
Chapter 5

Sandpiles
{chap:sandpile

The sky is blue, the sun is high, and you are sitting idle on a beach, a cold beer in one hand
and a handful of dry sand in the other. Sand is slowly trickling through your fingers, and as a
consequence a small conical pile of sand is slowly growing below your hand. Sand avalanches
of various sizes intermittently slide down the slope of the pile, which is growing both in width
and in height but maintains the same slope angle.

However mundane this minor summer vacation event might appear, it has become the icon of
Self-Organized Criticality (hereafter SOC), an extremely robust mechanism for the autonomous
development of complex, scale-invariant behaviors and patterns in natural systems. SOC will
be encountered again and again in subsequent chapters, hiding under a variety of disguises, but
here we shall first restrict ourselves to an extremely simple computational idealization of that
iconic summertime pile of sand.

5.1 Model definition

The sandpile model is a lattice-based cellular automaton-like system evolving according to
simple, discrete rules, local in space and time. Here we consider a one-dimensional lattice made
up of N nodes with right+left neighbour connectivity, as in 1D percolation (see Fig. 4.1). This
lattice is used to discretize a real-valued variable Sn

j , where the subscript j identifies a node on
the lattice and the superscript n denotes a temporal iteration. Initially (n = 0) we set

S0
j = 0 , j = 0, ..., N − 1 . (5.1) {eq:sandp1}

This nodal variable is subjected to a forcing mechanism, whereby at each temporal iteration a
small increment s is added to the variable S, at a single randomly selected node:

Sn+1
r = Sn

r + s , r ∈ [0, N − 1] , s ∈ [0, ε] , (5.2) {eq:sandp2}

where r and s are extracted from a uniform distribution of random deviates spanning the given
ranges, and the maximum increment ε is an input parameter of the model. The physical system
inspiring this simple model is a pile of sand, so you may imagine that Sn

j measures the height
of the sandpile at the position j on the lattice at time n, and the forcing mechanism amounts
to dropping sand grains at random locations on the pile. Obviously, the sandpile will grow in
height in response to this forcing... at least at first.

Now for the dynamics of the system; as the pile grows, at each temporal iteration the
magnitude of the slope associated with each nodal pair (j, j + 1) is calculated:

znj = |Sn
j+1 − Sn

j | , j = 0, ..., N − 2 . (5.3) {eq:sandp4a}

If this slope exceeds a preset critical threshold Zc, then the nodal pair (j, j + 1) is deemed
unstable. This embodies the idea of static friction between sand grains in contact, which can
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74 CHAPTER 5. SANDPILES

Figure 5.1: Action of the redistribution rules given by eqs. (5.4). The dark gray columns indicate
the nodal values (sand height) for a quartet of contiguous nodes, with the black solid dots linked
by solid lines indicating the slope, as given by eq. (5.3) and with thicker line segments flagging
slopes in excess of the threshold Zc (depicted by the triangular wedge at top left). Here the
nodal pair (j, j+1) exceeds this critical slope, so that the redistribution alters the nodal values
as indicated by the two red vertical arrows. This is equivalent to moving by one nodal spacing
downslope the quantity of “sand” enclosed by the upper green box, as indicated by the green
arrow. This adjustment leads to the new slopes traced by the red dots and solid lines, which
here is now unstable for the nodal pair (j +1, j +2). This would lead to another readjustment
at the next iteration (see text). {fig:slopedemo}

equilibrate gravity up to a certain inclination angle, beyond which sand grains start toppling
downslope. A redistribution rule capturing this toppling process is applied so as to restore
stability at the subsequent iteration. Here we use the following simple rule:

Sn+1

j = Sn
j + (S̄ − Sn

j )/2 , Sn+1

j+1
= Sn

j+1 + (S̄ − Sn
j+1)/2 , (5.4) {eq:sandp4b}

where

S̄ = (Sn
j+1 + Sn

j )/2 . (5.5){???}

This rule displaces a quantity of sand from the node with the higher Sn
j value to the other, such

that the local slope znj is reduced by a factor of two. Figure 5.1 illustrates this redistribution
process. If ε ≪ Sj , Sj+1, then the critical slope is only exceeded by a small amount, and the
above rule will always restore local stability. It is left as an easy exercise in algebra to verify
that this rule is conservative, in the sense that sand is neither created or destroyed by the
redistribution:

Sn+1

j + Sn+1

j+1
= Sn

j + Sn
j+1 , (5.6){eq:sandp4c}
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5.2. NUMERICAL IMPLEMENTATION 75

and that the quantity δSn
j of sand displaced is given by

δSn
j =

znj
4

, (5.7){eq:sandp5}

as indicated by the green boxes on Fig. 5.1. But now, even if the pair (j, j + 1) was the only
unstable one on the lattice at iteration n, the redistribution has clearly changed the slope
associated with the neighbouring nodal pairs (j − 1, j) and (j + 1, j + 2) since Sn

j and Sn
j+1

have both changed; and it is certainly possible that one (or both) of these neighbouring pairs
now exceeds the critical threshold Zc as a result. This is the case for the pair (j + 1, j + 2) in
the specific configuration depicted on Fig. 5.1. The redistribution rule is applied anew to that
unstable nodal pair; but then the stability of its neighbouring pairs must again be verified, and
the redistribution rule applied once again if needed, and so on. This sequential process amounts
to an avalanche of sand being displaced downslope, until every pair of contiguous nodes on the
lattice is again stable with respect to eq. (5.3).

Now the boundary conditions comes into play. At the last node of the lattice, at every
iteration n we remove any sand having accumulated there due to an arriving avalanche:

Sn
N−1 = 0 . (5.8) {eq:sandp3}

This is as if the sandpile reached to the edge of a table, with sand simply falling off when
moving beyond this position. No such removal takes place at the first node, which may be
imagined as being due to the presence of a containing wall. The boundary condition (5.8) turns
out to play a crucial role here. Because the redistribution rule is conservative, and in view of
the inexorable addition of sand to the system mediated by the forcing rule, the boundary is the
only place where sand can be evacuated from the system.

In light of all this, one may imagine that a stationary state can be reached, characterized by
a global slope equal to Zc, with avalanches moving sand to the bottom of the pile at the same
(average) rate as the forcing rule is loading the pile. As we shall see presently, a stationary state
is indeed reached, but presents some characteristics one would have been very hard pressed to
anticipate on the basis of the simple rules introduced above.

5.2 Numerical implementation

The source code listed in Figure 5.2 gives a minimal numerical implementation of our one-
dimensional sandpile model, “minimal” in the sense that it favors coding clarity over compu-
tational efficiency and coding economy. Note the following:

1. The array sand[N] is our discrete variable Sn
j , and contains the quantity of sand at each

of the N nodes of the lattice at a given iteration. Here this is initialy set to zero at all
nodes (line 10).

2. The simulation is structured as one outer temporal loop, and this loop is set up to execute
a predetermined number of temporal iteration n iter (starting at line 14);

3. Each temporal iteration begins with an inner loop over each of the N − 1 pairs of neigh-
bouring nodes on the lattice (starting on line 17). First the local slope is calculated (line
18), then tested for stability (line 19), and wherever the stability criterion is violated, the
quantity of sand that must be added or removed from each node to restore stability, as
per the redistribution rule (5.4), is accumulated in the array move (lines 21–22), without
updating array sand at this stage. This update is only carried out once all nodes have
been tested, by adding the content of move to sand (line 27). This synchronous update of
the nodal variable is important, otherwise a directional bias is introduced in the triggering
and propagation of avalanches;
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76 CHAPTER 5. SANDPILES

1 # SLOPE-BASED SANDPILE MODEL IN ONE DIMENSION

2 import numpy as np

3 import matplotlib.pyplot as plt

4 #----------------------------------------------------------------------------

5 N=101 # Lattice size

6 E=0.1 # Peak forcing increment

7 critical_slope=5. # critical slope

8 n_iter=200000 # Number of temporal iterations

9 #----------------------------------------------------------------------------

10 sand=np.zeros(N) # Lattice, initially empty

11 tsav=np.zeros(n_iter) # Avalanche time series

12 mass=np.zeros(n_iter) # Sandpile mass time series

13

14 for iterate in range(0,n_iter): # Temporal iteration

15 move=np.zeros(N) # Initialize diplaced sand array

16

17 for j in range(0,N-1): # Loop over lattice

18 slope=abs(sand[j+1]-sand[j]) # Eq (5.3): slope between j,j+1

19 if slope >= critical_slope: # Pair j,j+1 is unstable

20 avrg=(sand[j]+sand[j+1])/2.

21 move[j] +=(avrg-sand[j] )/2. # Eq (5.4) sand moved to/from j

22 move[j+1]+=(avrg-sand[j+1])/2. # Eq (5.4) sand moved to/from j+1

23 tsav[iterate]+=slope/4. # Eq (5.7) cumulate displaced mass

24 # end of lattice loop

25

26 if tsav[iterate] > 0: # At least one node avalanched

27 sand+=move # Transfer sand

28 else: # No avalanche; drive lattice

29 j=np.random.random_integers(0,N-1) # Pick random node

30 sand[j]+=np.random.uniform(0,E) # Eq (5.2): add sand increment

31

32 sand[N-1]=0. # Eq (5.8): boundary condition

33 mass[iterate]=np.sum(sand) # Sandpile mass at this iteration

34 print("{0}, mass {1}.".format(iterate,mass[iterate]))

35 # End of temporal iteration

36

37 # Now plot a simpler version of Figure 5.4

38 plt.subplot(2,1,1) # Set up first plot (top)

39 plt.plot(range(0,n_iter),mass) # Sandpile mass vs iteration

40 plt.ylabel(’Sandpile mass’)

41 plt.subplot(2,1,2) # Set up second plot (bottom)

42 plt.plot(range(0,n_iter),tsav) # Displaced mass vs iteration

43 plt.ylabel(’Displaced mass’)

44 plt.xlabel(’iteration’)

45 plt.show()

46 # END

Figure 5.2: A source code in the Python programming language for the one-dimensional sandpile
model described in the text. This represents a minimal implementation, emphasizing conceptual
clarity over programming elegance, code length, or run-time speed. {code:sandpile}
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5.3. A REPRESENTATIVE SIMULATION 77

4. Addition of sand at a random node (lines 29–30) only takes place if the lattice was found
everywhere stable at the current iteration. This is known as a “stop-and-go” sandpile,
and is meant to reflect a separation of timescale between forcing and avalanching, the
former being assumed to be a much slower process than the latter.

5. At the end of each iteration, the mass of the pile and mass displaced by avalanches, to
be defined shortly in eqs. (5.9) and (5.10) below, are stored in the arrays mass and tsav;
these time series will be needed in analyses to follow.

6. Note another piece of Python-specific coding on line 33: the instruction np.sum(sand),
using the summing function from the numpy library, returns the sum of all elements of
array sand; this could be easily replaced by a loop sequentially summing the elements of
the array.

7. The matplotlib intructions on lines 38–45 produce a simplified version of Fig. 5.4 further
below.

5.3 A representative simulation

Let’s look at what this code does for a small 100-node lattice, initially empty (i.e., S0
j = 0 ∀j),

with the driving amplitude set at ε = 0.1 and the critical slope at Zc = 5. Figure 5.3 illustrates
the growth of the sandpile during the first 106 iterations. Recall that sand is being dropped at
random locations on the lattice, but in a statistically uniform manner, so that at first the pile
remains more or less flat as it grows. However, the “falloff” boundary condition imposed on the
right edge drains sand from the pile, so that the pile develops a right-leaning slope, first close
to its right edge but gradually extending farther and farther to the left. In contrast, at the
left edge the “wall” condition imposed there implies that sand just accumulates without falling
off. Consequently the pile remains flat there until the slope growing from the right reaches the
left edge. This occurs here after some 850000 temporal iterations. In this transient phase the
system has not yet reached statistical equilibrium: averaged over many iterations, more sand
is added to the pile than is evacuated at the open boundary.

This all make sense and could have been easily expected, doesn’t it, given the model’s setup?
So why having bothered to run the simulation? Well, to begin with, careful examination of
Fig. 5.3 reveals that one very likely expectation did not materialize. The dotted line indicates
the slope corresponding to the set critical slope Zc = 5. In the statistically stationary state,
the pile ends up with a slope significantly smaller (here by about 7%) than Zc = 5. This
equilibrium slope defines the angle of repose of the sandpile. But why is the pile stopping to
grow before the critical slope is reached ? This is is due to the stochasticity imbedded in the
forcing mechanism, which leads to some nodal pairs going unstable before the pile as a whole
has reached the critical slope Zc. As a consequence, the system stabilizes at an average slope
smaller than Zc, approaching Zc only in the limit ε → 0. But this is just the beginning of the
story.

It will prove useful to define a few global quantities in order to characterize the temporal
evolution of the lattice. The most obvious is perhaps mass, namely the total quantity of sand
in the pile at iteration n:

Mn =

N−1∑

j=0

Sn
j . (5.9) {eq:sandp9}

Figure 5.4A shows a time series of this quantity, starting at the beginning of the simulation.
Mass first grows with time during the transient phase, but eventually saturates at a value
subjected to zero-mean fluctuations. These are better visible on the inset, showing a zoom of
a small portion of the time series. The shape is quite peculiar. In fact, the line defined by the
Mn time series is self-similar, with a fractal dimension larger than unity. On this zoom mass
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78 CHAPTER 5. SANDPILES

Figure 5.3: Growth of a one-dimensional sanpile constrained by a wall on its left edge, as
produced by the code listed on Fig. 5.2, here starting from an empty N = 100 lattice and with
parameter values Zc = 5 and ε = 0.1. The dotted line indicates a slope of Zc. Each curve is
separated from the preceding one by 105 iterations, as color-coded from bottom towards the
top. {fig:pile}

is seen to grow linearly, at a well-defined rate set by the magnitude of the forcing parameter ε,
but this growth is episodically interrupted by sudden drops, occurring when sand is evacuated
from the pile when avalanches reach the open boundary at the end of the lattice. The resulting
fractal sawtooth pattern reflects the slow, statistically uniform loading and rapid, intermittent
discharge. The sandpile is now in a statistically stationary state: the mass is ever varying, but
its temporal average over a time span much larger than the mean time interval between two
successive avalanches remains constant.

Another interesting quantity is the mass displaced at iteration n in the course of an ongoing
avalanche:

∆Mn =
N−2∑

j=0

δSn
j , (5.10){eq:sandp10}

where δSn
j is given by eq. (5.7). Keep in mind that this quantity is not necessarily equal to

Mn+1−Mn, since an avalanche failing to reach the right edge of the sandpile will not lower the
total mass of the pile, even though sand is being displaced downslope. Nonetheless, it is clear
from Fig. 5.4 that the total mass of the sandpile varies very little even when a large avalanche
reaches the right boundary; the largest drop visible in the inset on Fig. 5.4A amounts to a
mere 0.2% of the sandpile mass. This is because only a thin layer of sand along the slope
is involved in the avalanching process, even for large avalanches. The underlying bulk of the
sandpile remains “frozen” after the sandpile has reached its statistically stationary state.

Figure 5.4B shows the segment of the ∆Mn time series corresponding to the epoch plotted
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5.3. A REPRESENTATIVE SIMULATION 79

Figure 5.4: Panel (A) shows a time series of total mass Mn, as given by eq. (5.9)), for a
simulation with parameter values N = 100, Zc = 5, and ε = 0.1 and initial condition S0

j = 0.
The inset shows a zoom of the time series in the statistically stationary phase of the simulation,
highlighting its fractal shape. Panel (B) is a time series of displaced mass ∆Mn, as given by
eq. (5.10), spanning the same time interval as the inset on panel (A). {fig:sandpilets}
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80 CHAPTER 5. SANDPILES

in the inset on part (A). This time series is again very intermittent, in the sense that ∆Mn = 0
except during short “bursts” of activity, corresponding to avalanches. These avalanches are
triggered randomly, and have widely varying sizes, ranging from one pair of nodes to the whole
lattice.

Figure 5.5 illustrates the spatiotemporal unfolding of avalanches over 2000 iterations in the
statistically stationary state of the same simulation as on Fig. 5.4. The vertically-elongated
images at center and right each show a 1000-iteration segment, the right being the continuation
of the central one, with time running vertically upwards. The horizontal is the “spatial” di-
mension of the 1D lattice, the open boundary being on the right. The square pixellized images
on the left are two closeups each capturing the onset and early development of an avalanche.
The color scale encodes the quantity of displaced sand, with green corresponding to zero. The
purple/pink shades delineate the avalanching regions. Note how avalanches start always at a
single nodal pair, following the addition of a sand increment at a single node, and typically
expand downslope (here toward the right) as well as upslope (towards left) in subsequent it-
erations. The smaller avalanches often remain contained within the slope (bottom of middle
image), but the larger one typically reach all the way to the open boundary and discharge
sand from the pile. The constant inclination angle of propagating avalanches in such diagrams
reflects the one-node-per-iteration propagation speed of the avalanching front, as set by the
local redistribution rule.

The aggressively pastel color scale used to generate Fig. 5.5 was chosen so as to visually
enhance substructures building up within avalanching regions. The most prominent pattern at
the lattice scale is checkerboard-like, and simply reflects the fact that the stability and redis-
tribution rules introduce a two-node spatial periodicity in the lattice readjusment. Of greater
interest are the long-lived substructures emanating from the avalanching front and propagat-
ing vertically upwards in the avalanching regions. These are quite striking on the central and
right image on Fig. 5.5. They are triggered by small variations in the slope characterizing
stable regions in which the avalanching is progressing. These irregularities are responsible
for avalanches, even large ones, sometimes stopping prior to reaching one of the other lattice
boundaries. Morphologically, they also bear some similarity to the spatiotemporal structures
that can build up in two-states 1D cellular automata of the type investigated in §2.1.

5.4 Measuring avalanches{sec:measavs}

Figures 5.4B and 5.5 illustrate well the disparity in avalanche size and shape. This is worth
looking into in greater detail. We begin by defining three global quantities characterizing each
avalanche, all computable from the time series of displaced sand (array tsav in the simulation
code listed on Fig. 5.2):

1. Avalanche energy1 E: the sum of all displaced mass ∆Mn over the duration of a given
avalanche;

2. Avalanche peak P : the largest ∆Mn value produced in the course of the avalanche.

3. Avalanche duration T : the number of iterations elapsed between the triggering of an
avalanche and the last local redistribution that follows;

These three quantities can be easily extracted from the time series of displaced mass (array tsav
in the Python code listed on Fig. 5.2). The idea is to identify the beginning of an avalanche
as a time step iterate for which tsav(iterate)> 0 but tsav(iterate-1)= 0; likewise, an
avalanche ends at iteration iterate-1 if tsav(iterate-1)> 0 but tsav(iterate)= 0. The
following user-defined Python function shows how to code this up:

1“Energy” is used here somewhat loosely, yet clearly the redistribution rules involve displacing sand downs-

lope, as indicated by the green boxes on Fig. 5.1, thus liberating gravitational potential energy, and justifying

the analogy.
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5.4. MEASURING AVALANCHES 81

Figure 5.5: Spatiotemporal map of avalanches cascading across the lattice, in a 2000-iteration
long segment in the statistically stationary phase of the simulation plotted in Fig. 5.4. The
image displays the displaced mass δSn

j as a function of node number running horizontally, and
time running vertically from bottom to top. The open boundary coincides with the right edge
of each image. The image on the right is the temporal continuation of that in the middle, and
the two pixellized images on the left are closeups on the early phases of two avalanches. Green
corresponds to zero displaced mass (stable slope), and shades light blue through purple to red
are avalanching regions. This rather unusual pastel color scale was picked to better illustrate
the substructures developing within avalanching regions (see text). {fig:big1dav}
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1 # FUNCTION MEASURE_AV: EXTRACTS ENERGY, PEAK AND DURATION OF AVALANCHES

2 def measure_av(n_iter,tsav):

3 n_max_av=10000 # maximum number of avalanches

4 e_av=np.zeros(n_max_av) # avalanche energy series

5 p_av=np.zeros(n_max_av) # avalanche peak series

6 t_av=np.zeros(n_max_av) # avalanche duration series

7 n_av,sum,istart,avmax=-1,0,0,0.

8 for iterate in range(1,n_iter): # loop over time series

9 if tsav[iterate] > 0. and tsav[iterate-1] == 0.:

10 sum,avmax=0.,0.

11 istart=iterate # a new avalanche begins

12 if n_av == n_max_av-1: # safety test

13 print("too many avalanches")

14 break # break out of loop

15 n_av+=1 # increment avalanche counter

16 sum+=tsav[iterate] # cumulate displaced mass

17 if tsav[iterate] > avmax: # check for peak

18 avmax=tsav[iterate]

19 if tsav[iterate] <= 0. and tsav[iterate-1] > 0: # this avalanche ends

20 e_av[n_av]= sum # avalanche energy

21 p_av[n_av]= avmax # avalanche peak

22 t_av[n_av]= iterate-istart # avalanche duration

23

24 # end of loop over time series

25 return n_av,e_av,p_av,t_av

26 # END FUNCTION MEASURE_AV

This function could be called, for example, after the outer loop in the sandpile code of
Fig. 5.2. Note the safety test (lines 12–14) exiting the loop so as to avoid the avalanche counter
n av becoming larger than n max av, which would cause out-of-bounds indexing of the arrays
e av, p av and t av. Upon exiting from the loop, the variable n av contains the number
of avalanches in the time series array tsav, and the arrays e av, p av and t av contain the
associated energy E, peak displaced mass P , and duration T of each of these avalanches.

Although large avalanches moving more sand tend to last longer and reach higher peak
discharge rates, the quantities E, P and T are correlated only in a statistical sense. Figure 5.6
shows the correlation between avalanche size E and duration T for 15019 avalanches having
occurred in a 5× 106 iteration segment of a simulation on a N = 1000 lattice. Overall E does
increase with T , but the distribution of avalanche data shows some rather peculiar groupings,
most notably along diagonal lines in this correlation plot. Moreover, all data fall within a wedge
delimited by lines with slopes of +1 and +2 in this log-log plot.

Consider a lattice everywhere at the angle of repose, with the addition of a small random
increment at node j bringing one nodal pair infinitesimally beyond the stability threshold.
Equation (5.7) then yields a displaced mass δSn

j = Zc/4; this is the smallest avalanche that can
be produced on the lattice; it is the “quantum” of displaced mass (or energy) for this system,
hereafter denoted δM0. Now, suppose that this redistribution destabilizes the downslope pair
(j, j + 1), but not its upslope counterpart (j − 1, j); with the lattice everywhere at the angle
of repose, our quantum of displaced mass will move down the slope, one node per iteration,
until it is evacuated at the open boundary. If the original unstable nodal pair is M nodes away
from the open boundary, this avalanche will have duration T = M and energy E = M × δM0;
consequently, E = δM0 T , a linear relationship. If the initial avalanche destabilizes both
neighbouring pairs but no other pair upslope, then two quanta of mass will move down the
slope, leading to E = 2δM0 T . And so on for higher numbers of mass quanta. The duration of
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Figure 5.6: Correlation between avalanche size E (displaced mass) and duration T in the
statistically stationary phase of a sandpile simulation on a N = 1000 1D lattice. The dotted
lines bracketing the avalanche data have slopes of +1 and +2 in this log-log plot, corresponding
respectively to the relationships E ∝ T and E ∝ T 2. {fig:sandpilecorr}

such avalanches is clearly bounded by the size of the lattice. These are the line-like avalanches
on Fig. 5.5, and they map onto the straight line groupings with slope +1 on Figure 5.6. The
avalanche whose onset is plotted on the bottom left closeup on Fig. 5.5 belongs to the fourth
such family (four mass quanta moving out to the open boundary). These families represent the
quantized “energy levels” accessible to the avalanches. The upper bounding line with slope of
+2 is associated with avalanches spreading both upslope and downslope; all nodes in between
avalanche repeatedly until stabilization occurs at the ends of the avalanche front, or mass
is evacuated at the boundary. These are the avalanches taking the form of solid wedges on
Fig. 5.5. In such cases the number of avalanching nodes increases linearly with T , so that the
time-integrated displaced mass will be ∝ T 2. The locality of the redistribution rules precludes
avalanches from growing faster on this 1D lattice, which then explains why the avalanche
energies are bounded from above by a straight line of slope +2 on Figure 5.6. Of course, any
intermediate avalanche shape between lines and wedges is possible, and so the space between
the two straight lines is also populated by the avalanche data. Incidentally, there is a lesson
lurking here: just because a system is deemed to exhibit “complexity” does not mean that some
aspects of its global behavior cannot be understood straightforwardly !

Even though the correlations between avalanche parameters exhibit odd structure, their
individual statistical distributions are noteworthy. Figure 5.7A and B show the probability
density functions (see Appendix C) for E and P , for simulations carried out over lattices of
size N = 100, 300, 1000 and 3000, but otherwise identical (Zc = 5, ε = 0.1, and redistribution
given by eq. (5.4)). The PDFs take the form of power laws, with logarithmic slope independent
of lattice size; as the latter increases, the distribution simply extends farther to the right.

This behavior we have encountered before in chapter 4, in the size distribution of clusters on
2D lattices at the percolation threshold. (cf. Fig. 4.8). Here this invariant power-law behavior
of materializes only in the statistically stationary phase of the simulation. It indicates that
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Figure 5.7: Probability density function of (A) avalanche energy E and (B) avalanche peak P ,
in the statistically stationary states of the sandpile model for varying lattice sizes, as indicated.
The PDF of avalanche duration T resembles that for P in (B), except for a steeper logarithmic
slope. Note the logarithmic scales on both axes. In all cases the PDFs take the form of power
laws, with a flattening at small values of E and P , and a sharp drop at high values, occurring at
progressively larger values of E and P for larger lattices. Note, however, that the logarithmic
slope is independent of lattice size. Compare this to Fig. 4.8. {fig:sandpilehisto}
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5.5. SELF-ORGANIZED CRITICALITY 85

avalanches are self-similar, i.e., they do not have a characteristic size. This scale invariance
reflects the fact that at the dynamical level, the only thing distinguishing a large avalanche
from a small one is the number of lattices nodes involved; the same local rules govern the
interaction between nodes. But in the percolation context, we also argued that scale-invariance
appeared only when the system had reach a critical state; could this also be the case here ?

5.5 Self-organized criticality {sec:SOC}

It is truly remarkable that of all the possible ways to move sand downslope at the same average
rate as sand addition by the forcing rule, so as to achieve a statistically stationary state,
our sandpile model “selects” the one characterized by scale-free avalanches. Because many
natural systems behave in this manner, the sandpile (real or idealized) has become the icon for
avalanching behavior in general, and for the concept of self-organized criticality in particular.

We saw in chapter 4, in the context of percolation, that a system is deemed critical when
the impact of a small, localized perturbation can be felt across the whole system. Recall
how at the percolation threshold, occupying one more node on the lattice can connect two
pre-existing clusters, forming a single large cluster spanning the whole lattice; as a result the
system suddenly becomes permeable, electrically conducting, whatever, whereas prior to that
it was impermeable, or insulating, etc. You should also recall that this extreme sensitivity
only materialized at the percolation threshold, so that critical behavior required external fine
tuning of a control parameter, which in the case of percolation is the occupation probability
p. Moreover, it is only at the percolation threshold that clusters on the lattice exhibited scale
invariance (viz. Fig. 4.7).

So where is the criticality here ? With the sandpile, the equivalent of the percolation
threshold is the angle of repose of the pile. If the slope is inferior to this, as when the sandpile
is still growing, then local addition of sand may trigger small, spatially confined avalanches, but
certainly nothing spanning the whole lattice. If the global slope angle is larger than the angle
of repose, then the lattice is already avalanching vigorously. Only at the angle of repose can the
addition of a small bit of sand at a single random node do anything between (1) nothing, and (2)
trigger an avalanche running along the whole slope. However, and unlike with percolation, here
the angle of repose is reached “naturally” as a consequence of the dynamical evolution of the
system —namely the forcing, stability, and redistribution rules— through interactions between
a large number of lattice nodes over time, without any fine tuning of external parameters. The
critical state is here an attractor of the dynamics. For this reason, systems such as the sandpile
are said to be in a state of self-organized criticality, to distinguish them from conventional
critical systems which rely on external fine tuning of a control parameter.

Much effort has gone into identifying the conditions under which a system can exhibit self-
organized critical behavior. At this writing there exist no general theory of self-organized critical
systems, but the following characteristics appear sufficient —and possibly even necessary. A
system must be:

1. open and dissipative,

2. loaded by slow forcing,

3. subjected to a local threshold instability...

4. ...which restores stability through local readjustement.

However restrictive this may appear, the number and variety of natural systems that in prin-
ciple meet these requirements is actually quite large. Joining avalanches and other forms of
landslides are forest fires, earthquakes, hydrological drainage networks, geomagnetic substorms,
and solar flares, to mention but a few. Some of these we will actually encounter in subsequent
chapters. More speculative applications of the theory have also been made to species extinction
and evolution by punctuated equilibrium, fluctuations and crashes of stock markets, electrical
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blackouts on power grids, and wars. For more on these topics, see the references listed in the
bibliography at the end of this chapter and of chapter ??.

5.6 Exercises and further computational explorations

1. Verify that the redistribution rule given by eq. (5.4) does lead to eq. (5.7).

2. Modify the 1D sandpile simulation code of Fig. 5.2 to keep track of the mass falling off the
pile at its right edge. This will be a distinct avalanching time series from the displaced
mass time series tsav. Once the statistically stationary state has been reached, use this
new “falloff” time series to calculate the corresponding avalanche parameters E, P and
T , as in §5.4 above, and construct the corresponding probability density functions (as on
Fig. 5.7). Are falloff avalanches scale invariant? How well does the “falloff E” correlate
with the “avalanching E” as defined in §5.4 ?

3. Use the 1D sandpile simulation code of Fig. 5.2 to verify that the statistically stationary
self-organized critical state is independent of the initial condition; more specifically, try
various types of initial conditions such as, for example, an initial sandpile at the angle
Zc, or already at the angle of repose, or an initial sandpile loaded uniformly at some fixed
height, etc.

4. Carry out 100-node simulations using different ε (ε = 0.01, 0.1 and 1, say). Are the angles
of repose the same ? Making sure to have reached the statistically stationary state before
beginning your analyses, construct PDF of slope values (as given by eq. 5.3) as extracted
from a single non-avalanching iteration of each simulation; are these PDFs dependent
on the value of ε ? Then construct the PDF of avalanche energy E for the same three
simulations; are they the same ?

5. The 1D sandpile code listed on Fig. 5.2 is very inefficient from the computational point
of view; most notably perhaps, at every iteration it checks all lattice nodes for stability,
even if a perturbation s has only been added at a single randomly selected node at the
preceding iteration (see eq. 5.2). An easy way to improve on this is to modify the start
and end points of the loop over the lattice nodes so that stability is checked only at
the three nodes [r − 1, r, r + 1], where r is the random node at which a perturbation
is added. The reader with prior coding experience may instead try the really efficient
algorithmic approach, which is to keep a list of nodes either avalanching or subject to
forcing, and run the stability checks and redistribution operations only on list members
and their immediate neighbours. This is fairly straightforward in Python, which contains
a number of computationally efficient list manipulation operators and functions. This
may sound like a lot of work to speed up a simulation code, but when generalizing the
avalanche model to two or three (or more) spatial dimensions, such “trick” will mean
waiting 10 minutes for the simulation to run, rather than 10 hours (or more). Which
takes us naturally to...

6. The Grand Challenge for this chapter is to design a two-dimensional version of the sandpile
model introduced herein. Your primary challenge is to generalize the stability criterion
(eq. 5.3) and redistribution rule (eq. 5.4) to 2D. Begin by thinking how to define the slope
to be associated with a 2× 2 block of nodes. Measure the avalanche characteristics E, P
and T once the SOC state has been reached, and verify that these are distributed again
as power-laws. Are their index the same as in the 1D case ? You should seriously consider
implementing in your 2D sandpile code at least the first of the speedup strategies outlined
in the preceding exercise.
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5.7 Further readings

The concept of Self-Organized Criticality was coined by Per Bak, who became its most en-
thusiastic advocate as a theory of (almost) everything. His writing on the topic are required
reading:

Bak, P., Tang, C., Wiesenfeld, K., Physical Review Letters, 59, 381 (1987),
Bak, P., How Nature Works, New York: Springer/Copernicus (1996),

but see also:

Jensen, H.J., Self-Organized Criticality, Cambridge University Press(1998).

and, at a more technical level:

Turcotte, D.L., Rep. Prog. Phys., 62(10), 1377–1429 (1999)
Sornette, D., Critical phenomena in natural sciences , Berlin: Springer (2000)
Hergarten, S., Self-organized criticality in Earth systems, Berlin: Springer (2002)
Aschwanden, M.J. (ed.), Self-organized criticality systems, Berlin: Open Academic Press

(2013)

Finally, for a good reality check on the behavior of real piles of real sand:

Duran, J., Sands, Powders, and Grains, New York: Springer (2000)

It turns out that real piles of real sand seldom exhibit the SOC behavior characterizing the
idealized sandpile models of the type considered in this chapter. However, some granular
materials do, including rice grains; see chapter 3 in the book by Jensen listed above.
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