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1. All the Universe’s is a Stage,
The drama of radiation magnetohydrodynamics, herein RMHD, and the

diverse astrophysical systems it describes takes place on the stage of a 3+1
dimensional space-time. We say, three-plus-one, four total, because the spa-
tial dimensions–up/down, north/south, east/west—have much in common while
time is something altogether different. This assertion is based in large part on
our everyday experiences, and experiment. As Hermann Weyl once famously
remarked, in odd-dimensional space-times, odd things can happen, like rooms
do not go dark immediately after one blows out a candle. We’ll take it as a
given that our space-time dimension, and the stage upon which the drama of
RMHD unfolds, is an even 4 dimensions, so that candles do the honorable thing
when extinguished.

Much more can be said about the stage, the scenery and the lighting. Math-
ematically, one usually takes space-time to be a vector space over the scalar
algebraic field of real numbers, denoted by R. These are fairly technical but
fundamentally important characterizations of the stage and scenery. We’ll say
more about precisely what this means later. But basically a vector space is
a (admittedly very large) set of elements—also called vectors—which can be
added and multiplied by scalars to yield other vectors which live in the vector
space. One can also profitably think about the elements of our 3+1 space-time
vector space as events described by a (three-dimensional) location and (one-
dimensional) time.

A precise definition of our space-time stage requires that one specify the set
(or symmetry group) of linear transformations (or automorphisms) from the
vector space to itself which leave the equations of RMHD invariant. Another
way to think of this is to accept that observers all over the universe would like to
set up their coordinate systems and clocks independently of one another. All the
allowable setups in which the equations of RMHD look the same are connected
by this special set of linear symmetry transformations. The set of linear sym-
metry transformations forms an algebraic structure called a Lie Group, which
is simpler than an algebraic field.

Newton’s laws of motion and gravitation, and all the classical physics they
describe, are invariant under the Galilean Group. The Galilean space-time is one
in which observers all use one universal clock, agree on simultaneity of events
in space-time, and agree on accelerations of objects (but not their velocities
or positions). This seemed to be a pretty good 3+1 space-time until Maxwell
finished putting the displacement current in the electromagnetic field equations,
which then implied that light was an electromagnetic wave which propagates at
the same velocity c in any setup in which Maxwell’s Equations are valid.

Every observer in the universe would like to use the same set of Maxwell
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Equations to describe their electromagnetic fields rather than refer them all to
some universal coordinate system based lord knows where and oriented some-
how. The Galilean Group does not permit this. So it was necessary to come
up with a new symmetry group, the Poincaré Group, and a corresponding
Minkowski space-time which allows all observers (in sensible frames of reference!)
to use the same Maxwell’s Equations. In Minkowski space-time, observers no
longer agree on simultaneity, there is no universal clock, and they don’t agree
on accelerations either. Luckily, for observers that are moving very slowly (i.e.,
much less than the speed of light) relative to one another, the transformations
of the Poincaré Group look very much like the transformations of the Galilean
Group, and so to a high degree of approximation, they can keep both Newton
and Maxwell (almost) invariant!

Additional experiments now suggest that our 3+1 space-time is a Minkowski
space-time only locally. Minkowski space-time is in the parlance of general
relativity, a flat space-time. The actual space-time in which we live is now
thought to be locally flat, but is globally curved in a Riemannian sense by the
presence of matter and energy. The curvature of space-time is de facto the
generalization of Newton’s theory of gravitation in the hands of Einstein.

2. And All Matter and Fields Merely Players;
The players in our RMHD drama are the material, or matter, and the elec-

tromagnetic, radiation and gravitational fields. And they all play their parts on
the 3+1 dimensional space-time stage. The concept of a physical (as opposed
to an algebraic) field originated with Faraday. It is at the same time a very
elegant, and extremely confusing, concept, because of the underlying premise of
action-at-a-distance. The philosophical debates about the “reality” of fields are
contentious and complex. We leave them to those who enjoy and excel at these
sorts of things.

There is a one-to-one correspondence between fields and forces. Of the four
fundamental forces in nature, only two are long-range, having quanta with zero
mass: electromagnetism (photon) and gravitation (graviton). And therefore
only these two have classical incarnations. These are in fact the only two fields
which have sensible roles in the RMHD Opera.

Like matter, (physical) fields can store momentum, energy and angular mo-
mentum. In the unfolding drama of RMHD, energy, momentum and angular
momentum are transferred between the material and the two long-range fields.
One would like to understand how, why, when and how much exchange takes
place in order to quantify the dynamics and predict the behavior of astrophysi-
cal systems. We’ll concentrate on energy and momentum in what follows. You
can add in angular momentum as you see fit.

Mathematically, the characterization of the material and the fields live in
the tangent space affixed to each event in the 3+1 dimensional (vector space)
space-time. The set of all tangent spaces over a vector space is called a vector
bundle. This is about all we will try to say about vector bundles.

Although we believe that the matter is ultimately a gas or aggregate of
discrete, localized, entitites, referred to loosely as particles, our approach is to
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smooth out their clumpy intermittency (in space-time) in favor of a continuum
or fluid description. In fact, from a quantum mechanical perspective, these
particles are localized only to a certain degree and exhibit both particulate and
wave-like behavior. This adds yet another level of complication to the reality of
astrophysical material. In some situations, such as the interiors of white dwarf
and neutron stars, the quantum mechanical aspects cannot be avoided.

The continuum fluid description can be derived in a consistent fashion from
the statistical mechanics of the material. A particular constituent, like elec-
trons, say, is described by a distribution function defined on a 6-dimensional
phase space such that the number of electrons in a small volume element dx is
(superscript “e” for electron)

dNe = Ne(x, t)dx = dx
∑
±1/2

∫
dp fe±1/2(x,p, t) ,

where the sum is over the two spin states of the electron. Similar expressions
obtain for protons and Helium atoms and Iron ions and so forth. Such a descrip-
tion is tenable if the number density of constituents is not too large that their
spatial extent begins to limit the available free space between them. When this
occurs, two-particle correlations must be taken into account, as in the treatment
of liquids and dense gasses.

In the amazing state of grace known as statistical equilibrium, the electron
distribution takes on a universal form consistent with the electrons being spin-
1/2 Fermions:

fe±1/2 =
1

h3
1

exp(µe + εp/kBT ) + 1
,

where h = 6.6261...× 10−27 erg sec, is Planck’s Constant, and kB = 1.3807...×
10−16 erg per degree Kelvin, is Boltzmann’s Constant. The chemical potential,
µe(T ) is required to ensure number conservation and εp is the energy of an
electron with momentum p. For large but still subrelativistic electron energies,
this essentially becomes the Maxwellian Distribution

fe±1/2 ≈
1

h3
exp

(
−µe −

|p|2

2mekBT

)
,

where me = 9.1094...× 10−28 gm is the mass of the electron.
Of course what makes astrophysical systems interesting to us is that they are

not generally speaking in any sort of equilibrium and it is their subsequent evo-
lution, perhaps toward an equilibrium, or perhaps not, which we would like to
capture and understand. In the guise of RMHD, we should like to capture this
behavior with the minimum investment in following details—like the evolution
of phase space distribution functions—but which still permits an accurate as-
sessment of outcomes. What in a great many instances comes to our assistance
in this endeavor is that while astrophysical systems are not in statistical equili-
birum globally, much less locally, they are often not particularly “far away” in
a certain sense from this state of grace. This proximity permits a methodology
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in-the-large which is unusually accurate (all things considered) in describing
the subsequent efforts of the system to relax toward both a local and global
statistical equilibrium.

The continuum fluid description of the matter is the method of choice to
achieve this outcome when the typical mean-free-paths for particles between
collisions are everywhere small compared to dynamical length scales of inter-
est. This need not be true for photons, which can often attain mean-free-paths
comparable not only to dynamic length scales, but the entire breadth of the
astrophysical system. The “photon gas” cannot be described in the manner of
a fluid, but it must be treated in such a fashion that both very large and very
small mean free paths can be accommodated as necessary. This is the essential
framework of RMHD that we develop here.

It is worth noting in passing that particles of extremely high energy, that is
εp � kBT , likewise can travel large, possibly macroscopic, distances between
collisions with the material, or gyro-resonant scattering from low-frequency elec-
tromagnetic waves. As such particles are usually extremely rare, their impacts
on bulk material properties can generally be neglected. When they cannot, then
a fairly obvious extension of the RMHD formalism used to treat photons can be
applied to the high-energy tail of the matter’s distribution function, but with
the important caveat that particles, unlike photons, are conserved.

3. They Have Their Exits and Entrances;
RMHD is best formulated in terms of a set of conservation laws, for quan-

tities that we believe/assert must be conserved by the astrophysical system as
it evolves dynamically toward an equilibrium state. The essential conserved
quantites are mass, the full momentum vector (each of the three spatial com-
ponents individually), and the energy. Energy and (vector) momentum can be
stored and transported by the material, the gravitational and electromagnetic
and radiation fields. The mass resides entirely with the material. It follows
that RMHD consists of 17 conservation laws: one for mass and (3+1)×4 for
(vector) momentum (3) and energy (1), for the material (1) , gravitational (2),
electromagnetic (3), and radiation (4) fields, individually.

Of the latter 16 equations, each is of conservation form, for example: the
time derivative of the energy density plus the divergence of an energy flux vec-
tor, equals the exchange of energy between the matter and the three fields.
Symbolically:

∂Eα

∂t
+∇ · Fα =

∑
β

(Ėβ→α − Ėα→β)

where α, β run over M–“matter”, G–“gravity”, EM–“electromagnetic”, and
R–“radiation”. Because

Ėα→β + Ėβ→α = 0 , α 6= β

and Ėα→α = 0 there are 6 independent exchange terms for the energy conserva-
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tion equation. The total energy, irrespective of where it lies, must be conserved:

∂

∂t

∑
α

Eα +∇ ·
∑
α

Fα = 0 .

The essential goal of RMHD is therefore to determine the 4 densities, the 4
fluxes and the 6 exchange terms (14 quantities) for each of the 4 conservation
of (vector) momentum and energy equations (56 quantities in total). There
are no exchange terms for mass conservation—just the mass density ρ and the
mass flux ρu, where u is the fluid velocity—so the grand total is (count ’em) 58
quantities. Luckily, several are zero.

Finally, for the three fields, the conservation laws must be supplemented by
field equations. For gravity, this is the Newton-Poisson Equation. For electro-
magnetism, these are Maxwell’s Equations. For the radiation field, it is the
transfer equation.

4. And Each in Their Time Plays Several Parts.
The electromagnetic (and perhaps the gravitational?) field is best described

in two very different fashions depending upon its temporal variability. At low
frequencies, quasi-static electromagnetic fields are treated in a deterministic
fashion directly from the classical governing field equations, which are Maxwell’s
Equations. At high frequencies, a probabilistic/statistical approach is prefer-
able. For the electromagnetic fields, this high-frequency statistical treatment is
referred to as radiative transfer. Gravitational waves have only just been de-
tected. Never-the-less in the future one could envision a theory of gravitational
radiative transfer which describes the behavior of the gravitational radiation
field.

The dividing frequency/wavelength which separates the deterministic and
probabilistic treatments of electromagnetism is usually determined on a case-
by-case basis, but crudely speaking an interesting milepost in such complicated
deliberations is

kBT

h
= 2.084× 1010

(
T

1 deg K

)
sec−1 ,

hc

kBT
= 1.440× 10−1

(
1 deg K

T

)
cm ,

for a radiation/electromagnetic field that is in statistical equilibrium with the
matter at a temperature T [dimensions: deg Kelvin]. Here, kB is Boltzmann’s
Constant and h is Planck’s Constant and c = 2.9979... × 1010 cm sec−1, is the
speed of light.

The capacity, and indeed the necessity, to formulate a description of the elec-
tromagnetic field concurrently as both a large-scale (low-frequency) wave and as
a statistical ensemble of discrete (high-frequency) particles is a manifestation of
the wave-particle duality essential to quantum mechanics. Photons are Bosons
with spin-one angular momentum h/2π, but, because they travel at the speed
of light (by definition) only two, the ±~, of the three spin angular momentum
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substates are realized, corresponding to right-hand circular polarization and
left-hand circular polarization, respectively.

Let fph±1(x,p, t) denote the (single) photon distribution function for right-
hand (+1) and left-hand (−1) circular polarization, so that

dNph = Nph(x, t)dx = dx
∑
±1

∫
dp fph±1(x,p, t)

is the number of photons in a volume element dx at time t. The relationship
between the momentum of the photon p and its direction of propagation n (a
dimensionless unit vector) is

p =
h

2π
k =

hν

c
n =

h

λ
n .

The fundamental discovery of the late 19th and early 20th century was that
if the photons are in statistical equilibrium with the material at a common
temperature T , then there is a universal form for this distribution function:

fph±1 =
1

h3
1

exp(hν/kBT )− 1
,

irrespective of the sense of circular polarization. (The chemical potential of
the photon, unlike the electron, is zero, essentially because their number is not
conserved!) As h3 is the fundamental volume element in phase space, the photon
occupation number is

N ph
±1 ≡

1

exp(hν/kBT )− 1

as is appropriate for particles which obey Bose-Einstein statistics. For hν �
kBT , the occupation numbers are tiny and the distribution is Maxwellian in the
sense that

fph±1 ≈
1

h3
exp(−hν/kBT ) =

1

h3
exp(−εν/kBT )

where εν is the energy of a photon. However, when hν � kBT then the occu-
pation numbers are immense (as is the case for Bosons). Fermions, thanks to
the Pauli Exclusion Principle can have only one particle in a unit phase space
volume element, hence for Fermi-Dirac Statistics, we must replace the “−1”
with a “+1” in the denominator for N .

Noting that

dp ≡ dp1dp2dp3 =
h3ν2

c3
dνdn

we can write

dNph = Nph(x, t)dx = dx
∑
±1

∫ ∞
0

dν

∫
dn

h3ν2

c3
f±1(x, t;n, ν) ,

and similarly for the energy

dEph = Eph(x, t)dx = dx
∑
±1

∫ ∞
0

dν

∫
dn

h4ν3

c3
f±1(x, t;n, ν) .
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In terms of the specific intensity of the radiation field, which we shall discuss at
length in Act I Scene 4, Iν(x, t : n), we also have

dEph = Iν(x, t;n) [cdt n · dS] dν dn ,

where dS is the normal to an element of surface of area |dS|. The factor in
square brackets is dx. Comparing these two expressions we obtain

Iν(x, t;n) =
∑
±1

h4ν3

c2
f±1(x, t;n, ν) .

Therefore in local thermodynamic equilibrium, we have

Iν(x, t) =
2hν3

c2
1

exp(hν/kBT )− 1
≡ Bν [T ]

where Bν [T ] is the Planck Function, and T (x, t) is the temperature of the ma-
terial and the radiation field. (Notice the factor of “2” counts each of the two
circular polarization states.

At low frequencies, where we shall work directly with the electric and mag-
netic fields, one may therefore envisage that an immense number of photons
in each phase space element are phased in such a manner as to create a quasi-
stationary or large (macroscopic) wavelength structure, which behaves in a clas-
sical fashion according to Maxwell’s Equations. Conversely, at high frequencies,
there are few photons in any phase space element and they behave in a statisti-
cally independent fashion consistent with the use of a single-particle distribution
function f±1 or equivalently Iν .

As we noted in §2, astrophysical systems are not in statistical equilibrium.
While the material mean-free-paths between collisions shall always be smaller
than any macroscopic dynamical scales of interest, the same shall not be true for
photons, which can have inordinately large mean-free-paths. This distinction
is precisely why we treat the material and the radiation differently. Deep in
a stellar interior, for example, photons (like particles) will have extrememly
short mean-free-paths and as we shall see in Scene 4, the use of angular and
frequency moments of the specific intensity will essentially place the treatment
of the radiation and the material on an equal footing.

5. The Script/Libretto
Operas are sung in many different languages, Italian, French, German and

so forth, but the language in which RMHD is written is mathematics. If you
cannot quantify something, you cannot really say anything about it. Algebra,
topology and analysis are the essential cornerstones upon which the libretto is
built.

Too often, the syntax and grammar of mathematics is offputting to the as-
trophysics student. It need not be this way. In these notes we have endeavored,
sometimes to the point of tedium, to provide an acccessible and logical introduc-
tion to key mathematical concepts and definitions in plain english. We have also
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tried to employ a consistent and intuitive notation without undue complication.
Perhaps we even succeed—you get to be the judge.

Finally, we have included an Appendix devoted entirely to the mathematics.
There, we attempt to indicate how concepts and ideas build logically upon
one another. We are not rigorous and rarely provide anything even remotely
resembling a proof. These can be found elsewhere if necessary.

6. Further Reading
There are no monographs or review articles which cover all of the material

in this Opera. Several come close and we mention just a few of them here. In
providing sources for further reading, I am always guided by selecting those
presentations that I have found especially useful or clear; often ones that I
have used directly. There are, for example, very many monographs like Steven
Shore’s An Introduction to Astrophysical Hydrodynamics, which touch upon a
lot of the topics presented in this Opera, but which does so in a superficial and
not particularly satsifying fashion, from my perspective. I will generally omit
these works on the grounds that life is often too short, and resources too limited,
to spend on vehicles that go only part of the distance.

Materials that I have drawn from [read: plagiarized] in developing these
notes are marked by a ?.

In large part, these notes rely most heavily upon:
?[MM 1] Dimitri Mihalas & Barbara Weibel Mihalas, Foundations of Radiation
Hydrodynamics, (New York, NY: Oxford University Press; 1984), xv+718,
which is simply a superb treatment of radiating fluids. If you owned only one
book, this would have to be it. There is now a Dover Publication edition that
will not break the budget. This is a treasure trove of information and methods,
with the only drawback being that it does not treat magnetohydrodynamics to
any degree. For this you need to look elsewhere.

Elsewhere, is the two-volume set by Frank Shu
?[S 1] Frank H. Shu, The Physics of Astrophysics. Volume I: Radiation. Volume
II: Gas Dynamics, (Mill Valley, CA: University Science Books; 1991),
which covers almost everything (and more) discussed here but in somewhat
greater generality and with less emphasis on the formulation of RMHD per
se. Never-the-less all the essential elements needed are here. The books are
extremely insightful, the exposition elegant and concise. And if you could only
own three books, you’d add these two to [MM 1] and would be pretty much set
for the rest of your career in astrophysics. Here, I jest only slightly.

Perhaps one more book worth mentioning at this over-arching level is
?[K 1] Russell M. Kulsrud, Plasma Physics for Astrophysics, (Princeton, NJ:
Princeton University Press; 2005), xviii+468,
which by comparison to the previous three tomes is very light on radiation but
much more heavily invested in gravitation and magnetohydrodynamics from a
wholistic fluid dynamics perspective. The presentation is exceptionally good for
bringing out more of the underlying microphysics which I have swept far under
the proverbial rug in this Opera.
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For the treatment of energetic, i.e., non-thermal, particles by methods sim-
ilar to transport theory used here for photons, an exhaustive, and at times
exhausting, compendium is
[S 2] Reinhard Schlickeiser, Cosmic Ray Astrophysics, (Berlin, DE: Springer;
2002), vx+519,
while a very elegant and comprehensive formalism with numerous applications
can be found in the two-volume set
[M 1] D.B. Melrose, Plasma Astrophysics: Nonthermal Processes in Diffuse
Magnetized Plasmas. Volume I: The Emission, Absorption, and Transfer of
Waves in Plasmas. Volume II. Astrophysical Applications, (New York, NY: Gor-
don and Breach Science Publishers; 1980). ix+269/viii+423.

Enjoy!
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