PHY 3070
RELATIVITE 2
PROBLEMES: SERIE 1

Distribué le: 16 janvier 2025
Chapitres couverts: 2 et 3

Probleme 1

Histoire de vous refaire un peu la main avec les fonctions hyperboliques, démontrez que la trans-
formation

ct’ = (cosh )ct — (sinh §)x
x’ = (—sinh6)ct + (cosh §)x

préserve bien l'intervalle pseudo-Euclidien:
ds® = —c?dt? + da? + dy? + dz? .

Démontrez ensuite qu’en introduisant V' = ctanh 6, on retombe bien sur la forme habituelle de la
transformation de Lorentz, en terme des facteurs § = V/c et v = (1 — V2 /c?)~1/2.

Probléme 2

Refaites le calcul des intervalles de temps propre dr pour Anne et Buck, soit leur vieillissement
biologique, pour le paradoxe des jumeaux tel que considéré a la section 2.2.6 des notes de cours,
mais cette fois dans le repere (en mouvement) de Anne. Vérifiez que vous retrouvez bien les
mémes intervalles que dans les notes de cours, ou le calcul est fait dans le repere au repos de
Buck.

Probléme 3

Considérons une transformation (de Lorentz) d’une dérivée partielle d'un quadrivecteur, soit le
membre de droite de I’équation (2.141) dans les notes de cours; on passe d’'un repeére (prime) se
déplagant a vitesse constante V' dans la direction positive de I’axe-z, vers un repere (non-prime)
au repos. Vérifiez que pour une telle transformation le second terme au membre de gauche de
I'éq. (2.143) est bien nul.




Probléme 4
Pour une transformation de Lorentz vers un repere se déplacant dans une direction n dans I’espace
3D Euclidien, on peut montrer que les éléments de la matrice de Lorentz sont donnés par:

A8:’77 A?:A62—57n]7

A =AY = (y = D)nIn® 4 67

ot j,k=1,2,3, p,v =10,1,2,3, et n-n = (n')! + (n?)? + (n®)? = 1. Les A", sont obtenus en
remplacant S par —( dans les expressions ci-dessus.

(a) Démontrez que A AY = §#;

(b) Démontrez que le repeére prime se déplace a vitesse § dans la direction n, lorsqu’observé du
repere non-prime

(c) Démontrez que le repére non-prime se déplace a vitesse —f dans la direction n, lorsqu’observé
du repere prime

(d) Démontrer que pour un repere prime se déplagant dans la direction positive de I'axe z = !,
on retrouve bien la forme habituelle de la transformation de Lorentz, telle qu’introduite dans

les notes de cours.

Probléme 5

On considere I'espace 3D dont la géométrie est décrite par l'intervalle:
ds® = (1 — kr?)~'dr® 4 1(d6* + sin® 0d¢?)

avec k = —1, 0, ou +1.

(a) Etablissez la forme du tenseur métrique pour cette géométrie
(b) Utilisant l’approche du cercle (voir §3.2.2 des notes au besoin), établissez le rapport cir-
conférence-sur-rayon pour les trois valeurs admises de k.

Probléme 6

Considérons l'intervalle invariant suivant:
ds? = —dt? 4 2dzdt + dy? + dz?

Malgré son look un peu bizarre, il décrit un espace pseudo-Euclidien! Déterminez une transfor-
mation de coordonnées qui ramene cet intervalle a sa forme Minskowskienne habituelle.

Probleme 7

On considére un espace-temps de type “trou de ver”, dont la géométrie est décrite par I'intervalle:
ds? = —dt? 4+ dr? 4 (b* 4 r?)(d6? + sin? 6d¢?)

avec b > 0 et » = 0 indiquant le centre du trou de ver.



(a) Calculez la surface d’une sphére de coordonnée radiale r = R;
(b) Calculez la distance entre les coordonnées r = 0 et r = R; c’est le “rayon” de votre sphere.

(¢) Calculez le rapport surface-sur-rayon de votre sphere, en fonction de la valeur du parametre
b. Détaillez bien votre raisonnement;

(d) Démontrez qu’a grande distance du trou de ver cette métrique se réduit bien a celle car-
actérisant un espace-temps pseudo-Euclidien; “grande distance” veut dire quoi ici 7 Justifiez
bien votre réponse.

Probléme 8

Il s’agit de démontrer que la dérivée covariante pour la forme covariante d’un quadrivecteur est

donnée par:
Db, db, dax”
—E TR TV, —
Ds ds 7P ds

Votre point de départ est de supposer que la dérivée covariante obéit au principe de composition

des dérivées: y p
D(a*b,) :aquN b Da

Ds Ds+“Ds

Probléme 9

Montrez que pour tout vecteur A; et tout tenseur antisymmétrique 75,

DA; DA; 94, 0A;
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Probléeme 10

On considere un espace Euclidien & 4 dimension; dans un tel espace (coordonnées (w, z,y, z)), la
surface d’une sphere de rayon R est définie comme:

w4z +y* +2° =R

La surface de cette sphere est donc un espace 3D non-Euclidien, de la méme maniere que la surface
d’une sphere en 3D dans un espace Euclidien définit un espace 2D non-Euclidien (retournez lire
la §3.2.2 au besoin).

(a) Démontrez qu’un point sur la sphere peut étre identifié de maniére unique par un triplet de
coordonnées (x, 0, ¢) tel que

x = Rsin xsinfcos ¢ , y = Rsin xsinfsing ,

z = Rsinycos@ , w = Rcosy ,



confirmant que la surface de notre sphere 4D est bel et bien une hypersurface 3D.

(b) Etablissez la forme du tenseur métrique définissant la mesure de Dintervalle ds? sur cette
hypersurface sphérique.

Probléme 11

Une géométrie spatiotemporelle tridimensionnelle (espace 2D + temps) est décrite par l'intervalle

oM oM\
ds® = — (1 - —) dt* + (1 — —) dr? 4 r?dg¢?
T

métrique suivant:

r

(a) Ecrivez et développez le Lagrangien associé aux géodésiques dans cette géométrie.

(b) Ecrivez les trois composantes de I’équation géodésique telle qu’obtenues a partir du Lagrang-
ien calculé en (a)

(¢) Déduisez de votre résultat en (b) la forme des coefficients de connexion non-nuls pour cette
métrique.

Probléme 12

Au risque de se répéter, I'intervalle 2D a la surface d’une sphére de rayon R est donné en coor-
données sphériques polaires par

ds? = R?*(d6? + sin® 6d¢?)

Le but de ce probleme est de vous faire calculer le tenseur métrique associé a un systeme de
coordonnées Euclidiennes tangent a la sphere au pole Nord. Considérons le changement de coor-
données suivant:

x(0,¢) = RO cos ¢ , y(0,¢) = ROsin ¢
ou le pole Nord (6 = 0) correspond donc a (x,y) = (0,0).
(a) Démontrez que la transformation inverse a la forme:

/12 + y2
9($,y) = T ) ¢(‘/E7y) = atan(y/x) :
(b) Substituez votre résultat en (a) dans ’expression ci-dessus pour lintervalle, et démontrez

que dans la limite x < 1 et y < 1 le tenseur métrique correspondant s’écrit:

dap ~ (1 —29%/(3R%)  2xy/(3R?) >
—\ 2zy/(3R?) 1-22%/(3R?)

¢) Démontrez qu’au pole Nord ce tenseur se réduit bien au tenseur identité, et que les dérivées
q p q
partielles de ses composantes sont toutes nulles.




Probléme 13

Dans 'espace-temps Euclidien, I’intervalle invariant exprimé en coordonnées cartésiennes dans un
référentiel tournant a vitesse angulaire €2 par rapport a ’axe-z est donné par:

ds? = —(1 — Q*(z? + y?))dt? + 2Q(ydx — zdy)dt + dz? 4 dy? 4 d=?

(a) Démontrez que ceci est équivalent a l'intervalle métrique Euclidien habituel exprimé en co-
ordonnées polaires (r, 0, ¢), mais avec ¢ — ¢ + Q.

(b) Travaillant dans le référentiel en rotation, obtenez les composantes de I’équation géodésique.

(c) Démontrez que dans la limite non-relativiste, vos équations en (b) se réduisent aux formes
Newtoniennes habituelles, incluant les forces centrifuge et Coriolis.

Probléeme 14
Relisez bien la section 3.3 des notes de cours; ensuite,

(a) déterminez un ensemble de valeurs de A, B, C, D qui peuvent garantir que les équations (3.29)
soient satisfaites.

(b) Sans faire le calcul complet, appliquez la méme logique a ’espace temps quadridimensionnel;
pouvez vous toujours annuler toutes les dérivées premieres du tenseur métrique ?

Probleme 15

Il s’agit ici de dériver une approximation Newtonienne aux équations géodésiques; cette approxi-
mation est applicable aux particules se déplagant lentement (v < ¢) dans un champ gravitationnel
faible et stationnaire. Un champ gravitationnel faible et stationnaire implique qu’on puisse écrire
le tenseur métrique sous la forme:

Guv = Npw + Py ‘huyl <1.

ou 7,,est le tenseur de Minkowski et les h,, ne dépendent pas du temps.

(a) Considérant les grandeurs relatives des différentes composantes de la quadrivitesse en régime
non-relativiste, obtenez une forme simplifiée de I’équation géodésique.

(b) Calculez les coefficients de connexion requis pour votre forme simplifiée de I’équation géodésique
obtenue en (a)

(c) A partir de la composante temporelle de I'équation géodésique, montrez que 7 = ¢ ici.

(d) A partir des composantes spatiales de I’équation géodésique, exprimez la composante hgg en
termes du potential gravitationnel Newtonien habituel.

Probleme 16

Considérons l'intervalle suivant:

ds? = —dt* + a*(t) [do? + 02(d6? + sin® 0d¢?)]



La partie spatiale du tenseur métrique correspondant décrit une géométrie ayant symétrie sphérique,
avec ¢ jouant le role d'une variable “radiale”, mais ou 1’échelle spatiale dépend explicitement du
temps via la fonction a(t).

(a) Développez les composantes t et o de 1’équation géodésique pour cette géométrie. Vous
n’avez pas & calculer explicitement les coefficients de connexion (ceci exigerait de connaitre
la dépendance fonctionnelle de a sur t).

(b) A partir de votre résultat en (a), démontrez qu'un observateur au repos & un temps ¢ de-
meurera au repos a tout temps subséquent. Justifiez bien votre raisonnement.

Probléme 17

Le but ultime de ce probleme et des deux suivants est de vous faire apprécier la capacité de
disposer d’approches distinctes pour calculer la méme chose!

Le trou de ver (“Wormhole”) est un autre concept favori de la science-fiction, et joue aussi
un role majeur dans la trame narrative du film Interstellar. Il a été spéculé qu’'un trou de
ver pourrait connecter directement des régions tres éloignées de ’espace-temps, et donc que le
traverser reviendrait (effectivement) a voyager dans I’Univers plus rapidement que la lumiere (ce
qui est physiquement illégal), sans le faire vraiment (redevenant ainsi légal). Vous comprendrez
I’attrait de I'idée. Un intervalle métrique décrivant une géométrie de type trou de ver est le
suivant:

ds? = —dt? + dr? + (b + r?)(d6? + sin® Hdp?)

La Figure 1 ci-dessous présente une “tranche” 2D dans le plan [r, ¢], visualisée ici en 3D mais
reprojetée sur le plan (2D) de la feuille.

(a) Etablissez la forme du tenseur métrique correspondant a ’expression de 'intervalle invariant
donnée en énoncé;

(b) Calculez les coefficients de connexion non-nuls pour cette métrique;

(c) Développez la composante r de I’équation géodésique;

(d) Supposez que vous étes situé(e) a une distance radiale r = d au dessus du centre du trou de
ver, vous dirigeant vers lui & une vitesse U le long d’une trajectoire radiale (r = 0 est ici le
centre du trou de ver, soit au centre de la Figure 1, dans la partie la plus étroite du trou).
Par intégration de I’équation différentielle obtenue en (c), calculez le temps (propre) requis
pour passer a une position r = —d de 'autre coté du trou de ver.

Probléeme 18

Le but immédiat de ce probléme est encore une fois de vous faire calculer le temps (propre) de
traversée du trou de ver le long d’une trajectoire radiale, mais en approchant la formulation du
probleme d’une maniere différente. Reprenant ’expression de l’intervalle invariant donnée au
probleme précédent,

(a) Ecrivez le Lagrangien pour cette métrique;

(b) Développez la composante-r de I’équation de Lagrange, en n’oubliant pas que L = dr/do;

(c) Developpez la composante-r de I’équation géodésique, mais sans évaluer explicitement les
coefficients de connexion en fonction du tenseur métrique;



Figure 1: Une tranche dans I'hyperplan [r, ¢] de la géométrie du trou de ver. Ici les cercles
sont des lignes de coordonnées en ¢, et les lignes leur étant perpendiculaire sont des lignes de
coordonnées en r, i.e., des trajectoires radiales. Le plus petit cercle (trait rouge) au centre de la
structure correspond a la ligne » = 0 dans I’hyperplan (Problemes 17, 18, et 19).

(d) Par comparaison de vos résultats en (c) et (d), déduisez la forme des coefficients I, 5 (o, 8 =
t,r, 0, ¢)a

(e) Supposez que vous étes situé a une distance radiale r = d au dessus du centre du trou de
ver, vous dirigeant vers lui & une vitesse U le long d’une trajectoire radiale (r = 0 est ici le
centre du trou de ver, soit au centre de la Figure 1, dans la partie la plus étroite du trou).
Par intégration d’une équation différentielle pertinente pour r(7), calculez le temps (propre)
requis pour passer a une position r = —d de 'autre coté du trou de ver.

Probléeme 19

Le but immédiat de ce probleme est exactement le méme que les deux précédent: vous faire
calculer le temps de traversée du trou de ver de la Figure 1, le long d’une trajectoire radiale; mais
cette fois en utilisant 'approche basée sur les invariants. Travaillant toujours avec I'intervalle tel
que donné dans le probleme 17,

(a) Etablissez la forme du tenseur métrique g, associé & cet intervalle;

(b) Ecrivez les vecteurs de Killings applicables a cette métrique. Justifiez bien votre réponse;

(c) Ecrivez les invariants de trajectoires applicables a cette métrique (pour une trajectoire d’un
objet massif).

(d) Utilisez les invariants obtenus en (c) pour obtenir une équation différentielle pour r(7)
décrivant une trajectoire radiale.

(e) Supposez que vous étes situé a une distance radiale r = d au dessus du centre du trou de
ver, vous dirigeant vers lui a une vitesse U le long d’une trajectoire radiale (r = 0 est ici le
centre du trou de ver, soit au centre de la Figure 1, dans la partie la plus étroite du trou).
Par intégration de I’équation différentielle obtenue en (d), calculez le temps (propre) requis
pour passer & une position 7 = —d de 'autre coté du trou de ver.



Probléeme 20

Vous avez calculé (et recalculé!) lintervalle de temps propre requis pour traverser un trou de
vers le long d’une trajectoire radiale allant de r = +d a » = —d. Durant cet intervalle de temps
propre, de combien aurait vieilli un(e) observateur(e) situé(e) & grande distance du trou de vers
?7 Que doit-on entendre par “grande distance” ici ?




