
Appendix C: RMHD Equilibria

T.J. Bogdan
September 22, 2018

It had of course been rumored for some time that there
was a mssing Scene from Act II that helped to bridge the

perplexing (to critics at least) gap in the plot. This manuscript
was recently found by archivists rummaging around in a dusty

library basement. It’s authenticity, however, remains uncertain.
—The Publishers

1. Introduction
In this Scene we set about constructing static, steady-state RMHD equilibria.

All time-derivatives ∂/∂t ≡ 0 are set to zero, as well as the fluid velocity u ≡
0. This implies that the continuity equation is out the window because all it
contains are time derivatives and velocities. All of Navier’s and Stokes’s hard
work on viscous dissipation is not needed, nor is Burger’s steepening studies.
Oh, and all this effort to work in the comoving frame is accomplished with no
effort, as, the comoving frame is the laboratory frame!

What. if anything, is left?

2. The Equations of Radiation Magnetohydrostatics
The equations for gravity,

∇2Φ = 4πGρ ,

∇ · G = ρ∇Φ ,

electromagnetism,
J = σE ,

c∇×B = 4πJ ,

c∇×E = 0 ,

∇ ·E = 4πδ ,

∇ ·B = 0 ,

∇ · (σE) = 0 ,

∇ · M = −δE− 1

c
J×B ,

∇ · S = −J ·E ,

radiation,
ην(n) = κ0(ν)Bν [T ] + σ0(ν)Jν ,

χν(n) = κ0(ν) + σ0(ν) ,
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n · ∇Iν = ην − χνIν ,

∇ · F =

∫ ∞
0

dν

∮
dn [ην − χνIν ] ,

∇ · P =
1

c

∫ ∞
0

dν

∮
dn n[ην − χνIν ] ,

and the material,

0 = ρ
δq

δt
= ∇ · � · ∇T + J ·E−

∫ ∞
0

dν

∮
dn [ην − χνIν ] ,

∇p = −ρ∇Φ + δE +
1

c
J×B− 1

c

∫ ∞
0

dν

∮
dn n[ην − χνIν ] ,

p = p(ρ, T ) ,

simplify dramatically in absence of material motion and temporal evolution.
From this extensive array of identities, two essential equations emerge, the

energy equation:
∇ · (F− � · ∇T + S) = 0 ,

and the force-balance equation:

∇ · (p1+ P+ M+ G) = 0 .

Let’s go to work! For static electromagnetic fields, recall that

E = −∇φ , B = ∇×A .

So the charge density and the current density follow immediately from

δ = − 1

4π
∇2φ , J =

c

4π
∇× (∇×A) .

This leaves one non-trivial relationship (Ampère’s Equation) between E and B,
or equivalently φ and A:

c∇×B = 4πσE , =⇒ c∇× (∇×A) = −4πσ∇φ .

The Lorentz Force is

1

8π
∇|E|2 +

1

4π
(∇×B)×B = −∇ · M ,

and the Poynting Flux is

S =
c

4π
E×B .

Ideal MHD corresponds to the limit σ →∞ which in turn forces E→ 0 while
leaving J, ∇ × B unconstrained. Ideal EHD corresponds to the limit σ → 0,
which forces J, ∇×B to zero, which implies

B = −∇ψ , ∇2ψ = 0 ,
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and leaves φ unconstrained. In between these two extreme cases, we must ensure
Ampère’s Equation is valid. And the Lorentz Force and the Poynting Flux must
be accommodated in the energy and force-balance equations above. We need a
closure relationship to determine σ.

For the radiation field,

n · ∇Iν = κ0(ν)Bν [T ] + σ0(ν)Jν − [κ0(ν) + σ0(ν)]Iν ,

n · ∇Iν = [κ0(ν) + σ0(ν)]

(
κ0(ν)Bν [T ] + σ0(ν)Jν

κ0(ν) + σ0(ν)
− Iν

)
,

defines the source function

Sν ≡
κ0(ν)Bν [T ] + σ0(ν)Jν

κ0(ν) + σ0(ν)
,

which accounts for isotropic thermal emission and scattering. Here we come to
an inglorious screeching halt as the right sides of the two moment equations are
just nasty integrals over frequency. Svein Rosseland proposed an ingenious way
to proceed, by writing these equations as:

∇ · F = 〈κ〉[4σRT 4 − cE] ,

∇ · P = −〈κ〉+ 〈σ〉
c

F ,

which would be exact if κ0 and σ0 were frequency-independent. Of course, they
are not, so in practice this cludge involves approximating them by some sort
of weighted frequency average and hoping for the best. Realistically, one can
also iterate to improve the approximation. Sometimes 〈χ〉 is referred to as the
Rosseland-mean opacity. The various opacity fits provided back in Act II Scene
2 apply to these frequency-averaged quantities, since, as you recall, there was
no frequency-dependences in these fits, just temperatures and densities. So
someone else has done a lot of the hard work here.

To the same level of approximation, we now solve for the frequency-integrated
intensity from

n · ∇I = [〈κ〉+ 〈σ〉]
(
〈κ〉B[T ] + 〈σ〉J
〈κ〉+ 〈σ〉

− I
)
,

(which amounts, notationally to simply dropping the ν’s) where the moments
are

J =
c

4π
E =

1

4π

∮
dn I ,

H = 4πF =
1

4π

∮
dn nI ,

and
B[T ] =

σR
π
T 4 .
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For the material, there is not much left to do except to decide upon an
equation of state, and fix the two transport coefficients, σ and �. Obviously if
we go the partial ionization route we must prepare for a sustained numerical
attack on even static and stationary equilibria. So we’ll take the ideal gas option,

p = (cp − cV )ρT ,

where cp and cV are individually constants.
Finally, there is nothing more to say about gravity than the two equations

at the very beginning of this section.

3. Planar Geometry. Part 1
Progress of any sort with the equations of radiative transfer, as you will

recall, requires us to work in planar, cylindrical (which of course, I abhor!)
or spherical geometries, where we can exploit certain symmetries to reduce
the scope of the problem. Planar problems arise when spatial variations in
one direction, usually associated with the vertical, are much more pronounced
relative to the remaining two (horizontal) directions.

Here it is almost always the case that self-gravitation should be ignored
completely. When gravity is present, it should be supplied by external agents
and must be a solution of Laplace’s Equation

∇2Φ = 0

throughout our astrophysical system. Typically

Φ = gz ,

with g a strict constant, uniquely satisfies all the necessary requirements, where,
z ≡ x3 is the vertical Cartesian coordinate. Neglecting electomagnetism and
radiation for the moment, the force-balance equation implies

∇p = −ρ∇Φ , =⇒ ρ = − dp
dΦ

,

The equation of state requires,

T = − 1

cp − cV
p
dΦ

dp
.

And finally, the energy equation tells us that

� · ∇T = constant .

From our closure work in Act II Scene 2, we have � ∝ T 5/2, for a stellar
atmosphere, so

∇T 7/2 = constant =⇒ T = (F0Φ + T
7/2
0 )2/7
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for some constant F0 which determines the constant energy flux through the
atmosphere and another constant T0 which sets the temperature at the base of
our atmosphere.

If we use these results in the equation of state, we get

dp

p
= − 1

(cp − cV )

dΦ

(F0Φ + T
7/2
0 )2/7

.

This integrates to give

p = p1 exp

(
−7

5

(F0Φ + T
7/2
0 )5/7

(cp − cV )F0

)
,

in terms of an additional integration constant, p1. Let, p0 be the pressure at
the base of our planar atmosphere (z = 0), then

p = p0 exp

(
7

5

T
5/2
0 − (F0Φ + T

7/2
0 )5/7

(cp − cV )F0

)
,

Where T0 and p0 are the temperature and pressure at the base of our atmo-
sphere and the constant F0 accounts for the constant energy flux carried upward
through the atmosphere by thermal conduction. This completes our specifica-
tion of a planar hydrostatic atmosphere! Our atmosphere is essentially isother-
mal (constant temperature) up to an altitude where

Φ = gz ≈ T
7/2
0

F0
,

and above that point the temperature begins to decline like z2/7.

Notice that at great altitudes, F0Φ� T
7/2
0 , we have

p ≈ exp

(
−7

5

g5/7

(cp − cV )F
2/7
0

z5/7

)

while near the base of our atmosphere where, F0Φ� T
7/2
0 , we have

p ≈ exp

(
− g

(cp − cV )T0
z

)
.

If we let F0 → 0, then this last expression obtains everywhere in our fully
isothermal atmosphere. So if only thermal conduction was in play, a stellar
atmosphere would be isothermal up to some point and then the pressure would
fall off more gradually as the conduction sets in.

Suppose, instead we are dealing with the Earth’s atmosphere, from the
ground up to some location where it is no longer neutral. The analogous ex-
pression for � is considerably more challenging

κ = α
p

T
+ βT + γ
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for some positive constants, α, β, γ. And the equation

� · ∇T = constant ,

does not just integrate to simply give something. Instead, we get

(α
p

T
+ βT + γ)g

dT

dΦ
= −F0 ,

where F0 is again a positive constant that sets the upward conductive energy
flux. The ground is warmed during the day by the sunlight, so the temperature
gradient is negative. We also have

dp

dΦ
= − p

(cp − cV )T
.

Dividing the two equations to eliminate Φ gives

dp

dT
=

g

(cp − cV )F0

p

T

(
α
p

T
+ βT + γ

)
,

a Pfaffian! Yeah! Which, unfortunately, is just begging for us to find an inte-
grating factor.

What we would like to have the right side of this equation be is a product
of the form f(p)g(T ). We can force this to happen if we put

p(T ) = P (T ) · T (γ + βT ) ,

for a new function P (T ). Now

d

dT
[T (γ + βT )P ] =

g

(cp − cV )F0
(γ + βT )2P (αP + 1) ,

which does the trick but at the expense of messing up the left side:

T (γ + βT )
dP

dT
+ (γ + 2βT )P =

g

(cp − cV )F0
(γ + βT )P (αP + 1) .

This, however, we can fix! Our equation is basically of the form

A(T )
dP

dT
+B(T )P = C(T )P 2 .

If we can eliminate one of the three terms then we have an exact differential.
This is accomplished by removing the linear term in P , according to

A(T ) exp

(
−
∫ T

T0

dt
B(t)

A(t)

)
d

dT

[
P exp

(∫ T

T0

dt
B(t)

A(t)

)]
= C(T )P 2 ,

and setting

Q(T ) ≡ P (T ) exp

(∫ T

T0

dt
B(t)

A(t)

)
=

p(T )

T (γ + βT )
exp

(∫ T

T0

dt
B(t)

A(t)

)
,
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so that
1

Q2

dQ

dT
=
C(T )

A(T )
exp

(
−
∫ T

T0

dt
B(t)

A(t)

)
which is an exact differential. Here, T0 is the temperature at the base of the
atmosphere (z = 0).

The first set of integrations are elementary,

exp

(∫ T

T0

dt
B(t)

A(t)

)
=

γ + βT

γ + βT0

(
T

T0

)1− γg
(cp−cV )F0

exp

(
βg(T0 − T )

(cp − cV )F0

)
and can be done exactly. The remaining integral for Q(T ) can also be done
exactly in terms of our good friend the Incomplete Gamma Function:

1

Q2

dQ

dT
=

αg(γ + βT0)

(cp − cV )F0T0

(
T0

T

)2− γg
(cp−cV )F0

exp

(
βg(T − T0)

(cp − cV )F0

)
,

where
Q(T0) =

p0

T0(γ + βT0)
,

in terms of the atmospheric base pressure, p0. Note the existence of a critical
energy flux given by

F0 = Fcritical ≡
γg

cp − cV
,

for which the solution behaves quite differently depending upon the energy flux
is super- or sub-critical.

Now let’s consider the opposite case in which the energy flux through the
atmosphere is carried entirely by the radiation field instead of the thermal con-
duction. This problem we have already solved in Act I Scene 4. We need a
constant radiative flux F = F0êz through our atmosphere (so that ∇ · F = 0).
The source function is the Planck Function which is also the mean intensity.
Therefore we require a solution to Milne’s Integral Equation

S(τ) = B[T (τ)] = J(τ) = Λτ [J(t)] ,

which carries the requisite energy flux, F0. This is

S(τ) = B[T (τ)] =
σR
π
T 4(τ) = J(τ) =

3

4π
F0[τ + q(τ)] ,

where q(τ) is the Hopf Function. Strictly speaking, this solution is exact if the
optical depth measured into the atmosphere from z = +∞ according to

τ(z) =

∫ ∞
z

ds 〈χ〉(s)

satisfies τ(0) ≡ τ0 →∞. We also have

K(τ) =
1

4π
F0[τ + q(∞)] , H(τ) =

1

4π
F0 .

7



The function q(τ) has to be one of the strangest objects ever encountered:
it starts out at 1/

√
3 = 0.5773... at τ = 0 and increases monotonically to

0.710446... as τ → ∞. Go figure. The temperature asymptotes to a minimum
value

T∞ =

(√
3F0

4σR

)1/4

as τ → 0 or z → ∞. It increases monotonically with increasing τ reaching a
value of

T0 =

(
3F0

4σR
[τ + q(τ)]

)1/4

at the base of our atmosphere at z = 0.
This gives us T (τ). Which is a start. The force balance equation reads

dp

dz
= −ρg +

〈χ〉
c
F0 .

Notice that both ρ and 〈χ〉 are functions of z or equivalently, τ . Obviously if
F0 is too big we can end up in a situation where the pressure wants to increase
with altitude, and a hydrostatic atmosphere is not achieveable. In any event,
the best approach is to work on the optical depth scale, where we at least know
T (τ):

dp

dτ
= −F0

c
+ g

ρ

〈χ〉
.

The term F0/c is now a constant and the remaining term is a complicated func-
tion of optical depth via its dependences upon the temperature and the density
of the material. It’s helpful at this point to replace F0 by its dependence upon
the asymptotic temperature, which is the single control parameter regarding the
radiation field at our disposal:

dp

dτ
= g

ρ

〈χ〉
− 4σRT

4
∞√

3c
.

In Scene 2 we derived four different approximations for 〈χ〉/ρ valid over
different temperature ranges. Each of the four can be expressed as

ρ

〈χ〉
=
α+ βρνTµ

1 + γTσ
=
α+ β?p

νTµ−ν

1 + γTσ

for some suitable choice of constants α, β, γ, µ, ν and σ. In the last expression
on the right we replace ρ by p and T using the equation of state, and have
rescaled β → β?. Our force balance equation now takes the form

dp

dτ
= A(T ) +B(T )pν = a(τ) + b(τ)pν ,

A(T ) =
αg

1 + γTσ
− 4σRT

4
∞√

3c
, B(T ) =

β?gT
µ−ν

1 + γTσ
,
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where A,B, a, b are known functions of their arguments. A sensible static
atmosphere in radiative equilibrium is one in which dp/dτ > 0 everywhere.
The B(T ) term is positive-definite, but the A(T ) term can go negative. If
3000K < T < 107.5K our opacity fits select α = 0 and A(T ) < 0.

For the coolest temperatures, from 1500 K to 3000 K where molecules provide
the opacity, γ = β = B = b = 0 and

dp

dτ
= αg − F0

c
, =⇒ p(τ) =

(
αg − F0

c

)
τ .

At the highest temperatures above several million degrees K, where Thomson
Scattering dominates, the exponent ν = 1 and so we have a first-order linear
equation, which is also solvable in terms of quadratures. In between, these two
extremes, a numerical integration is necessary. For Kramers, ν = −1, and the
equation is equivalent to Abel’s Equation of the Second Kind. And for H−,
ν = −1/2. With p(τ), ρ(τ) and T (τ) now in hand (to varying degrees), the final
step is to assign an altitude z to a given τ by integrating

dτ

dz
= 〈χ〉(τ) , z =

∫ τ0

τ

dt
1

〈χ〉(t)
.

So much for the lower portions of a stellar atmosphere. How about the
Earth’s atmosphere? As you spend a considerable fraction of your time living
at the base of this atmosphere, you can appreciate some of the subtleties here. At
visible wavelengths, the equivalent τ0 is very very small and the source function
is entirely due to scattering during the daytime. This can be corroborated
by walking out into the dark at night to see how much the Planck Function
contributes to the visible light. At ultraviolet and most infrared wavelengths,
τ0 is now very much greater than unity. In the former case the Planck Function
is again negligible (it is all scattered sunlight), while in the latter case the Planck
Function is the principal source of photons. The Earth’s surface also plays a
significant role at visible and infrared wavelengths.

Of course, if we are after the exact solution, then we have to retain the
Planck Function at all wavelengths, even though its contributions may be min-
imal. This realization, when translated to the equivalent stellar atmosphere
problem (where τ0 � 1) in part helps to motivate why the Hopf Function has
such delicate movement between τ = 0 and τ � 1—it is taking account of the in-
consequential contributions of the source function at very small optical depths in
the atmosphere! For visible light in the Earth’s atmosphere, it is all Hopf Func-
tion, so to speak, as far as thermal emission from the atmosphere is concerned.
So if you want to be exact, the radiative equilibrium solution is a complete dis-
aster. But if you want to be practical, then it is fairly straightforward—except
in the immediate vicinity of µ = 0—can you explain why?

We’ll leave it to you to explore these separate cases in greater detail, with
two final remarks. First, there is a narrow window around 10 microns where τ0
plummets from huge to tiny values, and this is how the Earth manages to cool
itself. Both carbon dioxide and methane impinge on this window and so the crux
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of human impacts on climate change hinges upon this radiative transfer problem!
Second, Rosseland mean opacities are pointless for the Earth’s atmosphere.

4. Planar Geometry. Part 2
Let’s add the electromagnetic fields into the mix. If you spend some time

musing over the time-independent Maxwell’s Equations supplemented by Ohm’s
Law, you eventually come around to appreciate that barring some really con-
trived situation (and we will in fact discuss such a contrivance later in this
section) we have to insist that σ →∞ and E→ 0 if we also require that u = 0.
Finite values of σ invariably convert electromagnetic energy to internal thermal
energy of the material and this is prohibited by ∂/∂t ≡ 0.

The energy equation is therefore unaffected. The force-balance equation
then becomes

dp

dz
= −ρg +

〈χ〉
c
F0 +

1

4π
(∇×B)×B ,

supplemented by the last Maxwell Equation,

∇ ·B = 0 ,

left standing! In keeping with our planar geometry philosophy, which is that
0 ≈ ∂/∂x, ∂/∂y � ∂/∂z, we require that

1

4π
(∇×B)×B = L(z)êz ,

for some L(z). If L(z) 6= 0, then both B and ∇×B can have no component in
the vertical (êz) direction. Finally, recall that the electric current density is

J =
c

4π
∇×B .

Let’s dispense with the L(z) ≡ 0 case first. Since the magnetic field now
has no effect on the energy and the force-balance equation, clearly everything
we did in the previous section remains valid here. The most general solution is
the so-called force-free field:

∇×B = α(x)B , B · ∇α = 0 .

for some function α(x). The second equation tells us that this function α must
be constant along a magnetic field line. The choice α ≡ 0 provides the potential
magnetic field,

B = −∇ψ , ∇2ψ = 0 .

This magnetic field can have arbitrarily-sized horizontal variations, but, all the
other thermodynamic variables are plane-parallel. The choice α = α0, a non-
zero constant, corresponds to the so-called constant-α force-free field. The re-
maining possibilities are called non-linear force-free fields. The mathematical
difficulties encountered in obtaining these fields increase dramatically with the
progression from α equals zero, to constant, to full function of position.
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For L(z) 6= 0, we can take

B(z) = B1(z)êx +B2(z)êy ,

for arbitrary functions B1(z) annd B2(z), which gives

dp

dz
= −ρg +

〈χ〉
c
F0 −

1

8π
∇|B|2 .

The third term on the right side of this equation is equivalent to a magnetic
pressure. It can obviously have either sign, and therefore it can help to support
the material against the downward pull of gravity or it can push down on the
material like an additional pseudo-gravitational force. Given our discussion of
the tensor virial equations in Act II, in the former case, the material weighs the
magnetic field down and prevents it from wanting to expand and escape off to
z → ∞. In so far as the two Bi(z) are arbitrary, the direction of the magnetic
field can change with altitude however one desires.

As there is a vast and rapidly expanding literature devoted to the construc-
tion of these magnetostatic atmospheres, I will give you the references where
you can find out more, and I will instead end this section with a pedagogical
discussion.

Up to this point, we have found RMHD equilibria (in planar geometry)
which satsify both the energy and the force-balance equations. For a variety of
reasons, some historical and some simply a matter of expedience, much effort
has gone into MHD (notice the absence of the “R”) equilibria where the energy
equation is largely—with a few extraordinary exceptions—ignored completely.
The force-balance equation is

∇p = −ρ∇Φ +
1

4π
(∇×B)×B .

When there is an ignorable coordinate, say x1, with ∂/∂x1 = 0 there are a
variety of means available to find analytic solutions to the resulting equations.

When there are no ignorable coordinates—which is typically the case—any
solution must have the property that in the two spatial directions perpendicular
to ∇Φ, the Lorentz Force must be the gradient of a scalar function (i.e., the
pressure). This places an additional constraint on the allowable magnetic fields
above and beyond ∇ ·B = 0. Notice, of course, that since we have tossed the
energy equation out the window, why not simply replace the scalar gas pressure
by a tensor and remove this additional constraint. That is one avenue.

Another is to ask how likely is it that all reasonable magnetic fields will sat-
isfy this constraint anyway. The answer is a resounding not very. For example,
as Boon-Chye Low has demonstrated

∇×B = ∇Φ×∇ψ + α(x)B ,

does the trick provided ψ = ψ(Φ,B · ∇Φ). In the present circumstances B ·Φ =
gBz. I know of only one other ansatz that achieves this outcome, again due to
Low,

A = A(x)ê⊥ , ê⊥ · ∇Φ = 0 .
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Hence if it is cosmically unlikely that astrophysical B arrange themselves in this
fashion, it is equally as unlikely that there are accessible MHD equilibria even
without worrying about conserving energy! As Eugene Parker has concluded,
magnetic non-equilibrium is probably the astrophysical norm!

Our second example involves the Earth’s global electric circuit and is de-
scribed in great detail by Feynman in his lectures. It begins by noting that on
fair-weather days, there is a prevailing vertical electric field of approximately
100 V/m (sigh, SI units) pointing downward at the base of our atmosphere.
The electrical conductivity σ(z) is a very strong function of altitude. At ground
level, σ(0) ≈ 10−14 Siemens per meter (the Siemen by the way is the inverse
of an Ohm, so should these two gentlemen have ever met during their lifetimes
their product would have been quite unremarkable), and it increases by 10 or-
ders of magnitudes by z1 = 100 km. The total potential difference over these
100 km is about 400,000 Volts.

There is a constant electric current density (which flows downward)

J0 = σ(z)E(z) = −10−12Amps m2 .

As the radius of the Earth is R⊕ = 6.378... × 106 m, we have a total of 511
Amps flowing through the atmosphere into the ground, and the total resistance
between the ground and z1 is 780 Ohms:

780 Ohms =

∫ z1

0

dz

σ(z)
.

So, our atmosphere is a giant leaky capacitor! Of course, what keeps this whole
thing from discharging and being a time-dependent problem are thunderstorms,
particularly in the tropics, which although sporadic and intermittent, on average
drive an equal and opposite net current of 511 Amps in the other direction
through lightning discharges! As Feynman points out, since the South Pacific
is the most popular place for thunderstorms during the late afternoon, there
is a daily variation in the fair weather current, and therefore the ground level
electric field, on the order of ≈ 10 %.

We can do a little more than Feynman. Since the electric field is

E =
J0

σ(z)
êz

there must also be an associated magnetic field since

c∇×B = 4πJ0êz = c

(
∂B2

∂x1
− ∂B1

∂x2

)
êz .

And the electric charge density is

δ(z) = − J0

4πσ2(z)

dσ

dz
.
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So, the force-balance equation is

0 =

[
−dp
dz
− ρg +

J2
0

8π

d

dz

(
1

σ2(z)

)]
êz +

1

8π
∇
(
|B|2

)
.

The last term on the left is problematic in that it is perpendicular to gravity.
But on the other hand, it does carry a 1/c2 factor so how important can this
be in practice? From a force-balance perspective, not very, but from an energy
equation perspective, mission-critical, because

∇ · S = ∇ ·
( c

4π
E×B

)
= −J ·E = − J2

0

σ(z)
,

and the Poynting Flux has a factor of c in the numerator. So our energy equation
reads:

d

dz

(
κ(p, T )

dT

dz

)
=

J2
0

σ(z)
,

where
κ = α

p

T
+ βT + γ .

In the Exercises I provide you with actual values for my rough fits for α, β, γ, but
the bottom line is that the 511 Amps flowing through the entire atmosphere of
the Earth—which by the way has a mass of about 5×1018 kg—the Joule heating
on the right side of this equation is absolutely pitiful compared to anything else
we might have overlooked.

5. Spherical Geometry
Now we have

1

r2

d

dr

(
r2 dΦ

dr

)
= 4πGρ(r) ,

which adds a fair degree more complication to everything than one might have
guessed ab initio. On the other hand, the substitution

r =
1

ζ

has the salubrious effect of almost turning the spherical geometry equations into
the planar geometry equations with the association z ↔ ζ. To wit,

d2Φ

dζ2
=

4πG

ζ4
ρ(ζ−1) versus

d2Φ

dz2
= 4πGρ(z) ,

the energy equation is

κ
dT

dζ
+

1

ζ2
F = constant versus − κdT

dz
+ F = constant ,

and for force-balance we have (either way)

dp

dΦ
+ ρ =

〈χ〉
c|∇Φ|

F .
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Indeed, if we omit the radiation field and self-gravity, the correspondence is
exact! Exact, except for one minor, and as it turns out, terribly important,
detail. The outer r →∞ part of our atmosphere is now in the neighborhood of
ζ = 0, and the base of our atmosphere is someplace way out in the vicinity of
ζ � 1.

All the solutions we derived in §3 for thermal conduction and externally-
supplied gravity can be brought over with the simple replacement z → 1/r.
However, fitting boundary conditions now turns out to be a serious headache.
In particular, it is very hard to avoid having a finite pressure as r → ∞. The
only situation in which this can be achieved is for air in the Earth’s atmosphere,
but admittedly this involves assuming my oddball fit to the thermal conductivity
works in the limit of zero temperature, which it decidedly does not! Precisely
such issues are what motivated Parker to think about dropping the u = 0
assumption and looking for steady (∂/∂t ≡ 0) winds from stars.

In any case, we now get to work with self-gravity in a meaningful way!
Perhaps the simplest of all possible scenarios is an isothermal self-gravitating
sphere. The energy equation is trivially satisfied. The force-balance equation
integrates to give

p = p0 exp

(
− Φ

(cp − cv)T0

)
in terms of two integration constants, T0 and p0. The Poisson Equation is now

d2Φ

dζ2
= − 4πG

(cp − cV )T0
ζ−4 exp

(
− Φ

(cp − cv)T0

)
,

or

ξ4 d
2Ψ

dξ2
+ eΨ = 0

in dimensionless form. And that is the end of the line as far as analytic results
are concerned. Period. Game over.

The (numerically generated) solutions to this equation are called Bonnor-
Ebert Spheres. For the Bonnor-Ebert Sphere, the density can be crudely fit
by

ρ(r) ≈ ρ0

1 + αr2

and so both the density and the pressure fall-off as r−2. Here, the central
density ρ0, like the temperature T0, is a control parameter and α(ρ0, T0) is
determined by fitting the numerical solution. The gravitational potential grows
with r like log r, consistent with the fact that as r → ∞, the Bonnor-Ebert
Sphere contains an infinite amount of mass! For this reason we do not have
the issue with a finite pressure at infinity that we encountered above. There is
however an enclosed mass beyond which the Bonnor-Ebert Sphere is unstable
to gravitational collapse called, unimaginatively, the Bonnor-Ebert Mass:

MBE = 3.77M�

(
2.3

µ

)3/2(
T0

1 deg K

)3/2(
N0

1 cm−3

)−1/2

,
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where µ is the mean molecular weight of the gas, and N0 is the number density
at r = 0.

By “unstable” we have in mind the following. Suppose we have a Bonnor-
Ebert Sphere with central density ρ0 and uniform temperature T0. At some
radius r, we shrink the interior just slightly by an amount dr and ask for the
unique Bonner-Ebert Sphere which encloses the same amount of mass at the
same temperature T0 but now at a central density which is slightly greater by
an amount dρ0. This solution will have a slightly different density/pressure
at the radius r where we have enforced the slight shrinkage. If the change in
pressure is positive then the sphere is stable (it pushes back at us when we try
to compress it), if the change is negative then we say it is unstable.

So much for self-gravity. Everything else we may wish to do here must
eventually come down at least to the numerical integration of a nonlinear ODE.
This to my way of thinking is fairly disappointing. On the other hand, it
probably has to end up this way because, ultimately, we are actually building
entire stars with these equations (albeit spherically-symmetric, static and non-
rotating ones, to be sure) and how easy should that actually be?

Rarely, the mathematics sometimes is kind to us. If we go back to

dp

dΦ
+ ρ = 0 ,

and instead of Bonnor-Ebert with p ∝ ρ we take p ∝ ρ1+1/n, several things
happen. First, of course, we do serious damage to the energy equation, which we
shall have to patch up somehow! Second, the pressure, density and temperature
are now powers of the gravitational potential

p = p0Φn+1 , ρ = ρ0Φn , T = T0Φ .

Third, in dimensionless form, the Poisson Equation is now the Lane-Emden
Equation:

ξ4 d
2Ψ

dξ2
+ Ψn = 0 .

Although this looks for all intents and purposes as bad as the Bonnor-Ebert
result, should we be fortunate enough to select n = 0, 1, 5 then this equation
can be integrated exactly. Bonnor-Ebert in some sense corresponds to the limit
n→∞. Just for the record, the solutions are

Ψ0 = 1− 1

6ξ2
,

Ψ1 = ξ sin
1

ξ
,

Ψ5 =

(
1 +

1

3ξ2

)−1/2

.
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A particularly fascinating aspect of nonlinear ODEs is that uniqueness of solu-
tions is not a given. For example Ψ5 has a bizarre sibling (better a half-brother
or half-sister):

Ψ“5” =
ξ1/2 sin[log ξ−1/2]

3− 2 sin2[log ξ−1/2]
,

which does not fit the bill because of its outrageous behavior, particularly as
ξ →∞ or r → 0.

It remains to say something, albeit very little in fact, about radiative transfer
in spherical geometry. The Appendix D of Act I Scene 4 actually goes a long
way in setting the stage and indicating the general lines along which such an
endeavor must proceed. I will not bother to belabor those points again here.

6. Summary
We have used the tools we developed in Acts I and II to investigate the

behavior of various types of equilibria where radiation, gravity and electro-
magnetic fields all play a role. We only scratched the surface. Hopefully in
reading through this Scene you paused several times to imagine ways in which
you could improve upon the treatment and develop a more realistic equilibrium
state. Have at it! Don’t suppress your imagination.

Once you have an equilibrium of any sort, it is useful to ask if it is stable. We
raised the issue in passing in our discussion of the Bonnor-Ebert Spheres. Much
more can be said about stability analyses. Unstable equilibria are fairly useless
in the sense that they can never be realized for any sensible extent of time and
so the universe does not waste much effort on them. Neither should we, except
in so far as they may be of pedagogical value. Stable equilibria often support
a variety of small-amplitude disturbances collectively referred to as waves or
oscillations.

The next step is to look for RMHD equilibria that possess steady flows!

7. Exercises

Exercise 1: WHY IS IT −55 C AT 30,000 FEET?
If you do much flying at all, you are well aware that the temperature drops
rapidly with altitude and that it is pretty chilly outside at cruising flight lev-
els. Does the solution of the thermal conduction problem for our plane-parallel
atmosphere get the temperature right at 30,000 feet?
(A) For the constants α, β, γ in the expression

κ = α
p

T
+ βT + γ

I used a website called The Engineering Toolbox. They plot κ in mW/m/deg K
(that’s milliWatts per meter per degree Kelvin) versus temperature in degrees
Celsius between −200 and +1600, for a variety of atmospheric pressures ranging
from 1 bar to 1000 bars. Don’t you just love these units? Here is the site

https://www.engineeringtoolbox.com/air-properties-viscosity-conductivity-heat-
capacity-d 1509.html
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and the plot I am using is the third down from the top of the page. (The same
information is in the fourth plot as well but now in British Thermal Units per
hour per foot per degree Farenheit—ouch!) For T in degrees Kelvin, p in units
of 1000 bar (which is almost what the pressure is at ground level), and κ in
mW/m/deg K, I get

α ≈ 16600 , β ≈ 1

20
, γ ≈ 44 .

What do you estimate these constant to be? How does the linear dependence
on pressure look to you?
(B) Starting out with a reasonable ground temperature and pressure, integrate
your way up to 30,000 feet and see what you get. If things seem slightly awry
look at (C) below.
(C) Somewhere between 30,000 and 50,000 feet altitude, depending upon your
latitude, the temperature levels off and subsequently starts to increase with
altitude. Why might that be?

Exercise 2: BONNER-EBERT WITH THERMAL CONDUCTION
If you have access to a numerical integration routine you can build your own
Spheres (name them after yourself or your favorite pet if you like) with thermal
conduction.
(A) First verify that the solution of the thermal conduction equation in spherical
geometry is

T =

(
F0

r
+ T 7/2
∞

)2/7

,

with two integration constants. One of these, F0, accounts for the outward
energy flux. Notice that at large r, Your Sphere is going to behave just like
the Bonner-Ebert Sphere! Your Sphere is unfortunately not going to be very
well-behaved as r → 0 unless we patch things up there. To do this postulate
that there is an energy source that is a non-zero constant over a tiny innermost
sphere of radius 0 ≤ r ≤ R0. The divergence of the conductive flux is equal to
this constant (not zero) in this innermost energy-generating core.
(B) Convince yourself that in this inner energy-generating core, the temperature
must behave like

T =
(
T

7/2
0 − F1r

2
)2/7

,

with two more integration constants. One is the temperature at the core of the
sphere. The other depends upon the amount of energy you are generating. By
patching this solution onto the one you found in part (A) at r = R0 you can find
a relationship between the energy generated inside this core and the conductive
energy flux that emerges as r →∞ outside of this core.
(C) Now use the force-balance equation and the equation of state to obtain

dΦ

dr
= − (cp − cV )T (r)

p(r)

dp

dr
,

and substitute this into Poisson’s Equation to obtain an equation for p(r).

17



(D) If you have access to a numerical integration routine, then apply it to the
equation you derived in part (C) to obtain your own Spheres!

Exercise 3: FINDING A HOTTER PLACE
Consider the plane-parallel radiative equilibrium where the flux F0 or equiva-
lently the asymptotic temperature T∞ is so large that you can use the fit to the
Thomson Scattering opacity

ρ

〈χ〉
=
α+ βρνTµ

1 + γTσ
=
α+ β?p

νTµ−ν

1 + γTσ

everywhere in the atmosphere. Although all of these constant are non-zero, the
saving grace is that ν = 1 and your force-balance equation

dp

dτ
= A(T ) +B(T )p = a(τ) + b(τ)p ,

can be integrated exactly.
(A) How large can F0 or T∞ be taken before dp/dτ goes negative somewhere in
the atmosphere for a specified value of the surface gravity, g? What does this
imply?

Exercise 4: DR. SIEMENS I PRESUME?
Take the exercise we carried out at the end of §4, and place it in the proper
spherical geometry. This will help if you were concerned that it was not possible
to decide how much B1 versus B2 we should take. The answer depends on just
where you are, of course, but in Montreal it would be mostly in the East-West
direction and increasing as you move southward.
(A) What sort of magnetic field is generated in a spherical shell due to a radial
current that varies as r−2 and how does this compare with the actual poloidal
magnetic field of a few Gauss generated by the Earth’s geomagnetic dynamo?
Remember that the total net current between the two concentric spherical shells
is actually zero—the 511 Amps downward distributed uniformly over the globe
has to be balanced somewhere by the return 511 Amp current due to the thun-
derstorms. You could start by distributing this return current uniformly around
the equator and then concentrate it more in the South Pacific if you want to
get really clever. So what direction does the field actually point in Montreal?
(B) On average there are 50 lightning strikes per second over the entire Earth.
Their overall average duration is about 0.2 seconds but they consist of numerous
intense bolts that last only for tens of microseconds. The peak power during
a lightning strike is about 1012 Watts and currents can be several hundred
thousand Amps. How does this square with the 511 Amp return current required
to close the global electric circuit? [Hint: What is the altitude of the a typical
thunderstorm cloud top?] If you get stuck, you might look up something about
“sprites”.
(C) Assuming the top and bottom of the spherical atmospheric shell are fairly
good conductors, estimate the amount of electromagnetic radiation produced
by a lightning stroke. [Hint: Go back to Act I Scene 3.] If you get stuck page
through Rakov & Uman [RU 1] and look up the word “sferics”.
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(D) How likely is it that Ernest Werner von Siemens and Georg Simon Ohm
actually did meet in person? Can you think of two other scientists who, when
multiplied upon meeting, would give unity? What would happen if Sir Isaac
Newton stood within a square a little over three fieet on a side? [Hint: How
many bars—or fraction of a standard atmopshere—would he represent in so
doing?]

8. Further Reading
The variation of electrical conductivity with altitude, and numerous other

fascinating things about the Earth’s global electric circuit can be found in
?[V 2] Hans Volland, Atmospheric Electrodynamics, (Berlin, DE: Springer-
Verlag; 1984), ix+205.
The discussion by Feynman is in
?[FLS 1] Richard P. Feynman, Robert B. Leighton & Matthew Sands, The
Feynman Lectures on Physics. Volume II. Mainly Electromagnetism and Matter,
(Reading, MA: Addison-Wesley Publishing Company; 1975).
Finally, because it is germane and is such an amazing compilation of information
on the topic, have a look at
[RU 1] Vladimir A. Rakov & Martin A. Uman, Lightning. Physics and Effects,
(Cambridge, UK: Cambridge University Press; 2003), x+687.

Boon-Chye Low is without doubt one of the most brilliant MHD theorists
of his, and for that matter, probably any other generation. He has pushed the
boundaries of analytic theory far beyond what was imagined to be possible. The
two fully three-dimensional MHD solutions described above are derived in
[L 6] B.C. Low, “Magnetostatic atmospheres with variations in three dimen-
sions”, Astrophysical Journal, 263, 952-69, 1982,
[L 7] B.C. Low, “Three-dimensional structures of magnetostatic atmospheres.
III. A general formulation”, Astrophysical Journal, 370, 427-34, 1991,
[N 1] T. Neukirch, “On self-consistent three-dimensional analytic solutions of
the magnetohydrostatic equations”, Astronomy & Astrophysics, 301, 628-39,
1995.
The numerous earlier references on MHD will provide lots of background on
various magnetostatic equilibria in a variety of geometries. For a careful ex-
planation of Parker’s thesis on the general lack of magnetostatic equilibria in
nature, dig into
[P 9] Eugene N. Parker, Spontaneous Current Sheets in Magnetic Fields. With
Applications to Stellar X-Rays, (New York, NY: Oxford University Press; 1994),
xiv+420.

An in-depth treatment of Bonnor-Ebert Spheres and solutions of the Lane-
Emden Equation can be obtained from
?[C 9] S. Chandrasekhar, An Introduction to the Study of Stellar Structure, (New
York, NY: Dover Publications; 1957), iii+508,
with no particular assistance from J.B. Sykes that I am aware of.

Radiative transfer (and thermal conduction) in the Earth’s atmosphere is a
good deal more complex and exciting than I have made it out to be here. To
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gain a sense of just how much more effort can go into this subject, have a glance
at Goody [G 4],
[K 5] K. Ya. Kondratyev, Radiation in the Atmosphere, (New York, NY: Aca-
demic Press; 1975), xvi+912,
[R 6] Georgii Vladimirovich Rozenberg, Twilight. A Study in Atmospheric Optics,
(New York, NY: Plenum Press; 1965), x+358 ,
[H 8] Bruce Hapke, Theory of Reflectance and Emittance Spectroscopy, (Cam-
bridge, UK: Cambridge University Press; 1993), xiii+455.
Indeed, what I have skipped over and which adds immeasurably to the com-
plexity of the issues, is the presence to varying degrees of water vapor, and its
dramatic manifestation as clouds. This is a complicated subject no matter how
one approaches it. A very nice book that complements the general development
of this Opera is:
[DD 1] Louis Dufour & Raymond Defay, Thermodynamics of Clouds, (New
York, NY: Academic Press; 1963), xiii+255.

Waves and oscillations come in both linear and nonlinear varieties and reflect
(no pun intended) their restoring forces, be they electromagnetic, gravitational,
compressibility, rotational and so forth, which support them. There is no short-
age of books on this subject. The following selection attempts to cover the range
of topics we have dealt with while at the same time maintaining elegance and
clarity of exposition.
[UOASS 1] Wasaburo Unno, Yoji Osaki, Hiroyasu Ando, Hideyuki Saio & Hi-
romoto Shibihashi, Nonradial Oscillations of Stars, 2nd Edn, (Tokyo, JP: Uni-
versity of Tokyo Press; 1989,
[C 10] Alex D.D. Craik, Wave Interactions and Fluid Flows, (Cambridge, UK:
Cambridge University Press; 1990), xii+322,
[P 10] Joseph Pedlosky, Waves in the Ocean and Atmosphere. An Introduction
to Wave Dynamics, (Berlin, DE: Springer; 2003), viii+260,
[S 10] Thomas Howard Stix, The Theory of Plasma Waves, (New York, NY:
McGraw-Hill Book Company; 1962), x+283,
[B 9] Tom Beer, Atmospheric Waves, (London, UK: Adam Hilger; 1975), xii+300,
[B 10] D.I. Blokhintsev, Acoustics of a Nonhomogeneous Moving Media, (Wash-
ington, DC: National Advisory Committee for Aeronautics; 1956), Technical
Memorandum 1399, iv+194, https://ntrs.nasa.gov/search.jsp?R=19930091111
[L 8] James Lighthill, Waves in Fluids, (Cambridge, UK: Cambridge University
Press; 1980), xv+504,
[W 3] G.B. Whitham, Linear and Nonlinear Waves, (New York, NY: John Wi-
ley & Sons; 1974), xvi+636.

How does one know that something is “Abel’s Equation of the First Kind”
and therefore one should not waste effort in looking for integrating factors?
How do we know that the Lane-Emden Equation has three (and a half-sibling)
analytic solutions, while the Bonnor-Ebert Equation has none? The answer is
that we rely on the knowledge of people who have been there and done that and
tabulated their findings. For example,
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[PZ 1] Andrei D. Polyanin & Valentin F. Zaitsev, Handbook of Exact Solutions
for Ordinary Differential Equations, (Boca Raton, FL: CRC Press; 1995), xv+707,
[S 11] P.L. Sachdev, A Compendium on Nonlinear Ordinary Differential Equations,
(New York, NY: John Wiley & Sons; 1997), xi+918,
[K 6] E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen. I.
Gewöhnliche Differentialgleichungen II. Partielle Differentialgleichungen Erster
Ordung für Eine Gesuchte Funktion, 10th Auflage/6th Auflage, (Stuttgart, DE:
B.G. Teubner; 1983), xxvi+668/xiii+243 .
While you are at it, you may as well add the following to your reference library,
because it has saved me too many times to count
[H 9] Eldon R. Hansen, A Table of Series and Products, (Englewood Cliffs, NJ:
Prentice-Hall; 1975), xviii+523.
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