
Application Note

Grabbing to a Host Buffer
with Matrox Genesis-LC

June 12, 1998

Grabbing to a Host buffer

When grabbing to a Host buffer, Matrox Genesis-LC uses off-screen frame buffer memory (that is, frame buffer
memory that is not configured for display purposes) as a FIFO, to buffer image data while the board waits for
access to the PCI bus. Loss of image data could otherwise occur during long bus-access latencies, found in
heavily loaded systems.

Matrox Genesis-LC uses hardware/software transfer control logic to double-buffer the grab between two
temporary buffers set up in off-screen memory. This logic toggles the grab between one temporary buffer and
the other, transferring grabbed data from the buffer in which data is not being grabbed. The double-buffering
is done on a line-block basis rather than on a frame basis.

In general, the default size of the temporary buffers provides a good compromise between maintaining a small
latency before the beginning of the transfer and minimizing the transfer’s dependency on the PCI bus load.
However, when the PCI bus is extremely loaded, the Matrox Genesis-LC board might not be able to maintain
the grab and transfer sequence. If the request to transfer is not serviced in time, the grab might overwrite
non-transferred data. This is known as a grab over-run.

For example, a typical load on the PCI bus is that of the Matrox Genesis-LC grabbing to a Host buffer while
the Host is updating the Matrox Genesis-LC’s display. When updating the GUI (in single-screen mode) and/or
the display of grabbed and processed images, the display updates are frequent. This bi-directional traffic might
increase the latency in servicing the request to write grabbed data to Host memory. At some point, the
accumulated latencies might cause a grab over-run.
2 Grabbing to a Host Buffer with Matrox Genesis-LC

Optimizing the use of the frame buffers

If you experience grab over-runs, try the following solutions in the specified order:

1. Increase the default temporary buffer size. This should be enough to resolve your problems.

2. If possible, double-buffer the grab on a frame basis rather than a line-block basis. In this case, you have
to manage the double-buffering of the grab yourself. This method involves one frame of latency before the
beginning of the transfer.

3. Reduce the display resolution or, if possible, reduce the PCI bus load.

Increasing the default temporary buffer size
You can increase the default temporary buffer size. Larger temporary buffers make the grab’s transfer-to-Host
less dependent on the PCI bus load. That is, the grab is less affected by long bus-access latencies, found in
heavily loaded systems, because more memory is available to buffer the data. Note, however, that larger
temporary buffers also increase the latency before the beginning of the transfer.

The maximum size of each temporary buffer is limited by the amount of off-screen memory divided by three:

max temp buffer size = off-screen memory / 3

The amount of off-screen frame buffer memory is determined by the amount of frame buffer memory that is
not configured for display purposes. Decreasing the display resolution increases the amount of off-screen
memory.

On-screen memory
Red plane

Off-screen memory

Off-screen memory

On-screen memory
Green plane

On-screen memory
Blue plane

2 Mbytes

2 Mbytes

2 Mbytes

Off-screen memory
Optimizing the use of the frame buffers 3

The amount of off-screen memory per frame buffer plane is determined as follows:

off-screen memory/plane = 2 Mbytes - (w * h)

where w and h are the width and height of the selected display resolution.

The following table lists the amount of off-screen memory available for some typical display resolutions, as
well as the maximum temporary buffer size for each resolution.

You can increase the default temporary buffer size by adjusting the SizeOfTmpBufferForHostGrab field
in the genesis.ini file.

Grabbing in on-board buffers
If increasing the size of the temporary buffers does not resolve your over-run problem, you can try
double-buffering the grab on a frame basis rather than a line-block basis. The grab is then less dependent on
the PCI bus load because the buffers don’t have to be transferred as frequently and intermittent bus latencies
are averaged over an entire frame. The downside of this process is that there is one frame of latency before
the beginning of the transfer.

To implement this model, you have to manage the double-buffering. To do so, allocate two frame-sized buffers
on-board and then grab a field/frame into one buffer while copying the other buffer to the Host. Since you
control the synchronization between the grab and transfer, you can detect when something goes wrong.

❖ Note that, by default, the copy operation is driven by the Host CPU. To speed up the copy and reduce Host
intervention, enable VIA-driven copies by setting the MsysControl() M_BUS_MASTER_COPY_TO_HOST
control to M_ENABLE.

This method is only possible if sufficient on-board memory is available to allocate the two buffers.

Grabbing large frames of data

When grabbing large frames of data (for example, 2K X 2K and 4K X 4K), there is no way to store the whole
frame in frame buffer memory. In this case, you can only grab to a Host buffer. However, if you are experiencing
over-runs using this method, try the suggestions in the next subsection, Other options.

Display
resolution

Bytes of
off-screen

memory/plane

Maximum temporary
buffer size

640 x 480 1789952 596650

800 x 600 1617152 539050

1024 x 768 1310720 436906

1280 x 1024 786432 262144

1600 x 1200 177152 59050
4 Grabbing to a Host Buffer with Matrox Genesis-LC

Monochrome display

When the frame buffers are in an 8-bit (monochrome) display resolution, an area of only one frame buffer
plane is used to maintain the display. In this case, sufficient memory is available to keep two entire
average-sized frames on-board.

Although an area of only one frame buffer plane is actually used to maintain the display, MIL reserves the
corresponding area of the two other frame buffer planes so that you can switch between a monochome and
color display without corrupting off-screen memory.

This means that if you try to allocate the buffers with an M_ON_BOARD attribute, there might not be sufficient
true off-screen memory to allocate the entire buffer. Instead, you might need to allocate the grab buffers in
the reserved frame buffer memory. To do so, inquire the address of the underlay frame buffer using
MsysInquire(), and then, using MbufCreate(), create your two buffers at the appropriate offset (that is, 0, 2,
or 4 Mbytes).

If you allocate buffers in reserved display memory, you cannot switch to color mode or select a color buffer on
the display; otherwise, the grab buffers will be corrupted.

On-screen memory
Monochrome 2 Mbytes

2 Mbytes

2 Mbytes

Double
buffer

grab

transfer

Off-screen memory

Off-screen memory

Off-screen memory

(Blue plane)

BA

BA + 2 Mbytes

BA + 4 Mbytes

BA = Base address

Reserved memory

(Green plane)

Reserved memory
(Red plane)
Optimizing the use of the frame buffers 5

An example

The following example shows how to allocate buffers in reserved display memory and then grab in these
buffers.

���(KNG�PCOG��OIGPNE�E
���5[PQRUKU���6JKU�RTQITCO�CNNQECVGU�VYQ�ITCD�DWHHGTU�KP�VJG�
��������������WPWUGF�DCPFU�QH�VJG�FKURNC[�CPF�VJGP�ITCDU�KP�VJGO�
��
��������������9JGP�VJG�FKURNC[�KU�KP�OQPQEJTQOG�OQFG��KV�
��������������WUGU�QPN[�VJG�DNWG�RNCPG�CPF�TGUGTXGU�VJG
��������������TGF�CPF�ITGGP�RNCPGU��6JKU�GZCORNG�UJQYU
��������������JQY�VQ�CEEGUU�VJKU�WPWUGF�OGOQT[�HQT�ITCDDKPI
��������������RWTRQUGU�
��
�������������0QVG�VJCV�VJG�/U[U%QPVTQN
��/A$75A/#56'4A%12;A61A*156
��������������EQPVTQN�KU�QPN[�CXCKNCDNG�KP�/+.������CPF�NCVGT�
���
���*GCFGTU���
�KPENWFG��UVFKQ�J �
�KPENWFG��UVFNKD�J �
�KPENWFG��EQPKQ�J �
�KPENWFG��OKN�J �

���/CKP�HWPEVKQP����
XQKF�OCKP
XQKF�
]�
��/+.A+&���/KN#RRNKECVKQP�
��/+.A+&���/KN5[UVGO������
��/+.A+&���/KN&KIKVK\GT���
��/+.A+&���/KN&KURNC[�����
��/+.A+&���/KN+OCIG1P$QCTF=�?�
��/+.A+&���/KN+OCIG&KUR�
��XQKF������7PFGTNC[2J[UKECN#FFTGUU���07..�

����#NNQECVKQPU���
��/CRR#NNQE
/A&'(#7.6���/KN#RRNKECVKQP��
��/U[U#NNQE
/A5;56'/A)'0'5+5��/A&'(A5;56'/A07/��/A5'672���/KN5[UVGO��
��/FKI#NNQE
/KN5[UVGO��/A&'(#7.6��/A&'(A&+)+6+<'4A(14/#6�
������������/A&'(#7.6���/KN&KIKVK\GT��
��/FKUR#NNQE
/KN5[UVGO��/A&'(#7.6��/A&'(A&+52.#;A(14/#6��/A&'(#7.6�
��������������/KN&KURNC[��

����(QTEG�VJG�FKURNC[�KP�OQPQEJTQOG�OQFG�QP�VJG�DNWG�RNCPG����
��/FKUR%QPVTQN
/KN&KURNC[��/A%1.14A/1&'��/A$.7'��

����#NNQECVG�C�FKURNC[�DWHHGT����
��/DWH#NNQE�F
/KN5[UVGO���
��������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A:��/A07..���
��������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A;��/A07..���
���������������.
/A705+)0'&��
��������������/A+/#)'
/A241%
/A&+52
/A010A2#)'&���/KN+OCIG&KUR��
��/DWH%NGCT
/KN+OCIG&KUR�����

��
EQPV����
6 Grabbing to a Host Buffer with Matrox Genesis-LC

�

����+PSWKTG�VJG�DCUG�CFFTGUU�QH�VJG�WPFGTNC[�RNCPG����
��/U[U+PSWKTG
/KN5[UVGO��/A2*;5+%#.A#&&4'55A70&'4.#;�
���������������7PFGTNC[2J[UKECN#FFTGUU��
����%TGCVG�C�DWHHGT�QP�VJG�TGF�RNCPG�
DCUG�CFFTGUU�����
��/DWH%TGCVG%QNQT
/KN5[UVGO����
������������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A:��/A07..���
������������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A;��/A07..���
�������������������.
/A705+)0'&��
������������������/A+/#)'
/A)4#$
/A241%
/A10A$1#4&�
������������������/A2*;5+%#.A#&&4'55
/A2+6%*A$;6'�
������������������/A&'(#7.6�
������������������
XQKF����
7PFGTNC[2J[UKECN#FFTGUU��
�������������������/KN+OCIG1P$QCTF=�?��

����/QXG�VQ�VJG�ITGGP�RNCPG�
DCUG�CFFTGUU
�/')�����
��7PFGTNC[2J[UKECN#FFTGUU���

WPUKIPGF�NQPI��7PFGTNC[2J[UKECN#FFTGUU��

�������������������������������Z�������
��/DWH%TGCVG%QNQT
/KN5[UVGO����
������������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A:��/A07..���
������������������
NQPI�
/FKI+PSWKTG
/KN&KIKVK\GT��/A5+<'A;��/A07..���
�������������������.
/A705+)0'&��
������������������/A+/#)'
/A)4#$
/A241%
/A10A$1#4&�
������������������/A2*;5+%#.A#&&4'55
/A2+6%*A$;6'�
������������������/A&'(#7.6�
������������������
XQKF����
7PFGTNC[2J[UKECN#FFTGUU��
�������������������/KN+OCIG1P$QCTF=�?����

����'PCDNG�DWU�OCUVGT�EQRKGU�HTQO�VJG�)GPGUKU�VQ�VJG�*QUV����
��/U[U%QPVTQN
/KN5[UVGO��/A$75A/#56'4A%12;A61A*156��/A'0#$.'��

���&KURNC[�VJG�DWHHGT����
��/FKUR5GNGEV
/KN&KURNC[��/KN+OCIG&KUR��
��RTKPVH
�2TGUU�GPVGT�VQ�ITCD�KPVQ�VJG�HKTUV�DWHHGT>P���
��IGVEJCT
��

����)TCD�CPF�EQR[�VQ�VJG�*QUV����
��/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG1P$QCTF=�?��
��/DWH%QR[
/KN+OCIG1P$QCTF=�?��/KN+OCIG&KUR��
��RTKPVH
�2TGUU�GPVGT�VQ�ITCD�KPVQ�VJG�UGEQPF�DWHHGT>P���
��IGVEJCT
��

����)TCD�CPF�EQR[�VQ�VJG�*QUV����
��/FKI)TCD
/KN&KIKVK\GT��/KN+OCIG1P$QCTF=�?��
��/DWH%QR[
/KN+OCIG1P$QCTF=�?��/KN+OCIG&KUR��
��IGVEJCT
��

����(TGG�CNNQECVKQPU����
��/DWH(TGG
/KN+OCIG1P$QCTF=�?��
��/DWH(TGG
/KN+OCIG1P$QCTF=�?��
��/DWH(TGG
/KN+OCIG&KUR��
��/FKUR(TGG
/KN&KURNC[��
��/FKI(TGG
/KN&KIKVK\GT��
��/U[U(TGG
/KN5[UVGO��
��/CRR(TGG
/KN#RRNKECVKQP��
_��
Optimizing the use of the frame buffers 7

Color display

When the frame buffers are in a 24-bit (color) display resolution, the three frame buffer planes are used to
maintain the display. In this case, off-screen memory is the only memory available in which to perform
double-buffering without affecting the display.

In a 1024 x 768 display resolution, there is 1310720 bytes of off-screen memory/plane available for a double
buffering scheme. If, for example, your camera is a 512 x 480 RGB source, only 737280 (512 x 480 x 3) bytes
are required to buffer one frame. So, you can allocate the buffers in the off-screen memory of two planes. Since
you need to allocate the buffers in off-screen memory, simply allocate the buffers with MbufAllocColor() and
use the M_ON_BOARD flag; the buffers will automatically be allocated in the appropriate off-screen memory.

When grabbing larger frames of data or when displaying in a higher resolution, the previous method might
not be suitable. For example:

In these cases, the only way to achieve the grab is to use off-screen memory as FIFO and grab to a Host buffer.
However, if you are experiencing over-runs using this method, try the suggestions in the following subsection.

Other options
In the unlikely event that the previous two suggestions do not resolve grab over-runs, you have the following
options:

■ You can try reducing the display resolution. This reduces the PCI bus load because there is less to update,
and it increases the amount of off-screen memory so you can create larger temporary buffers.

■ If your application permits, use other methods to reduce the PCI bus load. For example, reduce the number
of display updates of the processed grabbed image; this, however, involves manual intervention.

Display Camera Bytes missing in
off-screen memory

1280 x 1024 1K x 1K mono source 262144

1600 x 1200 1K x 1K mono source 871424

1600 x 1200 512 x 480 mono source 68608
8 Grabbing to a Host Buffer with Matrox Genesis-LC

	Application Note
	Grabbing to a Host Buffer with Matrox Genesis-LC
	Grabbing to a Host buffer
	Optimizing the use of the frame buffers
	Increasing the default temporary buffer size
	Grabbing in on-board buffers
	Grabbing large frames of data
	Monochrome display
	An example
	Color display

	Other options

