
Act I. Scene 2: Euler & Navier-Stokes Equations

T.J. Bogdan
September 16, 2018

1. Introduction
Euler (and others) set about the task of applying Newton’s law of motion

(accelerations are produced by forces) to an assembly of material (a gas or a
fluid) in the continuum limit. We’ll omit the derivation (but see Appendix B for
some supplementary remarks) and simply quote the result, which is the requisite
evolution equation for the Eulerian velocity

∂u

∂t
+ u · ∇u +

1

ρ
∇p = 0 .

This is known as Euler’s Equation.
There are perhaps two surprises here. First, an additional scalar field, the

gas (or fluid) pressure p(x, t) [dimensions: gm cm−1 sec−2], appears. So we are
still short one equation to close our system mathematically. Second, a nonlinear
term is present

u · ∇u =
1

2
∇ · |u|2 + (∇× u)× u .

The curl of the velocity field is called the vorticity and is denoted by ωωω(x, t).
The pressure, like the density, is also a thermodynamic state variable. In

the present context if the pressure is constant over some region then

∂u

∂t
+ u · ∇u = 0 ,

in that region, and u = 0 is a very reasonable solution. It is of course not the
only possible solution. This simpler equation is known as Burger’s Equation and
it turns out to be anything but simple. It is, however, very well studied because
it is the archetype of a nonlinear hyperbolic PDE. The vorticity satisfies the
equation

∂ωωω

∂t
+∇× (ωωω × u) = 0 ,

implying that the vortex lines are frozen into the fluid. Hence if the vorticity
vanishes initially, it remains zero everywhere for all times. Then we can express
u = ∇φ for some scalar potential φ(x, t) and Burger’s Equation can be simplified
further to

∂φ

∂t
+

1

2
|∇φ|2 = f(t)

where f(t) is a arbitrary function of time.
In this sense the pressure characterizes the mechanical equilibrium of a sys-

tem. When a system has relaxed to a state of constant pressure it has achieved
mechanical equilibrium. Determining how, and if (in fact), it (ever) gets there
is the object of radiation magnetohydrodynamics.
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The u · ∇u term is what makes fluid mechanics so difficult and interesting
compared to quantum mechanics (say) which is fundamentally a linear theory
at heart. The action of this term results in the familiar and ubiquitous presence
of turbulence. To appreciate why this might be the case, imagine a sinusoidal
velocity fluctuation at time t = 0,

u1 = sin kx1

then this nonlinear term makes a contribution

−1

2
k sin 2kx1

to ∂u1/∂t. So, unless the pressure gradient intervenes the flow develops struc-
ture at twice the wavenumber of the initial disturbance. This new wiggle will
in turn produce additional wiggles at 3k and 4k, and so on and so forth.

2. Solving the Euler Equations. Part 1
Mathematical progress on the four equations

∂u

∂t
+ u · ∇u +

1

ρ
∇p = 0 .

∂ρ

∂t
+∇ · ρu = 0

is possible, again, only if some benevolent individual provides us with some
additional information to pin down one of our five unknown functions.

An interesting possibility (among all those available to us and the benevolent
individual) is that the flow is incompressible, so

∇ · u = 0 .

When the ensuing flow speed is everywhere much smaller than the speed of
sound, the incompressible assumption is not a bad approximation to the dom-
inant (leading order) behavior of the dynamics. And it is for this reason that
such an assumption is often useful to pursue. In general the above equations do
not guarantee incompressibility unless the pressure is carefully adjusted at each
time to ensure this outcome.

This careful adjustment leads to the additional necessary equation for the
pressure

∇ · 1

ρ
∇p = −∇ · [u · ∇u] .

This is an elliptic second-order PDE, and strictly speaking this completes the
formulation of the problem. In practice, of course, the solution of these five
nonlinear equations is far from trivial.

Thanks to our gravitational detour in Scene 1 we know how to solve this
equation,

∇p(x, t) =
ρ(x, t)

4π
∇
∫
dx′

1

|x′ − x|
∇′ · [u(x′, t) · ∇′u(x′, t)] .
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Of course, this is only half the pressure gradient because we alway get to add a
term

ρ(x, t)∇×A(x, t)

to the right side of this equation. Now we need to determine A(x, t). The
required equation is

∂ωωω

∂t
+∇× (ωωω × u) +∇×∇×A = 0

where
ωωω ≡ ∇× u

is the vorticity. Although instructive, these manipulations do not get us any
closer to actually solving this problem which ultimately requires a numerical
treatment. This is true even in the case of modeling the dynamics of the Earth’s
oceans were it is acceptable to consider the density as being strictly constant
independent of space and time.

3. Solving the Euler Equation. Part 2
Yet another possibility is that someone tells us how the pressure depends

upon the density or vice-versa. As we shall see later, for dynamics that takes
place at constant entropy, such a relation is a direct consequence of the laws of
thermodynamics. In any case, to be definite, suppose

ρ(x, t) = %(p) equivalently p(x, t) = Π(ρ) ,

where to be clear, these functional forms for % and Π are obtained by some other
methods. Then we find

∂u

∂t
+ωωω × u +∇

[
1

2
|u|2 +

∫ p(x,t) ds

%(s)

]
= 0 .

∂p

∂t
+∇ · pu = 0 ,

with the very nice property

∂ωωω

∂t
+∇× (ωωω × u) = 0 .

If we are fortunate to have initial conditions in which the vorticity is zero, it will
remain zero for all times. In this case we express the velocity as the gradient of
a scalar function φ(x, t) and we immediately obtain the Bernoulli integral

∂φ

∂t
+

1

2
|∇φ|2 +

∫ p(x,t) ds

%(s)
= f(t).

The lower limit of the integral is arbitrary and simply adds a constant to the
unknown function f(t). From this result we can formally solve for p and obtain
a single nonlinear PDE for the potential φ.
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4. Navier, Stokes and Some Other Folks
Euler overlooked, or perhaps better chose simply to ignore, an additional

aspect of the behavior of assemblages of particles known as viscosity. Navier
and Stokes worked out how to describe this tendency, especially for dense fluids
like water, to oppose the build up of velocity shears. They replaced Euler’s
Equation with the Navier-Stokes Equation

∂u

∂t
+ u · ∇u +

1

ρ
∇p− 1

ρ
∇ · � = 0 ,

or in component form

∂ui
∂t

+ uj ·
∂ui
∂xj

+
1

ρ

∂p

∂xi
− 1

ρ

∂σji
∂xj

= 0 .

The viscous (sometimes referred to as the vicious) stress tensor �(x, t) [dimen-
sions: gm cm−1 sec−2] is defined by

σij ≡ µ
( ∂ui
∂xj

+
∂uj
∂xi

)
+ λδij∇ · u = 2µEij + λδij∇ · u .

Here, µ(x, t) and λ(x, t) [dimensions: gm cm−1 sec−1] are the coefficient of shear
viscosity and dilatational coefficient of viscosity, respectively. The quantity E is
the rate of strain tensor. For sensible (i.e., so-called Maxwellian) fluids,

λ = −2

3
µ ,

which ensures that σii = 0. Clearly σij = σji. One must specify or impose a
model for the microphysics in order to determine the unknown function µ(x, t).
The ratio µ/ρ has dimensions of cm2 sec−1 and is sometimes denoted by ν(x, t)
and is the kinematic viscosity coefficient. If µ is independent of position, then
the Navier-Stokes Equation takes the intuitive form

∂u

∂t
+ u · ∇u +

1

ρ
∇p− ν∇2u = 0 ,

indicating that velocity gradients nominally diffuse away on a characteristic time
scale L2/ν, provided the other two terms do not interfere.

The ratio

Re =
|u · ∇u|
ν|∇2u|

is a dimensionless quantity known as the Reynolds Number. And when it is
large, as it is in most astrophysical applications, then the other two terms def-
initely interfere with this attempt at diffusion. Mathematically the problem
becomes singular, because the coefficient in front of the highest spatial deriva-
tive is exceedingly small. For this term to come into play, there must exist very
large gradients in (generally) isolated locations, often coincident with boundary
layers. Euler’s Equation is valid almost everywhere, except within the boundary
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layers where the full Navier-Stokes Equation is required. Where these boundary
layers form, and how they evolve are challenging from a computational aspect.

The ratio

Ma =

(
ρ|u · ∇u|
∇p

)1/2

≈
(
ρ|u|2

p

)1/2

is called the Mach Number—although sometimes that appellation is reserved
for the final expression in this equation. Provided the spatial variations of the
velocity and the presure are comparable the two expressions are essentially the
same. The square of the Mach Number is the ratio of the fluid ram pressure
to the thermal gas pressure. Therefore the Mach Number is also basically the
ratio of the fluid velocity to the propagation speed of sound waves. Flows with
low Mach Numbers require percentage-wise relatively small density and pressure
fluctuations to balance the the ram pressure. For this reason, to leading order
these flows can be treated as incompressible.

We may inquire whether there are other terms missing from Euler’s Equa-
tion. As we demonstrated in Scene I, there is a gravitational acceleration g
which accelerates a fluid parcel according to

∂u

∂t
+ u · ∇u +

1

ρ
∇p− 1

ρ
∇ · � = g = −∇Φ ≡ aG .

The three equivalent expressions on the right side of this equation are synony-
mous and can be employed interchangeably.

Taking an inspired cue from this equation we anticipate that both the radi-
ation field (aR) and the largescale electromagnetic fields(aEM ) will exert forces
on the material. Accounting for these additonal effects symbolically we may
continue adding acceleration terms to the right side of this equation:

∂u

∂t
+ u · ∇u +

1

ρ
∇p− 1

ρ
∇ · � = aG + aEM + aR

where EM stands for electromagnetic and R for radiation.
Sometimes it might prove advantageous to work in a noninertial frame of

reference that rotates with angular velocity ΩΩΩ [dimensions: rad sec−1]. This
adds additional non-inertial terms

∂u

∂t
+ u · ∇u +

1

ρ
∇p− 1

ρ
∇ · � = g + aEM + aR + aΩ ,

where

aΩ ≡ −2ΩΩΩ× u + |ΩΩΩ|2x−ΩΩΩ(ΩΩΩ · x)− dΩΩΩ

dt
× x .

However, a word of warning is in order here. One should really avoid working in
non-inertial reference frames if at all possible. The reason is that it is extremely
challenging (although not impossible) to figure out the correct forces exerted
by the electromagnetic and radiation fields on the material in these non-inertial
frames. The aΩ quoted here only takes account of the transformation of veloc-
ities and fixed vectors between these two frames, it does not know about aEM

or aR.
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Although we already deduced that g = −∇Φ and that

∇2Φ = 4πGρ(x, t)

for a self-gravitating system, we will need to expend some additional efforts to
determine aEM and aR, and this is best done in an inertial reference frame. So
for the remainder of these notes we will set ΩΩΩ = 0 and ignore the coriolis and
centrifugal acceleration effects.

5. Conservation of Momentum
If we multiply the generalized Euler Equation

∂u

∂t
+ u · ∇u +

1

ρ
∇p− 1

ρ
∇ · � = g + aEM + aR ,

by ρ and the continuity equation

∂ρ

∂t
+∇ · ρu = 0

by u and add them together, we obtain

∂

∂t
ρu +∇ ·

(
p1− � + ρuu

)
= ρ(g + aEM + aR) ,

where 1 is the unit tensor
∇ · p1 = ∇p .

The time derivative of the momentum flux density carried by the material plus
the divergence of the momentum flux density is equal to the applied gravita-
tional, electromagnetic and radiative forces.

If, and indeed only if, the fluid is self-gravitating, the fluid density follows
directly in terms of the Laplacian of the gravitational potential,

ρ(x, t) =
1

4πG
∇ · ∇Φ .

This equation is also true if some part of the potential Φ(x, t) is supplied by
material lying outside of the region of interest, because it contributes nothing
to the Laplacian. If, however, the self-gravity of the material is not taken into
account in the formulation, which is often the case in treating the envelopes of
stars and planets, then the right side of this equation is in fact zero, and says
absolutely nothing about the fluid density, period.

For a self-gravitating system, where this equation is meaningful, we can
multiply by g to obtain

ρg = −ρ∇Φ = − 1

4πG
(∇Φ) ∇ · ∇Φ

or in component form

ρgi = −ρ ∂Φ

∂xi
= − 1

4πG

∂Φ

∂xi

∂2Φ

∂xj∂xj
= − 1

8πG

∂

∂xj

(
2
∂Φ

∂xi

∂Φ

∂xj
−δij

∂Φ

∂xk

∂Φ

∂xk

)
≡ −∂Gij

∂xj
.
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The gravitational stress tensor G is symmetric:

G ≡ 1

8πG
(2gg − 1|g|2) .

For a self-gravitating fluid, the conservation of momentum then takes the
form:

∂

∂t
ρu +∇ ·

(
p1− � + ρuu + G

)
= ρ(aEM + aR) ,

where the gravitational force has been converted into the divergence of an ad-
ditional component of the momentum flux density.

For an astrophysical system in which one does not explicitly solve for the
gravitational potential from Poisson’s Equation (in otherwords one supplies an
externally generated Φ(x, t) that is a solution of Laplace’s Equation), one must
be content to leave the equation as

∂

∂t
ρu +∇ ·

(
p1− � + ρuu

)
= ρ(g + aEM + aR) .

6. Summary
We succeeded in obtaining three equations for u(x, t) to complete the conti-

nuity equation, but at the cost of introducing (at least) one additional quantity
p(x, t), the gas pressure. This means we are again (at least) one equation short
of completing our system. For a self-gravitating fluid, we also need an additional
function, Φ(x, t), but, thankfully it comes with its own (Poisson) equation. Oth-
erwise, we need to supply a gravitational acceleration based on some additional
considerations which lie outsides of our radiating magnetofluid.

We pointed out how the dynamics requires additional pseudoforces in rotat-
ing non-inertial frame with an angular velocity ΩΩΩ(t) relative to a fixed inertial
frame. This leads to the concepts of the coriolis force and (centripetal accel-
eration) the centrifugal force. We remind the reader that Maxwell’s Equations
and the equations of radiative transfer must be properly constructed by some
means in the rotating non-inertial frame to obtain the correct interactions with
the material!

We also encountered our first dissipative process, viscosity, which requires
the specification of a transport parameter µ(x, t) based on some knowledge of
the microphysics. And, of course, we have left open the very real possiblility
that the large scale electromagnetic fields and the radiation can exert forces on
the fluid through the two place holder aEM + aR. In the subsequent chapters
we set about determining evolution equations for p, aEM , and aR.

7. Exercises

Exercise 1: More MURaM
Use the information in Figures 4, 5, and 6, along with Figures 1, 2 and 3 from
the previous Scene to estimate both the mean Reynolds Number and the mean
Mach Number for the MURaM simulation described in Act I Scene 1 §4. For
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the Mach Number, you have all the information you need, but, as Figure 5
demonstrates very clearly, the mean-square of the fluid velocity,

〈u2
1 + u2

2 + u2
3〉 = 〈u1〉2 + 〈u2〉2 + 〈u3〉2 + 〈u′1

2〉+ 〈u′2
2〉+ 〈u′3

2〉

is completely dominated by the last three terms in this equation. So the mean
flow, |〈u〉| and the random turbulent convective flows, 〈|u|2〉1/2, are character-
ized by very different Mach Numbers!

For the Reynolds Number you can assume a Maxwellian fluid, but you still
need to know what the coefficient of shear viscosity is for the MURaM fluid.
This is a microphysics transport parameter, which we will address in the last
Scene of this Act. A very reasonable approximation for the solar photosphere is

µ = 1.2× 10−16

(
T

1 deg K

)5/2

gm cm−1 sec−1 .

You will again face the interesting issue that the Reynolds Numbers for the
mean and turbulent flows are dissimilar. How does this affect your choice for
the characteristic length scale L ≈ 1/|∇| needed in each case? An additional
useful piece of information about MURaM which may be helpful in this regard
is that it has 256 equally spaced grid points in the vertical x3 direction (if you
count the circles in each plot!) and each computational cell has the same extent
in each of the three directions of 15.7 km.

8. Further Reading
I agonized over how little or how much to put in this Scene. With the

continuity equations (Act I Scene 1) and the Euler-Navier-Stokes Equation in
hand, we have the essential components of hydrodynamics or fluid mechanics.
This material is abundantly available in many different forms and guises and
you are perhaps best advised to find your favorite treatment—or hydrodynamic
muse—and stick with it. Where all these sources vary, of course, is in the
closure problem of relating the gas pressure p(x, t) back to the density ρ(x, t),
or whether an effort is made to incorporate an energy equation (Act I Scene 5).
Compressible and incompressible fluid dynamics take on very different aspects.
The former is much richer in nonlinearity and the development of fine-scale
structure, like shock fronts, over a wide range of scales.

With these caveats in mind, I offer the following selection of further reading.

An often overlooked treatment of hydrodynamics that is rich in unusual
perspectives is
[B 2] Garrett Birkhoff, Hydrodynamics. A Study in Logic, Fact, and Similitude,
(New York, NY: Dover Publications; 1955), xiii+186.
Birkhoff was an accomplished mathematician who made contributions in many
diverse areas. Also worth looking at, for its elegance and powerful use of math-
ematics to solve real world problems is his more technical contribution
[BZ 1] Garrett Birkhoff & E.H. Zarantonello, Jets, Wakes and Cavities, (New
York, NY: Academic Press; 1957), xii+353.

8



Almost everything, and perhaps even a little more, that you might ever wish
to know about the Navier-Stokes Equation can be found in the obscure little
gem of a book
[DR 1] Philip Drazin & Norman Riley, The Navier-Stokes Equation. A Class-
ification of Flows and Exact Solutions, (Cambridge, UK: Cambridge University
Press; 2006), x+196.

Geophysical fluid dynamics is characterized by the relative importance of ro-
tation, and to a lesser degree, gravitational stratification, in the ensuing dynam-
ics. Those interested in rapidly rotating stars, pulsars and gamma-ray bursters
can learn much from the 20th Century endeavors of the geophysicists. Without
doubt, the pinnacle of lucidity and clarity in this regard is
?[E 1] Carl Eckert, Hydrodynamics of Oceans and Atmospheres, (New York,
NY: Pergamon Press; 1960), xi+290,
but honorable mention should also be accorded to
?[P 2] Joseph Pedlosky, Geophysical Fluid Dynamics, (New York, NY: Springer-
Verlag; 1984), xii+624,
[S 3] Rick Salmon, Lectures on Geophysical Fluid Dynamics, (New York, NY:
Oxford University Press; 1998), xiii+378.
And just for your amusement only, to see how advanced this topic is today—and
also to learn about a zillion non-dimensional numbers you will never need to
use—take a gander at
[Z 2] Radyadour Zeytounian, Asymptotic Modeling of Atmospheric Flows, (Berlin,
DE: Springer-Verlag; 1990), xii+396.

We say so very little about turbulence in this Opera because frankly there
is so very much to say about it and just where to begin? This omission should
certainly not be construed to suggest that turbulence is unimportant. Also the
arduous road from large-scale eddies to the dissipation length scale is quite differ-
ent for dense fluids (like water) and tenuous—especially collisionless—plasmas.
Likewise the formal theory and the laboratory and numerical experiments have
progressed along such very different directions that it seems impossible to cite
one or two references that cover the whole gamut and do not leave you with a
skewed or biased perspective. The best advice I can give is to determine which
of these very many facets of turbulence appeal to you, and then go hunting on
the internet/library for materials and references. Good luck!

Of the very many expositions describing how to obtain the continuum fluid
equations, and transport coefficients, from the kinetic Boltzmann Equation, I
especially like
[G 1] Tamas I. Gombosi, Gaskinetic Theory, (Cambridge, UK: Cambridge Uni-
versity Press; 1994), xiv+297,
[VK 1] Walter G. Vincenti & Charles H. Kruger, Jr., Introduction to Physical
Gas Dynamics, (Malabar, FL: Robert E. Krieger Publishing Company; 1965),
xvii+538,
[C 2] Carlo Cercignani, Rarefied Gas Dynamics. From Basic Concepts to Actual
Calculations, (Cambridge, UK: Cambridge University Press; 2000), xviii+320,
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?[P 3] Eugene N. Parker, Conversations on Electric and Magnetic Fields in the
Cosmos, (Princeton, NJ: Princeton University Press; 2007), xiii+179,
in addition to the excellent treatements presented in Mihalas & Mihalas [MM
1] and Shu [S 1].

Aeroacoustics refers to the study of the emission of sound by unsteady fluid
motions, which became rigorous, to some extent with Lighthill’s pioneering work
in the mid 20th Century. The following books provide a very comprehensive
introduction to the methods and results:
[G 2] Marvin E. Goldstein, Aeroacoustics, (New York, NY: McGraw-Hill Book
Company; 1976), xvii+293,
[DF-W 1] A.P. Dowling & J.E. Ffowcs-Williams, Sound and Sources of Sound,
(Chichester, UK: Ellis Horwood Ltd; 1989), –+321,
[CDF-WHL 1] D.G. Crighton, A.P. Dowling, J.E. Ffowcs-Williams, M. Heckl
& F.G. Leppington, Modern Methods in Analytical Acoustics. Lecture Notes,
(London, UK: Springer-Verlag; 1992), xvii+738,
[H 1] M.S. Howe, Theory of Vortex Sound, (Cambridge, UK: Cambridge Uni-
versity Press; 2003), xiv+216.

Having figured out how sound is generated by unsteady flows, it then be-
came of interest in certain computational settings to find ways of suppressing
the sound generated by the flows in order to take larger time steps! This is
sometimes facetiously described as “sound-proofing” the hydrodynamic equa-
tions, or the anelastic approximation. Two very nice references on what these
methods are and why in particular they are needed are:
?[G 3] Gary A. Glatzmaier, Introduction to Modeling Convection in Planets
and Stars. Magnetic Field, Density Stratification, and Rotation, (Princeton, NJ:
Princeton University Press; 2014), xiii+311,
[WP 1] N.O. Weiss & M.R.E. Proctor, Magnetoconvection, (Cambridge, UK:
Cambridge University Press; 2014), xi+397.

Finally, because I can’t resist, the following very diverse and intriguing com-
pilation indicates some of the odd and interesting directions which fluid dynam-
ics can take the researcher,
[BMW 1] G.K. Batchelor, H.K. Moffatt & M.G. Worster, eds., Perspectives in
Fluid Dynamics. A Collective Introduction to Current Research, (Cambridge, UK:
Cambridge University Press; 2003), xiii+631.

9. Appendix A: Spherical Geometry
The Euler Equation in spherical geometry is

∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ

+
uφ

r sin θ

∂ur
∂φ
−
u2
θ + u2

φ

r
+

1

ρ

∂p

∂r
= gr + aEMr + aRr ,

∂uθ
∂t

+ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uφ

r sin θ

∂uθ
∂φ
−

cot θ u2
φ − uruθ
r

+
1

ρr

∂p

∂θ
= gθ+aEMθ +aRθ ,

∂uφ
∂t

+ur
∂uφ
∂r

+
uθ
r

∂uφ
∂θ

+
uφ

r sin θ

∂uφ
∂φ

+
uφ(cot θ uθ + ur)

r
+

1

ρr sin θ

∂p

∂φ
= gφ+aEMφ +aRφ .
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For the Navier-Stokes Equation we need an expression for the divergence
of the viscous stress tensor in spherical geometry. This is an extremely nasty
expression, which can be found, among other places, spread across pages 87 and
88 of Mihalas & Mihalas [MM 1]. We won’t bother to record it here given the
high probability for typographical errors.

The equation for the conservation of momentum is

∂

∂t
ρu +∇ ·

(
p1− � + ρuu

)
= ρ[g + aEM + aR] .

If we denote the combination of quantities that appear in parenthesis as the
stress-energy tensor T, then the following equations are convenient to have in
mind,

(∇ · T)r =
1

r2

∂

∂r

(
r2Trr

)
+

1

r sin θ

∂

∂θ
(sin θ Trθ) +

1

r sin θ

∂Trφ
∂φ
− Tθθ + Tφφ

r
,

(∇·T)θ =
1

r2

∂

∂r

(
r2Trθ

)
+

1

r sin θ

∂

∂θ
(sin θ Tθθ)+

1

r sin θ

∂Tθφ
∂φ
− cot θ Tφφ − Trθ

r
,

(∇ · T)φ =
1

r2

∂

∂r

(
r2Trθ

)
+

1

r

∂Tθφ
∂θ

+
1

r sin θ

∂Tφφ
∂φ

+
2 cot θ Tθφ + Trφ

r
.

10. Appendix B: 96 Tears and 30 Moments Later...
Harold Grad, more perhaps than anyone else, labored to place the fluid

dynamic equations on a solid mathematical foundation. Curiously, or perhaps
not, he never wrote a monograph on the subject. However, using Google, you
can find pdf’s of many of his papers and reports freely available from a variety
of archives and sources. Find them and read them!

The starting point for all such endeavors is generally the collisional Boltz-
mann Equation for the evolution of the single-particle distribution function,
fs(x,p, t) defined on a 6-dimensional phase space, for some species of parti-
cle, s. The density, fluid velocity, fluid pressure tensor, and so on are defined
in terms of various moments of this distribution function integrated over the
momentum part of the phase space, i.e.,

ρ(x, t) ≡
∑
s

ms

∫
dp fs(x,p, t) .

Many species with different masses, ms per particle, can co-exist. Because of
the presence of a

p · ∇fs

term in Boltzmann’s Equation, higher moments with respect to p invariably
drive the time behavior of lower moments. For example, the fluid velocity
enters into the continuity equation, and the pressure tensor enters into the
Euler/Navier-Stokes Equation, and so forth.

Somewhere in this cascading process one has to simply discard higher order
moments, or make a closure statement that some higher order moment can be
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related phenomenologically to a lower-order moment already in play. Of course
we are already very familiar with such things when we say the pressure tensor, is
actually a scalar times the unit tensor, and that scalar function can be described
by an equation of state that depends only on the density and the internal energy
per unit mass. This is technically referred to as a 5-moment closure scheme
because the five independent moments we keep in play are the fluid density (1),
the three components of the fluid velocity (3) and either the internal energy per
unit mass or the pressure (1), which are related to one another by the equation
of state.

Generally speaking, the more collision-dominated a fluid/gas is, the more
likely a low-order closure scheme will work. Likewise, the closer the actual
distribution function will be to the Maxwellian Distribution. Therefore a com-
plementary approach, due originally to Chapman and Enskog, is to assume the
distribution function is “close” in some sense to a Maxwellian, and use the
Boltzmann Equation and the moments to determine the transport coefficients
needed to describle viscosity, thermal conductivity, and electrical conductivity
and so forth, based on the form of the prescribed departures from Maxwellian.

A great many books approach MHD, and thus RMHD, from this kinetic
theory perspective. We have tried our best to avoid these complications, albeit
with some unavoidable collateral damage.

11. Appendix C: Sound Proofing and Aeroacoustics
The momentum conservation equation for the material is

∂

∂t
ρu +∇ ·

(
p1− � + ρuu

)
= ρaΣ ,

where the gravitational, electromagnetic and radiative accelerations have all
been gathered into a single term. The mass conservation equation for the ma-
terial is

∂ρ

∂t
+∇ · ρu = 0 .

Notice that the mass flux appears in the former and the latter, albeit acted
upon by different differential operators. So the two equations can be combined
to give

−∂
2ρ

∂t2
+∇2 ·

(
p1− � + ρuu

)
= ∇ · ρaΣ ,

which is suggestive to say the least. Let’s regroup terms:

∂2ρ

∂t2
−∇2p = −∇ ·

(
ρaΣ −∇ · ρuu

)
,

and drop the viscosity since the Reynolds Numbers are huge for most astro-
physical flows of any consequence.

Now the left side of this equation is almost the wave equation for density
fluctuations associated with linear acoustic waves, so let’s add and subtract the
necessary term to make it so

∂2ρ

∂t2
− a2∇2ρ = ∇2(p− a2ρ)−∇ ·

(
ρaΣ −∇ · ρuu

)
.
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The quantity a [dimensions: cm sec−1] is a constant “sound speed”

a2 =

(
∂p

∂ρ

)
s

where the deriviative is taken at constant entropy (see Scene 5).
As it stands, this equation is still exact—no approximation has been made.

Lighthill however made a very astute observation. If an astrophysical (or any)
system can be partitioned into a compact region where all sorts of interesting
dynamical processes are taking place albeit at low to moderate Mach Numbers,
and a quiescent surroundings, basically at rest and possessing a more-or-less uni-
form sound speed, then the largest (dominant) terms for the dynamical medium
live on the right side of this equation, while the dominant terms in the quiescent
surroundings live on the left side of the equation! Each side must almost nearly
balance in their respective separate regions.

The slight imbalance of the right side of this equation in the dynamic region
therefore acts as a source term for acoustic waves that propagate away in the
far (quiescent) surroundings. In this source region, the ∂2ρ/∂t2 term is wholly
negligible in comparison to the other terms and it may be discarded. Discarding
this term, implies

∇ · ρu = 0 ,

which is the anelastic approximation for low Mach Number flows. It is equivalent
to filtering sound waves out of the dynamical description of the astrophysical
system. This can be very computationally useful when sound wave travel rapidly
and have small amplitudes.

12. Appendix D: RMHD’s 58 Terms
The momentum density for the material is

ρu ,

which is identical to the mass flux. The momentum flux tensor for the material
is

T = p1− � + ρuu .

The momentum density for the gravitational field is zero.
The momentum flux tensor for the gravitational field of a self-gravitating

fluid is
G .

It vanishes if the gravitational field is supplied by external agents.
The momentum exchange term between the material and gravitational field

is

ṖM→Gi − ṖG→Mi = −ρgi = ρ
∂Φ

∂xi
.

The gravitational field equation is

∇2Φ = 4πGρ .
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