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1. Introduction
At the outset, it might seem rather silly to devote an entire Scene to the

continuity equation:
∂ρ

∂t
+∇ · ρu = 0 .

This equation expresses the well known fact that mass, as described in the
continuum fluid approximation by the density ρ(x, t) [dimensions: gm cm−3],
is neither created nor destroyed. The product ρu is the mass flux, and u(x, t)
[dimensions: cm sec−1] is the (Eulerian) fluid velocity.

To be definite, we shall assume (initially) that our radiation magnetohy-
drodyamics takes place on an inertial Euclidean three-space, x ≡ (x1, x2, x3) [di-
mension: cm] and an independent one-dimensional (Euclidean) manifold called
time, t [dimension: sec]. Hence the density and the three components of the
fluid velocity are functions of fixed position and time on this four-dimensional
Galilean space-time. We refer to them as the Eulerian fluid density and ve-
locity. In a later Scene we will introduce the 10-parameter symmetry group of
transformations that are necessary to make this a proper Galilean space-time
in a precise sense.

An alternative expressions for the continuity equation is

∂ρ

∂t
+

∂

∂xi
· ρui = 0 ,

where a repeated index implies summation over all possible values (here, i =
1, 2, 3). We shall generally assume that ρ and the ui are differentiable everywhere
(although it may prove useful to relax this assumption when dealing with shock
fronts in later applications). If the density is everywhere positive (or negative!)
at some time t, it must be positive (or negative) for all times (past and future)
because the time derivative of the density vaishes when the density is zero and
the density must pass through zero in order to change sign. This is a particularly
nice property of this equation.

Mathematically speaking, the continuity equation is a first-order partial dif-
ferential equation (PDE) for four dependent variables {ρ, u1, u2, u3} considered
as functions of four independent variables {t, x1, x2, x3}, which of course describe
the underlying space-time. As such, there is not much else we can do at this
point unless someone provides us with more information. Therefore, in Scene
2, we present an independent equation for u—the so-called Euler Equation or
more generally the Navier-Stokes Equation—to secure some additional informa-
tion. Indeed, if you wish to cut to the chase you can proceed there directly at
this juncture.
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2. Solving the Continuity Equation. Part 1
If, on the other hand, someone was kind enough to provide us with ρ(x, t), the

continuity equation is sufficient to provide you with at least half of u(x, t)! To
appreciate how this works, let us take a slight detour to develop some material
we will need later.

At time t, consider an element of fluid situated at x, then, according to
Newton’s theory of gravity, the gravitational force per unit mass (that is, the
acceleration) exerted on that fluid element by a different element of fluid located
at a position x′, where the density is ρ(x′, t) is

G
x′ − x

|x′ − x|3
ρ(x′, t)dx′ .

Here G = 6.6726... × 10−8 cm3 gm−1 sec−2, is Newton’s Constant, and dx′ ≡
dx′1dx

′
2dx
′
3. Summing up the contributions from all fluid elements the net grav-

itational acceration experienced by the material located at x is

g(x, t) ≡ G
∫
dx′

x′ − x

|x′ − x|3
ρ(x′, t) .

The dimensions of g are cm sec−2 as one might hope. Next, observe that

∇ 1

|x′ − x|
=

x′ − x

|x′ − x|3
,

so

g(x, t) = G ∇
∫
dx′

1

|x′ − x|
ρ(x′, t) ≡ −∇Φ(x, t) ,

where Φ [dimensions: cm2 sec−2] is the gravitational potential. Remember that
Φ(x, t) is not unique, but can be adjusted by a gauge transformation

Φ→ Φ + Φ0

for an arbitrary constant Φ0 with no impact on the dynamics.
Now we set about computing ∇ · g using

∇ · x′ − x

|x′ − x|3
= − 3

|x′ − x|3
+ 3
|x′ − x|2

|x′ − x|5
.

Notice that the right side of this equation is zero so long as x 6= x′. Therefore,
in computing ∇·g from its expression as an integral over ρ(x′, t) we may shrink
the domain of integration to a small ball of radius ε centered on x and let ε→ 0,

∇ · g = G lim
ε→0

∫
|x′−x|≤ε

dx′ρ(x′, t) ∇ · x′ − x

|x′ − x|3
.

Since ρ is differentiable everywhere, as ε → 0 we may replace ρ(x′, t) → ρ(x, t)
and remove it from the integrand. It remains to evaluate

lim
ε→0

∫
|x′−x|≤ε

dx′ ∇ · x′ − x

|x′ − x|3
= − lim

ε→0

∫
|x′−x|≤ε

dx′ ∇′ · x′ − x

|x′ − x|3
.
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Gauss’s law allows us to convert the volume integral to a surface integral:

lim
ε→0

∫
|x′−x|≤ε

dx′ ∇ · x′ − x

|x′ − x|3
= − lim

ε→0

∮
|x′−x|=ε

dS′ · x′ − x

|x′ − x|3
= −4π .

Thus,
∇ · g = −4πGρ(x, t) ,

or equivalently
∇2Φ = 4πGρ .

This is called Poisson’s Equation for the gravitational potential consistent with
Newton’s law of gravity. It has the rather undesirable property that the gravi-
tational potential reacts instantaneously everywhere in space to any change in
the distribution of matter. It is this aspect of Poisson’s Equation that Einstein’s
General Theory of Relativity corrects by the introduction of gravitational waves,
which, have only recently finally been detected.

Returning to the continuity equation, we see that this is just the result we
need to solve

∇ · ρu = −∂ρ
∂t

,

since we know how to construct g from ρ via a similar looking equation. We
can immediately write down the desired result:

u(x, t) =
1

4πρ(x, t)
∇
∫
dx′

1

|x′ − x|
∂ρ(x′, t)

∂t
.

This, however, turns out to be only half (or better, “part”) of the answer! The
reason is that we are free to add any additional velocity of the form:

v(x, t) =
1

ρ(x, t)
∇×A(x, t)

where A(x, t) is an arbitrary vector function of space-time, to u, because we
will still satisfy ∇ · ρv = 0.

If it is also the case that ∇×ρu = 0, then we can conclude that ∇×ρv = 0.
But this is still not sufficient to determine the unknown half of u, because A is
now only restricted to nontrivial solutions of ∇× (∇×A) = 0. Equivalently we
can still add to u a velocity

w(x, t) =
1

ρ(x, t)
∇φ(x, t) ,

where φ is a solution of Laplace’s Equation, ∇2φ = 0. So we are still able to
recover only part of the velocity field from complete knowledge of the density!
Even more information is obviously needed to construct the entire velocity field.

3. Solving the Continuity Equation. Part 2
Surprisingly (or perhaps not), if someone instead provides you with com-

plete knowledge of u(x, t) you may determine ρ(x, t) everywhere! However, the
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method to solve this problem is entirely different, and is (unfortunately) much
more complicated (or powerful, take your choice).

The continuity equation is now a linear homogeneous PDE (of first order)
for a scalar function ρ with specified coefficients:

∂ρ

∂t
+ ui(x, t)

∂ρ

∂xi
+ ρ

∂ui(x, t)

∂xi
= 0 ,

in the four independent variables {t, x1, x2, x3}. The method of solution, due
to Lagrange, involves finding the characteristics, or integrals, of the partial
differential equation. In other words, we seek a function Ψ(t,x, ρ), from which
we can implicitly determine ρ from knowledge of a initial condition, ρ0(x) =
ρ(x, t = 0), say. Then, as the fluid evolves dynamically, the relation Ψ(t,x, ρ) =
Ψ(0,x, ρ0(x)) ≡ ψ0(x), holds. Thus, we obtain an implicit solution for ρ(x, t)
if we can find Ψ. Lagrange’s method, as well as its extension to more general
situations is discussed in Appendix E at the end of this Scene.

To proceed, we need to determine an equation for Ψ, which is:

∂Ψ

∂t
+ ui

∂Ψ

∂xi
− ρ∂ui

∂xi

∂Ψ

∂ρ
= 0 .

This follows by noting that on the surface Ψ = constant,

dΨ

dt
=
∂Ψ

∂t
+
∂Ψ

∂ρ

∂ρ

∂t
= 0 , at fixed x ,

dΨ

dxi
=
∂Ψ

∂xi
+
∂Ψ

∂ρ

∂ρ

∂xi
= 0 at fixed t, xj , j 6= i .

Adding the first equation to ui contracted with the second equation leads to
the desired result. So we have another linear PDE now with five independent
variables and with specified coefficient for the scalar function Ψ. It appears we
might be headed in the wrong direction. But Lagrange is not to be doubted.

The characteristics of the PDE for Ψ are determined by the equations

dt

1
=
dx1
u1

=
dx2
u2

=
dx3
u3

= − dρ

ρ(∂ui/∂xi)
,

which are in turn equivalent to the system of equations:

dxi
dt

= ui(x, t)

1

ρ

dρ

dt
= −∂ui

∂xi
≡ −∆(x, t) .

For extremely simple u(x, t) it may be possible to solve this set of equations
analytically. For instance, if t does not appear explicity, as in a steady flow,
the system is said to be autonomous. In any case, with some luck, the idea is
to determine four integrals of the motion, call them Ωα(t,x, ρ) for α = 1, 2, 3, 4
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from these equations. And the general solution is then Ψ = ω(Ω1,Ω2,Ω3,Ω4),
where ω is an arbitrary function of the four integrals. But this rarely occurs in
practice. So, instead we must take a different approach. Here, we move on to
plan B.

As the right sides of all 4 equations are known, we may formally (or nu-
merically, take your pick) integrate this system forward in time from an initial
condition where a parcel of fluid has density ρ0(x′) at position x′ at time t = 0
to some final time t:

xi = Xi(x
′, t)

where
Xi(x

′, t = 0) = x′i .

Knowledge of these three functions X = (Xi, X2, X3), of the initial position of
a parcel of fluid x′ = (x′1, x

′
2, x
′
3), and the elapsed time t constitute a complete

solution of our problem. Nothing more can be asked for. I’ve adopted the
somewhat pedantic notation of writing

x = X(x′, t)

to carefully distinguish between an initial x′ and a subsequent x location in Eu-
clidean three-space. The vector function X(x′, t) is best regarded as a mapping
from the initial position of a parcel of fluid x′ at time t = 0 to some subsequent
position x at time t generated by the Eulerian velocity field u(x, t). In other-
words, X is a continuous sequence of mappings from the Euclidean three-space
to itself, with the time t serving the role of a continuous evolution parameter.

The Jacobian of the mapping

Jij(x
′, t) ≡ ∂Xi

∂x′j
.

is particularly important. Strictly speaking, the Jacobian is a function of the
parameter t and the initial location of the parcel of fluid x′. However, it can also
be regarded as a function of the position at time t of the parcel of fluid because
of the mapping X. Clearly, for all of this to hang together, we require the
mappings to be one-to-one at every time t. In otherwords, X(x′, t) = X(y′, t)
if and only if x′ = y′.

Equally important is the inverse mapping X′(x, t) which provides the initial
position x′ at t = 0 of a parcel of fluid which arrives at position x at time t.
Because the original mapping is one-to-one, we are guaranteed that the inverse
exists and is also one-to-one! Its Jacobian is

J ′ij(x, t) ≡
∂X ′i
∂xj

.

Again, this can also be regarded as a function of the initial position x′ because
the inverse mappings X′ are also one-to-one.
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In terms of these forward (in time) and backward mappings, the Eulerian
velocity is

ui(x, t) =
∂

∂t
Xi(x

′, t) evaluated at x′ = X′(x, t) .

Note that this requires knowledge of both the forward and backward maps. The
expression

ui(x
′, t) =

∂

∂t
Xi(x

′, t) ,

has exactly the same value, but it is attached to the point x′, even though
the parcel of fluid is now at the point x. So it means a different thing. It is
the Lagrangean velocity. The former is the Eulerian velocity. Again, they have
precisely the same value but are attached to two different points in the Euclidean
three-space at any given time (except t = 0), and so they are “different.”

Now the essential critical property of the two Jacobians is the following:

JijJ
′
jk =

∂Xi

∂x′j

∂X ′j
∂xk

= δik ,

provided we evaluate the two Jacobian’s at the pair of positions x and x′ which
are related by the forward and backward mappings at the specified time t. In
particular, notice that for t = 0, x = x′, Jij = δij and J ′jk = δjk so this property
starts off being true at t = 0! And it remains so throughout the evolution.

We now have enough information to determine the density. The Jij can
also be regarded as the components of a 3x3 matrix, and provided we use the
coordinates x and x′ related by the forward and backward mappings at time
t, J ′jk are therefore the components of the inverse of this 3x3 matrix. We now
make use of standard results for the matrix inverse from elementary matrix
theory to write

J ′jk =
1

2J
εklmεjpqJlpJmq ,

where the determinant of the the 3x3 matrix is

J ≡ 1

6
εijkεlmnJilJjmJkn .

The quantity εijk is the Levi-Civita tensor and is the more complicated, and
interesting, sibling of the Kronecker delta δij . For Kronecker’s delta,

δij = 0

if i 6= j, otherwise, its value is 1. Thus δii = 3 in our three-dimensional Euclidean
space. For the Levi-Civita tensor,

εijk = 0

if any two indices are equal, irrespective of the value of the third, otherwise its
value is 1 if {i, j, k} is a cyclic permutation of {1, 2, 3}, i.e.,

ε123 = ε231 = ε312 = 1 .
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Exchanging any two indices flips the sign, so

ε132 = ε213 = ε321 = −1 .

The cross product of two vectors in Euclidean three-space makes use of the
Levi-Civita tensor:

A = B×C ⇒ Ai = εijkBjCk .

A very useful identity is

εijkεklm = δil δjm − δimδjl ,

which is simply a very complicated way of saying

A× (B×C) = B(A ·C)−C(A ·B) .

So, to complete the story, let’s compute dJ/dt. Using the chain rule, we
have

dJ

dt
=

∂J

∂Jij

dJij
dt

.

The first factor can be computed directly from the definition of J as the product
of three factors of JilJjmJkn and gives

dJ

dt
= JJ ′ji

dJij
dt

= JJ ′ji
∂2Xi

∂t∂x′j
= J

∂X ′j
∂xi

∂

∂x′j

∂Xi

∂t
= J∇ · u = −J

ρ

dρ

dt
.

Therefore,
d

dt
Jρ = 0 ⇒ J(x′, t)ρ(x′, t) = ρ0(x′) .

This deceptively simple statement implies that the density of a parcel of
fluid, which was originally ρ0(x′) at time t = 0 when it was located at position
x′, becomes

ρ(x′, t) =
ρ0(x′)

J(x′, t)
=
ρ(x′, 0)

J(x′, t)

at a later time t when that parcel of fluid is at x = X(x′, t). The ratio of
the densities for the parcel of fluid is proportional to the determinant of the
Jacobian. This is a Langrangean statement because even though the fluid parcel
is at x at this time t, its actual density is attached back to the point x′ from
whence it came.

To obtain the Eulerian density, we have to reattach this density to the actual
location of the fluid parcel, or, in otherwords,

ρ(x, t) =
ρ0(x′)

J(x′, t)
evaluated at x′ = X′(x, t) ,

is the desired solution to

∂ρ

∂t
+ ui(x, t)

∂ρ

∂xi
+ ρ

∂ui(x, t)

∂xi
= 0 ,
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where ρ(x, 0) is specified by the function ρ0(x).
Notice, of course, that without knowledge of X and its partial derivatives

∂Xi/∂x
′
j this is only a formal solution because, of course, we haven’t actually

solved anything. And the only way we get this information is going back to the
system of four coupled ODEs (in time) and integrating them forward somehow
from the initial condition. Our ability to do this hinges upon knowing the
Eulerian velocity field everywhere at all times t ≥ 0.

The quantity
ρ0(x′)

J(x′, t)

when regarded simply as a function of the initial position of a parcel of fluid, x′,
and the elapsed time is called the Lagrangean fluid density. And by the same
token,

∂X

∂t

regarded simply as a function of the initial position of a parcel of fluid, x′,
and the elapsed time is the Lagrangean fluid velocity. In fact, it is possible
to treat the dynamics of a radiating magnetofluid entirely from a Lagrangean
perspective, where a fluid element is characterized by its inital location and
the elapsed time. Where a parcel of fluid ends up, and its physical attributes,
at a certain elapsed time when it ends up there (like its density, pressure and
magnetic field, for example) are completely determined by the mapping X and
its inverse. This is called the Cauchy solution. And as promised, it is powerful
but not easy to arrive at. This is to be contrasted with the Eulerian approach
where we wish to determine how various quantities evolve over a fixed Galilean
space-time. Where things came from or where they are going don’t enter the
discussion.

Here, we determined the both the forward and backward mappings from
complete knowledge of the Eulerian fluid velocity via

dxi
dt

= ui(x, t) ,

thanks to Lagrange. We ended up going down this road because the Eulerian
velocity field was provided to us a priori. In practice, of course, no one just
provides you with a velocity field. You have to figure it out. And anyway,
if they had the Eulerian velocity field, then they also knew the density and
everything else about the dynamics, and were not being particularly forthcoming
in witholding this additional information from us. Live and learn.

4. An Application: MURaM
The continuity equation can be employed for a number of interesting ap-

plications. Here is one. Consider a very complicated numerical simulation of
compressible, turbulent magnetoconvection complete with radiative transfer. To
be definite, let’s suppose we carry out the computation in a rectangular domain
that is periodic in the two horizontal directions (say x1 and x2) that are perpen-
dicular to gravity, with periodicity L [dimensions: cm]. The box has a depth
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H in the vertical (x3) direction and the calculation is carried out for an elapsed
time T [dimensions: sec].

The mean stratification achieved by the simulation over its duration is an
interesting quantity. For example, the mean density stratification is

〈ρ〉 ≡ 1

L2T

∫ T

0

dt

∫ L

0

dx1

∫ L

0

dx2 ρ(x, t) ,

which can only be a function of x3. Applying the 〈·〉 operator directly to the
continuity equation gives

d

dx3
〈ρu3〉 =

1

L2T

∫ L

0

dx1

∫ L

0

dx2 [ρ(x, 0)− ρ(x, t)] ,

because of the periodic boundary conditions in x1 and x2.
Now, if the simulation is run for a sufficiently long time, and if it is reasonably

well-behaved in the sense that the fluid density remains sensibly bounded, the
term on the right side of this equation becomes increasingly negligible as T →∞
and so we conclude that

〈ρu3〉 → constant,

which may, or may not, be zero depending upon the nature of the upper and
lower boundary conditions in the long time limit.

But we can do a little better than this. Writing

ρ(x, t) = 〈ρ〉(x3) + ρ′(x, t)

and a similar expression for u3(x, t), we can conclude that

〈ρ〉〈u3〉+ 〈ρ′u′3〉 = 〈ρu3〉 = constant.

So if we know the mean vertical velocity, the mean density, and the mean
vertical mass flux through the computation domain (which again may be zero),
we can determine the correlation of the density and vertical velocity flucutations
about the mean (which need not be small in any sense of the word) without
needing to compute it from the simulation! If the mass flux is zero and the
mean vertical velocity vanishes, there can be no net correlation between the
density and vertical velocity fluctuations. Conversely if there are correlations
between the density and vertical velocity fluctuations (i.e., on average cool dense
material settles and hot rarefied fluid rises) then there must be a mean vertical
velocity if there is no mass flux through thel boundaries of the box! Conservation
laws are useful.

Figures 1, 2 and 3 are based on just such a numerical simulation using the
MURaM (Max-Planck-Institute for Aeronomy/University of Chicago Radiation
Magneto-hydrodynamics) Code. This particular simulation lasts for approxi-
mately T = 30 min, and has H = 4 Mm and L = 6 Mm. It describes a typical
patch of the quiet Sun from the bottom of the photosphere to a depth of about
2.5 Mm into the solar convection zone. We’ll have more to say about, and show
further illustrations from, this simulation throughout this Act and the next.
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Using the formulae above, in Figure 1 we plot the average mass flux parallel
〈ρu3〉, and perpendicular [〈ρu1〉2 + 〈ρu2〉2]1/2 to gravity as well as the product
〈ρ〉〈u3〉. Consistent with our expectations, 〈ρu3〉 is essentially a constant, and
that constant is close to zero (the numerical errors are at worst 10−4 gm cm−2

sec−1).
This implies that to numerical round off errors

〈ρ′u′3〉 = −〈ρ〉〈u3〉.

At x3 = 2.3376 Mm, which basically marks the location of the solar surface in
this simulation, this quantity changes sign. Since the mean density is positive
definite (see Figure 2), it follows that there is an average upflow below the solar
surface that turns into a downflow above the solar surface (see Figure 3). It also
implies that below the solar surface, excess density correlates with downflows
and density depletions with upflows. The correlations are opposite above the
solar surface.

This picture is consistent with the nature of vigorous compessible convec-
tion. Cool dense material descends rapidly in an isolated network of narrow
intergranular lanes which surround large gradual upwellings of hotter, and more
rarefied, material. These more gentle upflows—called granules—cover 70-90% of
the simulation (and solar) surface area, and they dominate an unweighted spatial
average, producing the mean upflow in Figure 3. In the stably-stratified atmo-
sphere overlying the surface, gradual subsidence of light material occupies more
space than the concentrated, outflow jets—called spicules—of upward moving
hot dense material. This change in flow topology is responsible for the sign
change in the mean velocity and the mass flux correlation in Figures 1 and 3.

Another sign change occurs near the very top of the simulation, around
x3 = 3.8 Mm. This however, is a consequence of the upper boundary conditions
which attempt to let material, what little there is at these altitudes, exit the
simulation through a semi-permeable outflow boundary. As the mean density
here is a few times 10−11 gm cm−3, this artifice has little impact on the dynamics
and allows waves and radiation to exit the simulation.

5. Summary
We’ve managed to fill 10 pages with text and formulas concerning an equa-

tion which most authors mention in one line and then move on to more inter-
esting things. But, hopefully, we have managed to convey some appreciation for
the power of this equation and some of the subtleties associated with attempting
to solve it under a variety of conditions. Along the way, we have had the chance
to develop some useful mathematical tools from potential theory, the solution of
partial differential equations, matrix theory, and the Lagrangean view of fluid
dynamics. These things will all prove useful in subsequent Scenes and Acts, and
hopefully later in your academic careers.

In any event, the bottom line is that the continuity equation

∂ρ

∂t
+∇ · ρu = 0 ,
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is one piece of the bigger radiation magnetohydrodynamic puzzle as it is one
equation containing four unknowns. Therefore we will need at least three addi-
tional equations to arrive at a well-defined problem. In fact we will end up with
a lot more than that. But we now proceed to Euler’s Equation.

We also introduced, in passing, Newton’s theory of gravitation, for the scalar
gravitational potential Φ(x, t),

∇2Φ = 4πGρ .

Some authors prefer to use −Φ rather than Φ, in which case this equation picks
up a “minus” sign, as does the definition of the gravitational acceleration, which
for our sign convention reads:

g = −∇Φ .

Make the effort to keep the sign convention consistent in your work.
Philosophically, Newton’s theory of gravitation suffers from the infinite speed

of action-at-a-distance implicit in the Poisson Equation. This in turn will make
it impossible to store any momentum in the gravitational field, and the energy
stored in the gravitational field will have the unsatisfactory requirement that
matter (via ρ) must be present for any storage to be realized. These issues, and
other concerns, were paramount in Einstein’s formulation of a causal theory of
gravitation replete with gravitational waves that can store and transport energy
and momentum in the absence of any matter. His General Theory of Relativity
has three particularly novel aspects in that it is (i) manifestly a non-linear
theory, (ii) it is a tensor theory, so there is not one scalar potential Φ but a
whole menagierie of “potentials” that are assembled as the components of a
tensor, and (iii) it is intimately tied to the space-time upon which it operates.

When fluid motions are slow—meaning speeds much less than the speed of
light—and gravity is weak—meaning that the radius of curvature of space-time
is very large compared to any spatial scale of interest, then a limiting expansion
of General Relativity in inverse powers of the speed of light is possible. This
expansion, which can be truncated in many different fashions depending upon
the application in mind, is referred to as the Post-Newtonian Approximation
to the General Theory of Relativity. The absolute zeroth-order limiting case,
c → ∞, and a flat Euclidean space-time, is just Poisson’s Equation. To do
better than this requires a significant investment, which for the present we shall
choose to avoid.

6. Exercises

Exercise 1: POISSON’s EQUATION
The linear second-order PDE for ψ(x) in an n-dimensional Euclidean space,

∇2ψ =
∂2ψ

∂x21
+
∂2ψ

∂x22
+ · · ·+ ∂2ψ

∂x2n
= −f(x) ,

for n = 1, 2, 3, ... is known as the Poisson Equation. For Newtonian gravity, we
have the n = 3 version of this equation with the association Φ(x)→ ψ(x), and
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f(x) → −4πGρ(x). Assuming that f(x) has compact support (i.e., it vanishes
everywhere outside a ball of finite radius), the general solution of this equation
is

ψ(x) =

∫
dx′Ψn(x− x′)f(x′) ,

where, dx′ ≡ dx′1dx′2 · · · dx′n,

Ψ1(x− x′) ≡ −1

2
|x− x′| ,

Ψ2(x− x′) ≡ − 1

2π
log |x− x′| ,

and for n ≥ 3

Ψn(x− x′) ≡ Γ(1 + n/2)

n(n− 2)πn/2
|x− x′|2−n .

Here

Γ(1 + n/2) =
1 · 3 · 5 · ... · (2n− 1)

2n
√
π

is the Gamma Function

Γ(z) ≡
∫ ∞
0

dt tz−1e−t

evaluated at half-integers (i.e., n is odd in this expression). When the Gamma
Function is evaluated at the integers, it is just the factorial function:

Γ(1 + n) = nΓ(n) = n!

(A) Verify that Ψ3 results in the expression for the gravitaional potential quoted
in the text.
(B) For n = 3 consider an f(x) which is independent of x3, but which depends
in some fashion upon x1 and x2. Convince yourself that the resulting ψ cannot
depend upon x3 either. Then, derive an expression for ψ(x1, x2) by integrating
over the ignorable x′3 coordinate.

Exercise 2: SPHERICALLY-SYMMETRIC MASS DISTRIBUTIONS
(A) Find the gravitational potential corresponding to the spherically-symmetric
distribution of matter, of radius a and total mass M , given by

ρ(r) =
3(α+ 3)M

4παa3+α
(aα − rα) ,

for 0 ≤ r ≤ a, ρ(r) = 0 for r ≥ a, where α > 0 is a non-negative constant.
(B) Discuss the limiting case α→∞.
(C) Discuss the limiting case α→ 0.

Exercise 3: A VERY USEFUL REPLACEMENT
Although the first exercise gives wonderfully compact and elegant solutions to
Poisson’s Equation in any number of spatial dimensions, in practice it is much

12



more advantageous to replace the quantity |x− x′| by something that involves
x and x′ separately. For n = 3, this very useful replacement is

1

|x− x′|
= 4π

∞∑
l=0

l∑
m=−l

(−1)m

2l + 1

|x<|l

|x>|l+1
Y −ml (θ′, φ′)Y ml (θ, φ) ,

where the greater of x and x′ goes in the denominator and the lesser in the
numerator. The

Y ml (θ, φ) ≡

√
21 + 1

4π

(l −m)!

(l +m)!
Pml (cos θ) exp imφ ,

are the spherical harmonics, and the Pml (x) are the associated Legendre Func-
tions, defined as

Pml (x) ≡ (1− x2)m/2
(−1)m

2ll!

dl+m

dxl+m
(x2 − 1)l ,

valid for |x| ≤ 1. This result shows that projection of ρ(x′) onto a given spheri-
cal harmonic generates a complementary spherical harmonic component to the
resulting gravitational potential!
(A) Find the potential outside of a slightly flattened sphere of constant density,
and total mass M , whose surface radius is given by a + bP2(cos θ). Show that
in the limit b→ 0 you recover the solution to exercise 2(B) above.
(B) Find, or derive, the very useful replacement for n = 2.

Exercise 4: DISTRIBUTIONS AND GENERALIZED FUNCTIONS
In a purely “operational” sense, Exercise 1, suggests that

∇2Ψn(x− x′) “ = ”− δ(x− x′) ≡ −δ(x1 − x′1)δ(x2 − x′2) · · · δ(xn − x′n)

where the Dirac delta function, has the property that,∫
dx′ f(x′)δ(x− x′) = f(x)

for almost all sensible functions f . In fact δ(x) is not really a function, but
instead should be thought of as a distribution, since its meaning outside of an
integral is somewhat pathological. As we demonstrated in Section 2, for n = 3,
δ(x) is precisely zero everywhere except at |x| = 0 where it is not actually
defined.

One (but not the only) way to give the delta function some semblance of
meaning outside of an integral is to think of it as the limiting end state of a
sequence of functions that are well-behaved everywhere. We can associate with
the limit of the sequence a distribution.
(A) Consider the sequence of functions

Sm(x) = {exp(−x2/n2)}n=mn=1 ,

13



where n and m are positive integers, and the corresponding sequence of integrals

Fm =

{∫ ∞
−∞

dx F (x) exp(−x2/n2)

}n=m
n=1

.

Now take the limit m→∞, the limit of the sequence Sm→∞ is the generalized
function, or distribution, which we can call I(x) = 1, and the limit of the
sequence of integrals is just∫ ∞

−∞
dx F (x)I(x) =

∫ ∞
−∞

dx F (x) .

Find a different sequence that yields the same limit.
(B) Now consider the sequence of functions

Sm(x) = {
√
n/π exp(−nx2)}n=mn=1 ,

where n and m are positive integers, and the corresponding sequence of integrals

Fm =

{√
n/π

∫ ∞
−∞

dx F (x) exp(−nx2)

}n=m
n=1

.

The limit m→∞, the limit of the sequence Sm→∞ is the generalized function,
or distribution, which has the same properties as our δ(x). Now show that the
corresponding limit of the sequence of integrals is just∫ ∞

−∞
dx F (x)δ(x) = F (0) .

[Hint: Look at the limit as n→∞ of∣∣∣∣F (0)−
√
n

π

∫ ∞
−∞

dxF (x) exp(−nx2)

∣∣∣∣ ≤ ∣∣∣∣√n

π

∫ ∞
−∞

dx[F (x)− F (0)] exp(−nx2)

∣∣∣∣ ,
and demonstrate that the upper bound on the right goes to zero like n−1/2.]
Find a different sequence that yields the same limit.
(C) Now use the identity

F ′(0) =

∫
dx F ′(x)δ(x) =

∫
dx

d

dx
[F (x)δ(x)]−

∫
dxF (x)δ′(x) ,

to convince yourself that the n-the derivative of the Dirac delta function is
another generalized function with the property that

(−1)nF (n)(0) =

∫ ∞
−∞

dx F (x)δ(n)(x) .

Find a sequence that results in δ(n)(x) as its limit.
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(D) Use the identity in the opposite direction to find a function θ(x), whose
derivative with respect to x is the delta function δ(x). The integration constant
is usually fixed by requirement that

θ(x) = 0 , for x < 0 ,

and is called Heaviside’s Step Function.

7. Further Reading
There are no monographs or review articles on the continuity equation! And

after browsing through this Scene you know why.

For gravitation and the Newton-Poisson Equation I have relied mostly upon
the treatment in Kulsrud [K 1] and
?[BT 1] James Binney & Scott Tremaine, Galactic Dynamics, (Princeton, NJ:
Princeton University Press; 1987), xv+733,
[S 7] Donald G. Saari, Collisions, Rings, and Other Newtonian N-Body Problems,
(Providence, RI: American Mathematical Society; 2006), x+235,
[HH 1] Douglas Heggie & Piet Hut, The Gravitational Million-Body Problem.
A Multidisciplinary Approach to Star Cluster Dynamics, (Cambridge, UK: Cam-
bridge University Press; 2003), xiv+357.
All three of these books are brilliant, and written in a style I have tried un-
successfully to emulate here. I debated whether to include some aspect of this
material, but, given that they all did such a great job, and that it borders on
microphysics—although it is some stretch to think of the evolution of a globular
cluster with 106 stars as a microsphysical problem—I set it aside.

The articles in
[HI 1] Stephen Hawking & Werner Israel, eds., 300 Years of Gravitation, (Cam-
bridge, UK: Cambridge University Press; 1989), xiii+690,
especially the remarkable contribution of Thibault Damour, open several vistas
on how one might improve markedly upon the treatment of gravitation provided
in this Opera.

The Lagrangean approach to magnetohydrodynamics is handled very nicely
by three recent papers,
?[KD 1] R. Keppens & T. Demaerel, “Stability of ideal MHD configurations.
I. Realizing the generality of the G operator”, Physics of Plasmas, 23, 122117,
2016. https://doi.org/10.1063/1.4971811,
?[DK 1] T. Demaerel & R. Keppens, “Stability of ideal MHD configurations.
II. Results for stationary equilibrium configurations”, Physics of Plasmas, 23,
122118, 2016. https://doi.org/10.1063/1.4971812,
?[O 1] Gordon I. Ogilvie, “Astrophysical fluid dynamics”, Journal of Plasma
Physics, 82(3), 205820301, 2016. https://doi.org/10.1017/S0022377816000489,
while the Lagrangean approach to radiation hydrodynamics is discussed by Mi-
halas & Mihalas [MM 1].

For even more fun with Pfaffians, see
?[C 1] Brian J. Cantwell, Introduction to Symmetry Analysis, (Cambridge, UK:
Cambridge University Press; 2002), xli+612,
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?[I 2] E.L. Ince, Ordinary Differential Equations, (New York, NY: Dover Pub-
lications; 1955), viii+558
as well as the terse but incredibly insightful treatment in §11 of
?[P 1] Wolfgang Pauli, Thermodynamics and Kinetic Theory of Gases, The Pauli
Lectures on Physics, Volume 3, (Mineola, NY: Dover Publications; 2000), x+138.

The MURaM code and simulations are described by
?[VSSCTL 1] A. Vögler, S. Shelyag, M. Schüssler, F. Cattaneo, T. Emonet &
T. Linde, “Simulations of magneto-convection in the solar photosphere. Equa-
tions, methods and results of the MURaM code,” Astronomy & Astrophysics,
429, 335-51, 2005. https://doi.org/10.1051/0004-6361:20041507

The very “useful replacement” can be found in many place, I used
?[J 1] J.D. Jackson, Classical Electrodynamics, (New York, NY: John Wiley &
Sons; 1963), xvii+641,
which is the first edition. Subsequent editions exist and became thicker but
often less transparent as more and more topics were added. Also useful in this
regard are two rather valuable additions to you mathematical physics collection:
[B 1] G. Barton, Elements of Green’s Functions and Propagation. Potentials,
Diffusion and Waves, (Oxford, UK: Clarendon Press; 1995), xiii+465,
[R 1] Paul I. Richards, Manual of Mathematical Physics, (New York, NY: Perg-
amon Press; 1959), xi+486.
In particular, Richards [R 1] is just overflowing with some of the most interest-
ing, curious and at times bizarre relationships.

A particularly clear, careful and useful introduction to distributions and
generalized functions can be had from the little book,
?[L 1] M.J. Lighthill, Fourier Analysis and Generalised Functions, (Cambridge,
UK: Cambridge University Press; 1978), viii+79,
and then when you are ready to really impress your friends and colleagues with
your fluency in distributional matters, devour
[Z 1] A.H. Zeemanian, Distribution Theory and Transform Analysis. An Intro-
duction to Generalized Functions with Applications, (New York, NY: Dover Pub-
lications; xii+371.

On the thorny matter of units, the two articles by Frank Wilczek are won-
derful for setting the stage for further discussions,
[W 2] Frank Wilczek, “On absolute units, I: Choices, II: Challenges and Re-
sponse”, Physics Today, 58(10)/59(1), 12-3/10-1, 2005.

8. Appendix A: Units, Dimensions and all That
We shall need to quantify four things: mass (both inertial and gravitational,

which happily turn out to be the same, so far as one can tell), distance (or
lengths), time (or duration), and temperature. Everything else turns out to be
some combination of these four dimensional quantities. For example, velocity is
a distance per unit of time, momentum is a mass times a distance per unit of
time, volume is the cube of a distance, angular momentum and action are both
momentum times a distance, and so forth. Even electric charge, as we shall
presently see, is some combination of these four fundamental dimensions.
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The four standard units one chooses to employ are entirely irrelevant for
all intents and purposes. That’s reassuring but it also leads to confusion since
fundamental constants of nature, such as the speed of light c, Newton’s Constant
of gravitation G, Planck’s Constant h, and Boltzmann’s Constant kB take on
different sizes in each system of dimensions.

We will adopt the centimeter-gram-second-degree-Kelvin system of units in
these notes. This is not very different than the more popular (these days) In-
ternational System of Units, which employ the meter-kilogram-second-degree-
Kelvin quartet. Greater differences show up in the treatment of the electromag-
netic equations, were we shall employ the Gaussian-cgs-degree-Kelvin system.
More on that later.

One may of course wonder whether the physics has a different idea of what
the correct set of units are for measuring these four fundamental dimensions.
Toward that end, notice that

c = 2.9979× 1010 cm sec−1 ,

G = 6.6726× 10−8 gm−1 cm3 sec−2 ,

h = 6.6261× 10−27 gm cm2 sec−1 ,

kB = 1.3807× 10−16 gm cm2 sec−2 deg K−1 ,

These four fundamental constants (expressed here in cgs-degree-K units) can be
combined uniquely to determine a fiducial mass,

mP ≡
(
~c
G

)1/2

= 2.176× 10−5 gm ,

length

lP ≡
(
~G
c3

)1/2

= 1.616× 10−33 cm ,

and time

tP ≡
(
~G
c5

)1/2

= 5.391× 10−44 sec .

Here, ~ ≡ h/2π. The factor of 2π is in some sense arbitrary, but keeps these
quantities, referred to as the Planck Mass, Planck Length, and Planck Time,
consistent with common usage. Although the Planck Mass is not too cum-
bersome for day-to-day activities, the Planck Length and the Planck Time are
completely impractical. Since the temperature unit appears only in Boltzmann’s
constant, the analogous unit of temperature is

TP ≡
(

~c5

Gk2B

)1/2

= 1.417× 1032 deg K ,

the Planck Temperature, which is also not helpful for weather forecasting pur-
poses.
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These four fundamental constants do not refer to any particular type of
material. The electron mass could have been used as a fundamental mass scale.
But then what do we make of the smaller yet neutrino masses? The unit of
electric charge might also have been used in place of one of these four constants.
But, as we shall see, in the Gaussian-cgs-degree-Kelvin system, the square of
the fundamental electric charge, denoted here by e, is simply proportional to
~c,

e2 =
1

137.03599...
~c gm cm3 sec−2 ,

so we are back to the same set of fundamental constants. Indeed, this is one of
the attractions of the Gaussian-cgs-degree-Kelvin system of units.

The numerical factor in front of ~c is called the fine structure constant, α:

α ≡ e2

~c
≈ 1

137
,

which should be compared with

G
m2
e

~c
≈ 1.75× 10−22 ,

where me is the mass of the electron, which might be regarded as a really fine
structure constant. This indicates that our two long-range forces, gravity and
electromagnetism, are of quite different strengths for the material that populates
our Opera, with profound implications.

Finally, a choice of units that really cleans up notation selects a mass, length,
time and temperature so that the equivalent values of c,G, h and kB are all 1
in these units. So in these units, ~ = 1/2π, which is the ratio of radius to the
circumference of a circle. (!) The disadvantage of this approach is that it is
much harder to carry out dimensional analysis on an equation as a check of
one’s work.

9. Appendix B: Spherical Geometry
In spherical coordinates (r, θ, φ) the continuity equation is

∂ρ

∂t
+

1

r2
∂

∂r
(r2ρur) +

1

r sin θ

∂

∂θ
(sin θρuθ) +

1

r sin θ

∂

∂φ
(ρuφ) = 0 .

The components of the gravitational field g are

gr = −∂Φ

∂r
, gθ = −1

r

∂Φ

∂θ
, gφ = − 1

r sin θ

∂Φ

∂φ
,

and Poisson’s Equation for the gravitational potential Φ is

1

r2
∂

∂r

(
r2
∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂φ2
= 4πGρ .

It sometimes proves advantageous to replace the polar angle θ by µ = cos θ
or sin θ =

√
1− µ2, using the chain rule

∂

∂θ
=
∂µ

∂θ

∂

∂µ
= −

√
1− µ2

∂

∂µ
.
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This has a tendency to simplify the appearance of some of the expressions above.
We don’t bother with similar expressions in cylindrical coordinates because,

the last time we checked, there were no cylindrical planets, stars, clusters or
galaxies. There are, however, highly flattened spheres or disks, and in such
circumstances, oblate spheroidal coordinates can be effective, albeit, much harder
to use than spherical coordinates.

10. Appendix C: Einstein Summation Convention
When an italicized Latin subscript is repeated in an expression, we under-

stand that there is an implied summation over all the possible values that index
can take on. For example,

Ui
∂Ψ

∂xi
≡
∑
i

Ui
∂Ψ

∂xi
≡ U1

∂Ψ

∂x1
+ U2

∂Ψ

∂x2
+ · · · .

In general relativity and differential geometry one must distinguish between
covariant and contravariant vectors (which live in a vector space and its dual
vector space, respectively) by employing such indices as subscripts or super-
scripts (respectively). For the most part we will ignore such fine points in these
notes and usually keep indices as subscripts to avoid confusion with powers.

Two particularly useful quantities that arise in these matters are the Kro-
necker Delta δij , which is 1 if i = j and 0 otherwise; and the Levi-Civita Symbol
εijk, which is 1 if ijk is an even permutation of 123, −1 if ijk is an odd per-
mutation of 123, and 0 if any two indices are equal. The following results often
prove useful in simplifying expressions

εijkεimn = δjmδkn − δjnδkm ,

εijkεljk = 2δil,

εijkεijk = 6 .

11. Appendix D: Eulerian vs Lagrangean Approaches to RMHD
The developments of §3 are indicative of the Lagrangean viewpoint of fluid

dynamics. The essential concept is that of a unique continuous (or as continuous
as possible) family of mappings X from the intial Eulerian location of a fluid
element x′ at time t = 0 to a future Eulerian position x = X(x′, t) at any later
time t ≥ 0. Encoded in this family of mappings is all the dynamical information
needed about the astrophysical system.

For example, in §3, we demonstrated how knowledge of the family of map-
pings, via the Jacobian, provides the Lagrangean density at a future time in
terms of the initial density, consistent with the conservation of mass,

ρ(x′, t) =
ρ0(x′)

J(x′, t)
=
ρ(x′, 0)

J(x′, t)
.

The magnetic induction equation in MHD,

∂B

∂t
= ∇× (u×B) ,
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which expresses the conservation of magnetic flux through a fluid element, sim-
ilarly has a very simple and elegant solution—the so-called Cauchy solution—
from the Lagrangean viewpoint

Bk(x′, t) =
Bj(x

′, 0)

J(x′, t)

∂Xk

∂x′j
,

where B0(x′) = B(x′, t = 0) is the initial magnetic field.
The equation for the family of mappings, is however, rather complicated and

is no easier to solve than the full set of RMHD equations in the Eulerian frame-
work. One advantage, as we shall later see, is that the Lagrangean framework
permits us to formulate the solution in terms of a variational principle, which
has certain practical and conceptual advantages. [See Act II Scene 2. Appendix
A.]

12. Appendix E: Pfun with Pfaffians
In this appendix we develop the theory of solving first-order partial differ-

ential equations (PDEs). Or, we have some fun with Pfaffians.

α. Two Variables
The simplest formulation involves two variables, x1 and x2, and a first order

equation of the form

U1(x)
dx2
dx1

= U2(x) ,

which is equivalent to the single equation

dx2
dx1

=
U2

U1
≡ u1(x) .

Following Lagrange, we seek a function Ψ(x) which provides an integral of the
motion. To select a definite trajectory for the solution we require an additional
constraint, namely that x2 takes a definite value when x1 = 0, say. Let x′ =
[0, x2(0)] describe this constraint. Then

Ψ(x) = ψ0 = Ψ(x′)

provides an implicit solution to the equation.
The equation for Ψ comes from taking the total derivative with respect to

x1:
dΨ

dx1
=
∂Ψ

∂x1
+
∂Ψ

∂x2

dx2
dx1

= 0

which must vanish along the solution trajectory. Replacing dx2/dx1 by U2/U1

gives

Ui
∂Ψ

∂xi
= 0 ,

summed over i = 1, 2. Clearly all three of our equations are equivalent and so
saying the characteristic of this equation is given by

dx1
U1

=
dx2
U2
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in fact adds nothing new. It simply returns our original equation

U1(x)
dx2
dx1

= U2(x) .

There is one final equivalent form which is the Pfaffian form

δQ = ξ1(x)dx1 + ξ2(x)dx2 = U2dx1 − U1dx2 = 0 .

This should be compared with the exact differential:

dΨ =
∂Ψ

∂x1
dx1 +

∂Ψ

∂x2
dx2 = 0 .

Now it is tempting to try to identify U2 with ∂Ψ/∂x2 and integrate this result,
but this will only work if

∂U2

∂x1
+
∂U1

∂x2
= 0 .

If this is true, the δQ = dQ is an exact differential. Otherwise it is not.
Suppose its not. Then Pfaff’s Theorem assures us that there exists a function

τ(x) which we can divide δQ by to obtain an exact differential:

δQ

τ
= dΨ =

U2

τ
dx1 −

U1

τ
dx2 = 0 .

We call this an integrating factor. That’s the good news. The bad news is that
if we try to solve for τ we end up back where we started needing to solve any
one of the above equivalent equations. So there is no general solution we can
write down that holds for arbitrary u2(x), period.

This leaves us with two options. We can try to guess an integrating factor,
or see if someone else has managed to guess one for us. We can try to look for
symmetry transformations of x which leave the equations invariant. The latter
approach involves Lie Groups and symmetry analysis which is perhaps the only
systematic means to solve nonlinear equations. The former, often the result
of successfully applying the latter, requires access to a tabulation of previous
results.

We close with a few interesting results from the world of look up tables. The
cases

u1(x) = f(x1)xα2 + g(x1) and u1(x) = [f(x2)xα1 + g(x2)]−1

result in a linear first order ODE’s, for arbitrary functions f and g and constant
α. For α 6= 1 this equation is known as Bernoulli’s equation and is reducible
to a linear ODE with the substitution y = x1−α. Another famous example is
Riccati’s Equation

u1(x) = f(x1)x22+g(x1)x2+h(x1) and u1(x) = [f(x2)x21+g(x2)x1+h(x2)]−1 ,

for arbitrary functions f , g and h. The Riccati transformation removes the
nonlinearity but increases the order of the equation by 1. Another solvable case
is u1(x) = f(x1/x2), which obviously has a high degree of symmetry.
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Notice that Ui(x) could be wildly complicated so long as their ratio u1(x) is
amenable to progress! So having all these equivalent forms is powerful.

β. Three Variables
We add x3 into the mix. Now

U1(x)
∂x3
∂x1

+ U2(x)
∂x3
∂x2

= U3(x) ,

is our basic partial differential equation. Lagrange now asserts that we may
expect two integrals of the motion, say Ψ1(x) and Ψ2(x) which will both be
solutions of the same equation. This equation is derived as before. For either Ψ

dΨ

dx1
=
∂Ψ

∂x1
+
∂Ψ

∂x3

∂x3
∂x1

= 0 ,

and
dΨ

dx2
=
∂Ψ

∂x2
+
∂Ψ

∂x3

∂x3
∂x2

= 0 ,

which together imply

Ui
∂Ψ

∂xi
= 0 ,

with our sum now extending over i = 1, 2, 3. The characteristic equations are

dx1
U1

=
dx2
U2

=
dx3
U3

.

Which are equivalent to a system of evolution equations

dx2
dx1

=
U2

U1
≡ u1(x) ,

dx3
dx1

=
U3

U1
≡ u2(x) ,

dx3
dx2

=
U3

U2
=
u2(x)

u1(x)
.

of which only two are independent.
It is worth pointing out that if the ui or their ratio can be made independent

of one of the three variables then the system is autonomous and can be reduced
to solving the two variable problem above. Otherwise we can make a best effort
to try to solve this system of equations, which will provide two integrals of the
motion Ψ1(x) and Ψ2(x). The general solution is an arbitrary function of these
two integrals, Ψ(x) = ω(Ψ1,Ψ2).

The Pfaffian approach rewites this system of equations as

U1dx2 − U2dx1 = 0 ,

U1dx3 − U3dx1 = 0 ,
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U2dx3 − U3dx2 = 0 ,

and takes some linear combination to form

δQ = ξi(x)dxi .

An integrating factor τ(x) is not guaranteed unless

εijkξi
∂ξk
∂xj

= ξξξ · ∇ × ξξξ = 0 .

Therefore, we must form our superposition of the these three equations in such
a fashion that this criterion is fulfilled. There are two independent ways to
accomplish this, and each, if an integrating factor can be identified, generates
one of the two Ψ functions.

γ. Three Variables: An Illustrative Example
To illustrate how this all works, when it works, we consider the following

simple example

(x2 + x3)
∂x3
∂x1

+ (x1 + x3)
∂x3
∂x2

= x1 + x2 ,

or

(x3 + x2)
∂Ψ

∂x1
+ (x3 + x1)

∂Ψ

∂x2
+ (x1 + x2)

∂Ψ

∂x3
= 0 .

This system has a lot of symmetry, so it is not surprising that it is going to
yield an analytic result. The characteristic equations are

dx1
x2 + x3

=
dx2

x1 + x3
=

dx3
x2 + x1

,

or
dx1
dx3

=
x2 + x3
x2 + x1

,

dx2
dx3

=
x1 + x3
x2 + x1

.

Our next step is to try to find a way to integrate them. Some noodling
around suggests subtracting these two equations, to get:

d

dx3
(x1 − x2) =

x2 − x1
x2 + x1

.

This is encouraging because we can divide through and get the combination
x2 − x1 alone on one side of this equation, leaving the factor (x2 + x1)−1 alone
on the other side. If we can find another way to come up with something similar
in structure we can make some progress.

So we next we subtract 1 from the first equation

dx1
dx3
− 1 =

x3 − x1
x2 + x1

=
d

dx3
(x1 − x3) ,
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and make use of the obvious, but quite sneaky result that 1 = dx3/dx3. Now
we are set because

1

x1 + x2
=

1

x3 − x1
d

dx3
(x1 − x3) =

1

x2 − x1
d

dx3
(x1 − x2)

implies
d

dx3
log

x1 − x3
x1 − x2

= 0

so our first integral of the motion is

Ψ1(x) =
x1 − x3
x1 − x2

.

Can we get to the same outcome by still another way? Yes. By adding 1 to
dx1/dx3 + dx2/dx3 we find

d

dx3
(x1 + x2 + x3) = 2

x1 + x2 + x3
x1 + x2

so

1

x1 + x2
=

1

2

1

x1 + x2 + x3

d

dx3
(x1+x2+x3) =

1

x3 − x1
d

dx3
(x1−x3) =

1

x2 − x1
d

dx3
(x1−x2)

which provides our second integral of the motion

d

dx3
log

x1 + x2 + x3
(x1 − x3)2

= 0

or

Ψ2(x) =
x1 + x2 + x3
(x1 − x3)2

.

We could equally well put (x1 − x2)2 in the denominator instead and we still
have a second independent constant of the motion because we can multiply this
expression by the square of Ψ1 — or any other function of Ψ1 for that matter.

Now as the constant ψ1 varies, the equation

Ψ1(x) =
x1 − x3
x1 − x2

= ψ1

traces out a series of two-dimensional laminated surfaces. If we know that our
trajectory passes through the point x′ = [x′1, x

′
2, x
′
3] we can evaluate the constant

ψ1 = Ψ1(x′). A similar result holds for Ψ2 and the intersection of these two
surfaces is a one-dimensional curve satisfying the pair of equations

x1 − x3
x1 − x2

= ψ1 ,

x1 + x2 + x3
(x1 − x3)2

= ψ2 .
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The first equation describes a plane that passes through the origin

(1− ψ1)x1 + ψ1x2 − x3 = 0 .

The second allows us to solve explicitly for

x2 = −(x1 + x3) + ψ2(x1 − x3)2 .

Using this in the equation for the plane, we obtain a single equation for the
remaining two variables:

ψ1ψ2(x1 − x3)2 + (1− ψ1 − ψ2)x1 − (1 + ψ2)x3 = 0

which is the equation for a parabola that passes through the origin.
The parabolic nature of the solution is clear in a coordinate system rotated

by ±π/4 so that ξ = x1−x3 and η = x1+x3 serve as the orthogonal coordinates.
In terms of ξ and η this last equation reads:

ξ =
1

ψ1 + 2ψ2
η(ψ1ψ2η + 1− ψ2) .

Using

x1 =
1

2
(ξ + η) =

1

2(ψ1 + 2ψ2)
η(ψ1ψ2η + 1 + ψ1 + ψ2) ,

x3 =
1

2
(η − ξ) = − 1

2(ψ1 + 2ψ2)
η(ψ1ψ2η + 1− ψ1 − 3ψ2) ,

x2 = − 1

ψ1 + 2ψ2
η(2ψ2

2η + 1− ψ2) ,

we recover the complete solution in parametric form where η = x1 + x3 varies
from −∞ to +∞. All three xi are quadratic in η with x1 and x3 headed in
opposite directions for large η. The ratio xi/xj tends to a constant for large
η, and |xi|. Every solution, no matter where x′ is located must pass through
the origin x = 0. The solution vector x lies in a two-dimensional plane that
contains the origin and is oriented by the value of ψ1. That is, the solution is
contained entirely in a two-dimensional subspace, or manifold, of the full three
dimensional Euclidean vector space.

We can now go back and verify directly by substitution that this parametric
solution indeed solves

(x2 + x3)
∂x3
∂x1

+ (x1 + x3)
∂x3
∂x2

= x1 + x2 ,

and that when η = x′1 + x′3, and using ψ1 = (x′1 − x′3)/(x′1 − x′2) and ψ2 =
(x′1 + x′2 + x′3)/(x′1 − x′2)2 this system ensures that xi = x′i for i = 1, 2, 3. We
can also verify directly that Ψ1(x) and Ψ2(x) are each solutions of

(x3 + x2)
∂Ψ

∂x1
+ (x3 + x1)

∂Ψ

∂x2
+ (x1 + x2)

∂Ψ

∂x3
= 0 .
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A lot of algebra and a bit of luck to be sure but hopefully this gives a concrete
sense of how this all fits together.

δ. Even More Variables
It should now reasonably clear how we can generalise this to four or more

variables (recall that our continuity equation is the case of five variables, x4 = t,
x5 = ρ, which is a tough way to start out).

Going to four, for example, simply adds a new variable x4, an additional
term involving U4 in the canonical partial differential equation, an additional
characteristic equation, an additional u3, an additional Ψ3 and so forth. In a
very very nice twist of fate the guarantee of there being an integrating factor
for the Pfaffian (now with an additional ξ4dx4 term) remains unchanged

εijkξi
∂ξk
∂xj

= 0

for all admissible combinations of ijk. When ijk could only take on the values 1,
2, and 3 there was only one nontrivial admissible combination, 123, and therefore
one constraint. With 4 choices there are three conditions corresponding to 123,
124, and 234. In general, for n variables there are (n− 1)(n− 2)/2 constraints
needed to guarantee the existence of an integrating factor.

12. Appendix F: RMHD’s 58 Terms
The mass density is

ρ

and the mass flux is
ρu .

There are no exchange terms.
Two down, 56 to go.
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