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Figure 1. The Cartesian coordinate aligned with the uniform gravitational
acceleration (which is 2.74×104 cm sec−2) will be called the altitude in the plots
that follow and will be measured in Mm upward from the bottom of the sim-
ulation. Four different average mass fluxes are plotted in this figure. The blue
squares, which run pretty flat along the zero line are 〈ρu‖〉; which, for all intents
and purposes, is zero. The red squares (which are a bit hard to discern from
the red circles) are |〈ρu⊥〉|. This is a positive-definite quantity. The direction
〈ρu⊥〉 points does change (overall by about 90 degrees) with altitude, but we
have not bothered to plot this. Statistically speaking, no horizontal direction
should be preferred over any other (the boundary conditions are periodic). If
the simulation were run for longer periods of time, one would expect 〈ρu⊥〉 to
tend to zero. The blue circles are the product 〈ρ〉〈u‖〉, with the convention that
a positive velocity is one that moves fluid to a higher altitude. Because the
mean density stratificaiton is positive-definite (see Figure 2), this implies that
the (approximately) lower half of the simulation has a sustained average upflow,
while the upper half has a much smaller downflow concentrated near its base.
The vertical line in this, and subsequent plots, marks the convergence point for
these two average flows. The red circles are 〈ρ〉|〈u⊥〉| ≈ |〈ρu⊥〉|.
Figure 2. This is the mean stratification for the density, 〈ρ〉. The vertical
line marks the location of the convergence point for the mean upflow/downflow
transition shown in Figure 1.

Figure 3. Here we remove the density contrast and plot 〈u‖〉 in blue circles, and
|〈u⊥〉| in red circles. Notice that there is a upflow/downflow divergence point
near the very top of the simulation which was masked by the factor of density
used in Figure 1. MURaM tries to limit the influence of the upper boundary
on the simulation by allowing things to seamlessly (as much as possible) pass
through this boundary if that is their intent. Details of just what this means
can be found in the MURaM reference. For this reason, the mean velocity
develops an outflow, which, although it is in fact large compared to the mean
elsewhere in the simulation, has very little consequence since, from Figure 2,
there is essentially no material here.

Figure 4. This is the mean stratification for the gas pressure, 〈p〉. The vertical
line marks the location of the convergence point for the mean upflow/downflow
transition shown in Figure 1.

Figure 5.(a) In blue circles we plot 〈|u|2〉1/2 and in red circles |〈u〉|. We’ve
already seen the various contributions to the red circles in Figure 3. This plot
indicates that random or turbulent motions of the fluid are much larger in
size than the mean flows. (b) Here we plot separately the various components
that contribute to 〈|u|2〉1/2. The blue circles provide the contribution from the
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vertical turbulent motions, while the two components of the horizontal turbulent
motions are plotted separately with red circles. Notice they tend to lie on top
of one another, consistent with the fact that the simulation has no particular
preference for either of the two horizontal directions. With the green circles we
have just summed the two red curves. The turbulence is said to be isotropic if
all three components of the velocity contribute equally. This obtains between
altitudes of 3.2 and 3.8 Mm and precisely at our upflow/downflow convergence
point!

Figure 6. This is the mean stratification for the temperature, 〈T 〉. The vertical
line marks the location of the convergence point for the mean upflow/downflow
transition shown in Figure 1. The lower (approximate) half of the simulation has
a constant mean temperature gradient, while the upper half is nearly isothermal.

Figure 7. This figure is similar in format to Figure 5(a), but for the magnetic
field instead of the velocity field. The red circles are |〈B⊥〉| ≈ |〈B〉|. The
comparable plot for 〈B‖〉 lies below the bottom of this Figure indicating that
there is essentially no mean vertical flux at any time. The blue circles are
〈|B|2〉1/2. The discrepency in size is a consequence of the fact that the simulation
again finds it difficult to pick a horizontal direction in which to build a mean flux.
The direction of 〈B⊥〉, which is not plotted here, is all over the place. This plot
is characteristic of a local magnetic dynamo—it makes a lot of magnetic field but
hardly any magnetic flux. If the simulation were rotating about some direction
not parallel to gravity, then an important horizontal direction is picked out
(north, say!) and the dynamo now has the opportunity to generate a horizontal
flux. Because ∇ ·B = 0, whatever vertical flux is present initially is maintained
for all subsequent times. In this case, zero.

Figure 8. This plot answers the question how important, dynamically, is the
magnetic field that is generated in this simulation. The red circles are 〈|B/√p|2〉
times 1/8π. The horizontal line indicates the location where the gas pressure
and the magnetic pressure are comparable in size. Therefore we expect the
Lorentz Force to be important dynamically everywhere in the upper third of the
simulation and of minor consequence (except perhaps in some isolated locations)
in the lower half.

Figure 9. This plot is similar in format to Figure 5(b) except now for the
dimensionless quantity plotted in Figure 8. Notice that the contribution of the
vertical magnetic field is always more imporant than either of the horizontal
components individually. This is consistent with magnetic fields being buoyant
and wanting to align themselves with gravity—an effect that is most pronounced
in the vicinity of the upflow/downflow convergence zone.

Figure 10. This is a plot of the mean Planck Function σR〈T 4〉/π. On average,
an energy flux of 6.3 × 1010 erg cm−2 sec−1 is continutally forced through the
computational domain. This value is indicated by the horizontal line. Notice
that this too matches up well with the value of the mean Planck Function in
the vicinity of the upflow/downflow convergence zone.
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Figure 11. This is the same mean temperature 〈T 〉 plotted in Figure 6, but
now plotted against 〈log τ〉 computed at each altitude in Figure 6. Here, τ
is the vertical optical depth measured into the computational domain starting
at ≈ 0 at the upper boundary and increasing inward. The upflow/downflow
convergence point is very near the average optical depth unity surface.

Figure 12. As in Figure 11, the blue circles are again the mean temperature 〈T 〉
plotted plotted against 〈log τ〉. The red circles are 〈T 2〉1/2 and the green circles
are 〈T 4〉1/4. This indicates that the Planck Function, at least above an optical
depth of 10−5, is much larger than σR〈T 〉4/π would suggest. In this region,
intermittent pulses of very high temperature material begin to dominate the
mean of the Planck Function, but have less impact on the average temperature.

Figure 13. Purely for your amusement, Figures (a) through (e) show the mean
of the Planck Function (i.e., Figure 10) plotted against a restricted mean optical
depth scale 〈τ〉. Like we found for T it is definitely the case at small optical
depths that log〈τ〉 6= 〈log τ〉—to be clear, in these plot, the abscissa is actually
〈τ〉. The dependence of the mean Planck Function, which is the mean source
function for MURaM because it assumes LTE everywhere, does not follow any
sensible a+b〈τ〉 behavior that we might expect from radiative effects alone. We
are seeing very clearly the divergence of a complicated mechanical energy flux
carried by the convection and magnetic fields that is contributing to the energy
budget of the material.
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