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Abstract

We present results from a three-dimensional Babcock–Leighton (BL) dynamo model that is sustained by the
emergence and dispersal of bipolar magnetic regions (BMRs). On average, each BMR has a systematic tilt given
by Joy’s law. Randomness and nonlinearity in the BMR emergence of our model produce variable magnetic
cycles. However, when we allow for a random scatter in the tilt angle to mimic the observed departures from Joy’s
law, we find more variability in the magnetic cycles. We find that the observed standard deviation in Joy’s law of

15s = d produces a variability comparable to the observed solar cycle variability of ∼32%, as quantified by the
sunspot number maxima between 1755 and 2008. We also find that tilt angle scatter can promote grand minima
and grand maxima. The time spent in grand minima for 15s = d is somewhat less than that inferred for the Sun
from cosmogenic isotopes (about 9% compared to 17%). However, when we double the tilt scatter to 30s = d , the
simulation statistics are comparable to the Sun (∼18% of the time in grand minima and ∼10% in grand maxima).
Though the BL mechanism is the only source of poloidal field, we find that our simulations always maintain
magnetic cycles even at large fluctuations in the tilt angle. We also demonstrate that tilt quenching is a viable and
efficient mechanism for dynamo saturation; a suppression of the tilt by only 1°–2° is sufficient to limit the dynamo
growth. Thus, any potential observational signatures of tilt quenching in the Sun may be subtle.

Key words: dynamo – magnetohydrodynamics (MHD) Sun: magnetic fields – Sun: activity – (Sun:) sunspots –
Sun: interior – Sun: rotation

1. Introduction

The 11-year solar cycle is a manifestation of the oscillatory
magnetic field of the Sun. The solar cycle, however, is not
regular. The strength and the period have an irregular variation.
The extreme example of such variation is the Maunder
minimum in the 17th century, when sunspots largely
disappeared for about 70years. Indirect studies suggest that
there were many such events in the past (Usoskin 2013).

There is no doubt that a dynamo mechanism, operating in the
solar convection zone (SCZ), is responsible for producing the
solar magnetic cycle. Thus the natural way to study the solar
dynamo is by solving the basic magnetohydrodynamic (MHD)
equations in a rotating spherical shell, encompassing the SCZ.
However, though substantial progress has been made in recent
years in studying fundamental dynamo mechanisms (e.g.,
Charbonneau 2014; Augustson et al. 2015; Featherstone &
Miesch 2015; Hotta et al. 2016; Käpylä et al. 2016; Karak &
Brandenburg 2016), MHD simulations still cannot capture all
processes relevant to the solar dynamo and the solar cycle (Fan
& Fang 2014; Karak et al. 2015). One reason could be that
these simulations do not produce sufficient flux emergence in
the form of tilted bipolar magnetic regions (BMRs) that we see
in the solar observations (e.g., Wang & Sheeley 1989). These
tilted BMRs, when they decay and disperse on the solar
surface, produce a large-scale poloidal field, as proposed by
Babcock (1961) and Leighton (1964). Recent high-quality
BMR (area, tilt, separation, and so on) and polar field data
(measured both directly via polarization and indirectly through
different proxies, including polar faculae and active networks)
suggest that this process is sufficient to maintain the observed
polar flux in the Sun (Dasi-Espuig et al. 2010; Kitchatinov &
Olemskoy 2011; Muñoz-Jaramillo et al. 2013; Priyal et al.
2014).

In the Babcock–Leighton (BL) paradigm, the poloidal flux
produced by the decay of tilted BMRs gets transported
downward, to the bulk of the SCZ, by meridional circulation
and convection. There the differential rotation stretches this
poloidal field to produce a toroidal component—the Ω effect.
This toroidal flux then produces BMRs on the surface
consistent with the Hale polarity rule (Hale et al. 1919; Stenflo
& Kosovichev 2012), although there are some difficulties in
constraining how and where BMRs are formed. By comparing
the observed magnetic flux on the solar surface with the flux
generated by the differential rotation, Cameron and Schüssler
(2015) have argued that the Ω effect can account for the
toroidal flux that ultimately emerges as BMRs. This suggests
that the solar dynamo is of the BLa W type, where BLa is the
symbol for the BL process. Following this basic dynamo loop
and using the turbulent diffusivity and meridional flow for the
flux transport, many authors have developed 2D as well as 3D
BL dynamo models (see reviews by Charbonneau 2010; Karak
et al. 2014a). Most of these models have been able to reproduce
the basic features of the solar cycle.
Possible causes of solar cycle variability in the BL dynamo

framework include variations in (1) convective transport, (2)
the meridional circulation, (3) the differential rotation, and (4)
the BL process. Note that Lorentz forces play a role in all of
these mechanisms, so they are not listed as a separate item.
Flux transport by convective flows (1) definitely has

stochastic elements and nonlinear feedbacks due to the
dynamo-generated magnetic field and has been studied by
some authors (e.g., Kitchatinov et al. 1994; Karak et al. 2014b).
However, this is a challenging problem that will require a
unified understanding of small- and large-scale dynamo action
to fully address. The influence of the meridional circulation in
particular (2) has been investigated by a number of authors and
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has been shown to give rise to cycle variability, including grand
minima and grand maxima (e.g., Charbonneau & Dikpati 2000;
Lopes & Passos 2009; Karak & Choudhuri 2011, 2013; Upton
& Hathaway 2014). Weak variations in the differential rotation
(3) are known to exist, namely torsional oscillations. However,
the observed correlation between the polar flux at cycle
minimum and the sunspot number of the following cycle
suggests that the Ω effect may be largely linear and therefore
not a major source of cycle variability (Jiang et al. 2007; Wang
& Sheeley 2009; Muñoz-Jaramillo et al. 2013).

Here we focus on mechanism (4), namely the variability
induced by the BL process. The poloidal field generated in this
process largely depends on the amount of flux in BMRs, the
frequency of BMR eruptions, and the tilt angles of BMRs. All
of these quantities have temporal variations. Since, on average,
there are only about two new BMRs per day on the solar
surface, the fluctuations in any of these quantities can lead to a
considerable variation in the poloidal field and consequently
the cycle strength.

In this work, we investigate mechanism (4) in an innovative
way, using our 3D STABLE (Surface flux Transport And
Babcock–LEighton) solar dynamo model (Miesch & Dikpati
2014; Miesch & Teweldebirhan 2016; hereafter MD14
and MT16, respectively). We focus in particular on the
influence of the observed tilt angle distribution by superposing
a random scatter on the Joy’s law prescription that we used in
previous work. We have also introduced tilt angle quenching
into STABLE as a mechanism for dynamo saturation.

In addition to implementing tilt angle scatter, we have also
modified the flux distribution of BMRs. Previously, the flux of
each BMR was directly linked to the low-latitude toroidal flux
at the base of the CZ. In this study, we improve the realism of
the model by choosing a BMR flux distribution based on solar
observations. Furthermore, we consider two alternative ways to
regulate the photospheric flux budget. The first is to increase
the amount of magnetic flux in each BMR by shifting the flux
distribution toward larger values when the toroidal flux near the
base of the CZ is large. The second is to keep the flux
distribution the same and vary the rate of BMR emergence in
response to the toroidal flux near the base of the CZ. In this
latter approach, the range of emergence rates we use is
consistent with solar observations.

In our study, we first ask several questions, namely, whether
the solar dynamo can be maintained through the observed
properties of BMRs without any other source of the poloidal
field, whether the quenching in the tilt angle is sufficient to
saturate the dynamo, and how robust this model is with
different algorithms of BMR deposition frequency and with
different values of diffusivity. Then, we explore the variation of
the magnetic cycle due to the observed variation in the BMR
tilt angles.

Random scatter in BMR tilt angles has been proposed by
many authors as a possible mechanism to explain the irregularity
of the solar cycle, and it has been studied previously within the
context of 2D BL dynamo models (e.g., Charbonneau &
Dikpati 2000; Jiang et al. 2007; Choudhuri & Karak 2009;
Olemskoy & Kitchatinov 2013), surface flux transport (SFT)
models (Jiang et al. 2014; Hathaway & Upton 2016), and in a
coupled 2D×2D BL/SFT dynamo model (Lemerle &
Charbonneau 2017). However, to our knowledge, our model is
the first 3D solar dynamo model to explicitly investigate the

implications of tilt angle scatter with regard to solar cycle
variability.
After analyzing the features of magnetic cycles obtained

from this model, we explore whether the variation in the tilt
angle can also lead to extreme cycle modulation, such as grand
minima and maxima. Finally, we explore the robustness of our
model and, in particular, whether it continues to produce
magnetic cycles when the tilt angle scatter becomes very large.

2. Model

In our model, we solve the induction equation

B
V B B

t
1tg h¶

¶
= ´ + ´ -  ´{( ) } ( )

in three dimensions (r, θ, f) for the whole SCZ with
0.69R�r�R (R=radius of the Sun), 0�θ (colatitude)�π,
and 0�f�2π. In the simulations reported here, our model is
kinematic, and the velocity field V is composed of axisymmetric
meridional circulation (vr and vθ) and differential rotation
(v r sin qf ), such that

V rv r v r r r, , sin , . 2r q fq q q q= + + Wq( ) ˆ ( ) ˆ ( ) ˆ ( )

For the meridional circulation, we use the profile given in
many previous publications, particularly in Karak & Cameron
(2016; Equation (5)), which closely resembles the surface
observations. Hence, without repeating the mathematical
equations of this flow, we just make a few comments: near
the surface it is poleward with a maximum speed of 20m s−1,
near the base of the CZ it is equatorward with a speed of about
2m s−1, and it smoothly goes to zero at the lower boundary
(0.69R); see the dashed line in Figure 1(a).
Note that in this study we have considered a single cell

circulation. Recent helioseismic inversions suggest that this
may not be accurate, but they have not yet converged on a
robust determination of what the structure and amplitude may
in fact be (Jackiewicz et al. 2015; Rajaguru & Antia 2015;
Zhao & Chen 2016). In the absence of this information and to
make contact with previous BL dynamo models, we have
retained the single-celled profile. Others have investigated the
role of multicelled circulation profiles in 2D BL/flux transport
dynamo models, and they have demonstrated that these models
are still viable, provided that the circulation near the base of the
convection zone is equatorward and that the convective
transport of the poloidal flux (typically parameterized by a
turbulent diffusion and a magnetic pumping) is sufficiently
efficient (Jouve & Brun 2007; Hazra et al. 2014; Belucz et al.
2015; Hazra & Nandy 2016).

Figure 1. Radial variations of (a) the latitudinal component of the velocity vθ at
midlatitude and (b) the turbulent diffusivity th used in the advection-dominated
model (dashed red line) and the diffusion-dominated model (solid line).

2

The Astrophysical Journal, 847:69 (17pp), 2017 September 20 Karak & Miesch



For differential rotation, we use an analytic function that
captures the observed helioseismic data. This profile has
been used in many previous publications; for example, see
Equation (3) of MT16.

The g , appearing as an advective term in Equation (1), is the
magnetic pumping. In most of the simulations, we include a
downward magnetic pumping, motivated by the study of Karak
& Cameron (2016). Thus we write rrrg g= ( ) ˆ, where
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Due to the lack of knowledge of the exact latitudinal variation
of rg , we take it to be only a function of radius. As discussed in
Karak & Cameron (2016), the pumping is efficient near the
surface (mainly caused by the topological asymmetry of the
convective flow), while the deeper convection is weaker and
less stratified (Spruit 1997). The pumping helps to boost the
efficiency of the dynamo by suppressing the diffusion of
toroidal flux through the surface. The amount of pumping used
in each simulation varies depending on the value of diffusivity
used. Hence CZg and Sg will have different values in different
simulations.

In the present model, we do not consider the small-scale
convective flow, and thus to capture its mixing effect, we
consider an effective turbulent diffusivity represented by th in
Equation (1). This is actually the sum of the molecular and
turbulent diffusivities. We do not have a reliable estimate of th
in the deep CZ. The mixing-length theory and other theoretical
studies suggest that the value of th in the midconvection zone is
of the order of 1012cm2s−1 (Parker 1979; Miesch et al. 2012;
Cameron and Schüssler 2016; Simard et al. 2016). Near the
surface, at least, it is fairly constrained by observations, as well
as by the SFT model (e.g., Komm et al. 1995; Lemerle et al.
2015), and it is about a few times 1012cm2s−1. Hence, in our
model, we choose the following radial dependent profile for th :
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where 1.0 10RZ
9h = ´ cm2s−1, and 3 10S

12h = ´ cm2s−1.
We have broadly two sets of simulations. In one set,

5 10CZ
10h = ´ cm2s−1, while in the other set, CZh =

1.5 1012´ cm2s−1; see Figure 1(b). Thus the first set of
simulations will be close to our previous publications
(MD14, MT16) in terms of the diffusion, while the latter set
will be in the so-called diffusion-dominated regime, where
diffusive flux transport across the CZ dominates over advection
by the meridional circulation (e.g., Jiang et al. 2007; Yeates et al.
2008).

A major component of our model is the SpotMaker algorithm,
which deposits BMRs on the surface based on the toroidal
flux near the base of the convection zone. In SpotMaker, we
do the following steps. First, we compute the strength of the

spot-producing toroidal flux near the base of the CZ:

B t h r B r t dr, , , , , , 5
r

r

a

b

òq f q f= fˆ ( ) ( ) ( ) ( )

where r R0.715a = , r R0.73b = , and h r h r ra0= -( ) ( )
r rb -( ) with h0 as a normalization factor. We note that to have
a prominent equatorward migration of sunspots, the spot-
producing toroidal flux is computed above the tachocline where
the flow is strongest. A necessary (but not sufficient) condition to
produce a BMR is that B t, ,q fˆ ( ) exceeds a threshold field
strength Bt q( ). If this condition is satisfied on multiple grid points,
then out of those points, one point is chosen randomly. Unlike
previous publications (MD14, MT16), where a fixed value was
taken for this threshold field strength, here we make it dependent
on latitude such that it increases exponentially toward the higher
latitudes. Hence we choose

B B

B

exp 2 , for 2
exp 2 , for 2, 6

t t

t

0

0 
q g q p q p

g p q q p
= - >
= -

( ) [ ( )]
[ ( )] ( )

where γ=5 and B 2t0 = kG. The rapid increase of Bt in
latitude is chosen to have sufficient spots near the equator and
no spots beyond about ±30° latitudes. The advantage of using
such latitude-dependent Bt is that now we do not have to
choose any arbitrary masking function to suppress spots above
a certain latitude, which was used in many previous works
(e.g., Dikpati et al. 2004; MD14). Another advantage is that
now the upper latitudinal bound for BMR emergence is not
fixed, and it can vary depending on the toroidal field strength in
each cycle and even in each hemisphere. This is consistent with
observations that stronger cycles start producing sunspots at
slightly higher latitudes (Solanki et al. 2008). Other than some
tachocline instabilities that might be operating in higher
latitudes to destabilize the spot-producing toroidal field
(Gilman & Dikpati 2000; Parfrey & Menou 2007; Dikpati
et al. 2009), we have to confess that, at the moment, we do not
have a clear understanding of why BMRs do not appear above
a certain latitude, and the arbitrary masking function or the
latitude-dependent Bt chosen here may be regarded as a
semiempirical model.
When SpotMaker produces a BMR, we do not reduce the

flux locally at the progenitor location, although we do place
opposing flux near the surface by virtue of the 3D structure of
the BMRs; see Section 2.3 of MT16 for details on this issue.
Therefore, at every time step of our numerical integration, if the
BMR emergence is determined only by the criterion
B B, tq f q>ˆ ( ) ( ), then we may have BMRs emerging at every
time step, and the total number of BMRs will largely be
determined by the integration time step and the value of Bt0.
Thus, to make the emergence rate independent of the numerics
and more realistic, we specify a time delay between two
successive BMRs based on solar observations. The time delay
distribution obtained from the observed sunspot data (Royal
Observatory Greenwich—USAF/NOAA sunspots1) during
1900–2002 is shown by the thick solid line in Figure 2. We

1 Compiled by David Hathaway, http://solarscience.msfc.nasa.gov/
greenwch.shtml.
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approximate this data by a log-normal distribution given by

P
1

2
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, 7
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d
2

d
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s
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⎤
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( )
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where ds and dm are specified in terms of the mean st and mode

pt of the distribution such that 2 3 ln lnd
2

s ps t t= -( )[ ] and

lnd d
2

pm s t= + . When 0.8pt = days and 1.9st = days, the
above log-normal distribution reasonably fits the observed data,
as shown by the red dashed line in Figure 2. We, however, note
that the observed time delay shown by the thick solid line in
Figure 2 is obtained only from the three years of data during
each solar maximum, and not from the full period of
1900–2002 data. Actually, during the solar minimum, we
observe less frequent BMR, and the time delay is much longer;
see the thin solid line in Figure 2. Thus the time delay, in
reality, is cycle-phase dependent—it is shortest at the peak of
the cycle and longest at the minimum. However, as a first step,
we shall perform a set of simulations by taking fixed values of

pt =0.8 days and st =1.9 days, obtained from the solar
maxima data. Later, in Section 4, we shall implement a solar-
cycle-dependent time delay by considering pt and st as
dependent on the toroidal field. We note that the time delay
in each hemisphere is always computed separately using
Equation (7) so that no hemispheric symmetry is imposed in
this process.

Just to summarize the whole idea, SpotMaker produces the
first BMR once the condition B B, tq f q>ˆ ( ) ( ) is satisfied.
Then after a time dt since the time of the previous BMR
appearance, the SpotMaker produces the next BMR only when
both conditions B B, tq f q>ˆ ( ) ( ) and dt N S D ( ), where N SD ( )

is the time delay randomly obtained from the long-normal
distribution given by Equation (7) for the northern (or southern)
hemisphere. The superscript “N(S)” on Δ is to emphasize that
the time delay between BMRs can be different in two

hemispheres because the probability is computed separately
in two hemispheres.
Once SpotMaker decides to produce a BMR on the surface, we

need to specify its flux, tilt, separation, and spatial distribution. In
comparison to previous publications (MD14; MT16; Hazra et al.
2017), here we have some changes in order to make a close
connection with observations. In the previous model, the BMR
flux was directly related to the toroidal field at the base of the CZ,
while in this model, it is obtained from the observed distribution.
The observed BMR flux distribution can be approximated using a
log-normal distribution:

P
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, 80
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2s p
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s
F = F

F
-
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F
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with 51.2m =F and 0.77s =F . Certainly, in the low-flux
regime, a log normal is not the best fit of the observed flux as
there are many BMRs with fluxes smaller than 5×1021 Mx.
However, smaller BMRs may not contribute much net poloidal
flux because of their smaller flux and large scattered tilts
(Stenflo & Kosovichev 2012). The above distribution with

10F = , plotted in Figure 3, is obtained from Muñoz-Jaramillo
et al. (2015) based on observations of Solar and Heliospheric
Observatory/Michelson Doppler Imager magnetograms during
1996–2010. Different data sets in their publication produced
slightly different values of mF and sF (see also Zhang et al.
2010; Lemerle et al. 2015). Once the flux of the BMR is
obtained from the above distribution, the radius is automati-
cally set by specifying a fixed value for the surface field
strength of 3kG. As discussed in MT16, if this radius turns out
to be comparable to or smaller than the grid size of the domain,
then we set the radius at five times the grid size, and the field
strength is reduced accordingly.
The half distance between centers of two spots of a BMR is

chosen to be 1.5 times the radius of the spot. As in our earlier
model, we have assumed spots to be disconnected from their
parent spot-producing fields. The surface fields are extrapolated
downward using a potential field approximation as described
in MT16, which yields the full 3D structure of a BMR. In our
model, BMRs are assumed to be rather shallow by choosing the
radial field of the spots to be zero at r R0.9s = .
In our previous publications (MD14; MT16), we have used

the standard Joy’s law, cos0d d q= (Hale et al. 1919; Dasi-
Espuig et al. 2010; Stenflo & Kosovichev 2012), for tilt angles
of BMRs. Here we make two modifications in it. One is made
by adding a random component fd around Joy’s law. In
observations, we notice that Joy’s law is a statistical law, and
there is a considerable scatter around it (Howard 1991; Stenflo
& Kosovichev 2012; McClintock et al. 2014; Senthamizh

Figure 2. Normalized histograms of the time delays between the successive
BMR emergences obtained from the observed data during 1900–2002. The
thick solid line is obtained by taking data within a three-year window at each
cycle maximum, while the thin solid line represents the rest of the data,
covering the solar minimum periods. The dashed red line is the fitted log-
normal distribution with { , 0.8, 1.9p st t º} { }days, as given by Equation (7).
The dotted line is obtained from our model (Run B9), in which the time delay is
related to the magnetic field through Equation (12) in Section 4.

Figure 3. Normalized flux distribution of BMRs used in our dynamo model.
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Pavai et al. 2015). Particularly, from the analysis of BMRs
measured during 1976–2008, Wang et al. (2015) reported that
the fluctuations of the tilts roughly follow a Gaussian
distribution:

f
1

2
exp 2 , 9f f

2 2d
s p

d s= -
d

d( ) [ ( )] ( )

with 15s » d . We understand that a Gaussian is not the best fit
to the observed fluctuations of the data because of its
asymmetric shape and considerable outliers near the two ends
of the distribution. However, to capture the broad picture of the
tilt fluctuations in our model, the above Gaussian distribution is
sufficient (see also Figure 3 of Stenflo & Kosovichev 2012 for
the distribution of BMR tilts within 15°–20° latitudes). Another
modification to Joy’s law that we implement here is the tilt
angle saturation; the tilt is suppressed for strong progenitor
toroidal fields. Thus the tilt used in our model is given by

B t B

cos

1 , ,
, 100 f

sat
2

d
d q d

q f
=

+
+ ( ˆ ( ) )

( )

where 350d =  and Bsat (the saturation field strength) is chosen
to be 1×105 G. In thin flux tube simulations, tilts of the
BMRs are produced by the Coriolis force acting on the toroidal
flux tubes during their rise in the CZ (e.g., D’Silva &
Choudhuri 1993; Fan et al. 1994). When the spot-producing
toroidal field is strong, the field rises fast and the Coriolis force
does not get much time to tilt it. Thus, from this theoretical
argument, we expect some quenching in the tilt (see Işık 2015
for a possible explanation of tilt quenching along this line). In
observations, we find some evidence of tilt quenching with the
BMR flux (Dasi-Espuig et al. 2010; Stenflo & Kosovichev
2012), although the picture is less transparent because of the
lack of detailed analysis. In any case, we shall explore whether
the above magnetic-field-dependent nonlinearity is sufficient to
stabilize the growth of the magnetic field in Equation (1), and
in future work, we shall consider other possible saturation
mechanisms. We note that in our previous model
(MD14; MT16) dynamo saturation was implemented by
saturating the flux content of BMRs rather than their tilt. The
tilt angle saturation we use here has more physical justification.

For boundary conditions, we use a radial field on the surface
and a perfect conductor at the lower boundary. For the initial
seed field, we use a weak dipolar magnetic field.

3. Results for Fixed BMR Delay Distribution

As discussed in Sections 1 and 2, we consider two ways in
which the photospheric flux is linked to the deep toroidal flux.
The first is by making the BMR flux proportional to the deep
toroidal flux. These runs are labeled with “A” and discussed in
this section. The second is to fix the flux distribution and
instead link the BMR emergence rate to the deep toroidal flux.
These runs are described in Section 4.

For the model with fixed delay distribution, we scale the
observed BMR flux with the toroidal field at the base of the CZ,
such that the BMR flux in the model is sF =
B t B, ,s s satq f F( ˆ ( ) ) . Here, ( ,s sq f ) is the location of the BMR,
and Φ is the BMR flux obtained from the observed distribution
given in Equation (8). Using this BMR flux and other
ingredients as specified in Section 2, we run the dynamo

model to simulate the solar cycle. However, when we use the
observed BMR flux distribution with 10F = , we get decaying
solutions for different parameters of the model. RunsA1–A2 in
Table 1 represent these decaying solutions. Boosting the
observed flux distribution even by a small factor does not help.
We realized that when the flux distribution is increased at least
by a factor of 28 (i.e., 280F = ), we get a growing solution; see
RunsA3–A4. The sustained dynamo action is easier if we add
a downward magnetic pumping ( rg ); compare RunA3 with A5
and RunA4 with A6. Figure 4 displays time evolutions of
magnetic fields for about 300yr from RunA6, in which a
surface magnetic pumping ( Sg ) of 2m s−1 is used. It is apparent
that the magnetic field is stable and the overall cycle amplitude
is limited in time. The dynamo saturation mechanism is the
quenching of the tilt angle introduced through Equation (10).
Because of this quenching, the mean tilt, shown by the dashed
line in Figure 5(a), deviates from the actual Joy’s law:

cos0d d q= (solid red line). We note that a recent coupled
2D×2D BL model of Lemerle & Charbonneau (2017) also
produces a stable solution with the tilt quenching.
From the butterfly diagrams in Figure 4, we recognize that

the magnetic field is largely dipolar because both the toroidal
and radial fields are asymmetric across the equator. However,
to make a quantitative measure of the equatorial symmetry of
different components of the magnetic field, we compute the
symmetric parity (SP) by cross-correlating the fields between
two hemispheres in the same way as done in Chatterjee et al.
(2004):

r t
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where j stands for the r, θ, or f component; Bj
N =

B r t, , ,j q fá ¢ ñf( ) , B B r t, , ,j
S

j p q f= á ¢ ñf( – ) , and overlines denote
the average over period T. To identify the short-term temporal
variation of the parity, we take T=3.73 yr. In all the cases, we
compute the parity at a fixed radius (at 0.72R for Bf and R for
Br) and average over latitudes ( 2 p q p< ). From the above
definition of parity, we expect SP 1j = for a perfect symmetric
field and −1 for an antisymmetric field. We note that for
a dipolar field, SP 1r = - , SP 1=q , and SP 1= -f , and the
reverse is true for the quadrupolar field.
On taking the toroidal field at r R0.72= and the radial field

at r=R from RunA6, we compute the mean parity of the
toroidal field SP tf( ) and the mean parity of the radial field

tSPr( ). These quantities are displayed in Figure 6(d) for a few
cycles. We observe that the parity of the bottom toroidal field is
more antisymmetric than that of the surface radial field. The
latter is largely deviated from the −1 mode due to continuous
BMR eruptions at low latitudes. Thus if we had computed the
parity of high latitudes Br, then we would have obtained the
value close to −1 (dipolar). When we compute the average
parity over the whole simulation run, we obtain SP 0.11r = -
and SP 0.85= -f . The respective standard deviations of these
parities are 0.23 and 0.22, suggesting that they have
considerable deviations from their antisymmetric modes. These
are seen in Figure 6(d), where parities tend toward
the symmetric (quadrupolar) mode during solar maxima when
new BMRs emerge on the surface. Then the decay of these
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BMRs produces largely antisymmetric (dipolar) fields at the
solar minima. This is broadly consistent with observations
(DeRosa et al. 2012).

Returning to Figure 4, we notice that this simulation also
produces polarity reversals with an average period of 9.6yr,
equatorward migration of the toroidal field at low latitudes, and
poleward migration of the radial field, all broadly consistent
with observations.

As given by Equation (10), the tilt angle in this model has a
random component following a Gaussian distribution with

15s = d around Joy’s law. Because of this random component,
the actual tilt angle in our model has a considerable variation.
Since the poloidal field generated by the BL mechanism
depends sensitively on the BMR tilt (Dasi-Espuig et al. 2010;
Jiang et al. 2014; Hazra et al. 2017), its random scatter gives
rise to cycle variability. This greatly enhances the relatively
modest cycle variability arising just from the random time
delay (MT16).

The variation of tilt angle has an even larger effect when the
tilt acquires a “wrong” sign, that is, negative in the northern

hemisphere and positive in the southern hemisphere. The word
“wrong” here is not intended as a value judgment. Rather, the
“right” sign of a tilt is defined by Joy’s law. The random
fluctuations can lead to a tilt that violates Joy’s law. This is the
sense in which it is “wrong.” We note that having a wrong tilt
does not necessary imply that the BMR violates Hale’s polarity
rule. Wrong tilts happen frequently in our model, as seen in
Figures 5 or 6(b), and produce a poloidal field of the opposite
polarity. This is reflected in Figure 4(a) and more clearly in
Figure 6(a), where we notice a mixed polarity field and
frequent polar surges of opposite polarity. This type of mixed
polar field is frequently found in observations; see, for
example, Figure 8(a) of McIntosh et al. (2015). The radial
polar flux density (flux per unit area) as shown in Figure 4(c)
has a considerable cycle-to-cycle variation. The amount

of variation is B B
N i

N
r r

1
1

avg
2

iå -= ( ) /B 100% 12.2%r
avg ´ =

(where Br is the peak value of the radial flux density computed
by averaging over 15° around the pole, B Br N i

N
r

avg 1
1 i= å = , and

N=34, the total number of cycles).

Table 1
Summary of the Simulation Runs

Run 0F sd CZh CZg , Sg Btor˜ Br˜ Parity of Bf Period # of BMRs Variability of
(cm2 s−1) (m s−1) (kG)(G) [SPf ( SPs f, TSP )] (yr) (per cycle) Br SSN

A1 1 0° 8.0×1010 0,0 subcritical L L L L
A2 1 0° 5.0×1010 0,0 subcritical L L L L
A3 28 0° 8.0×1010 0,0 58310 −0.70 (0.30, 123) 9.0 3132 9%L
A4 28 15° 8.0×1010 0,0 56300 −0.77 (0.24, 125) 8.9 3157 11%L
A5 16 0° 8.0×1010 0,2 67300 −0.89 (0.18, 141) 9.4 3336 9%L
A6 16 15° 8.0×1010 0,2 65290 −0.85 (0.23, 143) 9.6 3374 11%L
A6′ 16 15° 8.0×1010 0,2 56270 −0.70 (0.29, 142) 9.5 3188 10%L

AB1 16 15° 8.0×1010 0,2 1501000 +0.82 (0.20, 15) 7.6 33371 24%4%

B1 1 15° 1.5 1012´ 0,0 subcritical L L L L
B2 170 15° 1.5 1012´ 0,0 3908300 −0.92 (0.20, 165) 5.2 11981 14%2%
B3 1 15° 1.1 1012´ 0,15 subcritical L L L L
B4 1 15° 1.5 1012´ 4,20 subcritical L L L L
B5 1 15° 1.0 1011´ 2,20 1112 −0.67 (0.32, 296) 13.2 568 52%59%
B6 1.5 15° 1.5 1012´ 2,35 8.537 −0.96 (0.13, 243) 14.9 1343 12%19%
B7 1.3 15° 1.5 1012´ 5,25 6.821 −0.96 (0.10, 427) 11.2 994 18%28%
B8 1.5 15° 1.5 1012´ 10,20 1246 −0.89 (0.21, 317) 7.3 2420 40%42%
B9 2.4 0° 1.5 1012´ 2,20 22140 −0.98 (0.07, 1092) 10.5 3947 11%14%
B10 2.4 15° 1.5 1012´ 2,20 30190 −0.96 (0.10, 1465) 10.5 6052 35%41%
B11 2.4 30° 1.5 1012´ 2,20 31185 −0.90 (0.16, 4262) 10.8 6119 46%54%
B12 3.4 15° 1.5 1012´ 2,20 38190 −0.97 (0.08, 1162) 12.8 10817 17%26%
B13 2.4 15° 1.5 1012´ 2,20 21160 −0.94 (0.11, 734) 9.3 4366 23%30%

C1 2.4 15° 1.5 1012´ 2,20 26170 −0.94 (0.12, 493) 9.9 4641 26%29%

D1 3.0 15° 1.5 1012´ 2,20 1464 −0.90 (0.16, 1339) 13.9 1190 22%31%

Notes. In the A series of simulations, the delay distribution of BMR eruptions is fixed (i.e., fixed st and pt ), but the observed flux
distribution is scaled by the toroidal field at the base of the CZ, while in all other simulations the delay distribution is dependent on the
magnetic field through Equation (12) but the flux distribution is fixed. Runs B12, B13, C1, and D1 are the same as Run B10, except in
RunB12 Bsat is four times smaller and 3.40F = , in RunB13 th in the tachocline is same as that in the CZ, in RunC1 the quenching is
in the BMR flux and not in the tilt, and in RunD1 different forms of magnetic-field-dependent st and pt are used (see text). The rms
values of the mean toroidal and poloidal fields over the entire computational domain are denoted by Btor˜ and Br˜ , respectively. Symbols
SPf and SPs f respectively denote the mean and the standard deviation of the parity of B R0.72 , ,q fá ñf f( ) computed over TSP yr of data.
Periods are computed from the power spectra of the azimuthal-averaged toroidal field at r R0.72= , integrated over 0°–30° latitudes for
the A series of runs or from the yearly averaged sunspot number (SSN) for all other runs. In last two columns, the variabilities of the

peak polar field (Br) and the peak SSN are measured as Q Q Q 100%
N i

N
i

1
1

2å - ´= ( ) , where Q=peak Br or peak SSN, N=total

number of cycles, and Q Q
N i

N
i

1
1= å = . RunsA3–A6 and AB1 have spatial resolutions of 340×512×1024 in r, θ, and f,

respectively, while all other runs, including A6′, have resolutions of 200×256×512.
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The mean polar field in Figure 4(a) is larger than the observed
value,2 although the observed polar field is not reliably measured
(because of the resolution limit and the projection effect).
However, when we measure the mean polar flux density in high
latitudes, say from 75° latitude to the pole as shown in Figure 4(c),
we obtain a strength of the mean polar field around 20G, which is
close to the observed range. Another discrepancy between the
present model and the observation is that there is a significant
overlap between two cycles at each minimum; the cycle starts
much before the end of its previous cycle (compare our Figure 4
(a) with Figure 8(a) of McIntosh et al. 2015). The discrepancy can
be attributed to our incomplete understanding of flux emergence
and how to parameterize it with SpotMaker. Nevertheless, the
overall morphology of our radial field resembles observations
more closely than our previous model without tilt fluctuations

(see MT16, for example) and also previous 2D dynamo models
(Charbonneau 2010; Karak et al. 2014a).
We have demonstrated that in the present model, the

cumulative effect of the short-term variations of the tilt angle
is capable of producing a variation in the magnetic cycle, as
seen in Figure 4(c). Thus we can conclude that a potential
cause of solar cycle variability is the observed scatter of the tilt
angle (Stenflo & Kosovichev 2012; Senthamizh Pavai et al.
2015; Wang et al. 2015). While we in our 3D dynamo model

Figure 4. Results from RunA6: temporal evolutions of (a) the radial field B R, ,r q fá ñf( ) , (b) the toroidal field B R0.72 , ,q fá ñf f( ) , and (c) the polar flux density,
computed by averaging surface Brá ñf from 75° latitude to the pole (red: north, blue: south). The vertical dashed lines show the times of zeros of the mean polar flux.
Note that the color scales in (a) and (b) are saturated at ±400G and ±80kG, while the extrema are [−5.8, 5.9] kG and [−90, 106] kG, respectively.

Figure 5. (a) BMR tilts vs. latitudes for the northern hemisphere. The solid,
dashed, and dotted lines respectively show the actual Joy’s law, cos0d d q= ,
the linear fit of tilts, and the zero line. (b) Black and red are normalized
histograms of tilts obtained from the northern and southern hemispheres,
respectively. Dashed lines are the Gaussian fits with 7m = d and 8°, and

10 . 4s = d and 10°. 3 (half width at half maximum HWHM=12°. 3 and 12°. 2)
for north and south, respectively. Vertical lines mark ±30° and 0° tilts. These
plots are obtained from RunA6 presented in Figure 4, except in panel (a)
where data only from years 850 to 875 are used.

Figure 6. Temporal variations of (a) B R, ,r q fá ñf( ) , (b) BMR latitudes, (c)
monthly number of BMRs (solid/dashed: north/south), and (d) SPr and SPf
(dashed) from RunA6 presented in Figure 4 but shown only for a few cycles.
In panel (b), the red color shows BMRs with wrong tilts violating the sense of
Joy’s law, i.e., negative in the northern hemisphere and positive in the southern
hemisphere. Vertical dotted lines show times of reversals of the low-latitude
bottom toroidal flux; black/red: north/south. Note that the color scale in (a) is
saturated at ±100G, while the maximum field strength is ±5.5kG.

2 See http://solarscience.msfc.nasa.gov/images/magbfly.jpg.
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and Lemerle & Charbonneau (2017) in their coupled 2D×2D
model explicitly demonstrate this, the original idea was known
since the work of Charbonneau & Dikpati (2000). Recently,
Cameron et al. (2013) demonstrated this idea using observa-
tions, while Jiang et al. (2014) for the first time quantified the
effect of the tilt scatter on the polar field using an SFT model.
Based on this idea, many authors (e.g., Yeates et al. 2008;
Choudhuri & Karak 2009; Olemskoy & Kitchatinov 2013)
modeled irregular features of the solar cycle by including
fluctuations in the BL α term of their 2D flux transport dynamo
models.

We mention that fluctuations of BMR tilts in our model were
approximated by a Gaussian distribution with 15s = d . In
observations, however, there is large scatter near the two tails of
the distribution that is not captured in our Gaussian model;
compare our Figure 5(b) with Figure 2 of Wang et al. (2015) or
Figure 12 of Senthamizh Pavai et al. (2015). Thus, in our model,
if we had considered the tilt angles from the actual observations,
then we would have achieved even more variation in the magnetic
field than we have obtained here.

Though the dynamo maintains a strong hemispheric
coupling, it also exhibits a noticeable hemispheric asymmetry
(Figure 4(c)). Thus we find nonzero values for the asymmetry
in peak surface polar fluxes, as measured by AS Brpol

N= -(∣ ∣
B B Br r r

S N S+∣ ∣) (∣ ∣ ∣ ∣). We note that this is not the parity of the
polar field computed in Equation (11). If there were no
asymmetry introduced in the poloidal flux generation, then the
asymmetry in the toroidal flux would be reflected in the
poloidal flux, and we would have obtained a strong correlation
between these two. Nonetheless, we find only a moderate
correlation (with linear Pearson correlation coefficient r=0.51
with a significance level ((1−p)×100%) of 99.8%) between the
polar flux asymmetry and the low-latitude toroidal flux asymmetry
(AStor); see Figure 7(a). This suggests that the asymmetry in the
toroidal flux is not the only cause of the asymmetry in the poloidal
flux; rather it can be produced from the asynchronous BMR
emergence rate and the tilt angle. The asymmetric polar flux
should eventually cause an asymmetry in the toroidal flux.
However, due to hemispheric coupling at the equator, the
asymmetry gets reduced over time, and we find a moderate
correlation between the asymmetry in the polar flux and the
asymmetry in the next cycle toroidal flux, as shown in Figure 7(b).

As discussed in Section 2, when we do not have sufficient
spatial resolution, the sizes of the smallest BMRs are limited by
the spatial grid size. In RunA6, the minimum size of BMRs is
about 6.8Mm. The number of BMRs below this size is very
small, and thus the net flux from these small BMRs is
negligible in the poloidal field generation. Hence, the spatial
resolution of this simulation (340×512×1024) is sufficient

to capture the observed BMR spectrum. However, when we reduce
the resolution to 200×256×512, then the sizes of the smallest
BMRs are about 13.6Mm. Thus this resolution is not adequate to
resolve the full BMR spectrum, and therefore we find a noticeable
difference in the dynamo solution; see RunA6′ in Table 1 for this
simulation. Although the morphologies of the magnetic fields (not
shown) are not too different in comparison to RunA6, we find
considerably smaller values of the magnetic fields. The reason for
the weaker field could be the following. In comparison to RunA6,
in RunA6′ the sizes of the smallest BMRs are larger but the BMR
field strengths are smaller. Thus, in RunA6′, most of the flux from
these smallest BMRs gets easily canceled out, and less flux is able
to reach to higher latitudes. This causes a weaker magnetic field in
RunA6′. Furthermore, the values of SPr and SPf are different
(−0.14 and −0.70 are the values, respectively, in comparison to
−0.11 and −0.85 for RunA6). Thus the parity of the dynamo
solution is slightly sensitive to how we resolve the small BMRs.

4. Cycle-dependent BMR Emergence Rate

In the calculations presented in Section 3, the time delay is
computed from a log-normal distribution given by Equation (7)
with fixed st and pt . Hence as long as the spot-producing toroidal
field exceeds the threshold field strength, the eruption can happen
almost equally over the whole cycle. This contributes to the
significant overlap between successive cycles, as seen in
Figure 6. Well before the end of a cycle, emergences from the
next cycle start, and we do not observe a noticeable cyclic
variation in the BMR number; see Figure 6(c). One potential
cause of this problem is that we have chosen a fixed time delay
distribution over the entire cycle, which is unlikely to be true. In
observations, we find more BMRs during solar maxima than
during minima; see the thick and the thin solid lines in Figure 2.
From these data, we estimate that, during a solar minimum, the
mean time delay st (and mode pt ) of BMR appearance is about
10days (and 1 day). However, as we go toward a solar
maximum, the emergence becomes more frequent, and the mean
time delay can be as short as a day. Motivated by this observed
feature, we make pt and st as the toroidal magnetic energy
dependent such that in the northern hemisphere

B B B B

2.2 days

1
,

20 days

1
, 12

b
N

b
Np 2 s 2

t t=
+

=
+t t( ) ( )

( )

where Bb
N is the azimuthal-averaged toroidal magnetic field in a

thin layer from r R0.715= to R0.73 around 15° latitudes, and
the value of Bτ is tuned to 400G such that we get roughly the
same number of BMRs as in observations. For the southern
hemisphere, we have the same expressions for st and pt , relating
to the toroidal field in that hemisphere. In this way, no
hemispheric synchronization is made in the waiting time of the
BMR appearance, which is physical. We note that Lemerle &
Charbonneau (2017) also used a magnetic-field-dependent delay
in the BMR emergence through an emergence function, although
their number of new BMRs at every numerical time step is
extracted from a uniform distribution; see their Section 2.4.2.
We repeat the previous simulation, RunA6, using the delay

distribution with modified st and pt as given in Equation (12)
and no other changes. This new simulation is labeled as
RunAB1 in Table 1, and the result is displayed in Figure 8.
The most distinct result we find from this simulation is that the
initial dipolar field is flipped to a quadrupolar field in about
150years. The mean parity of the bottom toroidal field over the

Figure 7. Results from RunA6: scatter plots between the asymmetry of the
peak surface polar flux and the asymmetry of the peak toroidal flux at the base
of the CZ for (a) the same cycle and (b) for the next cycle.
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whole simulation becomes −0.46, while for the last 15years it
is +0.82. Thus when we make the BMR delay dependent on
the magnetic field, the quadrupolar mode is preferred over the
dipolar mode. This suggests that both the dipolar and
quadrupolar modes have comparable growth rates, and both
modes can readily be excited with relatively minor changes in
the simulation parameters. We return to this issue in Section 4.1
below. Another point to note in Figure 8 is that the overall
dynamo efficiency is larger and the cycle period is shorter than
in the previous case of a fixed delay distribution. The reason is
not difficult to understand. Once the toroidal field at the base of
CZ is stronger, it reduces st and pt to make the BMR eruption
more frequent. This frequent eruption makes the poloidal field
production faster, which ultimately causes the stronger fields
and faster polarity reversals.

4.1. Diffusion-dominated Regime

4.1.1. Steady Dynamo Solution

We recall that in the previous models, the bulk diffusivity

CZh was taken to be 8×1010 cm2 s−1, which is much smaller
than the surface diffusivity ( 3 10S

12h = ´ cm2 s−1). Previous
studies from 2D BL models have demonstrated that a weaker
diffusion promotes quadrupolar parity (Dikpati & Gilman 2001;
Chatterjee et al. 2004; Hotta & Yokoyama 2010). Thus, we
increase CZh to a much larger value of ∼1012 cm2 s−1.
Unfortunately, at this higher value of CZh , we do get a
decaying solution (Run B1). One way to get a stable solution is
to shift the observed flux distribution toward larger values (i.e.,

10F > ). The cycle period then becomes unrealistically short;
see RunB2 in Table 1.
Karak & Cameron (2016) have shown that a downward

pumping near the surface reduces the diffusion of the flux
across the surface and helps to achieve a dynamo at a higher
value of th than hitherto. However, even with a reasonable
amount of surface pumping, we tend to get decaying solutions
unless we increase the observed flux distribution by a small
value; see RunsB3–B4. Obviously, the dynamo is efficient if
we reduce CZh significantly; see RunB5. Thus by increasing
the observed flux distribution by a small amount and using a
surface pumping of about 20m s−1, we get growing solutions
for 1 10CZ

12h > ´ cm2 s−1; see RunsB6–B11.
Comparing RunsB2, B6, and B10, we notice that the cycle

period increases with the increase of surface pumping Sg . This
is expected from the study of Karak & Cameron (2016), that
the pumping makes the dynamo efficient and thus allows us to
use a smaller value of 0F . This makes the period longer by
regulating the strength of the BL α effect. However when the
pumping in the whole CZ is increased, the downward transport
of the poloidal field becomes more efficient, reducing the time
lag between poloidal and toroidal field conversion. That is the
reason for getting a shorter period at a stronger CZg in RunB8.
Results from Run B9 with 1.5 10CZ

12h = ´ cm2 s−1 and
with no fluctuations around Joy’s law are shown in Figure 9.
We note that in addition to changes in CZh , CZg , and Sg , two
more changes have been made in this B series of simulations
and RunsC1–D1. First, the meridional circulation profile has
also been changed. To enhance the efficiency of the toroidal
flux advection in this diffusion-dominated model, we made the
meridional flow speed near the base of the CZ faster than in the
previous advection-dominated model (Runs A1–A6 and AB1).
The latitudinal component of this flow is shown by the solid
line in Figure 1(a). This new meridional flow is produced from
the same analytical profile as used in the previous advection-
dominated model, which is the same as in Karak & Cameron
(2016), except the prefactor r Rp( – ) in their Equation (5) for the
stream function is removed and the surface flow speed is
adjusted to 20m s−1. Second, the spot-producing toroidal flux
is computed in the tachocline; that is, r R0.7a = and
r R0.715b = are taken in Equation (5).

Interestingly, in this diffusion-dominated model, the mean
parity of the bottom toroidal field SPf is −0.98. Thus the
toroidal field is largely antisymmetric across the equator
(Figure 9) with minimal variation in the parity (with standard
deviation of SP 0.07=f ). However, the mean parity of
B R t,r ( ), shown by the black and red line in Figure 9(b),
deviates most strongly from the antisymmetric (dipolar) mode
during cycle maxima. This is consistent with the analysis of

Figure 8. Temporal evolutions of B R0.72 , ,q fá ñf f( ) (top) and the parity of this
field (bottom), obtained from RunAB1, which was started from the dipolar
field of RunA6 and eventually settled to a quadrupolar solution.

Figure 9. Results from Run B9: temporal variations of (a) B R, ,r q fá ñf( ) ,
(b) latitudes of BMRs, (c) B R0.72 , ,q fá ñf f( ) , and (d) daily BMR fluxes in
Mx/1022 (black/red: north/south) produced by this model. In (b), points with
different colors represent different sizes of BMRs. Green, black, and red
correspond to BMRs of areas < 500 MHem (millionth of a solar hemisphere),
500 MHem�areas<1000 MHem, and areas � 1000 MHem, respectively. In
the same panel, the black/red and blue dashed lines show parities, SP(t)
computed over the four years of surface Br and the bottom Bf, respectively.
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solar data by DeRosa et al. (2012), namely that the parity of the
observed radial magnetic field is dipolar during a solar
minimum but becomes quadrupolar during a solar maximum
because of the emergence of many BMRs.

Our simulation also produces most of the other features of
the solar cycle. However, there are some differences seen in
this simulation compared to the previous advection-dominated
model. The tilt quenching, which produces the stable solution,
is much weaker than in the previous model; see Figure 10. This
small amount of quenching is sufficient to halt the dynamo
growth. Thus, the observational signature of tilt angle
quenching may be subtle, and the weak evidence in favor of
it (Dasi-Espuig et al. 2010; Stenflo & Kosovichev 2012) may
be sufficient to rank this as a viable candidate for dynamo
saturation.

Noticeably, the overlap between two cycles at the minimum
has now been reduced significantly compared to the cases with
lower diffusion (Figure 4). Importantly, now we do not need to
increase the observed flux distribution by a large value to
achieve sustained dynamo action; here 2.40F = . The amount
of daily flux produced by the model with this value of 0F
(Figure 9(d)) is comparable to the observed BMR flux budget
(e.g., Schrijver & Harvey 1994; Zhang et al. 2010; Li 2017).
Moreover, the average number of BMRs per cycle in this
simulation is 3947, which is very close to the observed group
sunspot number (3461) obtained from the catalog of RGO and
USAF/NOAA sunspots averaged over the last 12 cycles
(counting each spot only once). Thus this is the first 3D solar
dynamo model that is totally sustained by the observed
distribution of tilted BMRs.

The magnitude of the magnetic pumping needed to sustain
the dynamo (for example, 35 m s−1 for 1.50F = in RunB6) is
reasonable since it is still only a small fraction of the observed
velocity amplitude of 1–2 km s−1 that characterizes solar
surface convection (Nordlund et al. 2009). Notably, for the
same value of diffusivity, our model uses less pumping to
sustain an 11-year dynamo cycle than the previous 2D BL
model of Karak & Cameron (2016); see their Figure 16. The
possible reason could be the minor differences in the other
parameters and the implementation of the BL process (explicit
BMR deposition versus α coefficient).

We recall that the frequency of BMR emergences is
governed by a delay distribution of the type given in
Equation (7). This produces a much more realistic variation
of the surface BMR flux, as shown in Figure 9(d). Also the
sunspot number (SSN) goes up and down with time in a
fashion similar to the real sunspot cycle; see Figure 11. We
remember that this is the actual SSN produced by the model,

and it is not a proxy. In all previous dynamo models (e.g.,
Charbonneau & Dikpati 2000; Jiang et al. 2007; Olemskoy &
Kitchatinov 2013; Passos et al. 2014), except the one of
Lemerle & Charbonneau (2017), a proxy of SSN is constructed
based on the integrated toroidal field near the base of the CZ.
Ours is the first 3D solar dynamo model to explicitly produce a
spontaneously generated distribution of BMRs that varies with
the phase of the magnetic cycle.
The asynchronous time delay of BMR emergence and the

asynchronous flux distribution within two hemispheres is
sufficient to produce a considerable hemispheric asymmetry in
the magnetic field and also in the BMR flux (Figure 9). The
hemispheric asymmetry produced in this model is not large and
gets corrected in one or two cycles. This is expected because
the diffusive coupling between two hemispheres at the equator
helps to reduce the hemispheric asymmetry. Furthermore, the
stochastic process involved in the BMR emergence causes
occasional spikes at any phase of the solar cycle and sometimes
causes double peaks in some cycles (e.g., around 605 years and
645 years in Figure 9(d)). Hemispheric asymmetry can also
contribute to double peaks (see Figure 15 below). Similar
behavior is seen in many observed solar cycles (McIntosh et al.
2013).
Despite the tilt angle quenching, the model produces an

observable variation in the amplitude of the cycle. This is
particularly seen in the daily BMR flux of Figure 9(d) and
in the monthly SSN (Figure 11). The amount of variation in the
peak monthly SSN is ≈14%. We recall that in this model there
is no randomness in the tilt angle around Joy’s law. Thus
we need to consider what other factors give rise to the cycle
variability.
We address this issue with the schematic diagram shown in

Figure 12. In the BL process, decay and dispersal of tilted
BMRs on the solar surface produce a poloidal field at the end of
the cycle. Thus we expect the polar flux of a cycle to depend on
the amount of flux that has emerged in BMRs during that cycle,
and we expect these two quantities to be highly correlated.
However, we get a linear correlation coefficient of less than
one; see the second row in Table 2 for all correlations. The
reason behind the reduction of the correlation is the
nonlinearity in the tilt angle, which reduces the tilt when
the BMR field exceeds Bsat. This nonlinearity is shown by the
first vertical arrow in Figure 12. The variation in the mean
BMR latitudes also has some effect on the process:
BMR(n)→ poloidal flux(n), although in this simulation there
is not much variation in it, and we ignore it in the discussion.
The poloidal field produced on the solar surface is

transported to the deep CZ, where differential rotation produces
a toroidal field for the next cycle. Thus the process poloidal
flux(n)→ toroidal flux(n + 1) is fully deterministic. The next
process, toroidal flux(n + 1)→ BMR(n + 1), however, is not
fully deterministic because both the BMR time delay and BMR
flux are taken randomly from their distributions. These sources
of randomness are indicated by the second vertical arrow in
Figure 12. However, they largely average out over many
BMRs, otherwise we would not get a strong correlation
between the polar flux(n) and the BMR flux(n + 1), as listed
in Table 2. This is in agreement with the correlation obtained
from the observed polar field data (Choudhuri et al. 2007) and
from different proxies of the polar field (Muñoz-Jaramillo et al.
2013; Priyal et al. 2014). In fact, this correlation is a popular
basis for the solar cycle prediction (Schatten et al. 1978).

Figure 10. Tilts of the northern hemisphere BMRs from RunB9 as functions
of latitudes. The red line represents the standard Joy’s law: cos0d d q= .
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We must remember that although the polar flux(n) and thus
the toroidal flux(n+1) are positively correlated with the BMR
flux(n + 1), the process may not be linear. In our model, the
BMR delay distribution involves a nonlinearity: it produces
more BMRs when the toroidal flux at the base of the CZ is
stronger. This nonlinearity is identified by the third arrow in
Figure 12.

From the above analysis, we realize that the causes of the
magnetic cycle variation in this model are the nonlinearities in
tilt angle and in the delay distribution and the randomness in

the BMR emergence process. As discussed above, the
randomness in the BMR emergence has a minor contribution
to the cycle variation, although it is difficult to separate out the
contributions of each component.

4.1.2. Solution with Observed Tilt Angle Fluctuations

In the above model, we now include variation in the tilt
angle as guided by the observations, that is, a Gaussian
fluctuation with 15s = d around Joy’s law (Equation (10)).
RunB10 in Table 1 refers to this case. A few cycles from this
stochastically driven dynamo simulation are presented in
Figure 13, while the sunspot time series from the full
simulation is shown in Figure 14. Comparing Figure 13 with
Figure 9, we notice a greater variation in the magnetic field.
Particularly, in Figure 13(a) we observe a frequently mixed
polarity field as a consequence of the wrong tilt. The cycle-to-
cycle variation of the amplitudes of the mean polar flux is

B B
N i

N
r r

1
1

avg
2

iå -= ( ) /B 100% 35%r
avg ´ » (where N= 93).

This value is in agreement with Jiang et al. (2014), who found

Table 2
Summary of the Linear Pearson Correlation Coefficients and the Percentage
Significance Level (s.l.=(1 − p)×100%) between the Polar Flux of Cycle n
and the BMR Flux (or the Spot-producing Bottom Toroidal Flux in the Case of

Run A6) of the Subsequent Cycles

Description of Run Correlation between
pol. flux (n) and

Value (s.l. %)

Advection-dominated, tor. flux (n) 0.18 (56.9)
and fluctuations in tilt tor. flux (n+1) 0.64 (99.9)
(Run A6) tor. flux (n+2) −0.23 (78.6)

tor. flux (n+3) −0.19 (49.8)

Diffusion-dominated, BMR flux (n) 0.79 (99.9)
and no fluctuations in BMR flux (n+1) 0.88 (99.9)
tilt (Run B9) BMR flux (n+2) 0.77 (99.9)

BMR flux (n+3) 0.66 (99.9)

Same as RunB9 but BMR flux (n) 0.87 (99.9)
with fluctuations in BMR flux (n+1) 0.97 (99.9)
tilt (Run B10) BMR flux (n+2) 0.84 (99.9)

BMR flux (n+3) 0.75 (99.9)

Same as RunB10 but BMR flux (n) 0.37 (99.8)
four times weaker Bsat BMR flux (n+1) 0.86 (99.9)
(Run B12) BMR flux (n+2) 0.25 (95.5)

BMR flux (n+3) 0.00 (21.0)

Same as RunB10 but BMR flux (n) 0.71 (99.9)
diffusivity in the tachoc- BMR flux (n+1) 0.91 (99.9)
line is same as the value BMR flux (n+2) 0.58 (99.7)
in the CZ (Run B13) BMR flux (n+3) 0.41 (93.5)

Figure 13. Results from Run B10: temporal variations of (a) B R, ,r q fá ñf( ) ,
(b) latitudes of BMRs, (c) B R0.72 , ,q fá ñf f( ) , and (d) the monthly smoothed
SSNs; black/red: north/south. In (b), red points show the wrongly tilted
BMRs; green solid and blue dashed lines show parities, SP(t) computed over
the four years of surface Br and the bottom Bf, respectively.

Figure 11. Time series of the BMR number from the simulation presented in Figure 9 but highlighting a longer time interval. The horizontal line shows the mean of
peaks of the monthly BMRs obtained for the last 13 observed solar cycles.

Figure 12. Schematic diagram of our BL dynamo model with nonlinearities
and randomness involved in it (see text for discussion). Here n refers to the
cycle number.
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about 30% variation for cycle 17 in the axial dipole moment
and the polar field compared to the value without tilt scatter.

The strength of the magnetic field and the number of BMRs
per cycle have increased in this simulation with respect to the
simulation without tilt fluctuations (Run B9); see Table 1. The
reason for this will be explored later. The amount of variation

in the peak SSN is PSN PSN PSN 100%
N i

N
i

1
1

2å - ´ »= ( )
41%, while in the observed data (http://www.sidc.be/silso/
datafiles) for 1749–2017, it is 32%. As the variation of the SSN
in this model is much larger than that obtained from the model
without tilt fluctuations, we can certainly conclude that the
fluctuations in the flux emergence process and the nonlinearity
in the BL process have a relatively minor effect on the variation
of the magnetic cycle relative to the tilt angle scatter.
Furthermore, this suggests that the observed tilt angle scatter
in the Sun may be sufficient to account for the observed solar
cycle variability.

The basic dynamo loop shown in Figure 12 still applies for
this model but with the inclusion in the process of a
randomness due to tilt scatter: BMR (n)→ polar flux (n).
Interestingly, we still find a fairly good correlation (r=0.87)
between the BMR flux (n) and the polar flux (n); see
Figure 15(a). Using the polar faculae as a proxy for the polar

flux, Muñoz-Jaramillo et al. (2013) find a little correlation
between the polar flux and the SSN of the same cycle. If their
result is true, then it suggests that in the BL process of our
model, the nonlinearity and randomness are weaker than in the
real Sun.
As obtained from the previous model without tilt fluctua-

tions, a strong correlation between the polar flux (n) and the
BMR flux (n + 1) is expected, as shown in Figure 15(b). We
remember that this correlation is very robust, and a similar
correlation is obtained if we consider the peak SSN instead of
the peak BMR flux. Moreover, a similar correlation is also
obtained from the previous advection-dominated model; see
Table 2. This is consistent with the idea that a reliable
prediction of the future solar cycle is possible using the
observed polar field of the previous solar minimum (Schatten
et al. 1978; Choudhuri et al. 2007; Jiang et al. 2007).
As in the process BMR flux (n)→ polar flux(n), the

correlation is not completely broken; the polar flux still has a
correlation with the BMR flux(n + 2). This is shown in
Figure 15(c). This correlation gets weakened in each
transformation: poloidal flux(n)→ BMR(n + 1)→ poloidal
flux(n + 1). Hence, we get a much weaker correlation between
the polar flux(n) and BMR flux(n + 3).
Jiang et al. (2007) and Yeates et al. (2008) concluded that the

memory of the polar flux is determined by the relative
importance of diffusive and advective flux transport. In the
diffusion-dominated model, they find one cycle memory
between the polar flux and the toroidal flux, while in the
advection-dominated it is three cycles. However, we find that
the memory of the polar flux is not primarily related to the flux
transport process; rather it is a fundamental consequence of any
cyclic BL process. As explained through Figures 12 and 15, if
the correlation between the BMR flux and the polar flux of the
same cycle is not completely broken, then this correlation has
to propagate for many cycles. This has happened in Figure 12
of Yeates et al. (2008), which they identify as the advection-
dominated model. However, in Figure 11 of Yeates et al.
(2008), the same cycle correlation has been broken, and they
called this the diffusion-dominated regime. The broken
correlation in their case is due to diffusion, while in our case
it is due to both the nonlinearity in the BL process and the
diffusion. This is confirmed by repeating the same simulation
as shown in Figure 15 but reducing the Bsat of the tilt angle
quenching in Equation (10) by four times (Run B12). The
correlations between different cycles are listed in Table 2. As
we can see from Equation (10) that when we keep everything
else the same in the model but reduce Bsat, the nonlinearity in
the model is effectively increased. This nonlinearity in the tilt
angle acts to break the linear dependence between the polar
flux and the BMR flux of the same cycle.

Figure 14. Monthly BMR number (smoothed over three months) with time. This is obtained from RunB10, which is displayed in Figure 13, but after running it for a
longer time. The dotted line shows the mean of the observed peak SSNs for the last 13 cycles.

Figure 15. Scatter plots between the polar flux density (G) of cycle n and the
daily BMR flux (in units of 1022 Mx) of (a) cycle n, (b) cycle n + 1, (c) cycle
n + 2, and (d) cycle n + 3 from RunB10. Significance levels of all correlations
are above 99.9%. Two different symbols correspond to two different
hemispheres.
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One may think that a much weaker diffusivity in the
tachocline has made our model more like the advection-
dominated model and might be the cause of many cycle
correlations in Figure 15. To check this, we have performed
another simulation by increasing the tachocline diffusivity to
1.5 1012´ cm2 s−1; that is, th in the tachocline is now the same
as in the CZ (Run B13). No other changes are made in this
simulation with respect to RunB10. Again in this simulation,
we find similar values for correlations, as listed in the last row
of Table 2. Stronger diffusion in the tachocline tries to reduce
the correlation in each cycle but never diminishes it to one
cycle, as we expect in the diffusion-dominated region.

We also mention that Karak & Nandy (2012) find a
reduction of the memory in both advection- and diffusion-
dominated dynamos to one cycle by the inclusion of a
downward pumping. Actually, the pumping increases the
strength of the magnetic flux and thus the nonlinearity, which
reduces the memory to one cycle in Karak & Nandy (2012).

Thus, to summarize the whole idea, in the BL dynamo, as
long as there is an efficient mechanism to transport the surface
poloidal flux to the deep CZ, the polar flux and the BMR flux
are cyclically coupled (Figure 12). If the nonlinearity in the BL
process or the relative diffusive transport is sufficiently strong,
then the memory of the polar flux will be limited to the next
one cycle only, otherwise it will be propagated to multiple
cycles.

Going back to the SSN plot in Figure 14, we observe some
hemispheric asymmetry. In Figure 16, we highlight it for some
cycles. In this figure, we clearly observe the temporal lag and
the excess of BMRs between two hemispheres. We notice that
the first three cycles in this figure are more or less symmetric.
Then in cycle C4, the southern hemisphere got more spots,
although the temporal symmetry is still retained. In the next
cycle, the excess of spots in the southern hemisphere has now
been reduced, and eventually in C6 it has diminished
completely. Again in C7, a new asymmetry is introduced.
But now the southern hemisphere has more spots, and this
hemisphere is leading over the other in the rising phase. This is
continued for the next two cycles. Then for C10–C13, the
northern hemisphere has a few more spots, particularly during
the decaying phase. C14 is very symmetric, while for C15, the
northern hemisphere is a little longer than the other. Finally, for
C18, the southern hemisphere is leading in the rising phase,
while for C19, it is the opposite.

Certainly, we cannot make a one-to-one comparison of our
sunspot cycles with the observed ones as we do not model the
exact observed cycles. However, on comparing our sunspot
cycles in Figure 16 with the observed cycles in Figure 10 of
McIntosh et al. (2013), readers can convince themselves that
very similar features of the solar cycle are reproduced in our
model.

We have seen in Figure 16 that, like the Sun, our model
always tends to correct any (hemispheric or temporal)
asymmetry produced in a cycle, and we do not observe
extended asymmetry. Hence we obtain a strong correlation
between the amplitudes of the north and the south sunspot
cycles, as shown in Figure 17(a). The polar flux asymmetry
obtained in this diffusion-dominated model is comparable to
the value obtained from the previous advection-dominated
model; compare the horizontal axes of Figures 17(b) and 7(a).
However, the correlation between the polar flux asymmetry
with the SSN asymmetry of the next cycle (Figure 17(b)) is
much less than that found in the previous advection-dominated
model. This is expected because in the diffusion-dominated
model, fields are largely coupled across the equator, and much
of the memory of the polar flux asymmetry is not preserved in
the toroidal flux. Moreover, due to the asynchronous BMR
emergence process, a new asymmetry is introduced (which is
not related to the polar flux asymmetry).
In Figure 18(a) we show the scatter plot between the

amplitudes and the periods. While in observations (Charbonneau
& Dikpati 2000) there is a little anticorrelation, in our model we
find almost no correlation. Interestingly, from the horizontal axis

Figure 16. Portion of the smoothed SSN time series shown in Figure 14 with the red and blue lines showing the northern and southern hemisphere numbers,
respectively. The shaded area represents the excess of the BMRs between two hemispheres. To facilitate the discussion, we have labeled the cycles.

Figure 17. Scatter plots between (a) peaks of the northern SSN and the
southern SSN, and (b) the normalized hemispheric asymmetry of polar flux of
cycle n and the asymmetry of BMR flux of cycle n + 1.

Figure 18. Scatter plots between periods and amplitudes of (a) the same cycles
and (b) the next cycles. Two different symbols correspond to two different
hemispheres.
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of this figure, we notice that the cycle period has considerable
variation around its mean of 10.5 yr. In the flux transport dynamo
paradigm, we believe that the cycle period is largely determined
by the speed of the meridional flow (Dikpati & Charbon-
neau 1999), which is kept constant here. Thus the variation in our
period is caused by the fluctuations and nonlinearities in the
BMR emergence. Let us discuss how this is happening. When the
polar field of a cycle becomes stronger due to the tilt fluctuations,
spots in the next cycle take a longer time to reverse the previous
cycle flux. This effect acts to make the cycle longer. However,
there is another countereffect. A stronger polar flux makes the
toroidal flux stronger, which leads to more frequent BMR
emergence. This effect acts to reverse the polar flux quickly and
makes the cycle period shorter, though it is inhibited by the tilt
angle quenching. The competition between these two effects
causes variation in the period.

Finally, we find a little anticorrelation between amplitudes
and periods of previous cycles, as shown in Figure 18(b). In
observations (see, e.g., Figure 4 of Hazra et al. 2015) this
correlation is −0.67, which is much larger than our value.

4.1.3. Grand Minima and Maxima

In Figure 14, we have seen that a random component
following a Gaussian distribution with 15s = d around Joy’s
law occasionally produces very weak and strong cycles and a
few Dalton-like extended periods of weaker activity (e.g.,
around 700 years in Figure 14). Yet, the dynamo never
becomes so weak as to produce any Maunder-like grand
minimum. However, we must remember that for all BMRs we
have considered the same level of tilt fluctuations, while in
observations, there are indications that weaker BMRs have
bigger scatter in their tilts (Stenflo & Kosovichev 2012; Jiang
et al. 2014; Lemerle et al. 2015). Moreover, the tilt variation
that we have implemented in the above simulations is extracted
from the variation within data of a solar cycle (for example,
cycle 23 in the analysis of Stenflo & Kosovichev 2012 and
cycle 21 in the analysis of Lemerle et al. 2015). In observations
(e.g., Dasi-Espuig et al. 2010; Wang et al. 2015; Arlt et al.
2016), we find the tilt to have cycle-to-cycle variation, in
addition to variations within a cycle. Motivated by these
observational results, we double the tilt fluctuations; that is, we
now take 30s = d instead of 15°. This simulation is labeled as
RunB11, and the sunspot time series from this simulation is
shown in Figure 19. Interestingly, again the dynamo does not
shut off, and the cycle is still maintained even at this large tilt
fluctuation. We find several episodes when the magnetic field

and the cycle become much weaker, for example, around 1600,
1900, and 2500 years. These events can be considered as
Maunder-like grand minima.
To compute the number of grand minima and the time spent

in those events, we follow the same procedure as applied in
Usoskin et al. (2007). We first bin the data in 10-year intervals
and then filter the data using Gleisberg’s low-pass filter 1-2-2-
2-1. We consider a grand minimum to occur when the SSN
goes below 50% of the mean for at least two consecutive
decades. Applying this procedure in the previous data set of
RunB10 with 15s = d , we now get two grand minima
(around times 1950 years and 2600 years). This simulation
spent 9.3% of its time in these grand minima phases, which is
much less than the value of 17% obtained in the 14C data of
Usoskin et al. (2007). This simulation also produces two grand
maxima with time spent in these phases of 7.6%, which is again
less than the value of 9% obtained in the 14C data.
Ironically, the simulation of 30s = d produces 26 grand

minima in 11,400years of the simulation run. Out of these 26
grand minima, five are shown by arrows in Figure 19. Our
number of grand minima is very close to the value 27, obtained
in the last 11,400 years of 14C data (Usoskin et al. 2007). The
time spent in the grand minima is 18%, which is again very
close to the record from 14C data. We are carrying out a
detailed analysis of the grand minima, particularly how our
model recovers from the grand minima phases, owing to a few
BMRs. These will be presented in a forthcoming publication.
Our model also produces occasional periods of stronger

activity resembling the solar grand maxima. In this simulation,
we obtained 17 grand maxima, with time spent in these phases
of 9.6%. Again these values are close to the ones obtained in
the 14C data. A detailed study of grand maxima will also be
presented in the forthcoming publication.
On comparing RunsB9–B11 in Table 1, we notice that SPf

increases with the increase of the tilt angle scatter (sd), that is,
going toward the quadrupolar parity from the dipolar one. Also
the deviation from the dipolar mode, as seen by the value of SPs f,
increases with the scatter. It is not difficult to understand the
reason. Due to scatter in the tilt, when a BMR gets a wrong tilt in
one hemisphere, it produces a quadrupolar field instead of a
dipolar field. The occurrence of this event increases with the
increase of tilt scatter, and thus the parity tends to go to the
quadrupolar parity. During grand minima when there are fewer
BMRs, the effect of tilt fluctuations is more pronounced, and the
deviation of the dipolar parity is significant, as seen in Figure 19.

Figure 19. SSN time series (black/red: north/south) from RunB11, with 30s = d . The top blue line shows the evolution of the smoothed (over 11 years) parity
SPf(t) of the bottom toroidal field. Arrows show the extent of grand minima based on our definition.
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4.2. Sensitivity of Solutions with Nonlinearities

To explore the sensitivity of the solar cycle variation with
nonlinearities in the model, we consider RunB10 and perform
the following two new simulations. First, instead of taking the
nonlinear quenching factor B B1 1 sat

2+[ ( ˆ ) ] in the tilt angle
(which is the case in all previous simulations), we take it in the
BMR flux. The RunC1 in Table 1 represents this case. Second,
we keep the tilt quenching as before but change the magnetic-
field-dependent factor B B1 1 b

N 2+ t[ ( ) ] in Equation (12) for
pt and st to B B1 1 b

N+ t( ). RunD1 represents this case.
The result for RunC1 is shown in Figure 20. As listed in

Table 1, the period and the number of BMRs per cycle are
smaller in this simulation, although the morphology of the field
(not shown) looks very similar to the previous simulation
(Run B10). However, the variation of the peak SSN is 29%,
which is somewhat smaller than in RunB10 (41%). It is
surprising that when putting the same quenching factor from
the tilt onto the flux, the model produces a different amount of
variation in the solar cycle. The reason is that when the
quenching is operating in the flux, the dynamo becomes more
stable than when it is operating in the tilt. To clarify this point,
we first estimate the magnetic field generated from only two
symmetric BMR pairs deposited at ±5° latitudes at the
beginning of a simulation. Tilts of these pairs are given by
Joy’s law, and no seed magnetic field is given in this
simulation. (This study is very similar to the one presented in
Section 4.2 of Hazra et al. 2017.) Then we perform two more
simulations. In one, we reduce the flux of pairs by 50%, and in
another, we keep the flux the same but reduce the tilt by the
same amount. After running these simulations for about 5yr,
we find that the high-latitude radial flux in the former case has
been reduced by about 64%, while in the latter case it is
reduced by only 50%. Thus when the magnetic field tends to
grow, it is easier for the dynamo to stabilize it by reducing the
BMR flux than by reducing the same amount of tilt. This
conclusion becomes even stronger by comparing values of Btor˜ ,
Br˜ , and the mean BMR number per cycle for RunsB10 and C1
in Table 1. We notice that all these values are smaller in

RunC1, confirming that the flux quenching did not allow the
field to grow much.
Finally, we consider RunD1, which produces a decaying

solution unless we increase the flux distribution by a small
amount (see Table 1). The solution, in this case, shows a
considerably different behavior. The overlap between cycles at
the minimum has increased, and we do not observe very
distinct cycles; see Figure 21. Moreover, the mean period
becomes longer (14 yr instead of 10.5 yr as in Run B10), and
the cycles are very irregular. This is expected because when
decreasing the strength of the nonlinearity in pt and st , the rate
of spot production decreases, and thus the polarity reversal
becomes slower. The most significant feature in this simulation
is that the dynamo is still operating with only a few BMRs,
although the BMRs are a little bigger (due to their larger flux).
Thus Btor˜ , Br˜ , and the mean value of the daily BMR flux (the
horizontal line in Figure 21) are also less compared to the
previous RunB10. From this simulation, we can conjecture
that this scenario might be applicable to other stars (probably
the slowly rotating stars) that produce fewer BMRs and
irregular and overlapped cycles. Another point to note is that
the variation of the peak SSN in this simulation is less than in
RunB10. We expect the variation to be larger due to the
smaller number of BMRs, but because of having a less
sensitive spot production rate with the magnetic field, the
sunspot variation is reduced. From this simulation, we learn
that with the decrease of the sensitivity of pt and st with the
magnetic field, the cycle-to-cycle variation in the peak SSN
decreases slowly.

5. Summary and Conclusions

Using observed properties of the BMRs in our previous 3D
BL solar dynamo model (MD14 and MT16), we have studied
the behavior of the dynamo action and the causes of the
variability of the magnetic cycle in this model.
We take the flux of BMRs from an observed distribution,

and then we couple the net surface flux budget of BMRs with
the toroidal field at the base of the CZ. We do this in two ways.

Figure 20. Same as Figure 14 (Run B10), but this is obtained from RunC1, in which the quenching is operating in the BMR flux and not in the tilt.

Figure 21. Same as Figure 14 (Run B10), but obtained from RunD1 in which the magnetic-field-dependent nonlinearity on the BMR delay is different; see
Section 4.2 for details. The horizontal line shows the mean daily BMR flux (in the units of 1021 Mx) in this model.
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First, we scale the observed flux distribution based on the
toroidal flux at the base of the CZ (Section 3). In this case, the
delay distribution of BMR emergence is held fixed. Although
the net BMR flux produced by this model has some variation
with the magnetic cycle, the SSN does not show appreciable
variation, due to a considerable overlap between two magnetic
cycles at the minima (Figure 6).

In the second approach, we keep the observed flux
distribution unchanged but vary the BMR emergence rate
based on the toroidal flux at the base of the CZ (Section 4).
Thus we get more BMRs at the solar maximum when the
toroidal field is strong. As a result, we attain cyclic variations in
the BMR flux and in the BMR number, in the same manner as
we observe in the Sun. Thus for the first time in our model, we
obtain a sunspot cycle that can be compared directly with
observations, as opposed to using a proxy for this (e.g.,
Figure 11). Our main results are itemized below.

1. The overall dynamo growth is limited by a nonlinearity in
the tilt angle. This is the only nonlinearity in the model
when the time delay distribution is fixed.

2. Reduction of the tilt angle by only a few degrees is
sufficient to limit the dynamo growth (Figure 10). Thus,
potential signatures of tilt quenching in solar observations
may be subtle.

3. When the BMR delay distribution is nonlinearly coupled
with the toroidal flux, this nonlinearity acts counter to the
tilt angle nonlinearity. In contrast to tilt nonlinearity, the
delay nonlinearity acts to make the poloidal field strong
by producing more BMRs when the toroidal field
becomes strong. Thus the variation of the magnetic cycle
in our model is controlled by the competition between
these two nonlinearities.

4. These two nonlinearities, along with the randomness in
the BMR emergence, are capable of producing a
substantial variation in the magnetic cycle, as reflected
by the SSN (Figure 9). A noticeable hemispheric
asymmetry is also observed in this model.

5. The variability of the magnetic field is greater when the
BMR delay distribution is dependent on the magnetic
field; compare Br from the A series of simulations with
other simulations in Table 1.

6. When a scatter in the BMR tilt around Joy’s law is
included, the model produces a much larger variation in
the magnetic cycle. The cycle variability in our simula-
tions for σ=15° ranges from 19% to 59%, depending on
the flux transport (diffusion and pumping) and on the
nonlinearities in the BMR emergence rate and tilt angles;
see Table 1. The corresponding value for the Sun during
1749–2017 is 32%. So, within our BL paradigm, we find
that the observed tilt angle scatter is sufficient to account
for the observed solar cycle variability.

7. The simulation with the tilt saturation produces more
variability than that with the flux saturation (compare
Runs C1 and B10). Furthermore, the weaker diffusion in
the CZ creates more variability (compare Runs B5
and B10).

8. The morphology of the magnetic fields in simulations
with tilt scatters closely resembles observations. In
particular, the surface radial field possesses a more mixed
polarity field (Figures 6 and 13).

9. With the inclusion of tilt scatter, the north–south
asymmetry in the magnetic cycle is increased

(Figure 16). However, the asymmetry never propagates
for many cycles; through diffusion across the equator, the
dynamo corrects this asymmetry within a few cycles.
Similar behavior is also observed in the Sun (e.g.,
McIntosh et al. 2013).

10. Tilt scatter also triggers grand minima and grand maxima.
The observed scatter of σ=15° for the recent cycles is
not sufficient to account for the grand minima inferred
from cosmogenic isotopes (Usoskin et al. 2007). How-
ever, we do not include any positive feedback that might
enhance the scatter. For example, weaker poloidal fields
will produce weaker toroidal fields that will in turn
produce weaker flux tubes with increased scatter due to
buffeting by turbulent convection.

11. A larger scatter of σ=30° leads to more frequent grand
minima. For example, RunB11 spends 18% of its time in
grand minima, compared to 17% for the Sun. A larger
scatter also increases the time spent in grand maxima:
9.6% for RunB11 versus 9% for the Sun.

12. Our model never shuts down at the observed tilt
fluctuations, which was the case in the recent model of
Lemerle & Charbonneau (2017).

13. The scatter in the tilt angle makes the dynamo slightly
weaker in simulations where the BMR delay distribution
is fixed (compare Runs A3–A4 and Runs A5–A6).
However, this is not true in the cases of magnetic-field-
dependent delay distributions. The dynamo becomes
even stronger with the increase of the tilt fluctuations;
compare Runs B9–B11.

14. In all simulations, we do not vary the meridional flow
with time, yet we observe some variation in the cycle
period. Particularly, the simulation with tilt fluctuations
of 15s = d produces a variation in the period that is
indeed comparable to the observed solar cycle
(Figure 18).

As demonstrated in a 2D flux transport dynamo model by
Karak & Cameron (2016), we find that magnetic pumping
enhances the efficiency of the dynamo. In particular, the
inclusion of magnetic pumping allows us to achieve sustained
dynamo solutions using a BMR flux distribution comparable to
the observed distribution ( 30F < ), even in the diffusion-
dominated regime (see the B series in Table 1). When magnetic
pumping is not included, it is necessary to artificially boost the
BMR flux ( 280 F ) in order to achieve supercritical solutions
(Runs A3–A4). Magnetic pumping also helps to make the
magnetic field dipolar. The surface radial field, however, is
largely dipolar (antisymmetric) only during the solar minimum,
and it is dominated by the quadrupolar (symmetric) mode
during the solar maximum when several BMRs emerge at the
surface to produce a quadrupolar field (Figures 9 and 13(b)).
This type of multipolar surface magnetic field is in agreement
with solar observations (DeRosa et al. 2012). Our dynamo
model, however, can flip from the dipolar mode to the
quadrupolar mode even with small parameter changes (e.g.,
changes in the BMR delay distribution; Figure 8).
In our BL model, as the poloidal flux produces the toroidal

flux and then this toroidal flux produces BMRs (Figure 12), the
memory of the polar flux is largely reflected in the strength of
the next sunspot cycle. We always obtain a strong correlation
between the polar flux and the sunspots of the next cycle
(Table 2). However, the memory of the polar flux may not be
propagated to multiple cycles. Yeates et al. (2008), Jiang et al.
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(2007), and Karak & Nandy (2012) have shown that the
memory of the polar flux is limited by the relative importance
of diffusive and advective flux transport. However, here we
show that it is also determined by the nonlinearity in the BL
process. When the nonlinearity in BMR tilt is strong, the
memory of the polar flux is limited to one cycle, irrespective of
the flux transport.

We thank the anonymous referee for offering many
constructive comments that helped to improve the presentation.
We are indebted to Lisa Upton for doing an internal review of
this manuscript and for providing the observed data of the
BMR delay distribution used in Figure 2. We extend our thanks
to Arnab Rai Choudhuri for the discussion on the tilt angle
fluctuations during Mark’s visit to Bangalore. We are also
thankful to Gopal Hazra and Mausumi Dikpati for discussions.
B.B.K. is supported by the NASA Living With a Star Jack
Eddy Postdoctoral Fellowship Program, administered by the
University Corporation for Atmospheric Research. The
National Center for Atmospheric Research is sponsored by
the National Science Foundation. Computations were carried
out with resources provided by NASA’s High-End Computing
program (Pleiades) and by NCAR (Yellowstone).

ORCID iDs

Bidya Binay Karak https://orcid.org/0000-0002-8883-3562
Mark Miesch https://orcid.org/0000-0003-1976-0811

References

Arlt, R., Senthamizh Pavai, V., Schmiel, C., & Spada, F. 2016, A&A,
595, A104

Augustson, K., Brun, A. S., Miesch, M., & Toomre, J. 2015, ApJ, 809, 149
Babcock, H. W. 1961, ApJ, 133, 572
Belucz, B., Dikpati, M., & Forgács-Dajka, E. 2015, ApJ, 806, 169
Cameron, R., & Schüssler, M. 2015, Sci, 347, 1333
Cameron, R. H., Dasi-Espuig, M., Jiang, J., et al. 2013, A&A, 557, A141
Cameron, R. H., & Schüssler, M. 2016, A&A, 591, A46
Charbonneau, P. 2010, LRSP, 7, 3
Charbonneau, P. 2014, ARA&A, 52, 251
Charbonneau, P., & Dikpati, M. 2000, ApJ, 543, 1027
Chatterjee, P., Nandy, D., & Choudhuri, A. R. 2004, A&A, 427, 1019
Choudhuri, A. R., Chatterjee, P., & Jiang, J. 2007, PhRvL, 98, 131103
Choudhuri, A. R., & Karak, B. B. 2009, RAA, 9, 953
Dasi-Espuig, M., Solanki, S. K., Krivova, N. A., Cameron, R., & Peñuela, T.

2010, A&A, 518, A7
DeRosa, M. L., Brun, A. S., & Hoeksema, J. T. 2012, ApJ, 757, 96
Dikpati, M., & Charbonneau, P. 1999, ApJ, 518, 508
Dikpati, M., de Toma, G., Gilman, P. A., Arge, C. N., & White, O. R. 2004,

ApJ, 601, 1136
Dikpati, M., & Gilman, P. A. 2001, ApJ, 559, 428
Dikpati, M., Gilman, P. A., Cally, P. S., & Miesch, M. S. 2009, ApJ, 692, 1421
D’Silva, S., & Choudhuri, A. R. 1993, A&A, 272, 621
Fan, Y., & Fang, F. 2014, ApJ, 789, 35
Fan, Y., Fisher, G. H., & McClymont, A. N. 1994, ApJ, 436, 907
Featherstone, N. A., & Miesch, M. S. 2015, ApJ, 804, 67
Gilman, P. A., & Dikpati, M. 2000, ApJ, 528, 552
Hale, G. E., Ellerman, F., Nicholson, S. B., & Joy, A. H. 1919, ApJ, 49

153
Hathaway, D. H., & Upton, L. A. 2016, JGRA, 121, 10
Hazra, G., Choudhuri, A. R., & Miesch, M. S. 2017, ApJ, 835, 39

Hazra, G., Karak, B. B., Banerjee, D., & Choudhuri, A. R. 2015, SoPh,
290, 1851

Hazra, G., Karak, B. B., & Choudhuri, A. R. 2014, ApJ, 782, 93
Hazra, S., & Nandy, D. 2016, ApJ, 832, 9
Hotta, H., Rempel, M., & Yokoyama, T. 2016, Sci, 351, 1427
Hotta, H., & Yokoyama, T. 2010, ApJL, 714, L308
Howard, R. F. 1991, SoPh, 136, 251
Işık, E. 2015, ApJL, 813, L13
Jackiewicz, J., Serebryanskiy, A., & Kholikov, S. 2015, ApJ, 805, 133
Jiang, J., Cameron, R. H., & Schüssler, M. 2014, ApJ, 791, 5
Jiang, J., Chatterjee, P., & Choudhuri, A. R. 2007, MNRAS, 381, 1527
Jouve, L., & Brun, A. 2007, A&A, 474, 239
Käpylä, M. J., Käpylä, P. J., Olspert, N., et al. 2016, A&A, 589, A56
Karak, B. B., & Brandenburg, A. 2016, ApJ, 816, 28
Karak, B. B., & Cameron, R. 2016, ApJ, 832, 94
Karak, B. B., & Choudhuri, A. R. 2011, MNRAS, 410, 1503
Karak, B. B., & Choudhuri, A. R. 2013, RAA, 13, 1339
Karak, B. B., Jiang, J., Miesch, M. S., Charbonneau, P., & Choudhuri, A. R.

2014a, SSRv, 186, 561
Karak, B. B., Käpylä, P. J., Käpylä, M. J., et al. 2015, A&A, 576, A26
Karak, B. B., & Nandy, D. 2012, ApJL, 761, L13
Karak, B. B., Rheinhardt, M., Brandenburg, A., Käpylä, P. J., & Käpylä, M. J.

2014b, ApJ, 795, 16
Kitchatinov, L. L., & Olemskoy, S. V. 2011, AstL, 37, 656
Kitchatinov, L. L., Pipin, V. V., & Ruediger, G. 1994, AN, 315, 157
Komm, R. W., Howard, R. F., & Harvey, J. W. 1995, SoPh, 158, 213
Leighton, R. B. 1964, ApJ, 140, 1547
Lemerle, A., & Charbonneau, P. 2017, ApJ, 834, 133
Lemerle, A., Charbonneau, P., & Carignan-Dugas, A. 2015, ApJ, 810, 78
Li, D. 2017, RAA, 17, 40
Lopes, I., & Passos, D. 2009, SoPh, 257, 1
McClintock, B. H., Norton, A. A., & Li, J. 2014, ApJ, 797, 130
McIntosh, S. W., Leamon, R. J., Gurman, J. B., et al. 2013, ApJ, 765, 146
McIntosh, S. W., Leamon, R. J., Krista, L. D., et al. 2015, NatCo, 6, 6491
Miesch, M. S., & Dikpati, M. 2014, ApJL, 785, L8
Miesch, M. S., Featherstone, N. A., Rempel, M., & Trampedach, R. 2012, ApJ,

757, 128
Miesch, M. S., & Teweldebirhan, K. 2016, SSRv, 58, 1571
Muñoz-Jaramillo, A., Dasi-Espuig, M., Balmaceda, L. A., & DeLuca, E. E.

2013, ApJL, 767, L25
Muñoz-Jaramillo, A., Senkpeil, R. R., Windmueller, J. C., et al. 2015, ApJ,

800, 48
Nordlund, Å., Stein, R. F., & Asplund, M. 2009, LRSP, 6, 2
Olemskoy, S. V., & Kitchatinov, L. L. 2013, ApJ, 777, 71
Parfrey, K. P., & Menou, K. 2007, ApJL, 667, L207
Parker, E. N. 1979, Cosmical Magnetic Fields: Their Origin and Their Activity

(Cambridge: Cambridge Univ. Press)
Passos, D., Nandy, D., Hazra, S., & Lopes, I. 2014, A&A, 563, A18
Priyal, M., Banerjee, D., Karak, B. B., et al. 2014, ApJL, 793, L4
Rajaguru, S. P., & Antia, H. M. 2015, ApJ, 813, 114
Schatten, K. H., Scherrer, P. H., Svalgaard, L., & Wilcox, J. M. 1978, GeoRL,

5, 411
Schrijver, C. J., & Harvey, K. L. 1994, SoPh, 150, 1
Senthamizh Pavai, V., Arlt, R., Dasi-Espuig, M., Krivova, N. A., &

Solanki, S. K. 2015, A&A, 584, A73
Simard, C., Charbonneau, P., & Dube, C. 2016, AdSpR, 58, 1522
Solanki, S. K., Wenzler, T., & Schmitt, D. 2008, A&A, 483, 623
Spruit, H. 1997, MmSAI, 68, 397
Stenflo, J. O., & Kosovichev, A. G. 2012, ApJ, 745, 129
Upton, L., & Hathaway, D. H. 2014, ApJ, 792, 142
Usoskin, I. G. 2013, LRSP, 10, 1
Usoskin, I. G., Solanki, S. K., & Kovaltsov, G. A. 2007, A&A, 471

301
Wang, Y.-M., Colaninno, R. C., Baranyi, T., & Li, J. 2015, ApJ, 798, 50
Wang, Y.-M., & Sheeley, N. R. 2009, ApJL, 694, L11
Wang, Y.-M., & Sheeley, N. R., Jr. 1989, SoPh, 124, 81
Yeates, A. R., Nandy, D., & Mackay, D. H. 2008, ApJ, 673, 544
Zhang, J., Wang, Y., & Liu, Y. 2010, ApJ, 723, 1006
Zhao, J., & Chen, R. 2016, AsJPh, 25, 325

17

The Astrophysical Journal, 847:69 (17pp), 2017 September 20 Karak & Miesch

https://orcid.org/0000-0002-8883-3562
https://orcid.org/0000-0002-8883-3562
https://orcid.org/0000-0002-8883-3562
https://orcid.org/0000-0002-8883-3562
https://orcid.org/0000-0003-1976-0811
https://orcid.org/0000-0003-1976-0811
https://orcid.org/0000-0003-1976-0811
https://orcid.org/0000-0003-1976-0811
https://doi.org/10.1051/0004-6361/201629000
http://adsabs.harvard.edu/abs/2016A&amp;A...595A.104A
http://adsabs.harvard.edu/abs/2016A&amp;A...595A.104A
https://doi.org/10.1088/0004-637X/809/2/149
http://adsabs.harvard.edu/abs/2015ApJ...809..149A
https://doi.org/10.1086/147060
http://adsabs.harvard.edu/abs/1961ApJ...133..572B
https://doi.org/10.1088/0004-637X/806/2/169
http://adsabs.harvard.edu/abs/2015ApJ...806..169B
https://doi.org/10.1126/science.1261470
http://adsabs.harvard.edu/abs/2015Sci...347.1333C
https://doi.org/10.1051/0004-6361/201321981
http://adsabs.harvard.edu/abs/2013A&amp;A...557A.141C
https://doi.org/10.1051/0004-6361/201527284
http://adsabs.harvard.edu/abs/2016A&amp;A...591A..46C
https://doi.org/10.12942/lrsp-2010-3
http://adsabs.harvard.edu/abs/2010LRSP....7....3C
https://doi.org/10.1146/annurev-astro-081913-040012
http://adsabs.harvard.edu/abs/2014ARA&amp;A..52..251C
https://doi.org/10.1086/317142
http://adsabs.harvard.edu/abs/2000ApJ...543.1027C
https://doi.org/10.1051/0004-6361:20041199
http://adsabs.harvard.edu/abs/2004A&amp;A...427.1019C
https://doi.org/10.1103/PhysRevLett.98.131103
http://adsabs.harvard.edu/abs/2007PhRvL..98m1103C
https://doi.org/10.1088/1674-4527/9/9/001
http://adsabs.harvard.edu/abs/2009RAA.....9..953C
https://doi.org/10.1051/0004-6361/201014301
http://adsabs.harvard.edu/abs/2010A&amp;A...518A...7D
https://doi.org/10.1088/0004-637X/757/1/96
http://adsabs.harvard.edu/abs/2012ApJ...757...96D
https://doi.org/10.1086/307269
http://adsabs.harvard.edu/abs/1999ApJ...518..508D
https://doi.org/10.1086/380508
http://adsabs.harvard.edu/abs/2004ApJ...601.1136D
https://doi.org/10.1086/322410
http://adsabs.harvard.edu/abs/2001ApJ...559..428D
https://doi.org/10.1088/0004-637X/692/2/1421
http://adsabs.harvard.edu/abs/2009ApJ...692.1421D
http://adsabs.harvard.edu/abs/1993A&amp;A...272..621D
https://doi.org/10.1088/0004-637X/789/1/35
http://adsabs.harvard.edu/abs/2014ApJ...789...35F
https://doi.org/10.1086/174967
http://adsabs.harvard.edu/abs/1994ApJ...436..907F
https://doi.org/10.1088/0004-637X/804/1/67
http://adsabs.harvard.edu/abs/2015ApJ...804...67F
https://doi.org/10.1086/308146
http://adsabs.harvard.edu/abs/2000ApJ...528..552G
https://doi.org/10.1086/142452
http://adsabs.harvard.edu/abs/1919ApJ....49..153H
http://adsabs.harvard.edu/abs/1919ApJ....49..153H
https://doi.org/10.1002/2016JA023190
http://adsabs.harvard.edu/abs/2016JGRA..12110744H
https://doi.org/10.3847/1538-4357/835/1/39
http://adsabs.harvard.edu/abs/2017ApJ...835...39H
https://doi.org/10.1007/s11207-015-0718-8
http://adsabs.harvard.edu/abs/2015SoPh..290.1851H
http://adsabs.harvard.edu/abs/2015SoPh..290.1851H
https://doi.org/10.1088/0004-637X/782/2/93
http://adsabs.harvard.edu/abs/2014ApJ...782...93H
https://doi.org/10.3847/0004-637X/832/1/9
http://adsabs.harvard.edu/abs/2016ApJ...832....9H
https://doi.org/10.1126/science.aad1893
http://adsabs.harvard.edu/abs/2016Sci...351.1427H
https://doi.org/10.1088/2041-8205/714/2/L308
http://adsabs.harvard.edu/abs/2010ApJ...714L.308H
https://doi.org/10.1007/BF00146534
http://adsabs.harvard.edu/abs/1991SoPh..136..251H
https://doi.org/10.1088/2041-8205/813/1/L13
http://adsabs.harvard.edu/abs/2015ApJ...813L..13I
https://doi.org/10.1088/0004-637X/805/2/133
http://adsabs.harvard.edu/abs/2015ApJ...805..133J
https://doi.org/10.1088/0004-637X/791/1/5
http://adsabs.harvard.edu/abs/2014ApJ...791....5J
https://doi.org/10.1111/j.1365-2966.2007.12267.x
http://adsabs.harvard.edu/abs/2007MNRAS.381.1527J
https://doi.org/10.1051/0004-6361:20077070
http://adsabs.harvard.edu/abs/2007A&amp;A...474..239J
https://doi.org/10.1051/0004-6361/201527002
http://adsabs.harvard.edu/abs/2016A&amp;A...589A..56K
https://doi.org/10.3847/0004-637X/816/1/28
http://adsabs.harvard.edu/abs/2016ApJ...816...28K
https://doi.org/10.3847/0004-637X/832/1/94
http://adsabs.harvard.edu/abs/2016ApJ...832...94K
https://doi.org/10.1111/j.1365-2966.2010.17531.x
http://adsabs.harvard.edu/abs/2011MNRAS.410.1503K
https://doi.org/10.1088/1674-4527/13/11/005
http://adsabs.harvard.edu/abs/2013RAA....13.1339K
https://doi.org/10.1007/s11214-014-0099-6
http://adsabs.harvard.edu/abs/2014SSRv..186..561K
https://doi.org/10.1051/0004-6361/201424521
http://adsabs.harvard.edu/abs/2015A&amp;A...576A..26K
https://doi.org/10.1088/2041-8205/761/1/L13
http://adsabs.harvard.edu/abs/2012ApJ...761L..13K
https://doi.org/10.1088/0004-637X/795/1/16
http://adsabs.harvard.edu/abs/2014ApJ...795...16K
https://doi.org/10.1134/S0320010811080031
http://adsabs.harvard.edu/abs/2011AstL...37..656K
https://doi.org/10.1002/asna.2103150205
http://adsabs.harvard.edu/abs/1994AN....315..157K
https://doi.org/10.1007/BF00795658
http://adsabs.harvard.edu/abs/1995SoPh..158..213K
https://doi.org/10.1086/148058
http://adsabs.harvard.edu/abs/1964ApJ...140.1547L
https://doi.org/10.3847/1538-4357/834/2/133
http://adsabs.harvard.edu/abs/2017ApJ...834..133L
https://doi.org/10.1088/0004-637X/810/1/78
http://adsabs.harvard.edu/abs/2015ApJ...810...78L
https://doi.org/10.1088/1674-4527/17/5/40
http://adsabs.harvard.edu/abs/2017RAA....17...40L
https://doi.org/10.1007/s11207-009-9372-3
http://adsabs.harvard.edu/abs/2009SoPh..257....1L
https://doi.org/10.1088/0004-637X/797/2/130
http://adsabs.harvard.edu/abs/2014ApJ...797..130M
https://doi.org/10.1088/0004-637X/765/2/146
http://adsabs.harvard.edu/abs/2013ApJ...765..146M
https://doi.org/10.1038/ncomms7491
http://adsabs.harvard.edu/abs/2015NatCo...6E6491M
https://doi.org/10.1088/2041-8205/785/1/L8
http://adsabs.harvard.edu/abs/2014ApJ...785L...8M
https://doi.org/10.1088/0004-637X/757/2/128
http://adsabs.harvard.edu/abs/2012ApJ...757..128M
http://adsabs.harvard.edu/abs/2012ApJ...757..128M
https://doi.org/10.1016/j.asr.2016.02.018
https://doi.org/10.1088/2041-8205/767/2/L25
http://adsabs.harvard.edu/abs/2013ApJ...767L..25M
https://doi.org/10.1088/0004-637X/800/1/48
http://adsabs.harvard.edu/abs/2015ApJ...800...48M
http://adsabs.harvard.edu/abs/2015ApJ...800...48M
https://doi.org/10.12942/lrsp-2009-2
http://adsabs.harvard.edu/abs/2009LRSP....6....2N
https://doi.org/10.1088/0004-637X/777/1/71
http://adsabs.harvard.edu/abs/2013ApJ...777...71O
https://doi.org/10.1086/522426
http://adsabs.harvard.edu/abs/2007ApJ...667L.207P
https://doi.org/10.1051/0004-6361/201322635
http://adsabs.harvard.edu/abs/2014A&amp;A...563A..18P
https://doi.org/10.1088/2041-8205/793/1/L4
http://adsabs.harvard.edu/abs/2014ApJ...793L...4P
https://doi.org/10.1088/0004-637X/813/2/114
http://adsabs.harvard.edu/abs/2015ApJ...813..114R
https://doi.org/10.1029/GL005i005p00411
http://adsabs.harvard.edu/abs/1978GeoRL...5..411S
http://adsabs.harvard.edu/abs/1978GeoRL...5..411S
https://doi.org/10.1007/BF00712873
http://adsabs.harvard.edu/abs/1994SoPh..150....1S
https://doi.org/10.1051/0004-6361/201527080
http://adsabs.harvard.edu/abs/2015A&amp;A...584A..73S
https://doi.org/10.1016/j.asr.2016.03.041
http://adsabs.harvard.edu/abs/2016AdSpR..58.1522S
https://doi.org/10.1051/0004-6361:20054282
http://adsabs.harvard.edu/abs/2008A&amp;A...483..623S
http://adsabs.harvard.edu/abs/1997MmSAI..68..397S
https://doi.org/10.1088/0004-637X/745/2/129
http://adsabs.harvard.edu/abs/2012ApJ...745..129S
https://doi.org/10.1088/0004-637X/792/2/142
http://adsabs.harvard.edu/abs/2014ApJ...792..142U
https://doi.org/10.12942/lrsp-2013-1
http://adsabs.harvard.edu/abs/2013LRSP...10....1U
https://doi.org/10.1051/0004-6361:20077704
http://adsabs.harvard.edu/abs/2007A&amp;A...471..301U
http://adsabs.harvard.edu/abs/2007A&amp;A...471..301U
https://doi.org/10.1088/0004-637X/798/1/50
http://adsabs.harvard.edu/abs/2015ApJ...798...50W
https://doi.org/10.1088/0004-637X/694/1/L11
http://adsabs.harvard.edu/abs/2009ApJ...694L..11W
https://doi.org/10.1007/BF00146521
http://adsabs.harvard.edu/abs/1989SoPh..124...81W
https://doi.org/10.1086/524352
http://adsabs.harvard.edu/abs/2008ApJ...673..544Y
https://doi.org/10.1088/0004-637X/723/2/1006
http://adsabs.harvard.edu/abs/2010ApJ...723.1006Z
http://adsabs.harvard.edu/abs/2016AsJPh..25..325Z

	1. Introduction
	2. Model
	3. Results for Fixed BMR Delay Distribution
	4. Cycle-dependent BMR Emergence Rate
	4.1. Diffusion-dominated Regime
	4.1.1. Steady Dynamo Solution
	4.1.2. Solution with Observed Tilt Angle Fluctuations
	4.1.3. Grand Minima and Maxima

	4.2. Sensitivity of Solutions with Nonlinearities

	5. Summary and Conclusions
	References



