
PHY 3070
RELATIVITÉ 2

PROBLÈMES: SÉRIE 1

Distribué le: 16 janvier 2025
Chapitres couverts: 2 et 3

Problème 1

Histoire de vous refaire un peu la main avec les fonctions hyperboliques, démontrez que la trans-
formation

ct′ = (cosh θ)ct− (sinh θ)x

x′ = (− sinh θ)ct+ (cosh θ)x

y′ = y

z′ = z

préserve bien l’intervalle pseudo-Euclidien:

ds2 = −c2dt2 + dx2 + dy2 + dz2 .

Démontrez ensuite qu’en introduisant V = c tanh θ, on retombe bien sur la forme habituelle de la
transformation de Lorentz, en terme des facteurs β = V/c et γ = (1− V 2/c2)−1/2.

Problème 2

Refaites le calcul des intervalles de temps propre dτ pour Anne et Buck, soit leur vieillissement
biologique, pour le paradoxe des jumeaux tel que considéré à la section 2.2.6 des notes de cours,
mais cette fois dans le repère (en mouvement) de Anne. Vérifiez que vous retrouvez bien les
mêmes intervalles que dans les notes de cours, où le calcul est fait dans le repère au repos de
Buck.

Problème 3

Considérons une transformation (de Lorentz) d’une dérivée partielle d’un quadrivecteur, soit le
membre de droite de l’équation (2.141) dans les notes de cours; on passe d’un repère (prime) se
déplaçant à vitesse constante V dans la direction positive de l’axe-x, vers un repère (non-prime)
au repos. Vérifiez que pour une telle transformation le second terme au membre de gauche de
l’éq. (2.143) est bien nul.
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Problème 4

Pour une transformation de Lorentz vers un repère se déplaçant dans une direction n dans l’espace
3D Euclidien, on peut montrer que les éléments de la matrice de Lorentz sont donnés par:

Λ0′

0 = γ , Λ0′

j = Λj′

0 = −βγnj ,

Λj′

k = Λk′

j = (γ − 1)njnk + δjk

où j, k = 1, 2, 3, µ, ν = 0, 1, 2, 3, et n · n = (n1)1 + (n2)2 + (n3)2 = 1. Les Λµ
ν′ sont obtenus en

remplaçant β par −β dans les expressions ci-dessus.

(a) Démontrez que Λµ
ν′Λν′

σ = δµσ ;
(b) Démontrez que le repère prime se déplace à vitesse β dans la direction n, lorsqu’observé du

repère non-prime
(c) Démontrez que le repère non-prime se déplace à vitesse −β dans la direction n, lorsqu’observé

du repère prime
(d) Démontrer que pour un repère prime se déplaçant dans la direction positive de l’axe x ≡ x1,

on retrouve bien la forme habituelle de la transformation de Lorentz, telle qu’introduite dans
les notes de cours.

Problème 5

On considère l’espace 3D dont la géométrie est décrite par l’intervalle:

ds2 = (1− kr2)−1dr2 + r2(dθ2 + sin2 θdφ2) ,

avec k = −1, 0, ou +1.

(a) Établissez la forme du tenseur métrique pour cette géométrie
(b) Utilisant l’approche du cercle (voir §3.2.2 des notes au besoin), établissez le rapport cir-

conférence-sur-rayon pour les trois valeurs admises de k.

Problème 6

Considérons l’intervalle invariant suivant:

ds2 = −dt2 + 2dxdt+ dy2 + dz2

Malgré son look un peu bizarre, il décrit un espace pseudo-Euclidien! Déterminez une transfor-
mation de coordonnées qui ramène cet intervalle à sa forme Minskowskienne habituelle.

Problème 7

On considère un espace-temps de type “trou de ver”, dont la géométrie est décrite par l’intervalle:

ds2 = −dt2 + dr2 + (b2 + r2)(dθ2 + sin2 θdφ2)

avec b > 0 et r = 0 indiquant le centre du trou de ver.
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(a) Calculez la surface d’une sphère de coordonnée radiale r = R;

(b) Calculez la distance entre les coordonnées r = 0 et r = R; c’est le “rayon” de votre sphère.

(c) Calculez le rapport surface-sur-rayon de votre sphère, en fonction de la valeur du paramètre
b. Détaillez bien votre raisonnement;

(d) Démontrez qu’à grande distance du trou de ver cette métrique se réduit bien à celle car-
actérisant un espace-temps pseudo-Euclidien; “grande distance” veut dire quoi ici ? Justifiez
bien votre réponse.

Problème 8

Il s’agit de démontrer que la dérivée covariante pour la forme covariante d’un quadrivecteur est
donnée par:

Dbµ
Ds

=
dbµ
ds

− Γν
σρbν

dxρ

ds

Votre point de départ est de supposer que la dérivée covariante obéit au principe de composition
des dérivées:

D(aµbµ)

Ds
= aµ

Dbµ
Ds

+ bµ
Daµ

Ds

Problème 9

Montrez que pour tout vecteur Ai et tout tenseur antisymmétrique Tij ,

DAi

Dxj
− DAj

Dxi
=

∂Ai

∂xj
− ∂Aj

∂xi
,

DTij

Dxk
+

DTjk

Dxi
+

DTki

Dxj
=

∂Tij

∂xk
+

∂Tjk

∂xi
+

∂Tki

∂xj
.

Problème 10

On considère un espace Euclidien à 4 dimension; dans un tel espace (coordonnées (w, x, y, z)), la
surface d’une sphère de rayon R est définie comme:

w2 + x2 + y2 + z2 = R2 .

La surface de cette sphère est donc un espace 3D non-Euclidien, de la même manière que la surface
d’une sphère en 3D dans un espace Euclidien définit un espace 2D non-Euclidien (retournez lire
la §3.2.2 au besoin).

(a) Démontrez qu’un point sur la sphère peut être identifié de manière unique par un triplet de
coordonnées (χ, θ,φ) tel que

x = R sinχ sin θ cosφ , y = R sinχ sin θ sinφ ,

z = R sinχ cos θ , w = R cosχ ,
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confirmant que la surface de notre sphère 4D est bel et bien une hypersurface 3D.

(b) Établissez la forme du tenseur métrique définissant la mesure de l’intervalle ds2 sur cette
hypersurface sphérique.

Problème 11

Une géométrie spatiotemporelle tridimensionnelle (espace 2D + temps) est décrite par l’intervalle
métrique suivant:

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dφ2

(a) Écrivez et développez le Lagrangien associé aux géodésiques dans cette géométrie.
(b) Écrivez les trois composantes de l’équation géodésique telle qu’obtenues à partir du Lagrang-

ien calculé en (a)
(c) Déduisez de votre résultat en (b) la forme des coefficients de connexion non-nuls pour cette

métrique.

Problème 12

Au risque de se répéter, l’intervalle 2D à la surface d’une sphère de rayon R est donné en coor-
données sphériques polaires par

ds2 = R2(dθ2 + sin2 θdφ2)

Le but de ce problème est de vous faire calculer le tenseur métrique associé à un système de
coordonnées Euclidiennes tangent à la sphère au pôle Nord. Considérons le changement de coor-
données suivant:

x(θ,φ) = Rθ cosφ , y(θ,φ) = Rθ sinφ

où le pôle Nord (θ = 0) correspond donc à (x, y) = (0, 0).

(a) Démontrez que la transformation inverse a la forme:

θ(x, y) =

√
x2 + y2

R
, φ(x, y) = atan(y/x) .

(b) Substituez votre résultat en (a) dans l’expression ci-dessus pour l’intervalle, et démontrez
que dans la limite x ≪ 1 et y ≪ 1 le tenseur métrique correspondant s’écrit:

gAB ≃
(
1− 2y2/(3R2) 2xy/(3R2)
2xy/(3R2) 1− 2x2/(3R2)

)

(c) Démontrez qu’au pôle Nord ce tenseur se réduit bien au tenseur identité, et que les dérivées
partielles de ses composantes sont toutes nulles.
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Problème 13

Dans l’espace-temps Euclidien, l’intervalle invariant exprimé en coordonnées cartésiennes dans un
référentiel tournant à vitesse angulaire Ω par rapport à l’axe-z est donné par:

ds2 = −(1− Ω2(x2 + y2))dt2 + 2Ω(ydx− xdy)dt+ dx2 + dy2 + dz2

(a) Démontrez que ceci est équivalent à l’intervalle métrique Euclidien habituel exprimé en co-
ordonnées polaires (r, θ,φ), mais avec φ → φ+ Ωt.

(b) Travaillant dans le référentiel en rotation, obtenez les composantes de l’équation géodésique.
(c) Démontrez que dans la limite non-relativiste, vos équations en (b) se réduisent aux formes

Newtoniennes habituelles, incluant les forces centrifuge et Coriolis.

Problème 14

Relisez bien la section 3.3 des notes de cours; ensuite,

(a) déterminez un ensemble de valeurs de A,B,C,D qui peuvent garantir que les équations (3.29)
soient satisfaites.

(b) Sans faire le calcul complet, appliquez la même logique à l’espace temps quadridimensionnel;
pouvez vous toujours annuler toutes les dérivées premières du tenseur métrique ?

Problème 15

Il s’agit ici de dériver une approximation Newtonienne aux équations géodésiques; cette approxi-
mation est applicable aux particules se déplaçant lentement (v ≪ c) dans un champ gravitationnel
faible et stationnaire. Un champ gravitationnel faible et stationnaire implique qu’on puisse écrire
le tenseur métrique sous la forme:

gµν ≃ ηµν + hµν |hµν | ≪ 1 .

où ηµνest le tenseur de Minkowski et les hµν ne dépendent pas du temps.

(a) Considérant les grandeurs relatives des différentes composantes de la quadrivitesse en régime
non-relativiste, obtenez une forme simplifiée de l’équation géodésique.

(b) Calculez les coefficients de connexion requis pour votre forme simplifiée de l’équation géodésique
obtenue en (a)

(c) À partir de la composante temporelle de l’équation géodésique, montrez que τ ≡ t ici.
(d) À partir des composantes spatiales de l’équation géodésique, exprimez la composante h00 en

termes du potential gravitationnel Newtonien habituel.

Problème 16

Considérons l’intervalle suivant:

ds2 = −dt2 + a2(t)
[
dσ2 + σ2(dθ2 + sin2 θdφ2)

]
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La partie spatiale du tenseur métrique correspondant décrit une géométrie ayant symétrie sphérique,
avec σ jouant le rôle d’une variable “radiale”, mais où l’échelle spatiale dépend explicitement du
temps via la fonction a(t).

(a) Développez les composantes t et σ de l’équation géodésique pour cette géométrie. Vous
n’avez pas à calculer explicitement les coefficients de connexion (ceci exigerait de connaitre
la dépendance fonctionnelle de a sur t).

(b) À partir de votre résultat en (a), démontrez qu’un observateur au repos à un temps t de-
meurera au repos à tout temps subséquent. Justifiez bien votre raisonnement.

Problème 17

Le but ultime de ce problème et des deux suivants est de vous faire apprécier la capacité de
disposer d’approches distinctes pour calculer la même chose!

Le trou de ver (“Wormhole”) est un autre concept favori de la science-fiction, et joue aussi
un rôle majeur dans la trame narrative du film Interstellar. Il a été spéculé qu’un trou de
ver pourrait connecter directement des régions très éloignées de l’espace-temps, et donc que le
traverser reviendrait (effectivement) à voyager dans l’Univers plus rapidement que la lumière (ce
qui est physiquement illégal), sans le faire vraiment (redevenant ainsi légal). Vous comprendrez
l’attrait de l’idée. Un intervalle métrique décrivant une géométrie de type trou de ver est le
suivant:

ds2 = −dt2 + dr2 + (b2 + r2)(dθ2 + sin2 θdφ2)

La Figure 1 ci-dessous présente une “tranche” 2D dans le plan [r,φ], visualisée ici en 3D mais
reprojetée sur le plan (2D) de la feuille.

(a) Établissez la forme du tenseur métrique correspondant à l’expression de l’intervalle invariant
donnée en énoncé;

(b) Calculez les coefficients de connexion non-nuls pour cette métrique;
(c) Développez la composante r de l’équation géodésique;
(d) Supposez que vous êtes situé(e) à une distance radiale r = d au dessus du centre du trou de

ver, vous dirigeant vers lui à une vitesse U le long d’une trajectoire radiale (r = 0 est ici le
centre du trou de ver, soit au centre de la Figure 1, dans la partie la plus étroite du trou).
Par intégration de l’équation différentielle obtenue en (c), calculez le temps (propre) requis
pour passer à une position r = −d de l’autre coté du trou de ver.

Problème 18

Le but immédiat de ce problème est encore une fois de vous faire calculer le temps (propre) de
traversée du trou de ver le long d’une trajectoire radiale, mais en approchant la formulation du
problème d’une manière différente. Reprenant l’expression de l’intervalle invariant donnée au
problème précédent,

(a) Écrivez le Lagrangien pour cette métrique;
(b) Développez la composante-r de l’équation de Lagrange, en n’oubliant pas que L = dτ/dσ;
(c) Developpez la composante-r de l’équation géodésique, mais sans évaluer explicitement les

coefficients de connexion en fonction du tenseur métrique;
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Figure 1: Une tranche dans l’hyperplan [r,φ] de la géométrie du trou de ver. Ici les cercles
sont des lignes de coordonnées en φ, et les lignes leur étant perpendiculaire sont des lignes de
coordonnées en r, i.e., des trajectoires radiales. Le plus petit cercle (trait rouge) au centre de la
structure correspond à la ligne r = 0 dans l’hyperplan (Problèmes 17, 18, et 19).

(d) Par comparaison de vos résultats en (c) et (d), déduisez la forme des coefficients Γr
αβ (α, β =

t, r, θ,φ);
(e) Supposez que vous êtes situé à une distance radiale r = d au dessus du centre du trou de

ver, vous dirigeant vers lui à une vitesse U le long d’une trajectoire radiale (r = 0 est ici le
centre du trou de ver, soit au centre de la Figure 1, dans la partie la plus étroite du trou).
Par intégration d’une équation différentielle pertinente pour r(τ), calculez le temps (propre)
requis pour passer à une position r = −d de l’autre coté du trou de ver.

Problème 19

Le but immédiat de ce problème est exactement le même que les deux précédent: vous faire
calculer le temps de traversée du trou de ver de la Figure 1, le long d’une trajectoire radiale; mais
cette fois en utilisant l’approche basée sur les invariants. Travaillant toujours avec l’intervalle tel
que donné dans le problème 17,

(a) Établissez la forme du tenseur métrique gµν associé à cet intervalle;
(b) Écrivez les vecteurs de Killings applicables à cette métrique. Justifiez bien votre réponse;
(c) Écrivez les invariants de trajectoires applicables à cette métrique (pour une trajectoire d’un

objet massif).
(d) Utilisez les invariants obtenus en (c) pour obtenir une équation différentielle pour r(τ)

décrivant une trajectoire radiale.
(e) Supposez que vous êtes situé à une distance radiale r = d au dessus du centre du trou de

ver, vous dirigeant vers lui à une vitesse U le long d’une trajectoire radiale (r = 0 est ici le
centre du trou de ver, soit au centre de la Figure 1, dans la partie la plus étroite du trou).
Par intégration de l’équation différentielle obtenue en (d), calculez le temps (propre) requis
pour passer à une position r = −d de l’autre coté du trou de ver.
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Problème 20

Vous avez calculé (et recalculé!) l’intervalle de temps propre requis pour traverser un trou de
vers le long d’une trajectoire radiale allant de r = +d à r = −d. Durant cet intervalle de temps
propre, de combien aurait vieilli un(e) observateur(e) situé(e) à grande distance du trou de vers
? Que doit-on entendre par “grande distance” ici ?


