)E3(|t− τ |) .

Tables for these operators can be found in Kourganoff [K 2].

11. Appendix C: Stokes Polarimetry
The extension of the transfer equation to handle the polarization of photons

requires replacing the scalar specific intensity, Iν(x, t;n) by a vector with 4
components of which the first entry is just Iν :

Iν = (Iν , Qν , Uν , Vν) ,
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which is usually referred to as the Stokes Vector for polarized light. The func-
tions Qν and Uν measure the degree of linear polarization, while Vν describes
the circular polarization. The four quantities that appear in Iν are often referred
to as the Stokes Parameters, and they satisfy the equation

I2ν ≥ Q2
ν + U2

ν + V 2
ν .

Recall from the preamble to this Opera that we related the mean intensity
to the photon distribution function by

Iν(x, t;n) =
∑
±1

h4ν3

c2
f±1(x, t;n, ν) ,

where the sum runs over the two spin-states of the photon. In the same fashion

Vν(x, t;n) =
∑
±1
±h

4ν3

c2
f±1(x, t;n, ν) .

is the difference between the two spin states which leads to a net right or left
hand circlular polarization. Note that some authors will use ∓ instead of ±.

The radiation field is unpolarized when Qν = Uν = Vν = 0, therefore it
is always possible to partition a radiation field locally into unpolarized and
completely polarized components as follows

Iν = (Iν −
√
Q2
ν + U2

ν + V 2
ν , 0, 0, 0) + (

√
Q2
ν + U2

ν + V 2
ν , Qν , Uν , Vν) .

One can therefore regard the quantity√
Q2
ν + U2

ν + V 2
ν

Iν

as measuring the degree or fractional net polarization of the radiation field.
The equation of transfer generalizes in an appropriate manner, with the

opacity now becoming a 4x4 matrix which permits the mixing of the four Stokes
Parameters:

1

c

∂Iν
∂t

+ n · ∇Iν = ηηην − Xν · Iν = Xν (Sν − Iν) .

The off-diagonal elements of Xν are generated principally by large scale, quasi-
static, magnetic fields, which split degenerate atomic energy levels and induce
both linear and circular polarization upon the emitted and scattered photons
from these levels. Indeed, it is by just such processes that we infer the existence
of magnetic fields in astrophysical systems.

12. Appendix D: Radiative Transfer in a Spherical Cloud
Almost every book on radiative transfer treats the static planar problem for

a slab of material. So just to be different, and difficult, we’ll do the spherical
problem! Naturally, we’ll want to employ spherical coordinates (r, θ, φ) for our
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three-dimensional Euclidean space, and will seek spherically symmetric solutions
for which all quantities of interest, depend only upon the radial coordinate,
r ≡ |x|. We’ll also look for static solutions, and invoke isotropy for the opacity
and the source function. The frequency remains a harmless (possibly binned)
parameter, so we’ll just drop it from our notation. This leaves the direction of
photon propagation n. Consistent with spherical symmetry, the very best we
can hope for in terms of simplification is that the specific intensity at any radius
r depends only upon the angle, ϑ, between n and x:

cosϑ =
n · x
|x|
≡ µ .

So, we seek a I(r;µ), based upon a prescription for χ(r) and S(r), which we
shall assume vanish identically outside of a sphere of radius r = R. The sphere
could be a cloud or a star. How hard can that be?

The equation of transfer (omitting the time derivative!) is now:

µ
∂I

∂r
+

1− µ2

r

∂I

∂µ
+ χI = χS ,

which, at first blush, seems slightly unexpected. One might reasonably ask
where the heck the ∂/∂µ emerged from when the original equation only had a ∇
in it! The answer is that this comes from the fact that even if a photon interacts
with nothing, a photon changes its value of µ according to our definition, as it
moves in a straight line offset by some distance from the origin. Indeed, any
photon that does not pass directly through the origin must approach µ = ±1
as it recedes to infinity. The transfer equation must know that, of course and
it must ensure that I(r;µ) becomes strongly peaked in the µ = ±1 directions
as r → ∞. And that, precisely, is what this additional term is there to do.
The analogous equation for the slab is identical to this equation but with the
second term on the left side absent, and with r and µ interpreted appropriately
for Cartesian slab geometry.

We have by now accumulated so much experience solving first order partial
differential equations that you are probably already figuring out the integrals
of the motion (hint: there are three, not including the frequency), and what
new variables (r, µ) → (s, η) should be used to reduce this to our canonical
expression

f(s, η)
∂I

∂s
+ χI = χS .

But before we do that, there are a few things we can determine in advance
about our solution without doing any difficult mathematics. For example, I
at the center of the star/cloud must be isotropic with the same number of
photons per unit time traversing every solid angle no matter what the direction.
Likewise, at the very surface of a cloud/star I(R,µ) must vanish for −1 ≤ µ ≤ 0
since the only source of photons (via S) is within the star/cloud proper. Indeed
at r = R, I is not differentiable with respect to µ at µ = 0, although it is
continuous! Provided we restrict our attention to r 6= R, to avoid this poor µ
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behavior, if we average the transfer equation over all µ and integrate the second
term by parts, we have

dHr

dr
+

2

r
Hr + χ(r)J(r) = χ(r)S(r) ,

which integrates formally to give

Hr(r) =
1

r2

∫ r

0

ds s2χ(s)[S(s)− J(s)] ,

where we have made use of the fact that I(r = 0) is isotropic and therefore
Hr(0) must vanish. From this we may deduce that

lim
r→0

rχ(r)[S(r)− J(r)] = 0 ,

and

lim
r→R

∫ r

0

ds s2χ(s)[S(s)− J(s)] ≥ 0 .

Multiplying the transfer equation by µ and averaging over µ gives

dKrr

dr
+

3

r
Krr − J(r) + χ(r)Hr(r) = 0.

So to find the actual solution, there is no avoiding the basic problem of solving
for I(r;µ).

If you figured out that something akin to

r = R
√
sη , µ = ±

√
s− η
η

,

η =
r

R

√
1− µ2 , s =

r

R

1√
1− µ2

,

is what is required, then award yourself points! Finally,

f(s, η) = 2µ = ±2

√
s− η
η

,

which, as advertized, is a functions of s and η. We’ll see shortly why there is a
factor of 2 here.

The transfer equation indicates that η is a constant of the motion. So, if
we wish to determine I at some specified r′ and µ′, we know that along our
s-integration η = η′ will be strictly constant. And this tells us that there
is a unique relationship between a photon’s radial position r and propagation
direction µ

r = R
√
sη′ , µ = ±

√
s− η′
η′

,
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so that when it ends up at r = r′ (or equivalently s = s′) it is propagating in
the direction µ = µ′.

If we are computing I(r′, µ′) inside our spherical star/cloud, then 0 ≤ η′ ≤ 1,
and, for a fixed value of η′, it must be the case that η′ ≤ s′ ≤ (1/η′). The only
way s′ = η′, is for µ′ = 0, and conversely, for s′ = 1/η′, we must have r = R. In
other words, the maximum value of s is at the surface of the star/cloud, and the
minimum value of s is inside the star/cloud at the minimum radius of closest
approach to the center of the star/cloud where µ = 0.

So, set up your equations and integrate them backward and forward ds at
fixed η, to obtain the equations for I in terms of S. Then compute the moments!

13. Appendix E: RMHD’s 58 Terms
The energy density of the radiation field is

E =
4π

c
J ,

and the energy flux is
F = 4πH .

The energy exchange term with the material is

ĖM→R − ĖR→M =

∫ ∞
0

dν

∮
dn [ην − χνIν ] .

The momentum density of the radiation field is

1

c2
F =

4π

c2
H

and the momentum flux tensor for the radiation field is

P =
4π

c
K .

The momentum exchange term with the material is

ṖM→Ri − ṖR→Mi =

∫ ∞
0

dν

∮
dn ni[ην − χνIν ] .

The radiation field equation is

1

c

∂Iν
∂t

+ n · ∇Iν = ην − χνIν .
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