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1. Introduction
Besides gravity, electromagnetism is the only other force field that operates

over macroscopic distances. Accordingly, it interacts with the material and is
capable of exchanging momentum and energy with the fluid. These exchange
processes are what we must quantify to carry out our program of developing a
working description of a radiating magnetofluid.

In a certain sense, the large-scale electromagnetic fields and the radiation
field, although they are treated separately, are in fact different aspect of a single
phenomenon distinguished simply by the frequency of their temporal variabil-
ity. Radiation is electromagnetic waves that of course span a wide range of
frequencies from radio (starting at a few kHz [dimensions: sec−1]) to gamma
rays (frequencies in excess of 1019 Hz). Quasi-static electromagnetic fields start
out at zero frequency, of course. Naturally before one reaches several kHz the
division between what is quasi-static large scale electromagnetic field, and what
is a low-frquency 3 kHz radio wave with wavelength of order 100 km becomes
problematic. In practice this quandary is often moot because there is little
sensible power in this zone.

2. Maxwell’s Equations
The electric E(x, t) and magnetic B(x, t) fields [dimensions: gm1/2 cm−1/2

sec−1 — equivalently, Statvolts/cm or Gauss, respectively] in an inertial frame
of reference are provided by

∇ ·E = 4πδ , c∇×E = −∂B

∂t
,

∇ ·B = 0 , c∇×B = 4πJ+
∂E

∂t
,

where c is the speed of light (in vaccuum), δ(x, t) [dimensions: gm1/2 cm−3/2

sec−1 — equivalently esu/cm3] is the density of electric charge and J(x, t) [di-
mensions: gm1/2 cm−1/2 sec−2 — equivalently esu/cm2/sec] is the electric cur-
rent density. Conservation of charge,

∂δ

∂t
+∇ · J = 0

is a direct consequence of these equations.
Because there are apparently no magnetic charges anywhere in the universe

the magnetic field is purley solenoidal. The electric field and the current density
can in general have both irrotational and solenoidal components. This is what
makes these equations so interesting.

The electric charge density is a source term for the irrotational component of
the electric field, while the solenoidal component of the electric current density
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is a source for the magnetic field (and the solenoidal component of the electric
field). Indeed, for time-independent sources, we can immediately write down

E(x) = −∇
∫

dx′ δ(x′)

|x′ − x|
= −

∫
dx′ x′ − x

|x′ − x|3
δ(x′) ≡ −∇φ

B(x) =
1

c
∇×

∫
dx′ J(x′)

|x′ − x|
=

1

c

∫
dx′ x′ − x

|x′ − x|3
× J(x′) ≡ ∇×A .

The quantity A(x) [dimensions: gm1/2 cm1/2 sec−1 — Gauss cm] is called the
vector potential and φ(x) [dimensions:gm1/2 cm1/2 sec−1 — Statvolts] is the
electrostatic potential. The solenoidal component of E is zero. If electromag-
netic fields are present which are generated by the presence of electric currents
and charges outside of the domain of interest, then we may add to the right side
of these equations any solutions of the homogeneous Maxwell Equations:

∇ ·E = 0 , c∇×E = −∂B

∂t
,

∇ ·B = 0 , c∇×B =
∂E

∂t
,

which include, for example, photons (electromagnetic radiation).
In addition to the conservation of charge, there are two additional conserva-

tion laws which can be derived easily from the full set of Maxwell’s Equations.
The first expresses the conservation of momentum:

1

c2
∂S

∂t
+∇ · M = −δE− 1

c
J×B .

The momentum density per unit volume carried by the electromagnetic fields is
proportional to the Poynting Flux [dimensions: gm sec−3 ]

S ≡ c

4π
E×B ,

and the (symmetric) Maxwell stress tensor [dimensions: gm cm−1 sec−2] is

M ≡ 1

8π

[
1(|E|2 + |B|2)− 2(EE+BB)

]
.

The term on the right side of this equation, which is the negative of the
Lorentz Force, is the rate at which momentum per unit volume is exchanged
with the material supporting the charge density and the electric currents. It
therefore follows that if the combined system of material and the electromagnetic
fields conserves linear momentum, then:

1

c2
∂S

∂t
+∇ · M = −δE− 1

c
J×B = −ρaEM .

Recall that

∂

∂t
ρu+∇ ·

(
p1− �+ ρuu

)
= ρ(g + aEM + aR) ,
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thus by adding these two equations together we obtain

∂

∂t

(
ρu+

1

c2
S
)
+∇ ·

(
p1− �+ ρuu+ M

)
= ρ(g + aR) ,

which simplifies further to

∂

∂t

(
ρu+

1

c2
S
)
+∇ ·

(
p1− �+ ρuu+ M+ G

)
= ρaR ,

if and only if the fluid is self-gravitating! Recall from Scene 2 that

G ≡ 1

8πG
(2gg − 1|g|2) , g = −∇Φ ,

is very similar in appearance, but of opposite sign, when compared with M,
and it has a single field g in lieu of the two electromagnetic fields, E and B.
Therefore g/

√
G has the same dimensions as E and B—a useful observation if

one contemplates a unified theory of gravity and electromagnetism!
This equation implies (i) that momentum per unit volume can be stored in

both the material and the electromagnetic fields and (ii) that it is transported
spatially by a series of symmetric tensors. The Lorentz Force

ρaEM = δE+
1

c
J×B

describes the process of momentum transfer between the electromagnetic fields
and the material. It can have either sign depending upon whether the fields
are doing work on the material or vice-versa. It vanishes when the is no net
exchange of momentum between the two systems.

The second conservation law that may be obtained fromMaxwell’s Equations
expresses the conservation of energy

∂

∂t

( |E|2 + |B|2

8π

)
+∇ · S = −J ·E .

The J ·E term describes how energy is transferred between the electromagnetic
field and the material.

Although we have successfully obtained an expression for aEM and have
sufficient number of equations to describe the additional electromagnetic fields
needed to deterimne aM , we have four new functions, δ and J, coupled by one
constraint

∂δ

∂t
+∇ · J = 0 .

Therefore we need three additional equations to determine the source terms.
And this, again, requires some knowledge of the microphysics of our fluid. Ap-
pied electric and magnetic fields can induce polarization charge densities and
magnetization currents as well as conduction currents if there are free charges
present. Like the viscosity, it is necessary to carefully examine the prevalent
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microphysics on a case by case basis to understand how to determine transport
coefficients. We’ll return to this problem a little later.

To wrap up this section it remains simply to write down the solutions of
Maxwell’s Equations when the charge density and the electric currents are time
dependent. Toward this end, it proves helpful to work with time-dependent
analogues of the electric potential and the vector potential that are selected to
satisfy the radiation gauge condition

1

c

∂φ

∂t
+∇ ·A = 0 .

As before, the (solenoidal) magnetic field is given by B = ∇×A, however, since
the electric field has both irrotational and solenoidal components we must take

E = −∇φ− 1

c

∂A

∂t

to account for both. We then find(
∇2 − 1

c2
∂2

∂t2

)
φ = −4πδ(x, t) ,

(
∇2 − 1

c2
∂2

∂t2

)
A = −4π

c
J(x, t) ,

wave equations for the scalar and vector potentials. Had we assumed a different
gauge condition, we would have derived different, coupled, equations for φ and
A.

The solutions are

φ(x, t) =

∫
dx′ 1

|x′ − x|
δ(x′, t− |x′ − x|/c) ,

and

A(x, t) =
1

c

∫
dx′ 1

|x′ − x|
J(x′, t− |x′ − x|/c) ,

with the property that the source terms are to be evaluated at a past, or retarded,
time consistent with the fact that light propagates at the speed c.

3. Electromagnetic Radiation
Electromagnetic waves are solutions of(

∇2 − 1

c2
∂2

∂t2

)
A = 0 ,

where ∇ ·A = 0. The starting point for building a photon is to notice that the
plane-wave

A±
j (x, t) = exp i[k · x± |k|ct] ,

j = 1, 2, 3 is a solution of the wave equations, for any constant vector k [dimen-
sions: cm−1] provided only that k ·A = 0. In the remainder if this chapter, we’ll
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reserve, i =
√
−1—elsewhere it will be a summation index. As our electromag-

netic fields are real, this plane-wave actually contains two possible independent
solutions

cos[[k · x± |k|ct] + i sin[[k · x± |k|ct] .
This plane-wave is not, however, a particularly good example of a photon, be-
cause it covers all of space and exists for all times. Photons should be local-
ized in both space and time, while retaining a definite direction of propagation
n ≡ k/|k| and frequency of oscillation ω ≡ c|k| = 2πν [dimensions: rad sec−1].

Since the wave equation is a linear equation, we are free to select the cosine
or the sine solution, or any linear combination thereof. We are also free to add
together as many plane waves as we wish. In otherwords, for any (six!) function
a±j (k) [dimensions: gm1/2 cm7/2 sec−1 —Gauss cm4] which render the following
integrals meaningful,

Aj(x, t) =
∑
±

1

(2π)3

∫
dk a±j (k) exp i[k · x± |k|ct] ,

is also a solution of the wave equation provided only that

0 =
∑
±

∫
dk kja

±
j (k) exp i[k · x± |k|ct] ,

where dk ≡ dk1 dk2 dk3. The prefactor of 1/(2π)3 is related to the fact that
|k| = 2π/λ, there λ is the wavelength of the radiation.

The initial condition at t = 0 is

Aj(x, 0) =
∑
±

1

(2π)3

∫
dk a±j (k) exp ik · x .

Now there are many many other families of functions which are solutions
of the linear wave equation, but our motivation for selecting plane-waves now
becomes apparent. This last equation tells us that Aj(x, 0) is the (three-
dimensional) Fourier Transform of the sum of the two aj(k), therefore by the
Fourier Inversion theorem [see, for example, Appendix B §7 of these notes (not
of this Scene!) for some background if necessary], we know that

a+j (k) + a−j (k) =

∫
dx Aj(x, 0) exp[−ik · x] .

Since B = ∇ ×A, this initial condition is sufficient only to provide the initial
magnetic field. Since E = −c−1∂A/∂t, we require an additional initial condition

∂

∂t
Aj(x, 0) =

∑
±

± ic

(2π)3

∫
dk |k| a±j (k) exp ik · x .

Which implies

a+j (k)− a−j (k) = − i

c|k|

∫
dx

∂

∂t
Aj(x, 0)) exp[−ik · x] .
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So now we have enough information to determine all the little a’s

a±j (k) =
1

2

∫
dx
[
Aj(x, 0)∓

i

c|k|
∂

∂t
Aj(x, 0))

]
exp[−ik · x] ,

in terms of the initial electric and magnetic fields at time t = 0.
An observation or two is in order here before we set about constructing

a photon. First, the six functions a±(k) provide the amplitude, phase and
polarization of electromagnetic waves propagating in the k (‘+’ sign) and −k
(‘−’ sign) directions with frequency ω = c|k|. Only five of these six functions
are independent owing to the constraint ∇ ·A = 0. Second, for each direction
of propagation, the polarization state of the electromagnetic wave is encoded in
the directionality of the vector a. For example, a plane polarized wave with its
electric field vector everywhere aligned with the x1-axis is achieved by setting
a±2 (k) = a±3 (k) = 0. Elliptic polarization of the electric field vector in the
plane perpendicular to the x3-axis requires only that a±3 (k) = 0, and so forth.
Third, although it is conventional to think of the a±(k) as functions of the real
three-dimensional wave vector, k, their construction via the Fourier Inversion
theorem enables them to be rgarded more generally as functions of three complex
variables kj , j = 1, 2, 3. Where, for example, a given k is composed of real and
imaginary parts according to k ≡ κ+ iκ, with both κ and κ being real variables
and i ≡

√
−1. In fact, in some circumstances the defining integral for a may

not converge for purely real k—it may exist only for some restricted domain in
the complex plane. Finally, the vector properties of a determine the state of
polarization of the electromagnetic plane-wave.

4. Building a (Perhaps Very Large) Photon
“Photons”, here interpreted more loosely as localized electromagnetic fields

with a predominant frequency/wavelength, are also solutions to the wave equa-
tion for A(x, t). A photon is a localized wavepacket, or a carefully phased
superposition, of plane-wave solutions concentrated about a definite oscillation
frequency ω0 [dimensions: rad sec−1] and wavevector k0 [dimensions: cm−1].
Crudely speaking, the spread of wavenumbers about k0 and frequencies about
ω0 that are required to construct the wavepacket satisfy the uncertainty relations

∆k∆x ≈ 1 , ∆ω∆t ≈ 1

where ∆x is the spatial extent of the wave packet at a fixed moment in time,
and ∆t is the temporal duration of the wavepacket at some fixed position in
space. The plane-waves of the last section have ∆k = ∆ω = 0 and therefore fill
all of space and exist for an eternity.

To illustrate the construction process while keeping the notation reasonable,
we’ll work with one of the three components of A—the other two proceed in the
same fashion—and one direction of propagation (say ‘−’). Dropping superfluous
subscripts and superscripts we have

A(x, t) =
1

(2π)3

∫
dk a(k) exp i[k · x− |k|ct] ,
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where, of course,

a(k) =

∫
dx A(x, 0) exp[−ik · x] .

A particularly useful starting point for building a wavepacket is a sinusoidal
spatial oscillation with a Gaussian envelope:

A(x, 0) = A0 exp

(
ik0 · x− 1

2

|x|2

L2

)
+ c.c. ,

for some specified values of the constants A0, L (dimensions: cm) and k0 (di-
mensions: cm−1). Here, the expression c.c., denotes the complex conjugate
that sends i → −i. The second term serves to localize the disturbance to a ball
of radius L at the origin (a constant x0 could be subtracted from x if it was
advantageous to localize the disturbance elsewhere), and the first term selects a
particular wave vector k0 for the photon. The (possibly) complex constant A0,
when combined with similar expressions for the other components of the full
vector A sets the polarization properties and the phase. However, any other
initial condition with these basic properties can be used as the initial shape and
location of the wavepacket. So

a(k) = A0

∫
dx exp

[
i(k0 − k) · x− 1

2

|x|2

L2

]
+ c.c.

The integrals are best done sequentially, after rotating the spatial integration
coordinate system, x → y, so that k0 points in the positive y3 direction, say. If
we let k‖, denote the component of k that points in the direction of k0, and k⊥
the two components in the plane perpendicular to k0, we find

a(k) = A0(L
√
2π)3 exp

(
−L2

2

[
|k⊥|2 + (k‖ − |k0|)2]

])
+ c.c. ,

or equivalently

a(k) = A0(L
√
2π)3 exp

(
−L2

2

[
|k|2 + |k0|2 − 2k · k0

])
+ c.c. ,

As we noted near the beginning of this section, a(k) is localized in a ball of
radius L−1 about k0 in wavevector space. Therefore, the final desired result is

A(x, t) =
A0L

3

(2π)3/2

∫
dk exp

[
ik · x− i|k|ct− L2

2

(
|k|2 + |k0|2 − 2k · k0

)]
+ c.c.

These three integrals are best carried out by making a change of variable
from k → p, where p = k− k0. Then

A(x, t) =
A0L

3

(2π)3/2
eik0·x

∫
dp exp

[
ip · x− i|p+ k0|ct−

1

2
L2|p|2

]
+ c.c.,
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which is particularly simple in form and conveniently has the desired plane
wave factor sitting outside of the integrals! However, the innocuous looking
expression |k0 + p| prevents these integrals from being carried out analytically,
even though this expression only differs from |k0| by an amount L−1. We
therefore seek to approximate the exact solution by expanding this term in
ascending powers of p/|k0| which is of order 1/(L|k0|) ≈ 2πλ0/L, where λ0

is the effective wavelength of the photon. Provided L � λ0, we anticipate
that only a few terms in this expansion will suffice to provide an excellent
approximation to the exact result.

The desired expansion is straightforward, but somewhat tedious to carry
out. Correct to order (p/|k0|)5 we obtain

|k0 + p|
|k0|

=

(
1 +

p‖

|k0|
+

|p⊥|2

2|k0|2
−

p‖|p⊥|2

2|k0|3
+

p2‖|p⊥|2

2|k0|4
+

3p‖|p⊥|4

8|k0|5
−

p3‖|p⊥|2

2|k0|5
+ · · ·

)
where p‖ is the component of p in the direction of k0, and p⊥ lies in the plane
perpendicular to k0. It is a very intersting exercise to see how the approximation
to A(x, t) changes as more terms are retained in this expansion. Traditionally,
one retains the first three terms in this expansion, for which the integrals can be
carried out analytically. This gives a wavepacket that begins to spread beyond
L as the square root of the elapsed time t in the two transverse directions once
t � L2|k0|/c, but which retains its width L in the direction of propagation.

5. Summary
Although things appear to be very neat and tidy, unlike our causal headaches

with Newtonian Gravity, all is not well with the classical electromagnetic field.
Charges in motion create δ(x, t) and J(x, t), which in turn via Maxwell’s Equa-
tions and their solutions, create electric and magnetic fields. These E(x, t) and
B(x, t) fields in turn steer the charges through the Lorentz Force δE+(J×B)/c.
But, how does a charge interact with its own electric and magnetic fields? How
can it distinguish its fields from the ones created by the charges around it? And
all these electromagnetic waves that are being radiated off into space due to the
acceleration of the charges, where do we take into account that this energy has
to come from the charges themselves?

Imagine if you will a simple thought experiment. We fasten an electron at
x = +a and a positron at x = −a and hold them there. It is not too hard
to compute the electric field that exists throughout all of space in this static
configuration, as well as how much force one has to apply to hold these two
particles apart. Now, at t = 0 let go. What happens next? And what is the
end state of this system and when is it achieved? Problems just like this caused
physicists and mathematicians great consternation at the very beginning of the
20th Century.

6. Exercises

Exercise 1: BUILD YOUR OWN THEORY OF GRAVITY
Because there are time derivatives in Maxwell’s Equations, light travels at a
finite speed c, and the electromagnetic fields can store energy and momentum.
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Newton’s law of gravity, on the other hand, has no time derivatives, so there
are no gravitational waves and we cannot store energy and momentum in the
gravitational field itself. If you were to set about building a causal theory of
gravity, you might be tempted to begin by replacing Poisson’s Equation by(

∇2 − 1

c2
∂

∂t2

)
Φ = 4πGρ(x, t) .

This, however, can only be a part of the story, because the actual gravitational
field is g = −∇Φ just like −∇φ generates the irrotational component of the
electric field E.
(A) Assume the energy density in the gravitational field itself must be propor-
tional to |g|2. What combination of G’s and c’s must you multiply this by to
get something with the correct dimensions of erg cm−3?
(B) Try to build a scalar theory of gravity that is consistent with the above
wave equation for the potential. In otherwords, try find an equation for g with
ρ as a source term that is consistent with the wave equation for Φ in the same
fashion that Maxwell’s Equations are equivalent to wave equations for φ and
the three components of A subject to the gauge constraint

1

c

∂φ

∂t
+∇ ·A = 0 .

(C) Having run out of options in part (B), you can next try to build a vector
theory of gravity by introducing a second gravitational field h and exploit the
correspondence g ⇐⇒ E, h ⇐⇒ B, Φ ⇐⇒ φ, and a ⇐⇒ A. What does
your h field do to matter?
(D) The next choice is a tensor theory of gravity, and, this is precisely where
Einstein ended up after carrying out parts (B) and (C)!

Exercise 2: LOTS OF ENERGY EQUATIONS
We derived an energy equation for the electromagnetic fields in

∂

∂t

( |E|2 + |B|2

8π

)
+∇ · S = −J ·E ,

but did we get the right one? Are there others?
(A) Start with the vector identity for any two vectors

∇ · (A×B) = B · ∇ ×A−A · ∇ ×B ,

and then let A actually be the vector potential, and B = ∇×A the magnetic
field to convince yourself that

∂

∂t

( |B|2 −A · ∇ ×B

8π

)
−∇ · ∂

∂t

A×B

8π
= 0.

(B) One can obviously add any amount of this equation to the energy equation
we derived in the text to get any number of energy equations, all of which, have
the same term −J ·E on the right side, but with different prescriptions for the
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energy density and the energy flux. Which of all these possibilities should we
pick, and why? Does it actually matter?

Exercise 3: A VARIETY OF WAVE PACKETS
In §3 we derived an expression for |k0 + p| valid for |p|/|k0| � 1. First make
sure that I did not screw up the algebra by deriving it for yourself!
(A) Then, explore how a wavepacket changes its character as more, or less,
terms are retained in this expansion, by carrying out the three dp integrals
back in the expression for A(x, t) at the bottom of page 7.
(B) Hint: Sometimes but not always (and this turns out to be the “not always”
case) it is useful to convert dp = dp1dp2dp3 = p2dp sinϑdϑdϕ into spherical
polar coordinates, or cylindrical coordinates, dp = p⊥dp⊥dϕdp‖ to affect the
integrations.
(C) The following four defnite integrals may (or may not, I make no promises
here!) be helpful in part (A), but they will be helpful in general!

H(a, b) ≡
∫ ∞

0

dk exp(−akb) =

(
1

a

)b

Γ

(
1 +

1

b

)
,

where Γ(z) is the Gamma Function, defined by

Γ(z) ≡
∫ ∞

0

dt tz−1e−z

and which interplolates the factorial function, Γ(1 + n) = n!, when n is a non-
negative integer.

I(a, b, c, d) ≡
∫ ∞

0

dk kc exp[−(akd + bk−d)] =
1

d

(
b

a

) 1+c
2d

K 1+c
d
(2
√
ab) ,

J(a, b, c) ≡
∫ ∞

−∞
dk exp[i(c− bk +

1

2
ak2)] =

√
π

a

[
e−i 2b2−ac

a + iei
2b2−ac

a

]
,

K(a, b, c, d) =

∫ ∞

−∞
dk exp[i(−d+ ck − 1

2
bk2 +

1

3
ak3)] =

2π

a1/3
e
i
[

b2

2a

(
c− b2

6a

)
−d

]
Ai

(
1

a1/3

[
c− b2

2a

])
,

where Ai(z) is the Airy Function, defined by

Ai(z) =
1

π

√
z

3
K1/3

(
2

3
z3/2

)
,

where Kν(z) is the modified Bessel Function (sometimes known as the Basset
Function) of order ν:

Kν(z) =

∫ ∞

0

dt e−z cosh t cosh νt .
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Another useful expression for the Airy Function is

Ai(z) =
1

32/3Γ(2/3)

(
1 + (1)

z3

3!
+ (1 · 4)z

6

6!
+ (1 · 4 · 7)z

9

9!
+ · · ·

)
−

1

31/3Γ(1/3)

(
z + (2)

z4

4!
+ (2 · 5)z

7

7!
+ (2 · 5 · 8)z

10

10!
+ · · ·

)
.

The Basset Function has a similar looking expansion in terms of the difference
of two infinite series. Both series converge for all values of z.
(D) Dirty tricks in mathematical physics: Viewed as functions of their argu-
ments, a, b, c, d, it is possible in some cases to differentiate H, I, J and K with
respect to these arguments to obtain more general integrals where powers of k
multiply the various exponentials! Another more legitimate trick is to notice
that the J and K integrals are Fourier Transforms, and so each comes equipped
with an inverse transform, wherein the quantity on the right side of each equa-
tions sits within an integral (integrated db and dc, respectively) containing a
factor of exp(ibk) and exp(−ick) respectively. The left side of each of these
equations is (up to a factor of 2π that you have to get in the right place, nu-
merator or denominator!) the integrands of J and K with the exp(−ibk) and
exp(ick) factors omitted. Finally, because Fourier Transforms satisfy a convolu-
tion theorem, you can build additional even more complicated results by using
the two Fourier Transform pairs provided by J and K.
(E) Even dirtier tricks: Go back now to part (B) and use the spherical and
cylindrical coordinate transformations to derive even more interesting integrals
knowing what the answer has to be from part (C)! Challenge your friends to do
these really nasty looking integrals with Bessel functions with several beers as
a wager.

Exercise 4: MAGNETIC HELICITY & GAUGE SYMMETRY
One often casually dismisses the ability to select an arbitrary gauge in electro-
magnetism based on the the premise that the electric and magnetic fields are
unaffected. But is this always the case?
(A) The magnetic helicity HB is defined to be the the net “linkage” of the
magnetic field lines in a closed volume:

HB(t) ≡
∫

dx A ·B =

∫
dx A · (∇×A) .

Determine what must be true about the volume and the magnetic field in order
that the value of the magnetic helicity is unchanged by an arbitrary gauge
transformation

A → A+∇χ .

(B) How does the potential φ have to change under this gauge transformation
if χ = χ(x)? What if χ depends upon time, t—how does your answer change?
(C) What is the meaning of

HJ(t) ≡
∫

dx B · (∇×B) ?
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(D) Can you derive a conservation equation for the magnetic helicity density
dHB/dt? (Hint: first prove the conservation law

∂

∂t
A ·B+∇ · (φB+E×A) = −2E ·B .

Is this gauge invariant?)
(E) A closely allied topological concept to helicity is the linkage of two curves
in three dimensional Euclidean space. Let Γ1 and Γ2 be two closed and non-
intersecting curves, then their linkage integral is

L12 ≡ 1

4π

∮ ∮
(dx1 × dx2) ·

x1 − x2

|x1 − x2|3

where the integrations take place along the two curves Γ1 and Γ2. Build yourself
two very simple closed non-interesecting curves and carry out the integral for
the case in which the curves are linked and unlinked!

Exercise 5: FORCE-FREE ELECTROMAGNETIC FIELDS
If the Lorentz Force, or equivalently the coupling term,

ρaEM = δE+
1

c
J×B

vanishes, the electromagnetic fields exert no forces on the material. Electro-
magnetic waves on their own manage to do this because they have δ = 0 and
J = 0, identically. And of course, E = B = 0 succeeds but in a trivial fashion.
(A) Is it possible to arrange a static (∂/∂t = 0) nontrivial solution of Maxwell’s
Equations for which δE and J×B are both identically zero?
(B) How about a static solution where

cδE = −J×B ?

(C) If you were successful in either (A) or (B), were you also successful in
completely eliminating the influence of the electromagnetic field on the material
by also ensuring that

J ·E = 0 ?

Exercise 6: YET MORE MURaM
Figures 7, 8 and 9 are taken from the MURaM simulation described in Scene 1.
(A) Compute the horizontal and temporal means of the Maxwell Equations and
convince yourself that

〈B3〉 = constant

whereas 〈B1〉 and 〈B2〉 are not similarly constrained. Figure 7 shows (red circles)

〈B⊥〉 ≡
(
〈B1〉2 + 〈B2〉2

)1/2
,

and (blue circles)
〈|B|2〉1/2 .
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The plot of |〈B3〉| lies off the bottom of this plot, consistent with the initial
condition of the simulation that there was no net flux in the vertical (gravity
aligned) direction and a weak horizontal seed field. Notice that the simulation
makes a lot of magnetic field, but not very much magnetic flux. This is an
essential feature of a small-scale (i.e. local) magnetic dynamo. See, for example,
Weiss & Proctor [WP 1] cited in Scene 2.
(B) Figure 8 gives the horizontal and temporal average of the quantity

〈 |B|2

8πp
〉 ≡ 〈B

2
1 +B2

2 +B2
3

8πp
〉 .

What can you conclude about the importance of the electromagnetic forces in
the upper and lower potions of the computational domain?
(C) Figure 9 gives the relative contributions of the various components (right
side of equation) of the total (left side of equation) plotted in Figure 8. What
does this plot indicate about magnetic buoyancy?

7. Further Reading
There is truly no shortage of monographs and textbooks on electromagnetic

theory and its usual large-scale quasi-static incarnation as magnetohydrody-
namics in highly-conducting fluids. This is another case of seek the author who
is your muse and stick with their writings on the subject.

For an overall practical introduction that covers just about everything at an
appropriate level and does so without a lot of excess verbiage, Jackson [J 1]
really leaves very little to complain about. It’s also in Gaussian units, which,
for me is a plus, obviously.

The antithesis in a certain sense, of Jackson, is the incredibly deep and
extremely elegant treatment of the same basic material by
?[R 2] F. Rohrlich, Classical Charged Particles. Foundations of Their Theory,
(Reading, MA: Addison-Wesley Publishing Company; 1965), xiii+305.

Maxwell’s Equations and electromagnetism have been with us since the late
19th Century. The modern approach to the subject as provided by Jackson and
Rohrlich misses some of the more curious symmetry aspects that were more
prevalent in ealier treatments. Two are well worth the effort to find and deal
with the cumbersome notation that was used at the time. They are
[B 3] H. Bateman, The Mathematical Analysis of Electrical and Optical Wave
Motion. On the Basis of Maxwell’s Equations, (New York, NY: Dover Publica-
tions; 1955), vii+159,
[S 4] G.A. Schott, Electromagnetic Radiation. And the Mechanical Reactions
Arising From It, (Cambridge, UK: Cambridge University Press; 1912), xxii+330.
Harry Bateman, it must be said, was one of the most accomplished applied
mathematicians of his generation—his papers and monographs are an amazing
display of cunning, insight and mathematical virtuosity. George Schott, was
among other things, devising ingenious means to find distributions of electric
charge in motion that would, as an assembly, not radiate electromagnetic waves
in the far-field. That is, before quantum mechanics, he was trying to reconcile
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that fact that electrons could “orbit” nuclei, without continuously radiating
energy and spiralling inward. Although an individual charge in an orbit must
emit radiation because of its acceleration, if one superposed a very large number
of infinitesimal charges in a variety of orbits, one could arrange that the phases
of the emitted waves cancelled the radiation in the far-field. A wonderfully
intricate and as we now know, incorrect, solution to a pressing problem of the
time.

The significance of the gauge invariance of Maxwell’s Equations was perhaps
not completely appreciated initially. Later, when we learned of the weak and
strong nuclear forces, and especially when efforts were made to unify the weak
and electromagnetic forces, the significance of gauge fields and gauge symmetries
became more apparent. A very accessible, and unique, discussion of these ideas
from a historical perspective can be had in
[M 2] K. Moriyasu, An Elementary Primer for Gauge Theory, (Singapore, SG:
World Scientific Publishing; 1983), xi+177.

Turning to magnetohydrodynamics, there is again a vast and rapidly ex-
panding literature. I offer five selections below which in my opinion stand out
above the crowd. Gene Parker, Paul Roberts, Leon Mestel and Russell Kulsrud
[K 1] in no small way shaped modern magnetohydrodynamics through their
wide-ranging applications of the methods to a great many astrophysical and
geophysical problems. It’s worth studying the subject from the masters:
?[P 4] E.N. Parker, Cosmical Magnetic Fields. Their Origin and Activity, (Ox-
ford, UK: Clarendon Press; 1979), xvii+841,
[R 3] P.H. Roberts, An Introduction to Magnetohydrodynamics, (New York,
NY: American Elsevier Publishing Company; 1967), x+264,
[M 3] Leon Mestel, Stellar Magnetism, 2nd Edn, (Oxford, UK: Oxford Univer-
sity Press; 2012), xxi+715.

Of the more contemporary treatments of the subject, the following are par-
ticularly noteworthy for a variety of reasons as I will explain.
[D 1] P.A. Davidson, Turbulence in Rotating, Stratified, and Electrically
Conducting Fluids, (Cambridge, UK: Cambridge University Press; 2013), xvii+681,
as the title suggests, covers almost everything—including turbulence—except
radiation. Peter Davidson writes well and he does a superb job of bringing a
lot of diverse ideas and research together in a coherent treatment. Meanwhile,
the pair of volumes
[GS 1] J.P. Goedbloed & Stefan Poedts, Principles of Magnetohydrodynamics.
With Applications to Laboratory and Astrophysical Plasmas, (Cambridge, UK:
Cambridge University Press; 2004), xvi+613,
[GKP 1] J.P. Goedbloed, Rony Keppens & Stefan Poedts, Advanced Magneto-
hydrodynamics. With Applications to Laboratory and Astrophysical Plasmas,
(Cambridge, UK: Cambridge University Press; 2010), xvi+634,
are probably the two books to own if you are only going to own two books on
magnetohydrodynamics. If it is not in these volumes, you don’t need to know
it! Hans Goedbloed is to laboratory magnetohydrodynamics as Parker, Roberts,
Mestel and Kulsrud are to astrophysical MHD. These two volumes are about as
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good as it gets. But, as you might guess by now, my own personal preference
for the one book to own is a very curious and yet truly amazing compendium
of mathematics applied to magnetofluids by one of the great under-appreciated
and prolific geniuses of our time,
[W 1] Gary Webb, Magnetohydrodynamics and Fluid Dynamics: Action
Principles and Conservation Laws, Lecture Notes in Physics 946, (Cham, CH:
Springer; 2018), xiv+301.

Of the four integrals provided to you in the exercise on wavepackets, the
first three are fairly elementary and can be found in a variety of tables. The
third is related to Fresnel Integrals in optics. The fourth, however, is really a
rare beast of a very different color. It can be found in
?[BB 1] M.V. Berry & N.L. Balazs, “Nonspreading wave packets”, American
Journal of Physics, 47(3), 264-7, 1979.
It pays to have a few references handy to help you deal with all the special func-
tions, like the Gamma Function, and the Airy Function, and Bessel Functions
which are part of the repertoire of mathematical physics. For this exercise I
used
?[AS 1] Milton Abramowitz & Irene A. Stegun, Handbook of Mathematical Fun-
tions with Formulas, Graphs and Mathematical Tables, (Washington, DC: Na-
tional Bureau of Standards; 1964), xiv+1046,
of which there are many later (and cheaper) Dover Publication editions. In fact,
the entire book is now free and online via, https://dlmf.nist.gov/ under a
different title.
Also useful is the reference book-as-car-manual approach of
?[SO 1] Jerome Spanier & Keith B. Oldham, An Atlas of Functions, (New York,
NY: Hemisphere Publishing; 1987), ix+700.
Finally, my personal favorite is the more wordy but very comprehensive ap-
proach of
[L 2] N.N. Lebedev, Special Functions & Their Applications, (New York, NY:
Dover Publications; 1972), xii+308.

Topological methods in fluid dynamics and electromagnetism are treated by
[BF 1] Mitchell A. Berger & George B. Field, “The topological properties of
magnetic helicity”, Journal of Fluid Mechanics, 147, 138-48, 1984.
[B 5] Mitchell A. Berger, “Third-order link integrals”, Journal of Physics A:
Mathematical and Theoretical, 23, 2787-93, 1990,
[WB 1] Andrew N. Wright & Mitchell A. Berger, “A physical description of
magnetic helicity evolution in the presence of reconnection lines”, Journal of
Plasma Physics, 46(1), 179-99, 1991,
[B 6] Mitchell A. Berger, “Introduction to magnetic helicity”, Plasma Physics
and Controlled Fusion, 41, B167-75, 1999.
Indeed, the Wright & Berger paper draws attention to the interesting fact that
reconnection and dissipation of magnetic fields converts (via the J · E term)
magnetic energy into internal material energy but largely preserve magnetic
helicity.
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Although no one has stumbled across any yet, there seems to be no fun-
damental reason why there cannot be magnetic charges, called monopoles, in
addition to electric charges. Since it is best to concentrate on things that do
seem to exist rather than those that don’t, I offer the following two articles in
the spirit of light science-fiction reading:
[GK 1] Delbert Garrick & Raymond Kuselman, “Magnetic monopoles”, The
Physics Teacher, 9(7), 366-9, 1971,
[R 5] Arttu Rajantie, “The search for magnetic monopoles”, Physics Today,
69(10), 40-6, 2016.

8. Appendix A: Spherical Geometry
To express Maxwell’s Equations in spherical coordinates one only needs the

relevant expressions for the divergence and curl of a vector field. These are

∇ ·B =
1

r2
∂

∂r

(
r2Br

)
+

1

r sin θ

∂

∂θ
(sin θ Bθ) +

1

r sin θ

∂Bφ

∂φ
,

(∇×B)r =
1

r sin θ

∂

∂θ
(sin θ Bφ)−

1

r sin θ

∂Bθ

∂φ
,

(∇×B)θ =
1

r sin θ

∂Br

∂φ
− 1

r

∂

∂r
(rBφ) ,

(∇×B)φ =
1

r

∂

∂r
(rBθ)−

1

r

∂Br

∂θ
.

9. Appendix B: Units, Dimensions and All That, Again...
Back in Scene 1 §2 we pointed out that the gravitational force per unit mass,

i.e., the acceleration experienced by a parcel of fluid at point x exerted by a
different element of fluid of volume dx′ located at x′ is

G
x′ − x

|x′ − x|3
ρ(x′, t)dx′

where G is Newton’s Constant. The dimensional constant, G, requires that we
measure mass in grams (or some multiple thereof, like kg, in the SI system of
units).

Now let each parcel of fluid also carry an electric charge density δ(x, t)
and δ(x′, t) respectively, then the electrostatic force per unit mass, i.e., the
acceleration experienced by a parcel of fluid at the point x exerted by a different
element of flud of volume dx′ located at x′ is experimentally found to be

K
x′ − x

|x′ − x|3
δ(x′, t)dx′ · − δ(x, t)

|δ(x, t)|
.

The additional factor is ±1 and accounts for the fact that electric charge can
be positive and negative, with the like charges repelling and opposite charges
attracting one another. The value and dimensions of the factor K depend
likewise on what units we choose to measure the electric charge. Different
choices for K lead to different systems of units.
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The Gaussian-cgs-Kelvin system choosesK to be the dimensionless constant,
1. Charge is then measured in what are called electro-static-units, or e.s.u., as
a common abbreviation, which must have dimensions of gm1/2 cm3/2 sec−1 in
order that this last expression have units of acceleration, cm sec−2. In these
units the fundamental charge on an electron and proton is

e = 4.8032...× 10−10 e.s.u. ,

which then leads to the ubiquitous expression for the fine structure constant

α ≡ 2πe2

hc
=

e2

~c
=

1

137.03599...
.

This is the system we use in these notes, and which was generally preferred in
physics for some time because the notation is fairly simple, if you don’t mind
carrying about some factors of 4π in your equations. For some people these 4π’s
proved to be unnerving and they picked a different numerical value for K, but
one which was still dimensionless, in order to eliminate the two factors of 4π in
Maxwell’s Equations. These people are called “rationalists” and their units are
“rationalized” because π, afterall, is irrational.

Modern convention has headed off in the opposite direction, and has settled
on a dimensional constant

K =
1

4πε0
,

where the dimensional constant ε0 is the permittivity of free space,

ε0 = 8.8542...× 10−12 farads m−1 = m−3 kg−1 sec4 ampere2

measured in farads—abbreviative F—per meter, and charges are now measured
in coulombs—abbreviated C, with the fundamental charge now taking on the
value

e = 1.602177...× 10−19 C ,

and the ampere—abbreviated A—is a measure of electric current, being one
coulomb per second. Notice the propensity to create lots of named units in
honor of people like Faraday, Coulomb and Ampère.

To make matters even more complicated, a second dimensional constant is
introduced, the permeability of free space

µ0 = 4π × 10−7 henry m−1 = m kg sec−2 A−2

(and another honoree, Henry) such that the speed of light, c, is exactly

c =
1

√
ε0µ0

.

Precisely why in a classical pre-Quantum-Electrodynamic universe, absolute
vaccuum should possess a nonzero permittivity and permeability is not clear to
me, although it is reassuring that they can be combined to give something that
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is meaningful for the vacuum—the propagation speed of disturbances like light
and gravity.

With these SI conventions and honorific units in place, Maxwell’s Equations
read

∇ ·E =
1

ε0
δ , ∇×E = −∂B

∂t
,

∇ ·B = 0 , ∇×B = µ0J+
1

c2
∂E

∂t
.

Notice that the electric and magnetic fields now have different dimensions, volts
and teslas, respectively (and two more honorees, Volta and Tesla). And this
makes an SI version of RMHD rather cumbersome and a notational nightmare.
Like many things in life, when it comes to the selection of K, you simply have
to take your stand and then stand by it.

Finally, it is worth pointing out that one could think about taking G to be a
dimensionless constant like 1 if we are willing to measure mass in the equivalent
“gravitato-static-units”, or g.s.u.’s, but this has not generated much enthusiasm.

10. Appendix C: RMHD’s 58 Terms
The energy density of the electromagnetic fields is

|E|2 + |B|2

8π
,

and the energy flux is the Poynting Vector

S ≡ c

4π
E×B .

The energy exchange term with the material is

ĖM→EM − ĖEM→M = −J ·E .

The momentum density of the electromagnetic fields is

1

c2
S ,

and the momentum flux tensor for the electromagnetic fields is

M .

The momentum exchange term between the material and the electromagnetic
fields is

ṖM→EM
i − ṖEM→M

i = −δEi −
1

c
εijkJjBk .

Finally, the electromagnetic field equations are

∇ ·E = 4πδ , c∇×E = −∂B

∂t
,

∇ ·B = 0 , c∇×B = 4πJ+
∂E

∂t
.
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