
Appendix B: Mathematical Background

T.J. Bogdan
September 16, 2018

1. Introduction
Mathematics has frustrated generations of aspiring physical scientists for a

variety of reasons. I believe that it does not have to be this way.
Perhaps at the heart of this issue is that physical scientists typically want to

use mathematics to understand a real-universe problem, while mathematicians
find intrinsic beauty in the subject and could care less whether one can do any-
thing practical with it or not. G.H. Hardy’s haunting memoir A Mathematician’s
Apology, is not in fact an apology for finding the subject beautiful in its own
right, or having spent not one moment’s thought on applying it to any practical
benefit for humankind.

Ostensibly another reason for this state of affairs is that the mathematical
landscape is very curiously connected with “underground tunnels”, or “chutes
and ladders”, linking what would often appear to be very disparate intellectual
locations. It is somewhat akin to opening the door of an old wooden rustic
Biergarten in Bavaria and finding yourself surrounded by drying chilis at Georgia
O’Keefe’s ranch in Abiquiu, New Mexico.

And mathematicians who teach mathematics courses do not help physical
scientists by prefacing their remarks with indications of whether what they will
say next is useful in solving a problem, or merely beautiful in its meaning.

My goal in this Appendix is to provide you my own “Lonely Planet”—or
for those old enough among you to remember such things, “Baedeker’s”—guide
to the mathematical landscape which underlies RMHD. It’s nothing new or
revelatory. But it is personal and comes from my many years of getting lost,
over and over and over, again.

Here too, it is the journey, not the destination that counts.

2. Sets and Mappings
Almost all the mathematics that we will need can be thought of in terms

of three basic concepts: (i) sets, groups, collections, classes, organizations of
(ii) elements, objects, things, entities and (iii) the mappings, associations, rela-
tions, connections, correspondences between them—them being equivalently the
organizations or the stuff that belongs in them. I’ve used a number of different
words here to describe the individual “things”, the “organizations” they belong
to and the “connections” between them and/or the organizations of which they
are members. I’ll tend to use these various descriptors interchangeably. Rig-
orous and logical mathematical analysis usually has very precise definitions to
distinguish between what precisely is meant by these different words. This is
especially true of a set, which is a very basic mathematical construct.

A set, loosely speaking, is simply an assembly, or collection of objects, or
things, or concepts, or whatever really, which we refer to as elements. I will
try to consisently use caligraphic capital letters A,B, C, etc, to denotes sets. If
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an element, say x, belongs to a set V we write, x ∈ V. Sets by themselves are
very egalitarian, no element of a set is any better or any worse than any other
element. One way to specify a set is to list all of its elements between curly
brackets, such as

H = {red,white,blue} ,

B = {♣,♦,♠,♥} ,

A = {a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z} .

Order does not matter, only content; for example,

H = {blue,white, red}

as well.
Listing is not the only way. Indeed there are some sets for which it would be

impossible to list all their elements, for example, the set of all counting numbers,
which has a special symbol reserved for it:

N ≡ {1, 2, 3, 4, 5, · · · } .

Notice we can’t possibly list all of the elements of this set, although because
of our familiarity with such things we know that 276 is a member of this set
somewhere off in the dots.

Sometimes a set can be defined by what property or attribute its elements
share, for example

V = {a, e, i, o, u} ,

can also be written equivalently as

V = {α ∈ A | α is a vowel}

which is read as “the set of all elements α in A such that α is a vowel”. The
vertical bar is read as “such that”, the statement to the left of the bar indicates
what larger set the elements are to be selected from, and the statement on the
right of the bar provides the property the elements must have to be in the set
V. Notice that α stands for a generic element of A. This works only if someone
has provided us with a larger sample set from which to select α’s based on an
attribute.

This property-defines-set approach is fraught with several logical difficulties
such as what after all is the bigger set from which we shall select objects that
have a certain property in common. And even worse, how can we state a prop-
erty (or properties) unambiguously so there is no possible source of confusion.
This can lead to a variety of paradoxes or conundrums, such as, does the set
of all sets contain itself as a member. There are ways to straighten such things
out (by declaring that the set of all sets is not actually a set), formally at least,
but we shall set these logical issues aside and move on.

A mapping, say ϕ, can be thought of as a relationship, association, correspon-
dence or assignment that connects elements selected from one set D—which we
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refer to as the domain—to another set R—which we call the range. In general,
we express this idea by writing

ϕ : D → R ;

ϕ maps D to R. The only property that we insist a mapping must have is that a
particular element of D, say x, can be associated with one and only one element
of R. Call this element, y. This elemental association is expressed as

ϕ : x 7→ y , or ϕ(x) = y .

Therefore, we admit the possibility that many different elements of D can be
mapped to the same element of R.

It may be that D and R are in fact the same set! We have to define what it
means for two sets to be “equal”, but the correct and sensible definition is that
they must contain the same elements:

D = R ⇐⇒ (∀x, x ∈ D ⇒ x ∈ R) ∧ (∀y, y ∈ R ⇒ y ∈ D) ,

which reads “D is identical to R if and only if, for every x in D, x is also in R,
and, for every y in R, y is also in D”.

Another way to express the same idea is to think in terms of subsets. The
vowel set, V, is obviously a subset of the entire alphabet A, but the converse is
not true. Symbolically, we write

V ⊂ A .

Another way to state this is that every element in V is also in A. Obviously

A ⊂ A .

Two sets are therefore equal if each is a subset of the other

D = R ⇐⇒ (D ⊂ R) ∧ (R ⊂ D) .

These last two equations give a glimpse of the syntax of mathematical logic.
For example, we read ⇐⇒ as “if and only if”, meaning the implication works
in both directions. Whereas ⇒ works only in one direction, and is read as
“implies”—the converse implication need not (although it may) be true. The
symbol ∧ is the logical “and”—while ∨ is the logical “or”. Finally, ∀ means “for
every”.

Although mappings from D → R have access to all of the elements of R they
may not in fact use all of R—the part, or subset, of R that they use is called the
image of D in R under ϕ. Mappings that use all of R are said to be surjective
or are a surjection. And mappings that associate one, and only one, element
of R with an element of D, are said to be injective, or an injection. Mappings
that possess both of these properties are particularly important, and are called
bijections. They are also said to be one-to-one and onto. A bijection ϕ has the
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very imporant property that its inverse, say ϕ−1 : R → D, or ϕ−1(y) = x is
also a bijection. That is

ϕ : x 7→ y , ⇐⇒ ϕ−1 : y 7→ x .

Finally, notice, that any mapping ϕ : D → R , also defines a set! It can be
thought of as the set, say P, of elements that are all the ordered pairs (x, y),
where x ∈ D and y ∈ R, and for which ϕ(x) = y [and ϕ−1(y) = x, if ϕ is a
bijection].

Two sets are said to be equivalent if there is a bijection that connects them.
Thus the set of colors H and the set

N3 = {1, 2, 3} ⊂ N

are equivalent, although they certainly are not equal. An equivalence is an
example of a mathematical construct called a relationship. The sets H and N3

are also equivalent to the set of three fruits

F = {banana, apple, orange} ,

but they are not equivalent to B,V or A
Unlike mappings, relationships can connect one object, say the set of three

colors, to more than one object, the set of three fruits and the set containing
the first three counting integers. The collection of all objects that are equiva-
lent form an equivalence class. Obviously the property that distinguishes this
equivalence class is that each set contains just three distinct objects. So here
is a first instance where mathematicians choose to make a distinction between
“mapping” and “relation”, and “set” and “class”.

This notion of equivalence classes, allows us to define the size, or more
precisely, the cardinality of a set as follows. For sets with a finite number of
elements, say m, there is an obvious bijection from the set to Nm, and so the
cardinality of the set, or the cardinal number of the set, is just m. Sets that are
not finite, like N for example, are said to be infinte. The cardinal number of a
set is infinite (i.e., not finite, or transfinite) if there is a bijection from the set
to a proper subset of itself. A proper subset is a subset that is not identical to
the set itself—the vowels are a proper subset of the alphabet, but the alphabet
is not a proper subset of itself.

To be concrete, consider again the set of counting numbers

N = {1, 2, 3, · · · }

and a proper subset that consists only of the even numbers

E = {2, 4, 6, · · · } .

Then the “doubling” mapping ϕ : n 7→ 2n is a bijection from N to E, and
obviously E ⊂ N. Therefore, both N and E are equivalent (but certainly not
equal), and they belong to the same equivalence class, and have the same non-
finite cardinality. We denote this by the first transfinite cardinal number ℵ0 or
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equvalently d for denumerable. In otherword, we can “count” or sequentially
write out this first infinity, although we cannot actually ever get to the end of
the list, we always know what comes next.

The cardinality (or size) of the set of all integers

Z = {0,±1,±2,±3, · · · } ,

and the set of all rational numbers Q is also ℵ0. This is because one can find
bijections between both of these sets and N. (Try it!)

In a certain sense, ℵ0 is the smallest “infinity”—sometimes called the count-
able infinity, because we can at least “list” a countable infinites worth of ele-
ments, as we have above. Are there “bigger” infinities? Yes, indeed, in fact,
very many of them!

To explore this a little further we take a slight detour. From the set H
of colors we can construct a bigger set which contains as its elements all the
possible distinct subsets of H. Specifically, this set is

{{}, {red}, {white}, {blue}, {red,white}, {red,blue}, {blue,white}, {red,white,blue}} .

The curious set
Ø ≡ {}

which contains no elements whatsoever is called the empty set and it has the
property that it is a subset of every set you can think of (including itself). If you
count them up, you will see that the cardinality of all the subsets of H is 8 =
23, where the cardinality of H is 3. The cardinality of the set of all card suits B
is 4, and if you make a list of all the subsets of B you will find there are 24 = 16
of them. All the subsets of the vowels leads to 25 = 32, and you definitely do
not want to try to list all the 226 = 67, 108, 864 subsets of the alphabet.

In every case, we see that the set of all subsets of a given set has a greater
cardinal number than the original set. Therefore the set of all subsets of N is
undoubtedly bigger that N and its cardinality can be represented by 2ℵ0 which
is also written as c for continuum. The set of all real numbers, which we denote
by R, and which we cannot possibly list between curly brackets, is equivalent to
the set of all subsets of N and so it is a bigger infinity than the size of N. The
set of all subsets of R, if you can wrap your mind around that, must be a bigger
infinity still, and so there is an endless parade of bigger and bigger transfinite
cardinal numbers.

Besides determining how big a set is, the next very useful thing you can do
is to order a set and remove the egalitarianism. Because there is an obvious
bijection for all sets of finite cardinality to the set Nm, all finite sets can be
ordered in any number of different ways. And, of course, we know from prac-
tical experience that the sets Z and R can be ordered because we know things
like 2.78654... > −56.67877... are true. It must be said that there is a lot of
mathematical rigor that underlies a statement like this which we commonly take
for granted. It rests upon the concept of Z having a proper subset of positive
integers, say Z+, a proper subset of negative integers, say Z−, and one lonely
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identity element, 0, in a proper subset by itself. Then we can be precise and
say things like

n > m ⇐⇒ n−m ∈ Z+ .

Set’s, like Z can not only be ordered, but some can be well-ordered—which
means that any subset of Z+ has a least or smallest element.

Some additional useful set-theoretic concepts involve binary operations on
sets themselves. The intersection of two sets, denoted

⋂
, takes two sets, A and

B and makes a third set, say C from them according to

C = A
⋂
B = {x|x ∈ A ∧ x ∈ B} ,

or in otherwords, it is the set of all elements x that are in A and in B as well.
Clearly C must be a subset of both A and B,

C = A
⋂
B =⇒ C ⊂ B ∧ C ⊂ A .

Notice that the arrow of implication goes only in one direction. That is because
a mutual subset, C could be smaller than the full intersection of A and B. If
there is no element x that is in both A and B we write

Ø = A
⋂
B,

and say that A and B are disjoint. Thus, for logical consistency, we require that
the empty set is a subset of every set, including A and B.

If intersections are in some sense “exclusive”, unions, denoted
⋃

, are their
“inclusive” counterpart. We say

D = A
⋃
B = {x|x ∈ A ∨ x ∈ B} .

Notice that all we have done relative to intersection is flipped the “and” for an
“or”. To be in the union of two sets, all you need is to be in one or the other of
the sets (you can also be in both). Thus

D = A
⋃
B =⇒ A ⊂ D ∧ B ⊂ D .

Again, the implication goes one way because we could have a D that is bigger
than the union of A and B. The intersection of two sets is also a subset of the
union of two sets.

Order does not matter in intersections and unions of sets, and indeed, we
can form the intersections and unions of many sets sequentially, where again
the order in which we pair them up does not matter.

The final concept is the idea of the complement of a subset. Unfortunately
there is no standard notation for this. To make matters clear, consider the set
of consonants,

C = {b, c, d, f, g, h, j, k, l,m, n, p, q, r, s, t, v, w, x, y, z} ,
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C = {α ∈ A | α is a consonant} ,

C = {α ∈ A | α is not a vowel} .

We say C, the consonants, are the complement of the vowels V in the bigger set
of the entire alphabet A, and we write

C = A\V .

and it must also be true that
V = A\C .

The intersection of a proper subset (of some bigger set) and its complement
is the empty set. The union of a proper subset (of some bigger set) and its
complement is the bigger set itself. A collection of disjoint proper subsets of
some bigger set whose union is the bigger set itself, is called a partition of the
bigger set. For example, the set (of two sets)

{C,V}

is a partition of the alphabet A. And all of the following sets (of sets) are
different partitions of the colors H

{{red}, {white}, {blue}} ,

{{red}, {blue,white}} ,

{{white}, {red,blue}} .

(Are there any others?) Therefore, any given set, likeA, can have many different
partitions, but fewer partitions than individual subsets.

3. Algebraic Structures
Another direction you can go is to begin to introduce structure on a set.

Typical of algebraic structure is a binary operation that acts upon ordered pairs
of elements of a set and associates with each orderd pair a third element, which
is also in the set. We’ve used the word “operation” here to distinguish it from
mappings which we typically think of connecting a single element from a set
with another element in that, or perhaps some other, set.

There are various properties, or laws, that one would like such a binary
operation—denoted here generically by ◦—to possess. In order of increasing
sophistication, we can list the following familiar laws:

I . Closure Law : ∀ x, y ∈ V, x ◦ y ∈ V .

II . Associative Law : ∀ x, y, z ∈ V, x ◦ (y ◦ z) = (x ◦ y) ◦ z .

III . Identity : ∃ e◦ ∈ V | ∀x ∈ V, e◦ ◦ x = x ◦ e◦ = x .

IV . Inverse : ∀ x ∈ V, ∃ x◦ ∈ V | x ◦ x◦ = x◦ ◦ x = e◦ .

V . Commutative Law : ∀ x, y ∈ V, x ◦ y = y ◦ x .
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Read the symbol ∃ as “there exists”, and as before | as “such that”. A set which
is endowed with a single binary operation satisfying the first four of these laws
is called a group. And if the fifth law is also valid, it is called a commutative, or
an Abelian group. You might take some scrap paper and convince yourself that
R is a group under both addition and multiplication separately, and that Z is a
group under addition only but not multiplication.

A set that is equipped with a single binary operation that is only closed is
called a magma. There is not too much you can do, or say, about magma’s
to be honest—you have to introduce a little more sturcture before you get
to something that is rich in properties and behaviors. An associative magma
is called a semi-group. A semi-group that comes equipped with an identity
element is a monoid. A monoid in which each element has an (unique) inverse
is a group.

The additional stucture imposed upon a set by the group properties (Laws I.-
IV.) proves to be very powerful. There is one and only one group which contains
one, two and three elements, respectively. There are two distinct groups with
four elements, and again, only one group with five elements. All of these groups
have the additional, but by no means necessary property that the order of
multiplication is irrelevant, i.e., Law V.: x ◦ y = y ◦x holds true. When we look
at groups with six elements we find our first so-called non-Abelian group, where
x ◦ y 6= y ◦ x.

Groups with finite cardinality are often associated with geometric symme-
tries. For example the dihedral group D4 which has 2 × 4 = 8 elements is
equivalent to the 4 rotations by 90 degrees and the 4 reflections that are all the
possible transformations which map a square to a square in two dimensions.
Groups with transfinite cardinality are also very important and can be related,
as we shall see, to the continuous symmetries of space-time. These groups are
also called Lie Groups.

Although every group, regarded as a set, has many subsets—in fact 2n of
them if n is the cardinal number of the group—not every subset is in fact a
subgroup. A subgroup, say U of a group V is a proper subset of V which is a
group in its own right—that is, it satisfies the Laws I.-IV. on its own with no
help necessary from the rest of V. This means the identity element must be in
every subgroup of a larger group. Many groups have no subgroups at all, except
the trivial subgroup: the set consisting only of the identity element by itself.
For example, groups whose cardinal number is a prime number can have no
subgroups. Therefore, if we found some way to endow the color hues H, or the
vowels with a group structure, they could have no subgroups. The card suits,
the consonants and the alphabet are not prevented from haveng subgroups by
this theorem.

This raises the interesting question of precisely how one might endow these
sets with a group structure, and how many different ways there might be to do
so. Both questions have interesting answers. For every set of finite cardinality
we can find a way to construct a group from it. And for some values of the
cardinality (but, interestingly, not all) there can be more than one way to impose
this algebraic structure!
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The cyclic groups of order n, sometimes denoted by Zn, provide a construc-
tive answer to the first question. One useful representation for Zn is

Zn = {0, 1, 2, · · · , n− 3, n− 2, n− 1} .

The usual addition of integers provides our binary operation, but with one
interesting twist—whenever addition gives us a number that is bigger than n−1,
i.e., that appears not to be in our group, we subtract off n to return it to the
set. To be concrete consider the case n = 4, and

Z4 = {0, 1, 2, 3} .

To ensure this is a group we require, 1+3=2+2=0, and 2+3=1, instead of 4 and
5, which are not in our group. This is an Abelian group. The identity is 0, and
the inverse of 1 is 3, and 2 is its own inverse. Indeed, Z4 contains a non trivial
subgroup,

{0, 2} ⊂ Z4 .

Notice that this subgroup “behaves” in exactly the same fashion as the cyclic
group

Z2 = {0, 1}

which uses the rule 1+1=0 in place of 1+1=2.
The term “behaves” can be given a precise mathematical meaning—iso-

morphic—which we shall get to presently. Another set of 4 elements that “be-
haves” in exactly the same fashon as Z4 is

{1, a, a2, a3}

where our binary operation is now multiplication. Here aa = a2 and aaa = a3

and to make this a group we require aaaa = a4 = 1. You can verify that
a =

√
−1, will do the trick, so a2 = −1 and a3 = −

√
−1. Note the structure

preserving correspondence, or isomorphism,

0↔ 1, 1↔ a, 2↔ a2, 3↔ a3 ,

between our two representations of the cyclic group Z4. So, for all intents and
purposes

{1, a, a2, a3}

is just another representation of Z4.
However, the so-called Klein 4-group,

{1, a, b, ab}

with the property aa = a2 = bb = b2 = 1 is also a group, but it does not behave
like Z4 at all. The group’s fourth element is the product of a and b, which can
be written either as ab or ba, since this too is an Abelian group. Therefore
abab = (ab)2 = abba = aa = 1. Each element of the group that is not the
identity is its own inverse, and the product of any two non-identity elements is
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the third non-identity element. The Klein group can also be throught of as the
dihedral group of order 2, D2. The general dihedral group is

Dn = {1, a, a2, an−1, b, ba, ba2, ban−1} ,

where an = b2 = 1 and aba = b.
There are no other distinct groups of cardinal number 4, and the cyclic group

of order 5 is the only group with cardinal number 5. At cardinal number of 6,
we again have one more group in addition to the cyclic group of order 6, and
this is the first non-Abelian group, the dihedral group of order 3:

D3 = {1, a, a2, b, ab, ba} ,

where a3 = b2 = 1, and aba = b. One might be tempted to guess that when n is
not a prime, there are two distinct groups, but this is not true. For n = 8 and
12, there are 5 distinct groups, and only the cyclic group for n = 15. Thereafter
all rhyme or reason seems to go out the window as there are 14 distinct groups
for n = 16.

Much has been written about, and indeed much can be deduced about the
properties of groups, which we will not bother to repeat here. From this funda-
mental concept of a set-as-an-algebraic-group there are basically two directions
one can go. One can add additional sets into the picture—which we do in the
next section—or one can introduce additional binary operations, which we do
below.

If we now introduce a second independent binary operation—say �—that
maps pairs of elements from the group to another element in the group we
have more complicated alegbraic stuctures called rings, integral domains, and
(algebraic, as opposed to gravitational, electromagnetic, or radiation) fields. A
field is a set V equipped with two binary operations—usually called addition (◦)
and multiplication (�)—such that Laws I.-V. are satisfied for each operation
separately (the identity element for multiplication e� 6= e◦), as well as the two
additional laws

VI . Distributive Law : ∀ x, y, z ∈ V, x� (y ◦ z) = (x� y) ◦ (x� z) ,

VII . Cancellation Law : ∀ x, y ∈ V, x� y = e◦ ⇐⇒ x = e◦ ∧ y = e◦.

Usually, we simplify the notation by taking ◦ = + and dropping � entirely in
favor of juxtaposition. The identities are then usually abbreviated as e◦ = “0”,
and e� = “1”, so we have the rational and real numbers in mind as the paradigm
of an algebraic field.

Bijections that preserve the algebraic structure of two different sets are in-
credibly important and are given a special name: isomorphisms. Let ϕ : D → R
be an isomorphism between two algebraic fields, then

a+ b = c in D ⇐⇒ ϕ(a) + ϕ(b) = ϕ(c) in R ,

ab = c in D ⇐⇒ ϕ(a)ϕ(b) = ϕ(c) in R ,
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and so forth. An isomorphism from an alegbraic structure to itself is called an
automorphism. The identity mapping ϕ(a) = a, is the trivial automorphism.
Nontrivial automorphisms, when they exist, are related to the symmetries of
the algebraic structure and play a very important role.

When an isomorphism exists between two algebraic structures they can be
regarded as equivalent. Take, for example our cyclic group,

Z3 = {0, 1, 2} .

This is an algebraic (number) field if we treat addition and multiplication in
the usual fashion, except whenever we end up with a “3” as the result of a
calculation, we replace it with “0”, and a “4” is replaced by a “1”. Because
there are bijections from this algebraic number field to the set of three colors
and three fruits, we can use the algebra of Z3 to endow an algebraic structure
to the set of colors or fruits and render the bijection an isomorphism. In other
words, we can build a logically consistent structure (indeed more than one of
them) where it makes sense to say what the additive inverse of a banana is!
Some authors will choose to write this algebraic field as

Z3 = {0, 1, 2} ,

to alert the reader that the usual laws of addition and multiplication have to
be modified by casting out multiples of “3”. This is also known as modular
arithmetic, thus

2 + 2 = 1 mod 3

is equivalent to
2 + 2 = 1 .

Lest you think that all of this is fairly empty in the sense that anything can
be made into anything, consider the next bigger cyclic group

Z4 = {0, 1, 2, 3} .

Given our success with its smaller friend, we might try to make this into a field
by the usual replacement trick of mod 4 arithmetic:

4→ 0 , 5→ 1, and 6→ 2 .

This does not a field make, however, because 2 · 2 = 0 which violates the can-
cellation law (however, it is still a group with respect to modular addition and
multiplication separately). One of two alternatives must be true: either (i) there
is no way to make Z4 into a field by any means, or (ii) a different arithmetic
than the one we selected above is required to make a field with just 4 elements.
There is a very beautiful general result here that tells us that Zn can be made
into an algebraic field if and only if n is any prime number raised to an integer
power. If that integer power is 1, like n = 3 for example, the standard trick we
used with Z3 will work for both addition and multiplication. If that power is not
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1, as in n = 4 = 22, then alternative (ii) is true, but we must find a different
arithmetic than the standard trick. You might amuse yourself by selecting 0
and 1 as the (additive and multiplicative) identity elements and replacing 2 by
a generic symbol a. Now, convince yourself that 3 has to be the multiplicative
inverse of a, call it a−1 6= a. Then use all the laws that govern a field to deter-
mine what 1 +a, 1+a−1, and a+a−1 equal. Finally, notice that there was only
one way to endow Z4 with a field structure, and because 6 = 2 · 3, no matter
how hard you try you will not succeed in making Z6 into a field! Therefore, the
alphabet A cannot be made into an algebraic field, and it is pointless to enquire
as to the multiplicative inverse of a consonant (but not a vowel, because Z5 can
be made into a algebraic field).

4. Vector Spaces
We can build even more complicated and useful mathematical structures by

combining two sets with four binary operations. A Vector space, V(F), over an
algrebraic field F is just such a object.

The vector space itself, is the set V, whose elements are called vectors, which
we will denote in boldface— e.g., x ∈ V. There is a single binary operation
defined on V, called vector addition, +, which satisfies the five laws of a group.
This means there is an identity element for addition, which we denote by 0, and
each vector x has an additive inverse, which we will write as −x.

In addition to V, we have an auxiliary set of scalars F which is usually the
field of real numbers R, but which can in fact be any (algebraic) field. It comes
equipped with two more binary operations, being the usual scalar addition and
scalar multiplication. In so far as scalar addition is a different operation than
vector addition, if one were being very meticulous, it might be useful to use
something different than the “+” sign to denote this operation. To distinguish
the vectors from the scalars, we’ll use lower case Greek letters for the scalars.
The fourth and final binary operation is different from what we have seen before,
it involves multiplying a scalar times a vector resulting in another vector. Again,
if we were being careful, we would avoid using simple juxtaposition for this
binary operation since this also stands for multiplication of scalars by scalars.
However, these distinctions become moot if we require

∀ α ∈ F,∀ x ∈ V, αx = xα ∈ V ,

∀ α, β ∈ F,∀ x,y ∈ V, α(x + βy) = αx + α(βy) = αx + (αβ)y ,

∀ α, β ∈ F,∀ x,y ∈ V, (α+ β)(x + y) = αx + βx + αy + βy .

Notice that all four binary operations are at play in these equations but it
is sufficient to get by with just one symbol (+) and juxtaposition in practice
without any confusion or ambiguity.

Vector spaces that possess yet an additional (fifth) binary operation, akin
to vector multiplication, are called algebras, and are in some sense the pinnacle
of algebraic structure. The very name vector gives the geometrical sense of the
elements being associated with points in some space of a given dimension. And
this is certainly one incarnation of a vector space. But thanks to isomorphisms,
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we can also consider an element x in a more abstract sense, as a banana, say,
or the color red, or the club suit. Multiplication by a real number allows the
banana to take on a variety of guises in the vector space, i.e., 2x might be a
banana that is twice as long as x, and the inverse banana of unit length is −x,
and so on.

Precisely because of the intrinsic ability to multiply a vector by a scalar
from the field F and get another vector, regarded as sets, vectors fields can be
quite large. Indeed, minimally, a vector space V would need to contain the zero
vector 0, and say at least one other vector, let’s call it x 6= 0. But since every
αx is also in V, this V must be the same size as F (note: 0 = 0x where “0” is
the additive identity of F). The cardinality of the set V is therefore greater or
equal the cardinality of the set F.

This simple example helps to introduce the idea of a basis and the dimension
of a vector space. The set B = {x}, provided x 6= 0, with one lonely element,
is a basis for for our minimal vector space V (which contains more than one
element) since any element of V can be expressed as αx for some unique α ∈ F.
Notice that Bα = {αx} for any α ∈ F, α 6= 0, is an equally good basis for V.
What all these bases have in common is that they contain just one element. And
so we say that the dimension of this particular vector space is one, although the
cardinality or size of this vector space can be much larger as it is equal to that
of F. The smallest finite field that one can build is Z2 = {0, 1}, with cardinal
number 2. And therefore a one-dimensional vector space over the field Z2 also
has a cardinal number of 2.

Vector spaces of dimension greater than one are easy to envision. A basis
B = {xi} is any subset of V with the largest cardinal number one can find such
that the only possible solution of

n∑
i=1

αixi = 0

is α1 = α2 = · · · = αn−1 = αn = 0. The integer n is the dimension of the vector
space, and we say the set B = {xi} of vectors is linearly independent, because
it is not possible to express any one of them as some linear combination of the
others. Again, there can be many different bases of V, but they all have to have
the same number of elements or cardinality. Sometimes we adjust our notation
V → Vn to indicate the dimensionality of our vectors space is n. Vector spaces
can have infinite (better, transfinite) dimensionality as well as transfinite size
and then we tend to omit the subscript! These are very large vector spaces.

It follows that given some basis B, any element, a ∈ Vn(F) can be expressed
uniquely as

a =

n∑
i=1

αixi ,

for some set of {αi} ∈ F. Viewed as an ordered n-tuple, (α1, α2, · · · , αn) can also
be regarded as the coordinates of a with respect to the basis B = {xi}. Hence,
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every basis generates a coordinate system on the vector space, and, since

a↔ (α1, α2, · · · , αn)

is an isomorphism, every vector space of Vn(F) of dimension n is isomorphic to
the Cartesian product space

F⊗ F⊗ · · · ⊗ F ≡ Fn .

It should be pointed out here that this isomorphism has some peculiar impli-
cations. For example, since V1(F) is isomorphic to F itself, it follows that any
algebraic field F can also be regarded as a one-dimensional vector space over
itself! (Think: Bavaria meets Georgia O’Keefe!)

There are as many coordinate systems as there are bases, and some coor-
dinate systems turn out to be more useful than others, but there are a vast
number of bases for any vector space and no one basis is better or worse than
any other.

Another useful concept surrounding vector spaces is the of a dual vector
space. Let Vn(F) be our vector space over a field F, whose elements we will
denote by boldface, x, y, z, etc. (We belabor the point here because notation
becomes all important in getting a handle on this concept.) Next we define a
linear functional on Vn(F) as a mapping y : Vn → F, such that

y(αx + βz) = αy(x) + βy(z) ∈ F .

We’ll use italic lowercase Latin letters for linear functionals, keeping in mind
that there is absolutely no particular relationship between the element y ∈ V
and the linear functional y . Notice that for any linear functional y , it must be
the case that

y(0) = y(00) = 0y(0) = 0

where, remember, 0 is the additive identity in the field of scalars F and 0 is the
additive identity vector in the vector field V. A particularly important linear
functional is

o(x) = 0

for all x in V. With this linear functional in mind, it is now fairly easy to show
that the set of all linear functionals on V is itself a vector space over the field
F. We call it the dual space and denote it as V† to indicate that it derives its
existence so to speak from V.

A more useful (in many ways) notation for the same concept is the square
bracket:

y(αx + βz) ≡ [αx + βz, y ] = α[x, y ] + β[z, y ]

which can be regarded as a bilinear functional from V × V† → F, owing to the
fact that V† is also a vector space over F:

[x, αy + βz ] = α[x, y ] + β[x, z ] .
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Now for the mind boggler. Since V†(F) is a vector space, we can dream up a new
object which is a linear functional on elements of V†(F) [which are themselves
linear functionals on V(F)], the collection of all of which must be another vector
space [V†]†(F). Thankfully, some thought and a stiff drink, convinces one that
the dual of the dual space is in fact, for all intents and purposes the same object
that we started out with, in other words, there is an isomorphism from [V†]†(F)
to V(F) and so the two spaces are essentially self-dual. The dual space turns
out to be useful when we consider transformations or operators that act on the
elements of a vector space.

Vector spaces Vn(F) with dimension n ≥ 2 possess many proper subsets
which themselves are vector spaces on their own. Such subsets are called, sub-
spaces, or manifolds. Notice that this behavior is quite different from that of
groups, many of which do not prossess any proper subgroups. Perhaps this is a
reflection of the more sophisticated algebraic structure of vector spaces. For ex-
ample, consider the two-dimensional Cartesian plane R2 = V2(R). Any straight
line that passes through the origin, 0, is a manifold. Notice that each one of
these manifolds is equivalent to R = U1(R) ⊂ R2 = V2(R). Thus the dimension
of a manifold is always less than the dimension of the entire vector space which
it is a part of. Two other points are worth noting and are easily seen from this
example. First, the complement of a manifold is not a manifold. Second, a
straight line that does not pass through the origin, 0, is not a manifold. This
is because every manifold must contain the identity element, or origin, of the
vector space, 0. Therefore the intersection of any two manifolds is not empty,
but must contain at the very least, the origin.

These aspects of mainfolds permit one to construct larger vector spaces out
of smaller vector spaces. For example, let Vn(F) and Um(F) be two distinct
vector spaces over the same algebraic field F. If we take pains to ensure that
the identity 0 in Vn(F) and its counterpart in Um(F), are both taken individually
to be precisely the same identity element in the bigger set,

Wm+n(F) = Um(F)
⋃
Vn(F) ≡ Um(F)⊕ Vn(F) ,

then, as our notation already gives away, then union of these two vector spaces
creates another bigger vector space with dimension m + n. This process for
building bigger vector spaces should be contrasted with

Vn(F) = Fn = F⊗ F⊗ · · · ⊗ F ,

Vn(F) = V1(F)⊗ V1(F)⊗ · · · ⊗ V1(F) .

Given any subsetM⊂ Vn(F) we can always minimally enlarge (if necessary)
this subset to make it into a vector space in its own right by simply forming
a (bigger) set from all the possible linear combinations of elements of M with
coefficients from the field F. We call this enlarged set the span of M and
write it as span(M). If span(M) is not all of Vn(F), then it is a proper subset
and a manifold of dimension less than n. Finally, the set containing only the
origin/identity,

O0(F) = {0} ,
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is a manifold of dimension zero of every vector space.

Next we turn to some additional structure that may be imposed on a vector
space, the norm, metric and inner product. Vector spaces need not possess
this additional structure, but when they do, many more powerful results can
be obtained. Generally speaking we wish to distinguish here between normed
vector spaces, and inner product vector spaces. Both spaces are metric vector
spaces, implying that we can define distances between vectors for both. Inner
product vector spaces contain normed vector spaces as a proper subset. An
inner product can be used to define a norm, but, a norm cannot be used to
define an inner product.

A norm defined on a vector space V over a field F is a mapping from V to
the nonnegative subset of an ordered field F. For example, if F = R or C we
mean the positive real numbers and zero. We’ll use the notation |x| to denote
the norm of some element x ∈ V. The properties a norm must satisfy are:

∀ x ∈ V, |x| ≥ 0, and |x| = 0 ⇐⇒ x = 0 ,

∀ α ∈ F and x ∈ V, |αx| = |α||x| ,
∀ x,y ∈ V, |x + y| ≥ |x|+ |y| .

Many authors prefer to use ||x|| especially if F = C, and they wish to distinguish
between the modulus of a complex number α ∈ C, |α| =

√
αα?, where α? is the

complex conjugate of α, and the norm of a vector.
Like bases, there can be many different norms which satisfy these require-

ments. A vector space that is equipped with a norm is called a normed vector
space. When you have norm, you also have a metric and vice-versa, because we
can define the distance between two element of a vector space, x and y as the
norm of their difference |x − y| (better stated as the sum of x and the inverse
of y). A metric, d(x,y), is a bilinear mapping from V × V to the nonnegative
subset of F. Its properties are

∀ x,y ∈ V, d(x,y) = d(y,x) ,

d(x,y) = 0 ⇐⇒ x = y ,

∀ x,y, z ∈ V, d(x, z) ≤ d(x,y) + d(y, z) .

It is natural to use the norm defined by the metric or the metric defined by
the norm, but, again, many different metrics are possible for the same vector
space. Vector spaces with a metric are called metric spaces. A normed vector
space that is complete, which loosely means that the limit of every convergent
sequence of vectors also lies within the vector space, is called a Banach Space.

The epitome of auxiliary structure on a vector space is an inner product,
which is a bilinear mapping from V ×V to all of F. If you have an inner product
then you necessarily have both a metric and a norm. The converse, however,
is not true. We’ll denote the inner product by 〈x,y〉. The properties an inner
product must satisfy are

〈x,x〉 ∈ the nonnegative subset of F ,F+
⋃
{0}
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〈x,x〉 = 0 ⇐⇒ x = 0 .

Hence we can define the natural norm associated with the inner product as

|x| ≡ 〈x,x〉1/2 ,

and the metric as
d(x,y) ≡ 〈x− y,x− y〉1/2 .

An inner product must satisfy four additional properties:

∀ x,y, z ∈ V, 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉 ,

∀ α ∈ F and x,y ∈ V, 〈αx,y〉 = α〈x,y〉 ,

∀ x,y ∈ V, 〈x,y〉 = 〈y,x〉? ,

∀ x,y ∈ V, |〈x,y〉|2 ≤ 〈x,x〉〈y,y〉 .

If F = C the star “?” denotes complex conjugation, for F = R it can be omitted.
Inner product spaces have lots of structure and are therefore rich in properties

and powerful results. For these reasons we typically like to work with inner
product spaces. In Euclidean geometry on Rn, the inner product is simply
the dot product of vectors in the usual sense. With an inner product we can,
in a very real sense, do geometry with distances and angles and so forth. The
properties listed above allow us to extend these notions to more abstract settings
where F can be some other ordered field.

Two elements of a vector space are orthogonal if their inner product is pre-
cisely zero. Hence of all the bases B we can employ for a vector space V, there
is a certain affinity for those whose elements are mutually orthogonal, i.e.,

B = {x1,x2, · · ·xn} , and 〈xi,xj〉 = 0 for i 6= j

and of unit norm, 〈xi,xi〉 = 1. If B is any orthogonal set of vectors (not
necessarily a basis, and not necessarily of unit norm) then∣∣∑

i

xi
∣∣2 =

∑
i

|xi|2

generalizes the Pythagoran Theorem, and further, if B is an orthonormal set,
then Bessel’s Inequality holds∑

i

|〈y,xi〉|2 ≤ |y|2

for any y. An inner product vector space that is complete, which loosely means
that the limit of every convergent sequence of vectors also lies within the vector
space, is called a Hilbert Space.

5. Mappings Between Vector Spaces
Mappings between different (or the same) vector spaces, which must share

the same field of scalars, particularly if they preserve alegraic structure, are very
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important. Linear maps, A : Vn(F) → Um(F), between two vector spaces have
the property

A(αx + βy) = αAx + βAy, ∀ x,y ∈ Vn(F),∀ α, β ∈ F .

Since Ax, Ay ∈ Um(F) so are αAx, βAy. Notation again! Italic capital Latin
letters will be reserved for linear maps. (Remember: vector spaces are caligraph-
ics V, fields are F, elements of a vector space are generally boldface x, linear
functionals of the dual space are italic lower case Latin y , and linear maps, or
operators, between vector spaces are upper case italic Latin A—got it?)

Because of the isomorphism U1(F)↔ F, it follows that the linear functionals
we introduced in the previous section, which live in V†, can be regarded as
linear maps from their (dual) vector space V to the one-dimensional vector
space U(F) = F. (Think: Gerogia O’Keefe in Bavaria!)

Let B = {x1,x2, · · · ,xn} be a basis for Vn(F) and let C = {y1.y2, · · ·ym} be
a basis for Um(F). Suppose a linear mapping A maps b ∈ Vn(F) to c ∈ Um(F),
i.e., Ab = c. Then because b and c have unique coordinates in each of their
respectives bases, B and C, b = βixi and c = γjyj , it follow that the action of
A can be represented by a rectangular array of entries selected from F, say Aij ,
which satisfy

γj = Aijβi .

The array Aij is the unique representation of the linear operator A for the bases
B and C. For different bases, the entries in the array are different of course.

It is true that the set of all linear mappings form Vn(F) to Um(F) form a nm
dimensional vector space over F with respect to the operation of adding entries
in a rectangular array representation, i.e., if A,B, are any two linear maps we
can form a new linear map by simply adding the respective ij-entries in their
rectangular arrays. But, interestingly enough, this aspect of linear maps turns
out not to be of much importance. Instead, it is the successive application of
linear maps, something more akin to multiplication than addition, which is more
fruitful. And this cannot be done here because our linear maps act only upon
Vm(F) and they have no meaning applied to Um(F), for example.

Linear maps from a vector space to itself are particularly important and
are often called operators. And operators can be applied successively, which is
called composition. And with respect to addition, defined in the last paragraph,
operators must also form a vector space over the field F. To show this, we need
of course the linear operator

Ox = 0 ,∀x ∈ Vn ,

which plays the role analogous to that of the origin 0 ∈ Vn(F). The identity
operator

Ix = x ,∀x ∈ Vn ,

also proves useful in what follows. Finally notice that, as with linear functionals,

A0 = 0 ,∀A .
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Composition of operators is defined by:

A(Bx) = ABx

where B is first applied to x followed by A. However, it need not be the case
that AB = BA, and it is certainly possible for AB = O for A 6= O and B 6= O.
However, IA = AI, and if AB = BA one says that the two opeators commute
with one another.

The two special operators, O and I are useful in distinguishing between what
one might regard as good, or sensible, operators and ones that are ill-behaved.
The identity operator enjoys (in a trivial sense) the two properties that, its
range is all of Vn, and, it is one-to-one, in that Ix = Iy =⇒ x = y. Hence
there exists an inverse operator I−1 for composition, such that

Ix = y ⇐⇒ y = I−1x .

In this trivial case, of course, I−1 = I and y = x. But a nontrivial linear
operator A for which these two properties obtain is said to be invertible with a
unique inverse A−1 (generally not equal to A) that commutes with A

AA−1 = A−1A .

The operator O on the other hand violates both of these properties and is
therefore not invertible. O maps all of Vn to O0 = {0} ⊂ Vn.

Of all the possible linear maps from a vector space Vn(F), those which are
invertible with respect to composition form a group with respect to the binary
operation compostion. The identity for the group is I. This group is called
the General Linear Group, and is denoted by GLn(F). The operator O is not a
member of this group.

In so far as every operator, when referred to a basis B for Vn(F) is isomor-
phic to an n2 square array of scalars selected from F, what distinguishes the
membership A of GLn(F) is their matrix determinants do not vanish:

det[A] 6= 0 .

Because all of the entries in the matrix representation of O are zero, det[O]=0.
It turns out that O is not alone in having this property, there are many other

linear maps which have zero determinant as well. For example, projections, are
operators that isolate the component of a given element x which lives entirely
within a certain manifold.

The kernel of a linear operator A is the manifold of Vn(F) which under
the action of A maps to 0. For example, the identity mapping, I (which is in
GLn(F)), maps only 0 [equivalently O0(F)] to 0, while the O operator maps all
of Vn(F) to 0. This sort of brackets the possibilities. Indeed all the operators
in GLn(F) have kernels of dimension 0, while all the operators excluded from
membership have kernels with dimensions somewhere between 1 and n, inclusive.
It follows that over the complement of the kernel of A in Vn(F), A is in fact
invertible! This is consistent with the members of GLn(F) being invertible over
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the entire vector space, while O is invertible nowhere. The complement of the
kernel of A with the union of the set {0}, is itself a manifold, and therefore
a vector space. So by paring down our original vector space Vn(F) into lower
dimensional manifolds, it is possible to “rehabilitate” some of our ill-behaved
operators that did not make the initial cut into GLn(F), as they can now be
placed in a GLm(F), albeit with 1 ≤ m < n.

A closely allied concept to the kernel of a linear operator is its spectrum
of eigenvalues. For any linear operator A we can determine the n-th degree
polynomial det[A− λI] = 0. The eigenvalues λ associated with the members of
GLn(F) are nonzero. Those which do not belong to this group have at least one
zero eigenvalue.

Much more can be said about eigenvalues and what they imply about the
operators they are derived from. Limitations of space and time prevent us from
venturing further into this important area, but the two books by Halmos [H4,5]
will satisfy your curiosity about what we have left out.

6. The Real, the Complex And the Truly Bizarre Numbers
The counting numbers N = {1, 2, 3, ...} do not form a group under addition

(or multiplication for that matter). Equivalently, an equation of the form

x+ a = b

need not (although it may) have a solution x ∈ N for arbitrary a, b ∈ N. In the
larger set of integers, Z, however, this equation always has an unique solution
given by

x = −a+ b

since every a has an (additive) inverse, −a. However, the equation

ax = b

need not (although it may) have a solution x ∈ Z for arbitrary a, b ∈ Z. It will
have a solution if and only if a is an integral divisor of b. For this reason, Z is
called an integral domain.

In the larger set of rational numbers Q, however, this equation always has
an unique solution given by

x = a−1b

since every a 6= 0 has an (multiplicative) inverse, a−1. And for this reason, Q is
called a field.

On the other hand, the equation

ax2 = b

need not (although it may) have a solution x ∈ Q for arbitrary a, b ∈ Q. In
the larger set of real numbers R this equation will have a solution, but only if
b/a ≥ 0. When it does have a nonzero solution, in fact, it has two solutions
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because −x is also a solution. In the still larger set of complex numbers C, this
equation always has solutions, period. Indeed, in C the equation

anx
n + an−1x

n−1 + · · ·+ a1x = a0

always has solutions for x ∈ C—in general n solutions—for any positive integer
n and arbitrary ai ∈ C.

There are many ways to enlarge R to make C. An enlightening one is the
Calyley-Dickson method. Begin with an algebraic field, in this case, say the real
numbers R. We now form a new set of objects being ordered pairs of elements
drawn from the field R: (a, b). We define the binary operations of addition, and
multiplication as follows

(a, b) + (c, d) = (a+ c, b+ d)

(a, b)(c, d) = (ac− bd, bc+ ad)

where the addition and multiplications inside the parentheses are those appro-
priate to the field R. This field, is, in fact isomorphic to C. It contains R
as a subfield consisting of all ordered pairs (a, 0). It also solves the quadratic
equation

x2 + 1 = 0 ,

the solutions obviously being x = (0,±1). But the set of all orderd pairs (a, b)
with a, b ∈ R is also isomorphic to R2, and therefore, the two dimensional vector
space over the field of real numbers V2[R]. But because we can also multiply
vectors from the vector space, not just add them and multiply them by scalars
from R, we have something richer in structure than merely a vector space—we
have a division algebra—in C

By exploiting the isomosphisms between the complex numbers and V2[R],
we can define an inner product as

(a, b) · (c, d) =
1

2
[(a, b)(c,−d) + (a,−b)(c, d)] ≡ 1

2
[(a, b)(c, d)? + (a, b)?(c, d)] ,

where the conjugate of an element (a, b), written (a, b)? ≡ (a,−b). With this
inner product we have a norm

|(a, b)| =
√

(a, b) · (a, b) =
√
a2 + b2 ,

and therefore a metric as well! In a very real sense, C embodies all the math-
ematical structures we have discussed in this Appendix and might rightly be
considered the epitome of the long sequences of sets that we began back with
the set of three colors.

To simplify notation, one usually refers to an element of C simply as a
complex variable z = x + iy, where it is understood that i =

√
−1, and x and

y are drawn from R. And in this fashion, the corresponding basis for the vector
space is conveniently B = {1, i}, as expected. So C has two dimensions as a
vector space.
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One might, as William Rowan Hamilton did for 20 years, wonder if there
is a three-dimensional analogue to C. Alas, there is not. There is however, a
four-dimensional structure, called the quaternions, denoted by H in honor of
their discoverer, Hamilton, which can be generated from C by the same Cayley-
Dickson process, i.e., we consider a set of ordered pairs of elements drawn now
from C (as opposed to R). As this is a four-dimensional division algebra, a
quaternion can be expressed as, ζ = x+ iy+ ju+ kv, where x, y, u, v are drawn
from R,

i2 = j2 = k2 = ijk = −1 , ij = −ji = k ,

and i gets two additional distinct friends, j and k. The basis for this division
algebra viewed as a vector space is B = {1, i, j, k}. (Note the isomorphism to
the Klein 4-group!) The quaternions, H, however, just fail at being an algebraic
field, because multiplication of quaternions is not commutative! This in a very
real sense limits their usefulness for doing things like calculus and analysis.
They do come with a norm, however. If ζ = x + iy + ju + kv, then we can
define its conjugate as ζ? ≡ x − iy − ju − kv, and the product ζζ? = ζ?ζ =
x2 + y2 + u2 + z2 ≥ 0. And because we have a norm, we also have a metric.
Can you find an inner product?

In fact, any attempt to enlarge C requires that we give up some attribute
which the complex numbers enjoyed. Some algebraic extensions of the complex
numbers choose to give up the cancellation law, meaning that two nonzero
vectors can be multiplied together to give the 0 vector—so we no longer have
a division algebra. Examples of these extensions are Grassmann and Clifford
Algebras.

If we apply Cayley-Dickson again to the quaternions, things get even worse.
The elements of the ensuing eight-dimensional division algebra are called the
octonions, and their collection is denoted by O. For the octonions, alas, not only
is multiplication non-commutative, it is also non-associative. And after that,
there are no more division algebras, period. Each higher dimensional division
algebra contains the previous one from which it was generated, symbolically,

R ⊂ C ⊂ H ⊂ O ,

and of course,
E ⊂ N ⊂ Z ⊂ R .

7. Complex Analysis & Fourier Transforms
The discussion of the previous section suggests that it may be more fruitful

to go back to C and concentrate our efforts on this set of numbers, since, afterall,
it has the most robust sense of algebraic structure we can endow a set with, and
at the same time, it provides solutions to every algebraic equation we can dream
up. In fact, not just one solution, but all of them.

What makes the complex numbers useful is our ability to do calculus with
them. Calculus, or more generally analysis, requires as its logical basis certain
topological concepts regarding the proximity, density and orientation of the
elements of our vector space. For example, how closely are they spaced? Is
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there an element that is—in terms of the metric—arbitrarily close to another
element? Can I separate two distinct elements? Can I actually get to where I
am going? Do limits exist?

The essential building blocks here, are open and closed sets and operations
carried out on those sets, such as intersections, unions, and closures. Topology
is often called the study of all the “c”-concepts: continuous, compact, connected,
complete, convergent, and covered. Vector spaces and the mappings defined on
those vector spaces must satisfy some of these “c”-concepts for us to be able to
differentiate and integrate them.

This brings us to the concept of analytic (holomorphic) functions—or a spe-
cial subset of all the mappings ϕ : C → C. Let ζ(z) = ξ(x, y) + iη(x, y) be a
function of the complex variable z = x+ iy—that is ϕ : z 7→ ζ. In what follows,
we’ll try to reserve z, ζ and when necessary w, f , and F for complex variables
from C, and everything else will be a real number from R.

It follow that ξ(x, y) and η(x, y) are real functions of two real variables x, y—
that is ξ, η : R× R→ R. The function ζ is said to be analytic at the point z if,
and only if

∂ξ

∂x
=
∂η

∂y
and

∂ξ

∂y
= −∂η

∂x
.

These are called the Cauchy-Riemann Equations.
If we restrict our attention to functions which are analytic almost every-

where, then we can do calculus with these functions, which means computing
derivatives and calculating integrals. Two remarks are worth adding here. First,
the Cauchy-Riemann Equations imply that

∂2ξ

∂x2
+
∂2ξ

∂y2
=
∂2η

∂x2
+
∂2η

∂y2
= 0 ,

for any analytic ζ(z). That is, the real and imaginary parts of an analytic
function regarded as real functions of the two-dimensional Cartesian coordinates
(x, y), are solutions of Lapace’s equation! Second, they are orthogonal,

∇ξ · ∇η = 0 .

The function
ζ(z) = z?

is analytic nowhere! However, as long as one sets the complex conjugation
function aside, virtually any other function that you can care to think of turns
our to be analytic almost everywhere! Any polynomial is analytic everywhere. A
function that is analytic everywhere is called an entire function. The exponential
function, defined by the convergent power series

exp z ≡
∞∑
k=0

zk

k!
≡ cos z + i sin z
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is another entire function, from which we derive so to speak the two trigono-
metric functions. It is centrally important, because often we use it to express
the complex variable

z = x+ iy =
√
x2 + y2 exp[i arctan(y/x)]

in terms of a modulus,
√
x2 + y2, and a phase, arctan(y/x). The phase is ill-

defined up to an integer multiple of 2π, which as we shall see, can lead to some
fascinating consequences.

The fact that one must forget about the complex conjugation function en-
tirely in dealing with analytic functions and calculus suggests that complex
variables—although they are a two-dimensional vector space—are essentially
one-dimensional in character, since the only way we can extract the real or
imaginary parts separately is through complex conjugation. Hence it is appro-
priate to think of z as a complex variable (singular!), that just happens to come
with two components, x, y—Cayley-Dickson’s ordered pair (x, y).

Any rational function—a ratio of polynomials—is analytic almost every-
where, except at a countable handful of isolated points. These isolated points
are the (no greater than n) zeros of the denominator, which is a polynomial of
degree n. The Cauchy-Riemann equations break down at these isolated points
where the derivatives become infinite. These points are called poles. A function
which is analytic everywhere except at a finite number of isolated poles is called
a meromorphic function.

The n-th root function is analytic almost everywhere, with the exception of
the origin, z = 0, and (more or less) any line that connects the origin to infinity.
This line—which one has significant latitude in its placement— is called a branch
cut. To see how this works, let us consider the square-root function:

ζ(z) =
√
z , ξ + iη =

√
x+ iy ,

or
x = ξ2 − η2 , y = 2ξη .

Use the equation on the left to eliminate η from the equation on the right. This
gives a quadratic equation for ξ2, which, since ξ2 cannot be negative, has the
unique solution

ξ2 =
1

2

(
x+

√
x2 + y2

)
≥ 0 .

For ξ itself, we have two choices:

ξ = ± 1√
2

√
x+

√
x2 + y2 .

And therefore,

η = ±sign(y)
1√
2

√
−x+

√
x2 + y2 .

No matter how we select between the the two choices, a branch cut, or a curve
across which either ξ or η changes discontinuously is unavoidable. Pick the plus
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sign everywhere. Then ξ(x, y) is nonnegative, and is zero for y = 0 and x ≤ 0.
On the other hand η(x, y) is zero for y = 0 and x ≥ 0 and so the flip of sign
caused by the sign of y causes no problem here. However, for y = 0 and x ≤ 0,
η is double-valued. This phenomenon is characteristic of a branch cut. If you
try to get around this by changing the sign of the ±, you can eliminate the
double-valuedness of η, but now it shows up in ξ.

Also worth mentioning is the logarithm, defined to be the inverse of the
exponential,

log z = log(x+ iy) ≡ 1

2
log(x2 + y2) + i[arctan(y/x) + 2nπ] ,

which, owing to the indeterminate multiples of 2π, also comes equipped with a
branch cut if we want a single-value version, like we did for our square-root.

Having restricted from here on our attention to functions which are analytic
almost everywhere (except at isolated poles and across branch cuts), and which
satsify the Cauchy-Riemann conditions, we can rely on a number of extremely
sweeping and powerful properties of analytic functions. The derivative of an
analytic function

dζ

dz
= lim
|w|→0

ζ(z + w)− ζ(z)

w

is itself an analytic function of the complex variable z and is independent of
the specific choice of w = u+ iv. A direct corollary of this is that any analytic
function ζ(z) can be differentiated as many times as one wishes, and the result
is always an analytic function! So analytic functions are infinitely differentiable.

Next, all the rules that apply to differentiation of functions of a real variable
apply directly to the differentiation of analytic functions of a complex variable,
e.g.,

d

dz
(zα + w)β = αβzα−1(zα + w)β−1 .

Also, functions defined in terms of convergent infinite series are still defined by
these same series now of a complex variable.

Complex integration is even more remarkable. In computing an integral,
such as ∫

dz ζ(z) =

∫
(dx+ idy) [ξ(x, y) + iη(x, y)] ,

one must in general specify the precise path, or contour, the integration follows
in the complex plane—unless ζ(z) is analytic in the domain of interest! Then,
because analytic functions are infinitely differentiable, for some analytic function
f(z), ζ = df/dz, and the integral depends only upon the starting and stopping
endpoints. Any integration path that connects these two endpoints gives the
same result. Therefore, if ζ(z) is analytic inside and along any closed path in
the complex plane, the integral along that path must vanish,∮

dz ζ(z) = 0 .
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This is an exceedingly powerful result.
If a function is meromorphic—that is, it is not analytic only at isolated

poles—then Cauchy found that this result can be generalized as follows. Suppose
ζ(z) is analytic inside and along a closed contour in the complex plane. Then
consider the integral

n!

2πi

∮
dz

ζ(z)

(z − w)n+1
,

where n = 0, 1, 2, ..., and so forth. If the complex variable w lies outside of
the contour, then the integrand is analytic along and inside of the contour, and
so the integral is exactly zero. If, on the other hand, w lies inside the closed
integration contour, then the integral is simply ±dnζ(w)/dwn. We choose the
plus sign if the contour circles the pole in a counterclockwise fashion, and the
minus sign if it circles the pole in a clockwise fashion. Putting ζ(w) = 1 shows
that for any w

n!

2πi

∮
dz

1

(z − w)n+1
= 0 , for n = 1, 2, 3, ...

Many more absolutely fascinating results are possible! An example is the
following, due again, to Cauchy. If f(z) is a meromorphic function—it’s only
singularities are isolated poles—inside a closed contour, then

1

2πi

∮
dz
f ′(z)

f(z)
= N − P ,

where N is the number of zeros and P is the number of poles that f(z) has
inside of this contour. If a pole or a zero has a double, a triple, or an n-tuple
multiplicity, then it contributes n to N or P .

It only remains to consider what happens if w—or more generally a pole of
the integrand—should lie exactly on the contour. Strictly speaking, one should
never try to integrate through a pole (or across a branch cut). One can get
as close to the pole as one likes, but at the last moment it is necessary to
divert above or below the pole. In one case, the pole lies within the contour
and in the other case it lies outside of the contour, and it can be the case
that the value of the integral changes by a finite definite amount whether this
tiny deviation goes slightly above or below the pole. And that is simply how
complex integration works. However, one can choose to define something called
the principal value integral by taking the average of the result obtained by
diverting above or below and associating this, so to speak, with integrating
directly through the singularity or pole. In other words, for counterclockwise
circling, ∮

dz
1

z − w
= 2πi , if w is inside the contour ,∮

dz
1

z − w
= 0 , if w is outside the contour ,

P.V.

∮
dz

1

z − w
≡ πi , if w is “on” the contour .
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Using these results we can also define many new analytic functions in terms
of integrals. For example, the Gamma Function

Γ(w) ≡
∫ ∞
0

dt tw−1e−t ,

where the integration contour is along the positive real axis, interpolates the
factorial function:

Γ(n+ 1) = n! ,

where n = 0, 1, 2, ..., and so on. Provided we do not cross any branch cuts, the
contour can be displaced off the real axis by adding any amount of∮

dz zw−1e−z = 0 ,

to the above expression, for which the integrand is analytic inside and along the
closed contour. Another functions that can be defined in terms of an integral is
the inverse function of the exponential,

logw ≡
∫ w

1

dz
1

z
.

Notice, in particular, that like the square root function, the logarithm requires
a branch cut somewhere. By design, as w → 1 the integral goes to zero. But
suppose the contour takes w around the origin in a counterclockwise fashion
before it returns to 1. Then we know that the value of the integral is 2πi
and not zero. Thus, to avoid the double-valued nature of this definition, it is
necessary to connect the origin to infinity by a branch cut where there is a
discontinous jump in the value of the logarithm. Another way to see this is to
note that the above definition implies that

log(u+ iv) =
1

2
log(u2 + v2) + iθ

where tan θ = v/u, where θ can be advanced or retarded by any integer multiple
of 2π with no consquence. For example, restricting −π ≤ θ ≤ π places the
branch cut along the negative real axis, and the imaginary part of logw jumps
by 2π in crossing the branch cut.

Another means to generate an analytic function F is by an integral of another
analytic function:

F (w) =

∫
C(z)

dz e−iwzf(z)

with w = u + iv and z = x + iy, and where f is analytic along the integration
contour C, which is not necessarily closed but may have end points. Notice
that we have to specify this contour to get a unique definition for F because
of Cauchy’s amazing results about integrating analytic functions around closed
curves. The important point here is that the exponential function is an entire
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function with no singularities anywhere in the complex plane. Therefore, if we
choose to employ a closed contour, F will be nonzero only if f has poles within
that contour. Otherwise it is more practical, like in our definition of the Gamma
Function, to choose a countour which is not closed.

Selecting the entire real axis (y = 0)for the C contour leads to the definition
of the Fourier Transform of f(x):

F (w) =

∫ ∞
−∞

dx e−iwxf(x) .

A remarkable property of F (w) is that we can retrieve f(z) from

f(z) =
1

2π

∫
γ(w)

dw eiwzF (w) ,

for some suitable choice of contour γ(w) (which may not be the real axis). Be
aware that the factor of 2π gets split up all over the place in various definitions
which people employ, and some people replace i → −i to get forward and
backward transforms exchanged. Like units, the best advice I can give here is
to pick some definition and stick with it.

When the contour γ can be taken to run along the real axis (v = 0), we get
the usual definition of the Fourier Transform pairs in terms of functions of the
two real variables, x and u (i.e., z = x+ iy and w = u+ iv)

F (u) =

∫ ∞
−∞

dx e−iuxf(x) ≡ Fu[f(x)],

f(x) =
1

2π

∫ ∞
−∞

du eiuxF (u) ≡ Fx
−1[F (u)].

It is worth mentioning that not every function f(x) has a well-defined Fourier
transform according to these formulae. The function f(z) = 1 does not, for
example. In some instances by allowing a non-zero v back into the picture, we
can find areas off the real axis (v = 0) were F (w) is analytic, and then we can
make “sense” of otherwise “senseless” integrals by mean of analytic continuation
of F (w) back to the real axis! More about this later.

Two important theorems for Fourier Transform pairs are the following

Fu

[∫ ∞
−∞

dx f(x′)g(x− x′)
]

= Fu[f(x)] · Fu[g(x)] ,

and ∫ ∞
−∞

dx |f(x)|2 =
1

2π

∫ ∞
−∞

du |Fu[f(x)]|2 .

And finally, the following two formulas are particuarly useful in applications,

Fu

[
dnf

dxn

]
= (iu)nFu[f(x)] ,
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Fu [xnf(x)]] =

(
i
d

du

)n
Fu[f(x)] .

A closely allied transform pair is named after Laplace. Here, we take the
contour C(w) to run only along the positive real axis according to∫ ∞

0

dx e−iwxf(x) ,

and repace w = −iζ = −i(ξ + iη) = η − iξ = u + iv, (which amounts to a 90◦

rotation in the complex plane) giving

f̂(ζ) =

∫ ∞
0

dx e−ζxf(x) ≡ Lζ [f(x)]

the Laplace Transform of f(x). I use a hat “̂·” over a lower case f to distinguish
this from the Fourier Transform of f(x), which I called F (w).

Now it gets fun! Define the Heaviside Step Function, θ(x) by

θ(x) = 0 , for x < 0, θ(x) = 1 , for x > 0 ,

so that

f̂(ζ) =

∫ ∞
−∞

dx e−ζxf(x)θ(x)

f̂(ξ + iη) =

∫ ∞
−∞

dx e−iηx
[
e−ξxf(x)θ(x)

]
f̂(ξ + iη) = Fη

[
e−ξxf(x)θ(x)

]
,

where, recall
F (η) = Fη[f(x)] !

This allows us to write

e−ξxf(x)θ(x) =
1

2π

∫ ∞
−∞

dηeiηxf̂(ξ + iη)

or

f(x)θ(x) =
1

2π

∫ ∞
−∞

dη e(ξ+iη)xf̂(ξ + iη)

f(x)θ(x) =
1

2πi

∫ ξ+i∞

ξ−i∞
dζ eζxf̂(ζ) ≡ L−1x [f̂(ζ)] ,

where

f̂(ζ) =

∫ ∞
0

dx e−ζxf(x) ≡ Lζ [f(x)] .

gives our Laplace Transform pair.
Notice the interesting role played by the Heaviside Step Function in all of

this, which requires that

L−1x [f̂(ζ)] = 0 , for x < 0.
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In turn, this assures us that f̂(ζ) is analytic for all ξ for which the integral

f̂(ξ + iη) =

∫ ∞
0

dx e−(ξ+iη)xf(x)

exists. For example, if ∫ ∞
0

dx e−iηxf(x)

is finite, then f̂(ζ) is analytic for all ξ ≥ 0.

We conclude with saying a little bit about analytic continuation. The Cauchy-
Riemann conditions are so prescriptive that they can be used to “uniquely”
extend a function that is analytic in some “patch” of the complex plane to the
entire complex plane. We have to be a little careful in what we mean by unique-
ness and what constitutes a patch of sufficient size to enable this construction.
Also, this extension may often result in isolated singularities, and, as we have
seen previously, branch cuts.

Take for example, the analytic function represented by the infinite series

1 + z + z2 + z3 + · · · ,

which converges to an analytic function provided |z| < 1. This is a sufficiently
big patch of C that we can analytically continue it everywhere. To do so, we
notice that when |z| < 1 the series coincides with

1

1− z
,

which, without the restriction |z| < 1, is in fact the analytic continuation of the
function defined by this infinite series. It’s defined everywhere in the complex
plane except at z = 1, where it has an isolated singularity (a simple pole). The
underlying concept here is that if two different expressions agree over some patch
of the complex plane, then they are both representations of the same analytic
function over whatever their individual domains of validity might be. In this
case, the infinite series representation is valid only in the disk |z| < 1, while the
fractional representation is valid everywhere except at a single point, so there
is no particular advantage necessarily to using the infinite series in the disk and
the fraction elsewhere. The next example provides a situation where neither of
the two representations is valid everywhere.

As a second example, consider the Gamma Function,

Γ(w) =

∫ ∞
0

dt tw−1e−t

which defines Γ(w), w = u + iv, only for u > 0. We need to find a different
representation to figure out what it is doing in the other half of the complex
plane. To analytically continue it into u ≤ 0 we form the product

Γ(w)Γ(1− w) =

∫ ∞
0

ds

∫ ∞
0

dt tw−1s−we−(s+t) ,
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which defines an analytic function only in the strip 0 < u < 1. We do the t
integral first by making a change of variable t = xs, so dt = sdx, giving

Γ(w)Γ(1− w) =

∫ ∞
0

ds

∫ ∞
0

du uw−1e−s(1+u) .

We now do the s integral to obtain

Γ(w)Γ(1− w) =

∫ ∞
0

du
uw−1

1 + u
=

π

sinπw
.

In the 0 < u < 1 patch of the complex plane, the product Γ(w)Γ(1− w) agrees
with π cscπw, so, in fact, it must be π cscπw everywhere else! Therefore,

Γ(1− w) = π cscπw
1

Γ(w)
,

valid for u > 0 provides a valid (analytic continuation) representation of the
Gamma Function for z = 1 − w = x + iy with x < 1. It tells us incidentally,
that the Gamma Function has a series of simple poles at all the non-positive
integers. The original defining representation

Γ(w) =

∫ ∞
0

dt tw−1e−t

and

Γ(1− w) = π cscπw
1

Γ(w)
,

agree everywhere on the strip 0 < u < 1 or equivalently 0 < x < 1, so they
represent the same function. While each individually fails to cover the entire
complex plane, taken together they define the Gamma Function everywhere!

As a third example, suppose

f(z) =

∞∑
k=0

fkz
k

defines an analytic function only within a disk |z| < a for some nonzero real
constant a. To analytically continue f(z) outside of this disk, we consider a
slighlty different function

F (z) =

∞∑
k=0

fk
k!
zk ,

which will converge to an analytic function for all z. It then follows that

f(z) =

∫ ∞
0

dt F (zt)e−t

will agree with f(z) within the disk of radius a and will extend beyond this into
a polygonal region bounded by the nearest singularities of f(z). For example,
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if f(z) has a single pole located at z = a + i0, then the integral is well defined
for x < a. If the pole is at z = −a+ i0, the integral is well defined for x > −a,
and if the pole is at z = 0 + ia, then the integral is well defined for y < a. This
trick is called Borel Summation.

Our final, example of analytic continuation is due to the famous Indian
mathematician Ramanujan, and it is remarkable in the sense that if we only
know a function f(z) at every non-negative integer, z = 0, 1, 2, 3, · · · then

f(−z) =
sinπz

π

∫ ∞
0

dt tz−1
∞∑
n=0

(−t)nf(n) ,

provides f everywhere the integral converges! This really stretches the imagi-
nation of what a “patch” constitutes. One can do many beautiful things with
this result, for example, if you wondered how we obtained∫ ∞

0

du
uw−1

1 + u
=

π

sinπw
,

consider the implication of Ramanujan’s formula for the given entire function
f(z) = 1. You can also use this formula to derive the analytic continuation of
the Gamma Function, directly. [Hint: Let f(n) = 1/n! and follow through.]
Finally, Ramanujan’s formula can be recast as

f(−z) =
1

Γ(z)

∫ ∞
0

dt tz−1
∞∑
n=0

(−t)n

n!
f(n) ,

with better opportunities for the integral to be defined over more of the complex
plane. Notice that setting f(z) = 1 in this formula tells us nothing we did not
already know!

8. Lie Groups and Lie Algebras
For groups of size c = 2ℵ0 , we can no longer just list the elements, but in

fact, must index them with a continuous parameter (or a countable number of
parameters, if appropriate), say α ∈ R or C. And because of the nice topological
properties of R, like continuity, completeness, and so on, these objects, known
as Lie Groups, are in fact manifolds. We have already encountered a Lie Group
in the general linear group GLn(F) of invertible transformations from an n-
dimensional vector space to itself. To ensure the necessary topologies, we shall
restrict F to be either R or C in what follows.

Perhaps the simplest Lie Group to consider first is called U1(C), the Uni-
tary Group. As a subgroup of the General Linear Group of 1x1 matrices with
complex coefficients, GL1(C), there is admittedly not much of “matrices” actu-
ally involved here. Both groups just consist of the complex numbers C, viewed
as a group (remember it is actually field) under multiplication only—we forget
about addition here. What sets U1(C) apart is that we restrict its membership
to complex numbers with unit modulus, or, which can be found on the unit

32



circle |z| = 1. Therefore, it requires a single real parameter, let’s call it θ to
parameterize the elements of this group which can be written as

eiθ , θ ∈ R .

It is easy to demonstrate that U1(C) is in fact a group under multiplication.
If we apply an element of U1(C) to any complex number z we effectively

rotate it counterclockwise about the origin through an angle θ. So U1(C) looks
for all intents and purposes like the symmetry group of rotations on the two-
dimensional space C.

But, because there is an isomorphism between C and R2 regarded as vector
spaces, it seems there must be a subgroup of GL2(R) that effects rotations
just like this in R2. In fact, there is, of course. It is SO2(R), the Special
Orthogonal Group also known as the circle group. The elements of SO2(R) can
be represented by 2x2 orthogonal matrices

Ro(θ) ≡
(

cos θ − sin θ
sin θ cos θ

)
,

indexed by a continuous parameter θ ∈ R. This is a commutative group with
respect to multiplication. Multiplication of a vector in R2, by Ro(θ) corresponds
to a counterclockwise rotation through an angle θ, so this Lie Group describes
one-dimensional rotations about the origin in a two-dimensional space, also. In
other words, it is the symmetry group of rotations in a two-dimensional space
as well. So, U1(C) and SO2(R) are basically the same Lie Group.

What distinguishes SO2(R) from GL2(R) is that det[Ro(θ)]=1, and that
Ro(−θ) = Ro(θ)T = Ro(θ)−1.

The rotation group in two dimensions SO2(R), comes equipped with one
group generator:

S ≡
(

0 −1
1 0

)
.

It follows that any element of the group, Ro(θ), can be expressed both as a
matrix exponential of the parameter times the group generator, or as a linear
combination of the group generator and the identity matrix:

Ro(θ) = exp(θS) = I cos θ + S sin θ =

∞∑
k=0

θk

k!
Sk ,

where

I ≡
(

1 0
0 1

)
.

Notice that S2 = −I, S3 = −S, and S4 = I, so that S in fact behaves just like
i =
√
−1. And it is this aspect of S which allows us to state the isomorphism

between SO2(R) and U1(C) as

exp(θS) =
∞∑
k=0

θk

k!
Sk ↔ eiθ
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Next in order of complication must come SU2(C) and SO3(R), which, our
intuition suggests, ought to be the same object masquerading in different guises,
as we just discovered for SO2(R) and U1(C). This turns out to be “mostly” true.

The Special Unitary Group SU2(C) consists of all 2x2 matrices of the form(
z w
−w? z?

)
where |z|2 + |w|2 = 1, and z = x + iy, w = u + iv ∈ C. It requires three
real parameters to index each element of the group. This is reassuring because
rotations in three-dimensions also require three parameters, typically, the three
Euler angles. There are now three group generators,

S1 ≡
1

2

(
0 −i
−i 0

)
, S2 ≡

1

2

(
0 −1
1 0

)
, S3 ≡

1

2

(
−i 0
0 i

)
.

These are simply the three Pauli Spin Matrices divided by 2i. The group gen-
erators satisfy the commutation relations:

[Si, Sj ] ≡ SiSj − SjSi = εijkSk ,

and we also have

S2
1 = S2

2 = S2
3 = −1

4
I ,

S2
1 + S2

2 + S2
3 = −3

4
I = −1

2

(
1

2
+ 1

)
I .

This reminds us of the behavior of the total angular momentum operator for a
spin-1/2 particle in quantum mechanics. The correspondence becomes complete
if we rescale each Sj → i~Sj .

Should all of this strike you as strangely familiar, feel obliged to award
yourself some bonus points! In fact, twice the three group generators behave in
exactly the same fashion as the nontrivial basis vectors for the quaternions, H:

2S1 ↔ i , 2S2 ↔ j , 2S3 ↔ k .

As a quaternion ζ can be expressed as

ζ = x+ iy + ju+ kv , x, y, u, v ∈ R

so can a general element of SU2(C) be expressed as a linear superposition of
the unit matrix and the three group generators. The four real coefficients that
appear in such a superposition are not independent owing to the fact that the
element belongs to SU2(C). And to finish the isomorphism, the corresponding
quaterions must have unit norm, so x2 + y2 + u2 + z2 = |z|2 + |w|2 = 1 and lie
on the surface of a sphere of unit radius in a four-dimensional space!
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The Special Orthogonal Group SO3(R) consists of all 3x3 matrices with unit
determinant, and with the property that the transpose of a matrix is also its
inverse. The three group generators are

S1 ≡

0 0 0
0 0 −1
0 1 0

 , S2 ≡

 0 0 1
0 0 0
−1 0 0

 , S3 ≡

0 −1 0
1 0 0
0 0 0

 .

They satisfy the same commutator relation that we derived for the SU2(C)
generators:

[Si, Sj ] = SiSj − SjSi = εijkSk ,

only now,
S2
1 + S2

2 + S2
3 = −2I = −1 (1 + 1) I ,

which appears more appropriate for a spin-1 particle under the rescaling Sj →
i~Sj . We now have

S3
i = −Si , i = 1, 2, 3 .

The generator S3 corresponds to rotations about the x3-axis, which creates
elements of the form

Ro(0, 0, θ3) =

cos θ3 − sin θ3 0
sin θ3 cos θ3 0

0 0 1


with similar statements for S2 and S1, i.e.,

Ro(θ1, 0, 0) =

1 0 0
0 cos θ1 − sin θ1
0 sin θ1 cos θ1



Ro(0, θ2, 0) =

 cos θ2 0 sin θ2
0 1 0

− sin θ2 0 cos θ2

 .

Notice that the 2x2 subblocks of Ro(0, 0, θ3) and Ro(0, 0, θ1) look just like
Ro(θ) of SO2(R). There is a sign flip for rotations about the x2-axis. If you
are a glutton for algebra, you can of course multiply these three matrices out
to get a general rotation through all three angles. However, order matters here
because SO3(R) is not a commutative group! Therefore it is meaningless to
write an element as Ro(α, β, γ) without indicating in what order we carried out
these rotations, precisely because

Ro(θ1, 0, 0)Ro(0, θ2, 0) 6= Ro(0, θ2, 0)Ro(θ1, 0, 0)

or equivalently
eθ1S1eθ2S2 6= eθ2S2eθ1S1 .
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The anticipated isomorphism between SU2(C) (and the quaternions of unit
norm!) and SO3(R) takes the form

z = cos
β

2
cos

α+ γ

2
+ i cos

β

2
sin

α+ γ

2
= x+ iy ,

w = sin
β

2
cos

α− γ
2
− i sin

β

2
sin

α− γ
2

= u+ iv,

in terms of half angles! If you’ve been following this all carefully, then you
should be able to figure out how to identify α, β, γ with θ1, θ2, θ3. Good luck!

Of course, SO3(R) is an essential element of our space-time symmetries and
forms a subgroup of the Galilean and Poincaré Groups. In quantum mechanics,
U1(C) is the gauge symmetry group of electromagnetism, SU2(C) is the gauge
symmetry group of the electro-weak force, and SU3(C) is the symmetry group
of the strong force. SU3(C) consists of all 3x3 complex matrices such that the
conjugated transpose of an element is its inverse, and the determinant of each
element is one. This group requires 8 group generators, which are called the
Gell-Mann matrices, and 8 continuous real parameters.

Both SO3(R) and SU2(C) had a (single) suggestive quantum mechanical
identity involving the sums of squares of the group generators. Such identities
are called Casimirs. SU3(C) has both a quadratic and a cubic Casimir.

To conclude, I’d like to leave you with a few ponderables.
First, if

U1(C) 7→ QED , SU2(C) 7→ electroweak , SU3(C) 7→ QCD ,

what of SU4(C)? Its elements are 4x4 complex matrices, our space-time comes
with 4 dimensions. Some of the elements of the Poincaré Group can be repre-
sented as 4x4 matrices. There are 15 group generators and 3 Casimirs. Is this a
road to quantum gravity? If it was, don’t you think we would hardly have been
the first to figure out that 4 comes after 1, 2, and 3? So why doesn’t it work?
Is it because there is no division algrebra left at 16 dimensions (remember the
quaternions were 4 dimensional and the octonions are 8 dimensional).

Second, what sort of Lie Groups analogous to the SO and the SU series
could we build if we filled our matrices with quaternions drawn from H instead
of using R and C? I’d start, of course, with the 1x1 matrices of quaternions
which have unit norm and see where that leads [to SU2(C) of course, as we just
discovered]. Then look up symplectic Lie Groups!

Third, linear systems of differential equations for a vector of dependent vari-
ables x = {xt(t), x2(t), · · ·xn(t)} can be written in matrix form

d

dt
x = A(t)x + y(t) ,

so it is tempting to think about developing a solution as a matrix exponential
along the general approach we used for solving the equation of radiative transfer:

x(t)“ = ”

∫ t

0

dτ exp

(
−
∫ τ

t

dsA(s)

)
y(τ) + exp

(∫ t

0

dsA(s)

)
x(0) .
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Indeed, if A is restricted to 4x4 matrices, this is exactly the problem we face
to solve the transfer equation for polarized radiation! Numerically, of course,
we would approach this by breaking ds into some finite number intervals and
adding together the sequence of A matrices. But what if A(s) and A(s + ∆S)
do not commute with one another? Do we really mean

exp

(∫ t

0

dsA(s)

)
= lim
n→∞

exp

[
t

n

n∑
i=1

A

(
2i− 1

2n

)]
= lim
n→∞

n∏
i=1

exp

[
t

n
A

(
2i− 1

2n

)]
when we are dealing with matrices that do not commute? How do we assess
the order? An important clue to sorting such things out is the Baker-Campbel-
Hausdorff formula:

eAeB = eC(A,B)

where

C = A+B +
1

2
[A,B] +

1

12
([A, [A,B] + [B, [B,A]]) + · · · ,

a series which does not terminate, and where all the subsequent terms always
carry a commutator [A,B]. So if A and B commute, so do their matrix expo-
nentials, and order does not matter.

9. Further Reading
Perhaps the all around best single book for much of the material in this

Appendix is the classic
?[BM 1] Garrett Birkhoff & Saunders MacLane, A Survey of Modern Algebra,
(New York, NY: The Macmillan Company; 1950), xi+450,
which is a very readable and accessible book even for the would be astrophysicist.

For groups and rudiments of group theory, supplement this tome with
?[J 2] David Joyner, Adventures in Group Theory. Rubik’s Cube, Merlin’s
Machine & Other Mathematical Toys, (Baltimore, MD: Johns Hopkins Univer-
sity Press; 2002), xv+262 ,
a much more whimsical, but no less serious, foray into lots of things one can
actually do with finite groups. Pages 168-172 provide a fascinating table of all
the finite groups with cardinal number of 25 or less. I can spend hours looking
at this and never get bored.

For vector spaces, I have relied heavily on the two superb contributions by
Paul Halmos,
?[H 4] Paul R. Halmos, Finite-dimensional Vector Spaces, 2nd Edn., (Mineola,
NY: Dover Publications; 2017), viii+200,
[H 5] Paul R. Halmos, Introduction to Hilbert Space and the Theory of Spectral
Multiplicity, (Mansfield Center, CT: Martino Publishing; 2013), -+114.
Halmos builds things so logically and consistently that it is hard to get confused,
although, I have found it necessary in the above to try to improve upon his
notation. To go beyond Halmos, try
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[AG 1] N.I. Akhiezer & I.M. Glazman, Theory of Linear Operators in Hilbert
Space. Two Volumes Bound as One, (New York, NY: Dover Publications; 1993),
xi+147/ii+218.

I have given short shrift to topology and (real) analysis, which is required
to bridge the gap between vector spaces over R or C and calculus on manifolds.
In some sense, once you have a metric space, then much of the fascinating and
intriguing bits about topology become, well, largely unnecessary. Had I tried to
fill this gap, I would have made use of two wonderful little volumes by Michael
Gemignani. Start with
[G 6] Michael C. Gemignani, Elementary Topology, 2nd Edn., (Reading, MA:
Addison-Wesley Publishing Company; 1972), xi+270,
and then finish up with,
[G 7] Michael Gemignani, Introduction to Real Analysis, (Philadelphia, PA:
W.B. Saunders; 1971), viii+160.
Finally, for metric spaces in general, try
[B 8] Victor Bryant, Metric Spaces. Iteration and Application, (Cambridge,
UK: Cambridge University Press; 1996), vi+104,
[C 8] E.T. Copson, Metric Spaces, (Cambridge, UK: Cambridge University
Press; 1968), vii+143.

Of the vast number of books that have been written on or about complex
analysis, I am completely smitten by a relatively new offering by Bengt Fornberg
and Cécile Piret,
?[FP 1] Bengt Fornberg & Cécile Piret, An Illustrated Introduction to Analytic
Functions, in press.
Look for it!

For Lie Groups and associated Lie Algebras, Penrose [P 8], Moriyasu [M
2], Cantwell [C 1], and Gelfand et al [GMS 1] will all reward your study
with different aspects of a complicated subject. In addition, a really beautiful
synthesis is provided by
[S 9] Stephanie Frank Singer, Linearity, Symmetry, and Prediction In the Hy-
drogen Atom, (New York, NY: Springer; 2005), xiv+396.
For more tradiitional mathematically-oriented offerings, see
[J 3] Nathan Jacobson, Lie Algebras, (New York, NY: Dover Publications;
1979), ix+331,
[L 5] Harry J. Lipkin, Lie Groups for Pedestrians, (Mineola, NY: Dover Publi-
cations; 2002), ix+182,
[H 6] Robert Hermann, Lie Groups for Physicists, (New York, NY: W.A. Ben-
jamin; 1968), ix+193.

For the wild and whacky world of transfinite cardinal arithmetic, I like
?[K 4] E. Kamke, Theory of Sets, (New York, NY: Dover Publications; 1950),
vii+144.

Lastly, the following two volumes in the Princeton Companion Series are a
must for looking beyond what little I could share with you here.
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?[G 8] Timothy Gowers, ed., The Princeton Companion to Mathematics, (Prince-
ton, NJ: Princeton University Press; 2008). xxi+1034,
[H 7] Nicholas J. Higham, ed., The Princeton Companion to Applied Math-
ematics, (Princeton, NJ: Princeton University Press; 2015), xvii+994.

10. Appendix A: Transfinite Cardinal Arithmetic
For no other reason that it is fun and so bizarre, we present here Georg

Cantor’s “arithmetic” of the transfinite cardinal numbers. From §2, recall that
the smallest “infinity”, is the countable infinity of the integers, which Cantor
denoted by ℵ0. It is not known whether the size of the set of real numbers,
designated 2ℵ0 is the next largest transfinite cardinal number, or if there is one
(or more) transfinite cardinal numbers between these two. It’s an open problem,
and if you find yourself with some spare time on your hands you might try solving
it. At any rate, we do know that for any finite integer n ∈ N,

0 < n < ℵ0 < 2ℵ0 .

The last designation is consonant with the fact that there is a one-to-one map-
ping between the real numbers and the set of all subsets of the integers.

It’s easy to make bigger things still. For example, the set of all subsets of
the real numbers has to be, by definition, bigger than the set of real numbers
(because there is no one-to-one correspondence between them), this set can be
put in one-to-one correspondence with the set of all functions f(x) defined on
the interval x ∈ [0, 1] for example. As the notation gets unwieldy here, this even
larger transfinite cardinal number is sometimes just designated f (for functions)
and 2ℵ0 = c (for continuum) and ℵ0 = d (for denumerable).

Now for the fun part, because the even and the odd numbers both have size
d and we can combine them to give all the integers Z which also has size d, so
it must therefore be the case that in this sense

d + d = d =⇒ 2d = d .

By dividing the integers Z into any finite number n number of disjoint subsets
that have size d, which can be combined to create Z or simply using induction
on the previous equation, you can hopefully convince yourself that

nd = d ,

for any finite n. Perhaps even more bizarre is (hint: think about disjoint subsets
of Z that might be generated by the prime numbers)

dd = d =⇒ d2 = d .

Notice an uncanny resemblance of d to zero! But we can carry out induction on
this equation to obtain the even more unsettling result

d = dn ,

for any finite integer n.

39



However, we will not be able to carry the induction on indefinitely, because,
as we noted previously

2d = c > d

is bigger than d. The logic beyond this point becomes much more intricate.
We’ll simply quote the analogous arithmetic for c:

c = 2d = nd = dd = cn = cd ,

where you will notice, that the only thing missing is anything raised to the c
power. Which, of course, makes sense because we know

2c = f

is bigger than c.
Now, without knowing anything except how to unravel puzzles, and look for

symmetries, can you write down the analogous arithmetic for f based solely on
the arithemtic of d and c?
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