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Chapter 1

Introduction

Norma B. Crosby

In turn, these invariance properties suggest that the presence of scaling distri-
butions in data obtained from complex natural or engineered systems should be
considered the norm rather than the exception and should not require “special”
explanations.

Willinger et al. (2004)

1.1 A New Theory Emerges

In the mid-1980s a new theory emerged that aimed to explain how complex
nonlinear systems with many degrees of freedom observed in nature are able
to produce powerlaw relationships from simple redistribution rules of nearest-
neighbor interactions. The incentive behind this theory was that it could be
the underlying concept for temporal and spatial scaling observed in a wide
class of dissipative systems with extended degrees of freedom. It was the
Danish theoretical physicist Per Bak and his co-authors who introduced this
concept that became known as SOC (Bak et al. 1987; 1988). This acronym
stands for Self-Organized Criticality and since its birth this concept has been
applied to a wide range of disciplines covering solar physics, astrophysics,
magnetospheric physics, geophysics, biophysics, and social sciences.

Many systems consist of a large number of entities that interact in a com-
plex way and exhibit nonlinear behavior; they are called nonlinear dissipa-
tive systems. Indeed, the Solar System is full of multi-scale phenomena that
obey nonlinear spatio-temporal scaling laws. On Earth, such extreme nonlin-
ear events are known as earthquakes, landslides, wildfires, volcanoes, snow
avalanches, rock-falls, crashes in the stock market, etc. Their counterparts

Norma B. Crosby
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2 Norma B. Crosby

in space - solar storms - range from solar flares, coronal mass ejections, sub-
storms in the magnetosphere to solar energetic particle events. What do all
these natural dynamic phenomena (examples are displayed in Fig. 1.1), have
in common?

1. They cover a large range of temporal, as well as spatial scales.
2. The most extreme events, known as “black swans” (Taleb 2007), are of

concern to society.
3. There are large databases so that statistical approaches can be used for

interpreting the data characterizing the phenomena.
4. Size distributions (on log-scale) of parameters describing the phenomena

(volumes, energies, etc.) cover many orders of magnitude.
5. Powerlaw-like behavior has been found to be a universal characteristic of

such phenomena.

Though it is most often the largest “avalanche” events that make the
headlines in the newspapers, the myriads of smaller events share the same
statistical properties. With databases becoming larger and larger (covering
long time spans) it is not always possible to study each single event and a
statistical approach such as a frequency distribution can be used instead.
Powerlaw behavior is systematically observed when frequency distributions
are constructed of both measured (e.g. peak count rate, total duration) and
theoretical (e.g. total energy released) parameters describing the events (iden-
tified as “avalanches” in this Chapter) constituting the “avalanche” database.
Performing a frequency distribution on an “avalanche” database is a valid ap-
proach if the phenomenon being studied results from the same mechanisms
of energy release on all scales.

Why does nature produce powerlaw behavior? What is (are) the mecha-
nism(s) responsible for powerlaws observed in nature as well as in social sci-
ences? Various concepts (models) have been proposed to explain this observed
powerlaw signature. One of these is SOC that characterizes the behavior of
dissipative systems that contain a large number of elements interacting via
nearest-neighbor interactions over short and long ranges. The systems evolve
to a critical state in which a minor event starts a chain reaction that can
affect any number of elements in the system. Frequency distributions of the
output parameters from the chain reaction taken over a period of time can
be represented by powerlaws.

Several reviews, textbooks, and monographs have been written on SOC
regarding phenomena that display this behavior as well as models that simu-
late SOC; see for example Bak (1996), Jensen (1998), Turcotte (1999), Char-
bonneau et al. (2001), Hergarten (2002), Sornette (2004), Christensen and
Moloney (2005), Aschwanden (2011), Crosby (2011), and Pruessner (2012).
In the current book an inter-disciplinary approach is applied to the SOC con-
cept. The book covers all types of naturally occurring “avalanche” phenomena
where SOC behavior has been studied and presents both observational results
as well as results obtained by theoretical models.
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Fig. 1.1: Examples of natural phenomena in space and on Earth that ex-
hibit powerlaw behavior. Upper left-hand corner: Solar flare of 2000 Nov.
9 observed in EUV with the TRACE spacecraft in 171 Å (credit: NASA,
TRACE), upper right-hand corner: Global image of the auroral oval observed
by the Ultraviolet Imager (UVI) onboard the NASA satellite “Polar” (credit:
NASA, Polar/UVI Team, George Parks), lower left-hand corner: Artistic ren-
dering of the cataclysmic variable star RS Ophiuchi, which exhibits a nova
outburst about every 20 years. This binary system contains a white dwarf
and a red giant with mass transfer (credit: PPARC, David A. Hardy), lower
right-hand corner: Satellite recording of tsunami waves produced by one of
the 10 largest earthquakes, originating in North America (credit: NOAA).

In Section 2 of this Chapter it is described how frequency distributions
are applied as a statistical tool. This is followed by an introduction to the
SOC concept and to the models that have been built to simulate powerlaw
behavior. Examples of SOC observed in natural phenomena both in space
and on Earth are presented in Section 4. The end of the Chapter asks the
question: What does it all mean?
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1.2 Frequency distribution: a powerful tool

A frequency distribution, also known as log Number vs. log Size (log N -
log S) diagram, size distribution, or occurrence frequency distribution, is a
function that describes the occurrence rate of events as a function of their
size. It is usually plotted as a histogram of the logarithmic number versus
the logarithmic size. Input for a frequency distribution is a database (list or
catalogue) of “avalanches” characterized by some size parameter. There are
essentially two ways to construct a log-log histogram from a database:

1. Logarithmically binned histogram if large statistics is available (n ≥ 102,
..., 103).

2. Rank-order plot if the size of the statistical sample is rather small.

For numerous natural phenomena it is found that the differential frequency
distributions of the output parameters describing a given phenomenon taken
over a period of time can be represented by powerlaws of the form:

N(x)dx = N0x
−αxdx (1.1)

where N(x) is the number of events recorded with the parameter x of interest
in a “differential” bin, and N0 is a constant.

For the cumulative frequency distribution, it is the integral which expresses
in each bin the sum of all events that are larger than the size parameter of
the bin x:

N cum(> x) =

∫ ∞
x

x−αxdx ∝ x−(αx−1) (1.2)

If the differential frequency is a powerlaw function with slope α, the cu-
mulative frequency distribution is expected to have a flatter powerlaw slope
by one (α-1).

Fig. 3.1 is an example of a differential frequency distribution performed on
the peak count rate solar flare data recorded by the Wide Angle Telescope for
Cosmic Hard X-Rays (WATCH) experiment aboard the GRANAT satellite.
WATCH measures photons in the deka-keV range and the WATCH database
covers 2.5 years of observation (1990 to mid-1992). Fig. 1.3 shows the time
profiles of three WATCH flares observed between 15:00 and 16:20 UT on 1990
June 19. The three peak count rates that are identified as “a”, “b” and “c” in
Fig. 1.3 are included in the Fig. 3.1 statistics. The distribution displayed in
Fig. 3.1 follows a powerlaw with a slope of -1.58 ± 0.02 extending for almost
three orders of magnitude (Crosby et al. 1998). The turn-over in the lower
end of the frequency distribution may be attributed to detector sensitivity
(missing the small events in the background noise).

For some “avalanche” parameters exponential turn-overs in the upper end
of the frequency distribution are observed and may be due to two important
issues:
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Fig. 1.2: The frequency distribution on the WATCH solar flare peak count
rate data for the total observing period (1990 - mid-1992). It is well-
represented by a powerlaw with a slope of -1.58 ± 0.02 extending over almost
three orders of magnitude (Crosby et al. 1998).

1. Length of the dataset (missing of long-term statistics): observations have
not been performed over a long enough period of time to cover all the
statistics of the “avalanches”.

2. Physical limit to the size of a “black swan” event: “Finite-size effects”
(“avalanches” reach the boundaries of a system; Chapman et al. (1998)
discusses this effect in regard to substorms).

The accuracy of a frequency distribution powerlaw fit is sensitive to the
choice of dependent (measured) or independent (theoretical) parameter de-
scribing the phenomenon, as well as the statistical uncertainty of the number
of events in the phenomenon database.

Identifying the underlying physics determining the exact value of the spec-
tral index of the powerlaw, which varies for different size parameters and
phenomena, is not yet well understood, but may suggest some form of uni-
versality. Since powerlaws are the only statistical distributions that are com-
pletely scale-invariant, they offer a unique way to explore the possibility of
an underlying universality in nature.
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1.3 Self-organized criticality and powerlaw behavior

SOC is also known as the “avalanche concept” and characterizes the behavior
of dissipative systems that contain a large number of elements interacting
over a short range. The systems evolve to a critical state in which a minor
event starts a chain reaction that can affect any number of elements in the
system. Such systems are constantly driven by some random energy input
evolving into a critical state that is maintained as a powerlaw distribution.
SOC theory has the following characteristics:

1. Individual events are statistically independent, spatially and temporally
(leading to random waiting time distributions).

2. The size or occurrence frequency distribution is scale-free and can be
characterized by a powerlaw function over some size range.

3. The detailed spatial and temporal evolution is complex and involves
a fractal geometry and stochastically fluctuating time characteristics
(sometimes modelled with 1/f noise, white, pink, red, or black noise).

The concept of SOC evolved from numerical simulations that utilized sev-
eral relatively simple cellular-automata models. In this context the term cel-
lular refers to the fact that the model is discrete concerning space and the
term automaton means that the evolution of the system is self-operating. The
traditional SOC cellular automaton model is a regular lattice grid, where re-
distributions occur with nearest neighbor cells.

In 1987, Per Bak and co-workers presented a model that evolves towards
a critical state without any external tuning. This model is often called Per

Fig. 1.3: Time profiles of the three WATCH solar flares observed between
15:00 and 16:20 UT on 1990 June 19. The peak count rates are identified as
“a”, “b” and “c” (Crosby et al. 1998).
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Bak’s sandpile model or the Bak-Tang-Wiesenfeld (BTW) model. In their
first paper (Bak et al. 1987), the BTW model was derived from a model for
the dynamics of an array of coupled pendulums. Thereafter the same model
was interpreted in terms of sandpile dynamics (Bak et al. 1988). Sandpile
avalanches are a paradigm of the SOC theory. The simplicity and beauty of
the BTW sandpile model is illustrated in Fig. 1.4.

Fig. 1.4: The simplicity and beauty of the Bak-Tang-Wiesenfeld (BTW)
sandpile model as drawn by Elaine K. D’Attner Wiesenfeld. Reprinted from
Wiesenfeld et al. (1989) with permission.

Another model that exhibits SOC is the forest-fire model (Drossel and
Schwabl 1992a; 1992b). In the simplest version of this model, a square grid of
sites is considered. At each time step either a tree is planted on a randomly
chosen unoccupied site or a spark is dropped on the site. If the spark is
dropped on a tree, that tree and all adjacent trees are burned in a model
forest-fire. The slider-block model also exhibits SOC and in this model an
array of slider blocks are connected to a constant velocity driver plate by
driver springs and to each other by connector springs (e.g. Carlson and Langer
1989; Carlson et al. 1994).
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1.3.1 Does powerlaw behavior automatically imply
SOC?

SOC always involves dynamic “avalanches” with SOC processes occurring
spontaneously with an explosive evolution and multiplicative growth via next-
neighbor interactions. The restriction to next-neighbor interactions in SOC
processes essentially guarantees the statistical independency of individual
events. However, there exist related physical processes (turbulence, Brownian
motion, percolation, or chaotic systems) that share some of the characteristics
of the SOC theory and thus are difficult to discriminate from a SOC process.

For example, self-organization (SO) patterns are quasi-stationary (e.g. geo-
metric patterns in galaxy formation, granulation pattern on the solar surface,
ripples on sand dunes) and SO patterns exhibit a close coupling over a large
range. If dynamic processes are involved in the formation of SO patterns,
they usually involve system-wide processes, such as diffusion, turbulence,
convection, magneto-convection, which essentially operate with long-range
interactions (via pressure, streams, flows). SO patterns can exhibit scale-free
powerlaw distributions of spatial scales (e.g. the Kolmogorov spectrum in
turbulent MHD cascades). Powerlaw behavior can therefore not be used as a
concise distinction criterion between SO and SOC processes.

There exist also other theoretical models than SOC models that produce
powerlaw behavior and many different explanations for the observed power-
laws exist. Examples include Turcotte and Malamud (2004) who related the
inverse-cascade model to the results of several cellular automata models and
also to real data observed for different natural hazards. Small clusters of (e.g.
trees) on a grid coalesce to form larger clusters, and clusters are lost in fires
that occur randomly. The result is a self-similar inverse cascade that satisfies
an inverse powerlaw distribution of cluster sizes.

Rosner and Vaiana (1978) developed the stochastic relaxation model to
describe solar flares. In their model flaring is a stochastic process, energy
build-up is exponential between flares, and all the energy built up between
flares is released by the following flare whereafter the system returns to its
unperturbed “ground state” via the flare. However, their prediction that the
duration of energy storage is correlated with flare size was not confirmed by
observations (e.g. Lu 1995; Crosby et al. 1998; Wheatland 2000; Georgoulis
et al. 2001).

Forced Self-Organized Criticality (FSOC) is an alternative concept that
shares all the “avalanche” phenomenology of powerlaw distributions, but is
not necessarily self-organized. The key aspect of the FSOC model is that
some external dynamics exerts forces on a system to produce powerlaw like
distributions of avalanches without internal self-organization (Chang 1999
and references therein).

Turbulence displays many of the common SOC observational signatures,
such as the (scale-free) powerlaw distributions of spatial and temporal scales,
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the power spectra of time profiles, random waiting time distributions, spa-
tial fractality, and temporal intermittency (e.g. Boffetta et al. 1999). The
transition from laminar flow to turbulent flow at a critical Reynolds number
represents a similar threshold instability criterion and is the analogy of the
critical threshold value used in SOC systems.

Is it possible to distinguish between SOC and turbulence or other processes
that show the same scaling? As seen in the above examples powerlaw behavior
is not a sufficient argument for SOC. The following three SOC “physics-
free” criteria (statistical independence, nonlinear coherent growth, random
duration of rise times) have been proposed in Aschwanden (2011):

1. Statistical Independence: events that occur in a SOC system are statis-
tically independent and not causally connected in space or time. Wait-
ing time distributions should be consistent with a stationary or non-
stationary Poisson process, in order to guarantee statistical independency
by means of probabilities. Time scale separation (the time intervals of the
driver are much longer than the time scale of the avalanches, at least for
slowly-driven systems).

2. Nonlinear Coherent Growth: time evolution of a SOC event has an initial
nonlinear growth phase after exceeding a critical threshold. The nonlinear
growth of dissipated energy, or an observed signal that is approximately
proportional to the energy dissipation rate, exhibits an exponential-like
or multiplicative time profile for coherent processes.

3. Random Duration of Rise Times: if a system is in a state of SOC, the
rise time or duration of the coherent growth phase of an avalanche is un-
predictable and thus exhibits a random duration. The randomness of rise
times can be verified from their statistical distributions being consistent
with binomial, Poissonian, or exponential functions.

1.3.2 SOC and SOC-like models

During the last decades new SOC models, as well as non-SOC models have
been proposed to explain the powerlaw behavior that is observed in large
statistical datasets. These models have gone a step further so as to be able to
describe additional characteristics of the observed data (e.g. slope value). For
example, Georgoulis and Vlahos (1996) developed a cellular automaton SOC
model that simulates flaring activity extending over an active sub-flaring
background building on the work by Vlahos et al. (1995). Including both
isotropic and anisotropic distributions, as well as a variable magnetic field
driving mechanism, they were able to obtain two distinct powerlaw regimes
representing possibly two different populations, one associated with standard
flares from active regions, and the other with nanoflares from quiet-Sun re-
gions (see Fig. 1.5).
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Fig. 1.5: Typical peak-luminosity frequency distribution for a 150 × 150 ×
150 grid. The distribution is the average of 10 sample runs. Reprinted from
Georgoulis and Vlahos (1996) with permission.

The theoretical side of SOC is covered in the first part of this book. SOC
models and SOC related processes from a theoretical point of view are pre-
sented by Aschwanden in Chapter 2. He presents how SOC models have built
on and been inspired by the original cellular automaton models. Furthermore,
a number of alternative dynamical models that are related to SOC models
or have similar scaling laws are also presented.

In some respects, chaotic systems exhibit similar complexity as SOC sys-
tems, regarding fractality and intermittency; even powerlaw distributions
may result in the statistics of chaotic fluctuations. However, the difference to
SOC systems is that chaotic systems have these signatures without having
an intrinsic mechanism that keeps them near this critical point in a self-
organizing way. The strong connections between fractal geometry and SOC
from both a mathematical and conceptual understanding are described in
Chapter 3 by McAteer.

Percolation controls a transport process that depends on the connected-
ness and propagation probability of nearest-neighbor elements. It has a lot
in common with diffusion, fractal structures, as well as SOC “avalanches”.
Specifically, it is the fractality and intermittency of the propagating features
of the percolation process that are what is in common with a SOC system. In
Chapter 4 an introduction to percolation models applied to SOC phenomena
is given by Milovanov. SOC-associated phenomena (self-organized turbulence
in the Earth’s magnetotail, phase transitions in SOC systems, mixed SOC-
coherent behavior, periodic and auto-oscillatory patterns of behavior), are
also discussed.
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In probability theory, a branching process expresses next-neighbor inter-
actions in terms of probabilities, a concept similar to how redistribution op-
erates in cellular automaton models. Litvinenko (1998) applies methods of
the branching theory to the Macpherson and MacKinnon (1997) cellular au-
tomation model for the occurrence of solar flares. In Chapter 5 Corral and
Font-Clos present how models based on the branching process are applied to
“natural hazards”. Applied to earthquakes a branching process implies the
activation or slip of a fault segment that can trigger other segments to slip,
with a certain probability, and so on.

In contrast to the SOC cellular automaton models that were described in
the beginning of Section 3, networks are irregular nets of nodes that are inter-
connected in manifold patterns, containing nearest-neighbor connections and
in some cases also arbitrary non-local, long-range connections. Zou, Heitzig,
Small, and Kurths present in Chapter 6 recurrence networks as a novel tool
of nonlinear time series analysis allowing the characterization of higher-order
geometric properties of complex dynamical systems based on recurrences in
phase space, which are a fundamental concept in classical mechanics. The
main part of the Chapter is based on the Zou et al. (2012) paper. They
demonstrate that recurrence networks obtained from various deterministic
model systems as well as experimental data naturally display powerlaw degree
distributions with scaling exponents that can be derived exclusively from the
systems’ invariant densities.

SOC models are said to be slowly driven interaction dominated threshold
systems (Jensen 1998). The scaling behavior of a SOC model can be related
to some underlying continuous phase transition, which is triggered by the
system self-organizing to the critical point. Pruessner presents in Chapter 7 an
overview of how computer simulations are used to reproduce SOC behavior.
The Chapter presents in more detail the original SOC models and shows how
the observed scaling behavior can be better quantified. Furthermore, detailed
functions that are used in SOC algorithms are described.

1.4 Where is SOC observed ?

Following Bak’s above mentioned pioneering work in 1987, not only was there
an “avalanche” in SOC studies from the modelling side, but people started
to search for signatures of SOC everywhere in natural occurring phenomena
from the Sun to the Earth. In the second part of this book the Chapters
concern how SOC is observed in all types of natural phenomena.
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1.4.1 Phenomena on Earth showing SOC behavior

Back in the early 1990s simple sandpile experiments were performed to re-
produce SOC (Held et al. 1990; Bak and Chen 1991). In simple terms sand
grains are added to a sandpile until the slope of the sandpile reaches a critical
value and an avalanche occurs. Later ricepile experiments were also performed
(e.g. Frette et al. 1996). In Chapter 8 Pruessner describes many of the SOC
laboratory experiments that have been performed during these last decades.

In parallel to experiments in the laboratory numerous studies have been
performed on naturally occurring phenomena on Earth. The most well-known
Earth-based SOC phenomenon that has been and is being studied is the
earthquake. They are triggered when a mechanical instability occurs and a
fracture (the sudden slip of a fault) appears in a part of the Earth’s crust.
Earthquakes are associated with the slider-block model (e.g. Carlson and
Langer 1989; Carlson et al. 1994).

Fig. 1.6: Earthquake magnitude distribution showing a powerlaw behavior
over six decades. The graph follows log10N(M > m)α − bm, where b is
the Gutenberg-Richter exponent b = 1 (dashed red line has a slope value of
-0.95). Reprinted from Christensen et al. (2002) with permission.
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Fig. 1.6 shows the earthquake magnitude distribution for the Southern
California region, which is the number of earthquakes per year with mag-
nitude (M > m). The dashed red line has a slope value of -0.95 and shows
the Gutenberg-Richter Law with a gradient b ≈ 1 (Christensen et al. 2002;
Christensen and Moloney 2005). As was seen for the solar flare distribution
(Fig. 3.1) there is a turn-over in the lower end of the distribution due to
problems associated with detecting small earthquakes. In Chapter 9 Sachs
et al. present SOC applied to complex earthquakes and how this concept
is observed in data and models, as well as how it is applied to forecasting.
From a mitigation perspective the main question to answer is when will an
earthquake occur? A new type of forecast based on the Natural Time Weibull
(NTW) model shows promising results (Rundle et al. 2012) and is based on
the idea of “filling in” a fat-tailed (scaling) distribution.

Besides seismology and earthquakes SOC behavior has been found in a
wide range of geophysical systems. Forest-fires occurring on Earth are asso-
ciated with the forest-fire model that also exhibits SOC behavior (Drossel
and Schwabl 1992a; 1992b). In Chapter 10 Hergarten presents the forest-
fire model and actual wildfires. Specifically he presents studies performed
on observed wildfires and how the forest-fire model is able to reproduce the
difference between natural and man-made forest-fires.

Natural landslide events are commonly associated with a trigger (e.g.
earthquake (minutes after), a rapid snowmelt (hours to days), or an intense
rainfall (days to weeks)) and range in size from a single landslide to many
thousands. A landslide is a natural phenomenon associated with the Per Bak
sandpile model. The impact of landslides is often limited to smaller areas
than for example the damage caused by earthquakes. However, there is grow-
ing evidence for powerlaw size distributions in different types of landslides. In
Chapter 11 Hergarten presents how SOC behavior is observed in landslides.
One of the main conclusions is that scaling exponents found for regolith land-
slides strongly differ from those found for rockfalls and rockslides, but each
of the classes may be characterized by a universal scaling exponent.

1.4.2 Phenomena in space showing SOC behavior

Besides the powerlaw behavior that is observed in natural occurring phenom-
ena on Earth, it is also observed in a wide range of phenomena occurring in
space. Like their counterparts on Earth they too come in all sizes and dura-
tions. Our closest star, the Sun, drives the continuous changing conditions in
the space environment - the local space weather. It is well known that the
solar corona is a very dynamic region which is the source of many phenomena
(e.g. solar flares, coronal mass ejections, solar energetic particle events). It
was therefore not surprising that it was on the Sun where SOC signatures
were first discovered in space.
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Like earthquakes are to SOC on Earth, solar flares are to SOC in space.
Solar flares (including micro- and nano-flares) are one of the most compelling
examples of SOC type behavior; their powerlaw distribution covers over eight
orders of magnitude (Aschwanden 2011). Crosby et al. (1993) presents a sum-
mary of 13 powerlaw slopes (12 originating from observational results and 2
from modelling) found for different solar related parameters that were pub-
lished over two decades ago. Since then this list has grown exponentially; see
Aschwanden (2011) for an extensive overview. In Chapter 12 Charbonneau
presents SOC behavior observed in solar phenomena as well as SOC models
developed to describe the distribution of solar flares.

From the dawn of the space era observations in space have provided con-
vincing evidence indicating that certain space plasma processes are in states
of complexity and SOC, especially with the above discovery of the apparent
powerlaw probability distribution of solar flare intensities. The most stud-
ied extra-solar SOC phenomena are stellar flares (Audard et al. 2000) and
accretion or black-hole objects (Negoro et al. 1995; Mineshige and Negoro
1999). In Chapter 13 Aschwanden gives an overview of how SOC behav-
ior has been observed in astrophysics. He compares theoretical predictions
based on the fractal-diffusive self-organized criticality (FD-SOC) model (As-
chwanden 2012) with observed powerlaws of size distributions observed in
astrophysical systems. It is found that the generalized FD-SOC model can
explain a large number of astrophysical observations (e.g. lunar craters, as-
teroid belts, Saturn rings, outer electron radiation belt enhancements, solar
flares, soft gamma-ray repeaters, and blazars) and discriminate between dif-
ferent scaling laws of astrophysical observables.

1.5 Searching for a common signature: What does it all
mean?

Does there exist a common “avalanche” signature? If yes, what does this all
mean in a global way? How does the world and the Universe connect? Is
there a universal signature that places constraints on the energy distribution
of everything in the Universe? SOC behavior provides us a unique way to
interpret the behavior of “avalanches” in a global way - is there a common
thread in nature?

Producing frequency distributions on observational “avalanche” data dis-
plays powerlaw behavior in most instances. Each type of phenomenon is ob-
served to have a range of powerlaw slope values. For example, considering
solar flare hard X-ray parameters, in general the powerlaw slope ranges be-
tween -1.4 through -2.4 (Crosby 2011). The difference in value is also observed
on measured parameters of the same type of “avalanche” suggesting that the
slope may be detector dependent. An independent parameter based on the-
ory is therefore better for comparison purposes. The energy released in an
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“avalanche” is such an independent parameter and can be compared directly
without considering the measured data. In this way it can be investigated if
energy is released in some type of universal way. For example, powerlaw fre-
quency distributions of the energy released in some natural phenomena (e.g.
solar flares, transient brightenings, nanoflares, ionospheric emissions “auroral
blobs”, earthquakes) are found to be similar (slope value of the powerlaw is
approximately -1.5), see Crosby (2011).

In summary, modelling a given type of “avalanche” as a complex system
in a self-organized critical state provides a good context to understand the
frequency distributions of the parameters describing the phenomenon. It may
be SOC or another theoretical model that can account for the observed pow-
erlaw behavior, or it may end up being a mixture of many physical processes
occurring simultaneously. However, as pointed out by Crosby (2011) in a SOC
review paper, whatever the theory, the observations themselves provides one
with useful information when performing frequency distributions on the data.
Table 4.2 summarizes the information one obtains by performing frequency
distributions on “avalanches” both on data obtained by observations and on
SOC model outputs. It should also be emphasized that any model, be it SOC
or non-SOC, must be able to reproduce what the observations are showing
(model validation).

Performing frequency distributions on “avalanches” is also a tool for prac-
tical applications in regard to mitigation and risk analysis. Indeed, the ap-
plicability of powerlaw statistics to natural hazards has important practical
implications. In the paper by Sachs et al. (2012) the question “Are dragon-
kings relevant to probabilistic hazard assessment?” is addressed by studying
earthquakes, volcanos, etc. Sornette (2009) developed the concept of the un-
expected “dragon-kings” to describe this class of extreme events that are
significantly larger than the extrapolation of the powerlaw scaling of their
smaller counterparts. Probabilistic seismic hazard studies often extrapolate
the rate of occurrence of small earthquakes to quantify the probability of
occurrence of large earthquakes. Sachs et al. (2012) argue that this extrap-
olation would therefore not be valid if “dragon-king” earthquakes occur and
one of their examples (cumulative frequency magnitude distribution of earth-
quakes in the Parkfield aftershock region covering 1972 to 2009) is displayed
in Fig. 1.7. They find that the Parkfield main shock with m = 5.95 (iden-
tified as the red star on Fig. 1.7) is found to lie above the extrapolation of
the powerlaw correlation of the smaller earthquakes. The authors question
whether the difference between m = 5.65 based on the extrapolation and m
= 5.95 can be attributed to the statistical variability of the characteristic
earthquakes or if this is indeed a “dragon-king” type earthquake.

Fig. 1.8 shows the cumulative number of volcanic eruptions (Nc) during
the period 1800-2002 with dense rock equivalent volume (VDRE) greater than
VDRE as a function of VDRE . Sachs et al. (2012) find that global frequency
size distributions of earthquakes and volcanic eruptions exhibit powerlaw
behavior for small sizes but a roll over for large events similar to the behavior
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Fig. 1.7: Cumulative number of earthquakes with magnitude greater than m
as a function of m for the Parkfield earthquake cycle 1972 to 2009. The best-
fit scaling is shown as the blue line. The m = 5.95 Parkfield earthquake is
shown as a “dragon-king” (identified as the red star). Reprinted from Sachs
et al. (2012) with permission.

of the forestfire model for small firing frequencies. The Lake Toba Sumatra
volcano is identified as the red star on Fig. 1.8 and is estimated to have
erupted VDRE = 2,750 ± 250km3 of dense rock equivalent 73,500 ± 500 years
ago. However, the largest eruption expected in 73,500 years, extrapolating the
powerlaw on Fig. 1.8, would have yielded a volume VDRE = 7.9 × 106 km3.
This is statistically not consistent and Sachs et al. (2012) therefore suggest a
powerlaw with an exponential roll-over for volumes greater then VDRE ≈ 102

km3 as the most realistic fit for the distribution displayed in Fig. 1.8. Such
results show the important practical implications that powerlaw statistics has
in regard to natural hazards and question whether a powerlaw is always the
best representation for the very large “black swans” events. However, this
exponential roll-over effect may also be due to observations having not been
performed over a long enough period of time to cover all the statistics of the
“avalanches” as mentioned in Section 2.

During the last years there has been renewed interest in SOC and its poten-
tial applications both from theoretical and practical point-of-views. Several
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Fig. 1.8: Cumulative number of volcanic eruptions (Nc) during the period
1800-2002 with dense rock equivalent volume (VDRE) greater than VDRE as
a function of VDRE . The best-fit powerlaw scaling is also shown along with
the Toba eruption in Sumatra (identified as the red star) occurring 73,500 ±
500 years ago. Reprinted from Sachs et al. (2012) with permission.

cross-disciplinary initiatives have currently been taken such as the Interna-
tional Space Science Institute International Team entitled “Self-Organized
Criticality and Turbulence” that is made up of an interdisciplinary group
of team members covering both the space- and Earth-sciences. Its aim is
to cross-compare observations, to discuss SOC, SOC-related (such as turbu-
lence), and non-SOC theoretical models, and to establish a diagnostic metrics
between observations and theoretical models that yield new physical insights
into SOC phenomena and complexity in nature.

As was shown in this Chapter SOC behavior has become one way of in-
terpreting the powerlaw behavior observed in natural occurring phenomena
on the Sun down to the Earth. This book, based on an inter-disciplinary
approach, presents the many sides of SOC both from the theoretical side of
the story as well as the observational.
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Table 1.1: What do frequency distributions teach us? Based on Crosby (2011).

Observational statis-
tics

- Frequency distributions performed on datasets de-
scribing natural dynamical phenomena (e.g. solar flares,
earthquakes) exhibit powerlaw behavior.

Measurement prob-
lems and biases

- Turn-overs in the lower end of the frequency distri-
bution for various phenomena may be attributed to de-
tector sensitivity (missing the small events in the back-
ground noise).
- Exponential turn-overs in the upper end of the fre-
quency distribution for various phenomena may be due
to either the length of the dataset (missing of long-term
statistics) or finite-size effects of the system.
- Measured parameters are detector dependent and may
give bias in the slopes of the frequency distributions for
comparison purposes.

Numerical SOC ob-
servations

-Various concepts/models exist that produce powerlaw
behavior such as SOC.
-SOC models are able to reproduce the results found
when performing frequency distributions on measured
data.

Statistical commonal-
ities in SOC statistics

-Powerlaw behavior is found to be a universal charac-
teristic defining natural dynamic phenomena (e.g. solar
flares, earthquakes).
-For each type of phenomenon most distributions per-
formed on observational data can be represented by pow-
erlaws having a range of powerlaw slope values.
-Frequency distributions of the energy released in so-
lar flares, transient brightenings, nanoflares, ionospheric
emissions and earthquakes are found to be similar (slope
value of the powerlaw is approximate -1.5).

Interpretations of
physical processes

-Powerlaw frequency distributions result from nonlinear
or coherent processes, have no characteristic spatial scale
and are the hallmark of nonlinear dissipative systems.
-Powerlaw frequency distributions of the energy released
in some natural phenomena are found to be similar (may
suggest that energy is released in some type of universal
way).

Mitigation and risk
analysis

-Results from frequency distributions provide limits to
the maximum strength of a phenomenon, vital for miti-
gation studies - probability of extreme events occurring
(limit to the size of an event over a given time period).
-Implementing frequency distributions into the engineer-
ing approach “empirical models” is useful for design
studies as well as probabilistic hazard assessment.
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Chapter 2

Theoretical Models of SOC Systems

Markus J. Aschwanden

How can the universe start with a few types of elementary particles at the
big bang, and end up with life, history, economics, and literature? The ques-
tion is screaming out to be answered but it is seldom even asked. Why did
the big bang not form a simple gas of particles, or condense into one big
crystal? (Bak 1996). The answer to this fundamental question lies in the ten-
dency of the universal evolution towards complexity, which is a property of
many nonlinear energy dissipation processes. Dissipative nonlinear systems
generally have a source of free energy, which can be partially dissipated when-
ever an instability occurs. This triggers an avalanche-like energy dissipation
event above some threshold level. Such nonlinear processes are observed in
astrophysics, magnetospheric physics, geophysics, material sciences, physical
laboratories, human activities (stock market, city sizes, internet, brain activ-
ity), and in natural hazards and catastrophes (earthquakes, snow avalanches,
forest fires). A tentative list of self-organizing criticality (SOC) phenomena
with the relevant sources of free energy, the physical driver mechanisms, and
instabilities that trigger a SOC event are listed in Table 2.1.

A prominent theory that explains such nonlinear energy dissipation events
is the so-called Self-organized criticality (SOC) concept, first pioneered by
Bak et al. (1987, 1988) and Katz (1986), and simulated with cellular au-
tomaton or other lattice models, which mimic nearest-neighbour interactions
leading to complex patterns. The topic of SOC is reviewed in recent re-
views, textbooks, and monographs (e.g., Bak 1996; Jensen 1998; Turcotte
1999; Charbonneau et al. 2001; Hergarten 2002; Sornette 2004; Aschwanden
2011a; Crosby 2011; Pruessner 2012). A disclaimer has to be made, that we
discuss in this chapter the basic ideas of SOC only, mostly with the special
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application to astrophysics in mind, while an extensive set of other analytical
and numerical SOC models can be found elsewhere (e.g., Pruessner 2012).

SOC can be considered as a basic physics phenomenon - universally oc-
curring in systems with many coupled degrees of freedom in the limit of
infinitesimal external forcing. This theory assumes a critical state that is ro-
bust in the sense that it is self-organizing, like a critical slope of a sandpile
is maintained under the steady (but random) dropping of new sand grains
on top of the pile. Individual avalanches occur with sizes that are broadly
distributed and many orders of magnitude larger than the initial perturba-
tion. Sandpile avalanches are a paradigm of the SOC theory, which has the
following characteristics in the slowly-driven limit: (1) Individual events are
triggered independently of each other in space and time (leading to random
waiting time distributions); (2) The size or occurrence frequency distribution
is scale-free and can be characterized by a powerlaw function over some size
range; (3) The detailed spatial and temporal evolution is complex and in-
volves a fractal geometry and stochastically fluctuating (intermittent) time
characteristics (sometimes modeled with 1/f-noise, white, pink, red, or black
noise).

There are some related physical processes that share some of these char-
acteristics, and thus are difficult to discriminate from a SOC process, such
as turbulence, Brownian motion, percolation, or chaotic systems (Fig. 2.1,
right column). A universal SOC theory that makes quantitative predictions
of the powerlaw-like occurrence frequency and waiting time distributions is
still lacking. We expect that the analysis of large new databases of space
observations and geophysics records (available over at least a half century
now) will provide unprecedented statistics of SOC observables (Fig. 2.1, left
column), which will constrain the observed and theoretically predicted statis-
tical distribution functions (Fig. 2.1, middle column), and this way confirm
or disprove the theoretical predictions of existing SOC theories and models
(Fig. 2.1, right column). Ultimately we expect to find a set of observables
that allows us to discriminate among different SOC models as well as against
other nonlinear dissipative processes (e.g., MHD turbulence). In the follow-
ing we will describe existing SOC models and SOC-related processes from a
theoretical point of view.

2.1 Cellular Automaton Models (CA-SOC)

The theoretical models can be subdivided into: (i) a mathematical part that
deals with the statistical aspects of complexity, which is universal to all SOC
phenomena and essentially “physics-free” (such as the powerlaw-like distri-
bution functions and fractal dimensions), and (ii) a physical part that links
the SOC avalanche volume to a physical observable in terms of a particu-
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Table 2.1: Examples of physical processes with SOC behavior (for references
see Table 13.2 in chapter 13 on SOC systems in astrophysics in this book).

SOC Phenomenon Source of free energy Instability or
or physical mechanism trigger of SOC event

Galaxy formation gravity, rotation density fluctuations
Star formation gravity, rotation gravitational collapse
Blazars gravity, magnetic field relativistic jets
Soft gamma ray repeaters magnetic field star crust fractures
Pulsar glitches rotation Magnus force
Blackhole objects gravity, rotation accretion disk instability
Cosmic rays magnetic field, shocks particle acceleration
Solar/stellar dynamo magnetofriction in tachocline magnetic buoyancy
Solar/stellar flares magnetic stressing magnetic reconnection
Nuclear burning atomic energy chain reaction
Saturn rings kinetic energy collisions
Asteroid belt kinetic energy collisions
Lunar craters lunar gravity meteroid impact
Magnetospheric substorms electric currents, solar wind magnetic reconnection
Earthquakes continental drift tectonic slipping
Snow avalanches gravity temperature increase
Sandpile avalanches gravity super-critical slope
Forest fires heat capacity of wood lightening, campfire
Lightenings electrostatic potential discharge
Traffic collisions kinetic energy of cars driver distraction, ice
Stockmarket crashes economic capital, profit political event, speculation
Lottery wins optimistic buyers random drawing system

lar physical mechanism (for instance in form of a scaling law between the
avalanche volume and the observed emission).

2.1.1 Statistical Aspects

The original concept of self-organized criticality was pioneered by Bak et
al. (1987, 1988) and Katz (1986), who used the paradigm of a sandpile with
a critical slope to qualitatively illustrate the principle of self-organized crit-
icality. The first theoretical description of the SOC behavior of a nonlinear
system was then studied with a large number of coupled pendulums and
with numerical experiments that have been dubbed cellular automaton mod-
els (CA-SOC). In essence, a SOC system has a large number of elements with
coupled degrees of freedom, where a random disturbance causes a complex
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Fig. 2.1: Matrix of observables, statistical distributions, and physical models
that need to be defined in order to discriminate SOC from non-SOC processes.

dynamical spatio-temporal pattern. Although such a nonlinear system obeys
classical or quantum-mechanical physics, it is impractical to describe it an-
alytically because of the large number of degrees of freedom. The situation
is similar to the N-body problem, which cannot be solved analytically for
more complex configurations than a two-body system. However, such SOC
systems can easily be simulated with a numerical computer program, which
starts with an initial condition defined in a lattice grid, and then iteratively
updates the dynamical state of each system node, and this way mimics the
dynamical evolution and statistical distribution functions of SOC parame-
ters. Hence, such numerical lattice simulations of SOC behavior (i.e., cellular
automatons) were the first viable methods to study the SOC phenomenon on
a theoretical basis.

What are the ingredients and physical parameters of a cellular automaton
model? What is common to all cellular automaton models of the type of
Bak, Tang, and Wiesenfeld (1987, 1988), briefly called BTW models, is: (1)
A S-dimensional rectangular lattice grid, say a coordinate system xi,j,k, i =
1, ..., n; j = 1, ..., n, k = 1, ..., n for a 3-dimensional case S = 3 with grid
size n; (2) a place-holder for a physical quantity zi,j,k associated with each
cellular node xi,j,k, (3) a definition of a critical threshold zcrit, (4) a random
input ∆zi,j,k in space and time; (5) a mathematical re-distribution rule that
is applied when a local physical quantity exceeds the critical threshold value,
for instance a critical slope of a sandpile, which adjusts the state of the
nearest-neighbor cells, i.e.,

zi,j,k 7→ zi,j,k + 1 initial input
zi,j,k 7→ zi,j,k − 8 if zi,j,k ≥ 8,
zi±1,j±1,k±1 7→ zi±1,j±1,k±1 + 1

(2.1)
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for the eight nearest neighbors in a 3D-lattice grid, and (6) iterative steps
in time to update the system state zi,j,k(t) as a function of time t. Such
cellular automaton simulations usually start with a stable initial condition
(e.g., an empty system with zi,j,k(t = 0) = 0), and have then to run sev-
eral million time steps before they reach a critical state. Once they reach
the critical state, avalanches of arbitrary sizes can be triggered by the ran-
dom input of an infinitesimal disturbance ∆zi,j,k(t), separated by quiescent
time intervals in between, in the case of slow driving. Statistics of the occur-
rence frequency distributions of avalanche sizes or durations yields then the
ubiquitous powerlaw-like distribution functions. Fig. 2.2 shows an example
of a 2D-lattice simulation, displaying a snapshot of a large avalanche (top
left panel) as well as the statistical distribution function of avalanche sizes L
(left) and durations T (right panels).

Thus, such SOC cellular automaton models primarily generate the spatio-
temporal dynamics of complex systems and the related statistics of emerg-
ing spatio-temporal patterns. They can simulate the distribution function
N(L)dL of the size or length scale L of dynamical events (also called
“avalanches”), or the time scale T of an avalanche event. Secondary dynam-
ical parameters can be derived, such as the instantaneous avalanche volume
V (t), or the total time-integrated volume of the avalanche V (t < T ). How-
ever, such SOC cellular automaton models are “physics-free”, because the
dynamics of an event is described by a mathematical rule that substitutes
for the unknown physical process, but is thought to be an universal property
of SOC systems in a critical state. Applying cellular automaton simulations
to observed phenomena requires than to substitute a physical quantity into
the “place-holder” variable zi,j,k, which is otherwise without a physical in-
terpretation in cellular automata, except for defining the instability criterion
zi,j,k > zcrit in terms of a critical threshold zcrit.

There is a large industry of cellular automaton models, mostly modified
versions of the original BTW-model, such as the lattice-gas model (Jensen
1998), Conway’s game of life model (Bak, Chen and Creutz 1989), traffic
jam simulations (Nagel and Paczuski 1995), multiple-strategy agent-based
models applied to the financial market (Feigenbaum 2003), punctuated equi-
librium models applied to biophysics (Bak and Sneppen 1993), slider-block
spring models applied in geophysics (Burridge and Knopoff 1967), forest-fire
models (Malamud et al. 1998; reviewed in Turcotte 1999), applications to
magnetospheric substorms (Takalo et al. 1993; 1999a,b), to solar flares (Lu
and Hamilton 1991; Charbonneau et al. 2001), and to stellar accretion disks
(Mineshige et al. 1994a,b; Pavlidou et al. 2001). More complete reviews of
such cellular automaton models are given in Turcotte (1999), Aschwanden
(2011a), and Pruessner (2012).
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Fig. 2.2: Examples of a fragmented avalanche (top left) occurring in a 2-D (computer)

sandpile (top right) and occurrence frequency distribution of avalanche cluster sizes

(left panels) and avalanche durations (right panels) of the original BTW sandpile

cellular automaton simulation. The simulations have been performed for a 50×50 2-

D lattice (middle panels) and for a 20×20×20 3-D lattice grid (bottom panels). The

powerlaw slopes are αS = 1.0 and αT = 0.42 for the 2-D grid (middle panels) and

αS = 1.37 and αT = 0.92 for the 3-D grid. Reprinted from Bak, Tang, and Wiesenfeld

(1987, 1988) with permission; Copyright by American Physical Society.

2.1.2 Physical Aspects

Every theoretical model should be subjected to experiments and observa-
tions. Since a cellular automaton model is a purely mathematical model of
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complexity, similar to the mathematical definition of a fractal dimension,
its predictions of a particular mathematical distribution function (such as a
powerlaw) may represent a universal property of SOC processes, but does
not represent a complete physical model per se that can be used for appli-
cations to real observations. The physical aspect of a SOC model is hidden
in the “place-holder” variable zi,j,k and its scaling laws with observables,
which require a specific physical mechanism for each observed phenomenon
(for examples see second column in Table 2.1).

If we go back to the original SOC concept of avalanches in a sandpile,
say in the 1D-version, the place-holder variable zi has been interpreted as a
vertical altitude or height difference zi = (hi+1 − hi)/∆x between nearest-
neighbor nodes, so that the instability threshold corresponds to a critical
slope zi > zcrit = (dh/dx)crit. For the 3D version, the re-distribution rule
is given in Eq. (2.1). The instability threshold essentially corresponds to a
critical point where the gravitational force exceeds the frictional force of a
sand grain.

In applications to solar flares or magnetospheric substorms, the “place-
holder” variable zi,j,k has been related to the magnetic field Bi,j,k = B(xi,j,k)
at location xi,j,k, and a related magnetic energy EB = B2/(8π) can be de-
fined. The instability criterion ∆B > zcrit involves than a magnetic gradient
or magnetic field curvature (Charbonneau et al. 2001), also called the lattice
Laplacian,

∆B = Bi,j,k −
1

2S

2S∑
nn=1

Bnn , |∆B| > zcrit (2.2)

where the summation includes all 2×S nearest neighbors (“nn′′) in a Carte-
sian S-dimensional lattice.

More realistically, physics-based models have been attempted by apply-
ing the magneto-hydrodynamic (MHD) equations to the lattice field B(x),
obeying Ampère’s law for the current density j,

j =
1

4π
(∇×B) , (2.3)

which yields together with Ohm’s law the induction equation,

∂B

∂t
= ∇× (v ×B) + η∇2B , (2.4)

and fulfills the divergence-free condition for the magnetic field,

∇ ·B = 0 . (2.5)

The instability threshold can then be expressed in terms of a critical resisitiv-
ity η. Such cellular models with discretized magneto-hydrodynamics (MHD)
have been applied to magnetospheric phenomena, triggering magnetospheric
substorms by perturbations in the solar wind (Takalo et al. 1993; 1999), as
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well as to solar flares (Vassiliadis et al. 1998; Isliker et al. 1998). Initially, solar
flares were modeled with isotropic magnetic field cellular automaton models
(Lu and Hamilton 1991). However, since the plasma-β parameter (i.e., the ra-
tio of the thermal to the magnetic pressure) is generally smaller than unity in
the solar corona, particle and plasma flows are guided by the magnetic field,
and thus SOC avalanches are more suitably represented with anisotropic 1D
transport (Vlahos et al. 1995). Other incarnations of cellular SOC models
mimic the magnetic field braiding that is thought to contribute to coronal
heating (Morales and Charbonneau 2008). On the other hand, SOC models
that involve discretized ideal MHD equations have been criticized to be in-
adequate to describe the highly resistive and turbulent evolution of magnetic
reconnection processes, which are believed to be the driver of solar flares.

Besides the magnetic field approach of the a physical variable in SOC
lattice simulations, which predicts the magnetic energy EB ∝ B2/(8π) or
current j ∝ ∇ × B in each node point, we still have to model the physical
observables. The magnetic field or electric currents can only be observed by
in-situ measurements, which is possible for magnetospheric or heliospheric
phenomena with spacecraft, but often observables can only be obtained by
remote-sensing measurements in form of photon fluxes emitted in various
wavelength ranges, such as for solar or astrophysical sources. This requires
physical modeling of the radiation process, a component that has been ne-
glected in most previous literature on SOC phenomena.

If the physical quantity zi,j,k at each cellular node is defined in terms of
an energy e, the discretized change of the quantity dz/dt corresponds then to
a quantized amount of dissipated energy 〈∆e〉 per node. The instantaneous
energy dissipation rate de/dt = 〈∆e〉dV/dt of the system scales then with the
instantaneous volume change dV (t)/dt, while the total amount of dissipated
energy during an avalanche event can be computed from the time integral,
E = 〈∆e〉

∫ t
0
V (t)dt, assuming that a mean energy quantum 〈∆e〉 is dissipated

per unstable node.
In astrophysical applications, the observed quantity is usually a photon

flux, and thus the energy quantity e = hν corresponds to the photon en-
ergy at frequency ν, while 〈∆e〉 = Nhν/∆t is the photon flux of N pho-
tons that are radiated in a volume cell ∆V during a time step ∆t for a
given radiation process. The conversion of the intrinsic energy dissipation
rate de/dt = 〈∆e〉(dV/dt) (e.g., of magnetic energy EB in a magnetic recon-
nection process) has then to be related to the amount of emitted photons
〈∆e〉 = Nhν/∆t by a physical model of the dissipation process. The physi-
cal model of the radiation process may involve a nonlinear scaling between
the amount of dissipated energy and the number of emitted photons in a
specific wavelength range, which changes the powerlaw slope of the observed
distributions of photon fluxes, compared with the predictions of the generic
quantity zi,j,k used in SOC cellular automaton simulations (e.g., see section
13.1.4 in chapter 13 on “SOC systems in astrophysics” in this book).
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2.2 Analytical SOC Models

The complexity of the spatio-temporal pattern of a SOC avalanche is pro-
duced by a simple mathematical re-distribution rule that defines the nearest-
neighbor interactions on a microscopic level, while the observed structure
manifests itself at the macroscopic level. While cellular automatons operate
on the microscopic level of a lattice cell, the complex macroscopic structure
cannot be analytically derived from the microscopic states of the nonlinear
system. In classical thermodynamics, the macroscopic state of a gas, such as
the velocity distribution function of molecules can be derived from the (bino-
mial or Gaussian) probability distribution function of microscopic states. In
contrast, nonlinear dissipative systems in the state of self-organized criticality
seem to exhibit a higher level of complexity, so that their macroscopic mor-
phology cannot be analytically derived from the microscopic states. There-
fore, analytical models can describe the macroscopic SOC parameters only
by simplified approximations of the SOC dynamics, which are aimed to be
consistent with the observed (powerlaw-like) probability or occurrence fre-
quency distributions. We will describe a few of such analytical models in the
following, which make quantitative predictions of the powerlaw slopes and
scaling laws between SOC parameters. Such analytical models can then be
used for Monte-Carlo simulations of SOC avalanches and be forward-fitted
to the observed distributions of SOC parameters.

2.2.1 Exponential-Growth SOC Model (EG-SOC)

SOC avalanches have always a growth phase with nonlinear characteristics,
similar to a multiplicative chain-reaction. Mathematically, the simplest func-
tion that grows in a multiplicative way is the exponential function with a
positive growth rate. It is therefore not surprising that the first analytical
models of SOC processes were based on such an exponential growth function
(even when they were not called SOC models at the pre-Bak time). The at-
tractive feature for SOC applications is the fact that the simple assumption of
an exponential growth curve combined with random durations automatically
leads to a powerlaw distribution function, as we will see in the following.

The earliest analytical models in terms of an exponential growth phase
with saturation after a random time interval go back to Willis and Yule (1922)
who applied it to geographical distributions of plants and animals. Yule’s
model was applied to cosmic rays (Fermi 1949), to cosmic transients and
solar flares (Rosner and Vaiana 1978; Aschwanden et al. 1998), to the growth
dynamics of the world-wide web (Huberman and Adamic 1999), as well as to
the distribution of the sizes of incomes, cities, internet files, biological taxa,
and in gene family and protein family frequencies (Reed and Hughes 2002).
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Here we describe the analytical derivation of the exponential-growth SOC
model, following Aschwanden (2011a, Section 3.1). We define the time evo-
lution of the energy release rate W (t) of a nonlinear process that starts at a
threshold energy of W0 by

W (t) = W0 exp

(
t

τG

)
, 0 ≤ t ≤ τ , (2.6)

where τG represents the e-folding growth time of the exponential function.
The process grows exponentially until it saturates at time t = τ with a
saturation energy WS ,

WS = W (t = τ) = W0 exp

(
τ

τG

)
. (2.7)

We define a peak energy release rate P that represents the maximum energy
release rate WS , after subtraction of the threshold energy W0, that corre-
sponds to the steady-state energy level before the nonlinear growth phase,

P = WS −W0 = W0

[
exp

(
τ

τG

)
− 1

]
. (2.8)

In the following, we will refer to the peak energy release rate P also briefly as
“peak energy”. For the saturation times τ , which we also call “rise times”, we
assume a random probability distribution, approximated by an exponential
function N(τ) with e-folding time constant tS ,

N(τ)dτ =
N0

tS
exp

(
− τ

tS

)
dτ . (2.9)

This probability distribution is normalized to the total number of N0 events.
In order to derive the probability distribution N(P ) of peak energy release

rates P , we have to substitute the variable of the peak energy, P , into the
function of the rise time τ(P ), which yields (using the functional relationship
τ(P ) from Eq. 2.8),

N(P )dP = N(τ)dτ = N [τ(P )]

∣∣∣∣ dτdP
∣∣∣∣ dP =

N0(αP − 1)

W0

(
P

W0
+ 1

)−αP
dP ,

(2.10)
which is an exact powerlaw distribution for large peak energies (P � W0)
with a powerlaw slope αP of

αP =

(
1 +

τG
tS

)
. (2.11)

The powerlaw slope thus depends on the ratio of the growth time to the e-
folding saturation time, which is essentially the average number of growth



2 Theoretical Models of SOC Systems 33

times. Examples of time series with avalanches of different growth times
(τG/tS = 0.5, 1.0, 2.0) are shown in Fig. 2.3, along with the correspond-
ing powerlaw distributions of peak energies P . Note that the fastest growing
events produce the flattest powerlaw distribution of peak energies.
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Fig. 2.3: Time evolution of energy release rate W (t) for 3 different ratios of growth

times to saturation times, τG/tS = (0.5, 1.0, 2.0) (left) and the corresponding power-

law distributions of the peak energy release rate P . Note that the event set with the

shortest growth time (τG/tS = 0.5) reaches the highest energies and thus produces

the flattest powerlaw slope (α = 1 + τG/tS = 1.5).

Once an instability has released a maximum amount WS of energy, say
when an avalanche reaches its largest velocity on a sandpile, the energy release
gradually slows down until the avalanche comes to rest. For sake of simplicity
we assume a linear decay phase of the released energy (Fig. 2.4),

W (t) = W0 + (WS −W0)

(
1− (t− t1)

D

)
t1 < t < t2 , (2.12)

where t2 is the end time of the process at t2 = t1 +D. The time interval T of
the total duration of the avalanche process is then the sum of the exponential
rise phase τ and the linear decay phase D as illustrated in Fig. 2.4,

T = τ +D = τG ln

(
P

W0
+ 1

)
+ τD

P

W0
. (2.13)

We see that this relationship predicts an approximate proportionality of T ∝
P for large avalanches, since the second term, which is linear to P, becomes
far greater than the first term with a logarithmic dependence (∝ lnP ).

For the calculation of the distribution N(τ) we express the total duration
T in terms of the rise time τ and find a powerlaw function for the distribution
of flare durations T ,

N(T )dT = N [τ(T )]

∣∣∣∣ dτdT
∣∣∣∣ dT =

N0(αT − 1)

τD

(
T

τD
+ 1

)−αT
dT . (2.14)
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Fig. 2.4: Schematic of the time evolution of an avalanche event, consisting of (i) a

rise time (τ) with exponential growth of the energy release W (t) from a threshold

level W0 to the saturation level WS , and (ii) a decay time (D) with a constant decay

rate η = dW/dt = W0/τD.

We define also the total released energy E by the time integral of the energy
release rate W (t) during the event duration T , but neglect the rise time τ
(i.e., T ≈ D) and subtract the threshold level W0 before the avalanche,

E =

∫ T

0

[W (t)−W0] dt ≈
∫ τ+D

τ

[W (t)−W0] dt =
1

2
PD . (2.15)

leading to a powerlaw-like function for the frequency distribution of energies
E,

N(E)dE = N [P (E)]

∣∣∣∣dPdE
∣∣∣∣ dE =

N0(αP − 1)

2E0

[√
E

E0
+ 1

]−αP [
E

E0

]−1/2

dE

(2.16)
Thus, we find the following approximate scaling laws between the powerlaw
exponents,

αP = 1 + τG/tS
αT = αP
αE = (αP + 1)/2

(2.17)

In summary, this model predicts powerlaw distribution functions for the
three SOC parameters P , E, and T , which match the simulated distributions
with cellular automaton simulations, as well as the observed distributions of
solar flare hard X-ray fluxes (Lu and Hamilton 1991). For a ratio of τG/tS = 1,
this model predicts αP = 2.0, αT = 2.0, and αE = 1.5. This particular time
ratio of τG/tS = 1 implies that an avalanche typically saturates after one ex-
ponential growth time (see the spatio-temporal patterns for small avalanches
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in Fig. 2.5). Open questions are: Which physical process would explain this
particular time scale ratio τG/tS = 1 ? What is the physical interpretation of
the linear decay phase? Is the exponential distribution of avalanche growth
times consistent with observations, since powerlaw-like distributions are ex-
pected for SOC parameters? How can the observed intermittent fluctuations
of time profiles and the fractal geometry be accomodated in a model with a
monotonic growth function? Although this model seems not to reproduce all
observed properties of SOC phenomena, it has a didactical value, since it rep-
resents the most basic model that links the nonlinear evolution of instabilities
to the powerlaw distributions observed in SOC phenomena.
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Fig. 2.5: Spatial patterns of a propagating avalanche in subsequent time steps in a 2-D

cellular automaton model with a nearest-neighbor redistribution rule (top) and time

profiles of energy release rate (bottom), for saturation times of tS = 1, 2, ..., 5∆t. The

black cells represent cells with random fluctuations below the threshold, zk < zc, the

grey cells contain possibly unstable cells with fluctuation zk ≥ zc that are subject to a

first redistribution, while the white cells have already been affected by a redistribution

rule before. Most avalanches die out after step t >∼ 2.

The exponential-growth model is most suitable for multiplicative avalanche
processes, where the increase per time step during the rise phase is based on a
multiplicative factor, such as it occurs in nuclear chain reactions, population
growth, or urban growth. Alternatively, avalanche processes that continuously
expand in space may show an energy increase that scales with the area or
volume, which has a powerlaw relationship to the spatial or temporal scale,
i.e., A(t) ∝ r(t)2 ∝ t2 or V (t) ∝ r(t)3 ∝ t3. Such a model with a powerlaw-
growth function

W (t) = W0

[
1 +

(
t

τG

)p]
, (2.18)



36 Markus J. Aschwanden

rather than an exponential-growth function (Eq. 2.6) was computed in As-
chwanden (2011a; Section 3.2), which predicts identical scaling laws between
the SOC parameters (P,E, T ), but the occurrence frequency distributions ex-
hibit an exponential fall-off at the upper end. Otherwise it has similar caveats
as the exponential-growth model (i.e., monotonic growth curve rather than
intermittency, and Euclidean rather than fractal avalanche volume).

Another variant of the exponential-growth model is the logistic-growth
model (Aschwanden 2011a; Section 3.3), which has a smoother transition
from the initially exponential growth to the saturation phase, following the
so-called logistic equation (discovered by Pierre François Verhulst in 1845;
see review by Yule 1925 or textbooks on nonlinear dynamics, e.g., May 1974;
Beltrami 1987, p.61; and Jackson 1989, p.75),

dE(t)

dt
=

E(t)

τG
·
[
1− E(t)

E∞

]
, (2.19)

where the dissipated energy is limited by the so-called carrying capacity limit
E∞ used in ecological applications. The resulting occurrence frequency distri-
butions are powerlaws for the energy E and peak energy dissipation rate P ,
but exponential functions for the rise time τ and duration T of an avalanche.
Like the exponential-growth and the powerlaw-growth model, the temporal
intermittency and the geometric fractality observed in real SOC phenomena
are not reproduced by the smoothly-varying time evolution of the logistic-
growth model.

2.2.2 The Fractal-Diffusive SOC Model (FD-SOC)

The microscopic structure of a SOC avalanche has been simulated with a
discretized mathematical re-distribution rule, which leads to highly inhomo-
geneous, filamentary, and fragmented topologies during the evolution of an
avalanche. Therefore, it appears to be adequate to develop an analytical SOC
model that approximates the inhomogeneous topology of an avalanche with a
fractal geometry. Bak and Chen (1989) wrote a paper entitled “The physics
of fractals”, which is summarized in their abstract with a single sentence:
Fractals in nature originate from self-organized critical dynamical processes.
Thus, we introduce now an analytical model that includes the fractal geome-
try and a diffusion-type spatio-temporal transport process, which we call the
fractal-diffusive SOC model (FD-SOC).

Such a statistical fractal-diffusive avalanche model of a slowly-driven SOC
system has been derived in Aschwanden (2012). This analytical model rep-
resents a universal (physics-free) description of the statistical time evolution
and occurrence frequency distribution function of SOC processes. It is based
on four fundamental assumptions: (1) A SOC avalanche grows spatially like
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a diffusive process; (2) The spatial volume of the instantaneous energy dis-
sipation rate is fractal; (3) The time-averaged fractal dimension is the mean
of the minimum dimension DS,min ≈ 1 (for a sparse SOC avalanche) and
the maximum dimension DS,max = S (given by the Euclidean space); and
(4) The occurrence frequency distribution of length scales is reciprocal to the
size L of spatial scales, i.e., N(L) ∝ L−S in Euclidean space with dimension
S (also called the scale-free probability conjecture). We will discuss these
assumptions in more detail in the following.

The first assumption of a diffusive process is based on numerical sim-
ulations of cellular automaton models. A SOC avalanche propagates in a
cellular automaton model by nearest-neighbor interactions in a critical state,
where energy dissipation propagates only to the nearest-neighbor cells (in a
S-dimensional lattice grid) that are above a critical threshold. This math-
ematical rule that describes the entire dynamics and evolution of a SOC
avalanche is very simple for a single time step, but leads to extremely com-
plex spatial patterns after a finite number of time steps. For a visualization of
a large number of such complex spatial patterns generated by a simple itera-
tive mathematical redistribution rule see, for instance, the book “A New Kind
of Science” by Wolfram (2002). The complexity of these spatial patterns can
fortunately be approximated with a single number, the fractal dimension DS .
If one monitors the time evolution of a spatial pattern of a SOC avalanche
in a cellular automaton model, one finds that the length scale x(t) evolves
with time approximately with a diffusive scaling (see radius r(t) of snapshots
of a 2-D cellular automaton evolution in Fig. (2.6) and its time evolution
r(t) ∝ t1/2 in Fig. (2.8), bottom right panel),

x(t) ∝ t1/2 , (2.20)

which leads to a statistical scaling law between the avalanche sizes L = x(t =
T ) and time durations T of SOC avalanches,

L ∝ T 1/2 . (2.21)

The second assumption of a fractal pattern of the instantaneous energy
rate is also based on tests with cellular automaton simulations (see mea-
sured fractal dimensions D2 of snapshots in Fig. (2.7) and the time evolution
D2(t) in Fig. (2.8) top right panel). The fractal dimension is essentially a
simplified parameter that describes the “micro-roughness”, “graininess”, or
inhomogeneity of critical nodes in a lattice grid in the state of self-organized
criticality. Of course, such a single number is a gross over-simplification of a
complex system with a large number of degrees of freedom, but the numerical
simulations confirm that avalanche patterns are fractal (Fig. 2.7). Thus we
define the volume VS(t) of the instantaneous energy dissipation rate (i.e., the
number of “active sites” or nodes) in terms of a fractal (Hausdorff) dimension
DS that scales with the length scale x as,
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Fig. 2.6: Time evolution of a large avalanche event in a 2-D cellular automaton
simulation with grid size N = 642. The 12 panels show snapshots taken at
a subset of peak times, from t = 26 to t = 690, when the energy dissipation
rate reached a local maximum as a function of time. Active nodes where
energy dissipation occurs at time t are visualized with black and grey points,
depending on the energy dissipation level. The starting point of the avalanche
occurred at pixel (x, y) = (41, 4), which is marked with a cross. The time-
integrated envelop of the avalanche is indicated with a solid contour, and
the diffusive avalanche radius r(t) = t1/2 is indicated with a dashed circle
(Aschwanden 2012).

VS(t) ∝ xDS , (2.22)

which leads also to a statistical scaling law between avalanche volumes V and
spatial scales L or durations T of SOC avalanches (with Eq. 2.21)

VS ∝ LDS ∝ TDS/2 . (2.23)
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Fig. 2.7: Determination of the fractal dimension D2 = logAi/ log xi for the
instantaneous avalanche sizes of 6 time steps of the avalanche event shown
in Fig. (2.6). Each row is a different time step and each column represents
a different binning of macropixels (∆xi = 1, 2, 4, 8). The fractal dimension
is determined by a linear regression fit shown on the right-hand side. The
mean fractal dimension of the 12 avalanche snapshots shown in Fig. (2.6) is
D2 = 1.43± 0.17 (Aschwanden 2012).

The third assumption of the mean fractal dimension has also been con-
firmed by numerical simulations of cellular automaton SOC processes in all
three dimensions S = 1, 2, 3 (Aschwanden 2012), but it can also be under-



40 Markus J. Aschwanden

2-D avalanche event #1628

0 200 400 600 800
Time t

0

1000

2000

3000

4000

E
n

e
rg

y
 d

is
s
ip

a
ti
o

n
 r

a
te

  
d

e
/d

t

26

118

132

203

259
323

373

422

516

560

607

690

t3/4

t1

0 200 400 600 800
Time t

0

1•105

2•105

3•105

4•105

5•105

T
o

ta
l 
ti
m

e
-i
n

te
g

ra
te

d
 e

n
e

rg
y
  

e
(t

)

t7/4

0 200 400 600 800
Time t

0

1

2

3

F
ra

c
ta

l 
d

im
e

n
s
io

n
 D

2
(t

)

D=1

D2=1.5

D=2 (Euclidean limit)

0 200 400 600 800
Time t

0

10

20

30

40

R
a

d
iu

s
 o

f 
a

v
a

la
n

c
h

e
 a

re
a

  
r(

t)
t1/2

Fig. 2.8: Time evolution of the same large avalanche event from a 2-D cellu-
lar automaton simulation with grid size N = 642 as shown in Fig. (2.6). The
time profiles include the instantaneous energy dissipation rate f(t) = de/dt
(top left), the time-integrated total energy e(t) (bottom left), the instanta-
neous fractal dimension D2(t) (top right), and the radius of the avalanche
area r(t) (bottom right). The observed time profiles from the simulations are
outlined in solid linestyle and the theoretically predicted average evolution in
dashed linestyle. The statistically predicted values of the instantaneous en-
ergy dissipation rate f(t) ∝ t3/4 (dotted curve) and peak energy dissipation
rate p(t) ∝ t1 (dashed curve) after a time interval t are also shown (top left
panel). The 12 time labels from 26 to 690 (top left frame) correspond to the
snapshot times shown in Fig. (2.6) (Aschwanden 2012).

stood by the following plausibility argument. The sparsest SOC avalanche
that propagates by nearest-neighbor interactions is the one that spreads only
in one spatial dimension, and thus yields an estimate of the minimum frac-
tal dimension of DS,min ≈ 1, while the largest SOC avalanche is almost
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space-filling and has a volume that scales with the Euclidean dimension,
DS,max = S. Combining these two extremal values, we can estimate a time-
averaged fractal dimension 〈DS〉 from the arithmetic mean,

〈DS〉 ≈
DS,min +DS,max

2
=

1 + S

2
, (2.24)

which yields a mean fractal dimension of 〈D3〉 = (1 + 3)/2 = 2.0 for the 3D
case (S = 3).

The fourth assumption on the size distribution of length scales is a proba-
bility argument. The system size Lsys of a SOC system represents an upper
limit of spatial scales L for SOC avalanches, i.e., L ≤ Lsys. For the 3D-case,
the volumes V of individual avalanches are bounded by the volume Vsys of
the system size, i.e., V = L3 ≤ Vsys = L3

sys. If the entire system is in a crit-
ical state, the maximum number of SOC avalanches that can be produced
throughout the system is given by the packing density, and the probability
N(L) for a fixed avalanche size L with volume V is simply reciprocal to the
size, (visualized in Fig. 2.9), i.e.,

N(L) ∝ Vsys
V (L)

∝ V (L)−1 , (2.25)

which is equivalent to

N(L)dL ∝ L3
sys

L3
dL ∝ L−3dL . (2.26)

In reality, only one single or no avalanche occurs at a given time, but the
relative probability for a small or large avalanches size still scales with the
reciprocal size, if we use a probabilistic argument (as it is used in the deriva-
tion of a binomial distribution by adding up all possible combinations and
permutations that produce a particular outcome).

Based on these four model assumptions we can now quantify the time
evolution of SOC parameters. For sake of simplicity we apply this fractal-
diffusive SOC model to an astrophysical source that emits a photon flux f(t)
that is proportional to the instantaneous energy dissipation volume VS(t)
of a SOC avalanche, where a mean energy quantum 〈∆E〉 is emitted per
volume cell element ∆V . Thus, the emitted flux is (using the diffusive scaling
x(t) ∝ t1/2),

f(t) =
de(t)

dt
∝ 〈∆E〉VS(t) = 〈∆E〉x(t)DS = 〈∆E〉tDS/2 . (2.27)

In the 2-D case with DS = D2 = (1 + 2)/2 = 3/2 (Eq. 2.24) we expect a
statistical scaling of f(t) ∝ t3/4 (see Fig. 2.8 top left). In the 3-D case with
DS = D3 = (1+3)/2 = 2, we expect than the proportionality f(t) ∝ tD3/2 ∝
t1. In Fig. (2.10, bottom panel) we simulate such a flux time profile f(t)
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Fig. 2.9: Schematic diagram of the Euclidean volume scaling of the diffusive
avalanche boundaries, visualized as circles or spheres in the three Euclidean
space dimensions S = 1, 2, 3. The Euclidean length scale x of subcubes de-
creases by a factor 2 in each step (xi = 2−i, i = 0, 1, 2), while the number of
subcubes increases by ni = (2i)S , defining a probability of N(xi) ∝ x−Si for
each avalanche size with size xi.
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by applying noise fluctuations in the time evolution of the fractal dimension
D2(t) (Fig. 2.10, top).

The statistical peak value p(t) of the energy dissipation rate after time t
can be estimated from the largest possible avalanches, which have an almost
space-filling dimension DS

<∼ S,

p(t) =
de(t)

dt
∝ 〈∆E〉VS,max(t) = 〈∆E〉x(t)S = 〈∆E〉tS/2 . (2.28)

and thus would be expected to scale as p(t) ∝ tS/2 ∝ t1.5 for the S = 3 case.
Thus the time profile of peak values envelopes the maximum fluctuations of
the flux time profile f(t) (Fig. 2.10, second panel).

The evolution of the total dissipated energy e(t) after time t is simply the
time integral, for which we expect

e(t) =

∫ t

0

de(τ)

dτ
dτ ∝

∫ t

0

τDS/2 ∝ t(1+DS/2) , (2.29)

which yields the function e(t) ∝ t7/4 for the 2-D case (Fig. 2.8, bottom left),
and a function e(t) ∝ t2 for the 3-D case (Fig. 2.10, third panel). These time
evolutions apply to every SOC model that has an emission f(t) proportional
to the fractal avalanche volume VS(t). For applications to observations in a
particular wavelength range there may be an additional scaling law between
the avalanche volume and emission (or intensity) of the underlying radiation
mechanism.

In order to derive the size distributions of these various observables, we
start with the probability distribution of (avalanche) length scales (Eq. 2.25),

N(L) ∝ V −1
S ∝ L−S . (2.30)

which follows from a simple statistical probability argument as discussed in
the derivation of Eq. (2.26). This is an extremely important assumption,
which automatically predicts a powerlaw distribution for length scales. Using
the scaling laws that result from Eq. (2.21) and (2.27)-(2.29) for characteris-
tics scales L = x(t = T ), E = e(t = T ), F = f(t = T ), and P = p(t = T ) for
an avalanche duration time T ,

L ∝ T 1/2

F ∝ TDS/2
P ∝ TS/2
E ∝ T 1+DS/2

, (2.31)

we can directly calculate the occurrence frequency distributions for all these
SOC parameters, by substituting the variables from the correlative relation-
ships given in Eq. (2.31), yielding
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Fig. 2.10: Simulation of the fractal-diffusive SOC model for an Euclidean di-
mension S = 3, showing the time evolution of the fractal dimension DS(t)
(top panel), the instantaneous energy dissipation rate f(t) and peak energy
dissipation rate p(t) (second panel), the total time-integrated dissipated en-
ergy e(t) (third panel), and the soft X-ray time profile fsxr(t) (bottom panel),
which results from the convolution of the instantaneous energy dissipation
rate f(t) (second panel) with an exponential decay function with an e-folding
time of τdecay (shown in insert of bottom panel) (Aschwanden and Freeland
2012).
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N(T )dT = N(L[T ])

∣∣∣∣dLdT
∣∣∣∣ dT ∝ T−[(1+S)/2] dT . (2.32)

N(F )dF = N(T [F ])

∣∣∣∣dTdF
∣∣∣∣ dF ∝ F−[1+(S−1)/DS ] dF , (2.33)

N(P )dP = N(T [P ])

∣∣∣∣dTdP
∣∣∣∣ dP ∝ P−[2−1/S] dP , (2.34)

N(E)dE = N(T [E])

∣∣∣∣ dTdE
∣∣∣∣ dE ∝ E−[1+(S−1)/(DS+2)] dE . (2.35)

If such simple single powerlaw scaling laws exist, this derivation yields nat-
urally powerlaw functions for all parameters L, T , F , P , and E, which are
the hallmarks of SOC systems. In summary, if we denote the occurrence fre-
quency distribution N(x) of a parameter x with a powerlaw distribution with
powerlaw exponent αx,

N(x)dx ∝ x−αx dx , (2.36)

we have the following powerlaw exponents αx for the parameters x = T, F, P ,
and E,

αT = (1 + S)/2
αF = 1 + (S − 1)/DS

αP = 2− 1/S
αE = 1 + (S − 1)/(DS + 2)

. (2.37)

The powerlaw exponents αx and correlation are summarized in Table 2.2
separately for each Euclidean dimension S = 1, 2, 3.

These correlation coefficients and powerlaw exponents of frequency distri-
butions have been found to agree within ≈ 10% with numerical simulations
of cellular automatons for all three Euclidean dimensions (S = 1, 2, 3) (As-
chwanden 2011a). Some deviations, especially fall-offs at the upper end of
powerlaw distributions, are likely to be caused by finite-size effects of the
lattice grid.

2.2.3 Astrophysical Scaling Laws

SOC theory applied to astrophysical observations covers many different wave-
length regimes, for instance gamma-rays, hard X-rays, soft X-rays, and ex-
treme ultra-violet (EUV) in the case of solar flares. A comprehensive review
of such studies is given in Section 7 of Aschwanden (2011a). However, since
each wavelength range represents a different physical radiation mechanism,
we have to combine now the physics of the observables with the (physics-free)
SOC statistics.
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Table 2.2: Theoretically predicted occurrence frequency distribution power-
law slopes α and parameter correlations predicted for SOC cellular automa-
tons with Euclidean space dimensions S = 1, 2, 3, for the fractal dimension
DS , length scale L, time duration T , instantaneous energy dissipation rate
(or flux) F , peak energy dissipation rate (or peak flux) P , and total time-
integrated energy E.

Theory S=1 S=2 S=3

DS = (1 + S)/2 1 3/2 2
αL = S 1 2 3
αT = (1 + S)/2 1 3/2 2
αF = 1 + (S − 1)/DS 1 5/3 2
αP = 2− 1/S 1 3/2 5/3
αE = 1 + (S − 1)/(DS + 2) 1 9/7 3/2

L ∝ T 1/2 L ∝ T 1/2 L ∝ T 1/2 L ∝ T 1/2

F ∝ TDS/2 F ∝ T 1/2 F ∝ T 3/4 F ∝ T 1

P ∝ TS/2 P ∝ T 1/2 P ∝ T 1 P ∝ T 3/2

E ∝ T 1+DS/2 E ∝ T 3/2 E ∝ T 7/4 E ∝ T 2

Let us consider soft and hard X-ray emission in solar or stellar flares. Soft
X-ray emission during solar flares is generally believed to result from thermal
free-free and free-bound radiation of plasma that is heated in the chromo-
sphere by precipitation of non-thermal electrons and ions, and which subse-
quently flows up into coronal flare (or post-flare) loops, a process called “chro-
mospheric evaporation process” (for a review see, e.g., Aschwanden 2004).
Therefore, we can consider the flare-driven chromospheric heating rate as the
instantaneous energy dissipation process of a SOC avalanche, as shown in
the simulated function f(t) in Fig. 2.10 (second panel). The heated plasma,
while it fills the coronal flare loops, loses energy by thermal conduction and
by radiation of soft X-ray and EUV photons, which generally can be char-
acterized by an exponential decay function after an impulsive heating spike.
In Fig. 2.10 (bottom) we mimic such a soft X-ray radiation light curve by
convolving the instantaneous energy dissipation rate f(t) (Fig. 2.10, second
panel) with an exponentially decaying radiation function (with an e-folding
time constant of τdecay),

fsxr(t) =

∫ t

−∞
f(t) exp

[
− (t− t′)
τdecay

]
dt′ , (2.38)

which shows also a time dependence that follows approximately

fsxr(t) ∝ f(t) ∝ t1.0 , (2.39)
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because the convolution with an exponential function with a constant e-
folding time acts like a constant multiplier. In the limit of infinitely long
decay times (τdecay 7→ ∞), our convolution function (Eq. 2.38) turns into a
time integral of the heating function f(t), which is known as Neupert effect
(Dennis and Zarro 1993; Dennis et al. 2003).

The heating function is identified with the non-thermal hard X-ray emis-
sion, which indeed exhibits a highly fluctuating and intermittent time profile
for energies of >∼ 25 keV, where non-thermal emission dominates (Fig. 2.8),

fhxr(t) ∝ p(t) ∝ t1.5 . (2.40)

Thus the occurrence frequency distributions of fluxes are expected to be
different for soft X-rays and hard X-rays. The hard X-ray flux fhxr(t) follows
the statistics of the highly fluctuating peak energy dissipation rate p(t), while
the soft X-ray flux fsxr(t) is expected to follow the statistics of the smoothly-
varying (convolved) time profile f(t). The total duration T of energy release
of an avalanche (or flare here) corresponds essentially to the rise time trise
of the soft X-ray flux, or to the total flare duration for hard X-rays, because
the decay phase of a soft X-ray flare light curve is dominated by conductive
and radiative loss, rather than by continued heating input. Thus based on
the generic relationships summarized in Table 2.2 we expect for the 3-D case
(S = 3),

N(T ) ∝ T−αT = T−2 , (2.41)

N(fsxr) ∝ F−αF = F−[1+(S−1)/DS ] = F−2 , (2.42)

N(fhxr) ∝ P−αP = P−[2−1/S] = P−5/3 . (2.43)

Applications to observations did show satisfactory agreement with these the-
oretical values, i.e. powerlaw slopes of αF = 2.0 for soft X-rays and αP = 1.67
for hard X-rays (Aschwanden 2011a; 2011b; Aschwanden and Freeland 2012),
except for the occurrence frequency distributions of flare durations T during
solar cycle maxima, when the flare pile-up bias appears to have a steepening
side effect (Aschwanden 2012).

2.2.4 Earthquake Scaling Laws

While the foregoing discussion is relevant to astrophysical SOC phenomena
(solar and stellar flares), similar physical scaling relationships between the
observables and SOC cellular automaton quantities zi,j,k can be developed in
other fields. For earthquakes in geophysics for instance, measured quantities
include the length LS and width Lw of a rupture area, so the rupture area has
the scaling A ∝ LSLw. For large ruptures, however, when the surface rupture
length is much larger than the rupture width, i.e., Ls � Lw, the width Lw
was found to be approximately constant, so that large ruptures saturate the
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faults surface and scale with a fractal dimension of D = 1, whereas a smaller
rupture propagates across both dimension (D = 2) of the fault face (Yoder
et al. 2012). The modeling of size distributions of earthquake magnitudes can
then be conducted with a similar methodology as outlined with our fractal-
diffusive model (Section 2.2.2), requiring: (i) The definition of the Euclidean
space dimension for earthquakes, which could be S = 2 if they are treated
as surface phenomena without significant depth variability, or by S = 3
otherwise; (ii) The measurement of the fractal dimensionD, which can exhibit
multi-fractal scaling from D = 1 for large earthquakes to D = 2 for small
earthquakes; and (iii) assigning the observable m, which is the magnitude of
the earthquake, to the corresponding physical quantity, i.e., the peak energy
dissipation rate P , the smoothed energy dissipation rate F , or total time-
integrated energy E. Furthermore, earthquake size distributions are often
reported in terms of a cumulative distribution function N(> m), which has
a powerlaw index β ≈ α − 1 that is flatter by one than the differential
distribution function (or probability density function) N(m) dm.

2.3 Alternative Models Related to SOC

Here we discuss a number of alternative dynamical models that are related
to SOC models or have similar scaling laws, and discuss what they have in
common with SOC or where they differ. A matrix between processes and
observables is synthesized in Fig. 2.15.

2.3.1 Self-Organization Without Criticality (SO)

Self-organization (SO) often refers to geometric patterns that originate in
mutual interaction of their elements, without coordination from outside the
system (Camazine et al. 2001). For instance, convection arranges itself into a
regular pattern of almost equal-sized convection cells, a structuring process
also known as Rayleigh-Bénard cells (Getling 1998). Other examples are the
regular wavy pattern of sand dunes in the desert (Bagnold 1941, 2005), wavy
patterns of Cirrus clouds in the Earth atmosphere (Nagel and Raschke 1992),
Jupiter’s atmosphere with white bands of ammonia ice clouds (Antipov et al.
1985), the spiral-like patterns of the Belousov-Zhabotinsky reaction-diffusion
system (Rovinsky and Menzinger 1993), or geometric patterns in biology (Ca-
mazine et al. 2001), such as the skin of zebras, giraffes, tigers, tropical fishes,
or formation flight of birds. From these examples we see that self-organization
mostly refers to the self-assembly of geometric patterns, which are more or
less stable over long time intervals, although they arise from the physics of
non-equilibrium processes, which can involve diffusion, turbulence, convec-



2 Theoretical Models of SOC Systems 49

tion, or magneto-convection, which are governed by long-range interactions
(via pressure and forces).

What is the difference to self-organized criticality (SOC)? Are sandpile
avalanches a self-organizing (SO) pattern? In the standard scenario of the
sandpile SOC model, individual avalanches are a local phenomenon that are
randomly triggered in space and time, but occur independently, at least in the
slowly-driven case. Thus, one avalanche has no mutual interaction with an-
other avalanche and the outcome of the final size is independent of another, in
contrast to self-organization without criticality, where the interaction between
system-wide structures is coupled. In other words, sandpile avalanches are
governed by localized disturbances via nearest-neighbor interactions, while
self-organizing patterns may be formed by both nearest-neighbor and long-
range interactions. Another difference is that SO creates spatial patterns,
while SOC generates dynamical events in space and time (i.e., avalanches).
Also the statistical distributions of the two processes are different. A self-
organizing pattern is likely to produce a preferred size scale (e.g., the solar
granulation or the width of zebra stripes), while self-organized criticality pro-
duces a scale-free powerlaw distribution of avalanche sizes. The difference be-
tween SO and SOC may be best illustrated with a sandpile analogy. The same
sandpile can be subject to self-organization (SO), for instance when a steady
wind blows over the surface and produces wavy ripples with a regular spac-
ing pattern, as well as be subject to self-organized criticality (SOC), when
intermittent avalanches occur due to random-like disturbances by infalling
sand grains. The former geometric pattern may appear as a spatial-periodic
pattern, while the latter may exhibit a fractal geometry.

The concept of self-organization could be also related to the intensively
studied CMLs (Coupled Map Lattices), which produce chaotic maps (e.g.,
the Bernoulli map) on the regularly distributed nodes. The next level of
complexity is captured in complex networks (complex topology with chaotic
systems on the nodes). Both concepts lead also to highly complex spatio-
temporal dynamics.

2.3.2 Forced Self-Organized Criticality (FSOC)

In Bak’s original SOC model, which is most genuinely reproduced by sandpile
avalanches and cellular automaton simulations, criticality (or the susceptible
state) is continuously restored by nearest-neighbor interactions. If the local
slope becomes too steep, an avalanche will erode it back to the critical value.
If the erosion by an avalanche flattened the slope too much, it will be grad-
ually restored by random input of dropped sand grains in the slowly-driven
limit. When the observations were extended to magnetospheric substorms in
the night-side geotail, powerlaw-like size distributions were found, suggest-
ing a self-organized critical process, but at the same time correlations with
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magnetic reconnection events at the dayside of the magnetosphere were iden-
tified, driven by solar wind fluctuations, suggesting some large-scale trans-
port processes and long-range coupling between the day-side and night-side
of the magnetosphere. Thus, these long-range interactions that trigger local
instabilities in the current sheet in the Earth’s magnetotail were interpreted
as external forcing or loading, and a combined forced and/or self-organized
criticality (FSOC) process was suggested (Chang 1992, 1998a,b, 1999a,b). A
forced SOC process may apply to a variety of SOC phenomena in the mag-
netosphere, such as magnetotail current disruptions (Lui et al. 2000), sub-
storm current disruptions (Consolini and Lui 1999), bursty bulk flow events
(Angelopoulos et al. (1996, 1999), magnetotail magnetic field fluctuations
(Hoshino et al. 1994), auroral UV blobs (Lui et al. 2000; Uritsky et al. 2002),
auroral optical blobs (Kozelov et al. 2004), auroral electron (AE) jets (Takalo
et al. 1993; Consolini 1997), or outer radiation belt electron events (Crosby
et al. 2005).

What distinguishes the FSOC model from the standard (BTW-type) SOC
model is mostly the long-range coupling in triggering of instabilities, which
is more localized in sandpiles and cellular automaton models. The driving
force in the FSOC model is a long-distance action (loading process), while
it is a random local disturbance in the BTW model. Otherwise, the FSOC
model entails also powerlaw distributions for the avalanche events, fractality,
intermittency, statistical independence of events (indicated by random wait-
ing time distributions), and a critical threshold (for the onset of local plasma
instabilities and/or magnetic reconnection processes).

2.3.3 Brownian Motion and Classical Diffusion

Brownian motion is a concept from classical physics that describes the ran-
dom motion of atoms or molecules in a gas or liquid (named after the Scottish
botanist Robert Brown), which can be best observed when a neutral gas of
a different color is released in the atmosphere. What we observe then is an
isotropic diffusion process (in the absence of forces or flows) that monotoni-
cally increases with the square-root of time,

〈x(t)〉 ∝ t1/2 . (2.44)

This statistical trend was derived in classical thermodynamics, assuming a
Gaussian distribution of velocities for the gas molecules, so that the kinetic
energy of particles follow a Boltzmann distribution near thermodynamic equi-
librium. The classical diffusion process can also be described by a differential
equation for a distribution function f(x, t) of particles,

∂f(x, t)

∂t
= κ

∂2f(x, t)

∂x2
, (2.45)
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which can describe heat transport, diffusion of gases, or magnetic diffusivity
on solar and stellar surfaces (i.e., manifested as meridional flows during a
solar/stellar activity cycle).

1-D Brownian walk
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Fig. 2.11: Numerical simulation of 1D Brownian random walk (left side) and
size increase of a 2D cellular automaton avalanche (right side) as a function
of time t. Both processes follow the trend x(t) ∝ t1/2 expected for classical
diffusion.

An example of such a diffusive random walk is simulated in Fig. 2.11 (left
panel) for the 1-D variable x(t). We have to be aware that a diffusive random
walk x(t) of a single particle can show large deviations from the expected
trend x(t) ∝ t1/2, which is only an expected behavior for the statistical mean

of many random walks 〈x(t)〉 = (1/N)
∑N
i xi(t). In Fig. 2.11 (right panel) we

show also the time evolution of the mean radius 〈r(t)〉 of a simulated cellular
automaton avalanche (taken from Fig. 2.8, bottom right), which shows the
same trend of a time-dependence of r(t) ∝ t1/2. Apparently, the enveloping
volume of unstable cells in a SOC avalanche, defined by the a mathematical
re-distribution rule applied to a coarse-grained lattice with a rough surface of
stable, meta-stable, and unstable nodes produces a similar time evolution as a
random walk (as visualized in Fig. 2.6), leading us to the fractal-diffusive SOC
model described in Section 2.2.2. This behavior of a diffusive transport pro-
cess is therefore common to both the Brownian motion (or classical diffusion)
and to a cellular automaton SOC process, but it operates in a SOC process
only during a finite time interval, namely as long as avalanche propagation
is enabled by finding unstable nearest neighbors, while a classical diffusion
process goes on forever without stopping. Therefore, we cannot define an
event and occurrence frequency distributions. However, we can measure the
fractal dimension of a random walk spatial pattern, which has a Hausdorff
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dimension of D2 = 2 in 2-D Euclidean space, or the power spectrum, i.e.,
P (ν) ∝ ν−2 (Hergarten 2002), also called Brownian noise.

Table 2.3: Nomenclature of noise spectra.

Power spectrum Power index Spectrum nomenclature

P (ν) ∝ ν0 p = 0 white noise
P (ν) ∝ ν−1 p = 1 pink noise, flicker noise, 1/f noise
P (ν) ∝ ν−2 p = 2 red noise, Brown(ian) noise
P (ν) ∝ ν−3 p = 3 black noise

Generalizations that include power spectra P (ν) ∝ ν−β with arbitrary
powerlaw exponents β have been dubbed fractional Brownian motion (fBM)
(Hergarten 2002), for instance white noise (β = 0, where subsequent steps are
uncorrelated), 1/f-noise, flicker noise, or pink noise (β = 1), Brownian noise
or red noise (β = 2), or black noise (β = 3, where subsequent time steps
have some strong correlations, producing slowly-varying time profiles). The
latter fluctuation spectrum has been found to describe the stock market well
(Cheridito 2001). Examples for these different types of fractional Brownian
motion are given in Fig. 2.12, while the nomenclature of noise spectra is
summarized in Table 2.3.

2.3.4 Hyper-Diffusion and Lévy Flight

The cellular automaton mechanism, one prototype of SOC dynamics, in-
volves a mathematical re-distribution rule amongst the nearest neighbor
cells (Eq. 2.1). This discretized numerical re-distribution rule has been trans-
formed in the continuum limit to an analytical function A(x, t), which can
be expressed as fourth-order hyper-diffusion equation (Liu et al. 2002; Char-
bonneau et al. 2001),

∂A

∂t
= − ∂2

∂x2
κ(A2

xx)
∂2A

∂x2
, (2.46)

where A represents the placeholder of the physical quantity corresponding to
the symbol zi,j,k in Eq. 2.1, x is the S-dimensional space coordinate (xi,j,k
for S = 3), with second-order centered differencing in space, forward differ-
encing in time, and κ = 1/(2S) the hyper-diffusion coefficient for Euclidean
dimension S. However, in contrast to classical physics, the hyper-diffusion
coefficient κ is subject to a threshold value in the SOC model,
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Fig. 2.12: Noise power spectra (left panels) and corresponding time series (right

panels) for power spectral indices p = 0 (top row: white noise spectrum), p = 1

(second row: pink noise spectrum), p = 2 (third row: red noise spectrum), and p = 3

(bottom row: black noise spectrum). The white noise spectrum is multiplied with

ν−p in the other cases. The time series are reconstructed with the inverse Fourier

transform (Aschwanden 2011a).

κ =

{
κa if ∆A2 > A2

crit

0 otherwise
. (2.47)

So, on a basic level, the evolution of a cellular automaton avalanche translates
into a hyper-diffusion process, as demonstrated in Liu et al. (2002). How can
it be described by classical diffusion as we discussed in the foregoing Section
and in the fractal-diffusive SOC model in Section 2.2.2? The major differ-
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ence of the two apparently contradicting descriptions lies in the fractality:
The fourth-order hyper-diffusion system (subjected to a threshold instability
in the diffusion coefficient κ) is applied to a Euclidean space with dimen-
sion S, while the fractal-diffusive SOC model has a second-order (classical)
diffusion coefficient in a fractal volume VS ∝ xDS with a fractal dimension
DS ≈ (1+S)/2. The two diffusion descriptions apparently produce an equiv-
alent statistics of avalanche volumes VS , as demonstrated by the numerical
simulations of powerlaw distribution functions N(VS) by both models (Liu
et al. 2002).

Other modifications of random walk or diffusion processes have been de-
fined in terms of the probability distribution function of step sizes. Classical
diffusion has a normal (Gaussian) distribution of step sizes, which was coined
Rayleigh flight by Benoit Mandelbrot, while Lévy flight was used for a heavy-
tailed probability distribution function (after the French mathematician Paul
Pierre Lévy). Related are also the heavy-tailed Pareto probability distribu-
tion functions (Arnold 1983). Lévy flight processes include occasional large-
step fluctuations on top of classical diffusion, which is found in earthquake
data, financial mathematics, cryptography, signal analysis, astrophysics, bio-
physics, and solid state physics. A number of SOC phenomena have been
analyzed in terms of Lévy flight processes, such as rice piles (Boguna and
Corral 1997), random walks in fractal environments (Hopcraft et al. 1999;
Isliker and Vlahos 2003), solar flare waiting time distributions (Lepreti et
al. 2001), or extreme fluctuations in the solar wind (Moloney and Davidsen
2010, 2011).

2.3.5 Nonextensive Tsallis Entropy

Related to Lévy flight is also the nonextensive Tsallis entropy, which origi-
nates from the standard extensive Boltzmann-Gibbs-Shannon (BGS) statis-
tics, where the entropy S is defined as,

S = −kB
∑

pi ln pi , (2.48)

with kB the Boltzmann constant and pi the probabilities associated with the
microscopic configurations. The standard BGS statistics is called extensive
when the correlations within the system are essentially local (i.e., via nearest-
neighbor interactions), while it is called nonextensive in the case when they
are non-local or have long-range coupling, similar to the local correlations
in classical diffusion and non-local steps in the Lévy flights. As an example,
the dynamic complexity of magnetospheric substorms and solar flares has
been described with nonextensive Tsallis entropy by Balasis et al. (2011).
Although nonlocal interactions are not part of the classical BTW automaton
model, the extensive Tsallis entropy produces statistical distributions with



2 Theoretical Models of SOC Systems 55

similar fractality and intermittency. The nonextensive Tsallis entropy has a
variable parameter q,

Sq = k
1

q − 1

(
1−

W∑
i=1

pqi

)
, (2.49)

where q is a measure of the nonextensivity of the system. A value of q = 1
corresponds to the standard extensive BGS statistic, while a larger value
q > 1 quantifies the non-extensivity or importance of long-range coupling.
A value of q = 1.84 was found to fit data of magnetospheric substorms and
solar flare soft X-rays (Balasis et al. 2011).

2.3.6 Turbulence

Turbulence is probably the most debated contender of SOC processes (e.g.,
Dmitruk and Gomez 1997; Dmitruk et al. 1998; Galtier and Pouquet 1998;
Galtier 1999, 2001; Einaudi and Velli 1999; Buchlin et al. 2005; Boffetta et
al. 1999), because of the many common observational signatures, such as the
(scale-free) powerlaw distributions of spatial and temporal scales, the power
spectra of time profiles, random waiting time distributions, spatial fractality,
and temporal intermittency.

Let us first define turbulence. Turbulence was first defined in fluid dynam-
ics in terms of the Navier-Stokes equation, and then by the theory of Kol-
mogorov (1941). A fluid is laminar at low Reynolds numbers (say at Reynolds
numbers of R <∼ 5000, defined by the dimensionless ratio of inertial to viscous
forces, i.e., R = vL/νvisc with v the mean velocity of an object relative to the
fluid, L the characteristic linear dimension of the fluid, and νvis the kinematic
viscosity), while it becomes turbulent at high Reynolds numbers.

SOC phenomena and turbulence have been studied in astrophysical plas-
mas (such as in the solar corona, in the solar wind, or in stellar coronae),
where the magneto-hydrodynamic (MHD) behavior of the plasma is expressed
by the continuity equation, the momentum equation and induction equation,

ρ
Dv

Dt
= −∇p− ρg + (j×B) + νviscρ

[
∇2v +

1

3
∇(∇ · v)

]
, (2.50)

∂B

∂t
= ∇× (v ×B) + ηm∇2B , (2.51)

with ρ being the plasma density, p the pressure, B the magnetic field, j
the electric current density, νvisc the kinematic viscosity or shear viscosity,
ηm = c2/4πσ the magnetic diffusivity, and σ the electric conductivity. In the
solar corona and in the solar wind, the magnetic Reynolds number is suffi-
ciently high (Rm = vL/ηm ≈ 108 − 1012) to develop turbulence. Turbulence
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in the coronal plasma or in the solar wind is created by initial large-scale dis-
turbances (for instance by the convective random motion in sub-photospheric
layers or by the shock-like expansion of flares and coronal mass ejections).
The large-scale disturbances pump energy into the coronal magnetic field or
heliospheric solar wind at large scales, which cascade in the case of turbulent
flow to smaller scales, where the energy can be more efficiently dissipated by
friction, which is quantified by the kinematic or (Braginskii) shear viscosity
coefficient νvisc. Ultimately, the energy of an MHD turbulent cascade is dis-
sipated in the solar wind at the spatial scale of (gyrating) thermal protons
(≈ 50 km), and at the scale of thermal electrons (≈ 0.5 km). The resulting
power spectrum of the solar wind shows a power spectrum of P (ν) ∝ ν−5/3

at frequencies below the proton scale, P (ν) ∝ ν−7/3 between the proton and
electron scale, and P (ν) ∝ ν−4 beyond the electron scale (Fig. 2.13). For
literature references on MHD turbulence in the solar corona and in the solar
wind see, e.g., Aschwanden (2011a, Section 10.4 therein).

 

Fig. 2.13: A spectrum of the solar wind is shown, based on CLUSTER observations

from large to small scales, with the proton and electron gyroradius scale indicated.

The solar wind spectrum is interpreted in terms of a turbulent MHD cascade, with

the theoretically predicted slopes of f−5/3 and f−7/3 from gyro-kinetic theory. The

plot proves that the energy continues cascading below the proton scale down to the

electron scale, where it is converted to heat (via electron Landau damping resonance)

causing the steepening of the Bz spectrum to f−4 (Howes et al. 2008; Sahraoui et

al. 2009; credit: ESA, CLUSTER).

What is the relationship between turbulence and SOC processes? The
transition from laminar flow to turbulent flow at a critical Reynolds number
Rcrit represents a similar thresholded instability criterion as the critical value
zcrit in SOC systems (although there are two different schools of definin-
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ing “critical”, either in terms of a global control parameter such as used in
Ising models, or in terms of a local instability threshold for transport pro-
cesses as used in SOC sandpiles). Above the critical threshold for turbulent
flows, a turbulent avalanche can occur with subsequent cascading from vor-
tices at large scales and little energy dissipation towards smaller scales with
stronger energy dissipation. Turbulent energy dissipation probably reduces
the mean velocity of the fluid particles that are faster than the background
flow and laminar flow could be restored with lower particle velocities and a
lower Reynolds number. To make this process self-organizing, we need also a
driver mechanism that brings the fluid speed back up to the critical Reynolds
number. In the solar wind, for instance, there is systematic acceleration with
heliocentric distance, which could drive the system from laminar back to tur-
bulent flows, and thus it could be self-organizing. Fluctuations of the solar
wind speed could therefore be considered as SOC avalanches. This could ex-
plain the scale-free powerlaw distributions of spatial, temporal, and energy
scales measured in solar wind fluctuations, its fractality and intermittency.
If the critical threshold is exceeded only in localized regions, rather than in
the entire system in a fully turbulent state, energy dissipation would also
occur in locally unstable regions, similar to SOC avalanches, and thus the
two processes may exhibit the same statistical distributions. Consequently,
turbulence could qualify as a SOC process if it is driven near the laminar-
turbulent critical Reynolds number in a self-organizing way. However, fully
developed turbulence, where the entire system is governed by a high (super-
critical) Reynolds number, would correspond to a fast-driven SOC system
in a catastrophic phase with permanent avalanching, without restoring the
critical state as in a slowly-driven SOC system.

2.3.7 Percolation

Percolation1 controls a transport process that depends on the connected-
ness and propagation probability of nearest-neighbor elements, and has a lot
in common with diffusion, fractal structures, and SOC avalanches. A clas-
sical paradigm of a percolation process is coffee percolation, which contains
a solvent (water), a permeable substance (coffee grounds), and soluble con-
stituents (aromatic chemicals). The bimodal behavior of a percolation process
can be best expressed with the observation whether a liquid that is poured
on top of some porous material, will be able to make its way from hole to
hole and reach the bottom. The answer will very much depend on the inho-
mogeneity characteristics of the porous material. In the subcritical state, a
percolating cluster will exponentially die out, while it will propagate all the
way to the bottom in a supercritical state. The process can be described by

1 See also Chapter 4 in this book by Alexander Milovanov on percolation.
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directed percolation, where the connections between two nearest neighbors
can be open and let the liquid pass with probability p, or they can be closed
and the probability to pass is (1− p). Completion of a pass from the top to
the bottom can be expressed as the combined statistical probability along the
entire pass. The critical value pcrit that decides between the two outcomes is
pcrit = 1/2 for a 2-D bond process. So, this process has an extreme sensitiv-
ity to the system probability p, depending whether it is below or above the
critical value. In SOC systems, the outcome of an avalanche is independent
of the initial conditions of the triggering disturbance. Also, the material in
a percolation process has a constant value of p and does not self-adjust to a
critical value, and thus it does not behave like a SOC system. However, what
a percolation process has in common with a SOC system is the fractality
and intermittency of propagating features. Other applications of percolation
theory are in physics, material science, complex networks, epidemiology, and
geography.

2.3.8 Phase Transitions

In classical thermodynamics, a phase transition describes the transformation
of one phase to another state of matter (solid, liquid, gas, plasma). For in-
stance, transitions between solid and liquid states are called “freezing” and
“melting”, between liquid and gas are “vaporization” and “condensation”,
between gas and plasma are “ionization” and “deionization”. Phase transi-
tions from one state to another can be induced by changing the temperature
and/or pressure.

Since there are critical values of temperature and pressure that demarcate
the transitions, such as the freezing temperature at 00 C or the boiling point
of 1000 C, we may compare these critical values with the critical threshold
zcrit in SOC systems. Could this critical value be restored in a self-organizing
way? To some extent, the daily weather changes can be self-organizing. Let
us assume some intermediate latitude on our planet where the temperature is
around the freezing point at some seasonal period, say Colorado or Switzer-
land around November. The temperature may drop below the freezing point
during night, triggering snowfall, and may raise slightly above freezing point
during sunny days, triggering melting of snow. In this case, the day-night cycle
or the Earth’s rotation causes the temperature to oscillate around the freezing
point, and therefore behaves like a self-organizing system. Additional varia-
tion of cloud cover may introduce fluctuations on even shorter time scales.
However, this bimodal behavior of the temperature is not a robust operation
mode of self-organized criticality, because seasonal changes will bring the av-
erage daily temperature systematically out of the critical range around the
freezing point. So, such temporary fluctuations around a critical point seem
to be consistent with a SOC system only on a temporary basis or in inter-
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mittent (seasonal) time intervals. A similar concept of sweeping through a
critical point as an alternative to SOC to get powerlaws without parameter
tuning was also proposed by Sornette (1994).

In fact, a number of metereological phenomena have been found to exhibit
powerlaw distributions and where associated with SOC behavior, such as
Nile river fluctuations (Hurst 1951), rainfall (Andrade et al. 1998), cloud
formation (Nagel and Raschke 1992), climate fluctuations (Grieger 1992),
aerosols in the atmosphere (Kopnin et al. 2004), or forest fires (Kasischke
and French 1995, Malamud et al. 1998). Phase transitions may be involved
in some of these processes (rainfall, cloud formation, forest fires).

Phase transitions are also involved in some laboratory experiments in ma-
terial or solid-state physics, quantum mechanics, and plasma physics, that
have been associated with SOC behavior, if we extend the term phase tran-
sition also to morphological changes between highly-ordered and/or chaotic-
structured patterns. Such phase transitions with SOC behavior have been
found in transitions between the ferromagnetic and paramagnetic phases, in
specimens of ferromagnetic materials settling into one of a large number of
metastable states that are not necessarily the energetically lowest ones (Che
and Suhl 1990), in avalanche-like topological rearrangements of cellular do-
main patterns in magnetic garnet films (Babcock and Westervelt 1990), in
the noise in the magnetic output of a ferromagnet when the magnetizing force
applied to it is charged (Cote and Meisel 1991), called the Barkhausen effect,
in superconducting vortex avalanches in the Bean state (Field et al. 1995),
in tokamak plasma confinement near marginal stability driven by turbulence
with a subcritical resistive pressure gradient (Carreras et al. 1996), or in
the electrostatic floating potential fluctuations of a DC glow charge plasma
(Nurujjaman and Sekar-Iyenbgar 2007).

In summary, many SOC phenomena are observed during phase transi-
tions, producing avalanche-like rearrangements of geometric patterns, but a
phase-transition is not necessarily self-organizing in the sense that the critical
control parameter stays automatically tuned to the critical point. A sandpile
maintains its critical slope automatically in a slowly-driven operation mode.
If a thermostat would be available, temperature-controlled phase transitions
could be in a self-organized operation mode, which indeed can be arranged
in many situations. So we conclude that phase transition with some kind of
”thermostat” tuned to the critical point produce a similar behavior as SOC
systems, but this conclusion can be disputed if the term “critical” is used in
a more restricive sense as originally defined in the context of Ising models
(Pruessner and Peters 2006, 2008; Alava et al. 2008).
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2.3.9 Network Systems

The prototype of a SOC cellular automaton model is a regular lattice grid,
where re-distributions occur with nearest neighbors cells. In contrast, net-
works are irregular nets of nodes that are inter-connected in manifold pat-
terns, containing not necessarily only nearest-neighbor connections, but also
arbitrary non-local, long-range connections, (for an introduction into net-
works see, e.g., Newman 2010). Popular examples of networks are subway
maps, city maps, road maps, airplane route maps, electric grid maps, social
networks, company organizational charts, financial networks, etc, all being
created by human beings in some way or another. One big difference to SOC
systems is therefore immediately clear, the addition of long-range connec-
tions. Furthermore, while the statistical probabilities for nearest-neighbor
interactions are identical for each lattice point in a SOC cellular automaton
model, networks can have extremely different connection probabilities at each
node point. Nodes that have most of the connections are also called hubs. For
instance, the American airline United has 378 destinations, but serves most
of them from 10 hubs (Denver, Washington DC, San Francisco, Los Ange-
les, Chicago, Houston, Cleveland, Newark, Narita, Guam) (Fig. 2.14). Since
the connection probability varies greatly from node to node, we do expect
different clustering patterns in networks and in SOC lattice systems.

Fig. 2.14: Network of American airline UNITED with 8 US-based hubs and connec-

tions to 378 destinations in 59 countries (Credit: United).
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Nevertheless, SOC behavior has been studied in network systems like city
growth and urban growth (Zipf 1949; Zanette 2007), cotton prizes (Mandel-
brot 1963), financial stock market (Scheinkman and Woodford 1994; Sornette
et al. 1996; Feigenbaum 2003; Bartolozzi et al. 2005), traffic jams (Bak 1996;
Nagel and Paczuski 1995), war casualties (Richardson 1941, Levy 1983), so-
cial networks (Newman et al. 2002), internet traffic (Willinger et al. 2002),
and language (Zipf 1949). SOC phenomena with powerlaw-like frequency dis-
tributions have been observed for phenomena that occur in these networks,
measured by some quantity that expresses fluctuations above some threshold
or noise level. Spatial patterns of network phenomena have been found to
be fractal, and time profiles of these fluctuations were found to be intermit-
tent, all hallmarks of SOC systems. So, are those network phenomena self-
organizing? What is the critical threshold and what drives the system back
to the critical threshold? The driving force of cotton prices, lottery wins, and
stockmarket fluctuations is simply the human desire to gain money and to
make profit. The driving mechanism for traffic jams is certainly the daily
need for commuting and transportation in a finite road network. The unpre-
dictable number of casualties in crimes and wars is a bit more controversial,
but nobody would disagree that the human desire for power and control
plays a role. The driving mechanism for social networks is most likely linked
to curiosity and the desire for information. Since all these human traits are
quite genuine and persistent, a self-organizing behavior is warranted, where
the system is continuously driven towards a critical state, with occasional
larger fluctuations (Wall Street crash, Second World War, or other “social
catastrophes”), on top of the daily fluctuations on smaller scales. In summary,
most network-related phenomena can exhibit SOC behavior, apparently with
similar powerlaw-like statistics in grids with non-uniform connectivities and
non-local long-range connections (in network systems) as in regular lattice
grids with nearest-neighbor interactions (in classical SOC systems).

2.3.10 Chaotic Systems

Chaotic systems are nonlinear dissipative dynamical processes that are in
principle deterministic, but exhibit “chaotic” behavior in the sense of irreg-
ular and fractal geometry, and intermittent time evolution. Some chaotic
systems can be described as simple as with two (such as the Lotka-Volterra
equation) or three coupled differential equations (e.g., the Lorenz equations).
Classical examples include forced pendulum, fluids near the onset of tur-
bulence, lasers, nonlinear optical devices, Josephson junctions, chemical re-
actions, the three-body system in celestial mechanics, ecological population
dynamics, or the heartbeat of biological organisms (for an overview see, e.g.,
Schuster 1988, and references therein). If two dynamical variables (say x(t)
and y(t)) are plotted in phase space (y versus x), chaotic systems often ex-
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hibit a cyclic behavior, with a limit cycle that is also called strange attractor.
If a dynamical system is driven from small disturbances around an equi-
librium solution, where it exhibits a quasi-linear behavior, bifurcations of
system variables x(t) can occur at critical values with transitions to chaotic
and intermittent behavior (also called route to chaos, e.g., Shraiman et al.
1981). Such bifurcations ressemble the phase transitions we discussed ear-
lier (Section 2.3.8), which we generalized to transitions from highly-ordered
to chaotic-structured patterns. The complexity of nonlinear chaotic systems
is often characterized with the dimension of strange attractors (e.g., Grass-
berger 1985; Guckenheimer 1985), which approximately corresponds to the
number of coupled differential equations that is needed to describe the system
dynamics.

If we compare the dynamics of chaotic systems with SOC processes, a
major difference is the deterministic evolution of chaotic systems, while SOC
avalanches are triggered statistically independently of each other, even when
they occur subsequently within a small (waiting) time interval (but see Welin-
der et al. 2007 for a counter example). A chaotic system evolves with a
system-wide dynamical behavior that is influenced by the entire system, as
the coupled differential equations express it, which includes nearest neigh-
bors as well as non-local, long-range coupling, while an avalanche in a SOC
system evolves as a result of nearest-neighbor interactions. Do chaotic sys-
tems have critical thresholds that are self-organizing? Chaotic systems do
have critical points, where onset of chaos starts, like at pitchfork bifurcation
point that leads to frequency doubling, but there is usually not a driver that
keeps the system at this critical point. For instance, deterministic chaos sets
in for fluids at the transition from the laminar to the turbulent regime, but
generally there exists no driving mechanism that keeps a chaotic system at
the critical Reynolds number, so that the system is self-organizing (Section
2.3.6). However, in other respects, chaotic systems exhibit similar complexity
as SOC systems, regarding fractality and intermittency, and even powerlaw
distributions may result in the statistics of chaotic fluctuations. For weakly
nonlinear dissipative systems near the limit cycle, however, small fluctuations
around a specific spatial scale or temporal scale may produce Gaussian-like
distributions, e.g., time scales may be centered around the inverse frequency
of the limit cycle.

Let us mention some examples of chaotic behavior in astrophysics. Time
series analysis of the X-ray variability of the neutron star Her X-1 revealed
a low-dimensional attractor (Voges et al. 1987; Cannizzo et al. 1990), as well
as for the Vela pulsar (Harding et al. 1990). Transient chaos was detected
for the low-mass X-ray binary star Scorpius X-1 (Scargle et al. 1993; Young
and Scargle 1996), as well as for the R scuti star (Buchler et al. 1996). The
N-body system in celestial mechanics can lead to chaotic behavior, such as
for the Saturnian moon Hyperion (Boyd et al. 1994). Chaotic behavior with
low-dimensional strange attractors and transitions to period doubling was
also found in solar radio bursts with quasi-periodic time series (Kurths and
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Fig. 2.15: Matrix of SOC or SOC-like processes (rows) and observational proper-

ties (columns), with an evaluation whether a specific process can exhibit a particular

observational characteristics (Y=Yes, N=No, and the symbol − is filled in for obser-

vational properties that do not apply). See Chapter 2.3 for details.

Herzel 1986, Kurths and Karlicky 1989). Chaotic dynamics was found in the
solar wind (Polygiannakis and Moussas 1994), in hydrodynamic convection
simulations of the solar dynamo (Kurths and Brandenburg 1991), and in so-
lar cycle observations (Kremliovsky 1994; Charbonneau 2001; Spiegel 2009).
Again, all these examples reflect a system-wide nonlinear behavior, where
subsequent fluctuations are highly correlated in space and time, unlike the
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statistically independent trigger of SOC avalanches. However, chaotic sys-
tems may exhibit similar statistics of fractal spatial and intermittent time
scales at critical points and transitions to chaotic dynamics, without having
an intrinsic mechanism that keeps the chaotic system near this critical point
in a self-organizing way.

2.3.11 Synopsis

At the end of this chapter we summarize the characteristics of SOC, SOC-
related, and non-SOC processes in a matrix as shown in Fig. 2.15. The SOC
or SOC-like processes are listed in the rows of Fig. 2.15, while the observa-
tional characteristics are listed in the columns. The matrix tabulates whether
a specific SOC-like process can exhibit the main properties of SOC processes,
such as the powerlaw distributions of various parameters, the fractal geom-
etry, the temporal intermittency, the statistical independence of events, the
restoration of a critical threshold, nearest-neighbor interactions, and non-
local or long-range coupling. The properties listed in Fig. 2.15 reflect general
trends rather than strictly-valid matches. Many processes can exhibit pow-
erlaw distributions of parameters, but there exist always exceptions or devi-
ations from strict powerlaw distributions (such as due to finite-size effects,
sensitivity-limited sampling, exponential fall-off in cumulative distributions,
nonstationary drivers, inhomogeneous media, etc.) The probably most funda-
mental characteristics of SOC processes is a suitable mechanism that restores
the critical threshold for a instability, which often is not automatically oper-
ating (such as in turbulence, phase transitions, or chaotic systems), but can
be artificially or naturally added to a process (such as a “thermostat” for
phase transitions). A non-discriminant criterion between SOC and non-SOC
processes is the presence of short-range and long-range coupling, which ap-
pears to exist for classical SOC cellular automaton mechanisms as well as
for other processes (e.g., turbulence, phase transitions, network systems, and
chaotic systems). Finally, fractality, intermittency, and powerlaw behavior is
present in most of the processes also, so it is not a good discrimination crite-
rion between SOC and non-SOC processes, although powerlaws have always
been considered as the hallmark of SOC processes.
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in a self-organized critical granular system, Phys.Rev.Lett. 78(26),
4950-4953.

Boyd, P.T., Mindlin, G.B., Gilmore, R., and Solari, H.G. 1994, Topological
analysis of chaotic orbits: revisiting Hyperion, Astrophys. J. 431, 425-
431.

Buchler, J.R., Kollath, Z., Serre, T., and Mattei, J. 1996, Nonlinear analysis
of the light curve of the variable star R Scuti, Astrophys. J. 462, 489-
501.

Buchlin, E., Galtier, S., and Velli, M. 2005, Influence of the definition of
dissipative events on their statistics, Astron. Astrophys. 436, 355-362.

Burridge R. and Knopoff L. 1967, Model and theoretical seismicity, Seis. Soc.
Am. Bull. 57, 341-347.

Camazine,S., Deneubourg,J.L., Frank,N.R., Sneyd,J., Theraulaz,G., and Bona-
beau,E. 2001, Self-Organization in Biological Systems, Princeton Uni-
versity Press.

Cannizzo, J.K., Goodings, D.A., and Mattei, J.A. 1990, A search for chaotic
behavior in the light curves of three long-term variables, Astrophys. J.
357, 235-242.

Carreras, B.A., Newman, D., Lynch, V.E., and Diamond, P.H., 1996, A model
realization of self-organized criticality for plasma confinement, Phys.
Plasmas 3(8), 2903-2911.



2 Theoretical Models of SOC Systems 67

Chang, T.S. 1992, Low-dimensional behavior and symmetry breaking of
stochastic systems near criticality - Can these effects be observed in
space and in the laboratory, IEEE Trans. Plasma Sci. 20(6), 691-694.

Chang, T.S. 1998a, Sporadic, Localized reconnections and mnultiscale inter-
mittent turbulence in the magnetotail, in Geospace Mass and Energy
Flow (eds. Horwitz, J.L., Gallagher, D.L., and Peterson, W.K.), AGU
Geophysical Monograph 104, p.193.

Chang, T.S. 1998b, Multiscale intermittent turbulence in the magnetotail,
in Proc. 4th Intern. Conf. on Substorms, (eds. Kamide, Y. et al.),
Kluwer Academic Publishers, Dordrecht, and Terra Scientific Com-
pany, Tokyo, p.431.

Chang, T.S. 1999a, Self-organized criticality, multi-fractal spectra, and inter-
mittent merging of coherent structures in the magnetotail, Astrophys.
Space Sci. 264, 303-316.

Chang, T.S. 1999b, Self-organized criticality, multi-fractal spectra, sporadic
localized reconnections and intermittent turbulence in the magnetotail,
Phys. Plasmas 6(11), 4137-4145.

Charbonneau, P., McIntosh, S.W., Liu, H.L., and Bogdan, T.J. 2001, Avalanche
models for solar flares, Solar Phys. 203, 321-353.

Che, X. and Suhl, H., 1990, Magnetic domain pattern as self-organizing crit-
ical systems, Phys. Rev. Lett. 64(14), 1670-1673.

Cheridito, P. 2001, Regularizing fradtional Brownian motion with a view
towards stock price modelling, PhD dissertation, ETH Zürich.
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Chapter 3

SOC and Fractal Geometry

R. T. James McAteer

Abstract

Clouds are not spheres, mountains are not cones, coastlines are not
circles, and bark is not smooth, nor does lightning travel in a straight
line -
Benoit Mandelbrot (1982).

When Mandelbrot, the father of modern fractal geometry, made this seem-
ingly obvious statement he was trying to show that we should move out of our
comfortable Euclidean space and adopt a fractal approach to geometry. The
concepts and mathematical tools of fractal geometry provides insight into
natural physical systems that Euclidean tools cannot do. The benefit from
applying fractal geometry to studies of Self-Organized Criticality (SOC) are
even greater. SOC and fractal geometry share concepts of dynamic n-body
interactions, apparent non-predictability, self-similarity, and an approach to
global statistics in space and time that make these two areas into naturally
paired research techniques. Further, the iterative generation techniques used
in both SOC models and in fractals mean they share common features and
common problems. This chapter explores the strong historical connections be-
tween fractal geometry and SOC from both a mathematical and conceptual
understanding, explores modern day interactions between these two topics,
and discusses how this is likely to evolve into an even stronger link in the
near future.
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3.1 From chaos to order (and back)

Probably the most fundamental principle of the entire scientific process is
that science and scientific laws are real, are within human understanding,
are discoverable, and are universal. Self-Organized Criticality (SOC) is an
excellent demonstration of this principal: it is a theoretical construct rooted in
reality, discovered by simulations, and universally applicable across a diverse
array of topics. SOC is introduced in Chapter 1 of this book; for the purposes
of this chapter I would like to summarize it as a forced, non-linear, system
that builds up energy via a series of interactions, eventually reaching a critical
state at which energy dissipation naturally occurs. These systems tend to
exhibit complex patterns in space and time. It is these complex patterns that
we use to draw a connection to fractal geometry. It is important to note
right from the beginning that although links can be drawn between SOC
and fractal geometry, these links are not necessarily causal - i.e., any self-
organization will lead to a fractal geometry system and hence SOC is only
one such route to fractality.

An interesting historical link between SOC and fractal geometry, and their
roles in the scientific process, can be drawn by looking back across human
history. Every early form of society and religion have two aspects in com-
mon. From the Babylonians, to the Aztecs, to the Indigenous Australians
- no matter which early society we look at, we see that they had a similar
understanding of the sky (an early geometric cosmology) and of music (an
early system of story telling). In his Pulitzer Prize winning book, ‘Gödel, Es-
cher, Bach’, Hofstadter was one of the first to draw this link between differing
forms of human perception and consciousness (Hofstadter, 1970). There are
a number of common aspects between these two subjects of music and cos-
mology, and their link to human perception, which shed some light on the
connections between SOC and fractal geometry. First, these early forms of
cosmology tended to have an ordered universe appearing out of a disordered
void. Early Proto-Indo-European religions often described the formation of
the cosmos as the result of a clash between representatives of chaos and or-
der, which of course resulted in a victory for order. It is no surprise that
this concept of order appearing ex-nihilo has been retained in many modern
religions. I discuss how this order-from-chaos applies to fractals and SOC
in Section 3.1. Second, both these ideas of early cosmology and music are
often considered as attempts by the human brain to force a classification of
patterns out of the complexity and noise of everyday life. This classification
was well defined by the early Greeks in the form of geometry - a concept
that continued to dominate the minds of natural philosophers until the intro-
duction of algebra and calculus in the seventeenth century. I connect fractal
geometry to SOC by revisiting the study of geometry in Section 3.2. Third,
everyone agrees when they hear beauty in music and see beauty in the sky,
but in both cases beauty can often be difficult to quantify. This concept is
famously summarized by as,
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I shall not today attempt further to define the kinds of material I under-
stand to be embraced within that shorthand description; and perhaps
I could never succeed in intelligibly doing so. But I know it when I see
it.
Justice Potter Stewart, Jacobellis v. Ohio, 1964.

I set the scene of knowing it when we see it by describing the many and
varied attempts at quantifying fractal geometry in relation to SOC in Sec-
tion 3.3. Fourth, modern cosmology and music show that things tend to be
more complicated than at first glance. I discuss the complication of mul-
tifractals in Section 3.4, where I attempt to link multiple formulations of
multifractality to those of turbulence. Finally, in Section 3.5, I revisit the
progression of these studies of SOC and fractal geometry with a look forward
at what these two connected branches of science may produce in the future.

3.1.1 The coffee table fractal

In order to probe the connections between fractals and SOC it is useful to
first of all study the historical setting of both phrases. In this historical con-
text, fractals and fractal geometry are one of the few mathematical subjects
to make the jump from pure abstract equations to the coffee table. In his
popular 1982 book ‘The Fractal Geometry of Nature’ Mandelbrot showed
that fractal geometry is universal and natural, occurring everywhere as the
output of a system with some forced input and some simple rules (Mandel-
brot, 1982). This same rules apply to SOC. The phrase fractal was derived
slightly earlier by Mandelbrot in his ‘Les objets fractals, forme, hasard et
dimension’ (Mandelbrot, 1975) from the latin fractus, meaning fractured or
broken. Mandelbrot captured the public’s imagination by showing how a sim-
ple iterative process can arrived at a complex and beautiful geometry. Just
over a decade later in 1987 James Gleick authored another famous best-
seller which made the jump from pure mathematics to popular science. In
‘Chaos’ (Gleick, 1987), Gleick showed the universal nature of chaos theory
by demonstrating how a few simple iterative equations rapidly lead seem-
ingly predictable systems into randomness - SOC exhibits a similar behavior
of crashes when a critical threshold is met. This was further popularized
by the movie ‘Jurassic Park’, one of the best examples of discussions of the
ramifications of chaos theory in all of Hollywood.

The tyrannosaur doesn’t obey set patterns or park schedules. The
essence of Chaos.
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This chaos can be interspersed by periods of order, only to revert back
to chaos a few iterations later. It is important to recognize that both these
modern subjects of fractals and chaos are connected to that of SOC under
the larger and much older umbrella of dynamics - in each case we are simply
posing the same question as Sir Isaac Newton in ‘Principia Mathematica’
(Newton, 1687) - How does a system change with time? This gives three
potential connections between SOC and fractal geometry.

• Fractal geometry and SOC are both natural and universal.
• Fractal geometry and SOC both have simple inputs, but complex output.
• Fractal geometry and SOC both deal with the study of dynamics.

3.1.2 The n-body problem

Newton made two definitions in Principia that remained unchallenged until
Einstein’s relativity, and still remain fundamental to studies of SOC and
fractal geometry. He stated

Absolute, true, and mathematical time, of itself, and from its own nature
flows equably without regard to anything external. Absolute space, in
its own nature, without regard to anything external, remains always
similar and immovable.
Isaac Newton, Principia Mathematica, 1687.

In doing so, he separated space and time. To Newton, space is a stage on
which the universe acts, and time shows us how this acting occurs. Models of
both SOC and fractals retain this by building a grid (of space) and studying
how ’particles’ behave in time. Newton famously went on to make numerous
substantial contributions in science, including that of calculus. He showed
that given sufficiently accurate measurements, he could accurately predict the
future evolution of any system. Newton was able to the derive the equations of
Kepler (the square of a planet’s orbital period varies as the cube of its distance
from the Sun) and Galileo (the acceleration of an object is independent of
its mass) for any two body system. So Newton’s laws could be, and still are,
used to predict the Moon’s orbit around the Earth, the Earth’s orbit around
the Sun, or a rocket’s trajectory through the atmosphere. However, he also
showed the limits of such studies. Try to analyze any three-body system (e.g.,
the Sun-Earth-Moon), or move to even greater numbers of bodies (e.g., the
Sun-Earth-Moon-Rocket), and the equations are unsolvable. We cannot easily
predict the position and velocity of more than two interacting bodies. The
equations of such an n-body system are non-linear and unstable. Poincaré
partially solved this quandary by restating the question in a different form
(Poincaré, 1890). He showed that although we may not be able to predict the
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position and velocity of each and every body, we can predict the statistical
behaviour of such systems. Poincaré also took an early glance down the dark
tunnel of chaos theory (although he did not call it ’chaos’ as we know it today)
by showing that the purely deterministic long term predictability of such an
n-body system is impossible. This quick jaunt from Newton to Poincaré gives
us three further features of fractal geometry that we can connect to SOC and
which we study later in the chapter.

• Fractal geometry and SOC both rely on Newton’s definitions of space and
time.
• Fractal geometry and SOC both study the global statistics of the n-body

problem.
• Fractal geometry and SOC inherently acknowledge that the long-term pre-

dictability of n-body systems is impossible.

3.1.3 The butterfly effect

Despite the warnings of Poincaré, many scientists have had long and dis-
tinguished careers through the extended study of the n-body problem and
non-linear dynamics. These pioneers include vander Pol and Andronov in
the theoretical understanding of non-linear oscillators, Birkhoff in the 3-body
problem, and Kolmogorov in the the study of turbulence. As is often the case,
we can trace the next big breakthrough to the invention of a new piece of tech-
nology. In this case the creation of the computer in the 1950s, and the adop-
tion of this by many industries, rapidly led to a new level of understanding of
non-linear dynamics. In 1961 Lorenz was modeling the Earth’s atmosphere
to try to predict the weather, and found that he could not even successfully
predict the known behavior in his models. He painstakingly tracked this back
to round-off errors in the fourth decimal place of his numerical calculations.
These small, seemingly insignificant, errors were creating dramatically differ-
ent weather patterns in the future behaviour of his models. This is famously
coined the ‘butterfly effect’ where a butterfly flapping its wings in London
can eventually cause a storm in Tokyo, and the phrase symbolized the fu-
tility of such efforts in weather prediction. However, he also showed that if
he plotted the behavior of such a system in an appropriate phase space, the
resulting plot would be fractal (the famous strange attractor).

Mandelbrot went on to show that fractal geometry exists everywhere in
space and time, from the coast of Norway to the patterns of shells to the
shapes of galaxies, and from the behavior of cotton prices to population
growth to stellar formation rates. In fact, far from being merely curious and
fun (if somewhat unintuitive), fractal geometry is actually the more natu-
ral way of describing Nature (Mandelbrot, 1982). Mandelbrot showed that
fractal patterns appeared at every possible scale, no matter how much he
zoomed into, or zoomed out from, the data. He also described two types of
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behavior with clear links to SOC: the Joseph effect, where a seemingly per-
sistent regular series of values is suddenly interrupted; and the Noah effect
where massive discontinuities occur on top of a series of noisy data. More
than this, Mandelbrot popularized this field, and undoubtably his influence
had a Joseph effect on this subject field itself. From a pedagogical perspec-
tive, the sort of burst in research activity driven by Mandelbrot’s work is a
perfect example of an episodic period in revolutionary science as popularized
in Kuhn’s ‘The Structure of Scientific Revolutions’ (Kuhn, 1967), which it-
self is now considered to have had a Joseph effect on the progress of science
research. The work of Lorenz and Mandelbrot gives us three further points
of emphasis to connect fractal geometry and SOC.

• No matter how seemingly unpredictable any non-linear dynamic system
(including SOC) may appear, it can be described by fractal geometry when
plotted in the appropriate phase space.
• A snapshot of the spatial distribution within any SOC system may be

described by fractal geometry.
• The global dynamic evolution of an SOC system may be described by

fractal geometry.

3.1.4 The critical points

The rapid growth and interdisciplinary nature of chaos and fractal geome-
try in the 1970s and 1980s included many breakthroughs in physics (e.g.,
Hohenberg, 1971; Swinney & Gollub, 1978; Wolf et al., 1985), biology (e.g.,
Winfree, 1980), , and probability (e.g., Shaw, 1984). From the perspective of
SOC studies, the most important work resulting from this period of rapid
discovery was the Bak et al. (1987) paper. They proposed SOC as a mech-
anism for creating complexity in any natural system. This sandpile model,
as described in this book, contains the concepts of self-similarity and scale
invariance (described in Section 3.2.2) prevalent throughout studies of frac-
tal geometry. Of course, when studying any natural system by experiments,
such scale-invariance must have a lower and upper limit, whereas the previ-
ous work in pure mathematics is not restricted to such real world nuances.
Further, when combined with Mandelbrot’s work, it was clear that the on-
set of the critical point in these sandpile models resulted in power laws and
scale-invariance, which could therefore be well described by fractal geometry
in both space and time. However, it is important to realize that this is not the
only route to fractal geometry (indeed any self organization naturally leads
to power laws and fractal geometry).

The cellular automaton models, as described in this book, showed that the
emergence of these critical points is a natural consequence of the system and
will always arise no matter what the initial input. Note this non-sensitivity
to initial conditions does not disagree with the butterfly effect - the sandpile
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models merely showed that critical points will eventually arise, but it does
not predict when they will arise. This period of recent development in the
fields of SOC and fractal geometry leads us to the final important connections
between these two subjects.

• Self similarity and scale invariance are both key aspects of SOC and fractal
geometry, and these are statistically linked by power laws.
• Nature provides an upper and lower limit to these power laws that may be

absent when presented as pure mathematics.
• Iteratively generated models (including cellular automaton models), are in-

trinsically fractal. Hence we can connect SOC theories and fractal theories
via the study of these models and their application to natural phenomena.

3.2 Fractal Properties

The concept of fractals was conceived in mathematics but has now been so
well assimilated into everyday language that its definition is now more com-
monly non-mathematical. Mathematically, we define a fractal as a set with
a fractal dimension which exceeds it topographical dimension, i.e., a set of
0-dimensional points that as a whole is closer to a line, or a 1 dimensional
line that is so complex that it is closer to a plane. In this description the to-
pographical dimension is the dimension of the underlying basic shapes that
make up the fractal, and the fractal dimension describes the overall com-
plexity, or space-filling nature, of the system. In mathematical terminology,
fractals are described by equations which are nowhere differentiable. This
definition leads us down the route to non-integer exponents, providing a link
to SOC described in Section 3.2.1. In this section we use the similarity di-
mension in the calculation of the fractal dimension and leave other definitions
to Section 3.3.

Fractals are more commonly, and just as accurately, described and com-
prehended by any lay person without requiring knowledge of abstract math-
ematics. It is generally defined from a geometrical perspective as a shape
each part of which exhibits the same statistical characteristics as the whole,
a feature known as self-similarity (Section 3.2.2). In more simple language, a
fractal is a shape made up of smaller copies of itself. This creates the scale-
free nature of fractals, well described by a power law, and hence the many
connections to SOC. It is however important to realize that although all frac-
tals are self similar, not all fractals are the result of an SOC process. This
concept of self-similarity leads to the second layman definition of a fractal
as a shape which has been generated by an iterative process (Section 3.2.3).
By starting with a simple shape, and applying a simple rule, it is trivial to
form a fractal. This process leads to the well known coffee-table fractals such
as the Sierpinksi carpet and the Koch snowflake. Many cellular automaton
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models are generated by the same simple iterative process, hence we expect
another close connection between SOC and fractality.

3.2.1 Dimensionality

Classically, we define the dimensionality of an object as the number of inde-
pendent directions, or the degrees of freedom, at the smallest scale. Hence, we
see a point a 0-Dimensional, a line as 1-Dimensional, a drawing or sketch as
2-Dimensional, and a ball or cube as 3-Dimensional. This basis for Euclidean
geometry, as defined over 2000 years ago in Euclid’s ‘The Elements’, described
everything that existed and was considered the only geometry possible until
the discoveries of non-Euclidean space as epitomized by Einstein in the early
twentieth century. One way of calculating the dimensionality of any object
is to cover the details of the object with smaller and smaller similar objects
and count how many of the smaller objects are required to entirely cover the
original object at each size. One commonly used method which explains this
well is as follows. Take a line of unit length and double it. Clearly it now
takes two of the original lines to cover the new line. Now lets take a square
of unit size and double it. This makes the square twice as wide and twice as
high, so we require four of the original squares to cover it. Try a cube of unit
size and double it so it is twice as wide, twice as high, and twice the depth. It
will now take eight of the original cubes to cover it. The power of this simple
experiment is clear by looking at the results in a table format

Table 3.1: The connection between dimensionally and scaling exponents be-
comes clear when presented in this Table. N is the number of unit-sized
objects required to cover the double-sized object, and d is the dimensionality

Shape N = 2d Dimension

Line 2 = 21 1
Square 4 = 22 2
Cube 8 = 23 3

It is immediately apparent that the Euclidean dimension of an object is
equal to the exponent of the scaling factor. This works for any scaling factor
including non-integers - try changing the scaling factor to e.g., 3.5, or 1/5 and
it will still work. If we move from simple Euclidean shapes to more complex
shapes, the analogy seems to fall apart. The most famous example of this
is an image of the coastline of Norway. If we use 2-Dimensional boxes to
cover an image of this coastline, count them, scale the box, cover the coast
with the rescaled boxes, count them, and proceed to rescale the box over and
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over we arise at an equation with an exponent of d = 1.52. Seemingly the
coast is neither 1- or 2- Dimensional. Instead its dimensionality is greater
than that of a line, but less than that of a filled-in shape. Interestingly, other
countries with smoother coastlines also have non-integer values, albeit much
smaller (Coast of Britain d = 1.25, Coast of Australia d = 1.13). Clearly the
fractal dimension of an object is in some way linked to its smoothness (or, in
reverse, its spikiness). Fractals give us insight into the complexity of objects
that Euclidean dimensions cannot.

We can conceptually connect this to the mathematical definition of differ-
entiation. For example, a curve is differentiable is we can take a gradient at
any point along it. However, for a spiky curve there may be locations where
the gradient cannot be defined. Now imagine a curve that is spiky everywhere
(e.g., the Weierstrass function), one that no matter how many times you zoom
in to try to take a derivative, it turns out to be impossible. This curve is, by
definition, fractal. These two concepts of dimensionality and differentiability
are fundamental to the subject of fractals (Section 3.3.3).

3.2.2 Self-similarity and Scale-Invariance

In nature, we are often confronted with objects with levels of complexity and
detail at all scales. Fractal geometry can be used to examine the complexity
of these objects across scales. Mathematically, an object is self-similar if it
is exactly similar to some part of itself. In nature, few objects are exactly
self-similar, but there exists a large family of objects which are statistically
self-similar. In the discussion of the the coastlines of countries above we do
not expect that the coastline of any part of Norway will look exactly like
a miniature form of Norway. Instead it means that, upon zooming into a
map of Norway, this zoomed in region will have a number of sharp curves
and bends. The statistical distribution of these (i.e., the relative number of
sharp curves and smoother bends) will be exactly the same as the country as
whole. This form of statistical self-similarity is a typical property of fractals.
In comparison, SOC often contains a very specific form of self similarity
known as scale invariance, where at any magnification the smaller part of an
SOC system is similar to the whole. Hence while a SOC system is always
fractal, a fractal system is not always SOC.

3.2.3 Generating Fractals

There are a number of different ways of generating fractals, but by far the
most common is that of iterative generation. Here we describe the Cantor set,
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the von Koch curve, and how we can solve the inverse problem of describing
the rules of generation, given one snapshot in time.

3.2.3.1 The Cantor set and the von Koch curve

The Cantor set is easily formed and contains many interesting facets in a com-
parison to SOC. It is constructed by starting with a number line containing
every possible number between zero and one. Delete the middle third of this
number line, but leave behind the end points. This produces two segments,
of length 1/3, at each end. Now delete the middle third of each remaining
segment, and repeat this operation ad infinitum. The remaining set of num-
bers at the limit of infinite iteration is the Cantor set. It will be an infinite
number of infinitesimally small pieces, with lots of gaps. There are a number
of important features of this set from which we can draw parallels to SOC. No
matter how many times you zoom into this Cantor set, you will continue to
see some structure. Second, it is scale invariant - by zooming in one level and
moving to the outside third of the set you will see exactly the same structure
as the parent. Third, its fractal dimension is an non-integer, and much higher
than 0 (it is actually 0.63). SOC systems are often generated using a similar
form of iterative generation, and often exhibit the same precise features of
infinitely small structure, scale-invariance, and non-integer exponents.

The von Koch curve is generated by starting with some straight line seg-
ment. Remove the middle third and replace it with two sides of an equilateral
triangle of the same length as the deleted segment. The resulting curve will
have four segments, each length 1/3, for a total length of 4/3. Now repeat this
same operation on each segment. The resulting curve from this step will have
a length of (4/3)2. Repeat this ad infinitum, and the curve obtained at the
infinite iteration is the von Koch curve. The curve will have infinite length
(4/3inf) and the arc length between any two segments on the curve is infinite.
Its fractal dimension is 1.26. As in the Cantor set, this contains structure at
all size scales, is scale-invariant, and has a non-integer fractal dimension. The
von Koch curve also shows the problems with trying to use traditional tools
in the study of such SOC systems - if we tried to measure the length (or area)
of the von Koch curve, we would find it is, rather disturbingly, infinity.

3.2.3.2 Iterative Generation

Iterative generation is a powerful tool for generating a large number of frac-
tals, but is readily explained from a few simple geometric descriptions. The
iterative generation of any fractal, including the Cantor set and von Koch
curve, is a combination of scaling, reflection, rotation, and translation. Take
a simple 2-Dimensional seed shape, where any location of point can be de-
scribed by its position along an x-axis and a y-axis. Scaling is then the mul-
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tiplicative factor in either or both of these directions. Denote these scalings
as x’ and y’, where x′ > 1 corresponds to an increase in scale and x′ < 1 cor-
responds to a reduction in scale. If the scaling is the same in both directions
(x′ = y′) , then the resulting fractal will be scale-invariant, otherwise it will
be stretched or squashed in each direction. Reflection is described as a sign on
the scaling factor, e.g., negative x’ means a reflection in the x-axis. Reflection
introduces two new components in our transformation matrix. Now, let θx
be the rotation angle of any horizontal line, and θy be the rotation angle of
any vertical line. Note that θx = θy provides the conditions to retain scale in-
variance, otherwise the resulting shape will be stretched or squashed. Finally
let ∆x be a translation along the x-axis and ∆y be a translation along the
y-axis, where by convention up and to the right is positive. These parameters
forms a matrix of scaling, reflection, rotation, and translation that prescribe
all the freedom necessary to create any fractal shape. Start with the seed
shape, apply the transformations in order to generate the second shape, then
apply the transformation again to each new segment and repeat. The key link
to SOC systems is that this matrix of transformation is usually all that is
required to build any self-organized system. For instance, in a simple cellular
automaton model, one may simply start off with equi-spaced particles and
let them evolve according to some set of rules regarding their position and
velocity. Although I described this here using a 2-Dimensional example, this
can be extended to any number of dimensions in space and time.

3.2.3.3 The inverse problem

The inverse problem seeks to carry out the reverse procedure to the iterative
generation. That is, given the data (position, velocity) of the particles in the
system under study, can we calculate the transformation matrix and hence
deduce the rules governing the system. As such, the inverse problem is more
familiar to most scientists dealing with observational data. In classical me-
chanics we can analytically solve the inverse problem for a small number of
bodies or simple geometry. In simple fractals the inverse problem consists of
calculating the matrix which created the fractal geometry. For example the
classical snowflake is widely known to have a simple 6-fold rotation symme-
try and self-similar scaling. Directly solving for the transformation matrix is
quite a powerful technique and can be used to infer the physics behind the
generation of more complex fractals in nature, many of which may be the
result of SOC, including the the architecture of trees and the classical spiral
shape of sea shells and galaxies. Inevitably however, as we include more and
more particles, we quickly run into n-body effects. Making an inference of the
initial state and deciding on the rules which generated the geometry are al-
most impossible to obtain. Even if we can obtain such a set of rules, they are
almost certainly not unique. In these cases, we can study the statistics of the
system and see if it is possible to forward-fit an iteratively generated model to
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reproduce these statistics (e.g, in diffusion limited aggregation, particles are
modeled to undergo a random Brownian motion and cluster together to form
aggregates and simulations can be done on lattices of any desired geometry.)

3.3 The many flavors of fractal dimension

It is instructive to introduce the main types of fractal analyses techniques and
dimensions. Often the type of fractal dimension reported is a result of the
technique used to obtain it so one must be very careful in cross-comparing
any studies of fractal geometry or any comparison of data to models. Here
we will introduce two methods of calculating the fractal dimension of both
individual systems and a set of these systems, and then define the commonly
used phrases of Hurst Exponent, Hölder exponent, and Haussdorff dimension.
It is important to understand the similarities and the differences between each
method. Further, it is also vital to consider that because of the finite nature
of real data, any method can only ever represent an approximation to the
actual fractal dimension of Nature.

3.3.1 Similarity Dimension of a set of systems

One method to calculate the similarity dimension of any set of systems is
by studying a measure of their 1-Dimensional size compared to their 2-
Dimensional size. One such technique relates the perimeter lengths, P , of
a large set of structures of different sizes to their areas, A, via the relation-
ship,

P (A) ∝ ADPA/2 , (3.1)

where DPA is the perimeter-area similarity dimension of the set of structures.
For a simple geometric shape (e.g., a square with side of length l, A = l2,
P = 4l) DPA = 1, whereas for the high perimeter limit (e.g., the same square
filled, A = l2, P = l2) DPA = 2. Hence DPA is an indication of the complexity
of the perimeters of the set of structures and can be calculated from the two-
fold slope of a plot of log P versus log A over the entire set of structures. In
astrophysics this has been applied to solar granulation in broadband white
light images leading to debate over the formation process of these convection
features (Roudier & Muller, 1987; Hirzberger et al., 1997; Bovelet & Wiehr,
2001). A closely related study of small scale magnetic fields (Janssen et al.,
2003) obtained a similar value of DPA from data and simulations, regardless
of the spatial size (i.e., pixel scale) of datasets or the simulation.

The linear size-area technique differs by relating the minimum size of the
boxes, L, which contain structures (or clusters of contiguous pixels), to their
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area, A, via,
L(A) ∝ A1/DLA , (3.2)

where DLA is the linear size-area similarity dimension of the set of areas.
In contrast to the perimeter-area method, for a simple geometric shape
DLA = 2, whereas for a more serrated shape, DLA < 2. A plot of log L
versus log A over the entire set of structures will provide an indication of
the complexity of the set. This has been applied to sunspot magnetic fields
(Lawrence, 1991; Balke et al., 1993) and compared to the predictions of per-
colation theory. Comparisons of both the perimeter-area and linear size-area
methods (Meunier, 1999) to a large set of active regions showed that solar
active regions may also be considered as the result of a percolation process
at the bottom of the convection zone of the Sun, combined with a diffusion
process at the surface. It is worth noting at this stage that such a percolation
process is good example of self-organized process that is not fully SOC, but
still gives rise to fractal geometry (Section 3.2.2)

3.3.2 Box Counting Dimension

The box counting technique is similar to that described in Section 3.3.1 above,
except it can be applied more readily to a single image, (whereas the previous
techniques provide the fractal dimension of a set of images). The first step in
such a technique is to threshold an image in intensity and thereby create a
binary image. This binary image is overlaid with a series of grids consisting
of successively larger boxes. The number of boxes, N , containing any part of
the binary image scales with box size, ε, as

N(ε) ∝ ε−DBC , (3.3)

where DBC is the box counting fractal dimension. The implications of this
definition are discussed further in Section 3.3.5, but to complete the com-
parison to the previous two methods, a simple non-fractal geometric shape
will have DBC = 1, whereas a non-fractal filled area will have DBC = 2.
Two extensions of this technique - the Jaenisch and differential box count-
ing methods (Stark et al., 1997) - are designed to overcome the issues with
the conversion of the data in the thresholding and the limits of the fractal
scaling. The box counting technique can also be extended to provide a multi-
fractal measure (Section 3.4), albeit with significant provisos and problems.
The biggest problem in using this technique lies in choosing the threshold
value. In a rather simple sense it is possible to threshold the image at differ-
ent levels of intensity. For standard fractal geometry the resulting calculation
of DBC will not vary as a function of intensity thresholds. A change in fractal
dimension with changing threshold is often associated with the existence of
a structure more complex than a simple fractal.



86 R. T. James McAteer

3.3.3 The Hölder Exponent

Section 3.2.1 introduced the connection of differentiability and fractal geom-
etry. Here we extend this concept by providing a mathematical formalism
related to singularities. Singularities are those points where it may not be
possible to take a derivative. However, they can still be studied and quanti-
fied by analyzing their Hölder Exponent, h. Let f(x) be a function defined
on the real number line, and let α be a real positive number. The function f
is defined to satisfy the Hölder condition if both C and α exist such that we
can find a polynomial Pm of degree m, no greater than the integer part of α,
such that for all x in the neighborhood of x0

|f(x)− Pm(x− x0)| ≤ C|x− x0|α . (3.4)

Given this, the pointwise Hölder exponent of the function f at x0 is defined
by

h(f, x0) = sup {α > 0|f ∈ Cα(x0)} , (3.5)

that is, the Hölder exponent is the least upper bound such that f belongs to
Cα(x0). Consider the following example functions (Seuret & Gilbert, 2000;
McAteer et al., 2007),

f1(x) =

{
−|x|3 for x < 0
|x|2 for x ≥ 0

,

f2(x) =

{
−|x|3 sin(1/x2) for x 6= 0

0 for x = 0
.

Both functions exhibit sharp changes as one approaches x = 0. Note that the
derivative of f1 is continuous at x = 0, but that the derivative of f2 is not
defined at x = 0. However, for both functions, the Hölder exponent at x = 0
is 2 (h(f, 0) = 2), since one can write |f1(x)−x2| ≤ |x|2 and |f2(x)| ≤ |x|2 in
this neighborhood. Hence the Hölder exponent permits the characterization of
singularities in a series of values, regardless of whether the derivative exists
at that point, and provides a powerful technique of calculating the fractal
dimension.

3.3.4 The Hurst Exponent

This idea of describing the spikiness (or smoothness) of a function was in-
troduced by Mandelbrot (1982). This work in probability theory originates
back to the pioneering work of Robert Brown in 1827, who described the ran-
dom nature of the motion of pollen grains under his microscope. Mandelbrot
defined fractional Gaussian noise as the increments of this Brownian motion
phenomena and showed that fractional Gaussian noise signals can be charac-
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terized by the Hurst exponent, H. Where c is a constant and f(x) is a fractal
process, g(x) = f(cx)/cH is also a fractal process, moreover it maintains the
same statistical distribution. The calculation of the Hurst exponent involves
an integration of the signal, therefore when compared to the Hölder expo-
nent, h = H−1. The Hurst exponent describes different types of signals. For
Brownian motion, each step along the a series is unrelated to any previous
values, the series is just as likely to increase as to decrease and hence we
prescribe random white noise with a Hurst exponent of 0.5. Anti-persistent
(non-stationary) noise has 0 < H < 0.5 whereas persistent (stationary) noise
has 0.5 < H < 1.0. Pink noise is described by H = 1.0. For a bursty series
which tends to show change (i.e., if the series is increasing, the next step is
likely to be a decrease and vice versa), the curve covers less distance then
a random walk, so 1.0 < H < 1.5 and the series is described as an anti-
persistent walk. For a smooth series (i.e., if the series is increasing, the next
value will tend to be larger and vice versa), the curve covers more distance
than a random walk, so 1.5 < H < 2.0, and the time series is described as a
persistent walk.

The Hurst exponent is also intrinsically related to the scaling index of the
Fourier power spectral slope of the series. Provided the series is analogous to
fractional Gaussian noise and where the Fourier spectral density of the signal
scales as a power decay of index -β, then,

β = 2H − 1 = 2h+ 1 . (3.6)

This provides a powerful method for calculating the Hurst exponent and
fractal dimension of any data. One can carry out an FFT, calculate the
power spectrum, fit a slope to the energy spectrum and then back out the
Hurst exponent. This could then be compared between SOC models and data.
However caution is required in assigning strong conclusions to any such study
as there are least a dozen methods of calculating the Hurst exponent (Clegg,
2009; Taqqu et al., 1995), and they can differ significantly in their solutions.
This is particularly true when calculating the Hurst exponent in data where
the intrinsic physical timescale of the system may be much smaller than the
resolution of the observations.

3.3.5 Haussdorf Dimension

The description of the Haussdorff dimension provides a more mathematically
rigorous and general description of the box counting dimension above (Sec-
tion 3.3.2). Consider N(r) as the number of balls, radius r, required to cover
a n-dimensional signal. As r decreases, N(r) increases such that

N(r) ∝ 1

rD
. (3.7)
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Fig. 3.1: The Sierpinski carpet (top, reproduced from McAteer et al., 2005)
is a iteratively generated fractal that highlights the difficulties in calculating
the fractals dimension using standard box counting (bottom left) and the
possible solutions that can be used to obtain a more accurate determination
of its fractal dimension (bottom right)

The Hausdorff-n dimension is then defined as

D = − lim
r→0

logN(r)

log r
. (3.8)

The box counting dimension is a version of the Haussdorf dimension imple-
ment with boxes rather than circles.

Typically the Hausdorff dimension is the same as the topographical dimen-
sion. However, for a fractal the Hausdorff dimension is strictly greater than its
topographical dimension (i.e., a seemingly 1-Dimensional fractal curve is so
complex, it can be thought of as occupying space closer to 2-Dimensional).
For example, a simple straight line on a plane has a Hausdorff dimension
of one. But consider a more complex object like the Sierpinski carpet (Fig-
ure 3.1) that is a more complex object than a simple line but where it is
also clear that it does not fill up the entire plane; the Hausdorff dimension
of the Sierpinski carpet is approximately 1.89. Of course for real data it is
impossible to approach the limits of r → 0 and so typically Equation 3.8
is described by plotting over a linear range of r. In this case the (normally
square) image of side length S is covered with grids of boxes with increasing
side length ε (ε belongs to the set 2n, n = 0, 1, 2, 3... such that εmax = S)
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and N(ε) is the total number of boxes required to cover the image at each
box size. The gradient of a straight line fit to the linear section of a plot of
log (N(ε)) against log (ε) corresponds to the fractal dimension. However this
simplistic methodology is known to suffer from a poor fit to the log-log plot
and so is prone to large errors. This problem is due to the inability of the
grid to adequately describe the image at box sizes larger than one pixel, the
small number of points in the linear range (a CCD size of 1K × 1K pixels
will only have 10 box sizes, εmax = S = 210, therefore the linear range could
be as few as 6 − −7 points), and the often dismissed requirement to rotate
the images.

The results of these problems are presented here by studying the Sierpinski
carpet in detail. This fractal is created by starting with a uniformly filled
square, divided into nine smaller congruent squares, and the interior square
removed (i.e., the 8 cells at the edges are uniformly filled with 1 and the
centre cell is set to 0). This operation is then repeated on the 8 smaller
squares iteratively until no further division can be carried out (the single
pixel limit is reached). The resulting fractal has a fractal dimension of∼1.8928
(=log(8)/log(3)). A simplistic box-counting algorithm produces the plot in
Figure 3.1b. Although the shape is fractal, the log(N)–log(ε) plot appears
concave - a multifractal signature (Section 3.4). Over the entire range of
scales, the fractal dimension is calculated as 2.09 ± 0.08 . Judging by eye,
there appears to be a break at a box size of 32 pixels, and the gradient of the
curve over the box size range of 1–32 pixels gives a much better estimation
(1.90± 0.04) of the true fractal dimension.

There are a few steps which we can implement to circumnavigate these
problems (McAteer et al., 2005; Lawrence et al., 1996). At each box size, N(ε)
is calculated as the minimum number of boxes required to cover the image.
This is achieved by translating the grid to every possible origin (e.g., a grid
of boxes of side ε = 3 will have 9 different possible origins). This should
be repeated for every orientation of the image, but the obvious difficulties
in precisely rotating a pixel array by any non-90 degree amount make this
rotation difficult once the data is in this form (this should ideally be carried
out in experiment by rotating the camera and taking snapshots at each ro-
tation). In addition we can remove the 2n box size dependence (which was
really only introduced to decrease computation time) and remove the need
to have square boxes (i.e., for a rectangular box of sides a and b, the effective
box size is εeff =

√
ab).

This dramatically increases the number of data points at small box size
(note the large number of data points in Figure 3.1c), hence we can introduce
an quantitative indication of the linear section of the fit. For L effective box
sizes we carry out a linear fit to the log-log plot in a sliding window of size
l (L/2 ≤ l ≤ L). At each position of the window, the fit is accepted if the
spread in the fit in small; a window with a significant non-linear contribution
will produce a large spread. This is displayed in Figure 3.1c where a fit over
the entire range of box sizes produces a fractal dimension of 1.84±0.02 (an
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underestimation of the true fractal dimension). A fit over a smaller section
of the curve produces a fractal dimension of 1.879±0.007 (a much better
estimation of the true fractal dimension), hence this section contains less of
the non-linear range. Note I have also adopted a higher order moment in
calculating the value Figure 3.1c), an approach borrowed from the study of
multifractals.

3.4 Multifractals

It is entirely possible that any given signal will contain many different sin-
gularities strengths (Hölder exponents) at many different positions. For a
signal with infinite resolution (or at least resolution smaller than any physi-
cal event) it would be possible to measure the Hölder exponent of each event
and create a number density histogram to reflect the different numbers of
each exponent. However when singularities are not isolated, as is generally
the case for real data, one may calculate the Hausdorff dimension of the dif-
ferent singularities in the data. In this case, the Hausdorff dimension provides
the necessary statistical mechanics approach to describing the number den-
sity of each Hölder exponent and performs the role of quantifying the degree
with which a particular Hölder exponent is evident in a signal. For example,
if the Hausdorff dimension of a particular Hölder exponent was 1, this would
mean that the singularity of this type is evident everywhere in the time series.
This naturally leads onto the topic of multifractals - shapes with a fractal
geometry more complex than that of simple fractals. Although fractals are
useful for quantifying the space-filling nature of any n-dimensional system,
it has been found that many systems in nature are a convolution of different
fractal processes. A multifractal exists when the measure itself is self-similar
(Evertsz & Mandelbrot, 1992), and is usually described as a concave curve
known as the singularity spectrum, f(α). If we are to make a comparison
between SOC and measures of fractal geometry we must ensure we address
this issue of multiple fractal processes within one signal. In this section I
will expand on this discussion, with particular emphasis on the generalized
dimensions, turbulence, and on the wavelet transform.

3.4.1 From monofractals to multifractals

Section 3.3 showed that the fractal dimension of any object can be thought of
as the self-similarity of a signal across all scale sizes. For any 2-Dimensional
image this can be described as the scaling index of any length to area measure,

A ∝ lα , (3.9)
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where α is the singularity strength. However, a multifractal system will con-
tain a spectrum of singularity strengths of different powers,

A ∝ lf(α) , (3.10)

and takes account of the measure at each point in space. In Section 3.3.2
a fractal measure was obtained by thresholding in intensity and creating a
binary image, hence the value of the measure in each pixel was lost. The
route to producing multifractal measures starts with retaining these pixel
intensities in the form of a measure distribution. In general, the measure
distribution is characterized by

ψ(q, τ) = E

N∑
i=1

P qi ε
−τ , (3.11)

where q and τ can be any real numbers, and E is the mean value of the
measure with N components. In this form, ψ is the coupled τ -moment of the
size ε, and q-moment of the measure P . The three main multifractal indices
commonly used to represent a non-uniform measure are then the:

• generalized dimensions Grassberger & Procaccia (1983), Dq = τ/(q − 1);
• singularity strength, α = dτ/dq;
• legendre transformed f(α) = qα− τ / .

When applied via a traditional box-counting approach, it is useful to define
the partition function,

Zq(ε) =

N∑
i=1

P qi (ε), (3.12)

such that τ(q) = limε→0log(Z)/log(ε), and any of the three representations
above can be calculated. The q moment plays the role of increasing the rel-
ative importance of the more intense parts of the measure as q is increased.
In this way it acts as a microscope to investigate the different contributions
made to the image at higher values of the measure.

3.4.2 Generalized Dimensions

We can arrive at the multifractal spectrum by generalizing the previous con-
cept of the Hausdorff dimension as a member of an infinite series of qth order
dimensions. The classical generalized qth order fractal dimension, Dq, of any
image is given (e.g., Grassberger & Procaccia, 1983; Hilborn, 2000) as,

Dq =
1

q − 1
limε→0

ln Σn
i=1Pi(ε)

q

ln ε
, (3.13)
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where q = −∞, ...,+∞. For a shape consisting of m pixels, Pi is the proba-
bility of finding a pixel in the ith box (with a total of n boxes) and is given
by,

Pi(ε) =
mi(ε)

m
, (3.14)

for a total of m points in the image: hence Pi is a indication of the measure
in the ith box.

A measure is defined as the magnitude of the values within an area, e.g., for
an image it could be the sum of the pixel values within the box under study
(compare this with the simple box counting approach where the actual pixel
values are thrown out when the binary image is constructed at some chosen
threshold.) Each measure is then normalized to ensure that the sum of all the
measures is unity. The exponent q is used to extract the information at each
value of the measure - when q is positive it magnifies the larger measures,
dwarfing the smaller ones; when q is negative it inverts the measures, thus
enhancing the smaller measures and dwarfing the larger ones. The normalized
measure is given as,

P̂ε(i) =
Pε(i)

q

Σ
N(ε)
(i=1)Pε(i)

q
=
Pε(i)

q

zε(q)
, (3.15)

where zε(q) is once again the partition function. The fractal strength α is
then

α(q) = limε→0Σ
Nε
i=1P̂ε(i)logεPε(i) . (3.16)

Equation 3.16 provides the local fractal dimension for Pε(i), and is a mea-
sure of the strength of the fractal dimension at that scale q. The full singu-
larity spectrum f(α) is then given by repeating this over a range of values of
q,

f(q) = limε→0Σ
Nε
i=1P̂ε(i)logεP̂ε(i) , (3.17)

f(α) = qα− limε→0Σ
Nε
i=1P̂ε(i)logεzε(q) , (3.18)

f(α) = qα− τ , (3.19)

where we now define τ = limε→0logεE(zε(q)). So f(α) is a weighted sum of
the log of the normalized measure to the base ε.

3.4.3 Connecting forms of multifractality

Although there are multiple descriptions of multifractality, they are readily
connected by a few simple equations (McAteer et al., 2010). Here we formu-
late and connect the Haussdorff dimension, Hölder exponent, equations of
thermodynamics, and structure functions.
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3.4.3.1 The Hausdorff dimension and Hölder exponent

As we see below in section 3.4.5, one approach to measure the multifractal di-
mension is to calculate the Hausdorff dimension, D, of each Hölder exponent,
h in a signal. The resulting D(h) spectrum as calculated at each moment, q,
is directly related to the f(α) spectrum as,

• f(α) = D(hq) ,
• hq = α− Edim ,

where Edim is the Euclidean dimension (Edim = 2 for an image).

3.4.3.2 The link to thermodynamics

The multifractal spectrum is often generated from the Legendre transform of
the scaling exponents of a signal using an analogy to the laws of thermody-
namics. The f(α) singularity spectrum was originally introduced to provide
a statistical description of the multifractal spectrum in a manner related to
well known thermodynamic quantities. In this analogy with thermodynam-
ics, f is ‘entropy’, α is ‘internal energy’, and these are related via a Legendre
transform to τ (‘free energy’) and q (‘temperature’),

α =
dτ

dq
, (3.20)

f(α) = qα− τ(q) , (3.21)

and this can be further related to the spectrum of generalized dimensions,

Dq = τ(q)/(q − 1) . (3.22)

As it is generally simpler to calculate the Dq spectrum, this relationship can
be used to produce the singularity spectrum (e.g., Vlahos et al., 1995). In this
case, the signal is covered by boxes (of increasing size l) and it found that the
qth moment of the measure (or probability of occurrence), P , in each box, i,
scales as,

Dq(q − 1) = τ(q) = lim
l→0

log
∑
i P

q
i (l)

log(l)
. (3.23)

By further analogy with thermodynamics, the summation is known as the
partition function where, as already describe earlier, positive q will accen-
tuate the large values, and negative q will survive the small values, of the
measure. The calculated Dq is then Legendre transformed to calculate the
multifractal spectrum. However, this method suffers from known problems of
non-linear scaling and discontinuities in Dq. A second approach circumvents
this problem by calculating the singularity in each box i, αi = log Pi(l)/ log l.
The histogram N(l) then varies as,
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N(l) ∼ l−f(α) , (3.24)

and f(α) can be directly calculated. Unfortunately this method is shown to
be inaccurate due to slow convergence (Chhabra & Jensen, 1989).

3.4.3.3 Structure Functions

Another method of calculating the multifractal spectrum is based on the
structure function (Parisi & Frisch, 1985; Abramenko et al., 2002). This
method consists of calculating the statistical moments of the field increments
Sq(r), as a function of separation, r in order to determine the scaling expo-
nents, ζq,

Sq(r) ∼ rζq , (3.25)

which are also directly related to the multifractal spectrum as (Muzy et al.
1993),

D(h) = qh− ζq + 1 , (3.26)

h =
dζ

dq
. (3.27)

In equation 3.27, it is the deviation of h away from a single value that
signifies multifractality.

3.4.4 The Devils staircase

It is instructive to look at a typical multifractal spectrum and discuss a few
salient features. The D(h) multifractal spectrum of a well-known multifractal,
the devil’s staircase (also known as the Cantor function), is displayed in
Figure 3.2, and the basic properties are as follows.

• The Hölder exponent (abscissa), as described in Section 3.3.3 is the singu-
larity strength. The Hausdorff dimension (ordinate), as described in Sec-
tion 3.3.5 reflects the space-filling degree of each Hölder exponent.
• The concave shape is typical of many multifractal spectra. The left leg

describes the fewer, larger amplitude, events, which correspond on large
positive q, whereas the right leg reflects the more common, smaller, singu-
larities described by large negative q.
• The Hölder exponent with the largest Hausdorff dimension is the most

common singularity strength and can be approximated to the Hurst expo-
nent of the entire series, (h = 0.63, H = 1.63). The Hausdorff dimension of
this Hölder exponent, D(h) = 0.61, is the Capacity Dimension and quanti-
fies the space-filling degree of this singularity: D(h) = 1 describes a signal
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Fig. 3.2: The multifractal spectrum of the devil’s staircase, represented as
the Hausdorff dimension, D, of each Hölder exponent, h, exhibits the usual
concave structure.

that is singular almost everywhere; D(h) < 1 describes a signal with rarer
singularities.
• The spectrum exists over a range of Hölder exponents [hmin = 0.47, hmax =

0.84]. In the limit of monofractality, the spectrum would collapse to single
point, only one Hölder exponent is necessary, and the range tends to zero.
• The degree of symmetry of the curve about D(h) reflects the degree of

inhomogeneity between rarer large amplitude and more common, small
amplitude, singularities.

3.4.5 The Wavelet Transform Modulus Maxima

The box counting technique (Section 3.3.2) has been applied successfully in
multifractal studies (Lawrence et al., 1993; Cadavid et al., 1994) and a change
in fractal dimension with scale (i.e., changing threshold) is often associated
with the existence of a multifractal structure. However, it is important to
note the difference between a true multifractal and the often observed sud-
den change of fractal dimension at large scales which may result from al-
gorithm imperfections and/or data issues. A modification of this method to
try to account for this is to randomly sample the image and renormalize the
calculations (Cadavid et al., 1994). Other modifications include the Ĺ‡fuzzy
ballĂ“ method (Alber & Peinke, 1997) which involves shaking the boundary
of the box, and averaging over these local measures to obtain a more accu-
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rate result of the true measure. However, there are know drawbacks to each of
these methods. Box counting methods are known to be threshold dependent
and structure functions are not defined for negative values of q. As such both
methods are somewhat limited in their application to real data sets (Conlon
et al., 2008, 2009; Georgoulis, 2005).

The continuous wavelet transform provided a new and natural method to
overcome these issues and perform a complete multifractal analysis (Parisi
& Frisch, 1985). The wavelet transform modulus maxima (WTMM) method
replaces the boxes from the traditional box counting method with wavelets
that act as fuzzy boxes, are defined for both finite and discrete domains, and
are better suited for real data sets. Application of the WTMM method to 1-
Dimensional time series have provided insight into a wide variety of problems,
e.g., fully-developed turbulence, financial markets, meteorology, physiology,
and DNA sequences (Muzy et al., 1991, 1993; Arneodo et al., 1995, 2002). The
WTMM methods were generalized to 2 dimensions for multifractal analysis
of rough surfaces and associated physical systems (Decoster et al., 2000) and
to 3-dimensional turbulence dissipation data (Kestener & Arneodo, 2004).

The WTMM was formalized to overcome the algorithmic difficulties as-
sociated with Legendre transform methods and takes advantage of the large
body of work carried out on the wavelet transform. The wavelet transform
decomposes a N-dimensional signal f(t) in both time and scale by the con-
volution of the signal with a set of dilated and translated wavelets,

WT (b, a) =
1

aN/2

∫ ∞
−∞

ψ∗
[
x− b
a

]
f(t)dt . (3.28)

In this equation, ψ∗ is the complex conjugate of the mother wavelet, a plays
the role of adjusting its width, and b shifts the wavelet along the signal.
The mother wavelet is chosen to be well localized in both space and time,
but furthermore if ψ has n vanishing moments, it can be shown that all
polynomials up to order n− 1 will be convolved to zero, thereby unmasking
the local Hölder exponent by removing the n − 1 polynomial trend. In the
series of derivatives of a Gaussian,

ψn(t) =
d(n)

dtn
e
−t2
2 , (3.29)

the first n moments are vanishing. The wavelet power spectrum can be av-
eraged over time to produce a global wavelet spectrum analogous to the
Fourier energy spectrum. This requires assigning a Fourier frequency to each
wavelet scale and normalizing both the Fourier and global wavelet spectrum
(Torrence & Compo, 1998) (e.g., for the n = 2, Mexican hat, wavelet, this
increases the minimum observed scale from 2 × dt to 7.95 × dt). The fur-
ther benefit of using a wavelet decomposition comes from the creation of the
modulus maxima tree. At each scale, localized maxima in the modulus of the
wavelet transform are identified. These are then connected across scales to
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form maxima lines, essentially ridges identifying maxima across scale. There
is always at least one WTMM line pointing towards any singularity (Mallat,
1998), t0, and this scales as,

WT (t0, a) ∼ ah(t0)+ 1
2 . (3.30)

When singularities are well separated in time, this can be used to calculate
the local Hölder exponent for each singularity (Struzik, 1998; Struzik, 2000).
However, when singularities are not isolated, a global partitioning has to be
introduced. Let tmm be all positions of local maxima of |WT (t, a0)| at some
scale a0, then define the partition function as the summation of the modulus
of the wavelet coefficients to some power, q,

Z(q, a) =
∑
mm

|WT (tmm, a)|q . (3.31)

As before, the moment, q, plays the role of increasing the weighting of contri-
bution of the largest wavelet transform coefficients to the summation when
q > 0, and increasing the weighting of the smallest wavelet transform co-
efficients to the summation when q < 0. The approach of only including
the modulus maxima removes very small values of the wavelet transform,
which would otherwise cause divergence at q < 0. This also dramatically
reduces the computational time, and incorporates the branch-like multiplica-
tive structure of the wavelet transform into the partition function. Although
the multifractal spectra may be calculated from this partition function, it is
generally preferred to used the canonical approach (Chhabra & Jensen, 1989;
Muzy et al., 1991) where,

ummi(q, a) =
|(WT (tmmi , a)|q∑
mmi
|WT (tmmi , a)|q , (3.32)

is the effective Boltzmann weighting of each modulus maxima risen to q at
each scale. From this new measure,

h(q) +
1

2
= lim
a→0

1

log a

∑
mmi

ummi(q, a) log |(WT (tmmi , a)| , (3.33)

D(h(q)) = lim
a→0

1

log a

∑
mmi

ummi(q, a) log (ummi(q, a)) . (3.34)

Equations 3.33 and 3.34 can be solved by a linear regression of the sum-
mation against the scale values (log a), and hence the singularity spectrum,
D(h), can be directly calculated at each q. The log-log plots of Equation 3.33
and 3.34 are generally linear, with more scatter about the linear trend at
negative q. The major problem with the WTMM approach is in tracking the
ridges correctly. Maxima in the wavelet may exist which do not correspond
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to singularities; these ridges will not exist down to the very lowest scales.
Tracking rules which are too relaxed will include these maxima, thereby con-
taminating the Boltzmann weightings in Equations 3.33 and 3.34. On the
other hand, tracking rules which are too strict may not be able to follow
the ridge to large enough scales; again this will affect the Boltzmann weight-
ings in Equations 3.33 and 3.34. Another recent advance in this field uses
the properties of the wavelet transform in order to overcome the limitations
of the box counting method (Conlon et al., 2009; Kestener et al., 2010) by
pre-selecting those modulus maxima corresponding to background noise and
removing them before forming the multifractal spectrum.

3.5 Future directions

Since Mandelbrot first introduced the fractal dimension, the idea of quanti-
tatively describing the complexity of a system (or an image of that system)
has been applied in many areas of science. From a purely theoretical view-
point, the fractal dimension is an indication of the self similarity of a shape
across multiple size scales. We can conceptually consider multifractals as a
conglomeration of fractals occupying the same point (in space, time, or both
space and time). From a mathematical perspective, the links between SOC
and fractal geometry are numerous - many SOC systems can be described
by fractal geometry when described in appropriate phase space, any snap-
shot of an SOC system is likely to be fractal, and the long term dynamic
evolution of an SOC system is likely to be fractal. The features that pro-
vide these connections are self-similarity (and scale invariance), power laws,
the upper and lower limits to the scale-free range and the iterative methods
used to generate both SOC models and fractals. It seems clear that fractal
geometry provides one route to test our modern SOC models against real
data. However, there are caveats - there is more than one fractal dimension
and the techniques used to calculate fractal geometry are not all generally
applicable. Recent advances in generating accurate and robust multifractal
measures may provide a new tool to link models to data. Specifically, the
incorporation of multiscale techniques (e.g., wavelets) may assist with the
problems of spatial and temporal resolution. They also provide connections
to theories in the areas of turbulence and magnetohydrodynamics that assist
us in inferring physical parameters from unitless indices. The final argument
for increasing research in this area of connecting fractal geometry and SOC
may be that of a new data-driven approach to science. Our data volumes
(from both models and experiments) and computational ability are increas-
ing beyond the capabilities of an individual scientist and even an individual
research field. The interdisciplinary ability to quantify features and classify
images is set to become a vital tool in the scientists kit. Perhaps the links
between fractal geometry and SOC can lead the way in these efforts.
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Chapter 4

Percolation Models of Self-Organized
Critical Phenomena

Alexander V. Milovanov

Abstract In this chapter of the e-book “Self-Organized Criticality Systems”
we summarize some theoretical approaches to self-organized criticality (SOC)
phenomena that involve percolation as an essential key ingredient. Scaling
arguments, random walk models, linear-response theory, and fractional ki-
netic equations of the diffusion and relaxation type are presented on an
equal footing with theoretical approaches of greater sophistication, such as
the formalism of discrete Anderson nonlinear Schrödinger equation, Hamil-
tonian pseudochaos, conformal maps, and fractional derivative equations of
the nonlinear Schrödinger and Ginzburg-Landau type. Several physical con-
sequences are described which are relevant to transport processes in complex
systems. It is shown that a state of self-organized criticality may be unsta-
ble against a bursting (“fishbone”) mode when certain conditions are met.
Finally we discuss SOC-associated phenomena, such as: self-organized tur-
bulence in the Earth’s magnetotail (in terms of the “Sakura” model), phase
transitions in SOC systems, mixed SOC-coherent behavior, and periodic and
auto-oscillatory patterns of behavior. Applications of the above pertain to
phenomena of magnetospheric substorm, market crashes, and the global cli-
mate change and are also discussed in some detail. Finally we address the
frontiers in the field in association with the emerging projects in fusion re-
search and space exploration.
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Table 4.1: Abbreviations used in this chapter

Abbreviation Expansion

AE Alfvén eigenmode
AGU American Geophysical Union
AMPTE Active Magnetospheric Particle Tracer Explorers
ac alternating-current
AO Alexander-Orbach (conjecture)
BTW Bak-Tang-Wiesenfeld
CA Cellular Automation
CTRW Continuous Time Random Walks
ECRH Electron Cyclotron Resonance Heating
ENSO El Niño / La Niña-Southern Oscillation
EPM Energetic Particle Mode
DANSE Discrete Anderson Nonlinear Schrödinger equation
DEMO DEMOnstration Power Plant
DIII-D DIII-D tokamak
DP Directed Percolation
DPRW Dynamic Polarization Random Walk
IKI Space Research Institute, Moscow, Russia
ISSI International Space Science Institute, Bern, Switzerland
ITER International Thermonuclear Experimental Reactor
FAST Fusion Advanced Studies Torus
FDE Fractional Diffusion equation
FGLE Fractional Ginzburg-Landau equation
FNLSE Fractional Nonlinear Schrödinger equation
FTU Frascati Tokamak Upgrade
KAM Kolmogorov-Arnold-Moser
KWW Kohlrausch-Williams-Watts (relaxation function)
LH lower hybrid (oscillation)
L-H low-high (transition)
MHD Magnetohydrodynamics
MW Megawatt
NLSE Nonlinear Schrödinger equation
ROY IKI-led “Swarm” project
SOC Self-Organized Criticality

4.1 The Percolation Problem

The standard theory of percolation (Broadbent and Hammerslay 1957) began
with an attempt to make statistical predictions about the possibility for a
fluid to filter through a random medium, predictions that could be applied to
a variety of physics problems, such as epidemic processes with and without
immunization, the underground spread of pollution, and electrical discharges
in thunderstorms. The phenomenon is characterized by a finite threshold, to
be associated with a critical concentration of fractures, pores, or other sort
of conducting channels in the medium, below which the spread is limited to
a finite domain of ambient space, and is unlimited otherwise. The percola-
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tion problem is relevant for a number of transport problems with threshold
behavior as for instance Anderson localization (Anderson 1958) and hopping
conduction in amorphous solids (Shklovskii and Efros 1984). The percolation
transition is perhaps the simplest phase transition-like phenomenon, with the
macroscopic connectedness thought as a spontaneously occurring property,
and the concentration of conducting elements as the control parameter (i.e.,
the analog thermodynamical temperature) (Isichenko 1992).

4.1.1 Site and Bond Percolation

Given a periodic lattice, embedded in a d-dimensional Euclidean space, one
can choose between two alternative formulations of the percolation problem:
site and bond. The differences between site and bond percolation are actually
very subtle and are manifest in a typically lower threshold for the bond
problem. There also exists a hybrid, site-bond percolation due to Heermann
and Stauffer (1981). In site percolation one assumes that the lattice sites are
occupied at random with the probability p (and hence with the probability 1−
p are empty). A connected cluster is defined as a collection of all occupied sites
that can communicate via the nearest-neighbor rule. In bond percolation, one
thinks of clusters of connected conducting bonds instead. In this formulation
all sites are initially occupied and bonds are occupied randomly with the
probability p. Statistically, the p value decides on how big the connected
clusters could be for the given topology of the lattice. The key point of the
theory is the existence of a critical value, the percolation threshold pc (0 <
pc ≤ 1), above which the connected clusters span the entire lattice with the
probability 1 (for d ≥ 2, the threshold value is typically a fraction between 0
and 1; for d = 1, pc = 1). The critical probability being smaller than 1 implies
that the infinite clusters do not fill the ambient space yet. For p < pc, the
percolation dies away exponentially. The threshold value is non-universal:
it depends on the type of the percolation problem (site, bond, or hybrid);
details of the lattice (cubic, diamond, triangle, etc.); as well as the ambient
dimensionality d ≥ 1. The typical realizations of site and bond clusters on
a square lattice are illustrated in Fig. 4.1. It is worth remarking that any
point belonging to the infinite percolation cluster can be connected to the
infinitely remote point via a connected escape path which lies everywhere on
the cluster. (For comprehensive reviews on percolation see, e.g., Stauffer 1979;
Stauffer and Aharony 1992; Isichenko 1992; Nakayama et al. 1994; Havlin and
ben-Avraham 2002.)
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Fig. 4.1: Site vs. bond percolation. Top: Site percolation problem, with cir-
cles representing occupied sites on a lattice. Left: A lattice system below
the percolation threshold. Right: The same lattice system at the threshold of
percolation, with a noticeably denser concentration of the occupied sites. Bot-
tom: A similar picture for bond percolation. Connected (conducting) bonds
are shown in blue color. Left: An insulating state of the lattice below the
percolation threshold. Right: Random distribution of conducting bonds at
the threshold of conducting dc electricity.

4.1.2 Percolation Critical Exponents β, ν, and µ

Likewise to traditional critical phenomena, characterized by a scale-free
statistics of the spontaneously occurring quantities, the geometry of con-
nected clusters in vicinity of the percolation threshold is self-similar (fractal)
(e.g., Stauffer 1979; Feder 1988). As p→ pc, the percolation correlation (i.e.,
pair connectedness) length diverges as ξ ∝ |p− pc|−ν . For p > pc, the proba-
bility to belong to the infinite cluster is P∞(p) ∝ (p− pc)β ∝ ξ−β/ν , whereas
the dc conductivity behaves as σdc ∝ (p − pc)

µ ∝ ξ−µ/ν . The critical ex-
ponents β, ν, and µ are universal in that they do not depend on the type
of the percolation problem, nor on details of the lattice. They do depend
on the ambient dimensionality d, however, and their numerical values are
known in all d ≥ 1. The “mass” of a connected cluster scales with its size
as M(ξ) ∝ ξdP∞(p) ∝ ξd−β/ν , leading to a nontrivial Hausdorff dimension
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df = d−β/ν. The latter expression is sometimes said to be “hyperuniversal”
as it holds in any d ≥ 1.

4.1.3 Random Walks on Percolating Clusters

The problem of diffusion on fractals (de Gennes 1976; Straley 1980; Gefen
et al. 1983) has stirred considerable attention in the literature, especially,
in terms of the random walk approach. If the random walker (an unbiased
“ant”) is put on a connected cluster at percolation, then the distance it travels
after t time steps behaves as (Gefen et al. 1983; reviewed in ben-Avraham
and Havlin 2000; Havlin and ben-Avraham 2002)〈

r2(t)
〉
∝ t2/(2+θ). (4.1)

The exponent θ is given by θ = (µ − β)/ν. Note that the dependence here
is no longer proportional to the time t, in contrast to uniform spaces. Thus,
diffusion is anomalous. The exponent θ describes topological characteristics
of the fractal (such as connectivity, etc.) It shows, moreover, remarkable in-
variance properties under smooth (diffeomorphic) maps of fractals (contrary
to the Hausdorff dimension df , see Milovanov 1997; Zelenyi and Milovanov
2004). In the literature, this exponent is referred to as both the connectiv-
ity exponent and the index of anomalous diffusion. This ambiguity merely
reflects that the diffusion is anomalous because fractals possess anomalous
connectedness features as voids are present at all scales. When θ → 0, normal
(Fickian) diffusion is introduced.

In a basic theory of percolation (Stauffer 1979; Stauffer and Aharony 1992)
it is shown that µ > β for connected clusters, implying that θ > 0. One
sees that the mean-square displacement in Eq. (4.1) grows slower-than-linear
with time. This slowing down of the transport occurs as a result of multiple
trappings and delays of the diffusing particles in cycles, bottlenecks, and
deadends of the fractal object on which the random motions concentrate.
Note that the scaling law above holds as a single-cluster rule (the “ant”
cannot jump between the clusters). Averaging over all clusters at percolation
replaces Eq. (4.1) by 〈

r2(t)
〉
∝ t(2−β/ν)/(2+θ) (4.2)

for t � ξ2+θ. Equation (4.2) has implications for the ac conductivity at
“anomalous” frequency scales, ω � ξ−(2+θ), for which the charge carriers
move only on the fractal (Gefen et al. 1983; Milovanov and Rasmussen 2001).
The various aspects of anomalous diffusion in fractal systems are summarized
in the reviews (Bouchaud and Georges 1990; ben-Avraham and Havlin 2000;
Havlin and ben-Avraham 2002; Zelenyi and Milovanov 2004).



108 Alexander V. Milovanov

4.1.4 The Spectral Fractal Dimension

A hybrid parameter ds = 2df/(2 + θ) is often referred to as the spectral, or
fracton, dimension. It is so called because it represents the density of states
for vibrational excitations in fractal networks termed fractons (Alexander
and Orbach 1982; Rammal and Toulouse 1983; reviewed in Nakayama et al.
1994). It also appears in the probability of the random walker to return to
the origin (∝ t−ds/2) (e.g., O’Shaughnessy and Procaccia 1985). The key
difference between the Hausdorff and spectral fractal dimensions lies in the
fact that df is a purely structural characteristic of the fractal, whereas ds
mirrors the dynamical properties, such as wave excitation, diffusion, etc.,
which enter via the connectivity exponent. Note that, because θ ≥ 0 for
percolation, the spectral fractal dimension is not larger than its Hausdorff
counterpart, i.e., ds ≤ df . The value of ds can conveniently be considered as
an effective fractional number of the degrees of freedom in fractal geometry,
as it naturally substitutes the integer (embedding) dimension in respective
diffusion (Gefen et al. 1983; O’Shaughnessy and Procaccia 1985) and wave-
propagation (Alexander and Orbach 1982; Orbach 1989; Nakayama et al.
1994) problems on fractals.

4.1.5 The Alexander-Orbach Conjecture

In the past years there has been much excitement about the Alexander-
Orbach (AO) conjecture that the spectral fractal dimension is exactly 4/3 for
percolation clusters in any ambient dimension d greater than 1 (Alexander
and Orbach 1982; reviewed in Nakayama et al. 1994; Havlin and ben-Avraham
2002). This conjecture is important as it relates the structural characteristics
of the fractal, contained in df , to the dynamical characteristics, contained
in θ. For d ≥ 6, the AO conjecture was proven by Coniglio (1982) as a per-
colation problem on a Cayley tree (Bethe lattice). A Cayley tree is a graph
without loops where each node contains the same number of branches (called
the coordination number). In many ways, owing to its intrinsic hierarchical
structure, a Cayley tree behaves as an infinite-dimensional space (its volume
grows exponentially fast with the scale, in contrast to power-law growth for
physical lattices, fractal or not, see Schroeder 1991). Not surprisingly, the
percolation problem on a Cayley tree is regarded as a suitable model for
mean-field percolation. For d < 6, the mean-field approach is invalidated as
loops become important at all scales, thus impeding reduction to the trees.
A great deal of effort has been invested to prove or disprove the AO con-
jecture in the lower embedding dimensions d < 6. It is now clear that in
these dimensions the AO conjecture is not exact, nor does it generalize to
all statistical fractals as for instance to the backbones of percolation clusters
(Stanley and Coniglio 1984; Havlin and ben-Avraham 2002). Even so, the
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“true” values found for the spectral fractal dimension at criticality continue
to be numerically surprisingly close to the original AO result ds = 4/3 for all
d ≥ 2 thus sustaining the conjecture (ben-Avraham and Havlin 2000).

4.1.6 Percolation Problem on the Riemann Sphere

It is both interesting and instructive to demonstrate how the spectral fractal
dimension may be obtained for threshold percolation on a plane (d = 2).
The main idea here (Milovanov 1997) is to extend the plane on which the
percolation is considered by adding the point at infinity to it, then perform
a stereographic projection of the infinite percolation cluster on the Riemann
sphere (see Fig. 4.2). As a result the percolation problem will be compactified,
since the point at infinity is mapped to the north pole.1

Observe that the percolation cluster spanning the plane implies that its
stereographic image covers part of the surface of the sphere, the north pole
included. Without loss of generality, we may assume that the south pole at
which the sphere touches the plane belongs to the cluster. When considered
on the Riemann sphere, a percolating escape path to infinity originating
from the south pole will be a simple arc connecting the two poles, south to
north. The key step is to notice that a solid angle at the base of this arc
has a lower bound as posed by connectedness. Indeed this angle cannot be
smaller than the angle at the base of the half meridian. The latter angle
is immediately seen to be equal to π. Clearly, the percolation cluster itself
is based on a solid angle not smaller than this. It is convenient to think of
the number ds of the degrees of freedom as corresponding to an orthogonal
basis of ds vectors (Milovanov 1997), which span a fractional solid angle
Ωds = dsπ

ds/2/Γ (ds/2+1). Here, Γ denotes Euler’s gamma function. Partial
cases of this expression are, Ω2 = 2π for ds = 2 and Ω3 = 4π for ds = 3. Thus,
we expect that, for connected clusters, Ωds ≥ π, from which a lower bound on
ds may be deduced by defining Ωds = π. We associate this lower bound with
the threshold of macroscopic connectedness (threshold of percolation). In
equatingΩds to π we used that the stereographic projection being a conformal
map is angle and circle preserving. Putting all the various pieces together,
we have (Milovanov 1997; reviewed in Zelenyi and Milovanov 2004)

ds
πds/2

Γ (ds/2 + 1)
= 2

πds/2

Γ (ds/2)
= π. (4.3)

1 Essentually the same ideas are used in the complex analysis to extend the com-
plex plane, a procedure known as the one-point compactification. Remember that
the stereographic projection is a conformal map, which is angle and circle preserving.
Here, we apply the technique of one-point compactification to the percolation prob-
lem, aiming to generate an object which might be described as a compact percolation
cluster (Milovanov 1997).
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A
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B
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BC

N

Infinity

Fig. 4.2: Stereographic projection of a percolating cluster on the Riemann
sphere. The north pole, N, represents the point at infinity. When considered
on the Riemann sphere a percolating escape path to infinity (blue line, with
points A and B on it) originating from the south pole at which the sphere
touches the plane is a simple arc connecting the two poles, south to north. A
solid angle at the base of this arc has a lower bound, π, as dictated by con-
nectedness. Then the mapping being conformal implies that at the threshold
of percolation Ωds = π, leading to ds = 1.327± 0.001.

Numerical solution shows that ds = 1.327 ± 0.001, remarkably close to, al-
though slightly smaller than, 4/3. Rigorously speaking, this result disproves
the AO conjecture in d = 2. Despite being this subtle, the observed devi-
ation from 4/3 is important as it helps to avoid the secular terms problem
when applying a renormalization-group technique near the percolation point
(Nakayama et al. 1994; Havlin and ben-Avraham 2002). Note that the solu-
tion to Eq. (4.3) has a remarkable meaning. It defines the fractional dimen-
sionality of a ball-like space seen from its center under the solid angle π. It
is the dimensionality of this space, ds ≈ 1.327, which permits percolation in
terms of a connected escape path to infinity. One sees that the percolation
problem is essentially a topological problem. It decides on macroscopic con-
nectedness of random systems in terms of the number of the coupled degrees
of freedom. As such, the percolation problem has important implications for
the dynamics of complex systems, and self-organized critical systems as par-
ticular case, as it will be demonstrated shortly.
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4.1.7 Summary

Summarizing, the percolation problem presents a non-trivial problem with
scale-free behavior. It is related with phase transition-like phenomena as well
as the fundamental topology (via the connectedness issues). The percolation
clusters provide a particularly clear example of statistical fractals in the limit
ξ → ∞. The percolation indices β, ν, and µ are known in any ambient di-
mension d ≥ 1 and do not depend on details of the lattice nor on the type of
the percolation problem (universality). Topologically, the percolation prob-
lem decides on the existence of a connected escape path to infinity. Focusing
on the percolation problem in d = 2 ambient dimensions, it is convenient
to extend the Euclidean plane on which the percolation is considered, by
adding the point at infinity to it (i.e., the one-point compactification, used
in the complex analysis). Then the percolation problem will be “compacti-
fied” in the sense that the point at infinity will belong to the infinite cluster.
Accordingly, the extended Euclidean plane with the “compact” percolation
cluster on it can conformally (by using a stereographic projection) be mapped
onto the Riemann sphere. This compactification procedure when applied to
percolation presents a significant appeal: Not only does it permit to keep
the point at infinity “at hand” by identifying it with the sphere’s north pole
− the stereographic projection being a conformal map makes it possible to
analytically obtain the value of the spectral fractal dimension at criticality
beyond the mean-field approaches. This value, which is approximately equal
to ≈ 1.327, is a transcendental number and it has a remarkable meaning
(Milovanov 1997): It defines the fractional dimensionality of a ball-like space
seen from its center under the solid angle π. This result offers some insight
into the mathematical origin of the spectral fractal dimension. In addition to
basic science, the percolation problem is of practical importance as it offers
a platform for the description of transport properties of disordered (random)
media. In particular, diffusion and electrical conduction problems on perco-
lation clusters have been widely studied and discussed in the literature (e.g.,
Nakayama et al. 1994; Havlin and ben-Avraham 2002; Zelenyi and Milovanov
2004; references therein).

4.2 The SOC Hypothesis

The challenge to understand fractals (Mandelbrot 1982) and the ubiquitous
1/f “noise” led Bak, Tang, and Wiesenfeld (BTW, 1987, 1988) to introduce
the concept of self-organized criticality, or SOC. The claim was that irre-
versible dynamics of systems with many coupled degrees of freedom (“com-
plex” systems) would naturally generate self-organization into a critical state
without fine tuning of any external or control parameter(s). By analogy with
traditional critical phenomena it was argued that in vicinity of the critical
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state there is universal behavior, robust with respect to variations of param-
eters and with respect to randomness, and that the system can be character-
ized by power-laws and a set of critical exponents. An impressive list of pub-
lications2 have been produced in the attempt to prove or disprove the SOC
hypothesis for the various systems. The phenomenon was demonstrated on
a number of automated lattice models, or “sandpiles,” displaying avalanche
dynamics and scale invariance (Bak et al. 1987, 1988; Tang and Bak 1988;
Zhang 1989; Kadanoff et al. 1989). The various aspects of self-organized crit-
icality dynamics have been reviewed by Bak (1996); Jensen (1998); Turcotte
(1999); Charbonneau et al. (2001); and Aschwanden (2011).

To qualify as SOC, the system must be open, be coupled with the exterior,
and involve many interacting degrees of freedom. In addition, its dynamics
must be thresholded and nonlinear, and the driving, or energy injection, rate
must be very slow (infinitesimal). An important advance of SOC is the re-
alization that fractals appear naturally through a self-organization process
and that the corresponding critical state is an attractor for the dynamics. In
many ways the notion of SOC can be thought of as belonging to the nascent
“science of complex systems” which addresses the commonalities between
apparently dissimilar natural, technological, and socio-economic phenomena,
e.g., market crashes and climate disruptions (e.g., Bunde et al. 2002; Albev-
erio et al. 2006). Despite its promising performance, the SOC hypothesis is
a subject of strong debate in the literature, and many issues related to it
remain controversial or in demand for further investigation.

4.2.1 SOC vs. Percolation

Before we proceed with the main topics of this chapter, we would like to ad-
dress the SOC hypothesis against the percolation problem discussed above.
Indeed SOC shares with percolation the implications of threshold behav-
ior and spatial self-similarity. An essential difference is that percolation is a
purely geometrical model, whereas SOC involves, in addition, the temporal
counterpart of the fractal, the 1/f noise (e.g., Montroll and Shlesinger 1982).
In many ways SOC is a spatio-temporal phenomenon where both spatial and
temporal self-similarities are coupled and long-ranged.

Another important aspect is that in percolation and other traditional crit-
ical phenomena, control parameters must be fine tuned to obtain criticality
(thus the name “control”). In SOC phenomena, control parameters make part
of the dynamical system instead: their values are defined dynamically as the
system self-adjusts to accommodate the changing exterior conditions. It is in
this sense that a SOC system is said to “automatically” (without a fine tuning

2 According to ISI’s Web of Science the number of papers citing the seminal work
by Bak, Tang, and Wiesenfeld (1987) as by the fall of 2012 is at three and a half
thousand.
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of parameters) reach the critical state.3 More so, we remark that there exists
a “self-organized” formulation of some standard percolation processes such as
the spread of deceases or forest fires. It was argued that their dynamics could
be formulated so that they mimic SOC phenomena (Grassberger and Zhang
1996). The characteristic feature here is that singularities at pc emerge not
in distribution of order parameters but of control parameters, making these
phenomena look like SOC. This formulation is advantageous, as it leads to
efficient numerical algorithms, allowing for a precise determination of the
critical behavior, as for instance in models of self-organized critical directed
percolation, with time interpreted as the preferred dimension (Maslov and
Zhang 1996).

4.2.2 The Guiding Mechanisms

An important issue concerns the mechanisms that “guide” a system to crit-
icality. These mechanisms are of two types. One type is associated with the
application of an extremal principle that the dynamics should obey in order
to satisfy the microscopic equations of motion. Examples of this type are
the invasion percolation (Wilkinson and Willemsen 1983) and Bak-Sneppen
models (Bak and Sneppen 1993; reviewed in Paczuski et al. 1996). In invasion
percolation4 − introduced in physics by Wilkinson and Willemsen (1983) −
the dynamics proceed along a path of least resistance under the action of cap-
illary forces. Under the condition that the flow rate is infinitesimal the system
finds its critical points that are stable and self-organized. The second type
is associated with the operation of a feedback mechanism between system’s
dynamical parameters (Kadanoff 1991) as for instance a feedback of the order
parameter on the control parameter(s) as discussed by Sornette (1992a) and
Gil and Sornette (1996). The Bak, Tang, and Wiesenfeld’s (BTW) sandpile is
a prominent example of this type. In sandpiles the unstable sand slides off to
decrease the slope and reinstall stability, thus providing a feedback of the par-
ticle loss process on the dynamical state of the pile. Generally, self-organized
criticality can occur in every system with a negative feedback mechanism.
Introducing a parallel with traditional thermodynamics, a thermostat is de-
signed in such a way that the same temperature is maintained through fluc-
tuations, so that the system is self-controlling.5 The self-organized nature of
the criticality stems from the fact that the spatial correlations being long-
ranged act as attracting the nonlinear feedback dynamics (Sornette 1992a).
We should stress that a feedback plays a very important role in the phenom-

3 Often one says that a SOC system possesses no tunable control parameters, but
that’s all about the wording.
4 To be distinguished from ordinary percolation discussed above.
5 Here, the notion of a “temperature” is thought as analog control parameter in SOC
phenomena.



114 Alexander V. Milovanov

ena of SOC as it ensures a steady state where the system is marginally stable
against a disturbance (Kadanoff 1991). Following Sornette (1992a), we also
note that using the idea of feedback it is possible to convert the standard
critical phenomena into self-organized critical dynamics, thereby extending
considerably the span of models exhibiting SOC. We illustrate this in sec-
tion 4.7.7, where a “self-organized” localization-delocalization transition on
a separatrix system of nonlinear Schrödinger equation with randomness is
considered.

4.3 Going With the Random Walks: DPRW Model

The percolation problem when account is taken for a dynamical feedback
mechanism offers a suitable platform to build toy-models of self-organized
critical phenomena. Early attempts in this direction refer to the “dilution-
by-hungry-ants” and “thermal-fuse” models (with and without a healing)
(Sornette 1992a). In what follows, we discuss a model (Milovanov 2010, 2011),
dubbed dynamic polarization random walk (DPRW) model, which combines
the implication of a feedback mechanism with the idea of random walks on a
fractal cluster at percolation. The model is formulated as a transport problem
for electrically charged particles of different kinds.6 The advent of random
walks in place of automated lattice redistribution rules makes it possible to
calculate the frequency-dependent complex susceptibility of the dynamical
system at SOC together with the memory (response) function and in the end
to obtain the SOC critical exponents in terms of three percolation critical
indices β, µ, and ν. This approach paves the way for an analytical theory of
SOC starting from the microscopic dynamical properties. One by-product of
the random-walk model is a demonstration (Milovanov 2010, 2011) that the
relaxation of a supercritical system to SOC is of Mittag-Leffler type (Mittag-
Leffler 1905; reviewed in Metzler and Klafter 2000) (similar to the Cole-Cole
behavior in glassy systems and polymers: see Coffey 2004). The Mittag-Leffler
relaxation implies that the behavior is multi-scale with a broad distribution
of durations of relaxation events consistently with a description in terms of
the fractional relaxation equation (e.g., Metzler and Klafter 2000; Sokolov et
al. 2002) and at odds with a single-exponential relaxation dynamics of the
Debye type (Coffey 2004 for an overview; references therein).

6 This electrical context of the model is non-crucial and can be relaxed. See section
4.5.2.
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4.3.1 Description of the Model

We consider a hypercubic d-dimensional (d ≥ 1) lattice confined between
two opposite (d − 1)-dimensional hyperplanes, which form a parallel-plate
“capacitor” as shown in Fig. 4.3. The plate on the right-hand-side is electri-
cally grounded. Free charges are built by external forces on the capacitor’s
left plate. When a unit free charge is added to the capacitor the lattice re-
sponds by burning a unit “polarization” charge, which is an occupied site
added at random to the lattice. When a unit free charge is removed from
the capacitor a randomly chosen occupied site is converted into a “hole” site
(missing occupied site). A hole will be deleted from the system (converted
into empty site) if/when the corresponding free charge has reached (or been
moved to) the ground level. There is a limit, Qmax, on the amount of the
free charges the capacitor can store, and this is defined as Qmax = epcN ,
where e is the elementary charge (e = −1), pc is the percolation threshold,
and N is the total number of sites across the lattice. Thus, the ability of the
capacitor to store electric charges is limited to the occurrence of the infinite
cluster at the percolation point. If, at any time, the above limit is exceeded,
a double amount7 of the free charges in excess of Qmax will be removed from
the capacitor and will be distributed between the sites of the infinite cluster
with equal probability. The implication is that the capacitor leaks electric
charges above the percolation point. This property reflects the onset of the
dc conduction at the threshold of percolation.

When a hole appears on the infinite cluster it causes an activation event
with the following consequence: One of the nearest-neighbor occupied sites,
which is a random choice, will deliver its charge content to the hole. The hole
which has just received the polarization charge becomes an ordinary occu-
pied site, while the donor site becomes a hole. The newborn hole, in its turn,
will cause a further activation event at the location where it has occurred,
thus sustaining/triggering a chain reaction of redistribution of polarization
charges. The chain reaction continues until the hole reaches the grounded
plate where it is absorbed (converted into an empty site). When a hole ap-
pears on a finite cluster it causes a chain reaction of activation events in
much a similar way as on the infinite cluster, but with an extra condition
regarding the termination of the activation process: The chain reaction stops
if (i), likewise to the infinite cluster case, the hole reaches the grounded plate
where it is converted into empty site, or if (ii) there are no more activities
going on on the infinite cluster. In the latter case the finite cluster freezes in
a “glassy” state with the quiescent holes in it until either a new hole appears
on the infinite cluster or one or more occupied site are added to the lattice
by external forces.

7 This mimics non-zero inductance in the conduction process.
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Fig. 4.3: Dynamic polarization random walk (DPRW) model. Grey, blue,
and azure particles show respectively the free charges, polarization charges,
and holes. Left: System below the percolation point. Free charges are built
by external forces on the capacitor’s left plate. Right: System slightly above
the percolation point, with an illustration of hopping activities on the lattice.
Adapted from Milovanov (2011).

4.3.2 Random-Walk Hopping Process

Essentially, the holes interchange their position with the nearest-neighbor
occupied sites, and it appears reasonable to model this process as interchange
hopping process (e.g., Dyre and Schrøder 2000). We shall assume, following
de Gennes (1976), that there is a characteristic microscopic hopping time,
which is taken to be unity, but more general hopping models can be obtained
by introducing a distribution of waiting times between consecutive steps of
the hopping motion (continuous time random walks, or CTRW’s) (Montroll
and Weiss 1965; Schneider and Wyss 1989). With the above assumption that
the site acting as donor is a random choice the transport model is defined as
a random-walk hopping model. Similarly to the hole case, the free charges
are assumed to behave as unbiased random walkers after their re-injection
on the infinite cluster. They will hop at a constant rate between the nearest-
neighbor occupied sites in random direction on the cluster on which they
are initially placed until they reach the electrically grounded plate where
they sink into the ground level of the circuit (see Fig. 4.3). The holes act as
conducting sites for the motion of the free charges. The charged plate acts
as a perfectly reflecting boundary (as opposed to the absorbing boundary
at the electrically grounded plate). Hops to empty sites are forbidden. The
latter condition limits the random walks to fractal geometry of the threshold
percolation.
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4.3.3 Dynamical Geometry of Threshold Percolation

Overall, one can see that the system responds by chain reactions of random-
walk hopping processes when it becomes slightly supercritical and it is quies-
cent otherwise. Excess free charges dissipating at the grounded plate provide
a feedback mechanism by which the system returns to the percolation point.
There will be a slowly (as compared to hopping motions) evolving dynamical
geometry of the threshold percolation resulting from the competition between
the adding of occupied sites to the lattice and the charge-releasing chain re-
actions. Based on the quantitative analysis below, we identify this state as a
SOC state. This general picture based on the idea of a dynamic polarization
response with random-walk hopping of the charge carriers has been called
dynamic polarization random walk (DPRW) model (Milovanov 2010, 2011).

In the DPRW SOC model, chain reactions of the hopping motion acquire
the role of “avalanches” in the traditional sandpiles. In the present analysis,
we are interested in obtaining the critical exponents of the DPRW model by
means of analytical theory. Numerical simulation of the DPRW dynamics is
under way for comparison with the analytical predictions. By the time this
chapter is being written, the characteristic signatures of multi-scale conduc-
tivity response of the dynamical system at criticality have been confirmed in
the computer simulation model. In Fig. 4.4, we illustrate the existence of re-
laxation events of various sizes due to hole hopping on a 10×10 square lattice
with random distribution of the conducting nodes and the probability of site
occupancy such as to mimic the percolation threshold and the conjectured
SOC activities.

4.4 Linear-Response Theory

4.4.1 Dynamics and Orderings

Starting from an empty lattice (no potential difference between the plates),
by randomly adding occupied sites to it, one builds the fractal geometry of
the random, or uncorrelated, percolation, characterized by three percolation
critical exponents β, ν, and µ (connected clusters have fractal dimensionality
df = d− β/ν) (Stauffer 1979; Isichenko 1992; Nakayama et al. 1994; Havlin
and ben-Avraham 2002). Remark that the infinite percolation cluster, in the
true sense of the wording, exists only in the thermodynamic limit when the
lattice itself is infinite. This limit arises because of the need to model the
system-sized conducting clusters in terms of fractal geometry. In the absence
of holes this percolation geometry is static (polarization charges can only
move by exchanging their position with a hole) but when the holes appear on
the lattice they cause local rearrangements in the distribution of the conduct-
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Fig. 4.4: Sizes of chain reactions due to hole hopping on a 10×10 square
lattice. Each spike corresponds to a chain reaction of hole hopping on the
system-scale conducting cluster, with the height proportional to the number
of hops to absorption at the grounded plate. This simple numerical realization
illustrates the existence of relaxation events of various sizes consistently with
the implication of SOC. Adapted from Milovanov (2011).

ing sites. As a consequence, the conducting clusters on which the transport
processes concentrate change their shape and their position in the real space.
In the analysis of this section we shall require that the average number den-
sity of the holes be very small compared to the average number density of
the polarization charges. The implication is that the system remains near the
percolation point despite the slow evolution of the conducting clusters. Note
that the lattice rules are such as to preserve the properties of the random
percolation. In fact, no correlations are introduced in the distribution of the
conducting sites at any step of the lattice update.

4.4.2 Frequency-Dependent Conductivity and Diffusion
Coefficients

Given an input electric driving field E(t, r) the polarization response of the
system is defined through

P(t, r) =

∫ +∞

−∞
χ(t− t′)E(t′, r)dt′, (4.4)

where the response function χ(t−t′) is identically zero for t < t′ as required by
causality. We should stress that nonlocal integration over the space variable
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is not needed here in view of the local (nearest-neighbor) character of the
lattice interactions. In a model in which the assumption of locality is relaxed,
as for instance in models permitting particle’s Lévy flights, the integration
over the space variable is expected to produce a physically nontrivial effect.
We do not consider such models here. A Fourier transformed χ(t) defines the
frequency-dependent complex susceptibility of the system, χ(ω). In a basic
theory of polarization response one also introduces the frequency-dependent
complex ac conductivity, σac(ω), which is related to χ(ω) by the Kramers-
Kronig integral (Eq. 4.10 below). The dependence of the ac conductivity on
frequency, specialized to the random walks on percolation systems, is given
by the scaling relation σac(ω) ∝ ωη, where the power exponent η (0 ≤ η ≤ 1)
is expressible in terms of the percolation indices β, ν, and µ as η = µ/(2ν +
µ − β) (Gefen et al. 1983). We should stress that the scaling σac(ω) ∝ ωη

incorporates conductivity responses from all clusters at percolation including
those finite. In the DPRW model these implications are matched by the
mechanism of the hole conduction permitting the polarization current on both
infinite and finite clusters. The general linear-response theory expression for
the conductivity σac(ω) in terms of the mean-square displacement from the
origin

〈
r2(t)

〉
is (Scher and Lax 1973)

σac(ω) =
ne2

kBT
D(ω), (4.5)

where
1

nd
D(ω) = lim

ε→0+

[
(iω)2

∫ ∞
0

e−iωte−εt
〈
r2(t)

〉
dt

]
(4.6)

with nd a constant depending on the dimensionality of the lattice and n and
e the density and charge of the carriers, respectively. The function D(ω) has
the sense of the frequency-dependent diffusion coefficient (Lax 1958). In the
zero-frequency limit, Eq. (4.5) reproduces the well-known Einstein relation
between the static diffusion coefficient on the infinite cluster, D∞, and the
dc conductivity, σdc = limω→0 σac(ω). Note that the dc conductivity occurs
only through the infinite cluster (p > pc), as opposed to the ac conductiv-
ity response, which occurs through both finite and infinite clusters. In what
follows, we require that the frequency ω be large compared to the character-
istic evolution frequency in the distribution of the conducting sites. Denoting
the latter frequency by ω∗, we have ω � ω∗. Within the present order-
ings, the scaling of the frequency-dependent diffusion coefficient is given by
D(ω) ∝ ωη. Consistently with the above definitions, the inverse frequency,
1/ω∗, is ordered as the characteristic diffusion time, τ∗, on the infinite clus-
ter, i.e., τ∗ ' ξ2/D(ω∗). Note that this time will depend on ω∗ in accordance
with Eq. (4.5). Hence, ω∗ ' 1/τ∗ ' D(ω∗)/ξ

2, where ξ ∝ |p − pc|−ν is the
diverging pair connectedness length; p is the probability of site occupancy;
and pc is the percolation threshold. We have, at the margins of self-similar
behavior, D(ω∗) ∝ (ω∗)

η, implying that ω∗ ∝ |p − pc|2ν/(1−η). Observe that
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ω∗ → 0 for p → pc. Remembering that there is a microscopic hopping time,
which is taken to be unity, we assess the Kubo number in vicinity of the SOC
state as

Q∗ ' 1/ω∗ξ ∝ |p− pc|−ν(1+η)/(1−η). (4.7)

One sees that Q∗ →∞ in the limit p→ pc. The Kubo number (Kubo 1963;
Brissaud and Frisch 1974) is a suitable dimensionless parameter which quan-
tifies how the evolution processes in the lattice compare with the microscopic
hopping motions. The divergency of the Kubo number at criticality shows
that there is a time scale separation: fast hopping motions vs. infinitesimal
evolution change. In terms of the Kubo number (Q∗ → ∞), the diffusion
coefficient D(ω∗) becomes

D(ω∗) ∝ ω∗Qγ∗ , (4.8)

where we have introduced γ = 1 − η. This scaling law appears in models of
anomalous diffusion by low-frequency turbulence (Isichenko 1992; Reuss and
Misguish 1996; Zimbardo et al. 2000; Pommois et al. 2001; Milovanov 2001,
2009). Special cases of Eq. (4.8) include the well-known Bohm scaling (see,
e.g., Dupree 1967), characterized by γ = 1, as well as the anomalous so-called
“percolation” scaling (γ ≈ 0.7), dating back to diffusion-advection models
of Isichenko and co-workers (Gruzinov et al. 1990; Isichenko 1991, 1992).
Alternatively, the diffusion coefficient on a time varying fractal distribution,
Eq. (4.8), can be deduced from the general scaling form (Milovanov 2009)

〈r2(t)〉 = ξ2(t/τ∗)f(t/τ∗), (4.9)

where f is a scaling function, which interpolates between the initial-time
power-law and flat asymptotic (t→ +∞) behavior: f(∞) = const. The form
in Eq. (4.9) is similar to that considered by Gefen et al. (1983) for anomalous
diffusion on percolation clusters (in their model, τ∗ ∝ ξ2+θ), and earlier by
Straley (1980).

4.4.3 Power-Law Power Spectral Density

By applying the Kramers-Kronig relations Imχ(ω) ∝ σac(ω)/ω and

Reχ(ω) ∝ V.P.

∫
dω′

ω′(ω′ − ω)
σac(ω′) (4.10)

it is found that χ(ω) ∝ ω−γ , with γ = 1−η. A Fourier transformed Eq. (4.4)
reads P(ω, r) = χ(ω)E(ω, r). One can see that the power spectral density,
S(ω), of the system response to a white-noise perturbation, E(ω, r) = 1, will
be proportional to |χ(ω)|2. The end result is summarized as follows:
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S(ω) ∝ |χ(ω)|2 ∝ |σac(ω)/ω|2 ∝ ω−α, (4.11)

where α = 2(1 − η) = 2γ. The conclusion is that the power spectral density
in the DPRW model is given by an inverse power-law distribution, with the
α value depending on scaling properties of the ac conductivity response.

4.4.4 Stretched-Exponential Relaxation and the
Distribution of Relaxation Times

Next, we obtain the distribution of relaxation times self-consistently. For
this, assume that the system is slightly supercritical, then consider a charge
density perturbation, δρ(t, r), caused by the presence of either free charges
or holes on the conducting clusters. “Slightly supercritical” means that the
dependence of the ac conductivity response on frequency can, with good ac-
curacy, be taken in the power-law form σac(ω) ∝ ω1−γ discussed above. The
implication is that at adding δρ(t, r) to the conducting system at percola-
tion we neglect the departure of the systems geometric properties from pure
self-similarity. Without loss in generality, we assume that the perturbation
δρ(t, r) is created instantaneously at time t = 0. That means that the func-
tion δρ(t, r) ≡ 0 for t < 0 for all r. The perturbation δρ(t, r) generates an
electric field inhomogeneity, δE(t, r) in accordance with Maxwell’s equation
∇ · δE(t, r) = 4πδρ(t, r). Consistently with the above discussion, we adopt
that for t > 0 the decay of δρ(t, r) is due to the spreading of charge-carrying
particles (electrons and/or holes) via the random walks on the underlying
fractal distribution. The polarization response to δE(t, r) is given by

δP(t, r) =

∫ +∞

−∞
χ(t− t′)δE(t′, r)dt′, (4.12)

where, as usual, χ(t− t′) ≡ 0 for t < t′. The density of relaxation currents is
defined as the time derivative of δP(t, r), i.e.,

δj(t, r) =
∂

∂t

∫ +∞

−∞
χ(t− t′)δE(t′, r)dt′. (4.13)

The continuity implies that

∂

∂t
δρ(t, r) +∇ · ∂

∂t

∫ +∞

−∞
χ(t− t′)δE(t′, r)dt′ = 0. (4.14)

Taking ∇· under the integral sign, then eliminating δE(t, r) by means of
Maxwell’s equation ∇ · δE(t, r) = 4πδρ(t, r), we find, with the self-consistent
charge density,
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∂

∂t

(
δρ(t, r) + 4π

∫ +∞

−∞
χ(t− t′)δρ(t′, r)dt′

)
= 0. (4.15)

In writing Eqs. (4.14) and (4.15) we have also assumed that t > 0. We now
integrate in Eq. (4.15) to find

δρ(t, r) + 4π

∫ +∞

−∞
χ(t− t′)δρ(t′, r)dt′ = g(r). (4.16)

Here, the function g(r) is an arbitrary function of the position vector r, which
appears in the derivation as the constant of integration over time. Under the
conditions χ(t−t′) ≡ 0 for t < t′ and δρ(t, r) ≡ 0 for t < 0 for all r, Eq. (4.16)
reduces to

δρ(t, r) + 4π

∫ t

0

χ(t− t′)δρ(t′, r)dt′ = g(r). (4.17)

If we allow t→ +0, we find that for γ > 0 the integral term on the left-hand-
side goes to zero (as ∝ tγ):

lim
t→+0

∫ +∞

−∞
χ(t− t′)δρ(t′, r)dt′ = lim

t→+0

∫ t

0

χ(t− t′)δρ(t′, r)dt′ = 0, (4.18)

from which it is clear that g(r) = limt→+0 δρ(t, r). We consider this last
condition as the initial condition for the relaxation problem. Essentially the
same condition holds in the limit γ → 0, provided that limt→+0 is taken first.
A Fourier transformed Eq. (4.17) reads

δρ(ω,k) + 4πχ(ω)δρ(ω,k) = g(k)/ω, (4.19)

where k is position vector in reciprocal space, and g(k) is the Fourier image
of g(r). Writing the susceptibility as χ(ω) = τ−γλ ω−γ/4π with τλ a time
constant it is found that

δρ(ω,k) =
1

ω + τ−γλ ω1−γ
g(k). (4.20)

The quantity τλ has the sense of a lifetime of a perturbation with wavelength
λ. We expect that τλ ∝ λz at criticality, where z is a scaling exponent.
A derivation of this scaling relation will be given shortly. Separating the
variables, we write δρ(ω,k) = ϕ(ω)g(k), with

ϕ(ω) = 1/(ω + τ−γλ ω1−γ), (4.21)

which we consider as the relaxation function in the frequency domain. On
inversion to the time domain, Eq. (4.21) generates the Mittag-Leffler function,
Eγ [−(t/τλ)γ ], which has series expansion (Mittag-Leffler 1905; reviewed in
Metzler and Klafter 2000)
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Eγ [−(t/τλ)γ ] =

∞∑
n=0

[−(t/τλ)γ ]n

Γ (1 + γn)
. (4.22)

Thus, ϕ(t) = Eγ [−(t/τλ)γ ]. One sees that the relaxation to SOC of a slightly
supercritical state is described by the Mittag-Leffler function Eγ [−(t/τλ)γ ],
and not by a simple exponential function as for standard relaxation. We note
in passing that the Mittag-Leffler function is the natural generalization of
the exponential function. The latter is included as a special case γ = 1. For
times t � τλ, the Mittag-Leffler function, Eq. (4.22), can be approximated
by a stretched-exponential the so-called Kohlrausch-Williams-Watts (KWW)
relaxation function (Kohlrausch 1854; Williams and Watts 1970)

Eγ [−(t/τλ)γ ] ' exp[−(t/τλ)γ/Γ (1 + γ)], (4.23)

which is often found empirically in various amorphous materials as for in-
stance in many polymers and glass-like materials near the glass transition
temperature (for reviews see, e.g., Phillips 1996 and Kaatz et al. 1996; refer-
ences therein). The KWW relaxation function can conveniently be considered
as a weighted average of the ordinary exponential functions, each correspond-
ing to a single relaxation event in the system (Montroll and Bendler 1984):

exp[−(t/τλ)γ/Γ (1 + γ)] =

∫ ∞
0

e−t/∆twγ(∆t)d∆t. (4.24)

The weighting function wγ(∆t) is given by Eqs. (51d) and (55) of Montroll
and Bendler (1984) where one replaces the exponent α with γ, the time
constant T with τλ, and the variable µ with τλ/∆t. In our notation:

wγ(∆t) = (τλ/∆t
2)Lγ,−1(τλ/∆t), (4.25)

where Lγ,−1 is the Lévy distribution function with skewness −1 (e.g.,
Wolfgang and Baschnagel 1999). Assuming a long-wavelength perturbation
(i.e., the parameter λ being much longer than the microscopic lattice dis-
tance: λ � 1), and setting τλ/∆t � 1, we can further approximate the
Lévy distribution Lγ,−1 by the Pareto inverse-power distribution. This gives
Lγ,−1(τλ/∆t) ∝ (τλ/∆t)

−(1+γ) leading to a pure power-law distribution of
relaxation times, consistently with the expectation for SOC:

wγ(∆t) ∝ ∆t−2∆t1+γ ∝ ∆t−η. (4.26)

This power-law distribution was earlier conjectured for SOC on the base of
scaling arguments (Tang and Bak 1988). Our conclusion so far is that the
relaxations are multi-scale, in accordance with Eq. (4.24), and that their
durations are power-law distributed. The distribution is heavy-tailed in the
sense that

∫
d∆twγ(∆t) ∝ τγλ →∞ for τλ →∞.
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4.4.5 Consistency Check

In a basic theory of dielectric relaxation one writes the frequency-dependent
complex dielectric parameter as (Montroll and Bendler 1984; Williams 1989)

ε(ω)− 1 ∝ −
∫ ∞

0

dϕ(t)

dt
eiωtdt, (4.27)

where ϕ(t) is the relaxation function that describes the decay of polarization
after the polarizing electric field has been stepped down or removed instan-
taneously. In the DPRW model, a step-down type electric field occurs as
a consequence of re-injection of the free charges to the infinite cluster. The
ensuing relaxation dynamics are mimicked by the chain reactions of hole hop-
ping which act as to properly redistribute the polarization charges across the
lattice. Based on the above analysis, we identify the relaxation function in
Eq. (4.27) with the Mittag-Leffler function to yield ϕ(t) ' Eγ [−(t/τλ)γ ]. In
vicinity of the critical state, because the upper limit on τλ diverges, we can,
moreover, replace Eγ [−(t/τλ)γ ] with exp[−(t/τλ)γ/Γ (1 + γ)] for (almost) all
0 < t ≤ ∞. Thus, for p→ pc, ϕ(t) ' exp[−(t/τλ)γ/Γ (1 + γ)]. Integrating by
parts in Eq. (4.27), after a simple algebra one obtains

ε(ω)− 1 ∝ 1− sV(s) + isQ(s), (4.28)

where s = ωτλ is a dimensionless frequency, and Q(s) and V(s) are the Lèvy
definite integrals:

Q(s) =

∫ +∞

0

exp (−uγ) cos (us)du, (4.29)

V(s) =

∫ +∞

0

exp (−uγ) sin (us)du. (4.30)

In the parameter range of multi-scale relaxation response, τλ/∆t� 1, ωτλ �
1, the following series expansions of the Lèvy integrals hold (Montroll and
Bendler 1984):

Q(s) =

∞∑
n=1

(−1)n−1 1

snγ+1

Γ (nγ + 1)

Γ (n+ 1)
sin

nγπ

2
, (4.31)

V(s) =

∞∑
n=0

(−1)n
1

snγ+1

Γ (nγ + 1)

Γ (n+ 1)
cos

nγπ

2
. (4.32)

From Eqs. (4.31) and (4.32) one can see that the expansion of Q(s) starts
from a term which is proportional to s−(1+γ), and so does the expansion of
V(s)− 1/s. Hence, up to higher order terms, ε(ω)− 1 ∝ s−γ . Given this, one
applies the Kramers-Kronig relations sQ(s) ∝ σac(ω)/ω and
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1− sV(s) ∝ V.P.

∫
dω′

ω′(ω′ − ω)
σac(ω′) (4.33)

to find the scaling of the ac conduction coefficient to be σac(ω) ∝ ω1−γ . By
comparing this with the above expression σac(ω) ∝ ωη one reiterates that
γ = 1−η consistently with the distribution of durations of relaxation events,
Eq. (4.26).

4.4.6 Fractional Relaxation and Diffusion Equations

As was shown by Glöckle and Nonnenmacher (1993), the Mittag-Leffler func-
tion, Eq. (4.22), is the solution of the fractional relaxation equation

τγλ
dϕ(t)

dt
= −0D

1−γ
t ϕ(t), (4.34)

where

0D
1−γ
t ϕ(t) =

1

Γ (γ)

∂

∂t

∫ t

0

ϕ(t′)

(t− t′)1−γ dt
′ (4.35)

is a fractional time the so-called Riemann-Liouville derivative (Podlubny
1999; Metzler and Klafter 2000). Partial cases of this derivative are the
unity operator for γ → 1 and ∂/∂t for γ → 0. The subscript “zero”,
added to 0D

1−γ
t , signifies that the integration over time on the right-hand-

side of Eq. (4.35) starts from t = 0. In effect we choose this as the begin-
ning of the system’s time evolution. Mathematically, the Riemann-Liouville
derivative has the structure of an ordinary time derivative, ∂/∂t ≡ ∂t, act-
ing on a Laplace convolution of the function ϕ(t) with a power-law, i.e.,

0D
1−γ
t ϕ(t) = [1/Γ (γ)] ∂t

[
tγ−1 ∗ ϕ(t)

]
≡ [1/Γ (γ)] tγ−1 ∗′ϕ(t), where the sym-

bol ∗′ means that the time differentiation, ∂t, applies to the entire convolution
integral.

It is noticed, following Sokolov et al. (2002), that the Mittag-Leffler func-
tion Eγ [−(t/τλ)γ ] describes the relaxation toward equilibrium of particles
governed by the fractional diffusion equation, or FDE

∂

∂t
P (t, r) = 0D

1−γ
t ∇2P (t, r), (4.36)

where P (t, r) is the probability density of finding a particle (random walker)
at time t at point r, and the Laplacian operator stands for the local (nearest-
neighbor) character of the lattice interactions. Fractional equations of the
diffusion type generalize Fick’s second law and the Fokker-Planck equation by
taking into account memory effects and their occurrence in the SOC problem
sounds in fact very natural. The fractional approach is advantageous, as it
makes it possible to describe complex systems with anomalous behavior in
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much the same way as simpler systems (Metzler and Klafter 2000; Sokolov
et al. 2002).

4.4.7 Derivation of the Fractional Diffusion Equation

It is instructive to obtain the fractional diffusion equation (Eq. 4.36) directly
from the DPRW relaxation model. For this, let us introduce the electro-
static potential, δΦ(t, r), corresponding to the electric field inhomogeneity,
δE(t, r) = −∇δΦ(t, r). Upon substituted into Eq. (4.14),

∂

∂t
δρ(t, r) =

∂

∂t

∫ +∞

−∞
χ(t− t′)∇2δΦ(t′, r)dt′. (4.37)

In the vicinity of self-organized critical state, we can represent the total
charge density, ρ(t, r), as a sum of “unperturbed” or background density,
ρc = |e|pc, and a perturbation, δρ(t, r), describing the deviation from criti-
cality: ρ(t, r) = ρc + δρ(t, r). To obtain the dependence of ρ(t, r), we use the
effective-medium approximation (Bruggeman 1935), a standard technique for
calculating average physical properties of many-body systems. The idea is to
think of the particles as embedded into an “effective” potential, δΦ(t, r),
where they will be Boltzmann-distributed in accordance with

ρ(t, r) = ρc exp [eδΦ(t, r)/T ] . (4.38)

Self-consistently, one requires that, on the average, the embedding in the ef-
fective medium has the same overall property as the effective medium itself
(Bruggeman 1935; Dyre and Schrøder 2000). In writing Eq. (4.38) we took
into account that the perturbation, δρ(t, r), is due to negatively charged parti-
cles (electrons and/or holes). The normalization condition is defined through
ρ(t, r) → ρc for δΦ(t, r) → 0. In the above, the parameter T has the sense
of a “thermodynamic temperature,” associated with the random motion of
current-carrying particles on the conducting clusters. For |eδΦ(t, r)|/T � 1,
expanding the exponential function on the right of Eq. (4.38), one finds
δρ(t, r) ≈ (pce

2/T )δΦ(t, r). Thus, for small perturbations (high tempera-
tures), δρ(t, r) is proportional to δΦ(t, r), as it should. Eliminating δΦ(t, r)
in Eq. (4.37), we have

∂

∂t
δρ(t, r) =

∂

∂t

∫ +∞

−∞
χ(t− t′)(T/pce2)∇2δρ(t′, r)dt′. (4.39)

The memory function, χ(t), is obtained as Fourier inversion of χ(ω) =
τ−γλ ω−γ/4π, yielding χ(t) ∝ tγ−1. Under the conditions χ(t−t′) ≡ 0 for t < t′

and δρ(t, r) ≡ 0 for t < 0 for all r, the improper integration in Eq. (4.39) can
be performed in the limits from 0 to t. Collecting all dimensional and numer-
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ical parameters in one effective “diffusion coefficient,” Aγ ∝ (T/4πpce
2)τ−γλ ,

we can write

∂

∂t
δρ(t, r) =

1

Γ (γ)

∂

∂t

∫ t

0

Aγ
(t− t′)1−γ∇

2δρ(t′, r)dt′, (4.40)

which is an equivalent form of Eq. (4.36) above. The fractional diffusion
equation (Eq. 4.40) can be thought of as deriving from the generalized “Fick’s
law”

δj(t, r) = − 1

Γ (γ)

∂

∂t

∫ t

0

Aγ
(t− t′)1−γ∇δρ(t′, r)dt′, (4.41)

or δj(t, r) = −0D
1−γ
t Aγ∇δρ(t, r), which is readily deduced from Eq. (4.13)

in the effective-medium approximation. One sees that the current δj involves
in some way the past values of the concentration gradient, so that the de-
pendence is not instantaneous in general, by contrast with the traditional
Fickian case. Equation (4.41) can equivalently be obtained from the general
scaling law for anomalous diffusion on percolation systems (Milovanov 2009).
A derivation using CTRW’s can be found in Metzler et al. (1998, 1999). We
should stress that the non-Markovian nature of Eqs. (4.40) and (4.41), to-
gether with the fractional relaxation equation (Eq. 4.34) accounts for the
long-time memory effects in SOC phenomena, where one believes the time
evolution exhibits long tails and infinite correlation scale (Sornette 1992a).

The occurrence of the fractional diffusion equation (Eq. 4.40) might be
interpreted, with the aid of the proposed SOC model, in favor of considering
SOC as one important case for fractional kinetics (Shlesinger et al. 1993).
Indeed the concept of fractional kinetics enters different areas of research,
such as turbulent transport in plasmas and fluids, particle dynamics in po-
tential fields, quantum optics, and many others. This subject is summarized
in comprehensive reviews (Metzler and Klafter 2000, 2004; Zaslavsky 2002).
In many ways equations built on fractional derivatives offer an elegant and
powerful tool to describe anomalous transport in complex systems (Zaslavsky
2002). There is an insightful connection with a generalized master equation
formalism along with a mathematically convenient way for calculating trans-
port moments as well as solving initial and boundary value problems (Metzler
and Klafter 2000, 2004). The fundamental solution or Green’s function of the
fractional Eq. (4.36) is evidenced in Table 1 of Metzler and Klafter (2004).

4.4.8 Dispersion-Relation Exponent

In sandpile SOC models, one is interested in how the lifetime of an activation
cluster scales with its size (Zhang 1989). In the DPRW model, by activation
cluster one means a connected cluster of activated sites. An occupied site is
said “activated” if it has become a hole or if it contains a free charge. Clearly,
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activation clusters can only exist above the percolation threshold. Note that
activation clusters are subsets of the underlying conducting cluster of polar-
ization charges. The notion of activation cluster is but a visualization of the
charge density inhomogeneity δρ(t, r) in terms of a connected distribution
of activated sites. Activation clusters decay because the constituent charged
particles (holes and/or free charges) diffuse away via the random walks.

Consider an isotropic activation cluster composed of free particles. (The
nature of the particles does not matter here − the hole case is just similar.)
It is assumed for convenience, without loss of generality, that each site of an
activation cluster contains only one particle. Thus, the number density of the
free particles inside the activation area is equal to one. It steps down to zero
just outside. If the microscopic lattice distance is a (a = 1), then there is a
unit density gradient across the boundary of the activation cluster looking
inside. Because of this gradient the activation cluster will be loosing particles
on the average. A particle that has crossed the boundary against the direction
of the gradient is considered to be lost from the cluster. As the particles
dissipate, the location of the boundary shifts inward with speed u. The local
flux density of those particles leaving per second the activation area is just the
gradient times the local diffusion coefficient. The latter depends on frequency
of the relaxation process as D(ω) ∝ ωη in accordance with Eq. (4.5). If l is the
current size of the cluster, then the corresponding relaxation frequency is ω '
u/l. Using this, the frequency dependence of the diffusion coefficient can be
translated into the corresponding l-dependence, the result being D(l) ∝ l−η.
Balancing the rate of decay of the cluster with the outward flux of the particles
we write dl/dt ∝ −l−η. Integrating this simple equation over time from t = 0
to t = τλ and over l from l = λ to l = 0 one finds the dispersion relation
τλ ∝ λz, typical for the SOC phenomena, with the exponent z = 1+η = 2−γ.

4.4.9 The Hurst Exponent

The persistency of relaxation is measured by the Hurst exponent, H, which
is related to our z = 1 + η via H = 1/z. The Hurst exponent finds its sig-
nificance in the statistics of self-affine graphs of the signals where it defines
the correlations between past and future increments (Hurst 1951; Mandel-
brot and Van Ness 1968; Feder 1988). Depending on the value of H, one
distinguishes between fractional Brownian motions (0 < H < 1) and frac-
tional Brownian noises (H < 0). (See, also, section 2.3.3, this book.) The
difference is that a noise-like function has a stationary quality in the sense
that its variance (∝ t2H) does not asymptotically grow with time. We note
in passing that H = 0 is a very special value which separates motion-like and
noise-like response processes. Focusing on the motion-like signals, H > 1/2
represents persistence (super-diffusion), and H < 1/2 anti-persistence (sub-
diffusion). Noting here that the exponent η takes the values between 0 and
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1, one sees that the value of H = 1/(1 + η) lies between 1/2 and 1. In this
parameter range, the signal is motion-like persistent. That means, precisely,
that the existing tendency is maintained through the dynamics (Feder 1988).
Thus, the correlations are present at all time scales, consistently with the
expectation for SOC. It is in this sense that a persistent signal is said to be
long-time correlated (Feder 1988). In the mean-field (i.e., diffusion) limit of
z → 2, the correlation vanish, so that the usual “Brownian” value, H = 1/2,
is reinstalled.

4.4.10 Activation-Cluster Size Distribution and the
τ -Exponent

Following Zhang (1989), we introduce the distribution law of the size ς of
activation clusters, wτ (ς) ∝ ς−τ+1, which also defines the distribution of the
particle flows caused by a single chain reaction (Bak et al. 1987, 1988; Tang
and Bak 1988).8 The exponent of the power-law, τ , is obtained from Eq. (5)
of Tang and Bak (1988), where one replaces the “noise” exponent φ with α
in accordance with Eq. (4.11) above, and the fractal dimension D with the
hyperscaling df = d−β/ν, leading to τ = 3−αz/df . The present result differs
from the expression obtained in Zhang (1989) in that it takes into account
the fractal geometry of activation clusters in the vicinity of the criticality.
Note that the dependence on the ambient dimension, d, enters the τ value
through the hyperscaling, i.e., τ = 3 − αz/(d − β/ν), which also involves
the percolation indices β and ν. When one notes that the exponent of the
stretched-exponential relaxation is given by γ = 1− η = 2− z (see Eq. 4.24),
one may apply the formula τ = 3 − αz/df in any d ≥ 1, consistently with
the implication of the “hyperuniversal” fractal dimension, df = d−β/ν (e.g.,
Nakayama et al. 1994; Havlin and ben-Avraham 2002), and at odds with the
mention in Tang and Bak (1988, p. 2349) that it gives rise to “logarithmic
singularities” in d = 2.

4.4.11 Occurrence Frequency Energy Distribution and
the ß-Exponent

It is convenient to think of the activation clusters as containing a certain
amount of “energy” which is released when the comprising free particles
dissipate to the boundaries. Using here that the electric charge of the free
particles is a conserved quantity, we may associate the energy content of the

8 Here we use −τ + 1 as in Tang and Bak (1988), instead of −τ as in Zhang (1989),
to be the exponent of wτ (ς).
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activation clusters with their electric charge content. When one notes that, by
assumption, each site of an activation cluster contains only one particle, and
that, moreover, the clusters are self-similar at percolation, one finds that the
energy confined by a cluster of size ∆l is proportional to its fractal volume,
∆Vf ∝ ∆ldf , where df = d− β/ν is the “hyperuniversal” fractal dimension.
Thus, we have, for the energy content, ∆ε ∝ ∆Vf ∝ ∆ldf . More so, the
energy confinement time, ∆t, is obtained as the activation cluster lifetime.
The latter is defined from the dispersion relation to be ∆t ∝ ∆lz, where z is
the dispersion relation exponent. The implication is that each relaxation event
with the duration ∆t dissipates electric charges at a certain spatial scale,
∆l, so that the characteristics of the relaxation events in space and time are
inherently coupled in the vicinity of SOC, as they should. Eliminating ∆l with
the aid of the dispersion relation, we arrive at the scaling ∆ε ∝ ∆tdf/z, from
which the mean-field behavior,∆t ∝ ∆ε1/2, can be deduced. Differentiating in
Eq. (4.26) with respect to ∆t, we obtain the occurrence frequency distribution
of durations of relaxation events Nγ(∆t) = dwγ(∆t)/d∆t ∝ ∆t−η−1. If we
substitute this distribution with the scaling of the confined energy, we find

Nγ(∆ε) = dwγ(∆ε)/d∆ε = dwγ(∆t)/d∆t · d∆t/d∆ε ∝ ∆ε−ß, (4.42)

where the exponent of the power-law is given by ß = 1 + ηz/df . The distri-
bution in Eq. (4.42) has the sense of occurrence frequency energy distribu-
tion of relaxation events in a dynamical system at SOC. This distribution
finds its significance in the study of solar flares and gamma bursts (Hudson
1991; Charbonneau et al. 2001; Aschwanden 2011, 2012; references therein).
More applications can be proposed for the statistical physics of faulting and
earthquakes (e.g., Jensen 1998, Turcotte 1999). Indeed the distribution in
Eq. (4.42) can be interpreted as a power-law distribution of seismic energy re-
leased through earthquakes, equivalent to the Gutenberg-Richter frequency-
magnitude law (Gutenberg and Richter 1954; section 5.1, this book), with
significant implications for practical problems in probabilistic seismic hazard
evaluation (Main 1996). We estimate the ß values shortly.

4.4.12 Values of the Critical Exponents

Using known estimates (Stauffer, 1979; Isichenko 1992; Nakayama et al. 1994)
of the percolation indices β, ν, and µ we could evaluate the critical exponents
of the DPRW model in all ambient dimensions d ≥ 1. The results of this
evaluation, summarized in Table 4.2, are in good agreement with the reported
numerical values from the traditional sandpiles (for d = 2, z ≈ 1.29, τ ≈ 2.0;
for d = 3, z ≈ 1.7, τ ≈ 2.33) (Tang and Bak 1988) and earlier theoretical
predictions (for d = 2, z = 4/3, τ = 2; for d = 3, z = 5/3, τ = 7/3) (Zhang
1989). We consider this conformity as a manifestation of the universality class
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of the model.9 For d =∞, the model reproduces the exponents of mean-field
SOC (see, e.g., Vespignani and Zapperi 1998).

In many ways, the DPRW approach to SOC offers a simple yet relevant
lattice model for dielectric relaxation phenomena in systems with spatial dis-
order. One by-product of this approach is a consistent theoretical derivation
of the KWW stretched-exponential relaxation function, Eq. (4.23). In this
respect, we observe that the model gives values of the exponent γ (for d = 2,
γ ≈ 0.66; for d = 3, γ ≈ 0.4) in good agreement with the typical experimental
results (the γ value between 0.3 and 0.8) (Montroll and Bendler 1984; Phillips
1996; Capaccioli et al. 1998; Jacobs et al. 2006). This observation supports the
hypothesis (Milovanov et al. 2007, 2008) that dielectrics exhibiting stretched
exponential relaxations are in a state of self-organized criticality.

More so, the DPRW model gives a Hurst exponent (for d = 2, H ≈ 0.75;
for d = 3, H ≈ 0.6) consistently with the reported narrow range of variation
of H as observed in different magnetic confinement systems (Hurst exponent
varying betweenH ≈ 0.62 and 0.75) (Carreras et al. 1998, 1999, 2001; Pedrosa
et al. 1999). In this connection, it is worth adding here that SOC behavior of
the bulk plasma transport is expected to be a characteristic of higher-power
plasma discharges in the so-called low confinement regime (Carreras et al.
1998).

With respect to the occurrence frequency energy distribution, Eq. (4.42),
the model predicts that ß = 1 in one dimension (for d = 1, η = 0) and
ß = 3/2 in the mean-field limit (for d ≥ 6, z = 2, η = 1, and df = 4).
These results are exact. Also, one finds, approximately, ß ≈ 1.24 for d = 2
and ß ≈ 1.4 for d = 3 (Hausdorff fractal dimensions df = 91/48 and df ≈
2.5, accordingly) (see Table 4.2). These theoretical predictions are in close
agreement with the predictions of Aschwanden (2012) who found values of
ß = 1.0 for d = 1; ß = 1.28 for d = 2; and ß = 1.5 for d = 3 from a
statistical fractal-diffusive avalanche model of a slowly-driven self-organized
criticality system (section 2.2.2, this book. In the notation of Aschwanden
2012, ß = αE). The latter model assumes that the avalanche size grows as a
diffusive random walk, implying that z = 2 in all dimensions d = 1, 2, 3. In our
model, diffusive random walks are recovered in the mean-field limit only and
in relatively high ambient dimensions that are not smaller than 6, while the z
exponent is taken to be non-diffusive in general. Even so, this does not seem to
affect the ß value significantly, so that our mean-field result, ß = 3/2, almost
precisely coincides with the result of Aschwanden (2012) in three dimensions.
Earlier, Litvinenko (1998) has suggested that the distribution of flare energies
is characterized by a power-law with the slope ß = 3/2 independently of
the ambient dimensionality d > 1. He modeled an avalanching process on a
tree without loops, thus giving rise to this value. In this context, we should
stress that the effect of loops can be abandoned only in the high dimensions

9 We should stress that we observe this numerical conformity despite that the under-
lying analytical expressions are fairly different. Compare with Tang and Bak (1988)
and Zhang (1989).
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d ≥ 6, permitting a mean-field description (Nakayama et al. 1994; Havlin
and ben-Avraham 2002). All in all, the exponent ß = 3/2 agrees well with
the reported slopes of the occurrence frequency energy distribution for solar
flares (around −1.5 to −1.8) (Hudson 1991; Crosby et al. 1993; Wheatland
and Uchida 1999), demonstrating that the observed power-law distribution
of flare energy release is well reproduced under the assumption that the solar
corona operates as a self-organized criticality system (Vlahos et al. 1995;
Charbonneau et al. 2001; Norman et al. 2001; Aschwanden 2011, 2012).

Finally, it is worth noting here that exponents similar to the above (around
−1.5 to −1.8) are also found in earthquake phenomenology, with some geo-
graphical dependence in the ß value (Main 1996; Jensen 1998; Turcotte 1999;
references therein). In this regard, a differential Gutenberg-Richter distribu-
tion of seismic energies with the exponent ß = 3/2 was proposed by Sornette
(1992b) from a mean-field version of the Burridge-Knopoff block-spring model
(e.g., Main 1996) of earthquakes. This similarity with the statistical physics
of faulting and earthquakes indicates that the behavior is relatively insen-
sitive to the details of the system that is analyzed. By contrast, there is a
stronger ingredient due to the general properties of heavy-tailed occurrence
frequency distributions in the vicinity of the criticality as dictated by the
multi-scale relaxation dynamics of the Mittag-Leffler type, and by associate
fractional relaxation equation (Eq. 4.34). It is this ingredient that we believe
to characterize the operation of systems with many interacting degrees of
freedom (i.e., “complex” systems), thus rewarding the notion of SOC.

Table 4.2: Critical exponents of the DPRW model. Exponents appearing in
statistical distributions as for instance inverse power-law power spectral den-
sity distribution are summarized in the lower part of the table. The mean-field
results, holding for d ≥ 6, are collected as d = ∞. Input parameters are the
percolation indices β, ν, and µ (Stauffer, 1979; Isichenko 1992; Nakayama et
al. 1994).

Exponent Expression Description d = 1 d = 2 d = 3 d =∞

η µ/(2ν + µ− β) ac conductivity 0 0.34 0.6 1
z 1 + η Dispersion relation 1 1.34 1.6 2
γ 1− η Mittag-Leffler relaxation 1 0.66 0.4 0
H 1/z Hurst exponent 1 0.75 0.6 1/2

Exponent Expression Distribution d = 1 d = 2 d = 3 d =∞

η µ/(2ν + µ− β) Relaxation-time 0 0.34 0.6 1
α 2− 2η Power spectral density 2 1.3 0.8 0
τ 3− αz/df Activation-cluster size 1 2.1 2.5 3
ß 1 + ηz/df Occurrence frequency en-

ergy
1 1.24 1.4 3/2
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4.5 The Random Walk’s Guide to SOC

Let us take stock at this point and address a few important issues concerning
the DPRW model of SOC and its random-walk ingredient.

4.5.1 General

Apart from details of the mathematical formalism, the DPRW model is actu-
ally quite simple. The main points are as follows. A lattice site can either be
empty or occupied. An occupied site is interpreted as polarization charge. The
equilibrium concentration of the polarization charges depends on the poten-
tial difference between the plates. When the potential difference changes the
lattice occupancy parameter adjusts. A dynamical mechanism for this uses
holes. The holes are just missing polarization charges. They are important
key elements to the model as they provide a mechanism for the polarization
current in the system. Beside holes, the free charges are introduced. The free
charges, too, carry electric currents whose very specific role in the model
is just to control the potential difference between the plates. The changing
amount of the free charges in the system has an effect on the lattice occu-
pancy parameter. Nonlinearly, it affects the conductivity of the lattice. This
nonlinear twist provides a dynamical feedback by which the system is stabi-
lized at the state of critical percolation. In many ways the proposed model is
but a simple lattice model for dielectric relaxation in a self-adjusting disor-
dered medium. It is perhaps the simplest model which accounts for the whole
set of relaxation processes including the hole conduction.

It is worth assessing the advantages and disadvantages of the DPRW ap-
proach to SOC. In terms of advantages, the electric nature of the model
greatly facilitates the analytical theory: Not only does it permit to quantify
the microscopic lattice rules in terms of the frequency-dependent complex ac
conductivity, the use of the Kramers-Kronig relation in Eq. (4.10) makes it
possible to directly obtain the susceptibility function by integrating the con-
ductivity response. As a result, the exponents z, γ, α, and H are expressible
in terms of only one parameter, the exponent of ac conduction η. The latter
is obtained as a simple function of the percolation indices β, ν, and µ.

With respect to disadvantages, the model is seemingly different from the
traditional approaches to SOC based on cellular automation (CA) and its
integration in the existing family of SOC models might be a matter of de-
bate. Even so, the idea of the random walks on a self-organized percolation
system as a simplified yet relevant model for SOC constitutes a significant ap-
peal: First, it relies on the established mathematical formalism of the random
walks (Bouchaud and Georges 1990; ben-Avraham and Havlin 2000; Havlin
and ben-Avraham 2002; Metzler and Klafter 2000, 2004) whose advance on
the SOC problem is theoretically very beneficial. Second, it offers a clear
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connection to studies outside the conventional SOC paradigm as for instance
to transport of mass and charge in disordered media (Lax 1958; Scher and
Lax 1973; Druger et al. 1985; Dyre and Schrøder 2000). Instead, the tradi-
tional CA type models are complicated by a poor analytical description of
the microscopic transport mechanisms and their basic physics appreciation
is at times uneasy.

4.5.2 The Role of Random Walks

It is theoretically important to note that the dielectric context of the con-
sidered model, apart from offering a convenient platform for the analytical
theory, is actually not essential for the SOC phenomena. Indeed the DPRW
model could be defined in terms of diffusion processes for neutral particles of
different kinds. A formal reason for this is the equivalence (Lax 1958; Scher
and Lax 1973) of the frequency-dependent electrical conductivity problem
and the frequency-dependent diffusion problem, specific to hopping conduc-
tion. The crucial element to the model is in fact the assumption of the random
walks, not the nature of the particles.

The possible generalizations of the DPRW model correspond to biased
random walks of the free charges in the direction of the potential drop and/or
inclusion of a second critical threshold pcc ≥ pc above which the random walk
dynamics might change to a biased motion. We consider those generalizations
obvious as they mainly intend to modify the value of the exponent η in a
certain parameter range, while the basic physical picture of SOC will remain
essentially the same.

4.5.3 Universality Class

The final point to be addressed here concerns the issue of universality class.
We take notice of the fact that the DPRW SOC model uses the charitable
redistribution rule (Maslov and Zhang 1996) to propagate the activities, like-
wise to the traditional BTW sandpile (Bak et al. 1987, 1988) or similar (Tang
and Bak 1988; Zhang 1989). That means that an active site always loses its
content to the neighbors. The charitable rule is to be distinguished from the
neutral rule, when each of 2d+ 1 sites involved in redistribution gets an un-
biased random share of the transported quantity. Models using the neutral
rule often fall in the universality class of directed percolation (DP) and are
characterized by appreciably larger values of the dynamic exponent z (for
d = 2, z ≈ 1.73 ± 0.05) (Maslov and Zhang 1996). Based on this evidence,
we suggest that the DPRW model belongs to the same universality class as
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the BTW sandpile, and not to the DP universality class, consistently with
the values of the critical exponents collected in Table 4.2.

4.6 Self-Organized Turbulence: The “Sakura” Model

The DPRW model of SOC can be extended so that it includes the phenom-
ena of self-organized “turbulence” in Earth’s geomagnetic tail, discussed in
Milovanov et al. (1996, 2001a,b) and Zelenyi et al. (1998). The main idea here
is that, when the processes of magnetic reconnection stretch the magnetotail
beyond a certain limit, the cross-tail electric current system of Earth’s dipole-
like magnetic field is destabilized, since it crucially requires the presence of
a regular component of the geomagnetic field normal to the current sheet
plane. Then the magnetotail spontaneously evolves into a far from equilib-
rium dynamical “turbulent” state, where it responds to changes in the tail
current intensity and the varying dawn-dusk potential difference in terms of
turbulent perturbation electric currents and magnetic field fluctuations. It
was argued that the transport of electric charge across the magnetotail was
due to heavier plasma species, the ions, whose regular orbits (transient or
Speiser, weakly trapped, trapped) were essentially destroyed in the absence
of stabilizing normal magnetic field and that the steady state which is self-
organized corresponded to a strongly shaped electric current system and to
a highly inhomogeneous, multi-scale magnetic fluctuation pattern (Fig. 4.5).
This model for the coupled turbulent perturbation electric currents and mag-
netic field fluctuations has come to be known as “Sakura” model, after its
presentation at the Chapman Conference held in Kanazawa, Japan, Novem-
ber 5-9, 1996 (see Zelenyi et al. 1998). Applications of the Sakura model
pertain to the phenomena of tail current disruption in substorm regions of
the near-Earth tail (Milovanov et al. 2001a,b) as well as to the explanation of
permanent presence of magnetic field fluctuations in the distant magnetotail
(Milovanov et al. 1996; Zelenyi et al. 1998), as suggested by the GEOTAIL
measurements (Hoshino et al. 1994; Nishida et al. 1994). The important role
of the ion component of the plasma in driving cross-tail current instability
was addressed by Lui et al. (1995); Ohtani et al. (1995); and Sharma et al.
(2006), where one also finds an analysis of the satellite observational data.

Denoting the perturbation tail current density and magnetic fluctuation
field by respectively δj(t, r) and δB(t, r), we write

∇× δB(t, r) =
4π

c
δj(t, r), (4.43)

where, under the assumptions of locality and linear conductivity response,

δj(t, r) =

∫ +∞

−∞
σ(t− t′)δE(t′, r)dt′. (4.44)
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Fig. 4.5: “Sakura” model. Upper left: Schematic illustration for the Earth’s
dynamic magnetosphere interacting with its solar wind drive. Arrows indi-
cate the magnetic field and plasma convection, where, red arrows represent
the convection from the solar wind into the magnetotail, and brown arrows
toward Earth and in the direction of the dayside magnetopause. Consider-
able local stretching and thinning of the magnetotail occurs in the vicinity of
the neutral X-line during the substorm growth phase. Similar conditions for
stretching and thinning of the Earth’s dipole-like magnetic field − associated
with the vanishing of the regular component of the geomagnetic field normal
to the current sheet plane − are believed to verify in the distant Earth’s mag-
netotail at the geocentric distances larger than 50 − 100 Earth’s radii (not
shown here) (Milovanov et al. 1996). Upper right: The various orbit types for
thermal ions in the magnetotail current sheet with finite regular component
of the normal field. Adapted from Sharma et al. (2006). When the processes
of magnetic reconnection stretch the magnetotail beyond a certain limit, the
particle regular orbital motion is essentially destabilized and the cross-tail
electric current system spontaneously evolves into a far from equilibrium
dynamical “turbulent” state where it responds to changes in the tail current
intensity and the varying dawn-dusk potential difference in terms of turbulent
perturbation electric currents and magnetic field fluctuations. Bottom left:
Original model promotion as a blossoming sakura tree: Its “leaves” repre-
sent the magnetic field fluctuations; its “branches,” the perturbation electric
currents. Bottom right: Plan view of the turbulent current sheet. Cross-tail
electric currents are organized in highly branched, very inhomogeneous con-
ducting patterns with the topology of a fractal network at percolation (red
color). The magnetic field fluctuations are shown as chunks of different sizes
(violet color). They scatter the momentum of current-carrying particles, the
ions, and are electromagnetically related with the perturbation electric cur-
rent intensity by means of Maxwell’s equation, ∇× δB(t, r) = (4π/c)δj(t, r).
Note that the magnetic field fluctuations, δB(t, r), can be thought as analog
polarization charges in the DPRW model of SOC.
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Fig. 4.6: The typical spectra of magnetic field fluctuations in the near-
Earth stretched and thinned magnetotail prior to tail current disruption. Left:
INTERBALL-1 observations. Adapted from Zelenyi et al. (1998). Right: A
spectrum observed by the Charge Composition Explorer of the Active Mag-
netospheric Particle Tracer Explorers (AMPTE) satellite, with an emphasis
on the August 28, 1986, current disruption event. Adapted from Ohtani et
al. (1995). A distinctive feature of these spectra is the knee around a char-
acteristic frequency posed by the unstable tearing modes. The spectrum is
flatter below the knee frequency and is noticeably steeper just above it. The
processes of self-organization to a critical state correspond to the flatter coun-
terpart of the spectrum and to frequencies lesser than the knee frequency:
in practice, smaller than ∼ 5 · 10−2 Hz, although the exact bound, in real
data, may not be that certain. Associated spectrum is a power-law with the
typical slope ∼ −1.3 (in log-log plot). In the limit of very low frequencies,
the observed signals cross over to a white noise, as they should (this is due to
finite system size effects and/or the natural limitations of the observational
time series), so that the spectra are flat. The spectral properties of the fluctu-
ations just above the knee (slope ∼ −2.4) involve the processes of convection
of magnetic turbulence structures with decelerated solar wind velocity along
the magnetotail. These processes were analyzed by Milovanov et al. (2001a,b)
and are not considered here. All in all, the signatures of self-organization to
a critical state are to be expected in the intermediate frequency range, com-
prised between those frequencies where the spectra are white noise-like and
the knee frequency. An approximate position of the knee is marked by vertical
dashed line.

Here, δE(t, r) is the perturbation electric field in the current sheet plane.
The memory function, σ(t), is obtained as Fourier inversion of the frequency-
dependent complex ac conductivity, σac(ω), where the ac dependence is due
to the turbulent nature of the conducting domain. It is understood that the
time varying magnetic perturbation generates a time and spatially varying
electric field because of Faraday’s law. An important feature which arises
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in this induction process is gradual heating and energization of the plasma,
leading to the occurrence of slowly decaying, high-energy non-thermal wings
in the particle energy distribution function (Milovanov and Zelenyi 2001,
2002; Zelenyi and Milovanov 2004). Often in the magnetospheric plasma re-
search those distributions with wings are modeled by non-thermal the so-
called “kappa” distributions (Christon et al. 1989) which interpolate between
the initial low-energy exponential forms and the asymptotic inverse power-
law behavior. The significance of the “kappa” distributions lies in the fact
(Milovanov and Zelenyi 2000) that they appear as canonical distributions in
the non-extensive thermodynamics due to Tsallis (1988; section 2.3.5, this
book). In the present analysis we shall assume, however, that all fluctuation
frequencies are so slow that the effect of the inductive field can be neglected
and we omit, consequently, the inductive term in Eq. (4.43) above. To this
end, performing a Fourier transform of Eq. (4.43) in space and time, we have

k× δB(ω,k) =
4π

c
δj(ω,k), (4.45)

where k is the wave vector of the perturbation. Simultaneously, from Eq. (4.44)
we find δj(ω,k) = σac(ω)δE(ω,k). In vicinity of the current instability thresh-
old, considering the low-frequency limit of Eq. (4.43), we may think of the
fluctuations as of collection of plane waves, characterized by a linear disper-
sion relation ω = k · u, where the phase velocity, u, does not depend on
k. Given that the input perturbing electric field is uncorrelated white noise:
δE(ω,k) = 1, with the aid of Eq. (4.45) one sees that the power spectral
density of the magnetic fluctuation field, |δB(ω,k)|2, will be proportional to
S(ω) ∝ |σac(ω)/ω|2. At this point, if one assumes, following Milovanov et al.
(2001a,b), that the dynamical “turbulent” state is characterized by fractal
geometry of the threshold percolation, one may exploit the scaling relation
σac(ω) ∝ ωη to obtain S(ω) ∝ ω−α, with α = 2(1− η), consistently with the
DPRW result. Utilizing the percolation estimate above (for d = 2, η ≈ 0.34),
one finds that α ≈ 1.3. This theoretical prediction compares well against
the reported α values in the lower-frequency part of the magnetic fluctua-
tion spectrum (below a turnover or knee frequency posed by the unstable
tearing modes: see Fig. 4.6) (Hoshino et al. 1994; Bauer et al. 1995; Ohtani
et al. 1995). Thus, the behavior is self-similar in the self-organization do-
main. Note that the power spectral density of the magnetic fluctuation field,
|δB(ω,k)|2, corresponds with the power spectral density of the dynamic po-
larization response, Eq. (4.11). We should stress that the Sakura model leads
to a smaller spectral index (α ≈ 1.3) than Kolmogorov’s theoretical value
for fluid turbulence (α = 5/3) as well as Kraichnan’s theoretical value for
magnetohydrodynamic plasma turbulence (α = 3/2). This last observation
addresses the significance of “self-organized” magnetic fluctuation turbulence
as opposed to ordinary (fluid-like) turbulence.

Our conclusion so far is that the power spectral density of the magnetic
fluctuation field is given by an inverse power-law and that the behavior cor-
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responds with the prediction of the DPRW SOC model. This result suggests
that micro-processes of self-organization of electric currents and magnetic
field fluctuations in the Earth’s stretched and thinned magnetotail are gov-
erned by SOC (Milovanov et al. 2001b; Zelenyi and Milovanov 2004). Note
that the above assumption of fractality and self-similar behavior is validated
through the direct analysis of time series of the satellite observed magnetic
field fluctuations, obtained in situ in the substorm regions of the near-Earth
tail and associated with the phenomena of tail current instability during the
substorm growth phase (Ohtani et al. 1995).

4.7 Beyond Linear Theories: DANSE Formalism

Theoretical approaches discussed so far were based on a linear-response the-
ory and on fractional generalizations of the diffusion and relaxation equations
(Eqs. 4.34 and 4.40), which are linear by construction. Nonlinearities were
contained in fractal geometry of the dynamical system at percolation and
implicitly in the various “avalanche” exponents and the fractional indices of
time differentiation. In the present analysis, this paradigm of “linear dynam-
ics in a nonlinear medium” will be relaxed. Rather, a more general theoretical
picture will be drawn, in which the dynamical and structural nonlinearities
are twisted, and for which one might propose the formula “nonlinear dynam-
ics in a nonlinear medium.” Very specifically, we intend to demonstrate that
the phenomena of SOC − at least those belonging to the universality class of
the DPRW model − may be cast in the mathematical formalism of discrete
Anderson nonlinear Schrödinger equation (DANSE), which invokes a random
potential for lattice interactions, and in which the strength of nonlinearity,
being an inherent part of the model description, is determined dynamically
as the system self-adjusts and evolves to criticality in response to external
forcing. Most previous theoretical studies of SOC have neglected the possibil-
ity of describing the lattice interactions in terms of a random potential field,
and have focused, consequently, on the microscopic redistribution rules for
the dynamics. We believe that this approach is unnecessarily restrictive and
has left out the important physics results.

4.7.1 The Roadmap

As is already mentioned above, in the DPRW model the critical state is made
self-organized via the mechanisms of hole-hopping by which the system re-
sponds to the fluctuating potential difference on the capacitor. We should
stress that the holes redistribute the polarization charges in a way as to pre-
serve the properties of the random percolation. They change the shape and
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the folding of the percolation clusters in the ambient configuration space, but
not the random character in the distribution of the conducting sites. A confir-
mation of these ideas can be obtained if one considers holes as “excitations”
of self-organized critical state mediating the lattice activities. With this in-
terpretation in mind, the transport problem for holes can be formulated as a
transport problem for the hole wave function in a random potential field.10

The latter problem, in its turn, can be studied as part of the general problem
of transport of waves in disordered media, with that very specific element
that the medium is nonlinear and its properties are coupled with the wave
process itself − which, too, can be nonlinear.

We consider the problem of dynamical localization of the hole wave func-
tion in the framework of nonlinear Schrödinger equation (NLSE) with a ran-
dom potential term on a lattice. The NLSE was derived for a variety of
physical systems under some approximations (Ablowitz and Segur, 1981).
Recently, it has been rigorously established that, for a large variety of physi-
cal conditions and details of interaction, the NLSE (also known as the Gross-
Pitaevsky equation) is exact in the thermodynamic limit (Erdös et al. 2007).
An important feature which arises in this approach is competition between
randomness and nonlinearity. As we shall see, this competition has a sig-
nificant effect on the SOC problem. Under most general conditions, we can
expect that, when the nonlinearity is sufficiently small, the random proper-
ties dominate, giving rise to the phenomena of Anderson localization of the
excitations. That means, accordingly, that diffusion is suppressed and a wave
packet that is initially localized will not spread to infinity (Anderson 1958).

So, what happens with the increasing strength of nonlinearity? The ques-
tion is far from trivial, after the suggestion (largely motivated by computer
simulation) (Shepelyansky 1993; Pikovsky and Shepelyansky 2008) that a
weak nonlinearity can destroy localization above some level, giving rise to
unlimited spreading of the wave field along the lattice, despite the existing
disorder. The dynamics of the spreading has remained a matter of debate
(Pikovsky and Shepelyansky 2008; Flach et al. 2009; Wang and Zhang 2009;
Iomin 2010; Krivolapov et al. 2010).

In a recent investigation of NLSE with disorder, it has been theoretically
found (Milovanov and Iomin 2012) that destruction of Anderson localization
in the presence of nonlinearity is a critical phenomenon − likewise to a per-
colation transition in random lattices. Delocalization occurs spontaneously
when the strength of nonlinearity goes above a certain limit. Below that limit,
the field is localized similarly to the linear case. In the analysis of this section,
we bring these ideas in contact with the physics of SOC and we consider a
situation in which the strength of nonlinearity is determined dynamically in
terms of time depending probability of site occupancy as the system fluctu-
ates near the critical point. It is this very specific nonlinear twist with the
dynamical state of the lattice, which captures the essential key signatures

10 Essentially the same approach applies to the electrons.
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due to SOC, and which as is suggested below enables to cast the SOC prob-
lem into the mathematical formalism of a discrete NLSE with disorder. The
effect this twist has on the dynamics is that the localization-delocalization
transition is turned self-organized, occurring exactly at the state of critical
percolation.

With the aid of our DPRW lattice model, we can essentially simplify the
analysis if we consider that the transport in the vicinity of the critical state
occurs as a result of hole hopping between the nearest-neighbor sites, occu-
pied by the polarization charges. As the percolation threshold is approached,
we can envisage clusters of the polarization charges as the effective (random)
medium, acting as a random potential on the hole wave function. Follow-
ing Anderson (1958), we adopt the tight binding description for the hopping
processes. Consequently, we introduce a Hamiltonian, paving the way to con-
sider the transport problem for SOC as essentially a Hamiltonian problem.
This approach poses a theoretical challenge, as it aims to connect SOC with
first-principle models.

4.7.2 DANSE Equation

Focusing on the hopping motions on a lattice, we consider a variant of the
discrete Anderson nonlinear Schrödinger equation (DANSE) with random-
ness

i~
∂ψn
∂t

= ĤLψn + ζ|ψn|2ψn, (4.46)

where
ĤLψn = εnψn + V (ψn+1 + ψn−1), (4.47)

ĤL is the Hamiltonian of the linear problem in the tight-binding approxima-
tion (Anderson 1958); ψn is the hole wave function; ĤLψn describes hopping-
like transitions between the nearest-neighbor sites on a lattice; and ζ|ψn|2ψn
accounts for the generic nonlinearity of the wave process. In the above, ζ
characterizes the strength of nonlinearity;11 on-site energies εn are randomly
distributed with zero mean across a finite energy range; V is hopping ma-
trix element; and the total probability is normalized to

∑
n |ψn|2 = 1. More

general models can be obtained by replacing |ψn|2 with |ψn|r, for arbitrary
r > 0. We do not consider such models here. In what follows, ~ = 1 for sim-
plicity. When ζ → 0, all eigenstates are exponentially localized (Anderson
1958). In the absence of randomness, DANSE (Eq. 4.46) is completely inte-
grable. Adhering to the effective-medium description, we aim to comprehend

11 We assume that the nonlinearity is repulsive (ζ > 0), implying that it favors the
spreading of the wave field. In the opposite case of attractive nonlinearity (ζ < 0),
solitons are typically found (Ablowitz and Segur, 1981; Zelenyi and Milovanov 2004;
Krivolapov et al. 2010).
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the spreading of the hole wave function under the action of nonlinear term
in the limit t→ +∞.

4.7.3 Coupled Nonlinear Oscillators

It is useful to expand the hole wave function using an orthogonal basis of the
eigenstates, φn,m, of the Anderson Hamiltonian, ĤL, enabling

ψn =
∑
m

σm(t)φn,m (m = 1, 2, . . . ). (4.48)

“Orthogonal” means that
∑
n φ
∗
n,mφn,k = δm,k, where δm,k is Kronecker’s

delta and the star denotes complex conjugate. The total probability being
equal to 1 implies that

∑
n ψ
∗
nψn =

∑
m σ
∗
m(t)σm(t) = 1. For the nonlinear

equation, Eq. (4.46), the dependence of the expansion coefficients, σm(t), is
found to be12

iσ̇k − ωkσk = ζ
∑

m1,m2,m3

Vk,m1,m2,m3
σm1

σ∗m2
σm3

, (4.49)

where dot denotes time differentiation; ωk (k = 1, 2, . . . ) are the eigenfre-
quencies of ĤL; and the amplitudes Vk,m1,m2,m3 are given by

Vk,m1,m2,m3
=
∑
n

φ∗n,kφn,m1
φ∗n,m2

φn,m3
. (4.50)

In deriving Eq. (4.49) we took into account that ĤLφn,k = ωkφn,k. Equa-
tion (4.49) corresponds to a system of coupled nonlinear oscillators with the
Hamiltonian

Ĥ = Ĥ0 + Ĥint, Ĥ0 =
∑
k

ωkσ
∗
kσk, (4.51)

Ĥint =
ζ

2

∑
k,m1,m2,m3

Vk,m1,m2,m3σ
∗
kσm1σ

∗
m2
σm3 . (4.52)

Thus we have translated the hopping problem for the hole wave function
into the interaction problem for coupled nonlinear oscillators on a lattice.
In the above, Ĥ0 is the Hamiltonian of non-interacting harmonic oscillators
and Ĥint is the interaction Hamiltonian.13 Each nonlinear oscillator with the
Hamiltonian

ĥk = ωkσ
∗
kσk +

ζ

2
Vk,k,k,kσ

∗
kσkσ

∗
kσk (4.53)

12 Hint: substitute Eq. (4.48) into DANSE (Eq. 4.46), then multiply the both sides
by φ∗n,k, and sum over n, remembering that the modes are orthogonal.
13 We include self-interactions into Ĥint.
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and the equation of motion

iσ̇k − ωkσk − ζVk,k,k,kσkσ∗kσk = 0 (4.54)

represents one nonlinear eigenstate in the system − identified by its wave
number k, unperturbed frequency ωk, and nonlinear frequency shift ∆ωk =
ζVk,k,k,kσkσ

∗
k. Here, Vk,k,k,k denote the diagonal matrix elements (k =

1, 2, . . . ). Non-diagonal elements Vk,m1,m2,m3
characterize couplings between

each four eigenstates with wave numbers k, m1, m2, and m3. It is understood
that the excitation of each eigenstate is nothing else than the spreading of
the wave field in wave number space. Resonances occur between the eigen-
frequencies ωk and the frequencies posed by the nonlinear interaction terms.
We have14

ωk = ωm1
− ωm2

+ ωm3
. (4.55)

When the resonances happen to overlap, a phase trajectory may occasionally
switch from one resonance to another. As Chirikov (1960) realized, any over-
lap of resonances will introduce a random element to the dynamics along with
some transport in phase space. Applying this argument to DANSE (Eq. 4.46),
one sees that destruction of Anderson localization is limited to a set of res-
onances in a Hamiltonian system of coupled nonlinear oscillators (Eqs. 4.51
and 4.52), permitting, via a mutual overlap, and respective folding in phase
space, a connected escape path to infinity.

4.7.4 Chaotic vs. Pseudochaotic Dynamics

At this point, the focus is on the topology of the random motions in phase
space. We address an idealized situation first where the overlapping reso-
nances densely fill the space. This is the familiar fully developed chaos, a
regime that has been widely studied and discussed in the literature (e.g., Za-
slavsky 1970; Zaslavsky and Chirikov 1972; Zaslavsky and Sagdeev 1988). A
concern raised over this regime when applied to Eqs. (4.51) and (4.52) comes
from the fact that it requires a diverging free energy reservoir in systems with
a large number of interacting degrees of freedom such as SOC systems. Yet,
developed chaos offers a simple toy-model for the transport as it corresponds
with a well-understood, diffusive behavior.

A more general, as well as more intricate, situation occurs when the ran-
dom motions coexist along with regular (in the Kolmogorov-Arnold-Moser,
or KAM, sense) dynamics. If one takes this idea to its extreme, one ends up
with the general problem of transport along separatrices of dynamical sys-
tems (Arnold 1978). This problem constitutes a fascinating nonlinear problem

14 Conditions for nonlinear resonance are obtained by accounting for the nonlinear
frequency shift.
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that has as much appeal to the mathematician as to the physicist. An original
important promotion of this problem to “large” (spatially extended) systems
is due to Chirikov and Vecheslavov (1997).

This type of problem occurs for slow frequencies. Indeed one finds (Milo-
vanov 2001, 2009) that resonance-overlap conditions are satisfied along the
“percolating” orbits or separatrices of the random potential where the or-
bital periods diverge. The available phase space for the random dynamics
can be very “narrow” in that case. In large systems, the set of separatrices
can moreover be geometrically very complex and strongly shaped. Often it
can be envisaged as a fractal network at percolation as for instance in ran-
dom fields with sign-symmetry (Shklovsii and Efros, 1984; Isichenko 1992;
Milovanov and Zimbardo 2000).

There is a fundamental difference between the above two transport regimes,
however (chaotic vs. near-separatrix). The former regime is associated with
an exponential loss of correlation permitting a Fokker-Planck description in
the limit t → +∞. The latter regime when considered for large systems is
associated with an algebraic loss of correlation instead (Zaslavsky 1994a,b,
2002), implying that the correlation time is infinite. There is no a conventional
Fokker-Planck equation here, unless generalized to fractional derivatives (Za-
slavsky 1994a,b; Metzler et al. 1998, 1999), nor the familiar Markovian prop-
erty (i.e., that the dynamics are memoryless). On the contrary, there is an
interesting interplay between randomness, fractality, and correlation, which
is manifest in the fact that all Lyapunov exponents vanish in the thermody-
namic limit, despite that the dynamics are intrinsically random (Milovanov
2009).

This situation of random non-chaotic dynamics with zero Lyapunov ex-
ponents, being in fact very general, has come to be known as “pseudochaos”
(Zaslavsky 2002; Lyubomudrov et al. 2003; Zaslavsky and Edelman 2004).
One may think of pseudochaos as occurring “at the edge” of stochasticity
and chaos, thus separating fully developed chaos from domains with regular
motions. There is a growing belief that the concept of pseudochaos offers
a natural mathematical platform to obtain the fractional kinetic equations
from first principles (Zaslavsky 2002).

In section 4.4.7 above it was argued that the phenomena of SOC could be
described by fractional kinetics, which is a suitable and powerful formalism
for long-range correlated behavior. Here, we lay more stress on this argument
by proposing that SOC processes are as a matter of fact pseudochaotic. In
this way of thinking one naturally bridges the concepts of fractional kinetics,
non-Markovian transport, and SOC. Then the inherent “edge” character of
pseudochaotic dynamics (Zaslavsky 2002) can be related with what one be-
lieves is the threshold nature of SOC processes (Bak et al. 1988). Support to
this suggestion can be found in the results of Milovanov (2009, 2011).
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4.7.5 Nearest-Neighbor Rule

This idea of “edge” behavior brings us to a model (Milovanov and Iomin 2012)
where each nonlinear oscillator (Eq. 4.53) can only communicate with the
rest of the wave field via a nearest-neighbor rule. Indeed this is the marginal
regime yet permitting an escape path to infinity. We associate this regime
with the onset of delocalization. Clearly, the number of coupling links is
minimized in that case. Note that the nearest-neighbor rule guarantees that
all interactions are local, this being an essential key element to SOC. When
summing on the right-hand-side, the only combinations to be kept are, for
the reasons of symmetry, σkσ

∗
kσk and σk−1σ

∗
kσk+1. We have

iσ̇k − ωkσk = ζVkσkσ
∗
kσk + 2ζV ±k σk−1σ

∗
kσk+1, (4.56)

where we have also denoted for simplicity Vk = Vk,k,k,k and V ±k = Vk,k−1,k,k+1.
Equations (4.56) define an infinite (k = 1, 2, . . . ) chain of coupled nonlinear
oscillators where all couplings are local (nearest-neighbor-like). Then the in-
teraction Hamiltonian in Eq. (4.52) is simplified to

Ĥint =
ζ

2

∑
k

Vkσ
∗
kσkσ

∗
kσk + ζ

∑
k

V ±k σ
∗
kσk−1σ

∗
kσk+1. (4.57)

4.7.6 Pseudochaotic Dynamics on a Cayley Tree

We are now in position to introduce a simple lattice model for the transport.
The key step is to observe that Eqs. (4.56) can be mapped on a Cayley tree
where each node is connected to c = 3 neighbors (here, c is the coordina-
tion number). The mapping is defined as follows. A node with coordinate
k represents a nonlinear eigenstate, or nonlinear oscillator with the equa-
tion of motion (4.54). There are exactly c = 3 branches at each node: one
that we consider ingoing represents the complex amplitude σ∗k, and the other
two, the outgoing branches, represent the complex amplitudes σk−1 and σk+1

respectively. These settings are schematically illustrated in Fig. 4.7.
A Cayley tree being by its definition (e.g., Schroeder 1991) a hierarchical

graph offers a suitable geometric model for infinite-dimensional spaces. We
think of this graph as embedded into phase space of the Hamiltonian system
of coupled nonlinear oscillators (Eqs. 4.51 and 4.52). In the thermodynamic
limit, characterized by max{k} → ∞, in place of a Cayley tree, one uses the
notion of a Bethe lattice.15 Setting max{k} → ∞, we suppose that each node
of the Bethe lattice hosts a nonlinear oscillator (Eq. 4.54). The bonds of the

15 A Bethe lattice is an infinite version of the Cayley tree. To this end, a purist
might prefer to say “bond” in place of “branch,” but, once again, that’s all about the
terminology.
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Fig. 4.7: Mapping Eqs. (4.56) on a Cayley tree. Each node represents a
nonlinear eigenstate, or nonlinear oscillator with the equation of motion
iσ̇k − ωkσk − βVk,k,k,kσkσ

∗
kσk = 0. Blue nodes represent oscillators in a

chaotic (“dephased”) state. Black nodes represent oscillators in regular state.
One ingoing and two outgoing branches on node k (k = 1, 2, . . . ) represent
respectively the complex amplitudes σ∗k, σk−1, and σk+1. Structures that are
not explicitly shown are beyond the dashed lines. Adapted from Milovanov
and Iomin (2012).

lattice, in their turn, can conduct oscillatory processes to their neighbors as
a result of the interactions present.

Next, we assume that each oscillator can be in a chaotic (“dephased”)
state with the probability p (and hence, in a regular state with the prob-
ability 1 − p). The p value being smaller than 1 implies that the domains
of random motions occupy only a fraction of the lattice nodes. Whether an
oscillator is dephased is decided by Chirikov’s resonance-overlap condition
− which may or may not be matched on node k. We believe (Chirikov and
Vecheslavov 1997) that in systems with many coupled degrees of freedom
each such “decision” is essentially a matter of the probability. The choice
is random. Focusing on the p value, we consider system-average nonlinear
frequency shift

∆ωNL = ζ〈|ψn|2〉∆n (4.58)

as an effective “temperature” of nonlinear interaction. It is this “tempera-
ture” that rules over the excitation of the various resonant “levels” in the
system. With this interpretation in mind, one writes p as the Boltzmann
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factor
p = exp(−δω/∆ωNL), (4.59)

where δω is the characteristic energy gap between the resonances. Expanding
ψn over the basis of linearly localized modes, it is found that

〈|ψn|2〉∆n =
1

∆n

∑
n

∑
m1,m2

φ∗n,m1
φn,m2

σ∗m1
σm2

. (4.60)

The summation here is performed with the use of orthogonality of the basis
modes. Combining with Eq. (4.58),

∆ωNL =
ζ

∆n

∑
m

σ∗mσm. (4.61)

The sum over m is easily seen to be equal to 1 due to the conservation of the
probability. Thus, ∆ωNL = ζ/∆n. When the field is spread over ∆n states,
the distance between the resonant frequencies behaves as δω ∼ 1/∆n. We
normalize units in Eq. (4.46) to have δω = 1/∆n exactly. One sees that

p = exp(−1/ζ). (4.62)

For the vanishing ζ → 0, the Boltzmann factor p → 0, implying that all
oscillators are in regular state. In the opposite regime of ζ → ∞, p → 1.
That means that all oscillators are dephased and that the random motions
span the entire lattice.

There is a critical concentration, pc, of dephased oscillators permitting an
escape path to infinity for the first time. This critical concentration is nothing
else than the percolation threshold on a Cayley tree. In a basic theory of
percolation it is found that pc = 1/(c− 1) (e.g., Schroeder 1991). This is an
exact result. For c = 3, pc = 1/2. We associate the critical value pc = 1/2
with the onset of transport in the DANSE model (Eq. 4.46). When translated
into the ζ values the threshold condition reads

ζc = 1/ ln(c− 1). (4.63)

Setting c = 3, we have ζc = 1/ ln 2 ≈ 1.4427. This value defines the critical
strength of nonlinearity that destroys the Anderson localization in the tight
binding regime. For the ζ values smaller than this, the localization persists,
despite that the problem is nonlinear. When ζ ≥ 1/ ln 2, the localization is
lost and the wave field spreads to infinity.

Our conclusion so far is that destruction of Anderson localization is a
thresholded phenomenon, which can be described as a percolation transition
in a system of dephased oscillators on a Cayley tree (Bethe lattice). Delo-
calization occurs when the strength of nonlinearity, mathematically related
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with the concentration of dephased oscillators (Eq. 4.62) exceeds a certain
critical level. The critical point is exactly at ζc = 1/ ln 2.

4.7.7 Making Delocalization Transition Self-Organized

With the recognition that, according to Eq. (4.62), the nonlinearity param-
eter, ζ, is twisted with the probability of site occupancy, p, the formalism
of discrete Anderson nonlinear Schrödinger equation (Eq. 4.46), allows for a
representation, which makes it possible to include the phenomena of SOC.
The main idea here is to think of ζ as a fluctuating parameter, which is de-
fined dynamically [i.e., ζ = ζ(t)] as the system evolves to percolation, and
whose value is decided “on-the-fly” by the actual state of the lattice by means
of p(t) = exp [−1/ζ(t)] (see Eq. 4.62). Then the ζ value needs not to be fine
tuned to its critical value, ζc, in order for the delocalization to occur, but
it rather emerges as an attracting (singular) point as the original system of
interacting charge-particles self-adjusts to percolation in response to external
driving. The convergence to the critical point stems from the fact that there
is a dynamical coupling between the strength of nonlinearity and fluctuating
state of the lattice on which the Anderson problem is considered. Indeed the
changing probability of site occupancy has feedback on the nonlinearity pa-
rameter of the model. It is this feature which leads to the dynamical rule of
advancing the hole wave function and to a “self-organized” formulation of the
localization-delocalization transition. We reiterate that the critical strength
of nonlinearity which destroys Anderson localization is expressible in terms of
the percolation threshold as ζc = −1/ ln pc. Generally, Eq. (4.62) shows that
the behavior is non-perturbative in the vicinity of the criticality. Theoretically,
this observation is very important as it elucidates the nature of thresholded
nonlinear phenomena such as SOC. It is also manifest in the pseudochaotic
character of the lattice activities, implying that the correlations persist de-
spite that the microscopic dynamics are inherently random (Zaslavsky 2002;
Zaslavsky and Edelman 2004; Milovanov 2009; Milovanov and Iomin 2012).

4.7.8 Asymptotic Spreading of the Hole Wave
Function

Let us now obtain second moments for the threshold spreading of the wave-
field. This task is essentially simplified if one visualizes the transport of the
hole wave function as a random walk over a system of dephased oscillators.
For p→ pc, this system is self-similar, i.e., fractal. It is this fractal distribu-
tion of dephased oscillators which, according to Bak, Tang, and Wiesenfeld
(1987), conducts “the noise signal. . . through infinite distances” just above
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the marginally stable state. We consider this distribution as a percolation
cluster on a Cayley tree. The fractal geometry of this cluster is fully char-
acterized by the mean-field values of the Hausdorff dimension, df = 4, and
index of anomalous diffusion, θ = 4 (e.g., Nakayama et al. 1994; Havlin and
ben-Avraham 2002). Note that the spectral fractal dimension is exactly 4/3
in this limit, consistenly with the original AO result (Alexander and Orbach
1982). From Eq. (4.1) one obtains (Milovanov and Iomin 2012)

〈(∆n)2(t)〉 ∝ t1/3, t→ +∞. (4.64)

This behavior is asymptotic in the thermodynamic limit. Note that the Haus-
dorff dimension being equal to 4 matches with the implication of Eqs. (4.49)
and (4.50) where the coefficients Vk,m1,m2,m3

are supposed to run over 4-
dimensional subsets of the ambient mapping space. Indeed it is the overlap
integral of four Anderson eigenmodes (see Eq. 4.50) that decides on dimen-
sionality of subsets of phase space where the transport processes concentrate.
When the nearest-neighbor rule is applied, this overlap structure is singled
out for dynamics. Under the condition that the structure is critical, i.e., “at
the edge” of permitting an escape path to infinity, the support for the trans-
port is reduced to a percolation cluster on a Bethe lattice − characterized,
along with the Hausdorff dimension df = 4, by the very specific value of the
connectivity exponent, θ = 4. The end result is 2/(2 + θ) = 1/3.

We note in passing that the subdiffusion in Eq. (4.64) corresponds to an
asymptotic FDE (Eq. 4.36), with the effective order of time differintegration,
γ = 1/3, consistently with the single-cluster behavior in Eq. (4.1). Recently,
the analysis of subdiffusion in the nonlinear Schrödinger equation with dis-
order by means of a fractional kinetic equation of the diffusion type has been
suggested by Iomin (2010) who utilized the scheme of CTRW’s. The idea was
that nonlinearity-induced overlap between components of the wave-field in-
troduces a distribution of waiting times to the hopping motion. In the above
Eqs. (4.36) and (4.64) we have not as a matter of fact assumed any heavy-
tailed distribution of this sort. Indeed, in our model, the random walker is
supposed to take one unit step along the cluster as soon as one unit time
is elapsed. Even so, with the recognition that cycles and bottlenecks of the
fractal act as to delay the diffusing particle at all scales (e.g., Nakayama
et al. 1994; Havlin and ben-Avraham 2002), the critical spreading of the
wave-field when modeled on a regular lattice may be thought of as corre-
sponding with the Pareto tail of an effective waiting time (w.t.) distribution,

wγ(∆tw.t.) ∝ ∆t
−4/3
w.t. , thus sustaining the Riemann-Liouville derivative in

Eq. (4.36). We find it interesting to remark that associate fractional diffu-
sion equation (Iomin 2010) is “born” within the mathematical structure of
DANSE (Eq. 4.46) containing the usual (integer) time differentiation. Indeed
no ad hoc introduction of fractional time differentiation in the nonlinear ran-
dom Schrödinger equation is needed to obtain this subdiffusion (Milovanov
and Iomin 2012).
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4.7.9 Summary

We have shown that the Anderson localization in disordered media can be
lost in the presence of a weak nonlinearity and that the phenomenon is crit-
ical (thresholded). That means that there is a critical strength of nonlin-
earity above which the wave field turns to unlimited spreading. Below that
limit, the field is localized similarly to the linear case. We have discussed
this localization-delocalization transition as a percolation transition on the
separatrix system of discrete nonlinear Schrödinger equation with disorder.
This problem is solved exactly on a Bethe lattice. A threshold for delocaliza-
tion is found to be ζc = 1/ ln 2 ≈ 1.4427. For the ζ values smaller than this,
the localization persists, despite that the problem is nonlinear. Support for
this type of behavior can be found in the results of Wang and Zhang (2009)
and Krivolapov et al. (2010). More so, a “self-organized” formulation of the
localization-delocalization transition has been obtained beyond perturbation
theory on the basis of DANSE (Eq. 4.46) by defining the nonlinearity param-
eter “on-the-fly,” thus utilizing its relationship (Eq. 4.62) with the probability
of site occupancy. According to this picture, the occurrence of self-organized
critical point relies on the dynamical feedback between the fluctuating state
of the lattice and self-adjusting strength of nonlinearity. The results of these
investigations when account is taken for the mathematical foundations of
NLSE (Ablowitz and Segur, 1981) offer a fertile playground to describe the
phenomena of SOC in connection with first principle models. In vicinity of
the delocalization point the spreading of the wave field is subdiffusive, with
second moments that grow with time as a powerlaw ∝ t1/3 for t→ +∞. This
regime bears signatures enabling to associate it with the onset of “weak”
transport (Zonca et al. 2005) of Alfvén eigenmodes (AEs) in the vicinity of
marginal stability of magnetic confinement systems. In this respect, we note
that the characteristic aspects of sandpile physics involving SOC have, in the
AE transport case, been discussed by Dendy and Helander (1997) and Chen
and Zonca (2007).

4.8 The Two Faces of Nonlinearity: Instability of SOC

Often when SOC systems are said to be “nonlinear” one refers to the opera-
tion of a feedback mechanism (Kadanoff 1991; Sornette 1992a) ensuring that
the control parameters need not to be fine tuned explicitly to obtain critical-
ity. It is this feedback which stabilizes the system at the state of marginal sta-
bility, or the SOC state, as opposed to traditional critical phenomena, which
do require a tuning. The comprehension of nonlinear feedback mechanism
leads to another face of self-organization, the existence of a bursting insta-
bility of SOC (Milovanov 2010, 2011), which occurs in the parameter range
of excessive external forcing, and for which we suggest the name “fishbone-
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like” instability, by analogy with some bursting (internal-kink) instabilities
in magnetic confinement systems (Chen et al. 1984). The implication is that
nonlinearity can play either stabilizing as in the ideal SOC regime or desta-
bilizing as in the regime of overdriving, role depending on the strength of
interaction with the exterior. This section is aimed to discuss this topic in
more detail with the aid of the DPRW model.

4.8.1 Instability Cycle

As the probability of site occupancy p approaches the percolation threshold
pc, the pair connectedness length diverges as ξ ∝ |p− pc|−ν . For p > pc, the
longest relaxation time in the system is Tξ ∝ (p − pc)−zν and the dynamic
susceptibility behaves as χ ∝ (p−pc)−zνγ . In the DPRW model p as a function
of time is determined dynamically by the competing charge deposition and
loss processes. That is, dp/dt = Z+−Z−, where Z+ is the net deposition rate
of the free charges on the capacitor’s left plate, and Z− is the particle loss
rate. The net deposition rate, or the driving rate, is the control parameter of
the model: It takes a given value. The particle loss rate is obtained as electric
current in the ground circuit, i.e., Z− = Iθ(p−pmin), where pmin is the lower
limit of variation of p. Note that Z− is due to the free particles leaving the
system through the grounded plate. The Heaviside θ function indicates that
the lattice can release charges only if/when p ≥ pmin. We expect that pmin

lies close to, although somewhat lower than, the percolation threshold pc.
This is because the conducting cluster can still loose its charge content to
the ground circuit even in the absence of a connecting path to the charged
plate. The dynamics of I can be estimated from dI/dt = ±I/Tξ, where the
upper sign corresponds to the relaxation process in the lattice. Putting all
the various pieces together, we write

dp/dt = Z+ − Iθ(p− pmin), (4.65)

dI/dt = WI|p− pc|zνsign(p− pc), (4.66)

where sign(p − pc) = +1 (−1) for p > pc (p < pc) is the sign-function, and
W is a numerical coefficient. Equations (4.65) and (4.66) define a simple
system of equations for two cross-talking variables, the lattice occupancy
per site, and the particle loss current. These model equations are perhaps
the simplest nonlinear equations describing the generic fueling-storage-release
cycle in driven, dissipative, thresholded dynamical systems. An examination
of these equations shows that the dynamics are periodic (auto-oscillatory, see
Fig. 4.8), with the peak value of electric current Imax ' W (pmax − pc)zν+1.
Here, pmax (pmax > pc) is the upper limit of the p variation. Note that Imax →
0 for pmax → pc as expected. The auto-oscillatory motions signify that the
pure SOC state is destabilized and that the systems phase trajectories enter
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the supercritical parameter range. When pmax → 1, the periodic dynamics
acquire a sharp, bursting character. The bursts half-duration (or half-width)
equals ∆ ' (1/W )(pmax − pc)−zν . Eliminating the distance to the critical
state one obtains the scaling relation Imax ∝ ∆−b, where b = (zν + 1)/zν.
The period between the bursts is found to be Θb ' (pc − pmin)/Z+. A pure
SOC state with no superimposed periodic bursts arises when Θb →∞. This
implies that Z+ → 0 for p → pc. Thus, criticality requires the vanishing
of Z+, in agreement with the result of Vespignani and Zapperi (1998). The
critical state is stable when Θb � Tξ. We have

(pc − pmin)/Z+ � Tξ ∝ |p− pc|−zν . (4.67)

This is satisfied when Z+ → 0 faster than

Z+ max ∝ |p− pc|zν . (4.68)

Fig. 4.8: Fishbone instability of self-organized critical state. Red: Periodic
modulation in the lattice occupancy parameter, p. Blue: Periodic modulation
in the particle loss current, I. The period of auto-oscillatory motion is Θb
(much longer than the microscopic hopping time).

This limit exceeded, the system turns to auto-oscillate around the perco-
lation point with a period dictated by the net deposition rate of the polar-
ization charges. The physics origin of this auto-oscillatory motion lies in the
fact that the changing amount of the free particles provides a feedback on
the lattice occupancy parameter. It is due to this feedback relation that the
DPRW system operates as a self-adjusting, intrinsically nonlinear dynamical
system. Whether or not this feedback will excite the instability depends on
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how the characteristic driving time compares to the characteristic relaxation
time. Indeed, focus on the stability condition in Eq. (4.67). The system be-
ing stable at the percolation point requires that the relaxation time due to
the random walks Tξ be short compared to the characteristic driving time,
1/Z+. In this parameter range, any occasional charge density perturbations
will dissipate via the random walks before input conducting sites are again
introduced. When the percolation point is approached, because the time scale
Tξ ∝ |p − pc|−zν diverges, it is essential that the system be driven infinites-
imally slowly to remain at a pure SOC state. Instability occurs when the
relaxation processes operate on a longer time scale than the driving pro-
cesses. In this regime, the system accumulates the polarization charges,16

whereas to remain at criticality it would get rid of them. The accumulation
of the polarization charges has a direct effect on the conductivity between the
plates, which steps up with the lattice overshooting the percolation threshold.
When pmax → 1, the system can be thought of as facing the typical condi-
tions of electrostatic discharge in the regime of short-circuit. It should be
emphasized that the feedback mechanism does a two-fold job: (i) it stabilizes
the system at the state of critical percolation in a regime when the driving
rate is infinitesimal; and (ii) it excites a cross-talk between the conductivity
and the lattice occupancy parameters when the driving rate is faster than the
relaxation rate. In the parameter range in which the strength of the driving
vanishes, the multi-scale geometry of the critical percolation is dominant in
providing the major transport characteristics for the DPRW lattice. The sit-
uation changes drastically when the strength of the driving increases above
some level. With the systems departure away from the percolation point, the
multi-scale features will soon be lost substituted by the bulk-average nonlin-
earities. The fact that Eqs. (4.65) and (4.66) above are formulated in terms
of the system-average parameters, p and I, merely reflects that the system
is allowed to appreciably depart from the state of marginal stability, or the
SOC state (that means that pmax can be rather closer to 1 than to pc), and
that the effect of overdriving readily calls for the global features to come
into play. It is noted that, in general, the multi-scale properties due to SOC
can coexist along with the global or coherent features; one example of this is
substorm behavior of the dynamic magnetosphere (Milovanov 2011; section
4.8.5 below).

The end result of the discussion above is that the strength of the driving
plays a crucial role in dictating both linear and nonlinear behaviors in the
DPRW model. To obtain a pure SOC state the driving rate should go to zero
sufficiently fast as the critical point is approached. The main effect overdriv-
ing has on the DPRW dynamics is to excite unstable modes associated with
periodic bursts in the particle loss current. Accordingly, the system auto-
oscillates between a subcritical (pmin < pc) and a supercritical (pmax > pc)
states in response to external forcing. The transition to auto-oscillatory dy-

16 Remember that, in the proposed model, the polarization charges act as conducting
states for the motion of current-carrying particles.
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namics signifies the increased role of global and nonlinear behaviors in the
strongly driven DPRW system as compared to a pure SOC system. The bor-
derline between the two regimes corresponds to Tξ ' (pc − pmin)/Z+. The
stability condition Tξ � (pc − pmin)/Z+ has serious implications for the
achievable SOC regimes. It poses one important restriction on the net de-
position rate of the free particles against the longest relaxation time on the
incipient percolation cluster.

4.8.2 “Fishbone”-Like Instability

To help judge the result obtained, let the critical exponents take their mean-
field values: z = 2, ν = 1/2. In this limit Eqs. (4.65) and (4.66) above re-
produce, up to change of variables, Eqs. (13) and (14) of Chen et al. (1984).
The latter set of equations appear in a basic theory of Alfvèn instabilities as
a simplified model for the coupled kink-mode and trapped-particle system in
a magnetically confined toroidal plasma where beams of energetic particles
are injected at high power. The mode dubbed “fishbone” is characterized by
large-amplitude, periodic bursts of magnetohydrodynamic (MHD) fluctua-
tions, which are found to correlate with significant losses of energetic beam
ions (Chen et al. 1984). By comparing our Eqs. (4.65) and (4.66) with Chen
et al. (1984, respective Eqs. 14 and 13 therein) one can see that the lattice
occupancy per site p corresponds to the effective resonant beam-particle nor-
malized pressure within the q = 1 surface (here, q is the familiar safety factor
used in tokamak research); pc corresponds to the mode excitation thresh-
old; and the particle loss current I corresponds to the amplitude of fishbone.
This direct correspondence between the two models suggests consider the in-
stability in Eqs. (4.65) and (4.66) as analog “fishbone” instability for SOC
dynamics.

This correspondence is not really surprising. Mathematically, it stems from
the resonant character of the fishbone excitation, implying that the energetic
particle scattering process is directly proportional to the amplitude of a fish-
bone (Chen et al. 1984; Chen and Zonca 2007). This resonant property dic-
tates a specific nonlinear twist to the fishbone cycle, differentiating it from
other bursting instabilities in magnetically confined plasmas. It is this “res-
onant” twist observed in the DPRW model system that identifies the analog
“fishbone” mode for SOC. We note in passing that the existence of an in-
stability on the top of SOC dynamics conforms with the results of Sánchez
et al. (2001, 2003) in which the traditional (sandpile) SOC model has been
modified by adding diffusivity, giving rise to periodic relaxation-type events
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as a function of the system drive, while a pure SOC state requires a vanishing
drive.17

4.8.3 The Threshold Character of Fishbone Excitation

The fishbone belongs to a specific class of instabilities, the energetic particle
modes (EPM), which appear in a magnetic confinement system when the
energetic particle pressure is comparable with the pressure of the thermal
plasma (Chen 1984; Chen and Zonca 2007, 2012). The EPM constitutes a
separate branch with a distinctive dispersion relation and its frequency and
the growth rate crucially depend on the parameters of the energetic particle
orbital motion. When the driving is strong enough, the EPM may be unstable
despite having a frequency in the Alfvèn continuum where normal modes of
the background plasma are typically strongly damped (the associated damp-
ing rate is proportional to the gradient of the phase velocity) (Heidbrink
2008). Instabilities in the Alfvèn continuum are often observed during in-
tense neutral-beam injection (Chen et al. 1984; Coppi and Porcelli 1986),
but they can also be excited by the energetic electrons generated experimen-
tally by different means: electron cyclotron resonance heating (ECRH) as on
DIII-D tokamak (Wong et al. 2000) and lower hybrid (LH) power injection as
in Frascati Tokamak Upgrade (FTU) experiments (Zonca et al. 2007). The
phenomenon is thresholded in that it requires a critical level of the absorbed
power. The existence of the critical power, which we associate with the critical
“driving” rate, Z+ max, is well established experimentally (Fig. 4.9).

The EPM dispersion relation (Chen 1984; Chen and Zonca 2007; Chen et
al. 1984; Zonca et al. 2005; reviewed in Chen and Zonca 2012) when account
is taken for the well-known “fluid” (this includes the background MHD and
the energetic particle adiabatic and convective responses) and “kinetic” con-
tributions due to the energetic-particle “compressions” can be obtained via
asymptotic matching procedure, leading, upon the fast and slow time scales
are separated, to the frequency-dependent complex nonlinear parabolic equa-
tion, Eq. (15) of Zonca et al. (2005). A remarkable feature of this equation
is that the nonlinearity due to the wave field is twisted with the free en-
ergy source term (here thought as the “driving” term). The main effect this
twist has on the dynamics is that the EPMs are released in radially amplify-
ing “avalanches” (Chen and Zonca 2007, 2012).18 This avalanching behavior
which we associate with the behavior of a strongly over-driven system in the
presence of intense energetic particle population should be distinguished from
the above “chain reactions of hopping motions,” which are the avalanches in

17 Beside this share, the mode referred to in Sánchez et al. (2001, 2003) is edge
localized, non-resonant, fluid mode, in agreement with the diffusive nature of the
added flux, but at contrast with the resonant mechanism of the fishbone excitation.
18 To visualize, think to a large mass of mud or snow rapidly moving downhill.
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Fig. 4.9: Plots of LH coupled power, fast electron temperature fluctuations,
and central radiation temperature in FTU shot # 20865. During high power
LH injection, an evident transition in the electron fishbone signature takes
place from almost steady state nonlinear oscillations (fixed point; marked as
1st branch) to regular bursting behavior (limit cycle; marked as 2nd branch).
The transition is at PLH ≈ 1.69 MW. It is noticed that the bursting behavior
phase closely resembles that of well-known ion fishbones (Chen et al. 1984;
Coppi and Porcelli 1986) and ECRH driven electron fishbones on DIII-D
(Wong et al. 2000). Adapted from Zonca et al. 2007.

the DPRW SOC system at criticality. In the local limit, characterized by a
Gaussian free energy source profile, Eq. (15) of Zonca et al. (2005) is reduced
to a complex NLSE, which is different from DANSE (Eq. 4.46), in that it is
dominated by the nonlinear properties, rather than by a competition with
randomness.

4.8.4 Fractional Nonlinear Schrödinger Equation

If one wants to go beyond the local limit, one may use a stretched Gaussian
free energy profile instead (Zonca et al. 2006). In the latter case, the resulting
equation is found to be a variant of fractional nonlinear Schrödinger equation,
or FNLSE (Weitzner and Zaslavsky 2003; Zelenyi and Milovanov 2004)
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i
∂Ψ(t, x)

∂t
−Dq∇q−x∇qxΨ(t, x) + ζ|Ψ(t, x)|2Ψ(t, x) = 0, (4.69)

where

∇qxΨ(t, x) = [1/Γ (1− q)]x−q?′Ψ(t, x) ≡ [1/Γ (1− q)]∇x
∫ +∞

−∞
dy|x−y|−qΨ(t, y)

(4.70)
is the so-called Riesz/Weyl fractional derivative (Podlubny 1999; Metzler and
Klafter 2000);19 the operator ∇q−x∇qx is a generalization of the Laplacian; x
denotes respective spatial coordinate; q is a fractional exponent (0 ≤ q < 1)
which corresponds with the exponent of the stretched Gaussian free energy
source function (in the notation of Zonca et al. 2006, section 2, q = µ); and
Dq is a normalization constant which carries the dimension [Dq] = cm2q · s−1

(we assume that ~ = 1). Mathematically, the expression

∇q−1
x Ψ(t, x) = [1/Γ (1− q)]x−q?Ψ(t, x) = [1/Γ (1− q)]

∫ +∞

−∞
dy|x−y|−qΨ(t, y)

(4.71)
is a Fourier convolution of the wave function Ψ(t, x) with a power-law
(0 ≤ q < 1). One sees that the Riesz/Weyl fractional derivative is noth-
ing else than the ordinary space derivative, ∇x, applied to a convolution
integral of the Fourier type, i.e., ∇qxΨ(t, x) = ∇x

[
∇q−1
x Ψ(t, x)

]
. We denoted

this differintegration by the symbol ?′ in Eq. (4.70). Although obvious, it
should be emphasized that the Riesz/Weyl fractional operatior is different
from the Riemann-Liouville operator in Eq. (4.35) in that the integration
is performed through infinite limits. Indeed the Riemann-Liouville opera-
tor, Eq. (4.35), originates from a Laplace convolution, consistently with the
initial-time problem in Eq. (4.34), as opposed to the Fourier convolution
above, which has referred to integration over the configuration space in the
limit {max |x−y|} → +∞. Because of the improper integration in Eq. (4.71),
the Riesz/Weyl operator shows a simpler behavior under transformations, as
no initial values come into play (Metzler and Klafter 2000).

It is theoretically important to note that FNLSE (Eq. 4.69) is built on frac-
tional derivatives in space, while time differentiation is left to be conventional
(integer), likewise to DANSE (Eq. 4.46). The integer order of time differenti-
ation in Eq. (4.69) implies that FNLSE is invariant under a one-parametric
group of time translations, t′ = t+ a, making it possible to introduce a con-
stant of motion, the energy E . If one replaces the ordinary time differentiation
here with a Riemann-Liouville derivative, Eq. (4.35), a hypothetic fractional-
time FNLSE is obtained, which does not conserve the energy. On the one
hand, this casts doubts on the significance of such an equation in the limit

19 The Weyl fractional operator, −∞D
q
x, preserves the defining features of the Riesz

operator, ∇qx, to higher ambient dimensions d ≥ 2. See Metzler and Klafter (2000)
for details. We refer to the symbol ∇qx as the Riesz/Weyl fractional operator as to
include the higher dimensional case.
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t → +∞. On the other hand, it suggests a tempting approach for the in-
clusion of non-stationary processes with energy amplification, as for instance
convective amplification of the EPM avalanches (Zonca et al. 2005, 2006).
We hasten to note, however, that we consider such non-stationary processes
as being basically accomplished in the medium.

Attention we pay to the integer time differentiation in Eq. (4.69) re-
flects the very special role time plays in the dynamical equations originat-
ing from quantum mechanics, and in the Schrödinger equation as particular
case (Iomin 2009, 2011), by contrast with the kinetic equations for transport
and relaxation processes discussed above (Metzler and Klafter 2000; Met-
zler et al. 1998, 1999). Generally speaking, fractional time derivatives can
be introduced in the quantum mechanics by means of the Wick rotation of
time (Naber 2004). However, their basic physics interpretation remains to
be vague: apart that they violate the Hermitian property of Hamiltonian,
the corresponding notions of phase of the wave function and of semiclassical
approximation have not been completely understood (Iomin 2009). On the
contrary, when fractional properties are introduced, in quantum physics, by
means of the Feynman propagator for Brownian path integrals (Feynman and
Hibbs 1965), they naturally lead to a space fractional Schrödinger equation,
which is well defined (Laskin 2000, 2002).

More generally and more importantly, the appearance of fractional deriva-
tives in equations of motion is believed to be linked to nonlocal properties of
dynamics (Zaslavsky 2002; Tarasov and Zaslavsky 2006). As the nonlocality is
established, memory is introduced into the dynamical equations via coupling
between respective variables in space and time. In this regard, we also note
that space-fractional equations of the nonlinear Schrödinger type, including
aspects of transition to chaos in a discrete NLSE with long-range interaction,
have been analyzed by Weitzner and Zaslavsky (2003); Zelenyi and Milo-
vanov (2004); Tarasov and Zaslavsky (2006); Zonca et al. (2006); and Korabel
and Zaslavsky (2007). Mathematically, the fractional time Schrödinger equa-
tion was considered by Naber (2004). Its generalization to space-time frac-
tional dynamics of nonlinear driven systems has been formulated by Chen
and Zonca (2012) who associated pertinent integro-differential terms with
cross-scale coupling between the many on-going wave processes interacting
with an external free energy source.

In many ways the fractional NLSE (Eq. 4.69) proves to be a complementary
tool in the description of nonlinear waves in complex systems, owing to its
rich mathematical flavor (Zelenyi and Milovanov 2004). The asymptotics (t→
+∞) of FNLSE (Eq. 4.69) are defined by a competition between nonlinearity
and fractional derivative terms, which are responsible for fractional dispersion
(Milovanov and Rasmussen 2002). Setting the time derivative to zero, we have
Dq∇q−x∇qxΨ(t, x) ∼ ζ|Ψ(t, x)|2Ψ(t, x) for t → +∞, from which the inverse
power-law behavior

|Ψ(t, x)|2 ∼ [1/Γ (1− q)]2 (Dq/ζ)|x|−2q (4.72)
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can be inferred for |x| � (Dq/ζ)1/2q. In the parameter range 1/2 < q <
1, this behavior can be thought of as corresponding with the Pareto tail
of a stable (Lévy) distribution of the probability density, |Ψ(t, x)|2. In the
latter case, the integral

∫
|Ψ(t, x)|2dx ∼ |x|−(2q−1) converges at infinity. This

convergency, other than offering normalization to the wave function, allows
one to look for the wave packet-like solutions, by analogy with the integer-
derivative NLSE (Ablowitz and Segur 1981). We consider a wave packet as a
synchronized (coherent) state of many coupled nonlinear oscillators with long-
range interaction. Of interest here are travelling synchronized states, which
can be defined as nonlocal generalizations of the solitons. This type of states
occurs for ζ > 0. Indeed FNLSE (Eq. 4.69) contains a class of the Galilei
invariant solutions that can be defined as “strange” solitary wave packets,
characterized by the presence of power-law wings, Eq. (4.72), as intimated
by the Riesz/Weyl fractional operator. In this class of solutions, similarly to
their conventional, “integer” counterparts, the “slow” time (as opposed to
the “fast” time scales of the fluctuations) is intrinsically coupled with spatial
coordinate through a running-wave argument, x−ct. Here, c is the finite speed
of the soliton. In view of nonlocality, contained in ∇q−x∇qx, this dependence
can work in some way as a long memory. Setting Ψ(t, x) = ψ(x−ct) exp(iωt),
from FNLSE one arrives at the fractional envelope equation in the moving
frame of the soliton

−Dq∇q−x∇qxψ(x)− ωψ(x) + ζψ(x)|2ψ(x) = 0, (4.73)

where ω = |ω| is the frequency of synchronized oscillation, and we have
assumed that |ω−1∂t| � 1, thus separating the “slow” and “fast” time scales.
It is instructive to rewrite Eq. (4.73) in the equivalent form by allowing for
the mathematical structure of a gradient on the right-hand-side:

−Dq∇q−x∇qxψ = − ∂

∂ψ

[
−|ω|

2
ψ2 +

ζ

4
ψ4

]
. (4.74)

The latter equation describes fractional dynamics of a particle of “mass”
Dq in the potential field U(ψ) = −(|ω|/2)ψ2 + (ζ/4)ψ4, where ψ represents
a “coordinate,” and x represents “time.” The implication is that the term
−∇q−x∇qxψ represents fractional “acceleration” along the coordinate ψ under
the action of a potential force, −∂ψU(ψ) = |ω|ψ−ζψ3. This fractional acceler-
ation being of non-Markovian nature will involve long-time “memory” (due to
the nonlocality of the Riez/Weyl fractional differentiation with respect to x).
One sees that fractional dynamics come into play via formal correspondence
with associate nonlocal properties in the real space, contained in −∇q−x∇qx.
This does not call for any ad hoc introduction of fractional time differenti-
ation in FNLSE (Eq. 4.69), consistently with the results of the discussion
above. In the local limit, holding for q → 1, from Eq. (4.74) one readily finds

ψ(x− ct) =
√

2|ω|/ζ cosh−1
[√
|ω|/D1(x− ct)

]
. (4.75)
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The solution of the fractional equation (1/2 < q < 1) is less straightfor-
ward to obtain. Somehow we expect this solution to interpolate between a
stretched central core and an asymptotic inverse power-law behavior, typi-
cal for fractional-derivative equations. Indeed the asymptotic dynamics for
|x| → +∞ corresponds to a particle approaching its equilibrium point at
ψ = 0. In the vicinity of this point, the field is small, making it possible to
drop the nonlinear term in Eq. (4.73). Then the solution of a linear equation,
−Dq∇q−x∇qxψ(x) = ωψ(x), can be obtained by standard methods, like the
Fourier technique, or the method of images, yielding, in the present limit,
ψ(x− ct) ∝ [|x− ct|qΓ (1− q)]−1

. The solution in the core region, |x− ct| ≤
(Dq/ζ)1/2q, is inferred by stretching the inverse-cosh behavior in Eq. (4.75)

to fractal “time” (∝ |x|q), leading to ψ(x− ct) ∝ cosh−1
[√
|ω|/Dq|x− ct|q

]
,

so that the total probability,
∫ +∞
−∞ |ψ(x)|2dx, is conserved. The borderline

between the two regions,
√
|ω|/Dq|x− ct|q ∼ 1, represents the line on which

nonlinear and nonlocal properties operate on an equal footing. Note that
the special cases of integer order differentiation are reinstalled through the
poles of the gamma function in the limit q → 1. Note, also, that the effect of
stretching appears in the fact that the first derivative diverges in the origin,
i.e., limx→±0∇xψ(x) = ∓∞, with the leading term in the series expansion
behaving as ∝ ∓|x|q−1. Because of the sharp core, periodically occurring,
nonlocal solitons can represent a bursting (fishbone-like) behavior in systems
with many interacting degrees of freedom (see Figs. 4.8 and 4.9). Indeed this
type of bursting behavior explains the phenomenology of fishbone near the
limit cycle (2nd branch in Fig. 4.9) (Zonca et al. 2007).

When cast into a more general context of the fractional parabolic equa-
tion (see Zelenyi and Milovanov 2004, Eq. 11.28 therein), FNLSE (Eq. 4.69)
describes the modulation instability and associate fractional processes of self-
focusing and self-compression of fracton excitations in fractal media. It also
predicts an interesting phenomenon of self-delocalization (self-detrapping)
of fractons (Zelenyi and Milovanov 2004). The main idea here is that the
wave field can nonlinearly modify the fractal geometry of the substrate on
which the excitations occur. Then it will burn off a transport “corridor” along
which the Anderson localization of fractons is destroyed by nonlinearity, so
that the excitations can run away from the system despite the underlying
disorder. This process being essentially dissipative requires the presence of
external forcing above a certain level. The present phenomenon differs from
the phenomena of Anderson delocalization discussed in section 4.7 in that it
is a strongly nonlinear process which is intended to significantly perturb the
structural characteristics of the oscillatory medium via a nonlinear feedback
reaction of the wave-field on the connectivity properties of the fractal. As a
consequence, the loss of waves from the localization domain is ballistic-like,
i.e., 〈(∆n)2(t)〉 ∝ t2, by contrast with the subdiffusion law in Eq. (4.64).

There is another version of this process, representing the EPM dynamical
case discussed above (Chen 1984; Chen and Zonca 2007), in which a feed-
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back occurs between the wave-field and the strength of the driving, giving
rise to a ballistic loss of excitations and associate phenomena of “strong”
transport in a magnetic confinement system (Zonca et al. 2005). In fact this
was the version of the feedback that led to a fractional-derivative NLSE for
Alfvén instabilities in the presence of intense energetic particle population
(Zonca et al. 2006). Those results when account is taken for the phenomena
of unstable SOC dynamics open a new perspective on the study of burning
plasma as complex system (Chen and Zonca 2012; Zonca et al. 2006) beyond
the restrictive assumptions of locality, vicinity to marginal stability, and the
absence of correlations.

4.8.5 Mixed SOC-Coherent Behavior

The idea of “fishbone” instability in self-organized critical dynamics is very
appealing as it addresses a type of behavior in which the multi-scale fea-
tures due to SOC can coexist along with the global or coherent features. One
example of this coexistence can be found in solar wind−magnetosphere inter-
action. Indeed it has been discussed by a few authors (Chang 1999; Klimas
et al. 2000; Uritsky et al. 2002; Kozelov et al. 2004) that the coupled solar
wind−magnetosphere−ionosphere system operates as an avalanching system
and that there is a significant SOC component in the dynamics of magne-
tospheric storms and substorms, along with a coherent component (Sharma
1995; Chang 1999) that evolves predictably through a sequence of clearly
recognizable phases (Baker et al. 1999). Here, we advocate a way of thinking
(Milovanov et al. 2001b; Zelenyi and Milovanov 2004) in which the magneto-
spheric SOC component is associated with the properties of self-organization
of electric currents and magnetic field fluctuations in the plasma sheet of
the Earth’s magnetotail (i.e., the “Sakura” model: section 4.6); whereas the
coherent component is attributed to global instability of the cross-tail SOC
current system and the phenomena of tail current disruption. The implication
is that the dynamic magnetosphere survives through a mixed SOC-coherent
behavior. In this spirit, we expect the input power due to magnetic recon-
nection at the Earth’s dayside magnetopause to self-consistently control the
departure from the state of marginal stability, or the SOC state, with stronger
departures favoring the coherent features. By analogy with fishbone instabil-
ity in magnetic confinement systems we suggest that the behavior is thresh-
olded in that there is a critical input power (critical reconnection rate at the
dayside magnetopause), destabilizing the SOC component in the magneto-
tail. At this point, a portion of the cross-tail electric current will be redirected
to ionosphere − thought as analog “ground circuit” (Fig. 4.10) − leading to
a decrease in the tail current intensity (tail current disruption), and to a
magnetospheric disturbance, or a substorm. A model for the substorm cycle
is obtained from the above coupled system of equations (Eqs. 4.65 and 4.66),
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where one identifies the driving rate, Z+, with the magnetic reconnection
rate at the Earth’s dayside magnetopause; the lattice occupancy parameter,
p, with the average normalized energy density of magnetic fluctuation field in
the magnetotail current sheet; and the particle loss current, I, with electric
current in the ionosphere. We should stress that we consider a substorm as
instability in the cross-tail SOC current system, which occurs on the top of
self-organization to a critical state in the magnetotail, thus posing a coherent
component through the dynamics.

Fig. 4.10: Substorm in the Earth’s magnetosphere. Red: The complex elec-
tric current system in the magnetotail current sheet. Blue: The magnetotail
lobe field, Bx. A current filament popping up in the plasma sheet interacts
with the Harris-distributed magnetic field in the lobes of the magnetotail.
The forces are such as to make the filament spontaneously change its ori-
entation, favoring redirection of electric current to the ionosphere. Adapted
from Milovanov (2011).

4.9 Phase Transitions in SOC Systems

It was argued that the phenomena of magnetospheric substorm bear signa-
tures enabling to associate them with a second-order phase transition in the
coupled perturbation electric current and magnetic fluctuation system (Milo-
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vanov et al. 2001a,b). Indeed, when a current filament pops up in the plasma
sheet, it interacts with the Harris-distributed20 magnetic field in the lobes of
the magnetotail (see Fig. 4.10). The forces are such as to make the filament
spontaneously change its orientation, and in fact a local minimum in the free
energy profile occurs, which favors current disruption to reinstall stability
(Milovanov et al. 2001a).

Let us address the phenomena of magnetospheric substorm from a more
fundamental perspective, namely, as part of the general problem of phase
transitions in SOC systems. The main idea here is that some systems may
spontaneously turn into a coherent state before they become SOC, since their
evolution by itself drives these system to a competition between the SOC
and coherent properties as a consequence of some nonlinear twist between
associate order parameters. Other than substorms, this general approach may
include phenomena like the L-H transition in magnetic confinement devices
(Freidberg 2007), and the tokamaks as particular case, where the L-phase is
associated with SOC (Carreras et al. 1998), and the H-phase is associated
with spontaneously occurring coherent state.

4.9.1 Subordination to SOC

Let us consider a spatially extended system with some order parameter Υ ,
where the processes of self-organization develop a singularity at some value
Υc for t → +∞. We assume that this singularity does not explicitly ap-
pear in the dynamics, implying that the system is, in this limit, critical and
self-organized. The phenomena we are looking at appear when the system
possesses a competing order parameter, which we shall denote by ψ, and for
which Υ acts as input control parameter. The implication is that the dynamics
of ψ is subordinated to the dynamics of Υ via some intrinsic coupling mecha-
nism. For simplicity, we shall assume that the order parameter ψ corresponds
to a coherent behavior, which we envisage as competing with the emerging
multi-scale features due to SOC. Thus, while the system is developing its
singular (SOC) points, it may find it thermodynamically profitable to spon-
taneously turn into the competing, coherent phase. As we shall see, this idea
leads to a fractional extension of the Ginzburg-Landau equation (Zelenyi and
Milovanov 2004; Milovanov and Rasmussen 2005), in which the conventional
Laplacian is replaced by a square of fractional Riesz/Weyl derivatives.

20 According to Harris (1962), the dependence of the lobe field is given by hyperbolic
tangent of the distance to the neutral plane.
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4.9.2 Generalized Free Energy Expansion

For the sake of mathematical convenience, we shall assume that the sys-
tem approaches its SOC point so closely, that the geometry is, to a good
approximation, self-similar (fractal). In this regime, the distribution of the
competing order parameter ψ will be characterized by the diverging corre-
lation length, owing to its coupling with Υ , so that both ψ and Υ distribu-
tions are heavy-tailed. In a sense, the fractal distribution of Υ acts a fractal
support for ψ. The fact that the ψ variation involves correlations on many
spatial scales must have implications for the generalized form of the free
energy expansion near the phase transition point, and in particular for the
gradient term (Lifshitz and Pitaevsky 1980), where the usual assumptions
of locality, permitting to write this term as a simple |∇xψ(x)|2, should be
relaxed. Then a consistent generalization accounting for the integral effect of
the correlations is obtained in terms of the Riesz/Weyl fractional operator,
∇qxψ(x) = [1/Γ (1− q)]x−q ?′ ψ(x) (see Eq. 4.70), where q (0 < q ≤ 1) char-
acterizes the strength of spatial correlation and the local limit is reinstalled
for q → 1. It is this convolution which we expect to replace ∇xψ(x) when
the gradient term is considered. Indeed, the following generalized free energy
expansion in vicinity of the transition point holds (Zelenyi and Milovanov
2004; Milovanov and Rasmussen 2005)

F = F0 +

∫ +∞

−∞
dx

[
Aq|∇qxψ(x)|2 + aq|ψ(x)|2 +

1

2
bq|ψ(x)|4

]
, (4.76)

where we have introduced three phenomenological expansion parameters Aq,
aq, and bq, which depend on the exponent q in general.

4.9.3 Fractional Ginzburg-Landau Equation

Varying the functional in Eq. (4.76) over the complex conjugate ψ∗(x) and
considering ψ(x) and ψ∗(x) as independent order parameters, one obtains

δF =

∫ +∞

−∞
dx
[
Aq∇qxψ(x)∇qxδψ∗(x) + aqψ(x)δψ∗(x) + bq|ψ(x)|2ψ(x)δψ∗(x)

]
.

(4.77)
With use of the integration-by-parts formula (Podlubny 1999)∫ +∞

−∞
dxϕ1(x)∇qxϕ2(x) =

∫ +∞

−∞
dxϕ2(x)∇q−xϕ1(x), (4.78)

equation (4.77) implies that
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δF =

∫ +∞

−∞
dx
[
Aq∇q−x∇qxψ(x) + aqψ(x) + bq|ψ(x)|2ψ(x)

]
δψ∗(x), (4.79)

yielding, in view of the extremum δF = 0,

Aq∇q−x∇qxψ(x) + aqψ(x) + bq|ψ(x)|2ψ(x) = 0. (4.80)

Note that varying the integral in Eq. (4.76) over ψ(x) leads to the conjugate
equation

Aq∇q−x∇qxψ∗(x) + aqψ
∗(x) + bq|ψ(x)|2ψ∗(x) = 0, (4.81)

which is physically identical to Eq. (4.80). Equation (4.80) has the mathe-
matical structure of the well-known Ginzburg-Landau equation (Lifshitz and
Pitaevsky 1980), in which the conventional Laplacian, ∇2

x, is generalized to
∇q−x∇qx. We consider Eq. (4.80) as the fractional Ginzburg-Landau equa-
tion, or FGLE. One sees that FGLE appears as a natural tool in describing
phase transitions in SOC systems, in much the same way as the conventional
Ginzburg-Landau equation describes type II phase transitions in simpler sys-
tems. Note that FGLE (Eq. 4.80) is different from the fractional envelope
equation (Eq. 4.73) in that it contains the opposite sign in front of ∇q−x∇qx,
as well as some degree of freedom in the aq value, as we now proceed to show.

4.9.4 The q-Exponent

Likewise to traditional type II phase transitions, one may argue that aq
changes sign at the critical point and that it linearly depends on variation of
the input control parameter in the vicinity of the criticality (Landau and Lif-
shitz 1969; Lifshitz and Pitaevsky 1980). Then the subordination condition
will imply that aq = αq(Υ−Υc) for Υ → Υc, with αq a constant which does not
depend on Υ . Given that the system is driven so slowly that it develops a sin-
gular point as a result of self-organization, one predicts, with the use of FGLE
(Eq. 4.80), that the distribution of the order parameter ψ will be self-similar

to comply with the scaling |ψ(x)|2 ∝ [1/Γ (1− q)]2 |x|−2q (see Eq. 4.72), from
which the Hausdorff dimension df = d − 2q can be deduced. Clearly, this
scaling law stems from a competition between nonlinearity and nonlocality,
contained in the fractional derivative term. Focusing on the df value, because
the order parameter ψ is intrinsically coupled to Υ , one may expect that the
ψ and Υ distributions will be essentially the same and hence, when account is
taken for the percolation fractal geometry of SOC, will be both characterized
by the “hyperuniversal” relation, df = d−β/ν (see section 4.1.2) where β and
ν are percolation critical exponents. The latter expression will be consistent
with FGLE (Eq. 4.80) when q = β/2ν. This is the desired result. It shows
that there exists a phase transition-like regime, characterized by a nontrivial
fractional index of differintegration in associate fractional Ginzburg-Landau
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equation, and that the behavior is nonlocal in general. Using known estimates
for the parameters β and ν (Stauffer 1979; Nakayama et al. 1994), it is found
that q = 5/96 for d = 2; q ≈ 0.26 for d = 3; and q ≈ 0.4 for d = 4. One
sees that the integral

∫
|ψ(x)|2dx diverges at infinity, corresponding to a spa-

tially extended distribution of the order parameter (for d < 6), by contrast
with the soliton-like states of FNLSE descussed above. The mean-field value,
holding for d ≥ 6, is q = 1. Thus the mean-field case is local, as it should.
Note that locality is reinstalled through the poles of the gamma function for
q → 1. Setting q → 1 in FGLE (Eq. 4.80), one may cross-check that the
conventional Ginzburg-Landau equation is readily reintroduced. For q < 1,
the behavior is governed by an interplay between nonlinear and nonlocal
terms, likewise to the EPM excitation case (see Eq. 4.69), and its correct de-
scription requires fractional extensions of respectively the Ginzburg-Landau
and nonlinear Schrödinger equations consistently with the implication of the
Riesz/Weyl fractional operator.

4.10 Overall Summary and Final Remarks

The concept of self-organized criticality, or SOC, proves to be a comple-
mentary tool in drawing a physical picture of the processes underlying the
dynamics of systems with many coupled degrees of freedom (i.e., “com-
plex” systems). In this chapter we have demonstrated the diversity of ap-
propriate mathematical methods of describing such processes, including frac-
tional equations of the diffusion, relaxation, and Ginzburg-Landau (nonlin-
ear Schrödinger) type, generalizing their integer-derivative counterparts, as
well as the formalism of discrete Anderson nonlinear Schrödinger equation
(DANSE) − extending far beyond the usual scaling theories. Some connec-
tions to Hamiltonian dynamics, paving the way to first-principle models of
SOC phenomena, have been also discussed. These issues make the mathe-
matical formalism of SOC an exciting and challenging problem.

The main emphasis in the present work has been laid on percolation, rec-
ognized as a convenient and powerful framework in describing critical phe-
nomena in complex systems. The percolation problem finds its significance
in some relation with the fundamental topology (in terms of connectedness
issues) and theory of fractional manifolds (Milovanov 1997; Zelenyi and Milo-
vanov 2004). In this respect, some elements of conformal maps of fractals,
along with the percolation problem on the Riemann sphere, have been ad-
dressed. It’s not the complex analysis we knew: By conformally mapping
infinite percolation cluster onto the Riemann sphere we could theoretically
calculate the spectral fractal dimension beyond the mean-field approaches in
two embedding dimensions at criticality: ds = 1.327± 0.001.

To deal with dynamical problems involving feedback between the various
degrees of freedom such as the SOC problem we used the idea of random walks
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on a self-adjusting percolation cluster. This idea is advantageous, as it makes
it possible to employ the random walks in place of the usual lattice automated
redistribution rules, and in this fashion to design a family of SOC models,
that are more friendly from the standpoint of their analytical treatment as
compared to their CA relatives. In fact, the random walks on percolation
systems offer suitable analytical forms for the diffusion, charge-conduction,
and the dynamic susceptibility properties, and their significance in the study
of SOC phenomena can hardly be exaggerated.

More so, we proposed a simple lattice model of self-organized criticality,
the DPRW model, which addresses the SOC problem as a transport problem
for electric charges (free particles and holes) on a dynamical geometry of the
threshold percolation. The novel concepts of this model are: (i) a theory of
self-organized criticality based on the analogy with dielectric-relaxation phe-
nomena in self-adjusting random media, and (ii) prediction of a “resonant”
instability of SOC due to the nonlinearities present. The system adjusts itself
to remain at the critical point via the mechanisms of hole hopping associ-
ated with the random walk-like motion of lattice defects on a self-consistently
evolving percolation cluster.

With the random walk’s guide to lattice dynamics we could derive frac-
tional analogs of the diffusion and relaxation equations, demonstrating the
existence of multi-scale relaxation processes and a broad distribution of du-
rations of relaxation events. In particular, we have shown that the relaxation
to SOC of a slightly supercritical state is described by the Mittag-Leffler re-
laxation function, Eq. (4.22) (similarly to the Cole-Cole behavior in glassy
systems: see, e.g., Coffey 2004), and not by a simple exponential function
as for standard relaxation. The ideal SOC state requires that the driving
rate goes to zero faster than a certain scaling law as the percolation point is
approached. The model belongs to the same universality class as the BTW
sandpile, and should be distinguished from the DP-like SOC models.

Thinking of holes as “excitations” of the marginally stable state, we con-
sidered a transport problem for the hole wave function in the context of
DANSE equation with random potential on a lattice. An important feature
which arises in this approach is competition between nonlinearity and ran-
domness. It was argued that above a certain critical strength of nonlinearity
the Anderson localization of the hole wave function is destroyed and unlimited
subdiffusive spreading of the wave field along the lattice occurs. This subdif-
fusion process is asymptotic (Milovanov and Iomin 2012). We have seen that
this problem of the critical spreading was intimately related with the out-
standing problem of transport along separatrices in large systems (Chirikov
and Vecheslavov 1997). With the recognition that the transition to unlimited
spreading could be described as a percolation transition on a Cayley tree, a
“self-organized” formulation of the phenomena of localization-delocalization
in the presence of nonlinearity has been proposed. The results of this inves-
tigation have demonstrated the versatility of the DANSE formalism, which
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we believe to capture the essential key elements of self-organized critical phe-
nomena, thus offering a general analytical framework for SOC.

Overdriving the DPRW system near self-organized criticality was shown
to have a destabilizing effect on the SOC state. The fundamental physics
of this instability consists in the following. Because of rapid accumulation
of the conducting sites, the system departs from the percolation point, and
its geometry nonlinearly changes from fractal-like to crystalline-like. At this
point, the conductivity of the system has greatly increased. As the lattice con-
ducts more electricity, losses increase in the ground circuit. However, because
the particle loss current has feedback on the lattice occupancy parameter, a
cross-talk is excited between the systems average conductivity response and
the distance to the critical state. We have observed that the instability cy-
cle is qualitatively similar to the excitation of the internal kink (“fishbone”)
mode in tokamaks with high-power beam injection (the lattice occupancy per
site p corresponds to the effective resonant beam-particle normalized pressure
within the q = 1 surface (here, q is the familiar safety factor, used in tokamak
research); pc corresponds to the mode excitation threshold; and the particle
loss current I corresponds to the amplitude of fishbone). The instability is
“resonant” in that the particle loss process is directly proportional to I. This
resonant property dictates a specific nonlinear twist to the fishbone cycle,
differentiating it from other bursting instabilities in magnetically confined
plasmas.

The excitation of “fishbone” instability in SOC systems leads to a type
of behavior in which the multi-scale features due to SOC can coexist along
with the global or coherent features (i.e., mixed SOC-coherent behavior).
One example of this coexistence is found in the solar wind−magnetosphere
interaction. We expect the concept of mixed SOC-coherent behavior be the
plausible statistical picture for thresholded, dissipative, nonlinear dynami-
cal systems in the parameter range of nonvanishing external forcing. In this
respect, we suggest that some of the “extreme” events, or system-scale re-
sponses, observed in complex natural and social systems (e.g., Albeverio et
al. 2006) may, in fact, be the fishbone-like instabilities of SOC predicted by
the present theory.

It has been shown that some systems may spontaneously turn into a co-
herent state before they become SOC, since their evolution by itself drives
these system to a competition between SOC and coherent properties as a
consequence of some nonlinear twist between associate order parameters. We
discussed a generalized free energy expansion for a system with extended
spatial degrees of freedom, in which the order parameter due to SOC acts as
input control parameter for the competing coherent behavior. Based on this
expansion− which has involved the Riesz/Weyl fractional operator in place of
the standard (local) gradient − a fractional generalization of the well-known
Ginzburg-Landau equation has been obtained variationally (Milovanov and
Rasmussen 2005). With the fractional Ginzburg-Landau equation, it should
be possible to describe the much observed L-H transition in magnetic confine-
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ment devices (Freidberg 2007), as well as the phenomena of magnetospheric
substorm and associate tail-current disruption (Ohtani et al. 1995).

Overviewing the results obtained, we believe it will be worthwhile to pur-
sue the above considerations not only because they arise naturally in a basic
theory we are considering, but also because questions of this kind might
have feedback on seemingly very diverse phenomena beyond the specialized
physics context of this study. In the following we illustrate this on two exam-
ples from respectively finance and climate dynamics. Here, the discussion is
unavoidably more subjective and controversial.

4.10.1 Finance

Collective phenomena in finance include as partial cases the bursting of spec-
ulative bubbles, market crashes, debt contamination (now-deepening in the
euro-zone), and the spreading of bankruptcy and insolvency. A simplified toy-
model here might be constructed as a variant of the DPRW model discussed
above, with clusters of polarization charges thought as asset market; holes
thought as insolvency; and the phenomena of hole-hopping thought as debt
spreading. In this context, we might predict that, when the market is de-
regulated (i.e., the dynamics are random walk-like), periodic financial crises
are virtually unavoidable and that the period between the crashes is inversely
proportional to the rate at which speculative (not absorbed by the real econ-
omy) capital flows into the market, thus “overheating” the system. In the
above formula Θb ' (pc − pmin)/Z+ we associate pc with a capitalized value
at the state of marginal stability; pmin with the market “bottom,” and Z+

with the capital inflow rate. The net result is that financially “overheated”
economies may be unstable against a “fishbone”-like oscillation − manifest
in a cross-talk between capitalized values (p) and the bailouts (I). Peaks
and crashes due to this oscillation might be essentially very sharp (Fig. 4.8),
posing substantial risks to the investors.

More so, if we associate boundary dissipation with personal gain of the
market players, we might theoretically predict that the distribution of income,
∆x, in a stable market economy 21 will be given by an asymptotic inverse
power-law distribution Nγ(∆x) ∝ ∆x−ß, with the exponent ß approximately
equal to 1.5, likewise to the occurrence frequency energy distribution of solar
flares and/or respective distribution of faulting and earthquakes (Eq. 4.42).
Interestingly, this asymptotic power-law form for the income distribution,
along with the very specific value of the power exponent, ß = 1.5, was in-
timated by the social economist Pareto in his Cours d’Économie Politique
as early as in 1897. More recent investigations, based on a better statistics

21 Here, “stable” refers to the relatively quiet intervals between the crashes. We
assume, accordingly, that the period Θb ' (pc − pmin)/Z+ is large compared with
the bursts half-width, ∆, posing an upper bound on Z+.
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available, have fairly confirmed those early results (Montroll and Shlesinger
1982; references therein).

4.10.2 Climate Dynamics

Likewise to finance, many exciting questions such as the above arise in climate
research and it would be of interest to study them from the more general per-
spective. The focus here is on existing periodic oscillations in Earth’s global
climate system, as for instance the El Niño / La Niña-Southern Oscillation, or
ENSO, which is a two to seven year quasi-periodic climate pattern associated
with the basin-scale warming (El Niño) and cooling (La Niña) of the sea sur-
face layer across the tropical Pacific Ocean. The extremes of this oscillation −
which is identifiable in the climate reconstructions since thousands of years −
are blamed for the severe weather conditions affecting climate, habitats, and
the economies in many regions of the world (McPhaden et al. 2006). There
are studies suggesting that ENSO involves interactions extending through
different time scales with various climate phenomena, such as the seasonal
cycle, interseasonal oscillations, and/or decadal oscillations. A body of stud-
ies also suggest that ENSO interacts with higher-frequency processes, as for
instance intraseasonal oscillations, and with the mean state and seasonal cy-
cle of the tropical Pacific (Guilyardi 2006). The main nonlinear processes
relevant to ENSO include atmospheric convection and cloud feedbacks; wind
response to ocean surface temperature anomalies; zonal advection; tropical
instability waves; and thermocline-surface coupling. There is a growing belief
that ENSO results from the interaction of a number of nonlinear feedbacks,
either amplifying or damping the associated interannual weather anomalies.
A useful resource on ENSO physics is the review by Guilyardi et al. (2009),
where a report on advances made in recent years can be found, along with the
challenges that lie ahead, and the related scientific debate. Another general
resource is an American Geophysical Union (AGU) book, Earth’s Climate:
The Ocean-Atmosphere Interaction, edited by Wang et al. (2004), presenting
a summary of current observations, theories, and models of ocean-atmosphere
interaction.

Understanding and predicting ENSO is of interest from both a fundamen-
tal scientific perspective and for the practical problems of natural hazard
evaluation (McPhaden et al. 2006). It was argued that ENSO was a damped
mode externally sustained by atmospheric random “noise” forcing (Guilyardi
et al. 2009). In this regard, an assessment of dynamical rules by which the
mode is excited suggests an interesting parallel with the EPM dynamical case
(Zonca et al. 2006), including features of unstable SOC dynamics (Milovanov
2010, 2011). Taking this idea to its extreme limit, one might construct a
simplified yet relevant toy-model, contained in Eqs. (4.65) and (4.66) above,
consisting of two cross-talking variables, p and I, such that p stands for air
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Fig. 4.11: Climate reconstruction over the past 420,000 years from the Vos-
tok ice core, Antarctica. Blue: Temperature variation in degrees Celsius.
Green: Carbon dioxide (CO2) concentration in parts-per-million-by-volume,
or p.p.m.v. Red: Dust concentration (dust concentrations are expressed in
parts-per-million, or p.p.m., assuming that Antarctic dust has a density of
2, 500 kg·m−3). One sees that atmospheric concentrations of carbon dioxide
correlate well with Antarctic air-temperature throughout the record, while
anit-correlate with the dust concentration. Image and data credit: Petit et
al. (1999).

surface pressure and I stands for ocean surface temperature. In this spirit,
one might suggest that ENSO represents a climate mode of the “fishbone”
type, naturally occurring in the Earth’s global climate dynamics, and posing
appreciable deviations from the mean state of the coupled ocean-atmosphere
system. The main theoretical prediction here is that the period of the os-
cillation will be inversely proportional with atmospheric forcing strength.
More advanced models might refer to FNLSE (Eq. 4.69) with an account
for cross-scale couplings between the various wave processes involved. These
theoretical investigations might open a new perspective on the introduction
of fractional dynamics in climate research.

More so, the phenomenon of fishbone might shed new light on glacial-
interglacial climate changes, in particular, the ∼100,000-year climate cycle,
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which could be a globally induced unstable climate mode stemming from a
cross-talk between air-temperature and dust concentration (see Fig. 4.11).
Support for this suggestion can be found in Antarctic ice records as dis-
cussed in Petit et al. (1999). The implication is that glaciations occur natu-
rally through functioning of Earth’s climate as complex system, thus being
“inherently there” as the many degrees of freedom twist and couple with the
exterior. All in all, the phenomenon of fishbone warns of repeating severe
events being virtually unavoidable in driven systems.

4.11 The Frontier

Generally speaking, the study of self-organized criticality phenomena is cur-
rently transitioning from an emphasis on scaling and linear-response theories
to an emphasis on understanding and predicting the nonlinear dynamics of
systems with many coupled degrees of freedom. In many ways these tenden-
cies are manifest in the introduction of DANSE, FNLSE, and FGLE equa-
tions discussed above. As this transition occurs, investigations − as much
experimental as theoretical and numerical − that pinpoint the nonlinear
interactions in complex systems will increase in importance. Theoretically,
the study of fractional-derivative, nonlinear dynamical equations is in its in-
fancy. Beyond validation of theoretical models, the future of the field lies
in the development of first-principle approaches to SOC, involving Hamil-
tonian approaches. These may exploit “self-organized” features of ordinary
phase transitions along the lines of the DANSE and FGLE formalisms. In the
geo-space plasma research, with the observations becoming multi-spacecraft
and/or multi-point in scope, theoretical models are likewise to confront issues
of nonlocality, self-organization, and build-up of correlations in the presence
of many co-existing plasma processes (Zelenyi and Milovanov 2004; Savin et
al. 2011).

Similarly to geo-space exploration, research activities in fusion plasma are
now arriving at a crucial juncture that necessitates the understanding of
“complexity” in the accessible and relevant operation regimes of burning
plasma. Indeed it is becoming clear that the important questions that will be
receiving attention in the coming years, particularly with the development
of ITER and DEMO scenarios, are addressed toward the comprehension of
burning plasma state as being self-organized, thresholded, nonlinear dynam-
ical system with many interacting degrees of freedom (Chen and Zonca 2007;
Zonca et al. 2005, 2006; reviewed in Chen and Zonca 2012). The ITER project
is a major challenge on the way to controlled fusion burn. The specialized
issues of complexity, nonlinear interactions, and SOC have found their signif-
icance in the recently formulated Fusion Advanced Studies Torus, or FAST,
proposal (Pizzuto et al. 2010), promoting an European Union satellite for
ITER. An emergent way of thinking here is to recognize FAST as having a
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Fig. 4.12: A cartoon illustrating the many on-going plasma processes in a
toroidal magnetic confinement system, viewed through the prism of com-
plexity and self-organized criticality. A remake of Figure 1 from Zelenyi and
Milovanov (2004). In the bottom-right corner is an artist’s view of the FAST
tokamak. Courtesy of A. Pizzuto. In the upper-right corner is a “sandpile”
watch: Time is running for fusion, requiring the comprehension of SOC. The
four satellites in the bottom centre represent the ROY project (Savin et al.
2011).

parallel in the geo-space exploration, the ROY mission concept (Savin et al.
2011) − a project in space research for a constellation of small, probe-like
satellites,22 aiming to investigate the dynamic magnetosphere as complex
system (see Fig. 4.12). We extrapolate that the cross-disciplinary effort of
bringing these exciting projects to realize will open new avenues in the study
of what proves to be one of the greatest theoretical challenges in the modern
nonlinear physics, the paradigm of self-organized criticality.
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Chapter 5

Criticality and Self-Organization in
Branching Processes: Application to
Natural Hazards

Álvaro Corral and Francesc Font-Clos

Abstract The statistics of natural catastrophes contains very counter-
intuitive results. Using earthquakes as a working example, we show that the
energy radiated by such events follows a power-law or Pareto distribution.
This means, in theory, that the expected value of the energy does not exist (is
infinite), and in practice, that the mean of a finite set of data in not represen-
tative of the full population. Also, the distribution presents scale invariance,
which implies that it is not possible to define a characteristic scale for the
energy. A simple model to account for this peculiar statistics is a branching
process: the activation or slip of a fault segment can trigger other segments to
slip, with a certain probability, and so on. Although not recognized initially
by seismologists, this is a particular case of the stochastic process studied
by Galton and Watson one hundred years in advance, in order to model the
extinction of (prominent) families. Using the formalism of probability gen-
erating functions we will be able to derive, in an accessible way, the main
properties of these models. Remarkably, a power-law distribution of ener-
gies is only recovered in a very special case, when the branching process is
at the onset of attenuation and intensification, i.e., at criticality. In order
to account for this fact, we introduce the self-organized critical models, in
which, by means of some feedback mechanism, the critical state becomes an
attractor in the evolution of such systems. Analogies with statistical physics
are drawn. The bulk of the material presented here is self-contained, as only
elementary probability and mathematics are needed to start to read.
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5.1 The Statistics of Natural Hazards

Only fools, charlatans and liars predict earthquakes
C. F. Richter

Men, and women, have always been threatened by the dangers of Earth:
volcanic eruptions, tsunamis, earthquakes, hurricanes, floods, etc. Sadly, still
in the 21st century our societies have not been able to get rid of such a sword
of Damocles. But are natural catastrophes submitted to the caprices of the
gods? Or do these disasters contain some hidden patterns or regularities? The
first view has been dominant for many centuries in the history of humankind,
and it has been only in recent times that a more rational perspective has
started to consolidate.

5.1.1 The Gutenberg-Richter Law

One of the first laws quantifying the occurrence of a natural hazard was
proposed for earthquakes by the famous seismologists Beno Gutenberg and
Charles F. Richter in the 1940’s, taking advantage from the recent develop-
ment of the first magnitude scale by Richter himself. The Gutenberg-Richter
law is quite simple: if one counts the number of earthquakes in any seismically
active region of the world during a long enough period of time, one must find
that for each 100 earthquakes of magnitude M greater or equal than 3 there
are, approximately (on average), 10 earthquakes with M ≥ 4, one earthquake
with M ≥ 5, and so on (Gutenberg and Richter 1944, Utsu 1999, Kanamori
and Brodsky 2004). So, the vast majority of events are the smallest ones, and,
fortunately, only very few of them can become catastrophic, maintaining a
constant proportion between their number.

It is not possible to measure all earthquakes on our planet, but for some
areas with very accurate seismic monitoring it has been found

that the Gutenberg-Richter law holds down to magnitude - 4 (Kwiatek
et al. 2010); this corresponds to small rock cracks of a few centimeters in
length (negative magnitudes are introduced to account for the fact that there
can be earthquakes smaller than those of zero magnitude). And, more remark-
ably, for nanofracture experiments in the laboratory (Åström et al. 2006),
the law has been verified up to magnitude below -13. The scarcity of the big
events contained in the law leaves as open the question about which is its
upper limit of validity.

Despite not being recognized or mentioned by Gutenberg and Ritchter
in their original paper (1944), any reader with a minimum knowledge of
probability and statistics will immediately realize that the Gutenberg-Richter
law implies an exponential distribution of the magnitudes of earthquakes, i.e.,
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DM (M) ∝ 10−bM , (5.1)

with DM (M) the probability density of M , the parameter b taking a value
close to 1, and the symbol ∝ standing for proportionality (with the constant
of proportionality ensuring proper normalization).

But which is the meaning of the Gutenberg-Richter law, in addition to
provide an easy-to-remember relationship between the relative abundances
of earthquakes? The interpretation depends, of course, on the meaning of
magnitude, which we have avoided to define. In fact, there is not a unique
magnitude, but several of them; second, magnitudes do not have physical
dimensions (i.e., units); and third, “magnitudes reflect radiation only from
subportions of the rupture, and they saturate above certain size, rather than
giving a physical characterization of the entire earthquake source” (Ben-Zion
2008). More in-depth understanding comes from the energy radiated by an
earthquake, which is believed to be an exponential function of its magnitude
(Kanamori and Brodsky 2004), that is,

E ∝ 103M/2, (5.2)

with a proportionality factor close to 60 kJ (Utsu 1999); so, an increase by 1
in the magnitude implies an increase in energy by a factor

√
1000 ' 32. Thus,

an earthquake of magnitude 9 radiates as much energy as 1000 earthquakes
of magnitude 7, or as 106 of magnitude 5.

One can reformulate then the Gutenberg-Richter law in terms of the en-
ergy. Indeed, the probability of an event is “independent” of the variable we
use to describe it, and so,

DE(E) = DM (M)
dM

dE
, (5.3)

with DE(E) the probability density of the energy. Using equation (5.2), we
can express M as a function of E,

M ∝ logE, (5.4)

and differentiate to obtain dM/dE,

dM

dE
∝ 1

E
, (5.5)

so that equation (5.3) reads:

DE(E) ∝ 10−bM
1

E
=
(

10
3M
2

)− 2b
3 1

E
= E−

2b
3

1

E
. (5.6)

Summarizing, this straightforward change of variables leads to
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DE(E) ∝ 1

Eα
, with α = 1 +

2b

3
, (5.7)

and this is just the so-called power-law distribution, or Pareto distribution
(Newman 2005), with exponent α around 1.67 when b is close to 1. Notice
from equation (5.7) that in order that DE(E) is a proper probability density
function, it has to be defined above a minimum energy Emin > 0 , otherwise
(if Emin = 0), it cannot be normalized. Although the true value of Emin

cannot be measured (it is too small), this parameter is not important as it
does not influence any properties of earthquakes.

Figure 5.1 displays the probability density of the seismic moment for world-
wide shallow earthquakes (Kagan 2010); this variable is assumed to be pro-
portional to the energy, but much easier to measure accurately (Kanamori
and Brodsky 2004), and so, it should also be power-law distributed, with the
same exponent. The straight line in the plot is the defining characteristic of
a power law in double logarithmic scale, as logDE(E) = C − α logE. A fit
by maximum likelihood estimation (Clauset et al. 2009, Peters et al. 2010)
yields α ' 1.68.

Two important properties of power-law distributions are scale invariance
(with some limitations due to the normalization condition) and divergence of
the mean value (if the exponent α is below or equal to 2). These are explained
in the Appendix.
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Fig. 5.1: Estimation of the probability density of seismic moment for world-
wide shallow earthquakes (in log-log scale), using the so-called CMT catalog
(Kagan 2010). A power law fit results in an exponent α = 1.68. Radiated
energy should give the same power law behavior. Deviations at small values
of the seismic moment are attributed to the incompleteness of the catalog.
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To conclude this subsection, let us mention that the power-law distri-
bution of sizes is not a unique characteristic of earthquakes. It has been
claimed that many other natural hazards are also power-law distributed,
although with different exponents (and maybe with a lower or an upper cut-
off): tsunamis (Burroughs and Tebbens 2005), landslides, rockfalls (Malamud
2004), volcanic eruptions (McClelland et al. 1989, Lahaie and Grasso 1998),
hurricanes (Corral et al. 2010), rainfall (Peters et al. 2010), auroras (Freeman
and Watkins 2002), forest fires (Malamud et al. 2005)... As the reader will
figure out, some of the facts that we will explain having in mind earthquakes
can also be applied to some of these natural hazards, but maybe not to all
of them. It is an open question to distinguish between these different cases.
For an account of power-law distributions in other areas beyond geoscience
see the excellent review by Newman (2005).

5.1.2 A First Model for Earthquake Occurrence

As far as we know, a first attempt to develop an earthquake model in order
to explain the Gutenberg-Richter law was undertaken by Michio Otsuka in
the early 1970’s (Otsuka 1971, 1972, Kanamori and Mori 2000). He used
as a metaphor the popular Chinese game of go, although we will formulate
the model in relation to the game of domino, probably more familiar to the
potential readers.

Instead of playing domino, we are going to play a different game with
their pieces. The idea is to make the domino pieces to topple, as in the well-
known contests and attempts to break a Guinness world record, but with two
important differences. First, the pieces are not put in a row, but, rather, they
constitute a kind of tree. Second, when one piece topples, one does not know
what will happen next, i.e., if some other pieces will topple in turn (and how
many will) or not. So, we have a stochastic cascade process that supposedly
mimics the rupture that takes place in a seismic fault during an earthquake.
The tree of domino pieces constitutes the fault, and each piece is a small fault
patch, or element. The earthquake is the chain reaction of toppling of pieces
(i.e., failures of patches).

Getting more concrete, Otsuka assumed that the tree representing the
fault had a fixed number of branches at each position, or node, and that
the toppling would propagate from each branch to the next element with a
fixed probability p, independently of any other variable. So, the number of
propagating branches resulting from a single one would follow the binomial
distribution (Ross 2002). For instance, in Fig. 5.2, the possible number of
branches per element is just 2. If a fixed elementary energy is associated to
the failure of each patch, one can obtain the energy released in this process
from the number of topplings, allowing the comparison with the Gutenberg-
Richter law, see nevertheless Sec. 4.1 of the review by Ben-Zion (2008). So, the
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Fig. 5.2: Scheme of Otsuka’s model for earthquake ruptures. White circles
correspond to the propagation of the rupture, whereas black ones indicate
termination points (Otsuka 1972).

propagation of ruptures is considered a probability controlled phenomenon,
in such a way that when an earthquake starts, it is not possible to know how
big it will become. Later, we will see that this statement is stronger than what
it looks like here. The usual domino effect, in which one toppling induces a
new one for sure and so on, would correspond to the controversial concept of
a characteristic earthquake (Stein 2002, Ben-Zion 2008, Kagan et al. 2012),
an event that always propagates along the complete fault or fault system and
would release always the same amount of energy.

The novel and original model in geophysics explained in this subsection,
proposed by Otsuka in the 1970’s, was already known by a few mathemati-
cians 100 years in advance. It will take us the next pages to explain the
distribution of energy in this model.

5.2 Branching Processes

Besides gambling, many probabilists have been interested in reproduction
G. Grimmett and D. Stirzaker

Let us move to the Victorian (19th century) England. There, Sir Francis
Galton, the polymath father of the statistical tools of correlation and regres-
sion, and cousin of Charles Darwin, was dedicated to many different affairs.
In addition to the height of sons in relation to the heights of their fathers,
he was concerned about the decay and even extinction of families that were
important in the past, and about whether this decline was a consequence of a
diminution in fertility provoked by the rise in comfort. If that were the case,
population would be constantly fed by the contribution of the lower classes
(Watson and Galton 1875). In order to better understand the problem, he
devised a null model in which the number of sons of each men was random
(the abundance of women was not considered to be a limitation). Despite the
apparent simplicity of the model, Galton was not able to solve it, and made
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a public call for help. The call was also fruitless, and then Galton turned to
the mathematician and reverend Henry William Watson.

5.2.1 Definition of the Galton-Watson Process

Let us consider “elements” that can generate other elements and so on. These
elements may represent British aristocratic men that have some male descen-
dants, (or, in a more fresh perspective, women from anywhere that give birth
to her daughters, or, perhaps more properly, bacteria that replicate), neu-
trons that release more neutrons in a nuclear chain reaction, or fault patches
that slip during an earthquake. The Galton-Watson process assumes that
each of these elements triggers a random number K of offspring elements
in such a way that each K is independent from that of the other elements
and all K are identically distributed, with probabilities P (K = 0) = p0,
P (K = 1) = p1, . . .P (K = k) = pk, with k = 0, 1, . . .∞ (Harris 1963).
(Naturally, the normalization condition imposes

∑
∀k pk = 1.)

The model starts with one single element, in what we call the zeroth
generation of the process, as shown in Fig. 5.3. The K offsprings of this first
element constitute the first generation. Let Z0 ≡ 1 denote the number of
elements of the zeroth generation, Z1 the number of elements of the first
generation, etc. Obviously, by construction, P (Z1 = k) = pk. The number of
elements in the t+ 1 generation is obtained from the number of the previous
generation t as

Zt+1 =

Zt∑
i=1

Ki, (5.8)

with t ≥ 0, where Ki corresponds to the number of offsprings of each element
in the t generation. Equation (5.8) can be used to simulate the process in a
straightforward way and will be very important to its analytical treatment,
in order to calculate the probability distribution of Zt, for any t. Some readers
may recognize that the variables Z0, Z1, . . . form a Markov chain, but this is
not relevant for our purposes. And of course, Otsuka’s earthquake model is
a particular case of the Galton-Watson process corresponding to a binomial
distribution for P (K = k).

5.2.2 Generating Functions

An extremely convenient mathematical tool will be the probability generating
function (Grimmett and Stirzaker 2001). For the random variable K this is,
by definition,



190 Álvaro Corral and Francesc Font-Clos

Fig. 5.3: A realization of the Galton-Watson process. At the top, the tree
associated to the process is shown, starting from the left (Z0 = 1). At the
bottom, the evolution of the number of elements originated in each generation
t are displayed. The model for P (K = k) is binomial with n = 2 and p = 1/2,
corresponding to the critical case (see main text).

fK(x) ≡
∞∑
k=0

pkx
k = 〈xK〉, (5.9)

where the brackets indicate expected value. The normalization condition
guarantees that fK(x) is always defined at least in the x−interval [−1, 1],
although only the interval [0, 1] will be of interest for us. Of course, the same
definition applies to any other random variable; in the concrete case of K
(which represents the number of offsprings of any element) we may drop the
subindex, i.e., fK(x) = f(x).

Very useful and straightforward properties will be,

1. fK(0) = P (K = 0);
2. fK(1) = 1 (by normalization);
3. f ′K(1) =

∑
∀k pkk = 〈K〉 ≡ m;

4. f ′K(x) ≥ 0 for x ≥ 0 (non-decreasing function);
5. f ′′K(x) ≥ 0 for x ≥ 0 (non-convex function, “looking from above”);

the primes denoting derivatives (left-hand derivatives at x = 1). Note that
although we illustrate these properties with the variable K, they are valid for
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the generating function of any other (discrete) random variable. So, the plot
of a probability generating function between 0 and 1 is very constrained. We
anticipate that two main cases will exist, depending on whether the expected
value of K is m < 1 or whether m > 1. This is natural, as the first case
corresponds to a population that on average decreases from one generation
to the next whereas in the second case the population grows, on average.

Another property but not so straightforward is that the generating func-
tion of a sum of N independent identically distributed variables K (with N
fixed) is the N -th power of the generating function of K; that is, if

Σ =

N∑
i=1

Ki, (5.10)

then
fΣ(x) = fK(x)N . (5.11)

Indeed,

fΣ(x) = 〈xΣ〉 = 〈x
∑
Ki〉 = 〈xK1 · xK2 · · ·xKN 〉 =

= 〈xK1〉〈xK2〉 · · · 〈xKN 〉 = fK(x)N , (5.12)

where we can factorize the expected values due to statistical independence
among the Ki’s.

In general, if the random variables Ki were not identically distributed
(but still independent), the generating function of their sum would be the
product of their generating functions. The demonstration is essentially the
same as before, and one only needs to introduce new notation for the different
generating functions.

A following step is to consider that N is also a random variable, with
generating function fN (x). Then,

fΣ(x) = fN (fK(x)). (5.13)

Note that equation (5.13) is just a generalization of equation (5.11), i.e., now
we calculate the expected value of the powers of fK(x) depending on the
values that N make take. In any case, it is easy to demonstrate: denoting
with 〈·〉Ki the average over the Ki’s and with 〈·〉N the average over N , we
have

fΣ(x) = 〈xΣ〉 =
〈
〈xΣ〉Ki

〉
N

=
〈
fK(x)N

〉
N

= fN (fK(x)), (5.14)

where the last equality is just the definition of the probability generating
function of the random variable N , evaluated at fK(x). We stress that this
is only valid for independent random variables.
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5.2.3 Distribution of Number of Elements per
Generation

Going back to the Galton-Watson branching process, where we know that
Zt+1 =

∑Zt
i=1Ki, we can identify Zt+1 as Σ and Zt as N ; then equation

(5.13) reads,
fZt+1(x) = fZt(fK(x)) = fZt(f(x)) (5.15)

(dropping the subindex K). As fZ1
(x) = f(x), it is straightforward to see by

induction that the generating function of Zt, is given by

fZt(x) = f(f(...f(x))) = f t(x), (5.16)

where the superindex t denotes composition t times. This is valid for t =
1, 2, . . . ; for t = 0 we have, obviously, that fZ0

(x) = x (because Z0 = 1 with
probability 1). In words, the generating function of the number of elements
for each generation is obtained by the successive compositions of f(x). This
non-trivial result was first proved by Watson in 1874 (Harris 1963).

5.2.4 Expected Number of Elements per Generation

Here we present an illuminating result, which will be useful at some point in
the chapter. Although, in general, the successive compositions of the gener-
ation function leads to very complicated mathematical expressions, the mo-
ments of Zt can be computed in a simple way (Harris 1963). Using what
we have learnt about generating functions together wtih equation (5.16), the
expected value of Zt is

〈Zt〉 =
d

dx
f t(x)

∣∣∣∣
x=1

. (5.17)

Let us then write

d

dx
f t(x) =

d

dx
f(f t−1(x)) = f ′(f t−1(x))

d

dx
f t−1(x), (5.18)

therefore, by induction,

d

dx
f t(x) = f ′(f t−1(x))f ′(f t−2(x)) · · · f ′(f2(x))f ′(f(x))f ′(x). (5.19)

Taking x = 1 and using that all the generating functions have to be 1 at that
point,

〈Zt〉 = f ′(1)t = mt. (5.20)

So, when m < 1 the mean number of elements per generation decreases
exponentially, whereas when m > 1 this number increases, constituting a
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stochastic realization of Malthusian growth. For this reason m is sometimes
called the branching ratio. When m = 1 the average size of the population is
constant, but we will later see that this does not mean that the population
reaches a stable state. Higher-order moments can be computed in a similar
way, but they are not so useful as the mean.

Another related issue is the one of the expected value of the number of
elements per generation conditioned to the value of the previous generation,
i.e., 〈Zt+1|Zt = zt〉. As when Zt is fixed, Zt+1 =

∑zt
i=1Ki, then, taking the

expected value,

〈Zt+1|Zt = zt〉 =

zt∑
i=1

〈Ki〉 = ztm. (5.21)

This result can be used to relate branching processes with martingales (Grim-
mett and Stirzaker 2001), but this does not have to bother us.

5.2.5 The Probability of Extinction

Extinction of the process is achieved when Zt = 0, for the first “time” (i.e., for
the generation that yields Zt = 0 for the first t). Then, all the subsequent Z’s
are also zero, and extinction can be considered an “absorbing state”, in this
sense. We now see that the probability of extinction in the Galton-Watson
process is equal to one (extinction for sure) for m ≤ 1 and is smaller than
one for m > 1.

This result, which may be referred to as the Galton-Watson-Haldane-
Steffensen (criticality) theorem, was first proved by J. F. Steffensen, in the
1930’s (being unaware of the work by Galton and Watson, and later progress
by Haldane). As Kendall (1966) pointed out, after then, the same theorem
“was to be re-discovered over and over again, especially during the [Second
World] War period, and no doubt we have not yet seen its last re-discovery”.
Ironically, Kendall did not know that Irénée-Jules Bienaymé knew the theo-
rem, in its correct formulation, 30 years in advance Galton and Watson and
85 years before Steffensen (Kendall 1975)!

Indeed, extinction may happen at the first generation, Z1 = 0, or at the
second, Z2 = 0, etc. All these extinction events are included in Zt = 0, with
t→∞; therefore, the probability of extinction Pext is given by

Pext = lim
t→∞

P (Z1 = 0 or Z2 = 0 or . . . or Zt = 0) =

= lim
t→∞

P (Zt = 0) = lim
t→∞

f t(0), (5.22)

i.e., by the infinite iteration of the point x = 0 through the generating func-
tion f(x) (using the key property that the probability of a zero value is the
value of the generating function at zero, and equation (5.16) again).
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Fig. 5.4: Probability generating function f(x) of the number of offsprings per
element and iteration of the point x = 0 through successive compositions of
f . The fixed points correspond to the crossings of the diagonal; the one closer
to zero in each case is also the attractor for the iteration. Left corresponds to
a subcritical case and right to a supercritical case. The model is the binomial
one, with n = 2.

We now calculate the iteration f t(0). In the interval [0, 1] the function f(x)
is non-decreasing and non-convex, taking values from p0 to 1. If the slope of
f(x) at x = 1, given by m = 〈K〉 = f ′(1), is smaller than or equal to 1, then
f(x) only crosses (or reaches) the diagonal at x = 1 (otherwise, f(x) would
need to be convex somewhere), and the iteration of the point x = 0 ends at
the point x = 1 (which is the attractor, see Fig. 5.4). Therefore,

Pext = lim
t→∞

f t(0) = 1, (5.23)

i.e., extinction is unavoidable if m ≤ 1. There is a trivial exception, though,
associated to p1 = 1 (and zero for the rest); this is an extremely boring
situation indeed. In this case, f(x) = x, and therefore lim f t(0) = 0, which
means, obviously, that the probability of extinction is zero.

If the slope of f(x) at x = 1 is m > 1 (which only can happen for a non-
linear generating function, p0 + p1 < 1), then f(x) has to cross the diagonal
at a point x∗ smaller than one, which is the attractive solution to which the
iteration tends, see Fig. 5.4 again. In mathematical language,

Pext = lim
t→∞

f t(0) = x∗, (5.24)

where
x∗ = f(x∗) with x∗ < 1. (5.25)
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The demonstration is elaborated in the Appendix.
Summarizing,

Pext =

{
1 if m ≤ 1
x∗ if m > 1

(5.26)

with x∗ < 1, except in the trivial case p1 = 1, which has m = 1 but yields
Pext = 0.

Equation (5.26) clearly shows that, in general, the point m = 1 separates
two distinct behaviors: extinction for sure for m ≤ 1 and the possibility of
non-extinction (non-sure extinction) for m > 1. Therefore, m = 1 constitutes
a critical case separating these behaviors, called therefore subcritical (m < 1)
and supercritical (m > 1). It is instructive to point out that, as x = 1 is always
a solution of f(x) = x, Watson concluded, incorrectly, that the population
always gets extinct, no matter the value of m (Kendall 1966).

5.2.6 The Probability of Extinction for the Binomial
Distribution

For the sake of illustration we will consider a simple concrete example, a
binomial distribution (Ross 2002, Grimmett and Stirzaker 2001),

pk = P (K = k) =

(
n
k

)
pk(1− p)n−k, for k = 0, . . . n. (5.27)

This assumes that each element has only a fixed number of trials n to generate
other elements, and any of these n trials has a constant probability p of
being successful. The generating function turns out to be, using the binomial
theorem

f(x) =

∞∑
k=0

(
n
k

)
(1− p)n−kpkxk = (1− p+ px)n. (5.28)

Let us consider the simple case with n = 2, and define q = 1 − p. As we
know, the probability of extinction will come from the smallest solution in
[0, 1] of

x = (q + px)2. (5.29)

So,

x =
1− 2pq ±

√
(1− 2pq)2 − 4p2q2

2p2
, (5.30)

but the square root can be written as
√

1− 4p(1− p) =
√

(1− 2p)2 = (1 −
2p), and then,
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x =
1− 2p+ 2p2 ± (1− 2p)

2p2
=

{(
q
p

)2

1
(5.31)

Therefore, the smallest root depends on whether p is below or above 1/2

Pext =

{
1 for p ≤ 1

2(
q
p

)2

for p ≥ 1
2

(5.32)

As for the binomial distribution m = np = 2p (Ross 2002), the critical case
m = 1 corresponds obviously to p = 1/2, in agreement with the behavior of
Pext.

5.2.7 No Stability of the Population

Although this subsection contains an interesting result to better understand
the behavior of the Galton-Watson process, it can be skipped as it is not
connected to the rest of the chapter. In fact, the iteration of the point x = 0
shows what happens to the whole generating function of Zt when t → ∞.
Indeed, in the same way as in subsection 2.5,

lim
t→∞

fZt(x) = lim
t→∞

f t(x) = 1 if m ≤ 1, (5.33)

whereas
lim
t→∞

fZt(x) = lim
t→∞

f t(x) = x∗ < 1 if m > 1, (5.34)

except for x = 1, which always fulfills limt→∞ f t(x) = 1, see Fig. 5.5).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ft (x
)

x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

x

Fig. 5.5: Successive compositions of f(x), for all x, yielding the probability
generating functions of Zt, starting at t = 1 (lighter red) up to t = 15 (darker
red). Larger t leads to flatter functions, approaching the fixed point. From
left to right, subcritical, critical, and supercritical cases, using a binomial
model with n = 2.
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Note that a flat generating function corresponds to probabilities equal to
zero, except for the zero value, i.e.,

lim
t→∞

P (Zt = k) = 0, except for k = 0. (5.35)

In this way, for m ≤ 1 we have that limt→∞ P (Zt = 0) = 1, and the popula-
tion gets extinct; but for m > 1 we have found limt→∞ P (Zt = 0) = x∗ < 1;
having any other finite value of K a zero probability, this means that Zt
goes to infinite, when t→∞, with probability 1− x∗; that is, Zt cannot re-
main positive and bounded. The only stable state is extinction. Obviously, in
this limit the Galton-Watson process is unrealistic, as other external factors
should prevent that the population goes to infinity. But we do not need to
bother about that, if we understand the limitations of the model.

5.2.8 Non-Equilibrium Phase Transition

Let us analyze in more detail what happens around the “transition point”
m = 1. As we just have seen, recall equation (5.25), the extinction probability
is given by the solution of Pext = f(Pext). When m ≤ 1 the only solution in
[0, 1] is Pext = 1 (except in the trivial case p1 = 1). When m > 1 we have
to take the smallest solution of Pext = f(Pext) in [0, 1]. In terms of the non-
extinction probability, ρ = 1− Pext, we need to look for the largest ρ that is
solution of

f(1− ρ) =

∞∑
k=0

pk(1− ρ)k = 1− ρ, (5.36)

in the range [0, 1]. We explore the case of Pext close to 1, for which ρ is
close to zero, and, using the binomial theorem, we can expand (1 − ρ)k =
1− kρ+ k(k − 1)ρ2/2 + · · · , which yields

∞∑
k=0

pk −
∞∑
k=0

kpkρ+
1

2

∞∑
k=0

k(k − 1)pkρ
2 + · · · = (5.37)

= 1−mρ+
1

2
µρ2 + · · · = 1− ρ,

where we have introduced the mean m and the second factorial moment
µ = 〈K(K − 1)〉 (which we assume exists). Therefore, up to second order in
ρ we need to solve (

1

2
µρ+ 1−m

)
ρ ' 0. (5.38)

It is immediate that one solution of equation (5.38) is ρ = 0, and one can
realize that this solution is exact up to any order in ρ. The other solution
is ρ ' 2(m − 1)/µ, but we must pay attention to the value of µ, which can



198 Álvaro Corral and Francesc Font-Clos

be written as µ = σ2 + m(m − 1), with σ2 = 〈(K − m)2〉 = 〈K2〉 − m2,
i.e., the variance. Existence of m and σ2 guarantees the existence of µ, then.
Assuming σ2 6= 0,

2(m− 1)

µ
=

2(m− 1)

σ2[1 +m(m− 1)/σ2]
=

2(m− 1)

σ2

[
1− m(m− 1)

σ2
+ . . .

]
(5.39)

(using the formula for the geometric series), therefore, ρ around zero means
m around one, and we can write the second solution as

ρ ' 2(m− 1)

σ2
(5.40)

which is only in the range of interest for m > 1.
In conclusion, we have

ρ = 0 if m ≤ 1
ρ ' 2(m− 1)/σ2 if m > 1,

(5.41)

valid in the limit of small ρ. For m > 1 this limit is equivalent to m→ 1. The
separate case σ2 = 0 is only achieved in the trivial situation where p1 = 1
(otherwise, the mean cannot approach one).

In this way, we obtain a behavior that is the one corresponding to a con-
tinuous phase transition in thermodynamic equilibrium. Identifying m with
a control parameter (as temperature, or more properly, the inverse of tem-
perature) and ρ with an order parameter (as magnetization in a magnetic
system) these transitions show an abrupt but continuous change of ρ as a
function of m at the transition point mc, with

ρ = 0 below mc

ρ ∝ (m−mc)
β above but close tomc

(5.42)

For magnetic systems, mc corresponds to the so-called Curie temperature.
For the Galton-Watson branching process we can extract from equation (5.41)
that

mc = 1 and β = 1, (5.43)

where we assume that the variance of K does not go to zero at the transition
point.

We can compare the previous general result, ρ ' 2(m−1)/σ2, for m above
but close to 1, with the result we found for the binomial distribution with
n = 2 (see equation (5.32)), for which

ρ = 1−
(

1− p
p

)2

=
2p− 1

p2
(5.44)



5 Criticality and Self-Organization in Branching Processes 199

when p ≥ 1/2. Using that in this case m = np and σ2 = npq (see Ross
(2002)),

2(m− 1)

σ2
=

2p− 1

pq
' 2p− 1

p2
, (5.45)

because q = 1 − p ' p for p ' 1/2. So, equations (5.32) and (5.41) agree
close to the transition point. Figure 5.6 shows also how they disagree as m
increases.
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Fig. 5.6: Left: non-extinction probability ρ as a function of the mean number
of offsprings per element, m. Dashed line corresponds to the approximation
explained in the text (eq. (5.41)). The abrupt change in ρ is the hallmark
of a continuous phase transition. The model is binomial with n = 2. Right:
the same but as a function of the rescaled distance to the critical point,
2(m− 1)/σ2, where σ2 refers to the variance at m = 1. The Poisson and the
geometric distributions are also studied.

Finally, for completeness, we can play with the pathological case given by
σ2 = 0. Let us consider first the following model, p0 = 1− λ1, p1 = λ1 (and
zero otherwise), with λ1 < 1. Then, m = λ1, and we know that ρ = 0. Next,
let us consider p1 = 1−λ2, p2 = λ2 (and zero otherwise), giving m = 1 +λ2.
In this case, ρ = 1 always, yielding a discontinuous, or first order phase
transition.

5.2.9 Distribution of the Total Size of the Population:
Binomial Distribution and Rooted Trees

Our main interest will now be to calculate the total size S of the population,
summing across all generations, i.e.,
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S =

∞∑
t=0

Zt, (5.46)

this corresponds to the total number of individuals that have ever been born,
the total number of neutrons participating in a nuclear chain reaction, or the
energy released during an event in an earthquake model.

Let us go back to the concrete binomial case,

pk = P (K = k) =

(
n
k

)
pk(1− p)n−k, for k = 0, . . . , n. (5.47)

The size distribution can be calculated using elementary probability and com-
binatorics. One needs to take advantage of the representation of a branching
process as a tree (which is a connected graph with no loops). Each element
is associated to a node, and branches linking nodes indicate an offspring re-
lationship between two nodes. Naturally, all nodes have just one incoming
branch, except the one corresponding to the zero generation (which in this
context is called the root of the tree). So, the number of branches is the num-
ber of nodes minus 1. As the size s of a tree is the number of nodes it contains,
the number of branches is s − 1, and the number of missing branches (non-
successful reproductive trials) is ns− (s−1) (because the number of possible
branches arising from s nodes is ns) (Christensen and Moloney 2005). There-
fore, a particular tree of size s comes with a probability ps−1(1− p)(n−1)s+1,
and the probability P (S = s) of having an undefined tree of size s is obtained
by summing for all possible trees of size s. In the case n = 2 the number of
trees with s nodes is given by the Catalan number

Cs =
1

s+ 1

(
2s
s

)
, (5.48)

see the Appendix for its calculation. Then,

P (S = s) =
1

s+ 1

(
2s
s

)
ps−1(1− p)s+1 with s = 1, 2, . . . (5.49)

It can be checked, using the generating function of the Catalan numbers, that
this expression is normalized for p ≤ 1/2 but not for p > 1/2, in fact,

∞∑
s=1

P (S = s) = Pext, (5.50)

see the Appendix again.
Nevertheless, the exact expression we have obtained for P (S = s) does

not teach us anything about the behavior of this function (unless one has a
great intuition about the behavior of the binomial coefficients). In this regard,
Stirling’s approximation is of great help (Christensen and Moloney 2005). It
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states that, in the limit of large N one can make the substitution

N ! ∼
√

2πN

(
N

e

)N
, (5.51)

see the Appendix once more. The symbol e is nothing else than the e number.
So, for large sizes we can apply the approximation to s and also to 2s,

(2s)! ∼
√

4πs

(
2s

e

)2s

. (5.52)

Therefore, the binomial coefficient turns out to be,(
2s
s

)
=

(2s)!

s!s!
∼ 1√

πs

(2s)2s

s2s
∼ 4s√

πs
, (5.53)

and the Catalan number, replacing s+ 1 ∼ s,

Cs =
1

s+ 1

(
2s
s

)
∼ 4s√

πs3/2
. (5.54)

This is an exponential increasing function of s, and the term s3/2 does
not seem to play any role, asymptotically. However, introducing the factor
ps−1(1− p)s+1, we go back to equation (5.49), getting

P (S = s) ∼ 1− p√
πp

[4p(1− p)]s
s3/2

. (5.55)

Notice that p(1− p) is no larger than 1/4, so the exponential term becomes
decreasing, except for p = 1/2, where it disappears. We can go one step
further, by writing,

[4p(1− p)]s = es ln[4p(1−p)] = e−s/ξ(p) (5.56)

with the characteristic size defined as

ξ(p) =

(
ln

1

4p(1− p)

)−1

, (5.57)

and finally equation (5.55) reads,

P (S = s) ∼ 1− p√
πp

e−s/ξ(p)

s3/2
, (5.58)

So, for s large, but substantially smaller than ξ(p), the size probability mass
function is a power law, with exponent 3/2. For larger s, the exponential
decay dominates. The exception is the critical case, p = 1/2, for which ξ(p)
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becomes infinite, the exponential disappears and the distribution is a pure
power law. In this case the exponent 3/2 is a critical exponent. The reader
can see the goodness of the approximation in Fig. 5.7.
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Fig. 5.7: Probability mass functions of the total size of the population S ,
for different values of the parameter p of a binomial distribution with n = 2,
both in the subcritical and critical cases. The asymptotic solution for large s
is also shown. The pure power law at the critical point becomes apparent.

Another critical exponent arises for the divergence of the characteristic
size ξ(p). Introducing the deviation with respect to the critical point, ∆ ≡
p− pc = p− 1/2, one can write,

p(1− p) =
1

4
−∆2, (5.59)

and so, close to the critical point (for small ∆),

1

4p(1− p) =
1

1− 4∆2
' 1 + 4∆2 + . . . (5.60)

(using the formula of the geometric series), then

ln
1

4p(1− p) ' ln(1 + 4∆2) ' 4∆2 + . . . (5.61)
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(using the Taylor expansion of the logarithm at point 1) and

ξ(p) =

(
ln

1

4p(1− p)

)−1

' 1

4∆2
+ . . . (5.62)

Therefore, the characteristic size ξ(p) diverges at the critical point as a power
law, with an exponent equal to 2. This allows to write the asymptotic formula
(s large) for the size distribution in a simpler form, close to the critical point
(∆ small),

P (S = s) ∼ 1− p√
πp

e−4(p−pc)2s

s3/2
. (5.63)

Hence, after this perhaps long but worthwhile digression, we are able to
say something about the energy distribution in Otsuka’s model, which the
reader will have already noted is a particular case of the Galton-Watson pro-
cess. If one takes p < 1/2 the resulting energy distribution has an exponential
tail, with a characteristic scale given by ξ(p). This means that earthquakes
attenuate, or get extinct, and in no way can dissipate energies larger than the
scale provided by ξ(p) (the probability of having an earthquake of size larger
than 10ξ(p) is ridiculously small). This is the subcritical case. On the other
hand, if p > 1/2 there are two types of earthquakes, first, those similar to
the subcritical ones, with a size limited by the scale defined by ξ(p), and sec-
ond, infinite or never-ending earthquakes (Pext < 1), where the initial small
perturbation (the toppling of just one domino piece) grows exponentially.
This is the supercritical regime (Ben-Zion 2008). Neither the subcritical nor
the supercritical case are in correspondence with the Gutenberg-Richter law,
which yields a power-law distribution of energies, and therefore the absence
of a characteristic scale. But this is precisely what corresponds to the critical
case, p = 1/2, which yields also a power-law distribution. Thus, the propaga-
tion of an earthquake through a fault is not only stochastic in the sense that
when a patch fails one does not know what will happen next, but it is worse
than that, as a critical process is equally likely to intensify or attenuate. Note
how difficult is to achieve a critical behavior, as p has to be finely tuned to
1/2, otherwise criticality is lost. This is also what is really difficult in terms
of domino topplings, and not to get a full-system supercritical toppling that
could break the Guinness world record (which is trivial from a mathematical
point of view).

The agreement between the model and real earthquakes is qualitative but
not quantitative, as the model leads to α = 3/2 whereas for earthquakes
α ' 5/3 ' 1.67. In the next subsection we will explain that the model value
of 3/2 is rather robust and other versions of the Galton-Watson process lead
to the same exponent. This discrepancy has been explored in detail by Kagan
(2010), who argues that there are a series of technical artifacts that make
increase the value of the exponent for earthquakes, and therefore, following
Kagan, both exponents would be close and probably compatible.
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5.2.10 Generating Function of the Total Size of the
Population

In order to advance further in the understanding of branching processes,
our little story carries us to the U.S. during the Second World War. While
soldiers were fighting in the field and civilians were suffering the horrors of
war, a group of scientists gathered in the peace of Los Alamos, New Mexico, to
do research to develop the first nuclear bombs. Among these brilliant people
was the great Polish mathematician Stanislaw Ulam, who was hired by his
famous colleague John Von Neumann (Ulam 1991). Together with David
Hawkins (philosopher of science and most talented amateur mathematician
ever known by Ulam) they were investigating the multiplication of neutrons
in nuclear chain reactions, using what we call now branching processes. It
seems that they were unaware of the pioneering work of Galton and Watson.

Hawkins and Ulam showed, among other things, that the generating func-
tion g(x) of the total size of the population, S =

∑
∀t Zt, fulfills, in the

non-supercritical case,
g(x) = xf(g(x)) (5.64)

where, as usual, f(x) is the generating function of the number of offsprings
of an individual element. What follows in this subsection is based in their
work for the Manhattan Project (Hawkins and Ulam 1944, Ulam 1990), but
our derivation is somewhat simpler. What we call total size of the population
will correspond to all neutrons generated during the reaction.

First, it is convenient to consider the size from generation 1 to τ (excluding
by now the zero generation). This is

Sτ =

τ∑
t=1

Zt (5.65)

with probabilities q
(τ)
s = P (Sτ = s) and a generating function g̃τ (x) =∑

∀s q
(τ)
s xs. A size s in generations from 1 to τ can be decomposed into

a size k in the first generation, with probability pk, and a size s − k in the
remaining τ − 1 generations (from 2 to τ), but starting with k elements; this

has a probability q
(τ−1,k)
s−k . (Note that, with this notation q

(τ)
s = q

(τ,1)
s .) Then,

using the law of total probability,

q(τ)
s =

s∑
k=1

pkq
(τ−1,k)
s−k , (5.66)

except for s = 0, where q
(τ)
0 = p0. If we multiply by xs and sum for all s,

from 0 to ∞, we will obtain on the left hand side the generating function of
Sτ , which turns out to be
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g̃τ (x) = p0+

∞∑
s=1

s∑
k=1

pkq
(τ−1,k)
s−k xs = p0+

∞∑
k=1

pk

[ ∞∑
s=k

q
(τ−1,k)
s−k xs−k

]
xk. (5.67)

The term inside the square brackets is the generating function of the size
from 1 to τ − 1 generations but, instead of starting with one single element
(the usual Z0 = 1), starting with k elements (Z1 = k). As these k parents are
independent of each other, the resulting size will be the sum of k indepen-
dent random variables, each with generating function g̃τ−1(x), which yields
[g̃τ−1(x)]k as the corresponding generating function, that is,

[g̃τ−1(x)]k =

∞∑
s−k=0

q
(τ−1,k)
s−k xs−k, (5.68)

Substituting into equation (5.67), this leads to

g̃τ (x) = p0 +

∞∑
k=1

pk[g̃τ−1(x)]kxk = f(xg̃τ−1(x)) (5.69)

where we have introduced the definition of f(x) = fK(x).
If we want to include the zero generation in the size, we need to add an

independent variable with generating function x (as Z0 takes the value 1 with
probability 1), and then, the generating function of the size from generation
0 to τ is the product gτ (x) = xg̃τ (x). This leads to

gτ (x) = xf(gτ−1(x)). (5.70)

Coming back to the total size,

S =

∞∑
t=0

Zt, (5.71)

the corresponding generating function is g(x) = limτ→∞ gτ (x). If the prob-
ability of extinction is one, i.e., if the system is not supercritical, this is the
same as limτ→∞ gτ−1(x), and therefore we have

g(x) = xf(g(x)). (5.72)

So, the desired generating function is the solution of this equation, with f(x)
known. We will not be able to solve it in general; however, notice that this is
not necessary in order to get the moments of S. Differentiating equation (5.72)
with respect x one obtains

g′(x) = f(g(x)) + xf ′(g(x))g′(x), (5.73)

and taking x = 1 and isolating,
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〈S〉 = g′(1) =
1

1− f ′(1)
=

1

1−m, (5.74)

which goes to infinity as 〈K〉 = m = f ′(1) goes to 1, that is, at the critical
point. Of course, as we have mentioned, the result is not applicable in the
supercritical case, m > 1, where the population can growth to infinite with
a non-zero probability. Further differentiation yields higher-order moments.

The same result could have been obtained directly, as

〈S〉 = 〈Z0+Z1+Z2+· · · 〉 = 〈Z0〉+〈Z1〉+〈Z2〉+· · · = 1+m+m2+· · · = 1

1−m,

(5.75)
where the last equality only holds in the subcritical case, otherwise, 〈S〉 goes
to infinity.

In a few cases, the equation for g(x) allows to easily obtain a solution.
Revisiting the binomial example with n = 2, for which f(x) = (1− p+ px)2,
one gets

g(x) = xf(g(x)) = x(1− p+ pg(x))2, (5.76)

from where

g(x) =
1− 2pqx±√1− 4pqx

2p2x
, (5.77)

with q = 1− p. Using the Taylor expansion for the square root term (see the
Appendix),

√
1− 4pqx = 1− 2pqx−

∞∑
s=1

(2s− 1)!!2s+1

(s+ 1)!
(pqx)s+1, (5.78)

and recognizing the Catalan numbers Cs there, we get (see the Appendix),

g(x) =
q

p

∞∑
s=1

Cs(pqx)s, (5.79)

where we also realize that only the minus sign before the square root leads
to a true generating function. Therefore, the coefficients of xs lead to

P (S = s) = Csp
s−1qs+1, (5.80)

for s ≥ 1. This result is exactly the same as the one we obtained previously in
a different manner (see equation (5.49)), although in this way we do not need
to count trees, as the Catalan numbers arise directly in the series expansion
(in fact, we do not even need to know them).

We confirm that the results for Otsuka’s binomial model yield a size ex-
ponent equal to 3/2. But it would be desirable to test the robustness of such
exponent value, as, after all, the model is a crude simplification of reality,
and we would like that modifications of the model do not lead to a totally
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different behavior. Despite the difficulty to find the power-law behavior (for
which we need to finely tune the parameter p to 1/2), if one considers other
models different than the binomial one, the asymptotic behavior of the size
distribution is in general always given by a power law with exponent 3/2, in
the critical case; this can be proved by means of Cauchy’s formula and as-
suming only finite variance, see Otter (1949), Harris (1963). So, going beyond
robustness, it is common to denote such invariance as universality.

5.2.11 Self-Organized Branching Process

At this point we are ready to accept the agreement, not only qualitative but,
following Kagan’s remarks (Kagan 2010), also quantitative, between a critical
branching process and earthquake occurrence. So, in order to tune the model
to reality we just need to take p = 1/2 (in Otsuka’s binomial case) or m = 1
(in general) and the agreement is really satisfactory, and we could finish our
search for a model here.

But we can try to go one step farther and ask: why do we find that the
tectonic systems (and other geosystems related to natural catastrophes) are
always keeping a delicate balance between a subcritical and a supercritical
state, i.e., in an apparent critical state? Can the coincidence be just fortu-
itous? In the reproduction of individuals one could devise an evolutionary
explanation. Imagine a series of isolated islands, each one occupied by a pop-
ulation following a Galton-Watson process but with different parameters for
each island. It is clear that islands with subcritical populations get deserted
after a number of generations. Populations in supercritical islands either get
extinct also or explode exponentially, in which case we assume that the pop-
ulation collapses, due to the exhaustion of the resources (this is an ingredient
that is not in the original Galton-Watson model). In the critical case, the
population also gets extinct, but for a few of these islands the population
can survive for very long times, much longer than in the subcritical and su-
percritical cases. So, after a long enough time we would only find critical
populations.

However, this evolutionary scenario is not applicable to a tectonic system,
where, when the process (the earthquake) gets extinct, a new one will start
sooner or later. Rather, the situation would be analogous to finding all mag-
netic materials on Earth at the onset of magnetization, which would mean
that their temperatures would be equal to the Curie temperature of each ma-
terial. One could suspect then that there is some mechanism enforcing crit-
icality, where the temperature changes as a function of magnetization, and
magnetization is kept at the border of the transition; in other words, both
parameters are linked through some feedback mechanism (Sornette 1992,
Pruessner and Peters 2006).
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Zapperi et al. (1995) propose a model in this line. They start with a stan-
dard branching process but introduce some important modifications:

• They limit the number of generations to a maximum τ , so 0 ≤ t ≤ τ .
• After the extinction of the process (which is obviously certain when the

number of generations is limited), the parameters of the process change
for the next realization, in such a way that for subcritical cases (m < 1),
the mean m of the number of offsprings for each individual unit increases,
whereas in the supercritical case (m > 1) the mean m decreases. The idea
is to make the critical state m = 1 an attractor of the dynamics.

In order to be more concrete, let us consider the usual binomial distri-
bution with only 0, 1, or 2 possible offsprings and a probability p that each
reproductive trial is successful. Then we already know that p < 1/2, p = 1/2,
and p > 1/2 correspond to the subcritical, critical, and supercritical cases,
respectively. The dynamics proposed by Zapperi and coauthors relies on the
activity that reaches the “boundary” of the system (defined by the last gen-
eration, t = τ), which is Zτ , changing the probability p through the following
formula

p(T + 1) = p(T ) +
1− Zτ (p(T ), T )

N
, (5.81)

with T a discrete time index counting the number of realizations of the process
(do not confuse with t) and N = 2τ+1 − 1 the maximum number of possible
elements, i.e., the number of branches of the underlying complete tree. Thus,
if the activity does not reach the boundary, Zτ is zero and the parameter p
is increased by 1/N , this is a very small number in the limit of very large
systems (N → ∞). On the other hand, if the activity at the boundary is
greater than one, p is decreased by (Zτ − 1)/N .

We already know that the expected value of Zτ is mτ , with m the mean
of the offspring distribution (m = 2p in our particular binomial model). Let
us introduce a noise term, η, which takes into account the fluctuations of Zτ
with respect its mean, i.e., η = Zτ −mτ . Obviously, by construction, 〈η〉 = 0.
If we neglect, for a while, the noise term in equation (5.81), the deterministic
part reads,

p(T + 1) = F (p(T )) = p(T ) +
1− (2p(T ))τ

N
. (5.82)

This is a discrete dynamical system, or a map, for which a fixed point p∗ =
F (p∗) exists, p∗ = 1/2. Moreover, the fixed point is attractive, as |F ′(p∗)| < 1
(Alligood et al. 1997), due to τ � N .

Taking into account the value of the standard deviation of Zτ (Harris
1963), it can be shown that the noise term η/N will have a vanishing effect
in the limit of very large systems, and then the stochastic evolution will
lead the system towards the deterministic fixed point, plus small random
fluctuations around it.

This spontaneous evolution of a system towards a particular organized
state is referred to as self-organization. It is clear now that what Zapperi et al.
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introduced is a branching process that self-organizes towards a critical state.
Nevertheless, the particular dynamics they propose seems a bit arbitrary.
How can this kind of global control be implemented in a real system, where
we expect the interactions between elements to be purely local?

5.2.12 Self-Organized Criticality and Sandpile Models

In fact, the self-organized branching process introduced by Zapperi et al.
(1995) was naturally embedded in the previous notion of self-organized criti-
cality (SOC), invented by Bak and coworkers in the 1980’s (Bak 1996, Jensen
1998, Christensen and Moloney 2005). Although it is not relevant for our
story, it is worth to state that these authors were not interested in (because
they were not aware of) the problem of power-law distributions in natural
hazards (Bak 1996); rather, they were mainly concerned to similar-in-spirit
problems in condensed-matter physics, as charge density waves and one-over-f
noise, as well as to the emergence of fractal spatial structures elsewhere (Bak
et al. 1987). The fact that earthquakes (and other hazards) were a mani-
festation of self-organized criticality was a fortunate by-product, pointed by
Ito and Matsuzaki (1990), Sornette and Sornette (1989), and Bak and Tang
(1989) shortly after the introduction of the SOC concept, see also the review
of Main (1996). Nowadays, natural hazards are one of the main applications
of SOC, despite the original lack of attention by Bak et al. (1987). As we
have seen through this chapter, ignorance seems a common characteristic of
science evolution.

The metaphor used by Bak in order to illustrate his ideas was that of
a pile of sand (Bak 1996). We have to recognize that the sandpile we are
going to consider is a bit esoteric; in fact, there is a clear correspondence
between the model and a pile only in one dimension (the one-dimensional
model corresponds to a pile constrained in two dimensions, between two
parallel plates (Christensen et al. 1996)). But instead of keeping close to
reality, it is more effective to deal with a mean-field sandpile; this is achieved
either in a system defined in the limit of infinite dimensions or in a system in
which each element has “random neighbors”, and neglecting the correlations
between the elements. Notice that Bak and colleagues make use of a new
concept, not present in the branching processes already explained: the notion
of complexity, understood here as the nontrivial interaction between many
units or agents, which will result in an emergent collective behavior that is
different than the sum of the behavior of the individual parts (Newman 2011).

So, consider a system consisting in a large number of elements, such that
each element can store a certain number of discrete packages (or particles),
but when this limit is surpassed the packages are released to other elements –
the neighbors. The situation is analogous to what happens in a Ministry office.
Each bureaucrat has a series of documents or papers (the packages) at his/her
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desk, but when the number of those is too big, he/she decides to do something
about it and transfers some papers to some other (random) bureaucrats, and
so on (Bak 1996). This simple behavior will lead to interesting dynamics,
unexpectedly.

To be specific, let us consider that each element can store at most one pack-
age; if some extra package arrives to it, the element releases two packages to
some other units, taken randomly (either among all other elements, what de-
fines random neighbors or among the 2d nearest neighbors in a d−dimensional
square lattice). If, after the release, the number of packages is still greater
than one (which may happen if the element received more than one package)
the release process is repeated. All the elements evolve following a parallel
updating of their dynamics, i.e., there is a common clock setting the time t
of all elements. In a formula,

if zi ≥ 2⇒
{
zn(i) → zn(i) + 1,
zi → zi − 2,

(5.83)

where zi counts the number of packages of element i and n(i) denotes two of
its neighbors.

Obviously, this process can give rise to an avalanche in the transference of
packages, which only stops when all elements have no more than one package.
In that case, the system is perturbed by the addition of one extra package
to a randomly chosen element, and the dynamics starts again. This defines a
new time scale, denoted by T (in the same way as in the previous subsection).
So,

if zi ≤ 1,∀i⇒ zj → zj + 1, (5.84)

where j denotes a randomly selected unit. The system also releases packages
outside (or to the garbage can, in the bureaucrats picture); in a d− dimen-
sional lattice this happens when a boundary element selects as a neighbor an
external element; in a fully random-neighbor system this happen just with
a small predefined probability for each element. This simple variation of the
original sandpile model of Bak et al. (1987) (changing the topology of the
system by means of a different selection of neighbors) can be viewed also as a
mean-field version of the so-called Manna model (Manna 1991, Christensen
and Moloney 2005).

The simple rules of the model make that the total number of packages
in the system, M , evolves, from the addition of one package to the next,
accordingly to

M(T + 1) = M(T ) + 1− drop(T ), (5.85)

where drop is the number of packages that are expelled from the system. The
key parameter of this model is p, defined, for each element, as the probability
that its number of packages is equal to one (so they are at the onset of
instability). But in a mean field description all elements are uncorrelated
and equivalent, so we can define a generic p for the whole system, verifying
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p = M/N , with N the total number of elements. So, there is a probability
p that an element releases two packages when it receives one. The action of
release is what constitutes the generation of an offspring, which is the element
that relaxes. Therefore, dividing equation (5.85) by N we obtain

p(T + 1) = p(T ) +
1− drop(T )

N
, (5.86)

which we can recognize as essentially equation (5.81), the one introduced by
Zapperi et al. (1995) in the self-organized branching process. We have already
realized that this equation provides a feedback mechanism of the number of
packages into the toppling (branching) probability (early identifications of
this obvious feedback in SOC were written by Kadanoff (1991) and Sornette
(1992)).

Both in the limit of an infinite dimension lattice or in a fully random
neighbor system one realizes that the evolution of an avalanche corresponds
to a set of propagating non-interacting packages (as the probability that the
activity comes back to an element is vanishingly small), and therefore the ac-
tivity evolves as a branching process. But note that the tree associated to the
branching process does not correspond to a quenched underlying structure of
the system, as the random neighbors are selected dynamically, at each time
step. The limit τ in the number of generations introduced by Zapperi and
coauthors needs to be added as an extra ingredient in the model, enforcing
the dissipation of packages to take place at the τ time step. In summary, this
illustrates the correspondence between the mean-field limit of sandpile models
and branching processes. This is enough for our purposes. Other chapters in
this book illustrate in much more detail the dynamics of sandpiles. Neverthe-
less, it is worth mentioning that the first connection between SOC and critical
branching process was published by Alstrøm (1988), where it was assumed,
however, that the system was in a critical state from the beginning. Notably,
much before, Vere-Jones (1976) had proposed a branching model very sim-
ilar to Otsuka’s (but, as usual, Vere-Jones was unaware of Otsuka’s work)
and realized that the tectonic system should evolve spontaneously towards
criticality. Also, very recently, Hergarten (2012) has introduced a variation
of Zapperi et al.’s branching model that evolves only with local rules.

Recapitulating, self-organized criticality offers a coherent framework for
the understanding of earthquakes and many other natural hazards mentioned
in the first section. Indeed, both phenomena (SOC and earthquakes) show a
highly non-linear response, where a small and slow perturbation or driving
(the addition of grains, or the stress provided by the motion of the tectonic
plates) pumps energy into the system, which, due to the presence of local
thresholds stores that energy, until at some point some threshold is sur-
passed. The resulting release of energy propagates locally, which can trigger
further surpassings of thresholds, generating a chain reaction or avalanche.
One key point is that the energy released in such a way has to be power-
law distributed, so the system responds in all possible scales. Notice also
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that the dynamics shows a time-scale separation, as the avalanches happen
infinitely fast compared with the driving (the toppling of grains is stopped
during the propagation of an avalanche). Moreover, Main (1996) mentions
additional characteristics of seismicity present in SOC models, namely, stress
drops that are small in comparison with the regional tectonic stress field and
the existence of seismicity induced or triggered by relatively small stress per-
turbations. All this makes SOC a very plausible mechanism for earthquakes.
The connection is made still more concrete using variations of the sandpile
models that mimic the behavior of the spring-block model of Burridge and
Knopoff (1967) as the so-called OFC model (Olami et al. 1992). See also Main
(1996).

However, as far as we know, the authentic hallmark of SOC, the existence
of an underlying second-order (continuous) phase transition, has not been
found in earthquakes. The very nature of SOC makes almost impossible to
identify such an abrupt change of an order parameter when a control param-
eter changes (because the control parameter is attracted towards the critical
point). Nevertheless, this elusive behavior has been found in a different sys-
tem: rainfall (Peters and Neelin 2006), thanks to very large fluctuations from
criticality; so, if a control and an order parameter could be measured and if
similarly large fluctuations were exist, one would finally prove the existence
of SOC in earthquakes.

The same reasoning applies to other natural hazards, for which, at least,
sandpile-like models are abundant in the literature, and their classification
as SOC systems is plausible (Jensen 1998). The case of hurricanes is still
not clear (Corral 2010), whereas for tsunamis we can state that their power-
law distribution (Burroughs and Tebbens 2005) does not arise from a SOC
mechanism, as they are not slowly driven (rather, they are violently driven
by earthquakes, landslides and meteorite impacts).

Finally, it is worth mentioning that there is another connection between
branching processes and earthquakes. Instead of using the branching to model
the propagation of individual earthquakes, it is used for the way in which
one earthquake triggers other earthquakes, i.e., aftershocks, following the so-
called Omori law. The most representative model of this kind is the epidemic-
type aftershock-sequences (ETAS) model (Ogata 1999, Helmstetter and Sor-
nette 2002). Interestingly, the evolution model of Bak and Sneppen (1993)
(another paradigm of SOC) can be interpreted to reproduce the statistics of
earthquakes from this (slow) time scale (Ito 1995). This perspective opened
a whole new line in statistical seismology, but this is a different story (Bak
et al. 2002, Corral 2004a,b).
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5.3 Conclusions

We started this chapter showing some remarkable statistical properties of
earthquake occurrence, and ended up mingling with infinite-dimensional
sandpiles models for self-organized criticality. In between, we learnt a few
things about branching processes. Now we sketch some consequences for our
initial object of study: natural hazards.

First, besides any model, we can say a few things just by looking at the
data: earthquakes and other natural hazards follow a power-law distribution
of sizes, in some cases with an exponential cutoff due to finite-size effects (the
Earth is finite, after all!). For the particular values of the exponents found,
this implies that, although big events are less likely, they are always the main
contributors of the overall devastation. As financial data of asset returns and
other social and technological data have also been reported to follow power
law distributions (Mantegna and Stanley 1999, Newman 2005), one wonders
what the points in common with these systems and natural hazards can be.

Regarding Otsuka’s rupture model, we showed how, by using a fairly simple
stochastic cascade setup for the local dynamics of fault patches and the math-
ematical formalism for branching processes, one can reproduce the global
statistical properties of real earthquake occurrences (and other natural haz-
ards). This is quite remarkable, as it constitutes a link between two distinct
observational scales: the micro-scale of local dynamics, and the macro-scale
of global statistical behavior.

But Otsuka’s model is a particular case of the Galton-Watson branching
process. So, first, we presented in an easy way the main results already known
for such processes (main results in relation to our interests). We explained
how the machinery of probability generating functions allows to find a formula
for the activity (or population) at any generation of the process. In the limit
of infinite generations, one gets the probability of extinction, which shows
an abrupt change between two different regimes: extinction for sure if the
mean number of offsprings is below or equal to one, and the possibility of
non-extinction in the opposite case. Further progress leads to an expression
for the probability of the total size of the process (the total population ever
born or the total energy radiated by an earthquake). It is precisely at the
border of the two mentioned cases, at the critical point of the transition, that
one finds a behavior compatible with earthquakes and other natural hazards.
A power-law distribution with exponent 3/2 emerges in this case; however,
it remained unexplained how the Earth should drive itself towards such a
critical state.

In this regard, we showed how, by using a simple feedback mechanism, one
can turn the critical point into an attractor of the model. A global condition,
related with boundary dissipation, acts on the probability of activation, in
such a way that when this probability is low, it increases, and vice versa when
it is high. Idealized sandpile models in the mean-field limit implement in a
natural way this mechanism, by means of the transport of particles through
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the system up to the boundaries where they are dissipated. The content of
particles regulates the activity in the system.

It is worth mentioning that going beyond the mean-field limit and turning
to lattice (more realistic) systems makes things terribly complicated, and the
researcher has to rely more and more on computer simulations and losses
the guide of exact, or at least approximated analytical treatments. But this
makes the mathematical problems that these systems pose much more inter-
esting and exciting. For sure, researchers will devote their efforts to them for
decades.

As a final point, we have to recognize that criticality and self-organized
criticality are not the only ways to generate power-law distributions. In fact,
much simpler processes that yield power laws exist, as reviewed in Sornette
(2004), Mitzenmacher (2004), Newman (2005). A well known mechanism that
escapes from the normal-distribution attractor in diffusion processes is pro-
vided by anomalous diffusion (Bouchaud and Georges 1990), and its relation
with sandpiles was studied by Boguñá and Corral (1997), among others. Nev-
ertheless, we believe the present work has clearly shown the plausibility of
self-organized criticality for the explanation of earthquakes and natural haz-
ards in general. A complementary, even more complex perspective is provided
by Ben-Zion (2008).

Appendix

Properties of Power-Law Distributions

Some facts about the power-law distribution are remarkable. Let us consider
the probability density D(E) ∝ 1/Eα, defined between Emin and∞. We may
first calculate its mean, i.e., the expected value of E, given by

〈E〉 =

∫ ∞
Emin

ED(E)dE. (5.87)

It is easy to check that, when α ≤ 2 (i.e. b ≤ 3/2), this integral becomes
infinite, so, one would say that the expected value of the energy does not ex-
ist, although we can rigurously state that that value is infinite. This second
option is certainly more informative. Of course, the average energy radiated
by an earthquake cannot be infinite (the Earth contains a finite amount of
energy), so there is a problem extrapolating the power law up to infinity.
With a normal distribution or with an exponential distribution (for exam-
ple) we would not have such a problem of extrapolation, but it is worth to
realize that this is a physical problem, not a mathematical problem – for in-
stance, if instead of energy we were talking about time between some events,
the mean time could perfectly be “infinite”. Then, for physical reasons, there
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has to be an upper limit for the validity of the Gutenberg-Richter law; how-
ever, we have no idea about how large that limit should be. In practice, the
fact that the mean energy becomes infinite means that the average energy
one might calculate from a series of data does not converge, no matter the
number of data. Figure 5.8 illustrates this fact for the case of mean seismic
moment, which is considered to be proportional to radiated energy. Summa-
rizing, seismologists are totally ignorant about the mean energy radiated by
earthquakes, due to the special properties of power-law distributions.

Fig. 5.8: Mean seismic moment for worldwide shallow earthquakes with seis-
mic moment greater that 1018 Nm, using the CMT catalog, starting in 1980.
This yields a total of 3363 events. Note that the mean value does not converge.
The big jump at the end of 2004 is caused by the great Sumatra-Andaman
earthquake. The radiated energy should lead to the same behavior.

Although previously we interpreted as good news the fact that most earth-
quakes are of small size and only very few of them are devastating, the sit-
uation is certainly not so favorable. The reason is that the rare big events,
despite their scarcity, are the ones responsible for the dissipation of energy
in the system. For the particular value of α we are dealing with, it is easy
to check that the largest order of magnitude considered in the energy (the
largest decade, or scale) contributes to the total budget more than all the
other scales below. In mathematical terms,∫ c

Emin

ED(E)dE <

∫ 10c

c

ED(E)dE, (5.88)

no matter how big is c (see next subsection for details).
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A second peculiar property of power laws is scale invariance. Let us intro-
duce the concept of scale transformation, considering an arbitrary function
that we call D(E). The idea of a scale transformation is to look at the function
D(E) at a different scale, as for instance, using a mathematical microscope.
We can have a view of the function at the scale of meters (if E and D(E)
were distances) and try to see how it looks at the scale of centimeters. This is
performed through a scale transformation, denoted by an operator T acting
on the function D(E), as

T [D(E)] = c2D(E/c1), (5.89)

where c1 and c2 are two constants called scale parameters, performing a linear
transformation on E and D. In the case of the meters-centimeters example,
c1 = c2 = 100.

In general, almost every function changes under a scale transformation;
the exception can be found looking for the function or functions that verify
the following condition,

D(E) = c2D(E/c1). (5.90)

It is trivial to check that a solution is given by the power-law function

D(E) ∝ 1

Eα
(5.91)

with α given by

α = − ln c2
ln c1

, (5.92)

in other words, a power law with exponent α does not change under a scale
transformation if the scale factors are related through

c2 =
1

cα1
(5.93)

Figure 5.9 shows how indeed this is the case, with c1 = 10, c2 =
√

10, and
D(E) =

√
E. Note that the constant of proportionality in equation (5.91),

contained in the symbol ∝, does not play any role here.
More importantly, it can also be demonstrated that not only the power law

is a solution, but it is the only solution valid for all values of c1 (positive real)
if c1 and c2 are related by equation (5.93) (Takayasu 1989, Newman 2005,
Christensen and Moloney 2005, Corral 2008). In summary, the condition of
scale invariance demands that

D(E) = c2D(E/c1) for all c1 positive real, (5.94)

and then, the only solution is the power law. One can verify that other solu-
tions, as D(E) = sin(lnE), only work for special values of c1 and c2.
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Fig. 5.9: A scale transformation acting on its corresponding scale-invariant
function. The function is expanded by factors c1 = 10 and c2 =

√
10, in such

a way that the small box at the left is the full figure at the right. The function
is D(E) =

√
E.

Scale invariance is in fact the symmetry associated to scale transforma-
tions, in an analogous way as rotational invariance is the symmetry corre-
sponding to rotations. If scale invariance is fulfilled, no characteristic scale
can be defined for the variable E, in the same way as if there is rotational
invariance in a system, this system cannot be used to point at a particular
direction (a compass cannot be built from a ball). Systems do not displaying
scale invariance allow to define characteristic scales, as the exponential func-
tions defining radioactive decay lead to the definition of the unit of time in
terms of the half-life.

There is, nevertheless, an important point to be taken into account here.
If D(E) represents a probability density (as it is the case for the energy
radiated by earthquakes), then, D(E) cannot be a power law for all E ≥ 0,
because it could not be normalized (its integral from 0 to ∞ would diverge).
We have already mentioned that it is necessary to introduce a lower cutoff
Emin in order to avoid this fact. Also, sometimes the power law cannot be
extended to infinity, for physical reasons. So, complete scale invariance is not
possible for probability distributions, and one can have only a restricted scale
invariance. However, in the case of earthquakes, as both the lower limit and
the upper limit are not available from observations, scale invariance plays a
genuine role.

Scale invariance in the energy of earthquakes has some counter-intuitive
consequences. Imagine that you arrive at a new country, and you are worried
about earthquakes, and ask the people there the following question: how
big are typically earthquakes here? Despite the innocence of such a simple
question, due to scale invariance no characteristic scale for the energy can be
defined and the question has no possible answer.
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Dissipation of Energy in the Largest Scales

Let us consider a (continuous) power-law distribution, defined, for simplicity,
between 1 and ∞, with probability density,

D(E) ∝ 1

Eα
. (5.95)

We are going to see that, for a given r > 2 there exist values of α such that
the contribution to the expected value of E from an interval 1 ≤ E < c is
always smaller than the contribution from c ≤ E < rc, no matter how big c
is.

The contribution of an interval a ≤ E < c to the mean value of E is∫ c

a

ED(E)dE ∝ c2−α − a2−α. (5.96)

Therefore, ∫ c

1

ED(E)dE ∝ c2−α − 1, (5.97)

and ∫ rc

c

ED(E)dE ∝ c2−α(r2−α − 1). (5.98)

In order that the last integral is larger than the previous one it is enough
that

(r2−α − 1)c2−α > c2−α. (5.99)

So, r2−α > 2 and this implies that

α < 2− logr 2. (5.100)

For r = 10, the (sufficient) condition becomes α < 1.699. In the case of earth-
quake radiated energy, α ' 1+2b/3 ' 1.667, and equation (5.100) is fulfilled.
Though, slightly larger values of α violate the condition; nevertheless, there
is nothing special in taking r = 10 (it is not a magical number!) and we have
that equation (5.100) is fulfilled for a larger r. For r = 2 equation (5.100)
would imply α < 1, but this is not an acceptable exponent for a power-law
distribution (normalization would not be fulfilled).

Rigorous Proof of Extinction Probability

Besides graphical arguments (see Fig. 5.4), we want to provide a rigorous
proof for the computation of the extinction probability in the Galton-Watson
process, given by
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Pext = lim
t→∞

f t(0), (5.101)

where Pext is properly defined only if the limit exists. To see that this is always
the case, we note that Zt = 0 =⇒ Zt+1 = 0. Hence, {Zt = 0} ⊂ {Zt+1 = 0}
and P (Zt = 0) ≤ P (Zt+1 = 0), so f t(0) ≤ f t+1(0) or, in words, (f t) is a non-
decreasing sequence. As f([0, 1]) ⊂ [0, 1], we conclude that f t(0) is bounded
and has a limit. To continue our proof, let us treat separately the two cases
m ≤ 1, m > 1. Hence,

case m ≤ 1:

As f(x) is non-convex for x ≥ 0, it always lies above any straight line tangent
to it (Spivak 1967). In particular, we consider the line tangent to f(x) at the
point (1, 1), and

f(x) > 1 +m(x− 1) > x. (5.102)

Hence f(x) > x for 0 ≤ x < 1. Also, it is straightforward to see that f(Pext) =
Pext,

f
(

lim
t→∞

f t(0)
)

= lim
t→∞

f(f t(0)) = lim
t→∞

f t+1(0) = lim
t→∞

f t(0), (5.103)

and of course 0 ≤ Pext ≤ 1. So we have that f(Pext) = Pext with 0 ≤ Pext ≤ 1.
Summarizing, Pext is a fixed point of f(x) in the interval [0, 1], but f(x) > x
(strictly) in [0, 1). It is clear that the only option left is Pext = 1.

case m > 1:

We will start showing that Pext 6= 1 in this case. First, as already said, (f t) is
a non-decreasing sequence. Second, as f(x) is continuous and f ′(1) = m > 1,
we have that f(x) < x for x ∈ (1− ε, 1) for some ε > 0. So, f t(0) /∈ (1− ε, 1)
for all t (because it would then decrease). This means that the only way for
f t(0) to have limit 1 is to “jump over” the interval (1−ε, 1), that is, by means
of some y < 1− ε such that f(y) = 1. But such y cannot exist because then
f ′(x) < 0 at some point between y and 1.

Now we will see that the equation f(x∗) = x∗ has a unique solution in
the interval [0, 1). There must be at least one solution because f(0) > 0, and
f(x) < x in (1−ε, 1) (here we are using Bolzano’s theorem for f(x)−x). To see
that this solution is unique, suppose there are two solutions, 0 ≤ x1 < x2 < 1.
As we also have f(1) = 1, by Rolle’s theorem there would exist two points
y1, y2 such that f ′(y1) = f ′(y2) = 1 and x1 < y1 < x2 < y2 < 1, but this
is impossible because f ′′(x) ≥ 0 in [0, 1], which means that f ′(x) is non-
decreasing and hence takes any value only once in [0, 1].
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So, if Pext 6= 1 but f(Pext) = Pext, then Pext must be the unique solution
of f(x∗) = x∗ in [0, 1).

For the sake of rigor, we must point out that some “pathological” cases
would need a separate treatment, such as f(x) = x, but those are almost
never of actual interest.

Catalan Numbers

The Catalan numbers owe their name not to a Mediterranean region but
to the French-Belgian mathematician from the 19th century Eugène Charles
Catalan. “His” numbers count a large variety of objects (Stanley 1999), in
particular, the rooted trees that arise in the study of branching process when
the number of offsprings can be 0, 1, or 2. We can consider a tree of size s as
the root (corresponding to the zero generation of the associated branching
process) plus the remaining s − 1 nodes, these latter can be distributed as
a varying number of nodes associated to the first branch, 0, 1, . . . s − 1 and
the rest to the second branch, s−1, s−2, . . . 1, 0, respectively. Therefore, the
number of trees Cs of size s fulfills,

Cs = C0Cs−1 + C1Cs−2 + · · ·+ Cs−2C1 + Cs−1C0, (5.104)

where C0 is taken equal to one, as there is only one way in which a branch
can have no elements. Note that from here we obtain

C1 = (C0)2 = 1
C2 = 2C0C1 = 2
C3 = 2C0C2 + (C1)2 = 5
C4 = 2C3C0 + 2C2C1 = 14

(5.105)

and so on this simple formula generates all Catalan numbers. The curious
reader can check Figure 5.10, where all possible rooted trees with no more
than two branches per node, of size up to 4, are shown.

If we want a closed expression for these numbers, we may define a gener-
ating function

h(x) = C0 + C1x+ C2x
2 + · · · =

∞∑
s=0

Csx
s. (5.106)

One can obtain an expression for h(x) just using the properties of the Catalan
numbers (Wilf 1994). First, let us calculate
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C1 = 1

C2 = 2

C3 = 5

C4 = 14

Fig. 5.10: The number of rooted trees with no more than two branches per
node is shown, up to size s = 4. The number of such trees of a given size is
given by Cs, the s-th Catalan number.

[h(x)]2 =

[ ∞∑
s=0

Csx
s

]2

=

∞∑
i,j=0

CiCjx
i+j =

=

∞∑
s=0

 ∑
i+j=s

CiCj


︸ ︷︷ ︸

Cs+1

xs =
1

x

∞∑
s=0

Cs+1x
s+1 =

h(x)− C0

x

As we know that C0 = 1, we end up with a quadratic equation for h(x),
namely,

x[h(x)]2 − h(x) + 1 = 0, (5.107)

which allows us to isolate h(x),

h(x) =
1±
√

1− 4x

2x
. (5.108)
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One of both functions (depending on the ± sign) is then the generating
function of the Catalan numbers. We are going to recover these numbers
from its generating function. First, one needs the Taylor expansion of

√
1− x

around x = 0, which is

√
1− x = 1− x

2
− 1

4

x2

2!
− 3

8

x3

3!
−· · · = 1− x

2
−
∞∑
s=1

(2s− 1)!!

2s+1(s+ 1)!
xs+1, (5.109)

where, remember, n!! = n(n− 2) · · · 1, and so,

√
1− 4x = 1− 2x−

∞∑
s=1

(2s− 1)!!2s+1

(s+ 1)!
xs+1. (5.110)

Then, substituting in h(x), one can realize that only the minus sign can
correspond to a generating function, and

h(x) = 1 +
1

2x

∞∑
s=1

(2s− 1)!!2s+1

(s+ 1)!
xs+1 = 1 +

∞∑
s=1

(2s− 1)!!2s

(s+ 1)!
xs, (5.111)

from where we obtain a first expression for the Catalan numbers,

Cs =
(2s− 1)!!2s

(s+ 1)!
for s ≥ 1. (5.112)

A more comfortable formula can be obtained using that

(2s)! = (2s)!!(2s− 1)!! = s!2s(2s− 1)!!, (5.113)

and then one finds,

Cs =
(2s)!

s!(s+ 1)!
=

1

s+ 1

(
2s
s

)
, (5.114)

the standard expression for the Catalan numbers, now valid for all s ≥ 0.

Normalization and non-normalization of the total size
distribution

We are going to illustrate how the total size probability distribution, P (S =
s), is only normalized in the subcritical and critical cases. We use the binomial
distribution for the distribution of the number of offsprings, with k = 0, 1 and
2. From the main text, we know that
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P (S = s) =
1

s+ 1

(
2s
s

)
ps−1(1− p)s+1 with s = 1, 2, . . . (5.115)

It can be checked, using the generating function of the Catalan numbers, that
this expression is normalized for p ≤ 1/2 but not for p > 1/2. In order to
see this, let us first consider the generating function of the Catalan numbers,
derived in the previous subsection of the Appendix,

h(x) =

∞∑
s=0

Csx
s =

1−
√

1− 4x

2x
. (5.116)

Then, introducing q = 1− p,
∞∑
s=1

P (S = s) =
q

p

∞∑
s=1

Cs(pq)
s =

q

p
(h(pq)− 1) , (5.117)

and using the expression for h(x),

h(pq) =
1−√1− 4pq

2pq
=

1−
√

(1− 2p)2

2pq
=

1− |1− 2p|
2pq

. (5.118)

We can distinguish two cases, first, p ≤ 1/2, for which,

h(pq)− 1 =
1

q
− 1 =

p

q
=

min(p, q)

max(p, q)
, (5.119)

and for the opposite case, p ≥ 1/2,

h(pq)− 1 =
1

p
− 1 =

q

p
=

min(p, q)

max(p, q)
. (5.120)

Therefore,

∞∑
s=1

P (S = s) =
q

p

min(p, q)

max(p, q)
=

{
1 for p ≤ 1/2(
q
p

)2

for p ≥ 1/2
(5.121)

Remembering the results for the extinction probability for the binomial dis-
tribution,

∞∑
s=1

P (S = s) = Pext, (5.122)

which obviously is not normalized for p > 1/2. We could also have arrived to
the same result using, not the generating function of the Catalan numbers,
but the generating function g(x) of the size S.
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Stirling’s Approximation

Usually, Stirling’s formula is demonstrated by means of the Euler-Maclaurin
formula. However, if one knows some elementary properties of the gamma
distribution, Stirling’s formula arises almost spontaneously, by means of a
probabilistic trick.

Remember that the factorial is associated to the gamma function, n! =
Γ (n+ 1), which is defined as

Γ (γ) =

∫ ∞
0

yγ−1e−ydy (5.123)

for γ > 0 (Abramowitz and Stegun 1965). This allows to introduce the gamma
distribution (Durrett 2010), with probability density given by

1

Γ (γ)
yγ−1e−y (5.124)

for y ≥ 0 (and zero otherwise), and with mean γ and variance γ.
It turns out that the gamma distribution arises as a sum of a number γ of

independent exponential random variables, each with density e−y (this can be
easily demonstrated through successive convolutions of the exponentials, see
Durrett (2010)). But using the central limit theorem, the gamma distribution
will converge, in the limit γ → ∞, to a normal distribution (see Fig. 5.11),
with mean µ and standard deviation σ (in this case the notation is different
to the rest of the chapter).
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Fig. 5.11: Approaching of the normal distribution by the gamma distribution,
adding 8 and 100 exponentials, respectively. The central limit theorem allows
the derivation of Stirling’s approximation.
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Then, it will be possible to transform the gamma function into a Gaussian
integral. Indeed,

n! = Γ (n+ 1) =

∫ ∞
0

yne−ydy → C

∫ ∞
0

exp

(
− (y − µ)2

2σ2

)
dy. (5.125)

The key point is to find the value of C for which both functions overlap. This
happens around the mean or the mode of both distributions, corresponding,
respectively, to y = γ = n+ 1 ' n and y = µ. Substituting both values in

yne−y = C exp

(
− (y − µ)2

2σ2

)
(5.126)

we get

C =
(n
e

)n
(5.127)

and therefore, looking for the normal probability density inside the integral,

n! = Γ (n+ 1)→
√

2πσC

∫ ∞
0

1√
2πσ

exp

(
− (y − µ)2

2σ2

)
dy. (5.128)

The value of σ is obtained from σ2 = γ = n + 1 (for independent random
variables the variance of a sum is the sum of variances, which is one for each
exponential distribution in our sum). Substituting, and replacing the lower
integration limit by −∞, due to the fact that the standard deviation σ ' √n
is much smaller than the mean µ ' n, one obtains,

n! ∼
√

2πn
(n
e

)n
, (5.129)

valid, remember, in the limit n→∞. This proof has some parts in common
with the more elaborated one of Khan (1974) and less resemblance with that
of van den Berg (1995).
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Chapter 6

Power Laws of Recurrence Networks∗

Yong Zou, Jobst Heitzig, Jürgen Kurths

Abstract

Recurrence networks are a novel tool of nonlinear time series analysis al-
lowing the characterisation of higher-order geometric properties of complex
dynamical systems based on recurrences in phase space, which are a funda-
mental concept in classical mechanics. In this Chapter, we demonstrate that
recurrence networks obtained from various deterministic model systems as
well as experimental data naturally display power-law degree distributions
with scaling exponents γ that can be derived exclusively from the systems’
invariant densities. For one-dimensional maps, we show analytically that γ is
not related to the fractal dimension. For continuous systems, we find either
power-laws with an exponent γ depending on a suitable notion of local di-
mension, or with fixed γ = 1. Some computational techniques relevant to the
construction of recurrence networks have been discussed in detail.

6.1 Introduction

Power-law distributions have been widely observed in diverse fields such as
seismology, economy, ecology, and finance in the context of critical phenom-
ena Gutenberg (1944), Marquet (2005), Mantegna (1995), Farmer (2004). In
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many cases, the underlying complex systems can be regarded as networks
of mutually interacting subsystems with a complex structural organisation.
Specifically, numerous examples have been found for hierarchical structures in
the connectivity of such complex networks, i.e., the presence of scale-free dis-
tributions P (k) ∼ k−γ of the node degrees Albert (2002), Newman (2003).
Such hierarchical organisation is particularly well expressed in network of
networks, or interdependent networks, which constitute an emerging and im-
portant new field of complex network research Gao (2012), Donges (b). The
interrelationships between the non-trivial structural properties of complex
networks and the resulting dynamics of the mutually interacting subsystems
are subject of intensive research Boccaletti (2006), Arenas (2008).

Among other developments, one of the main recent achievements of com-
plex network theory are various conceptionally different approaches for statis-
tically characterising dynamical systems by graph-theoretical methods Zhang
(2006), Lacasa (2008), Xu (2008), Marwan (2009). In this Chapter, we report
and thoroughly explain the emergence of power-laws in the degree distribu-
tion of so-called recurrence networks (RNs) Marwan (2009), Donner (b,a),
Donges (a) for various paradigmatic model systems as well as experimental
data. RNs encode the underlying system’s recurrences in phase space and
are based on a fundamental concept in classical physics Poincaré (1890).
Due to their direct link to dynamical systems theory, RNs are probably the
most widely applicable type of complex networks inferred from time series
introduced so far. Although the system’s temporal evolution cannot be re-
constructed from the RN, this representation allows for an analysis of the
attractor’s geometry in phase space using techniques from network theory.
Specifically, nodes represent individual state vectors, and pairs of nodes are
linked when they are mutually closer than some threshold distance ε > 0 Mar-
wan (2007) (cf. Fig. 6.1), which is a key parameter of this method Donner (b).
Thus, the adjacency matrix of a RN reads

Aij = Θ(ε− ‖xi − xj‖)− δij , (6.1)

where Θ(·) is the Heaviside function, δij Kronecker’s delta, and (xi,xj) the
coordinates of a pair of state vectors (represented by RN nodes) in phase
space. According to this definition, RNs are random geometric graphs Her-
rmann (2003) (i.e., undirected spatial networks Bartélemy (2011)), where the
spatial distribution of nodes is completely determined by the probability den-
sity function of the invariant measure of the dynamical system under study,
and links are established according to the distance in phase space. The degree
of a node i is defined as ki =

∑N
j=1Aij . Therefore the degree distribution

P (k) of the associated network is defined to be the fraction of nodes in the
network with degree k. If there are N nodes in total in a network and nk
of them have degree k, we have P (k) = nk/N . Consequently, their degree
distribution P (k) directly relates to the system’s invariant density p(x).
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In this work, we demonstrate the emergence of scaling in the degree distri-
butions of RNs and provide some evidence that this phenomenon is (unlike
many other scaling exponents occurring in the context of dynamical systems)
commonly unrelated to the fractal attractor dimension, except for some in-
teresting special cases. Instead, the power-laws naturally arise from the vari-
ability of the invariant density p(x) of the system (i.e., peaks or singularities
of p), as we will show numerically as well as explain theoretically.
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Fig. 6.1: (Colour online) Construction of a RN: (A) time series xt, (B) reconstructed
two-dimensional phase space trajectory with state vectors yt = (xt, xt+1) and an
exemplary Euclidean ε-ball around y2 (dashed) for ε = 3. (C) Resulting recurrence
network for the specific chosen ε. Note that the arrow lines of (B) correspond to the
temporal direction, while lines in (C) are links of the network.

6.2 Power-law scaling and singularities of the invariant
density

As initial examples, Fig. 6.2 illustrates the presence of power-law degree distri-
butions in the RNs obtained for several prototypical low-dimensional chaotic
systems with a suitable choice of the systems’ characteristic parameters:
(i) the Rössler system in spiral-chaos regime: ẋ = −y − z, ẏ = x + 0.2y,
ż = 0.2 + z(x− 5.7); (ii) the Lorenz system: ẋ = 10(y− x), ẏ = x(r− z)− y,
ż = xy−8/3z; and (iii) the Hénon map: xn+1 = 1−1.4x2

n+yn, yn+1 = 0.3xn.
For the Rössler and Lorenz systems, a proper time discretisation has been
used as explained in detail in the figure caption.
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Fig. 6.2: Cumulative degree distributions F (k) =
∑∞
k′=k P (k′) of the RNs obtained

for several discrete maps: (A) x-component of the first return map of the Rössler
system (γ = 2.16±0.03), (B) map of consecutive local maxima of the z-component of
the Lorenz system with r = 28 (no scaling), (C) as in (B) with r = 90 (γ = 2.64±0.18),
and (D) Hénon map (γ = 2.88±0.04). Estimates of γ > 1 have been obtained from the
cumulative degree distributions F (k) ∼ k1−γ (in the following figures, we show either
F (k) or P (k) when sufficiently straight in a log-log plot) by means of a maximum
likelihood approach Clauset (2009) as averages considering 100 different values of
ρ for which a power-law appears. For each ρ, 5 different realisations with random
initial conditions are used. We consider RNs of size N = 2 × 105 and the Euclidean
norm in all examples discussed in this Chapter: Four cases were chosen for illustration
corresponding to a link density of ρ1 = 0.02% (◦), ρ2 = 0.03% (•), ρ3 = 0.05% (.),
and ρ4 = 3% (+). A power-law is hardly detectable for ρ4. Insets: log-log plot of the
correlation sum C(ε) vs. ε, where the correlation dimension D2 is estimated by linear
regression and agrees well with values from the literature Grassberger (1983), Sprott
(2003), Kantz (1997).

In all cases, scaling emerges only if the distance threshold ε is chosen small
enough, which corresponds to a small average degree 〈k〉 and link density
ρ = 〈k〉/(N − 1) of the resulting network (N being the number of nodes).
We note that the respective range of ε should be sufficiently higher than
the threshold for which a giant component exists Donges (2012). The size of
the scaling regime decreases with growing ρ and becomes hardly detectable
for ρ & 1% (Fig. 6.2). The distance threshold ε also occurs in dimension
estimation where the limit ε→ 0 is taken (e.g., Farmer (1983)). In contrast,
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a RN is based on one finite ε. Our smallest ε are, however, still large enough
to avoid the problem of lack of neighbours Sprott (2003) since the correlation
integral C(ε) still shows the same dependency on ε as for larger values (see
insets in Fig. 6.2).

6.2.1 One-dimensional maps: Analytical theory

In order to obtain an analytical explanation of the emergence of power-laws
in the degree distribution P (k) of a RN, we consider recent findings from the
more general theory of random spatial networks Herrmann (2003). In this
framework, nodes are randomly sampled from some given spatial probability
density function p(x). In the special case of a RN, we identify this space with
the phase space of a (dissipative) dynamical system and the nodes of the
network with individual states sampled at discrete times. Furthermore, we
make the following assumptions: (i) The system under study is ergodic. (ii)
The sampled trajectory is already close to its attractor (i.e., we exclude the
presence of transient behavior). (iii) The sampling times are generic, i.e., the
sampling interval is co-prime to any possible periods of the system. Under the
validity of these assumptions, the nodes can be interpreted as being sampled
from the probability density function p(x) of the invariant measure µ of the
attractor Eckmann (1985), for short refered to as the invariant density in the
following.

For a general spatial network, the degree distribution P (k) can be derived
from p(x) in the limit of large network size N as

P (k) =

∫
dx p(x)e−αp(x)(αp(x))k/k! (6.2)

with α = 〈k〉 /
∫
dx p(x)2 (note that the computation of 〈k〉 involves inte-

gration of p(x) over the ε-neighbourhood of all points x and thus implicitly
depends on the specifically chosen ε as well as the sample size N). In order
to understand this relationship, note that for each x, the probability that
a sampled point falls into the ε-ball centered at x is proportional to p(x).
Hence, the degree of a node at x has a binomial distribution. For sufficiently
large N , the latter can be approximated by a Poissonian distribution with
parameter αp(x), leading to Eq. (6.2).

For the special case of a one-dimensional phase space, we can use the
general expression (6.2) in order to derive an explicit criterion for the emer-
gence of scale-free degree distributions of the RN obtained from dynamical
systems. For this purpose, let us assume that the invariant density p(x) on
the attractor fulfils the following weak condition: For almost every y, there
are only finitely many different x with p(x) = y/α (i.e., the set of values y
for which there are infinitely many x with p(x) = y/α has zero Lebesgue-
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measure). Given the validity of this assumption, we can simplify Eq. (6.2) by
substituting y = αp(x): Putting

g(y) =
∑

x∈p−1(y/α)

|p′(x)|−1, (6.3)

we obtain

P (k) =

∫ ∞
0

dy
e−yyk+1

αk!
g(y). (6.4)

The function g describes the distribution of the values of the function p. Note
that

qk(y) = e−yyk+1/(k + 1)! (6.5)

is the density of a gamma distribution with scale parameter one and shape
parameter k + 2, so that

Eqk(g) =

∫ ∞
0

dy qk(y)g(y) (6.6)

is the expected valued of g(y) when y comes from that gamma distribution.
Hence

P (k) =
k + 1

α
Eqk(g). (6.7)

The bulk of the gamma distribution qk(y) resides almost symmetrically in the
interval Jk = k + 1± 2

√
k + 2, so if g has low curvature within this interval,

then its expectation Eqk(g) is approximately equal to its value at y = k + 1,
and

P (k) ≈ k + 1

α
g(k + 1) =

k + 1

α

∑
x∈p−1( k+1

α )

|p′(x)|−1. (6.8)

Now, if either g(y) or p(x) follows a power-law, so will P (k): Assuming
g(y) ∼ y−1−γ for some γ > 0, Eq. (6.8) gives P (k) ∼ k−γ , and this approx-
imation is good since the relative error in the linear Taylor approximation
of g(y) inside the interval Jk about its center y = k + 1 is only of the or-

der of
√
k

2
k−3−γ/k−1−γ = k−1. In particular, a power-law in the invariant

density of the form p(x) ∼ |x − x0|−1/γ for x close to x0 and with γ 6= 0
will imply g(y) ∼ y−1−γ and thus P (k) ∼ k−γ . From these considerations,
we can infer that the slower the invariant density decays, the faster does the
scale-free degree distribution of the associated RN. This implies that if p(x)
has a power-law-shaped peak at some state x0, i.e., p(x) ∼ |x − x0|−1/γ for
some γ > 0, the degree distribution P (k) also follows a power-law but with
the reciprocal exponent, P (k) ∼ k−γ .

More generally, we can deduce that the presence of singularities in the
invariant density is the key feature determining whether or not the resulting
RN has a power-law degree distribution. This relationship can be intuitively
understood: If p(x) has a singularity at some point x0 in phase space, then
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a time series of the associated dynamical system will return very often to
the neighbourhood of x0. Hence, nodes with a high degree will accumulate
close to the singularity. If the resulting invariant density obeys a power-law
decay, Eq. (6.2) implies the emergence of a power-law degree distribution.
If there is more than one singularity of p(x), one can expect the resulting
degree distribution being related to a weighted sum of the influences of these
points. Vice versa, the presence of a power-law degree distribution in the RN
of a dynamical system requires the existence of a power-law in the invariant
density, i.e., the presence of a singularity.

Note that not all invariant densities lead to power-laws: if p(x) is Gaussian,
g(y) is again smooth enough to use Eq. (6.8). However, in this case, Eq. (6.8)
does not indicate a power-law: P (k) ≈ 2(−2 ln k

√
2π/α)−1/2. We therefore

conjecture that a local power-law in the invariant density is a necessary and
sufficient condition for the emergence of a scale-free RN. Beyond the explicit
results for one-dimensional systems as discussed above, we further show below
that the emergence of a power-law scaling is also possible in higher dimensions
and conjecture that this requires the presence of a dynamically invariant
object (e.g., an unstable or hyperbolic fixed point) close to which the invariant
density scales as a power-law at least in one direction.

6.2.2 Example: Generalized logistic map

As a widely studied example for a discrete-time system (map), in the following
we study the properties of the generalized logistic map or β-map Lyra (1998)

f(x) = 1− |2x− 1|β (6.9)

with β > 1
2 in some detail. For the special cases β = 1

2 , 1, 2, this map corre-
sponds to the cusp map, tent map, and standard logistic map, respectively.
In general, (6.9) maps the unit interval [0, 1] onto itself and is symmetric with
a maximum of 1 at x = 1

2 , thus having two pre-images for each x < 1.
In order to analytically derive an expression for the degree distribution of

RNs associated with the generalized logistic map, we start by computing the
absolute value of the derivative of f(x), which reads |f ′(x)| = 2β|2x− 1|β−1.
Because of the conservation of probability, the invariant density p(x) must
fulfil

p(x) + p(1− x) = 2β|2x− 1|β−1p(1− |2x− 1|β). (6.10)

For the case β > 1
2 , instead of trying to solve this exactly, we focus on its

behavior at x = 0 and x = 1 and near the point x = 1/2 that is mapped to
x = 1. First consider that x = (1 + δ1/β)/2 with 0 < δ � 1. Then Eq. (6.10)
reads 2p(0.5) ≈ 2βδ(β−1)/βp(1− δ). Hence the density close to the right peak
has a power-law of the form
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p(1− δ) ≈ p(0.5)δ(1−β)/β/β. (6.11)

Now consider that x = δ with 0 < δ � 1. Then Eq. (6.10) reads p(δ) + p(1−
δ) ≈ 2βp(2βδ). Combining both approximations, we get

2βp(2βδ) ≈ p(δ) + p(0.5)δ(1−β)/β/β. (6.12)

Let us next check whether (i) p(δ) = o(δ(1−β)/β), (ii) δ(1−β)/β = o(p(δ)),
or (iii) p(δ) ∼ δ(1−β)/β . If (i) were correct, Eq. (6.12) would imply p(δ) ≈
p( 1

2 )( δ
2β )(1−β)/β/2β2 in contradiction to (i). Assuming (ii), Eq. (6.12) sim-

plifies to p(δ) ∼ 1/δ, which is consistent with (ii) since (1 − β)/β > −1.
Assuming (iii), Eq. (6.12) leads to

p(δ) ≈ p( 1
2 )

2β2(1− (2β)−1/β)

(
δ

2β

)(1−β)/β

. (6.13)

Numerical experiments Zou (2012) show that the latter is the correct approx-
imation of the invariant density since the sampling distribution approaches
this form for large N . In contrast, the other possible form p(δ) ∼ 1/δ only
occurs in intermittent phases after a step in which the orbit was mapped very
close to zero.

For β > 1, the above general results imply that the invariant density p(x)
has two peaks at x = 0 and x = 1 with p(δ) ∼ p(1−δ) ∼ δ(1−β)/β for small δ.
So the above theory predicts that also the degree distribution P (k) displays
a power-law with the exponent

γ =
β

β − 1
, (6.14)

which agrees very precisely with numerical results Zou (2012).
For β = 1 (tent map), the nodes of the RN are instead uniformly dis-

tributed, and the degree distribution derived from Eq. (6.2) thus takes a
Poissonian form, P (k) = e−ααk/k! Dall (2002).

Finally, for the critical value β = 1
2 (cusp map), we get p(x) = 2 − 2x,

which again implies the presence of a power-law in P (k) with the critical
exponent γ = 1.

This example demonstrates that the scaling exponents of the degree dis-
tribution of RNs are not directly related with a possible fractal dimension
of the system, but can (for one-dimensional discrete systems) be exclusively
derived from the general shape of the invariant density. Specifically, in the
generalized logistic map, the value of γ explicitly depends on β in general
(Eq. 6.14). Moreover, we find that power-laws are absent for the tent map
(β = 1), although this system has the same box-counting and correlation
dimension as for 1 < β ≤ 2. We will discuss about this point in detail in the
next section.
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6.3 Power-laws and fixed points in 2D flows

If the invariant density p of a flow ẋ = Φ(x) has only one peak, at a fixed point
x0 with Φ(x0) = 0 whose Laplacian matrix L = DΦ(x0) is non-singular, and
L’s complex eigenvalues fulfil certain conditions, one can analytically show
that the degree distribution will follow a slowly decaying power-law of the
form P (k) ∝ 1/k. It is worth pointing out that we follow the traditional
linearization theorem of dynamical systems theory to understand how the
linearized dynamics determines the existence of power laws of the resulted
density function p(x), hence, degree distribution P (k). For two-dimensional
flows, one can distinguish the following cases for the two eigenvalues λ1, λ2,
leading to different types of local flow and corresponding density close to x0:

(i) If both λi are equal and real, the local flow is radial, so that a small
volume element dV is stretched in both radial and tangential direc-
tions. Then p(x) ≈ g(φ)/r2 with some function g, where r, φ are polar
coordinates centered at x0. Independent from g, Eq. (1) then gives the
power-law P (k) ∝ 1/k.

(ii) Similarly, in the frequent case in which both λi are complex with non-
zero real part, the local flow is spiralling, and p(x) ≈ g(φ − a ln r)/r2

with some function g and some a 6= 0. Again, independent of g we get
a power-law P (k) ∝ 1/k.

(iii) If both λi are purely imaginary, the local flow is approximately circular,
so that a small volume element dV is only rotated but not stretched.
Hence p(x) = h(r) with some function h, and in this case it will depend
on the form of h whether P (k) will follow a power-law. E.g., if h(r) =
r−2, we get again P (k) ∝ 1/k.

(iv) If both λi are real and λ1 > 0 > λ2, the local flow has a hyperbolic
shape of the form y(t) ≈ aeλ1t and z(t) ≈ beλ2t, where y, z are Cartesian
coordinates centered at x0 with axes parallel to the eigenvectors of L.
The local density p is then approximately determined by its values along
the two diagonals y = z and y = −z and at four points (y, z) = (±a, 0)
and (y, z) = (0,±a) with some small a > 0, but those values will depend
on the dynamics farther away from x0. Again, P (k) might or might not
follow a power-law in this case.

(v) Finally, if both λi are real and λ1 > λ2 > 0 or 0 > λ1 > λ2, the local
flow is also y(t) ≈ aeλ1t and z(t) ≈ beλ2t, but this now has a parabolic
shape, and p is approximately determined by its values along a small
circle centered at x0. As before, these values depend on the dynamics
farther away from x0, so that P (k) might or might not follow a power-
law.

For higher-dimensional flows, eigenvalues are either real or come in complex
conjugate pairs, so that a similar case distinction can be made with cases
that are basically combinations of the above cases. In particular, for the
generic case in which at most one eigenvalue is real, the local flow will be a
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Fig. 6.3: (Colour online) (A): Cumulative degree distribution F (k) of the RNs for
the map (6.9) with β = 2, 2.5, 3, 4. Note that we divide the degree k by ε so that
the x-axis is ε-dimensionless. (B) P (k) of the cusp map β = 0.5. The inset shows the
corresponding iterative function f(x). The dashed line of (B) has a slope of 1. The
legend indicates the respective link densities ρ.

superposition of spirals and at most one radial component, which will still
lead to P (k) ∝ 1/k.

6.4 Power-law scaling versus fractal dimension

To study the relationship between the scaling exponent and local dimension,
let us first focus on discrete-time systems and consider the generalised logistic
map (Eq. 6.9) Lyra (1998) again. For general β > 0, the unit interval [0, 1] is
mapped onto itself by a symmetric function with a maximum of 1 at x = 1

2 ,
thus having two pre-images for each x < 1. For β > 1, the associated invariant
density p(x) has two peaks at x = 0 and x = 1 with p(δ) = p(1−δ) ∼ δ(1−β)/β

for small δ. Hence, the degree distribution P (k) shows a power-law with the
exponent γ = β/(β − 1) (Eq. 6.14).

Numerical results shown in Fig. 6.3A for several different values of β agree
precisely with Eq. (6.14). In contrast, for β = 1 the nodes are uniformly
distributed, and the degree distribution derived from Eq. (6.2) is Poissonian,
P (k) = e−ααk/k! Dall (2002). For β = 1

2 , we get p(x) = 2− 2x, which leads
to a specific type of “power-law” in P (k) with γ = −1 as shown in Fig. 6.3B.
These results imply that the scaling exponent is not simply related to the
fractal dimension: the attractor has the box-counting dimension D0 = 1
independently of β, whereas γ changes with varying β (Eq. (6.14)). However,
the correlation dimension D2 also depends on β (D2 = 1 for β ≤ 2, and
D2 = 2/β if β > 2 Sprott (2003)), i.e., there is an indirect relationship
between γ and D2 for certain special cases. The different behaviour of the
mentioned dimensions results from the fact that D0 exclusively considers the
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number of boxes required for covering the attractor, but not their individual
probability masses as D2 and other notions of fractal dimensions do.

Turning to continuous-time systems, we next compare the above findings
with those for some discretised standard examples. On the one hand, for the
Rössler system, we consider the successive x-values when passing the Poincaré
section at y = 0 with ẏ < 0. As shown in the inset of Fig. 6.4A, the resulting
first return map has a shape similar to the case of β = 1.87 in Eq. (6.9). Hence,
we expect a power-law with the exponent γ ≈ 1.87/(1.87 − 1) = 2.15. The
invariant density has several dominant peaks, which are together responsible
for the power-law observed in Fig. 6.2A with γ indeed close to 2.15. In fact,
P (k) is a mixture of individual power-laws corresponding to the individual
peaks of p(x), whose exponents are all roughly the same. On the other hand,
for the Lorenz system, we obtain a one-dimensional map by studying the local
maxima znmax of z for successive cycles Lorenz (1963), i.e., mapping znmax to
zn+1
max (inset of Fig. 6.4B). For r = 28, this first return map has a similar shape

as Eq. (6.9) for β = 0.5 (inset of Fig. 6.3B), but the corresponding density is
bell-shaped without a peak. Indeed, we do not observe a power-law for P (k)
in this case (Fig. 6.2B). However, increasing r changes the shape of p(x).
For example, at r = 90 (Fig. 6.4C) the density has peaks at several points,
explaining the observed power-law in Fig. 6.2C. These results demonstrate
that scaling is only present for a certain range of r values. Given the rich
bifurcation scenario of the Lorenz system a corresponding detailed study is
beyond the scope of this work, but will be a subject of future research. A
similar behaviour as for the discretised Lorenz system can be observed for
the Hénon map, though the marginal invariant density of the x-component
has a more complex structure (Fig. 6.4D).

While there is no unambiguous relationship between γ and the fractal di-
mension already for discrete systems, the situation becomes even more com-
plicated for continuous-time systems which are not discretised via a Poincaré
section or otherwise. For two-dimensional flows ẋ = Φ(x) with only one peak
in p(x), the respective type of behaviour depends on the eigenvalues of the
Jacobian DΦ(x0) at the fixed point x0 as well as on the shape of p(x). Specifi-
cally, in many cases (that have been further discussed in sec. 6.3) the existence
of a power-law for P (k) cannot be evaluated easily, whereas in other cases,
one can analytically derive a power-law with a very small exponent of γ = 1.
In turn, the following numerical results suggest that there are also examples
displaying a distinct relationship between γ and some suitably defined local
dimension:

For the Rössler system in the regime of screw-type chaos with a homoclinic
point at the origin fulfilling the Shilnikov condition Shilnikov (1970), Gas-
pard (1983), the invariant density is dominated by its peak at the origin. The
degree distribution P (k) of the corresponding RN shows a power-law with
γ ≈ 1.33, which agrees fairly well with the ϑ-capacity dimension Dϑ

0 defined in
Farmer (1983) (Fig. 6.5). We also observe similar scaling laws for both numer-
ical model and experimental data (output intensities) of a single-mode CO2
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Fig. 6.4: (Colour online) Probability density function (PDF) of (A) the successive x
values passing the plane of y = 0 of the Rössler attractor, (B,C) PDF of zmax for
the Lorenz system of r = 28 (B) and r = 90 (C), and (D) marginal density of the x
component of the Hénon map. The insets show the associated first return plot. The
dashed curve in (B) shows a fit by a Gaussian distribution.

laser Pisarchik (2001). The underlying system has a saddle-focus S embedded
in the chaotic attractor (Fig. 6.6A) which causes a spiking dynamics Chan-
nell (2007), Arecchi (1987). The attractor is dominated by a homoclinic orbit
emerging from and converging to S. The degree distributions P (k) resulting
from both model and experimental data suggest power-laws with γ ≈ 1.35
(Fig. 6.6B), which qualitatively agrees well with the point-wise dimension of
the attractor around S. Finally, similar results can be obtained for a predator-
prey food-chain model with four competing species Vano (2006), which also
displays homoclinic chaos, where we observe γ ≈ 1.9 in agreement with Dϑ

0

(Fig. 6.7). This variety of examples underlines the general importance and
wide applicability of our findings.
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Fig. 6.5: (Colour online) (A): P (k) for the RN of the Rössler system with screw-
type chaos Gaspard (1983). Three different link densities are chosen for illustration
as indicated by the legend, a larger link density ρ4 does not produce a power-law
(inset). The slope of the dashed line is −1.33. (B): ϑ-capacity dimension Dϑ0 ≈ 1.30
in three small cuboidal neighbourhoods of different size (in terms of phase space
distance in each coordinate direction, see the legend).

Fig. 6.6: (Colour online) Experimental laser data: (A) Phase portrait in subspace
of (x1, x2, x6), where the saddle focus S is at the most dense region. (B) P (k) of
RNs from model data for three different link densities (see the legend); a larger link
density ρ4 does not lead to a power-law (inset). (C) P (k) of RNs from experimental
data (inset: cumulative distribution F (k)). (D) Point-wise dimension DS1 = 1.35. All
dashed lines have slope −1.35.
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Fig. 6.7: (Colour online) As in Fig. 6.5 for the Lotka-Volterra system Vano (2006)
with homoclinic chaos. The slope of the dashed line in panel (A) is −1.90.

6.5 Technical aspects

In general, we have to make two cautionary notes on the numerical study of
scaling laws in RNs.
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First, in the previous continuous-time examples, the presence of power-
laws with the numerically estimated exponents (see above) cannot be rejected
on a 90% significance level using Kolmogorov-Smirnov tests (as shown in
Fig. 6.8 in sec. 6.5.1). However, the alternative of a power-law with γ = 1 can
also not be rejected at the same level. Hence, power-laws with qualitatively
different exponents describe the data comparably well. It remains an open
problem to determine the correct γ. We note that this is a general problem
when evaluating hypothetical power-laws from finite data Clauset (2009),
Stumpf (2012).

Second, experimental data often consist of only one measured variable.
Hence, a reconstruction of the associated phase space trajectory is necessary
prior to RN analysis, e.g., by time-delay embedding Packard (1980). Like
estimates of dynamical invariants or complexity measures Letellier (2005,
2006), the power-law behaviour of P (k) can depend on the particular ob-
servable, because different coordinates of a dynamical system often have dif-
ferent marginal densities. Specifically, embedding theorems ensure topological
invariance (i.e., properties of the dynamical system that do not change under
smooth coordinate transformations are preserved), but no metric invariance
of the attractor’s geometry including p(x). For example, the logistic map and
the tent map (β = 2, 1 in Eq. (6.9), respectively) are topologically equiva-
lent under the transformation x 7→ sin2(πx/2), but the different invariant
densities with respect to their original coordinates (that have been used for
constructing the RNs from metric distances in their respective phase spaces)
lead to distinct scaling exponents γ (Fig. 6.3A). In other words, the power-law
exponent γ is not invariant with respect to general smooth coordinate trans-
formations that do not leave the geometric shape of the system’s invariant
density qualitatively the same.

6.5.1 Estimation of scaling exponents

Assume the probability density function of a random variable X is approxi-
mately f(x) ≈ Ax−γ for x > xc, with γ = 1 and A > 0. Here, xc is a lower
cutoff that is related to some typical minimum scale below which the sup-
posed power-law model is not meaningful anymore Clauset (2009). Then the
cumulative distribution function (CDF) is undefined since

∫∞
x
dy/y does not

converge. In tests using the CDF, one can then try to use instead the function
Fm(x) =

∫m
x
dy A/y = A(lnm − lnx) with some value m at least as large

as all observations, e.g., putting m = maxi xi. The empirical counterpart of
F (x) is then F̂ (x) = |{i : xi > x}|/nc with nc = |{i : xi > xc}|.

Hence, a simple Kolmogorov-Smirnov-like test uses the statistic Ds =
supx∈[xc,m] |F̂ (x)−F (x)| which approximately follows a Kolmogorov distribu-
tion with nc degrees of freedom if the data come from the power-law, so that
the test is whether

√
ncDs exceeds the critical value Kα of the Kolmogorov
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distribution corresponding to the sought significance level α. As suggested
in Clauset (2009), xc could be determined from the data by choosing the
value that minimizes Ds. In the modified test described above, however, one
also needs to estimate the constant A, and both can be done simultaneously
by finding the combination of xc and A that minimizes Ds.

If γ > 1 but still very close to 1, the CDF exists but it might still be more
robust to use the same method as above, now using F (x) =

∫m
x
dy Ay−γ =

A(x1−γ −m1−γ)/(γ − 1).
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Fig. 6.8: (Color online) Cumulative degree distribution F (k) for (A) Rössler system
of screw chaos and (B) CO2 laser model. Fitting by power law of exponents of both
1 (black dashed line) and local dimension value (red dashed line) show the same
discriminative strength as indicated by Kolmogorov-Smirnov test Ds.

6.5.2 Selection of dynamical variable

Data obtained by experiment often consists of only one scalar variable, hence
a reconstruction of its associated phase space trajectory is required before
performing RN analysis, e. g., by time-delay embedding Packard (1980). The
power-law behavior of P (k) is influenced by which observable is chosen for
embedding. To illustrate this, we consider a periodic solution in a two-
dimensional phase space, which is obtained by integrating the van der Pol
oscillator ẍ − µ(1 − x2)ẋ + x = 0 for the nonlinear parameter µ = 10 (we
also qualitatively compare the difference to the case of µ = 1 in the insets
of Fig. 6.9). The two components of x and y are functionally independent,
having different marginal PDF in the corresponding subspace as shown in
Fig. 6.9(C, D), respectively. This results in quite different contributions to
the degree distribution P (k) in joint space. The final form of P (k) is also in-
fluenced by the metric which we used to define the phase space distance (e.g.,
in Fig. 6.1). More specifically, P (k) consists of two well separated branches if
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Fig. 6.9: (Color online) P (k) for the van der Pol oscillator for µ = 10 with (A)
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the maximum norm is applied (Fig. 6.9A). The decreasing trend of the first
branch (characterized by γ ≈ 2) mainly results from the fast decay of the
marginal PDF of the y component, while the positive trend of the second
branch with a slope of 1 comes from the almost linear regime of the marginal
PDF of x. It is not too difficult to understand the mixture property if the
Euclidean metric is applied. The two branches merge and the power-laws
are smeared out (Fig. 6.9B). Since the system shows strong relaxation os-
cillations for µ = 10, the degree distribution P (k) of both x and y in the
joint space can be well approximated by a combination of a linear model
(for instance, β = 1/2 in Eq. (6.9)) and an exponential model with some
appropriate coordinate transformations.
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6.6 Conclusions

In summary, we have reported an interesting novel aspect of the geometrical
organisation underlying the dynamics of many complex systems in physics
and beyond. Specifically, we have provided an analytical explanation of the
emergence of power-laws in recurrence networks constructed from sampled
time series based on the theory of random geometric graphs. Unlike for com-
parable complex network approaches Zhang (2006), Lacasa (2008), this scal-
ing is not simply related to the system’s fractal dimension, but requires the
presence of power-law shaped singularities of the invariant density and a feasi-
ble choice of the considered spatial scale ε. We emphasise that dimensions are
defined in the limit of ε→ 0 and practically estimated by a series of ε values,
whereas the power-law exponent γ of the RN appears for each sufficiently
small ε individually. Note that in contrast to the degree, the transitivity
properties of RNs have a direct relationship with attractor dimension Don-
ner (2011).

In comparison with the invariant density itself, fractal dimensions are a
rather specific characteristic. In particular, they do not simply describe the
whole system (as the invariant density itself does), but quantify density vari-
ations on the attractor viewed at different spatial scales ε Farmer (1983),
Halsey (1986). Conversely, the scaling exponent γ directly characterises a
power-law decay of the density in phase space independent of a specific scale.
In this spirit, both fractal dimension and scaling exponent γ capture concep-
tually different aspects of the geometric organisation of a dynamical system
in its phase space. However, although there is no general relationship between
γ and fractality, in some special cases the power-law exponent coincides with
some notion of dimension. This has been demonstrated for several example
systems as well as experimental data. In turn, we have found that in other
cases the value of γ drops to 1. There is a need for further studies involv-
ing both additional model systems and experimental examples beyond those
discussed in this work in order to better understand this complex relation-
ship between power-law degree distributions and fractal scaling (i.e. under
which general conditions related to a system’s structural organisation both
scaling exponent and fractal dimension coincide), particularly in continuous
dynamical systems.

From a conceptual perspective, we would like to remark that studying a
single scalar property like the scaling exponent of a recurrence network or the
fractal dimension cannot provide a complete view on the structural organisa-
tion of a nonlinear complex system. Specifically, both characteristics capture
distinct and complementary features related to the probability density of the
invariant measure. In this spirit, the power-law exponent γ quantifies a fun-
damental property that has not been explicitly studied so far. Because its
relationship with the features of possible singularities of the invariant den-
sity is intuitive (i.e. the emergence of power-law degree distributions has some
clear physical meaning), one particular strength of studying the degree dis-
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tribution of recurrence networks is that it potentially allows identifying the
presence of such singularities in complex situations (e.g., for observational
data).

Power law distributions of various physical parameters in nature are hall-
marks of many systems showing self-organized criticality (SOC). The most
widely known example is the distribution of earthquake magnitudes which has
the so-called Gutenberg-Richter law Gutenberg (1944). The most recent ap-
plication of the concepts of SOC was initially to disclose sandpile avalanches
at a critical angle of response Bak (1987, 1988), and has been enthusiastically
applied across fields as diverse as geophysics Bak (1989), evolutionary biol-
ogy Sneppen (1995), Killingback (1998), economics Mantegna (1995), Farmer
(2004), solar physics Aschwanden (2011), and neurosciences Poil (2008) and
many others. The relationships between our findings of power laws of the
degree distribution P (k) of the associated recurrence networks and the SOC
in general are a topic of our ongoing work. More specifically, we intend to
performing recurrence analysis for a slowly-driven SOC system which has
been demonstrated to have avalanches in the occurrence frequecy distribu-
tions and parameter correlations Aschwanden (2012). We expect that our
recurrence network approaches could shed some light on the still ambiguous
understanding of the maximal complexity while the parameter of the system
is tuned on the edge of chaos Langton (1990), Mitchell (1993, 1994).
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Chapter 7

SOC computer simulations

Gunnar Pruessner

Abstract The following chapter provides an overview of the techniques used
to understand Self-Organised Criticality (SOC) by performing computer sim-
ulations. Those are of particular significance in SOC, given its very paradigm,
the BTW (Bak-Tang-Wiesenfeld) sandpile, was introduced on the basis of a
process that is conveniently implemented as a computer program. The chap-
ter is divided into three sections: In the first section a number of key concepts
are introduced, followed by four brief presentations of SOC models which are
most commonly investigated or which have played an important part in the
development of the field as a whole. The second section is concerned with the
basics of scaling with particular emphasis of its rôle in numerical models of
SOC, introducing a number of basic tools for data analysis such as binning,
moment analysis and error estimation. The third section is devoted to numer-
ical methods and algorithms as applied to SOC models, addressing typical
computational questions with the particular application of SOC in mind. The
present chapter is rather technical, but hands-on at the same time, providing
practical advice and even code snippets (in C) wherever possible.

7.1 Introduction

The concept of Self-Organised Criticality (SOC)1 was introduced by Bak
et al. (1987) on the basis of a computer model, the famous BTW Sandpile.
The notion of “computer model” and “simulation” used here is subtle and
can be misleading. Often the models are not meant to mimic a particular
(natural) phenomenon, but are intended to capture merely what is considered

Imperial College London, Department of Mathematics, e-mail: g.pruessner@

imperial.ac.uk

1 A more extensive review on the present subject area can be found in (Pruessner
2012b).
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to be the essential interaction observed in a natural phenomenon. Per Bak in
particular, had the tendency to name models according to their appearance
rather than their purpose and so the “Sandpile Model” may not have been
envisaged to display the dynamics of a sandpile. The situation is clearer in
the case of the “Forest Fire Model” (Bak et al. 1990), which was developed
as a model of turbulence much more than as a model of fires in woods.

In particular in the early days of SOC modelling, the models were some-
times referred to as “cellular automata” Olami et al. (1992), Lebowitz et al.
(1990), which caused some consternation (e.g. Grassberger 1994), as cellu-
lar automata normally have discrete states and evolve in discrete time steps
according to deterministic rules in discrete space (i.e. a lattice). The term
“coupled map lattice” (Kaneko 1989) can be more appropriate for some mod-
els, such as the Olami-Feder-Christensen Model descusssed below (discrete
space, continuous state and possibly continuous time).

The terminology of “numerical modelling” has always been somewhat con-
fusing. Many of the models considered in SOC do not model a natural phe-
nomenon and so their numerical implementation is not a “numerical simu-
lation” in the sense that they mimic the behaviour of something else. There
are notable exceptions, however, such as the Forest Fire Model (Bak et al.
1990) mentioned above and the Oslo ricepile model (Christensen et al. 1996).
SOC models generally are not “models of SOC”, rather they are algorithmic
prescriptions or “recipes” for a (stochastic) process that is believed to ex-
hibit some of the features normally observed in other SOC models. In that
sense, the terminology of terms like “SOC models” and “simulation” or even
“simulating an SOC model” is misleading — most of these models are not
simplified versions or idealisations of some physical process or anything else
that is readily identified as “SOC”, but recipes to produce some of the be-
haviour expected in an SOC system.

To this day, a large fraction of the SOC community dedicate their research
to computer models. Initially, the motivation (e.g. Zhang 1989, Manna 1991)
was to find models displaying the same universal behaviour as the BTW
(Bak-Tang-Wiesenfeld) Sandpile. This was followed by an era of prolifera-
tion, when many new models, belonging to new universality classes where
developed. More recently, in a more reductionistic spirit, new models are
mostly developed to isolate the rôle of particular features and to extract and
identify their effect (e.g. Tadić and Dhar 1997). A lot of numerical research
into SOC nowadays happens “en passant”, as SOC is identified in a model
for a phenomenon that originally was not considered to be related to SOC
(e.g. Burridge and Knopoff 1967).

Virtually all SOC (computer) models consist of degrees of freedom inter-
acting with (nearest) neighbours located on a lattice. The degrees of freedom
may be parameterised by continuous or discrete variables, in the following
denoted zn, where n is a position vector on the lattice. A slow, external
driving mechanism (in short, external drive) slowly loads the system,
i.e. the local variables are slowly increased, also referred to as “charging a
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site”. That might happen uniformly (sometimes called global drive) or at
individual lattice sites (sometimes called point drive). The driving might
happen at randomly chosen points or by random increments, both of which
is in the literature referred to as random driving. The dynamics of an SOC
model is non-linear, i.e. there is no linear equation of motion that would
describe their dynamics.2 The response of the system is triggered by a local
degree of freedom overcoming a threshold, beyond which relaxation and
thus interaction with other degrees of freedom and the outside world takes
place. A site where that happens is said to topple and to be active. The
interaction might lead to one of the neighbours exceeding its threshold in
turn, triggering another relaxation event. The totality of the relaxations con-
stitutes an avalanche. When the avalanche has finished, i.e. there are no
active sites left, the system is in a state of quiescence. In SOC models, driv-
ing takes place only in the quiescent state (separation of time scales, below).
If the external drive acts at times when an avalanche is running, it might
lead to a continuously running avalanche (e.g. Corral and Paczuski 1999).

In many models the degree of freedom at every site measures a resource
that is conserved under the dynamics. To balance the external drive, in
most models dissipation has to take place in some form: Bulk dissipation
takes place when the resource can get lost in the local interaction. Boundary
dissipation refers to the situation when the resource is lost only in case a
boundary site relaxes. The necessary flux of the resource towards the bound-
aries has been suggested as some of the key mechanisms in SOC (Paczuski
and Bassler 2000b). In some models, such as the Bak-Sneppen Model (Bak
and Sneppen 1993) or the Forest-Fire-Models (Henley 1989, Bak et al. 1990,
Drossel and Schwabl 1992a), no (limited) resource can be identified and there-
fore the notion of dissipation and conservation is not meaningful.

The question whether conservation is a necessary ingredient of SOC has
driven the evolution of SOC models in particular during the 1990s. In fact,
early theoretical results by Hwa and Kardar (1989a) suggested that bulk dissi-
pation would spoil the SOC state. Models like the OFC Model (Olami et al.
1992, also Bak and Sneppen 1993, Drossel and Schwabl 1992a) questioned
that finding. Different theoretical views have emerged over time: Lauritsen
et al.’s (1996) self-organised branching process (Zapperi et al. 1995) contains
dissipation as a relevant parameter which has a limitting effect on the scaling
behaviour. Juanico et al. (2007) restored the SOC state of the self-organised
branching process by implementing a mechanism that compensates for the
non-conservation by a “matching condition” not dissimilar from the mecha-
nism used in the mean-field theory by Pruessner and Jensen (2002b). That,
in turn, was labelled by Bonachela and Muñoz (2009) as a form of tuning.

2 It is very instructive to ask why a non-linearity is such a crucial ingredient. Firstly, if
all interactions were linear, one would expect the resulting behaviour to correspond to
that of a solvable, “trivial” system. Secondly, linearity suggests additivity of external
drive and response, so responses would be expected to be proportional to the drive,
a rather boring behaviour, not expected to result in scale invariance.
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More recent field-theoretic work (Pruessner 2012b) points at conservation as
a symmetry responsible for the cancellation of mass-generating diagrams, an
effect that may equally be achieved by other symmetries.

The external drive, the ensuing sequence of avalanches and the evolution of
the model from one quiescent state to the next happen on the macroscopic
time scale, where time typically passes by one unit per avalanche. As the
system size is increased, avalanches are expected to take more and more re-
laxations to complete. Their duration is measured on the microscopic time
scale. In the thermodynamic limit, i.e. at infinite system size, the infinite
duration of an avalanche of the microscopic time scale and the finite driv-
ing rate on the macroscopic time scale amount to a complete separation of
time scales. In general, the separation of time scales is achieved in finite sys-
tems provided that no driving takes place when any site is active, because the
times of quiescence, measured on the microscopic time scale, can be thought
of as arbitrarily long. As a result, the avalanching in these systems becomes
intermittent.

Separation of time scales is widely regarded as the crucial ingredient of
SOC, maybe because it is conceived (and criticised as such) as a substitute
of the tuning found in traditional critical phenomena (also Jensen 1998).
In numerical models, it normally enters in a rather innocent way — the
system is not driven while an avalanche is running. This, however, requires
some global supervision, a “babysitter” (Dickman et al. 2000) or a “farmer”
(Bröker and Grassberger 1999). In some models the separation of time scales
can be implemented explicitly (Bak and Sneppen 1993) in the relaxational
rule. What makes the separation of time scales very different from other
forms of tuning is that it eliminates a dimensionful, finite scale, such as
the frequency with which an avalanche is triggered.3 In traditional critical
phenomena, scaling comes about due to the presence of a dimensionful, finite
energy scale4, where entropic contributions to the free energy compete with
those from the internal energy promoting order. In most SOC models, it is
pretty obvious that scaling would break down if time scales were not explicitly
separated — avalanches start merging and eventually intermittency is no
longer observed (Corral and Paczuski 1999).

SOC models are normally studied at stationarity, when all correlations
originating from the initial state (often the empty lattice) are negligible.
Reaching this point is a process normally referred to as equilibration. The
equilibration time is normally measured as the number of charges by the
external drive required to reach stationarity. For some models, exact upper
bounds for the equilibration time are known (Dhar et al. 1995, Corral 2004a,
Dhar 2004, e.g.). In deterministic models, a clear distinction exists between
transient and recurrent states, where the former can appear at most once,

3 In the field theory of SOC, the cancellation of diagrams occurs precisely when
stationarity is imposed for the density of particles resting (and their correlations) in
the limit ω → 0, i.e. in the long time limit.
4 For example kBTc in the Ising Model (Stanley 1971).
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and the latter with a finite frequency provided the number of states overall
is finite. In fact, this frequency is the same for all recurrent states, depending
on the driving, which can be at one site only or randomly and independently
throughout. A detailed proof of such properties can be cumbersome (Dhar
1999a,b).

The statistics of the avalanches, their size as well as their extent in space
and in time, is collected and analysed. SOC is usually said to be found in
these models when the statistics displays a scaling symmetry, governed
by only one upper cutoff which diverges with the system size. In principle, a
Gaussian possesses this scaling symmetry,5 but not a single important SOC
model has a Gaussian event size distribution. On the contrary, the avalanche
statistics of all models discussed below deviates dramatically from a Gaussian,
thus suggesting that avalanches are not the result of essentially independent
patches of avalanching sites creating a bigger overall avalanche. Rather, sites
are strongly interacting, thereby creating the overall event. The purpose of
numerical simulations is to characterise and quantify this interaction and its
effect, as well as extracting universal quantities, which can be compared
with those found in other systems.

7.1.1 Observables

As for the methods of analysis, they have matured considerably over the past
decades. The initial hunt for 1/f noise in temporal signals has given way to
the study of event size distributions. As a matter of numerical convenience,
these distributions are often characterised using moments, some of which are
known exactly. Since the beginning of computational physics, moments and
cumulants have been the commonly used method of choice to characterise
critical phenomena (Binder and Heermann 1997). It is probably owed to
the time of the late 1980’s that memory-intensive observables such as entire
distributions became computationally affordable and subsequently the centre
of attention in SOC.

To this day, the analysis of moments in SOC is still often regarded as an
unfortunate necessity to characterise distributions, which are difficult to de-
scribe quantitatively. Apart from the historic explanation alluded to above,
there is another, physical reason for that, the avalanche size exponent τ .
In traditional critical phenomena, the corresponding exponent of the order
parameter distribution is fixed at unity in the presence of the Rushbrooke
and the Josephson scaling law (Christensen et al. 2008). The deviation of
τ from unity, which implies that the expected event size does not scale like

5 The basic example P(s) = s−1G(s/sc) with G(x) = 2x exp(−x2)/
√
π is normalised

and has avalanche size exponent τ = 1, as defined in Eq. (7.3). Without the pre-factor
x in G(x) the graph looks surprisingly similar to a PDF as typically found in SOC
models.
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the characteristic event size, is another distinctive feature of SOC. To some
extent, the exponent τ can be extracted from the avalanche size distribu-
tion (almost) by inspection. In a moment analysis, on the other hand, it is
somewhat “hidden” in the details.

The most important observables usually extracted from an SOC model
are thus the scaling exponents, such as τ , D (avalanche dimension), α
(avalanche duration exponent) and z (dynamical exponent) discussed
below. Here, the two exponents D and z are generally regarded as more uni-
versal than τ and α, as the former is often “enslaved” by an exact scaling
law related to the average avalanche size, and the latter by a similar scal-
ing law based on the “narrow joint distribution assumption”, discussed in
Sec. 7.2. Generally, all observables that are universal or suspected to be are
of interest. This includes the scaling function (Sec. 7.2) which is most easily
characterised by moment ratios, corresponding to universal amplitude ratios,
traditionally studied in equilibrium critical phenomena (Privman et al. 1991,
Salas and Sokal 2000).

7.1.2 Models

There is wide consensus on a number of general features of SOC models
which seem to play a rôle in determining the universality class each belongs
to. The very first SOC model, the BTW model, was essentially determinis-
tic, i.e. there was no randomness in the bulk relaxation. A given configura-
tion plus the site being charged next determines the resulting configuration
uniquely. Even in these models, however, there can be a degree of stochas-
ticity, namely when the site to be charged by the external drive is chosen
at random. Finally, even when this is not the case, i.e. external drive and
internal relaxation are deterministic, initial conditions are often chosen at
random and averaged over.

Deterministic SOC models have the great appeal that they are “au-
tonomous” (in a non-technical sense) or “self-sufficient” in that they do not
require an additional source of (uncorrelated) noise. It is difficult to justify
the existence of an external source which produces white, Gaussian noise, as
that noise correlator, 〈η(t)η(t′)〉 = 2Γ 2δ(t−t′), itself displays a form of scaling
〈η(αt)η(αt′)〉 = α−1 〈η(t)η(t′)〉. The presence of an external (scaling) noise
source seems to demote an SOC model to a conversion mechanism of scale
invariance, which becomes most apparent when the respective model is cast
in the language of stochastic equations of motion, i.e. Langevin equations.

Famous examples of deterministic SOC models, which do not require an
external noise source for the relaxation process, are the BTW model with
deterministic drive (Bak et al. 1987, but Creutz 2004), the OFC model (Olami
et al. 1992) and, closely related, the train model (de Sousa Vieira 1992).
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Of these only the latter has been studied extensively in the absence of all
stochasticity.

Most SOC models, however, have a strong stochastic component, i.e. there
is some randomness in the relaxation mechanism that gives rise to avalanches.
In fact, models with some form of built-in randomness seem to give cleaner
scaling behaviour, suggesting that deterministic models get “stuck” on some
trajectory on phase space, where some conservation law prevents them from
exploring the rest of phase space (Bagnoli et al. 2003, Casartelli et al. 2006).
Notably, randomising the BTW model seems to push it into the Manna uni-
versality class (Karmakar et al. 2005). The latter model is probably the sim-
plest SOC model displaying the most robust and universal scaling behaviour
(Huynh et al. 2011). Due to the noise, trajectories of particles deposited by
the external drive are those of random walkers.

The second dividing line distinguishes Abelian and non-Abelian mod-
els. The term was coined by Dhar (1990) introducing, strictly speaking, the
Abelian Sandpile Model, by re-expressing the original BTW Model (Bak et al.
1987) in terms of units of slope rather than local particle numbers. This con-
venient choice of driving and boundary conditions renders the model unphys-
ical as entire rows of particles are added and removed at once. At the same
time, however, the model’s final state after two consecutive charges at two
different sites becomes independent from the order in which the charges and
the subsequent relaxations are carried out. Practically all analytical insight
into the BTW model is based on Dhar’s (1990) Abelian version. Because it
is easier to implement, it has also favoured in numerical simulations.

The term “Abelian” seems to suggest the existence of a (commutative)
group, i.e. a set of operators closed under consecutive application, associative
and containing inverse and an identity. For most SOC models referred to as
Abelian, no such group is known, for example because operators do not exist
explicitly, or the associative property makes little sense, similarly for the
identity. Crucially, inverse operators rarely exist. To label a model Abelian
therefore normally means that the final state does not depend on the order
in which external charges are applied, i.e. the model updating operators
(whether or not they exist), which drive it at various locations, commute.
Because the final state is unique only in the case of deterministic models,
stochastic models are Abelian provided that the statistics of the final state
does not depend on the order in which external charges are applied (Dhar
1999b). The operators, which generally depend on the site the driving is
applied to, of deterministic models apply to a model’s state and take it from
one quiescent state to the next. The operators in a stochastic model act on
the distribution of states, i.e. they are the Markov operators. A deterministic
model can be cast in the same language, however, the Markov operators then
correspond to simple permutation matrices.

While Abelianness originally refers to the evolution of a model on the
macroscopic time scale, it is generally used to characterise its behaviour on
the microscopic timescale, i.e. the step-by-step, toppling-to-toppling update.
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It is therefore usually concluded that the properties of avalanches and their
statistics is independent from the order of toppling of multiple active sites.

Strictly, however, the Abelian symmetry does not apply to the microscopic
time scale, at least for two reasons. Firstly, the Abelian operators apply, a
priori, only to the avalanche-to-avalanche evolution, i.e. the macroscopic time
scale. What is more, they apply to the final state and its statistics, but not
necessarily to the observables. Applying charges at two different sites of an
Abelian SOC model, starting from the same configuration, results in the same
final state (or its statistics) regardless of the order in which the charges were
applied, but not necessarily in the same pair of avalanche sizes produced. On
the basis of the proof of Abelianness, at least in deterministic models, this
limitation is alleviated by the insight that the sum of the avalanche sizes is
invariant under a change of the order in which the model is charged.

As for the second reason, many models come with a detailed prescrip-
tion of the microscopic updating procedure and therefore the microscopic
time scale. Strictly, the invariance under a change of order of updates on
the microscopic time scale thus applies to different models. The situation
corresponds to equating different dynamics in the Ising model: For some ob-
servables, Glauber dynamics is different from Heat Bath dynamics, yet both
certainly produce the same critical behaviour. In fact, choosing different dy-
namics (and thereby possibly introducing new conserved symmetries) can
lead to different dynamical critical behaviour.

Revisting the proof of Abelianness, however, generally reveals that the
caveats above are overcautious. The very proof of Abelianness on the macro-
scopic time scale uses and develops a notion of Abelianness on the micro-
scopic time scale. This connection can be made more formally, once it has
been established that any configuration, quiescent or not, can be expressed
by applying a suitable number of external charges on each site of an empty
lattice.

Abelianness generally plays a major rôle in the analytical treatment of
SOC models, because it allows significant algebraic simplifications, not least
when the dynamics of a model is written in terms of Markov matrices. It
applies, generally, equally to recurrent and transient states, where no inverse
exists. It remains highly desirable to demonstrate Abelianness on the basis of
the algebra, once that is established as a suitable representation of a model’s
dynamics.

In the following section a few paradigmatic models of SOC are introduced:
The BTW Model, the Manna Model, the OFC Model and the Forest Fire
Model.

7.1.2.1 The BTW Model

The BTW Model was introduced together with the very concept of SOC (Bak
et al. 1987), initially to explain the “ubiquity” of 1/f noise. Of course, since
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then, SOC has been studied very much in its own right. Like virtually all SOC
models, the BTW Model consists of a set of rules that prescribe how a local
degree of freedom zi on a d-dimensional lattice with sites i is to be updated.
There are two different stages, namely the relaxation and the driving, the
latter considered to be slow compared to the relaxation, i.e. the relaxation
generally is instantaneous and never occurs simultaneously with the driving
(separation of time scales). In the Abelian version of the BTW Model (Dhar
1990), the driving consists of adding a single slope unit (Kadanoff et al. 1989)
to a site, that is normally picked uniformly and at random. The lattice is often
initialised with zi = 0 for all i.

If the driving leads to any of the zi exceeding the the critical slope zc (also
referred to as the critical height or threshold, depending on the view) at a
site i a toppling occurs whereby zi is reduced by the coordination number
q of the site and zj of every nearest neighbour j increases by one (sometimes
referred to as charging). In principle both q and zc can vary from site to
site and such generalisations are trivial to implement. It is common to choose
zc = q − 1.

The rules of the BTW Model can be summarised as follows:

Initialisation: All sites i are empty, zi = 0.
Driving: One unit is added at a randomly chosen (or sometimes fixed) site
i, i.e. zi → zi + 1.

Toppling: A site with zi > zc = q − 1 (called active) distributes one unit
to the q nearest neighbouring sites j, so that zi → zi − q and zj → zj + 1.

Dissipation: Units are lost at boundaries, where toppling site i loses q
units, zi → zi − q, yet less than q nearest neighbours exist, which receive
a unit.

Time progression: Time progresses by one unit per parallel update, when
all active sites are updated at once.

A toppling can trigger an avalanche, as charged neighbours might exceed
the threshold in turn, possibly by more than one unit. Strictly, the BTW
Model is updated in parallel, all sites topple at once whose local degree of
freedom exceeds the threshold at the beginning of a time step. Microscopic
time then advances by one unit. This way, zi might increase far beyond zc

before toppling itself. As long as zi > zc for any site i, the sites in the model
carry on toppling. The totality of the toppling events is an avalanche. In
the Abelian BTW model as refined by Dhar (1990), the final state of the
model does not depend on the order in which external charges are applied.
In the process of the proof of this property, it turns out that the order of
processing any charges during the course of an avalanche neither affects the
final state nor the size of the avalanche triggered. Using a parallel updating
scheme or not therefore does not change the avalanche sizes recorded. As the
order of updates defines the microscopic time scale, a change in the updating
procedure, however, affects all observables dependent on that time, such as
avalanche duration or correlations on the fast time scale.
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To keep the prescription above consistent with the notion of boundary
sites, where toppling particles are to be lost to the outside, boundary sites
have to be thought of as having the same number of nearest neighbours as
any other, equivalent site in the bulk, except that some of their neighbours
are not capable of toppling themselves. For numerical purposes it is often ad-
visable to embed a lattice in some “padding” (a neighbourhood’s “halo”, see
Sec. 7.3.2.2, p. 292), i.e. sites that cannot topple but are otherwise identical
to all other sites.

The sum of the slope units residing on a given site i and those residing on
its nearest neighbours remains unchanged by the toppling of site i, i.e. the
bulk dynamics in the BTW are conservative. Dissipation occurs exclusively
at the boundary and every slope unit added to the system in the bulk must
be transported to the boundary in order to leave the system.

The original version of the BTW model is defined in terms of local heights,
so that the height differences give rise to the slope zi, which has to reach q
in order to trigger an a toppling. While this is a perfectly isomorphic view of
the BTW, driving it in terms of height units has a number of unwanted im-
plications. In particular, it loses its Abelianness. For that reason, the original
version of the BTW is rarely studied numerically nowadays.

The BTW Model is deterministic apart from the driving, which can be
made deterministic as well, simply by fixing the site that receives the external
charge that triggers the next avalanche. Even when slope units do not move
independently at toppling, a randomly chosen slope unit being transported
through a BTW system describes the trajectory of a random walker trajecto-
ries (Dhar 1990), essentially because every possible path is being realised (just
not independently, but all with the correct weight). As a result, the average
avalanche size 〈s〉 can be calculated exactly; The number of moves a slope
unit makes on average from the time of being added by the external drive to
the time it leaves the system through an open boundary is equal to the ex-
pected number of charges it causes. The expected number of charges (caused
by the movement of all slope units taking part in an avalanche) per slope unit
added is thus exactly equal to the expected number of moves a slope unit
makes until it leaves the system, i.e. its escape time. If the avalanche size is
measured by the number of topplings, which is more common, the expected
number of moves has to be divided by the number of moves per toppling,
q in the present case. Higher moments of the avalanche size, or, say, the
avalanche size conditional to non-zero size (i.e. at least one site toppling in
every avalanche), cannot be determined using the random walker approach,
as they are crucially dependent on the interaction of toppling sites.

Due to the random walker property of the slope units added, the scaling
of the average avalanche size thus merely depends on the particularities of
the driving. If the driving is random and uniform, then 〈s〉 ∝ L2 for any
d-dimensional hypercubic lattice and (Ruelle and Sen 1992)

〈s〉 =
1

12
(L+ 1)(L+ 2) (7.1)
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in one dimension with two open boundaries, where the avalanche size is the
number of topplings per particle added. However, the dynamics of the BTW
Model in one dimension is trivial, so that the model is usually studied only
in d = 2 and beyond.

Because (or despite of) its deterministic nature, a large number of ana-
lytical results are known, in one dimension (Ruelle and Sen 1992) but more
importantly in two dimensions (Majumdar and Dhar 1992), not least on the
basis of (logarithmic) conformal field theory (e.g. Majumdar and Dhar 1992,
Ivashkevich 1994, Mahieu and Ruelle 2001, Ruelle 2002, Jeng 2005). Unfortu-
nately, to this day, the scaling of the avalanche size distribution in dimensions
d ≥ 2 remains somewhat unclear. Numerically, results are inconclusive, as dif-
ferent authors quote widely varying results for d = 2 (Vespignani and Zapperi
1995, Chessa et al. 1999a, Lin and Hu 2002, Bonachela 2008, e.g.), possibly
due to logarithmic corrections (Manna 1990, Lübeck and Usadel 1997, Lübeck
2000)

A major insight into the collective dynamics of toppling sites was the
decomposition of avalanches into waves (Ivashkevich et al. 1994), which was
later used by Priezzhev et al. (1996) to conjecture τ = 6/5 for the avalanche
size exponent in two dimensions. No site in an avalanche can topple more
often than the site at which the avalanche was triggered. Not allowing that
first site to topple therefore stops the avalanche from progressing any further
and each toppling of the first site thus defines a wave of toppling.

While the BTW Model has been crucial for the formation of the field of
SOC as a whole, its poor convergence beyond one dimension has made it fall
in popularity. One may argue that the determinism of the dynamics is to
blame, as found in other models (Middleton and Tang 1995). Indeed, adding
some stochasticity makes the BTW Model display the universal behaviour of
the Manna Model discussed in the next section (Černák 2002, Černák 2006).

The exponents reported for the BTW Model vary greatly. In two dimen-
sions, the value of τ found in various studies ranges from 1 (Bak et al. 1987)
to 1.367 (Lin and Hu 2002) and that for D from 2.50(5) (De Menech et al.
1998) to 2.73(2) (Chessa et al. 1999a). Similarly α is reported from 1.16(3)
(Bonachela 2008) to 1.480(11) (Lübeck and Usadel 1997) and z from 1.02(5)
(De Menech and Stella 2000) to 1.52(2) (Chessa et al. 1999a). Using compar-
atively large system sizes, Dorn et al. (2001) found exponents that seem to
vary systematically with the system size with little or no chance to identify
an asymptotic value.

The first exactly solved SOC model was the Dhar-Ramaswamy Model
(Dhar and Ramaswamy 1989) which is the directed variant of the BTW
Model. The directedness means that during an individual avalanche, sites
are never re-visted, which effectively suppresses spatial correlations. Random
drive of the model results in a product state, where sites taking part in an
avalanche form a “compact” patch (i.e. they have no holes), which is delimited
by boundaries describing a random walk. The exponents in d = d⊥ + 1
dimensions are given analytically by D = 1 + d⊥/2, D(2 − τ) = 1, z = 1
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and D(τ − 1) = z(α− 1), which implies α = D and τ = 2− 1/D (Dhar and
Ramaswamy 1989, Christensen 1992, Christensen and Olami 1993, Tadić and
Dhar 1997, Kloster et al. 2001). For example, in d = 1+1 dimensions (directed
square lattice), exponents are D = 3/2, τ = 4/3, z = 1 and α = 3/2. Mean-
field exponents apply at d = 2 + 1 and above.

7.1.2.2 The Manna Model

The Manna (1991) Model was originally intended as a simplified version of
the BTW Model but has since then acquired the status of the paradigmatic
representative of the largest (and maybe the only) universality class in SOC,
generally refered to as the Manna, Oslo (Christensen et al. 1996) or C-DP
(conserved directed percolation, Rossi et al. 2000) universality class.

The Manna Model displays robust, clean critical behaviour in any dimen-
sion d ≥ 1, characterised by non-trivial exponents below d = 4 (Lübeck and
Heger 2003b). Originally, it is defined as follows: The external drive adds
particles at random chosen sites i, i.e. the local degree of freedom increases
by one, zi → zi + 1. If a site exceeds the threshold of zc = 1 it topples,
so that all its particles are redistributed to the nearest neighbours, which
are chosen independently at random. After the toppling of site i, the local
degree of freedom is therefore set to zi = 0, while the total increase of the
zj at the nearest neighbours j of i maintains conservation. Again, as in the
BTW model, non-conservation at boundary sites can be thought of as been
implemented by sites that never topple themselves.

Charging neighbours might push their local degree of freedom beyond the
threshold and they might therefore topple in turn. When a site topples, all
particles present there at the time of toppling are transferred to its neighbour
(maybe to a single one) and it is therefore crucial to maintain the order of
(parallel) updates. The model is thus non-Abelian. In fact, the notion of
Abelianness was initially restricted to deterministic models (Milshtein et al.
1998). However, Dhar (1999a) introduced a version of the Manna Model which
is Abelian in the sense that the statistics of the final state remains unchanged
if two consecutive external charges (by the driving) are carried out in reverse
order. In that version of the Manna Model, a toppling site redistributes only
2 of its particles, i.e. the number of particles redistributed at a toppling
does not depend on zi itself. The difference between the BTW Model and
the Manna Model lies thus merely in the fact that only two particles are
re-distributed when a site topples in the Manna Model (irrespective of the
coordination number of the site) and that the receiving sites are are picked
at random.

In summary, the rules of the Abelian Manna Model are:

Initialisation: All sites i are empty, zi = 0.
Driving: One unit is added at a randomly chosen (or sometimes fixed) site
i, i.e. zi → zi + 1.
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Toppling: A site with zi > zc = 1 (called active) distributes one unit to 2
randomly and independently chosen nearest neighbouring sites j, so that
zi → zi − 2 and zj → zj + 1.

Dissipation: Units are lost at boundaries, where the randomly chosen
nearest neighbour might be outside the system.

Time progression: Originally, time progresses by one unit per parallel
update, when all active sites are updated at once.

That the scaling in one dimension is not as clean as in higher dimension
may be caused by logarithmic corrections (Dickman and Campelo 2003). Nev-
ertheless, it has been possible to extract consistent estimates for exponents
in dimensions d = 1 to d = 5 (Lübeck and Heger 2003b, Huynh et al. 2011,
Huynh and Pruessner 2012). Because some of its exponents are so similar to
that of the directed percolation universality class (Janssen 1981, Grassberger
1982, Hinrichsen 2000) there remains some doubt whether the Manna Model
really represents a universality class in its own right (Muñoz et al. 1999, Dick-
man et al. 2002). The problem is more pressing in the fixed energy version
(Dickman et al. 1998, Vespignani et al. 1998) of the Manna Model (Basu
et al. 2012), where dissipation at boundaries is switched off by closing them
periodically, thereby studying the model at a fixed amount of particles. The
term “fixed energy sandpile” was coined to stress the conserved nature of the
relavent degree of freedom (which may be called “energy”) and to suggest
a similar distinction as in the change of ensemble from canonical to micro-
canonical. Bonachela and Muñoz (2007) suggested to study the model with
different boundary conditions which have an impact on the Manna Model
that is distinctly different from that on models in the directed percolation
universality class.

Because of its fixed energy version, the Manna Model is frequently studied
for its links to absorbing state (AS) phase transitions (Dickman et al. 1998,
Vespignani et al. 1998, Hinrichsen 2000, Henkel et al. 2008). In fact, it has
been suggested that SOC is due to the self-organisation to the critical point
of such an AS phase transition (Tang and Bak 1988, Dickman et al. 1998,
Vespignani et al. 1998), whereby strong activity leads to a reduction of par-
ticles by dissipation, making the system in-active, while quiescence leads to
activity due to the external drive. One may argue that such a linear mecha-
nism cannot produce the desired universal critical behaviour without finely
tuning the relevant parameters (Pruessner and Peters 2006, 2008, Alava et al.
2008).

A number of theoretical results are available for the Manna Model (Vespig-
nani et al. 1998, 2000, Rossi et al. 2000, van Wijland 2002, Ramasco et al.
2004), yet an ε-expansion (Le Doussal et al. 2002) for the Manna univer-
sality class is available only via the mapping (Paczuski and Boettcher 1996,
Pruessner 2003) of the Oslo Model (Christensen et al. 1996), which is the same
universality class (Nakanishi and Sneppen 1997) as the Manna Model, to the
quenched Edwards-Wilkinson equation (Bruinsma and Aeppli 1984, Koplik
and Levine 1985, Nattermann et al. 1992, Leschhorn et al. 1997). Quenched
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noise and disorder are, however, notoriously difficult to handle analytically. It
is thus highly desirable to develop a better theoretical understanding of the
Manna Model in its own right, including its mechanism of self-organisation,
and to derive an ε-expansion for its exponents.

Although the Manna Model is more frequently studied in one dimension,
for comparison with the BTW Model above, the exponents listed in the fol-
lowing were determined numerically in two dimensions for the Abelian and
the non-Abelian (original) variant of the Manna Model. For τ they range
from 1.25(2) (Biham et al. 2001) to 1.28(2) (Manna 1991, Lübeck and Heger
2003a), for D from 2.54 (Ben-Hur and Biham 1996) to 2.764(10) (Lübeck
2000), for α from 1.47(10) (Manna 1991) to 1.50(3) (Chessa et al. 1999b,
Lübeck and Heger 2003a) and for z from 1.49 (Ben-Hur and Biham 1996) to
1.57(4) (Alava and Muñoz 2002, Dickman et al. 2002), generally much more
consistent than in the BTW Model.

As in the BTW Model, various directed variants of the Manna Model which
are exactly solvable for similar reasons as in the deterministic case have been
extensively studied (Pastor-Satorras and Vespignani 2000b,a, Hughes and
Paczuski 2002, Pan et al. 2005, Jo and Ha 2008). They have been charac-
terised in detail by Paczuski and Bassler (2000b) and related to the deter-
ministic directed models by Bunzarova (2010). Exponents generally follow
D = 3/2 + d⊥/4, which can be interpreted as the diffusive exploration of a
random environment. Again, correlations are suppressed as sites are never
re-visited in the same avalanche. As in the deterministic case, z = 1 and
D(2 − τ) = 1 and D(τ − 1) = z(α − 1) result in D = α. In d = 1 + 1
exponents are τ = 10/7, D = 7/4, α = 7/4 and z = 1.

7.1.2.3 The Forest Fire Model

The Forest Fire Model has an interesting, slightly convoluted history. Two
distinct versions exist, which share the crucial feature that the bulk dynamics
is not conservative. In the original version introduced by Bak et al. (1990)
sites i, most frequently organised in a (two-dimensional) square lattice with
periodic boundary conditions, can be in one of three states σi ∈ {T, F,A},
corresponding to occupation by a Tree, by Fire or by Ash. As time t advances
in discrete steps, the state changes cyclically under certain conditions: A Tree
turns into Fire at time t + 1 if a nearest neighbouring site was on Fire at
time t. In turn, a Fire at time t becomes Ash in time t+1, and a site covered
in Ash at time t might become occupied by a Tree at time t + 1 due to a
repeated Bernoulli trial with (small) probability p. Starting from a lattice
covered in trees, a single site is set on fire and the system evolves under the
rules described. The key observable is the number of sites on fire as a function
of time.

Initialisation: All (many) sites i contain a tree (otherwise ash), σi = T ,
and (at least) one site is on fire, σi = F .
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Fig. 7.1: Realisation of the original Forest Fire Model by Bak et al. (1990).
Ash is marked by a white site, Trees are black and Fires grey.

Driving: With (small) probability p, a site i containing ash at the begin-
ning of time step t contains a tree, σi = A→ T at time t+ 1.

Toppling: A site i that contains a tree at begining of time step t and has
at least one nearest neighbour on fire, turns into fire as well, σi = T → F .
Simultaneously, a site on fire at t turns into ash, σi = F → A.

Dissipation: trees grow slowly in Bernoulli trials and are removed in the
“toppling”. Their number is not conserved under any of the updating.

Time progression: Time progresses by one unit per parallel update.

The original Forest Fire Model (FFM) just described possesses an ab-
sorbing state from which it cannot recover within the rules given. If the fire
stops spreading because the last site on fire is surrounded by ash, the only
transition that can and will take place eventually occupies every site by a
tree. Bak et al. (1990) originally suggested that occasional re-lightning might
be necessary — in fact, if p is large enough, on sufficiently large lattices,
there will always be tree to burn available. This, however, points to a funda-
mental shortcoming, as quantified by Grassberger and Kantz (1991), namely
that the lengthscale of the relevant features of the FFM are determined by
p. Typically, at small p, some large spiral(s) of fire keeps sweeping across the
lattice. If p is chosen too small, the spatial extent of the spiral becomes too
large compared to the size of the lattice and the fire eventually goes out.
However, if a control parameter determines the characteristic length scale
of the phenomenon, it cannot be bona fide SOC (e.g. Bonachela and Muñoz
2009). Figure 7.1 shows an example of the structures, most noticeable the
fire fronts, developing.
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The name “Forest Fire Model” should be taken as a witty aide-memoire.
Bak et al. (1990) designed the model to understand scale free dissipation with
uniform driving as observed in turbulent flow. The model should therefore
be considered much more as a model of turbulence that happened to look
like fires spreading in a forest. In the present model, perpetual fires spread
across trees as they re-grow, which is a rather unrealistic picture; most fires in
real forests are shaped by fire brigades, geographical and geological features
and other environmental characteristics, as well as policies. Nevertheless, the
original FFM as well as the version by Drossel and Schwabl (1992a), attracted
significant attention as an actual model of forest fires, as well as other natural
and sociological phenomena (Turcotte 1999).

There are two distinguishing features that set the FFM apart from many
other SOC models. Firstly, the separation of time scales is incomplete, be-
cause driving the system by supplying new trees is a process running in par-
allel to the burning as fire spreads. Although the time scale of tree growth,
parameterised by p, can in principle be made arbitrarily slow, the fire has
to be constantly fed by new trees and cannot be allowed to go out, because
there is no explicit re-lighting. In other words, the tree growth rates that
still sustain fire are bounded from below. As a result, there are no distinct
avalanches, as found in the BTW and the Manna Models.

More importantly, however, the FFM is different from other models be-
cause it is non-conservative at a fundamental level. No quantity is being
transported to the boundaries and the local degree of freedom changes with-
out any conservation.6 At the time of the introduction of the FFM, it chal-
lenged Hwa and Kardar’s (1989a) suggested mechanism of SOC that relied
on a conservation law to explain the absence of a field-theoretic mass in the
propagator.

Other dissipative models, like the SOC version of the “Game of Life” (Bak
et al. 1989a), the OFC model discussed in the next section (Olami et al. 1992)
and the Bak-Sneppen Model (Bak and Sneppen 1993) chipped away from
the conservation argument put forward by Hwa and Kardar (1989a, 1992),
Grinstein et al. (1990) and Socolar et al. (1993). The latter seem to have
been caught by surprise by the advent of a variant of the FFM by Drossel
and Schwabl (1992a) discussed in the following.

The Drossel-Schwabl Forest Fire Model (DS-FFM), as it is now normally
referred to, was originally introduced by Henley (1989). It changes the original
Forest Fire Model in two very important points: Firstly, the separation of
time scales between burning and growing is completed, so that patches of
(nearest neighbouring) trees are burned down instantly compared to all other

6 It is difficult to make the statement about non-conservation strict. After all, the
state of each site is meant to change and allowing for that, it is always possible to
trace the appearance and the disappearance of something back to some influxes and
outfluxes. Here is an attempt in the present case: While the increase in the number
of trees can be thought of as being due to a corresponding influx, they can disappear
with an enormous rate by spreading fire without explicit outflux on that timescale.
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Fig. 7.2: Realisation of the Drossel-Schwabl Forest Fire Model (Drossel and
Schwabl 1992a). Ash is marked by a white site, Trees are black.

processes. Because fires therefore burn down completely before anything else
can happen, fires are set, secondly, explicitly by random, independent uniform
lightning. The key-observables of the DS-FFM are the geometrical features
of the clusters burned down, such as the number of occupied sites (the mass)
and the radius of gyration.

While trees grow with rate p on every empty site (i.e. one containing ash),
lightning strikes with much lower rate f on every site. If it contains a tree, the
fire eradicates the entire cluster of trees connected to it by nearest neighbour
interactions. In summary:

Initialisation: All sites i contain ash, σi = A.
Driving: With (small) probability p, a site i containing ash at the begin-

ning of time step t contains a tree, σi = A→ T at time t+ 1.
Toppling: With probability f � p, a site containing a tree at the begin-

ning of time step t and the entire cluster of trees connected to it by nearest
neighbour interactions is changed to ash, σi = T → A.

Dissipation: trees grow slowly in Bernoulli trials and are removed in the
“toppling”. They are not conserved in any of the updates.

Time progression: Time progresses by one unit per parallel update, top-
pling is instantaneous relative to growing trees.

As a result entire patches of forest disappear at a time, which are re-
forested with the same Poissonian density p. This process results in a patchy
structure with individual islands having roughly homogeneous tree-density,
Figure 7.2.

In a change of perspective, the processes parameterised by p and f are tree
growth attempts and lightning attempts which fail if the site is already oc-
cupied by a tree or does not contain one, respectively. The original definition
by Drossel and Schwabl (1992a) still used discrete time, so that both p and
f were probabilities, rather than Poissonian rates, which can be recovered
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by rescaling p and f simultaneously. However, it is common (e.g. Clar et al.
1996) to rescale time so that p = 1 (enforced growth on randomly picked
empty sites) and to attempt p/f times to grow a tree before attempting to
set one alight. In order to see scale-free cluster size distributions, a second
separation of timescales is needed, whereby the ratio p/f diverges.

Many of the properties of the DS-FFM are percolation-like. If it were
not for the correlations in the tree-density, which develop because of “syn-
chronous, patchy re-forestation”, i.e. if the tree-density was homogeneous,
then the DS-FFM would be a form of percolation. In particular, the clus-
ter size distribution (of the patches removed and the totality of all patches
present) was given by that of (well-known) static percolation.

The DS-FFM does not suffer from the same short-coming as the original
FFM of having a well-understood typical (spiral) structure, whose size is
determined by the single control parameter p, yet it still has one control
parameter which needs to be finely tuned in accordance with the system size.
This parameter is p/f — if it is too large, then the lattice will be densely filled
with trees before lightning strikes and removes almost all of them, leaving
behind essentially a clean sheet with a few remaining (small) islands of trees.
If p/f is too small, then no dense forest ever comes into existence and the
cluster size distribution has a cutoff not determined by the system size, but
by that parameter.

In extensive numerical studies (Grassberger 2002, Pruessner and Jensen
2002a, 2004), the system sizes were chosen big enough for each p/f that finite
size effects were not visible, i.e. for each p/f convergence of the cluster size
distribution P(s;L) in the system size L was achieved. However, these studies
revealed that the DS-FFM does not display simple scaling in sc = sc(p/f),
Eq. (7.3) (Sec. 7.2.1). While P(s) /s−τ converges in the thermodynamic limit
(as it should, trivially) for any τ , there is no choice of τ so that the remaining
functional profile depends only on the ratio s/sc(p/f). Instead, P(s) /s−τ

depends explicitly on both s and sc(p/f), or, for that matter, p/f . The only
feature that may display some convergence (Pruessner and Jensen 2002a) is
the bump in the probability density function (PDF) towards large s. For some
choice of τ , there is a small region, say [sc(p/f)/2, sc(p/f)], where P(s) /s−τ

traces out a very similar graph, as if the lower cutoff s0 itself was a divergent
multiple of the upper cutoff.7

One may hope that finite size scaling can be recovered, taking the limit of
large p/f and considering P(s) /s−τ as a function of L. However, it is clear
that the PDF trivialises in this limit,

lim
p/f→∞

P(s; p/f, L) = s−1δ
( s

Ld

)
(7.2)

7 If sc(p/f) marks roughly the maximum of the bump, the PDF drops off beyond it so
quickly, that next to nothing is known of P(s) beyond sc. In principle, however, if there
is approximate coincidence on [sc(p/f)/2, sc(p/f)], there should also be approximate
coincidence on [sc(p/f)/2,∞).
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as the lattice is completely covered in trees before they all get completely
removed in a singly lightning.

Interestingly, the lack of scaling in finite sc(p/f) is not visible in the scaling
of the moments 〈sn〉 because they are sensitive to large event sizes (at any
fixed n > τ − 1), rather than the smaller ones around the lower cutoff, whose
divergence violates simple scaling.

As in the BTW Model, exponents reported for the DS-FFM (if they are
reported at all) display a fairly wide spread. In two dimensions, they are τ
from 1 (Drossel and Schwabl 1992a) to 1.48 (Patzlaff and Trimper 1994) and
D from 1 (Drossel and Schwabl 1992a) to 1.17(2) (Henley 1993, Honecker
and Peschel 1997).

7.1.2.4 The OFC Model

To this day, the Olami-Feder-Christensen Model (OFC Model Olami et al.
1992) is one of the most popular and spectacular models of SOC. It is a
simplified version of the Burridge-Knopoff Model (Burridge and Knopoff
1967) of earthquakes, it has a tunable degree of non-conservation (including
a conservative limit) with a clear physical meaning, it has been extensively
analysed, both in time and space, for the effect of different boundary condi-
tions (Middleton and Tang 1995), and its one-dimensional variant (de Sousa
Vieira 1992) has been linked to the Manna universality class (Paczuski and
Boettcher 1996, Chianca et al. 2009). After the definition of the model, the
discussion below focuses on the model’s rôle in earthquake modelling and the
attention it received for the spatio-temporal patterns it develops.

The OFC Model is at home on a two-dimensional square lattice. As in the
models above, each site i has a local degree of freedom zi ∈ R (called the
local “pulling force”), which is, in contrast to the models above, however, real-
valued. As in the BTW Model, there are two clearly distinct stages of external
driving and internal relaxation. During the driving all sites in the system
receive the same amount of force (sometimes referred to as “continuous” or
better “uniform” drive) until one site exceeds the threshold zc = 1, which
triggers a relaxation during which no further external driving is applied. In
a relaxation or toppling, a site re-distributes a fraction of all pulling force
evenly among its nearest neighbours which may in turn exceed the threshold.
The force zi at the toppling site i is set to 0 and the amount arriving at each
neighbour is αzi, where α is the level of conservation. At coordination
number q, a level conservation less than 1/q means that the bulk dynamics
is dissipative. Boundary sites lose force αzi (at corners multiples thereof)
to the outside. Because the force re-distributed depends on the amount of
pulling force present at the site at the time of the re-distribution, the order
of updates matters greately, i.e. the OFC Model is not Abelian. If α < 1/q
periodic boundary conditions can be applied without losing the possibility of
a stationary state, yet normally the boundaries are open. The OFC Model is



270 Gunnar Pruessner

normally initialised by assigning random, independent forces from a uniform
distribution.

Sites to topple are identified at the beginning of a timestep and only those
have been relaxed by the end of it (parallel updates). Unless more than one
site exceeds the threshold (degenerate maximum) at the beginning of an
avalanche, toppling sites therefore reside on either of the two next nearest
neighbour sublattices of a square lattice.

Again, a separation of time scales is applied, where the relaxation be-
comes infinitely fast compared to an infinitesimally slow drive. In an actual
implementation, however, the driving is applied instantaneously and the re-
laxation takes up most (computational time): The driving can be completed
in a single step by keeping track of the site, say i∗ with the largest pulling
force acting on it. The amount of force added throughout the system is thus
simply zc − zi∗ , triggering the next avalanche.

Because sweeping the lattice in search of the maximum is computationally
very costly,8 the main computational task in the OFC Model is to keep track
of the site exposed to the maximum pulling force. This is a classic compu-
tational problem (Cormen et al. 1996), which also is occurs in other models,
such as the Bak-Sneppen Model (Bak and Sneppen 1993). The traditional
solution is to organise data in a tree-like structure and devise methods that
allow fast updating and determination of the maximum. However, in the
OFC Model updating as site’s force is much more frequent than determina-
tion of the maximum and thus a fast algorithm focuses on the optimisation
of the former at the expense of the latter, i.e. a slightly slower procedure to
determine the maximum.

Grassberger (1994) pointed out a number of improvements to a näıve,
direct implementation of the OFC Model. Firstly, instead of driving the
system uniformly, thereby having to sweep the lattice to increase the force
on every site by zc − zi∗ , the threshold zc is to be lowered; the amount of
force re-distributed at toppling is obviously to be adjusted according to the
new offset. The second major improvement Grassberger (1994) suggested was
the organisation of forces in “boxes” (sometimes referred as Grassberger’s
box-technique), which splits the range of forces present in the system in
small enough intervals that the search for the maximum force succeeds very
quickly, yet keeps the computational effort to a minimum when re-assigning a
box after an update. Other improvements suggested was maintaining a stack
(Sec. 7.3.1) of active sites, and the use of a scheme to determine neighbouring
sites suitable to the programming language at hand.

The adjustment of zc outlined above has some rather unexpected effects
depending on the numerical precision (Sec. 7.3.3) used in the simulation
(Pruessner 2012b). As pointed out by Drossel (2002), the OFC Model is ex-

8 Not only is the very searching across all sites costly, most of the memory occupied
by the lattice will not reside in a cache line (as for example most “local” data) and
thus has to be fetched through a comparatively slow bus.
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tremely sensitive to a change of precision; a lower precision seems to enhance
or favour phase-locking, discussed in the following.

Most of the studies of SOC models focuses on large-scale statistical fea-
tures, large both in time and space. The analysis of the OFC Model by Socolar
et al. (1993) Middleton and Tang (1995) and Grassberger (1995) therefore
ventured into uncharted territory as they studied the evolution towards sta-
tionarity in the OFC Model on a microscopic scale, analysing the patchy
structure of the forces on the lattice.

Firstly, periodic boundary conditions inevitably lead to periodic behaviour
in time. Below α ≈ 0.18 in a two-dimensional square lattice, (almost) every
avalanche has size unity. In that extreme case, the period is strictly 1 − qα,
because discounting the external drive, this is the amount of force lost from
every site after every site has toppled exactly once, as the system goes through
one full period.

The periodicity is broken once open boundaries are introduced. Sites at
the edge of the lattice have fewer neighbours that charge them, so if every
site in the system topples precisely once, the force acting on a boundary
site is expected to be lower. While open boundaries indeed break temporal
periodicity, they form, at the same time, seeds for (partially) synchronised
patches, which seem to grow from the outside towards the inside, increasing
in size. Middleton and Tang (1995) introduced the term marginal (phase)
locking to describe this phenomenon.

The temporal periodicity might similarly be broken by introducing inho-
mogeneities or disorder, effective even at very low levels (Grassberger 1994,
Ceva 1995, 1998, Torvund and Frøyland 1995, Middleton and Tang 1995,
Mousseau 1996). That a spatial inhomogeneity helps forming synchronised
patches in space can also be attributed to marginal phase locking.

Because the OFC Model is so sensitive to even the smallest amount of
disorder and inhomogeneity, its statistics is often taken from very big samples
with extremely long transients. Many authors also average over the initial
state. Drossel (2002) suggested that despite these precautions, some of the
statistical behaviour allegedly displayed by the OFC Model might rather
be caused by numerical “noise”, also a form of inhomogeneity or disorder
entering into a simulation. In practise, it is difficult to discriminate genuine
OFC behaviour from numerical shortcomings and one may wonder whether
some of these shortcomings are not also present in the natural phenomenon
the OFC Model is based on.

That SOC may be applicable in seismology had been suggested by Bak
et al. (1989b, also Bak and Tang 1989, Sornette and Sornette 1989, Ito and
Matsuzaki 1990) at a very early stage. The breakthrough came with the
OFC Model, which is based on the Burridge-Knopoff Model of earthquakes
(or rather fracturing rocks). The latter is more difficult to handle numerically,
with a “proper” equation of motion taking care of the loading due to spring-
like interaction much more carefully. The OFC Model, on the other hand,
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is much easier to update, almost like a cellular automaton.9 The context
of SOC provided an explanatory framework of the scale-free occurrence of
earthquakes as described by the Gutenberg-Richter law (Gutenberg and
Richter 1954, Olami et al. 1992). Even though exponents both in the real-
world as well as in the OFC Model seem to lack universality, certain scaling
concepts, motivated by studies in SOC, have been applied successfully to
earthquake catalogues (Bak et al. 2002).

It is fair to say that the OFC Model, to this day, is widely disputed as a
bona fide model of earthquakes. Its introduction has divided the seismology
community, possibly because of the apparent disregard of their achievements
by the proponents of SOC (Bak and Tang 1989). One of the central claims
made initially is that earthquakes are unpredictable if they are “caused” by
SOC, which questions the very merit of seismology. However, given that SOC
is a framework for the understanding of natural phenomena on a long time
and length scale, providing a mechanism for the existence of long temporal
correlations, SOC indicates precisely the opposite of unpredictability. This
point is discussed controversially in the literature to this day (Corral 2003,
2004c,b, Davidsen and Paczuski 2005, Lindman et al. 2005, Corral and Chris-
tensen 2006, Lindman et al. 2006, Werner and Sornette 2007, Davidsen and
Paczuski 2007, Sornette and Werner 2009). Older reviews (Turcotte 1993,
Carlson et al. 1994) help to understand the historical development of the dis-
pute. Hergarten (2002) and more recently Sornette and Werner (2009) have
put some of the issues in perspective.

There is not a single set of exponents for the OFC Model, as they are
generally expected to vary with the level of conservation (Christensen and
Olami 1992). Because authors generally do not agree on the precise value of
α to focus on, results are not easily comparable across studies. Even in the
conservative limit, α = 1/q, little data is available, suggesting τ = 1.22(5)−
1.253 and D = 3.3(1)− 3.01 (Christensen and Olami 1992, Christensen and
Moloney 2005).

7.2 Scaling and numerics

As a rule of thumb, SOC models are SDIDT systems Jensen (1998): Slowly
Driven Interaction Dominated Threshold systems. The driving implements a
separation of time scales and thresholds lead to highly non-linear interaction,
which results in avalanche-like dynamics, the statistics of which displays scal-
ing, a continuous symmetry. Ideally, the scaling behaviour of an SOC model
can be related to some underlying continuous phase transition, which is trig-
gered by the system self-organising to the critical point.

9 Strictly, the OFC Model generally is not a cellular automaton, because the local
states zi are continuous.
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The critical behaviour can be characterised by (supposedly) universal crit-
ical exponents, the determination of which is the central theme of the present
section. At the time of the conception of SOC, critical exponents were ex-
tracted directly from probability density function, (PDFs), often by fitting
the data to a straight line in double-logarithmic plot. Frequently, such scaling
is referred to as “power law behaviour”. Very much to the detriment of the
entire field, some authors restrict their research to the question whether an
observable displays the desired behaviour, without attempting to determine
its origin and without considering the consequences of such behaviour. Power
law behaviour therefore has become, in some areas, a mere curiosity.

7.2.1 Simple scaling

While studying power laws in PDFs can be instructive, there are far superior
methods to quantify scaling behaviour. In recent years, most authors have
focused on an analysis of the moments of the PDFs, as traditionally done
in the study of equilibrium statistical mechanics. Not only is this approach
more efficient, it also is more accurate and mathematically better controlled.
Moreover, it is concerned directly with an observable (or rather, arithmetic
means of its powers), rather than its accumulated histogram.

Nevertheless the starting point of a scaling analysis in SOC, is the simple
(finite size) scaling assumption,

P(s) = as−τG(s/sc) for s� s0 , (7.3)

where P(s) is the (normalised) probability density function of an observable,
s in this case, a is a (non-universal) metric factor present to restore dimen-
sional consistency and accounting for the (microscopic) details of the model,
τ is a universal scaling (or critical) exponent, G is a universal scal-
ing function, sc is the upper cutoff and s0 the lower cutoff. If s is the
avalanche size, then τ is known as the avalanche size exponent, when s is
the duration, then τ is traditionally replaced by α and called the avalanche
duration exponent.

The two cutoffs signal the onset of new physics: Below s0 some microscopic
physics prevails, often a lattice spacing or some other minimal length below
which discretisation effects take over. Above sc some large finite length scale
becomes visible, which in SOC is normally controlled by the size of the lattice,
so that Eq. (7.3) is referred to as finite size scaling. In traditional critical
phenomena, sc is controlled by the correlation length, beyond which distant
parts of the system can be thought of as being independent, suggesting the
validity of the central limit theorem.

Strictly, SOC models should always tune themselves to a critical point,
so that the algebraic, critical behaviour is cut off only by the system size.
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All scaling in SOC therefore is finite size scaling. There are a handful of
established SOC models, which violate that strict rule, however, such as the
Drossel-Schwabl Forest Fire Model Drossel and Schwabl (1992a), where an
additional parameter has to be tuned simultaneously with the system size.

The physical origin of the scales contained in the metric factor a and the
lower cutoff s0 often is the same, yet even with these length scales present,
P(s) has an arbitrarily wide region where it displays a power-law dependence
on s and whose width is controlled by sc; if s0 � s � sc, then P(s) =
as−τ+αs−αc G̃0, provided

lim
x→0

x−αG(x) = G̃0 . (7.4)

Typically, however, α = 0 so that the intermediate region of P(s) displays a
power law dependence with exponent τ , which can in principle be extracted
as the negative slope of P(s) in a double logarithmic plot. However, because
it is a priori unclear whether the scaling function G(s/sc) can be approx-
imated sufficiently well by a constant G0, “measuring” the exponent τ by
fitting the intermediate region of a double logarithmic plot to a straight line
(sometimes referred to as the apparent exponent) is very unreliable. If the
scaling function displays a power law dependence on the argument, α 6= 0,
the effective exponent in the intermediate region is τ −α. One can show that
α is non-negative, α ≥ 0, and τ = 1 if α > 0 (Christensen et al. 2008).
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Fig. 7.3: Example of a double logarithmic plot of the PDF of the avalanche
size in an SOC model (Data from Pruessner 2012b).

Figure 7.3 shows a typical double-logarithmic plot of the PDF in an SOC
model. The power law region is marked by two dashed lines. The lower cutoff
is at around s0 = 50 and the features below that value are expected to be
essentially reproduced by that model irrespective of its upper cutoff. The
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spiky structure visible in that region is not noise and may, to some extent,
be accessible analytically, similar to the lattice animals known in percolation
(Stauffer and Aharony 1994). The power law region between the two dashed
lines can be widened arbitrarily far by increasing the upper cutoff sc. Running
the same model with increasing sc will reproduce this almost straight region
beyond which the bump in the data indicates the onset of the upper cutoff.

The upper cutoff in SOC models supposedly depends only on the system
size and does so in a power-law fashion itself,

sc(L) = bLD (7.5)

where b is another metric factor and D is the avalanche dimension. The
exponent describing the same behaviour for the upper cutoff of the avalanche
duration is the dynamical exponent z. The four exponents τ , D, α and
z are those most frequently quoted as the result of a numerical study of an
SOC model.

The simple scaling ansatz Eq. (7.3) as well the scaling of the upper cutoff,
Eq. (7.5), both describe asymptotic behaviour in large sc and L respectively.
When determining exponents in computer simulations of SOC models, cor-
rections have to be taken into account in a systematic manner. While sub-
leading terms are difficult to add to the simple scaling ansatz Eq. (7.3), this
is routinely done in the case of the upper cutoff,

sc(L) = bLD(1 + c1L
−ω1 + c2L

−ω2 . . .) (7.6)

Corrections of this form are referred to as corrections to scaling (Wegner
1972) or confluent singularities. These corrections are discussed further in the
context of moment analysis, Sec. 7.2.2.

Although some very successful methods of analysis exist (Clauset et al.
2009), Eq. (7.3) does not lend itself naturally to a systematic quantitative
analysis for fixed sc. Often, a data collapse is performed in order to demon-
strate the consistency of the data with simple scaling. According to Eq. (7.3)
the PDF P(s) for different cutoffs sc produces the same graph by suitable
rescaling, in particular by plotting P(s) sτ against x = s/sc, which gives
G(x). Deviations are expected for small values of s/sc, namely for s around
s0, where Eq. (7.3) does not apply. Figure 7.4 shows an example of such a
collapse using the same model as in Figure 7.3.

Provided limx→0 G(x) = G0 6= 0, the region where P(s) displays (almost)
a power law translates into a horizontal, (nearly) constant section in the
rescaled plot. The graph terminates in a characteristic bump, where the
probability density of some larger event sizes exceeds that of some large, but
smaller ones. This counter-intuitive feature is normally interpreted as being
caused by system spanning events which were terminated prematurely by the
boundaries of the system. Had the system been larger, the events would have
developed further. In the PDF of a larger system thus make up the regular,
straight power law region, where the smaller system’s PDF displays a bump.
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Fig. 7.4: Data collapse of three different data sets similar to the data shown
in Figure 7.3. The upper cutoff sc is solely controlled by the system size L
(Data from Pruessner 2012b).

Even when the total probability contained in the bump is finite but very
small, it is enough to account for all events contained beyond it in the power
law region of an infinite system.

A data collapse is not unique, as plotting P(s) sτf(s/sc) produces G(x)f(x)
for any function f(x). In the literature, f(x) is often chosen as f(x) = x−τ so
that P(s) sτf(s/sc) = P(s) sτc . Plotting that data has the fundamental dis-
advantage that P(s) sτc usually spans many orders of magnitude more across
the ordinate compared to P(s) sτ , so that details in the terminal bump are
less well resolved.

7.2.1.1 Binning

A clean, clear dataset like the one shown in Figure 7.3 is the result of binning.
For numerical studies of SOC models this is a necessary procedure in order to
smoothen otherwise rather rugged histograms. The reason for that ruggedness
is the strong dependence of the probability density on the event size, with very
few large events occurring. Because of the power law relationship between
event size and frequency, their total numbers decrease even on a logarithmic
scale. As a result, statistical noise visibly takes over, often clearly before the
onset of the terminal bump. Statistics for large event size is sparse and often
little more than a muddle of seemingly unrelated data points is visible in the
raw data for large events.

The noise can be reduced by averaging the data for increasingly large
event sizes over increasingly large “bins”, hence the name binning. This is



7 SOC computer simulations 277

normally done in post-processing of the raw data produced in a numerical
simulation, by summing over all events within a bin and dividing by its size.
In principle, the bin sizes could be chosen to fit the data; if the bin ranges
are [bi, bi+1), then a pure power law P(s) = as−τ would deposit∫ bi+1

bi

ds as−τ =
a

τ − 1

(
b1−τi − b1−τi+1

)
(7.7)

events in each bin i. This number can be made constant by choosing
bi = (B0 − B1i)

1/(1−τ). Similarly, one might chose the bin boundaries bi
“on the fly”, i.e. successively increase the bin size until roughly a given num-
ber of entries have been collected. While those two choices lead to uniformly
low statistical errors (assuming constant correlations), they both suffer from
significant shortcomings. Firstly, the exponent τ to be estimated from the
data should not enter into the very preparation of the data that is meant to
produce the estimate. This problem is mitigated by the fact that τ may be
determined through a separate, independent procedure. Secondly and more
importantly, both procedures will lead to an increasingly wide spacing of data
points, which becomes unacceptable towards large event sizes, because the
abscissa will no longer be defined well enough — if bi+1 and bi are orders
of magnitude apart, which s does Eq. (7.7) estimate. Last but not least, to
make PDFs of different system sizes comparable, the same bi should be used
for all datasets.

The widely accepted method of choice is exponential binning (some-
times also referred to as logarithmic binning), where bi = B0 exp(βi). Such
bins are equally spaced on the abscissa of a double logarithmic plot. Because
the width of exponential bins is proportional10 to their limits, Eq. (7.7), sparse
data can cause a surprising artefact, whereby single events spuriously produce
a probability density which decays inversely with the event size, P(s) ∝ s−1,
suggesting an exponent of τ = 1. A typical problem with exponential bins
occurs at the small end of the range when used for integer valued event sizes,
because in that case the bi+1 − bi should not be less than 1. It is then diffi-
cult to control the number of bins and thus the resolution effectively, because
decreasing β increases the number of minimally sized bins and has highly
non-linear knock-on effects on all bin boundaries. The problem is obviously
much less relevant for non-integer event sizes, such as the avalanche duration.
However, it is rather confusing to use non-integer bin boundaries for integer
valued event sizes, because bins may remain empty and the effective bin size
cannot be derived from bi+1− bi. For example a bin spanning bi+1− bi = 0.9
may not contain a single integer, whereas bi+1 − bi = 1.1 may contain two.

It is obviously advantageous to perform as much as possible of the data
manipulation as post-processing of raw simulation data. Efficiency and mem-
ory limitations, however, normally require a certain level of binning at the

10 For integer valued bin boundaries, strictly, this holds only approximately.
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simulation stage. When event sizes and frequencies spread over 10 orders of
magnitude a simple line of code11

histogram[size]++; /∗ one count for size in the histogram ∗/

would require histogram to have a precision of more than 32 bits. Normally
such counters are implemented as integers, which would need to be a long long

int in the present case. The memory required for 1010 of these 64 bit numbers
(about 75 GB) exceeds by far the memory typically available in computers
in common use at the time of writing this text (2012). Writing every event
size in a list, eventually to be stored in a file, is rarely an alternative, again
because of the enormous memory requirements and because of the significant
amount of computational time post-processing would take.

Consequently, some form of binning must take place at the time of the
simulation. In principle, any sophisticated binning method as used during
post-processing can be deployed within the simulation, yet the risk of cod-
ing errors ruining the final result and the computational effort renders this
approach unfeasible. The established view that complicated floating point
operations such as log or pow are too expensive to be used regularly in the
course of a numerical simulation has experienced some revision over the last
decade or so, as techniques like hyperthreading and out-of-order execution
are commonly used even in the FPU. Nevertheless, integer manipulation,
often doable within a single CPU cycle, remains computationally superior
compared to floating point manipulation. Even some of the rather archaic
rules remain valid, such as multiplications being computationally more effi-
cient than divisions, as they can be performed within a short, fixed number
of cycles. Further details can be found in the appendix at the end of the
chapter.

7.2.2 Moment analysis

By far the most powerful technique to extract universal features of an SOC
model is a moment analysis (De Menech et al. 1998). Traditionally, the nu-
merical investigation of critical phenomena has focused on moments much
more than on the underlying PDF, even when the former are often seen as
the “result” of the latter. Mathematically, no such primacy exists and one can
be derived from the other under rather general conditions (Feller 1966, Carle-
man’s theorem in). In general one expects that a finite system produces only
finite event sizes, i.e. that finite systems have a sharp cutoff of the “largest
possible event size”. While very physical, this rule finds its exception in resi-
dence times, when particles get “buried” in a “pile” over long periods. In the

11 All explicit examples in this chapter are written in C, which is the most widely
used programming language for numerical simulations, as long as they are not based
on historic Fortran code.
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Oslo Model, some of these waiting time distributions seem to be moderated
by scaling functions that are themselves power laws and may possess upper
cutoffs exponential in the system size (Dhar and Pradhan 2004, Pradhan and
Dhar 2006, 2007, Dhar 2006).

Assuming, however, that all moments

〈sn〉 =

∫ ∞
0

ds snP(s) (7.8)

exist, i.e. are finite, then for n+ 1 > τ

〈sn〉 ' as1+n−τ
c gn (7.9)

where ' is used to indicate equivalence to leading order in large sc. Moments
with n < τ−1 are not dominated by the scaling in sc, i.e. they are convergent
in large sc. The (asymptotic) amplitudes gn are defined as

gn =

∫ ∞
0

xn−τG(x) (7.10)

expected to be finite for all n ≥ 0. There is an unfortunate confusion in the
literature about the (spurious) consequences of

〈
s0
〉

= 1 scaling like s1−τ
c g0.

If τ > 1, then the leading order of
〈
s0
〉

is not given by Eq. (7.9).
The only scaling in SOC is finite size scaling, i.e. the upper cutoff is ex-

pected to diverge with the system size, Eq. (7.5), so that moments scale like

〈sn〉 ' ab1+n−τLD(1+n−τ)gn . (7.11)

Neither a nor b are universal and neither are the gn unless one fixes some fea-
tures of G(x) such as its normalisation and its maximum. To extract universal
characteristics of G(x), moment ratios can be taken for example〈

sn−1
〉 〈
sn+1

〉
〈sn〉2

=
gn−1gn+1

g2
n

+ corrections (7.12)

or
〈sn〉 〈s〉n−2

〈s2〉n−1 =
gn−2

1

gn−1
2

gn + corrections , (7.13)

which is particularly convenient because of its very simple form when fixing
g1 = g2 = 1 by choosing the metric factors a and b appropriately.

The most important result of a moment analysis, however, are the universal
exponents D and τ and corresponding pairs for avalanche duration (z and
α respectively), as well as the area (normally Da and τa) etc.. This is done
in a three step process. Firstly, the SOC model is run with different systems
sizes, typically spaced by a factor 2, or 2, 5, 10. It can pay to use slightly
“incommensurate” system sizes to identify systematic effects, for example
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due to boundary effects being particularly pronounced in system sizes that
are powers of 2. A typical simulation campaign would encompass 10 to 15
system sizes, of which maybe only 6 to 10, stretching over two to four orders
of magnitude12 will be used to produce estimates of exponents. The result
of the simulation are estimates for the moments of the relevant observables
together with their error (see below).

Secondly, the moments of the event sizes distribution, 〈sn〉, are fitted
against a power law in L (which is the parameter controlling sc) with correc-
tions,

〈sn〉 = A0L
µn +A1L

µn−ω1 + . . . (7.14)

with positive exponents ωi, known as confluent singularities; in particular
µn − ω1 is sometimes referred to as a sub-dominant exponent. The intro-
duction of such corrections to scaling goes back to Wegner (1972), who
applied it in equilibrium critical phenomena. The Levenberg-Marquardt al-
gorithm (Press et al. 2007) is probably the fitting routine most frequently
employed for matching the estimates (with their error bars) from the simula-
tion to the fitting function Eq. (7.14). There are a number of problems that
can occur:

• Unless the result is purely qualitative, a good quality fit cannot be
achieved without good quality numerical data, that includes a solid esti-
mate of the numerical error, i.e. the estimated standard deviation of the
estimate.
• The very setup of fitting function Eq. (7.14) (sometimes referred to as

“the model”) can introduce a systematic error; after all it is only a hy-
pothesis.
• If n > τ − 1 is very small, corrections due to the presence of the lower

cutoff (s0, Eq. (7.3)) can be very pronounced.
• The error stated for the fitted exponents alone can be misleading. If

Eq. (7.14) is very constraining, the error will be low, but so will the
goodness-of-fit.
• Too many fitting parameters allow for a very good goodness of fit, but

also produce very large estimated statistical errors for the exponents.
• Fitting against a function with many parameters often is highly depen-

dent on the initial guess. In order to achieve good convergence and sys-
tematic, controlled results, it may pay off to fit the data against Eq. (7.14)
step-by-step, using the estimates obtained in a fit with fewer corrections
as initial guesses for a fit with more corrections.
• In most cases, there is little point in having as many parameters as there

are data points, as it often produces a seemingly perfect fit (goodness-of-
fit of unity), independent of the input data.

12 One might challenge the rule of thumb of the linear system size L having to span
at least three orders of magnitude — in higher dimensions, say d = 5, spanning three
orders of magnitude in linear extent leads to 15 orders of magnitude in volume, which
might be the more suitable parameter to fit against.
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• Extremely accurate data, i.e. estimates for the moments with very small
error bars, may require a large number of correction terms.

• It can be difficult to force the corrections ωi to be positive. It is not
uncommon to fix them at certain reasonable values such as ωi = i or
ωi = i/2. Alternatively, they can be introduced differently, writing them,
for example, in the form ωi = i+ |ω̃i|.

• If finite size scaling applies, the relative statistical error for any moment
scales like

〈
s2n
〉
/ 〈sn〉2 ∝ LD(τ−1), assuming that σ2(sn) scales like

〈
s2n
〉
,

which it certainly does for τ > 1. At τ = 1 the scaling of σ2(sn) may

be slower than that of 〈sn〉2. While LD(τ−1) does not depend on n, the
amplitude of the moments does, leading normally to an increase of the
relative error with n.

In some models the first moment of the avalanche size displays anti-
correlations and thus faster numerical convergence as found in a mutually
independent sample (Welinder et al. 2007). In many models, the average
avalanche size 〈s〉 is known exactly, in one dimension often including the con-
fluent singularities (Pruessner 2012a). These exact results can provide a test
for convergence in numerics and also provide a scaling relation

D(2− τ) = µ1 (7.15)

If µ1 is known exactly (µ1 = 2 for bulk driving Manna, Oslo and Abelian
BTW Models, µ1 = 1 for boundary drive), then Eq. (7.15) gives rise to a
scaling relation. Normally, there are no further, strict scaling relations.
However, the assumption of narrow joint distributions suggests D(τ − 1) =
z(α − 1) etc. (Christensen et al. 1991, Chessa et al. 1999a, Pruessner and
Jensen 2004). If the exponent µ1 is given by a mathematical identity and
〈s〉 serves as an analytically known reference in the numerical simulation,
then µ1 should not feature in the numerical analysis to extract the scaling
exponents D and τ . Rather, when fitting µn versus D(1 +n− τ), this should
be replaced by D(n− 1) + µ1.

Fitting µn in a linear fit (without corrections) against D(1 + n − τ) (or
against D(n− 1) +µ1 if µ1 is known exactly) is, in fact, the third step in the
procedure described in this section. In principle, the n > τ − 1 do not need
to be integer valued. They have to be large enough to avoid a significant
corrections due to the lower cutoff, and small enough to keep the relative
statistical error small. Non-integer n can be computationally expensive, as
they normally require at least one library call of pow.

While each estimate µn for every n should be based on the entire ensemble,
considering them together in the same fit to extract the exponents D and
τ introduces correlations, which are very often unaccounted for. As a result
both goodness-of-fit as well as the statistical error for the exponents extracted
are (unrealistically) small.

There are a number of strategies to address this problem. The simplest is
to up-scale the error of the µn as if every estimate was based on a separate,
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independent set of raw data. Considering M moments simultaneously, their
error therefore has to scaled up by a factor

√
M (Huynh et al. 2011). In

a more sophisticated approach, one may extract estimates from a series of
sub-samples (Efron 1982, Berg 1992, 2004).

It often pays to go through the process of extracting the exponents D and
τ at an early stage of a simulation campaign, to identify potential problems
in the data. Typical problems to watch out for include

• Corrections are too strong because system sizes are too small.
• Results are too noisy because sample sizes are too small, often because

the system sizes are too big.
• Results have so little noise that fitting functions need to contain too many

free parameters.
• Too few data points (i.e. too few different system sizes L or different

moments n).
• Large event sizes suffer from integer overflow, resulting in seemingly neg-

ative or very small event sizes.
• Data identical in supposedly different runs, because of using the same

seed for the random number generator.
• Transients chosen too short.

7.2.3 Statistical errors from chunks

One of the key-ingredients in the procedures described above is a reliable
estimate for the statistical error of the estimates of the individual moments.
The traditional approach is to estimate the variance, σ2(sn) =

〈
s2n
〉
− 〈sn〉2

of each moment, so that the statistical error of the estimate of 〈sn〉 is esti-
mated by σ2(sn)/

√
N/(2τ + 1), where N/(2τ+1) is the number of effectively

independent elements in the sample with correlation time τ .
This approach has a number of significant drawbacks. Firstly, each moment

〈sn〉 requires a second moment,
〈
s2n
〉
, to be estimated as well. Considering

a range of moments, this might (almost) double the computational effort.
Rather dissatisfyingly, the highest moment estimated itself cannot be used
to extract its finite size scaling exponent µn, because its variance is not
estimated. Furthermore, because of their very high powers, the moments
entering the estimates of the variances and thus the variances themselves
have large statistical errors and are prone to integer overflow.

Estimating the effective number of independent elements in the sample is
a hurdle that can be very difficult to overcome. Usually, it is based on an
estimate of the correlation time τ . If 〈sisj〉 − 〈s〉2 = σ2(s) exp(−|i − j|/τ),
then the variance of the estimator

s =
1

N

N∑
i

si (7.16)
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of 〈s〉 for N � τ is

σ2(s) =
1

N2

N∑
ij

(
〈sisj〉 − 〈s〉2

)
≈ 1 + exp(−1/τ)

N(1− exp(−1/τ))
σ2(s) ≈ 2τ + 1

N
σ2(s)

(7.17)
as if the sample contained only N/(2τ + 1) independent elements.

The main difficulty of this strategy is a reliable estimate of τ which often
cannot be easily extracted from 〈sisj〉−〈s〉2 because of noise and the presence
of other exponential contributions, of which exp(−|i − j|/τ) is the slowest
decaying one. Moreover, in principle τ has to be measured for each observable
separately (even when it makes physically most sense to assume that the
system is characterised by a single correlation time).

To avoid these difficulties, one may resort to a simple sub-sampling plan.
As discussed below (also Sec. 7.3.5), it is a matter of mere convenience and
efficiency to repeatedly write estimates of moments based on a comparatively
small sample into the output stream of a simulation and reset the cumulating
variables. In the following these raw estimates based on a small sample are
referred to as chunks. If their sample size is significantly larger than the
correlation time, then each of these estimates can be considered as indepen-
dent and the overall estimates based on it has its statistical error estimated
accordingly. For example, if mi with i = 1, 2, . . . ,M are estimates of 〈sn〉
all based on samples of the same size N , say mi =

∑N
j s

n
ij with sij the jth

element of the i sample, then the overall unbiased and consistent estimator
(Brandt 1998) of 〈s〉 is

m =
1

M

M∑
i

mi (7.18)

which has an estimated standard deviation of (m2 −m2)/(M − 1) where

m2 =
1

M

M∑
i

m2
i . (7.19)

One crucial assumption above is that the mi are independent, which can
always be achieved by merging samples. As long as M remains sufficiently
large, one may be generous with the (effective) size of the individual samples
(Flyvbjerg and Petersen 1989).

Chunks also allow a more flexible approach to determining and discard-
ing transient behaviour from the sample supposedly taken in the stationary
state. The transient can be determined as a (generous) multiple of the time
after which (ideally all or several) observables no longer deviate more from the
asymptotic or long time average than their characteristic variance. Where ob-
servables are known exactly (e.g. the average avalanche size Pruessner 2012a),
they can be used as a suitable reference. Figure 7.5 shows the transient be-
haviour of the average avalanche size in a realisation of the Manna Model. A
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Fig. 7.5: Example of the transient behaviour of an observable (here the aver-
age avalanche size in the one-dimensional Manna Model with L = 65536) as
a function of the chunk index in a log-lin plot (data from Huynh et al. 2011).
The straight dashed line shows the exact expected average 〈s〉, Eq. (7.1). The
arrow indicates the chunk from where on stationarity is roughly reached. A
generous multiple of that time should be taken as the number of chunks to
discard in order to ensure that correlations (and thus dependence on the
initial setup) are essentially overcome.

more cautious strategy is to consider a series of different transients and study
the change in the final estimates (with their estimated error) as a function
of the transient discarded.

7.3 Algorithms and data organisation

In the following, a range of numerical and computational procedures are
discussed that are commonly used in the numerical implementation of SOC
models (for a more extensive review see Pruessner 2012b). Some of them are a
matter of common sense and should be part of the coding repertoire of every
computational physicist. However, it is not always entirely obvious how these
“standard tricks” are used for SOC models.

In the following, the focus is on computational performance, which often
comes with the price of lower maintainability of the code. The amount of real
time spent on writing code and gained by making it efficient, should account
for the time spent on debugging and maintaining it.

Most of the discussion below is limited to algorithmic improvements. The
aim is produce code that communicates only minimally with the “outside
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world”, because in general, interaction with the operating system, as required
for writing to a file, is computationally expensive and extremely slow. The
UN*X operating system family (including, say, Linux and Mac OS X) distin-
guishes two different “modes” by which an executable keeps the CPU busy:
By spending time on the (operating) system and by spending it in “user
mode”. Roughly speaking, the former accounts for any interaction between
processes, with external controls or peripherals, including writing files. The
latter accounts for the computation that takes place solely on the CPU (ALU,
FPU, GPU, etc.) and the attached RAM. Tools like time and library functions
like getrusage provide an interface to assess the amount of various resources
used, while being themselves or resulting in systems calls.

Of course, the literature of computational physics in general is vast. Re-
views and texts that are of particular use in the present context include
Kernighan and Ritchie (1988), Cormen et al. (1996), Knuth (1997), Newman
and Barkema (1999), Berg (2004), Landau and Binder (2005), Press et al.
(2007).

7.3.1 Stacks

The definition of most SOC models makes no reference to the method to
identify active sites, i.e. sites that are due to be updated. In principle, an
implementation of an SOC model could therefore repeatedly scan the entire
lattice to find the relevant sites. This is, however, very inefficient and therefore
should be avoided. Instead, the index of active sites (or their coordinates)
should be organised in a list. Every site in that list is subsequently updated.
Moreover, it is often very important to know whether a site is maintained
in the list or not. Sometimes this can be determined implicitly (for example,
when a site is guaranteed to reside on the list from the moment its height
exceeds the threshold), sometimes this is done explicitly by means of a flag
associated with the site. The following contains a more detailed discussion of
the various techniques available.

The most commonly used form of a list is a stack, called so, because
this is how it appears to be organised. It consists of a vector, say int stack[

STACK_SIZE], of pre-defined size STACK_SIZE. It must be large enough to accom-
modate the maximum number of simultaneously active sites. Simulating large
lattices, a balance has to be struck between what is theoretically possible and
what is happening in practise.

The type of the stack, vector of int in the example above, is determined
by the type it is meant to hold. If it holds the index of active sites, it is likely
to be be int, but it may also hold more complex objects, say, coordinates of
active particles (but see below). The number of objects currently held by the
stack is stored in int stack_height.
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If STACK_SIZE is smaller than the theoretical maximum of active sites, int
stack_height has to be monitored as to prevent it from exceeding STACK_SIZE.
The outcome of the simulation is undefined if that happens, because the exact
position in memory of stack[STACK_SIZE] is a priori unknown. If therefore
stack_height exceeds STACK_SIZE, memory has to be extended one way or
another. For example, one may use realloc(), which assumes, however, that
enough memory is actually available. Modern operating systems all provide
virtual memory which is transparently supplemented by a swap file residing
on the (comparatively slow) hard drive. This is to be avoided because of
the computational costs associated. It may thus pay off for the process itself
to make use, temporarily, of a file to store active sites. The alternative to
abandon the particular realisation of the simulation introduces a bias away
from rare events which is likely to have significant effect on observables. The
same applies obviously if activity is suppressed if it reaches the maximum
level.

There are two fundamental operations defined on a stack,

#define PUSH(a) stack[stack height++]=(a)
#define POP(a) (a)=stack[−−stack height]

where PUSH(a) places (a) on the stack and POP takes an element off. The
underlying idea is literally that of a stack: When a site becomes active, its
index goes on a pile (PUSH) so that each index number on that pile represents
a site waiting to be updated. When that happens, it is removed from the pile
(POP).

It simplifies the code greatly if all objects on the stack are, in a sense,
equivalent. For example, all sites on a stack are active. Guaranteeing this is
not necessarily trivial, because the manipulation of one item on the stack
may affect the state (and thus the eligibility) of another item on the stack.
It is therefore advisable to ensure that all elements on the stack are distinct.
In SOC models that means that active sites enter the stack exactly once,
namely when the turn active. If an active site is charged again by a toppling
neighbour, a new copy of its index is not placed on the stack. In the Manna
Model, for instance, the single line of code to place objects on the stack could
be

if (z[i]++==1) {PUSH(i);}

so that the index i of a site enters when it is charged while its height z is at
the critical value zc. The line should not read if (z[i]++>=1)PUSH(i);.

Unfortunately, the very data structure of a stack, which in the present
context may better be called a LIFO (last in, first out), suggests a particular
procedure to explore active sites, namely a depth first search (DFS); When-
ever a toppling site activates its neighbours, one of them will be taken off
first by the next call of POP, toppling in turn. Activity thus spreads very far
very quickly, then returning, then spreading far again, rather than “burning
locally”. In fact, in DS-FFM a DFS is probably the simplest way of exploring
a cluster of trees.
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The alternative, a breadth first search (BFS) requires slightly greater com-
putational effort because it normally makes use of a FIFO (first in, first out).
The last object to arrive on a FIFO is the last one to be taken off, exactly
the opposite order compared to a stack. Naively, this may be implemented by
removing items from the front, stack[0], and using memmove()13 to feed it from
the end, lowering stack_height. This approach, however, is computationally
comparatively costly. A faster approach is to organise the stack in a queue,
organised in a ring (circular buffer) to keep it finite, where a string of valid
data grows at the end while retreating from the front.

In Abelian models, where the statistics of static features of avalanches, such
as size and area, do not depend on the details of the microscopic dynamics14,
working through the stack using POP may be acceptable. Where temporal
features are of interest too, the microscopic dynamics must implement a
suitable microscopic time scale. Often the microscopic timescale is given by
Poissonian updates, for example by active sites toppling with a Poissonian
unit rate.

In principle that means that waiting times between events (sites toppling)
are themselves random variables. If a faithful representation of the micro-
scopic time is desired, then the random waiting times can be generated by
taking the negative logarithm of a random number drawn from a uniform dis-
tribution on (0, 1]. If an approximate representation of the Poisson processes
is acceptable (which, in fact converges to the exact behaviour in the limit of
large numbers of active sites, see Liggett 2005), then elements are taken off
the stack at random and time is made to progress in steps of 1./stack_height.
If stack_height remains roughly constant, than on average stack_height events
occur per unit time as expected in a Poisson process. A simple implementa-
tion reads

int rs pos;
#define RANDOM POP(a) rs pos=rand() % stack height; (a)=stack[rs pos
ë ]; POP(stack[rs pos])

where the last operation, POP(stack[rs_pos]) overwrites the content of stack

[rs_pos] by stack[stack_height-1] decrementing stack_height at the same
time. When selecting the random position on the stack via rs_pos=rand()%

stack_height a random number generator has to be used (Sec. 7.3.4), which
only for illustrative purposes is called rand() here.

One consequence of the constraint of distinct objects on the stack is that a
site may need to topple several times before being allowed to leave the stack.
In Abelian models some authors circumvent that by placing a copy of the
site index on the stack every time a pair of particles has to be toppled from
it, which can be implemented easily by removing an appropriate number of

13 Dedicated library functions like memmove and memcpy are generally much faster than
naive procedures based on loops, although the latter can be subject to significant
optimisation by the compiler.
14 But note the strict definition of Abelianness discussed on p. 257.
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particles from the site each time it enters the stack. As a result, however,
stacks may become much larger, i.e. a greater amount of memory has to be
allocated to accommodate them.

Depending on the details of the microscopic dynamics, an possible alter-
native is to relax a site completely after it has been taken off the stack, for
example in the Manna Model:

while (stack height) {
RANDOM POP(i);
do {

topple(i); /∗ Site i topples, removing two particles from i. ∗/
avalanche size++; /∗ avalanche size counts the number of topplings. ∗/
} while (z[i]>1);
}

where topple(i) reduces z[i] by 2 each time. If the avalanche size counts the
number of topplings performed, avalanche_size has to be incremented within
the loop. Counting only complete relaxations would spoil the correspondence
with exact results.

An alternative approach with different microscopic time scale is to topple
a site on the stack only once, and take it off only once it is fully relaxed. This
approach requires some “tempering” with the stack:

while (stack height) {
i=rand() % stack height;
topple(stack[i]);
if (z[i]<=1) POP(stack[i]);
}

In systems with parallel update, where all sites at the beginning of a time
step have to be updated concurrently before updating the generation of sites
that have been newly activated, a red-black approach (Dowd and Severance
1998) can be adopted. This requires the use of two stacks, which have to be
swapped after completing one:

int ∗stack, stack height=0;
int rb stack[2][STACK SIZE], next stack height;
int current stack, next stack;

#define NEXT PUSH(a) rb stack[next stack][next stack height++]=(a)
#define NEXT POP(a) (a)=rb stack[next stack][−−next stack height]

...
current stack=0;
next stack=1;
stack=rb stack[current stack];
...
PUSH(i);
...
for (;;) {

while (stack height) {
...
POP(i);
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...
NEXT PUSH(j);
...
}
if (next stack height==0) break;
/∗ Swap stacks. ∗/
stack height=next stack height;
next stack height=0;
current stack=next stack;
stack=rb stack[current stack];
next stack=1−next stack;
}
/∗ Both stacks are empty. ∗/

The use of the pointer stack is solely for being able to use the macros PUSH

and POP defined earlier. Otherwise, it might be more suitable to define macros
CURRENT_PUSH and CURRENT_POP corresponding to NEXT_PUSH and NEXT_POP.

A stack should also be used when determining the area of an avalanche,
i.e. the number of distinct sites toppled (or visited, i.e. charged). To mark
each site that has toppled during an avalanche and to avoid double counting,
a flag has to be set, say visited[i]=1 or site[i].visited=1 (see Sec. 7.3.2).
Counting how often the flag has been newly visited then gives the avalanche
area. However, in preparation for the next avalanche, the flags have to be
reset. This is when a stack comes handy, say

int area stack[SYSTEM SIZE];
int area stack height=0;
#define AREA PUSH(a) area stack[area stack height++]=(a)
#define AREA POP(a) (a)=area stack[−−area stack height]
...
/∗ For each toppling site. ∗/
if (visited[i]==0) {

visited[i]=1;
AREA PUSH(i);
}
...
/∗ After the avalanche has terminated.
∗ area stack height is the avalanche area. ∗/

...
/∗ Re−initialise ∗/
while (area stack height) {

AREA POP(i);
visited[i]=0;
}
...

In the example above, the area is tracked implicitly in area_stack_height.
The re-initialisation can be further improved using while (area_stack_height

)visited[area_stack[--area_stack_height]]=0.
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7.3.2 Sites and Neighbours

In SOC models, every site has a number of properties, most importantly the
local degree of freedom, but also (statistical) observables which are being
measured and updated as the simulation progresses. Other information asso-
ciated with each site are flags (such as the one mentioned above to indicate
whether a site had been visited) and even the neighbourhood (discussed be-
low). In fact, the site itself may be seen as the key associated with all that
information. That key might represent information in its own right, say, the
coordinate, it might be an index of a vector, or a pointer.

7.3.2.1 Pointers and structures

A word of caution is in order with regard to pointers. The programming
language C lends itself naturally to the use of pointers. However, code on
the basis of pointers is difficult to optimise automatically at compile time.
Depending on the quality of the compiler and the coding an index based
implementation (which is also more portable) may thus results in faster code
than the seemingly more sophisticated implementation based on pointers.

That said, in theory placing pointers on the stack, which gives immediately
access to a relevant object should be faster than using indices, which are
effectively an offset relative to a base: b=z[stack[i]] might result in machine
code of the form b=*(z+*(stack+i)) which contains one more addition than
b=*stack[i] resulting in b=**(stack+i) if stack is a vector of pointers.

Similar considerations enter when using structures, which provide very
convenient and efficient ways of organising and encapsulating data associated
with each site. For example

struct site struct {
int height;
char visited;
};

defines a structure with two members, height and visited. Declaring a vari-
able struct site_struct site[10] allows the individual elements to be ac-
cessed in a structured way, say site[i].height++, site[i].visited=1. There
are a number of computational drawbacks, which are, however, normally out-
weighed by the better maintainability of the code.

• Depending on the platform and the compiler, padding might become
necessary, i.e. some empty space is added to the structure (Sec. 7.3.2.2,
p. 292). The memory requirements of the structure is thus greater than
the memory requirements for each variable when defined individually.

• Again depending on the platform as well as the compiler, without padding
some operations on some types may require more CPU cycles (in partic-
ular when floating point types are used).
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• Members within the structure are accessed similar to elements in a vector,
namely by adding an offset. Access to the first member (where no offset
is needed, site[i].height in the example above) can thus be faster than
access to the other members (site[i].visited above). Because of that
additional addition, the approach is often slower than using separate
vectors for each member of the structure.

7.3.2.2 Neighbourhood information

It can be convenient, in particular for complicated topologies or when the
neighbourhood information is computed or supplied externally, to store in-
formation about the local neighbourhood in a site structure, for example:

struct site struct {
...
int neighbour[MAX NEIGHBOURS];
int num neighbours;
};

Because of the significant memory requirements, this is often not viable for
large lattices. Again, instead of addressing neighbours by their index, pointers
can be used, which often produces very efficient and elegant code.

The neighbours of each site thus are calculated and stored at the site
only once. The strategy of pre-calculated neighbourhoods goes back to the
very beginning of computational physics, when access to memory was much
faster than doing such calculations on-the-fly.15 This, however, has changed.
It can be much faster to determine a neighbourhood on-the-fly than looking
it up, unless, of course, the topology is so complicated that it becomes com-
putationally too costly. Unfortunately, it is often difficult to try out different
implementations (lookup tables and calculation on the fly), as the setup of a
neighbourhood is at the heart of a lattice simulation.

As for calculating neighbourhoods, in one dimension the index of a site,
which is strictly only a key to access the information, is often associated with
its position on a one-dimensional lattice. Actual computation takes place
only at boundaries. If the right neighbour of site i in the bulk is i+1, it
may not exist on the right boundary or be 0 if periodic boundary conditions
(PBC) apply in an implementation in C where the index of a vector of size
LENGTH can take values from 0 to LENGTH-1. Similarly, the left neighbour is i-1

in the bulk and LENGTH-1 at i=0 in case of periodic boundaries. Those are
most easily implemented in the form left=(i+LENGTH-1)%LENGTH and right=(i

+1)%LENGTH respectively using a modulo operation. The shift by LENGTH in the
former avoids problems with negative indices at i=0.

A less elegant but often faster implementation is to determine whether a
site is at the boundary before assigning the value for the neighbour, such as

15 Back in the days when lookup tables for modulo operations were in fashion.
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if (i==0) left=LENGTH−1;
else left=i−1;

or just left=(i==0)?LENGTH-1:i-1, which is more readable. This method is also
more flexible with respect to the boundary condition implemented. Reflecting
boundary conditions, for example are implemented by left=(i==0)? 1 : i-1.
Open boundary conditions, on the other hand, might require special atten-
tion. If possible, they are best implemented using padding, i.e. by pretending
that a neighbouring site exists, which, however, cannot interact with the rest
of the lattice, for example, by making sure that it never fulfils the criterion to
enter the stack. Such a site may need to be “flushed” occasionally to prevent
it, for example, from fulfilling the criterion due to integer overflow. One might
either assign one special site, say the variable dump in left=(i==0)? dump : i-1

or allocate memory for LENGTH+2 sites with an index from 0 to LENGTH+1, with
valid sites ranging from 1 to LENGTH with sites 0 and LENGTH+1 receiving charges
without toppling in turn. This procedure also allows a very efficient way to
determine the number of particles leaving the system, the drop number
(Kadanoff et al. 1989).

Usually only in higher dimensions, one distinguishes reflecting boundary
conditions, where the particle offloaded is moved to another site (normally
the mirror image of the “missing” site), and “closed” boundary conditions,
where the number of nearest neighbours is reduced and shed particles are
evenly re-distributed among them.

Most of the above techniques remain valid in higher dimension, where the
data can be organised in either a one-dimensional vector or a multidimen-
sional vector. The former strategy makes use of macros of the form

#define COORDINATE2INDEX(x,y,z) ((x)+(LENGTH X∗((y)+
ë LENGTH Y∗(z))))
#define INDEX2COORDINATE(i,x,y,z) z=(i)/(LENGTH X∗LENGTH Y),
ë y=((i)/LENGTH X)%LENGTH Y,x=(i)%LENGTH X

The use of the coma operator in the second macro helps to avoid errors when
omitting curly brackets in expressions like if (1)INDEX2COORDINATE(i,x,y,z);.
Where stacks are used to hold coordinates, the multiple assignments needed
to store and fetch all of them may computationally outweigh the benefit of
not having to calculate coordinates based on a single index.

The two biggest problem with the use of multi-dimensional vectors is their
ambiguity when used with fewer indices and the consistency when passing
them to functions. Both subtleties arise because of the logical difference
between a vector of pointers to a type and the interpretation of a lower-
dimensional variant of a multi-dimensional vector. While C makes that dis-
tinction, there is no syntactical difference between the two. For example

int a[2][10];

a[0][5]=7;
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is a multi-dimensional vector using up 2*10*sizeof(int) sequential bytes of
memory. Each a[i] is the starting address of each row i = 0, 1. On the other
hand

int ∗a[2];
int row1[10], row2[10];
a[0]=row1; a[1]=row2;

a[0][5]=7;

makes a a vector of pointers, using up 2*sizeof(* int) bytes of memory,
while each row uses 10*sizeof(int) bytes. Both snippets of code declare a to
be completely different objects, yet, for all intents and purposes in both cases
a will behave like a two-dimensional array. That is, until it is to be passed
as an argument to another function. In the first case, that function can be
declared by function(int array[2][10]), informing it about the dimensions of
the array, and subsequently called using function(a). The two-dimensional
vector a will behave as in the calling function. In fact, the function will even
accept any other vector, lower dimensional or not, passed on to it as an
argument (even when the compiler may complain).

In the second case, a is a vector of pointers to int, and so a function taking
it as an argument must be declared in the form function(int **a), using
additional arguments or global constants (or variables) to inform it about
the size of the vector. The two versions of the functions are incompatible,
because a two-dimensional vector is really a one-dimensional vector with a
particularly convenient way of addressing its components. In particular, the
two-dimensional vector cannot be passed to the function designed for the
second case using, say, function(&a) or function((int **)a).

While these issues normally are resolved at the time of coding they can
cause considerable problems when the memory allocation mechanism for the
vector is changed. This happens, in particular, when lattice sizes are increased
during the course of a simulation campaign. Initially, one might be tempted
to define a lattice globally (stored in BSS or data segment) or as automatic
variables taken from the stack, choosing a multi-dimensional array for con-
venience. Later on, they make be taken from the (usually much bigger) heap
using malloc(), at which point the way they are accessed may have to be
changed. The latter approach is the most flexible but possibly not the most
convenient way of allocating memory for large items.

Finally, it is advisable to scan sites (when sweeping the lattice is unavoid-
able or scanning through a local neighbourhood) in a way that is local in
memory and thus cache. The first option, declaring a two-dimensional vec-
tor in a single step, makes that more feasible than the second option, where
different rows might end up at very different regions of memory. Not using
higher dimensional vectors at all, however, is probably the best performing
option.
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7.3.3 Floating Point Precision

Very little and at times too little attention is being paid to the effect of lim-
ited floating point precision. Most SOC models can be implemented fully in
integers even when their degrees of freedom are meant to be real valued, such
as the Zhang Model (Zhang 1989), the Bak-Sneppen Model (Bak and Snep-
pen 1993) or the Olami-Feder-Christensen Model Model (Olami et al. 1992).
In case of the latter, floating point precision has been found to significantly
affect the results (Drossel 2002).

Where random floating point numbers are drawn, they might in fact
contain much fewer random bits than suggested by the size of their mantissa.
In that case, an implementation in integers is often not only faster but also
“more honest”. Where rescaling of variables cannot be avoided and occurs
frequently, multiplying by a constant inverse often produces faster code than
division.

Over the last decade or so, the floating point capabilities of most common
CPUs have improved so much, however, that the difference in computational
costs between integers and floating point arithmetics is either negligible or
not clear-cut. The most significant disadvantage of the latter is the limited
control of precision that is available on many platforms.

The levels of precision as defined in the IEEE standard 754 that are very
widely used are single, double and extended. They refer to the number of bits
in the mantissa determined when floating point operations are executed, i.e.
they are the precision of the floating point unit (FPU). The precision the FPU
is running at depends on platform, environment, compiler, compiler switches
and the program itself. Some operating systems offer an IEEE interface, such
as fpsetprec() on FreeBSD, and fenv on Linux.

Results of floating point arithmetics are stored in variables that may not
offer the same level of precision the FPU is running at and in fact it is
possible that none of the data types available matches a particular level of
precision set on the FPU. Crucially, the precision setting of the FPU normally
affects all floating point operations on all floating point variables, regardless
of type, e.g. information is lost when results are calculated with extended
precision and stored in variables offering only single precision. A notorious
error observed on systems which default to extended precision, in particular
Linux on x86, occurs when comparisons between variables produce different
outcomes depending on the position in the code — at one point the result
calculated may still reside on the FPU and thus offer extended precision,
whereas at a later point the result is truncated after being written to memory.
This can lead to serious inconsistencies when data is held in an ordered tree.
Compiler switches like -ffloat-store for gcc help in these cases.

The commonly used gcc compiler offers three basic floating point types,
float, double and long double, matching the three levels of precision men-
tioned above. The very nature of SOC means that observables span very many
order of magnitudes. If variables that accumulate results, such as moments,
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are too small (i.e. have a mantissa that is too small), smaller events may not
accumulate at all any more once the variable has reached a sufficiently large
value. This can skew estimates considerably where very large events occur
very rarely. The macros FLT_EPSILON, DBL_EPSILON and LDBL_EPSILON in float.h

give a suggestion of the relative scale of the problem. It can be mitigated by
frequently “flushing” accumulating variables (see Sec. 7.3.5).

7.3.4 Random Number Generators

Random Number Generators (RNGs) are a key ingredient in many areas
of computational physics, in particular in Monte-Carlo and Molecular Dy-
namics simulations. The vast majority of them, strictly, are not random, but
follow instead a deterministic but convoluted computational path. RNGs are
constantly being improved and evaluated, not least because of their use in
cryptography. An introduction into the features of a good RNG can be found
in the well-known Numerical Recipes (Press et al. 2007), with further details
to be found in the review by Gentle (1998).

A “good” random number generator is one that offers a reasonable com-
promise between two opposing demands, namely that of speed and that of
quality. In most stochastic SOC models, the RNG is used very often and
thus typically consumes about half of the overall CPU time. Improving the
RNG is thus a particularly simple way of improving the performance of an
implementation. Because the variance (square of the standard deviation) of
an estimate vanishes inversely proportional with the sample size it is based
on, the performance of an implementation is best measured as the product
of variance and CPU time spent “for it”. However, one is ill-advised to cut
corners by using a very fast RNG which has statistical flaws. The resulting
problem may be very subtle and might not show until after a very detailed
analysis.

One of the problems is the period of an RNG. Because RNGs generally
have a finite state, they are bound to repeat a sequence of random numbers
after a sufficient number of calls, at which point the simulation using the
random numbers produces only copies of previous results. With improving
hardware the RNG must therefore be re-assessed. A “good RNG” is a function
of time, and very much a function of perception, as a mediocre RNG might
appear to be a fantastic improvement over a poor RNG. It is good practise
to use more than one random number generator to derive the same estimates
and compare the results.

The C library’s implementation of rand() is legendary for being unreliable
and can be very poor. At the very least, it is essentially uncontrolled, al-
though, of course, standards exist, which are, however, not always adhered
to. It is fair to say that pure linear congruential RNGs are somewhat (out-
)dated and indeed rarely used. They are, however, sometimes combined or
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enhanced with more sophisticated techniques. In recent years, the Mersenne
Twister (Matsumoto and Nishimura 1998, Matsumoto 2008) has become very
widely used, yet, criticised by Marsaglia (2005) who proposed in turn KISS
(Marsaglia 1999, but see Rose 2011), which is a remarkably simple RNG. The
GNU Scientific Library (Galassi et al. 2009) contains an excellent collection
of random number generators.

Somewhat more specific to the use of RNGs in SOC models is the frequent
demand for random bits, for example in order to decide about the direction
a particle is taking. Because every acceptable RNG is made up of equally
random bits, each and everyone of them should be used for random booleans.
These bits can be extracted one-by-one, by bit-shifting the random integer
or by shifting a mask across, as in

#define RNG MT BITS (32)
#define RNG TYPE unsigned long
RNG TYPE mt bool rand=0UL;
RNG TYPE mt bool mask=1UL<<(RNG MT BITS−1);
#define RNG MT BOOLEAN ( ( mt bool mask==(1UL<<(
ë RNG MT BITS−1)) ) ? ((mt bool mask=1UL, mt bool rand=
ë genrand int32()) & mt bool mask) : (mt bool rand & (mt bool mask
ë +=mt bool mask)) )

based on the Mersenne Twister. In general, bit shifts to the left using a+=a

instead of a<<=1 are faster, because the latter requires one more CPU cycle
to write the constant 1 into the CPU’s register.

More generally, integer random numbers have to be chosen uniformly from
the range {0, 1, . . . , n−1} suggesting the use of the modulo operation, r=rand
()%n. However, if rand() produces random integers uniformly from 0 up to
and including RAND_MAX, then the modulo operation skews the frequencies
with which random number occurs towards smaller values if RAND_MAX+1 is
not an integer multiple of n. The effect is of order n/(RAND_MAX+1) and thus is
negligible if n is significantly smaller than RAND_MAX. However, picking a site
at random on a very large lattice or an element from a very large stack, this
effects becomes a realistic concern. In that case, the modulo operation can be
used on a random number drawn uniformly among integers from 0 up to and
including R − 1, where R is a multiple of n and ideally the largest multiple
of n less or equal to RAND_MAX+1:

const long long int n=...;
/∗ The constant multiple minus 1 is made to have type as the return
∗ value of rand(). ∗/

const int multiple minus 1=(n∗((((long long int)RAND MAX) + 1LL)/n)
ë )−1LL;
int r;
#define RANDOM(a) while ((r=rand())>multiple minus 1); (a)=r%n

where multiple_minus_1 plays the rôle of R− 1. When determining the maxi-
mum multiple, it is crucial that the operation RAND_MAX+1 is performed using
a type where the addition does not lead to rounding or integer overflow.
The latter is also the reason why one is subtracted in the expression for
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multiple_minus_1, which otherwise might not be representable in the same
type as the return value of rand(), which is necessary to avoid any unwanted
type casting at run time.16

The initial seed of the RNG needs to be part of the output of the pro-
gramme it is used in, so that the precise sequence of events can be reproduced
in case an error occurs. Some authors suggest that the initial seed itself should
be random, based, for example, on /dev/random, or the library functions time

() or clock(),17 and that the RNG carries out a “warm-up-cycle” of a few
million calls (Jones 2012). After that, it is sometimes argued, chances are
that one sequence of (pseudo) random numbers is independent from another
sequence of random numbers generated by the same RNG based on a dif-
ferent seed. Fortunately, some RNGs, in particular those designed for use on
parallel machines, offer a facility to generate sequences that are guaranteed
to be independent. Where poor-man’s parallel computing (many instances of
the same simulation running with different seeds) takes place, independent
sequences are of much greater concern than in situations where different pa-
rameter settings are used in different instances. In the former case the data
of all instances will be processed as a whole, probably under the assumption
that it is actually independent. In the latter case, the results will enter differ-
ently and using even an identical sequence of random numbers will probably
not have a noticeable effect. All these caveats are put in perspective by the
fact that most SOC models fed by a slightly differing sequences of pseudo
random numbers take “very different turns in phase space” and thus will
display very little correlations.

7.3.5 Output

As mentioned above, it is generally advisable to output and flush data fre-
quently in chunks, resetting accumulating variables afterwards. Even when
output occurs every second, the overhead in terms of the CPU and real time
spent by the system is likely to be negligibly small.

Where data is written to a file in large quantities or frequently, buffered
I/O as provided by stdio through the printf-family of library calls is usually
much faster than writing immediately to the file using unistd’s write. There
are two caveats to this approach: Firstly, depending on the size of the buffer
and thus the frequency of writing, a significant amount of CPU time may be

16 This is one of the many good reasons to use constants rather than macros (van
der Linden 1994, Kernighan and Pike 2002).
17 Both functions are bad choices on clusters where several instances of the same
programme are intended to run in parallel. The function time() changes too slowly
(returning the UN*X epoch time in seconds) and the function clock() wraps after
about 36 minutes, so that neither function guarantees unique seeds. In general, seeding
is best done explicitly.
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lost if the program terminates unexpectedly. To avoid corrupt data, fflush()
should be used rather than allowing the buffer to empty whenever it reaches
its high-water mark. Secondly, if buffering I/O has a significant impact on
the computational performance, the data may better be processed on-the-fly
rather than storing it in a file.

In the following, stdio is used for its convenient formatting capabilities,
provided by the plethora of flags in the formatting string of a printf call.
To avoid the problems mentioned above, buffers are either flushed after each
chunk by means of fflush, or buffering is switched to buffering line by line,
using setlinebuf.

To avoid unexpected interference of the operating system with the sim-
ulation, operations should be avoided that can potentially fail because the
environment changes. This applies, in particular, to read and write access to
files. In any case, such operations need to be encapsulated in an if condition
that catches failing system calls and triggers a suitable remedy.

Output of chunks should therefore happen through the stdout stream
which is by default open at the time of the program start. As the output is
usually used in post-processing it needs to be retained, which can be achieved
by re-directing stdout into a file. In the typical shell syntax this can be done
in the command line by, say, ./simulation > output.txt. To allow easy post-
processing, every line should contain all relevant simulation parameters, such
as the system size, the number of the chunk (a counter), the number of events
per chunk, the initial seed of the random number generator (RNG), in fact,
everything that is needed to reproduce that line from scratch or to plot the
relevant (derived) data. Typical examples are moments to be plotted against
the system size and moment ratios, involving different moments of the same
observable. Using post-processing tools to wade through vast amounts of data
to find the missing piece of information to amend a line of data can require
significant effort and is highly error-prone.

Repeating the same output (system size, RNG seed etc) over and over
seemingly goes against the ethos of avoiding redundant information, which
should be applied when setting up a computer simulation (to avoid clashes),
but is wholly misplaced when it comes to data output. In fact, redundancy
in output is a means to measure consistency and a matter of practicality as
almost all basic post-processing tools are line-oriented.

In some rare cases, an action by the simulation or an event on the system
can result in a signal being sent to the running instance of the program.
In response the program suspends the current operation, executes a signal
handler and continues where it left off. In principle, the signal should not
lead to inconsistent data or behaviour; in fact, it is probably the most basic
but also a very convenient way to communicate with a running program. For
example

#include <signal.h>
...
void sighup handler(int signo);
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...
signal(SIGHUP, sighup handler);
...
void sighup handler(int signo)
{
finish asap=1;
}

assigns the signal handler sighup_handler to deal with the signal SIGHUP, which
can be sent to the program using kill -HUP.

There is a rare situation when the signal interrupts in a way that it leads
to unexpected behaviour, namely when it arrives while a “slow system call”
is executed, i.e. an operation that is performed by the kernel on behalf of
the programme, but which can take a long time to complete, such as pause

, sleep, but also write to so-called pipes. Without discussing the technical
details of the latter, it can lead to inconsistencies in the output which might
not be detected in the post-processing. For example, a chunk may contain
truncated lines and thus may lack certain information or data, which the post-
processing tools might treat as zeroes. Apart from a graphical inspection of
the data, two measures may therefore be advisable: Firstly, output can be
encapsulated in calls of sigprocmask which allows temporary suspension of
the delivery of signals. Secondly, a chunk can be terminated by a single line
containing a keyword to indicate the successful completion of the output (i.e.
without catching an error, in particular not an “interrupted system call”,
EINTR), such as the tag (see below) #Completed. Simply counting the number
of occurrences of that tag and comparing to (supposed) the number of valid
chunks can pick up inconsistencies. In large scale simulations, where disk
space can be a problem leading to truncated files as the system runs out of
file space, this is particularly advisable.

After a chunk has been written out, variables collecting data have to be
reset. Where PDFs are estimated, sweeping across the entire histogram can
become expensive and therefore performing all relevant steps simultaneously
is advantageous for the overall performance. Using one of the examples above
(Sec. 7.2.1.1):

long long total=0;
for (i=0; i<SMALL2MEDIUM THRESHOLD; i++)

if (histo small[i]) {
printf(...);
total+=histo small[i];
histo small[i]=0;
}

...
printf(”out of range: %i\n”, histo out of range);
total+=histo out of range;
histo out of range=0;
printf(”total: %lli”, total);
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The final line allows the user to compare the number of events collected
in the histogram to the number of events expected. It is a computationally
cheap additional check for data consistency.

To distinguish different types of output, such as moments of different ob-
servables, data should be tagged by short keys that are easily filtered out in
post processing. For example, if every line containing moments of avalanche
sizes is tagged by #M_SIZE at the beginning, all relevant lines can be extracted
very easily for example using grep ’^#M_SIZE’output.txt. To strip off the tags,
one either appends |sed ’s/#M_SIZE//’ or includes the functionality of grep

in the sed command,

sed −n ’s/ˆ#M SIZE//p’ output.txt > output.txt M SIZE

storing all relevant lines in output.txt_M_SIZE for further processing by other
tools. One very simple, but particularly powerful one is awk. For example, the
average across the seventh column starting with the 101st chunk (stored in
the first column) can be calculated using

awk ’ { if ($1>100) {m0++; m1+=$7;} } END { printf (”%i %10.20g\n”,
ë m0, m1/m0); } ’ output.txt M SIZE

All of this is very easily automated using powerful scripting languages (in
particular shell scripts, awk, sed and grep), and more powerful (interpreted)
programming languages, such as perl or python, which provide easy access to
line-oriented data. In recent years, XML has become more popular to store
simulation parameters as well as simulation results.

7.4 Summary and conclusion

The early life of SOC was all about computer models that showed the desired
features of SOC: Intermittent behaviour (slow drive, fast relaxation) display-
ing scale invariance as observed in traditional critical phenomena without the
need to tune a control parameter to a critical value. After many authors had
(mostly with little success) attempted to populate the universality class of the
BTW Sandpile, a range of SOC models was proposed firstly as a paradigm
of alternative universality classes and later to highlight specific aspects of
SOC, such as non-conservation (as for example in the Forest-Fire Model),
non-Abelianness (as for example in the Olami-Feder-Christensen Model) and
stochasticity (as for example in the Manna Model).

Many of these models have been studied extensively, accumulating hun-
dreds of thousands of hours of CPU time in large-scale Monte Carlo simula-
tions. A finite size scaling analysis of the data generally produces a set of two
to eight exponents, which are supposedly universal. It turns out, however,
that very few models display clean, robust scaling behaviour in the event size
distribution, although it is remarkably broad for many models.
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Of the models discussed above, the Manna Model displays the clearest
signs of scale invariance. There is wide consensus that it is the same uni-
versality class as the Oslo Model (Christensen et al. 1996, Nakanishi and
Sneppen 1997). In the conservative limit and in the near-conservative regime,
the Olami-Feder-Christensen Model also displays convincing moment scaling,
but less so for smaller values of the level of conservation. Numerical artefacts
may play a significant rôle in its scaling (Drossel 2002).

The Forest Fire Models is widely acknowledged for failing to display fi-
nite size scaling in the event size distribution (Grassberger 2002, Pruess-
ner and Jensen 2002a), although its moments still display some scaling
(Pruessner and Jensen 2004). The contrast is even sharper in the Bak-Tang-
Wiesenfeld Model: Some scaling is known analytically (Majumdar and Dhar
1992, Ivashkevich 1994, Ivashkevich et al. 1994, Dhar and Manna 1994), yet
the event size distribution seems at best be governed by multiscaling (Tebaldi
et al. 1999, Drossel 1999, 2000, Dorn et al. 2001)

While analytical approaches receive increasing attention, numerical tech-
niques remain indispensable in the development and analysis of models which
are tailor-made to display specific features or to mimic experimental systems.
Models developed more recently are usually implemented in C, producing
numerical data in Monte-Carlo simulations. It is fair to say that the careful
data analysis requires as much attention to detail as the implementation of
the model in the first place.

While the classic data-collapse and more immediate tests for scaling dom-
inated the early literature of SOC, more recently the finite size scaling of
moments (Tebaldi et al. 1999) has become the predominant technique for
the extraction of scaling exponents. Apart from identifying the mechanism
of SOC, the main purpose of the numerical work is to establish universality
and universality classes among models, as well as their relation to natural
phenomena. One may hope that these efforts will eventually help to uncover
the necessary and sufficient conditions for SOC.
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Appendix: Implementation details for binning

To implement binning in computer simulations of SOC models it is advisable
to perform simple bit manipulations on basic, integer-valued observables.
It often suffices to implemented three levels of coarse graining or less, for
example

#define SMALL2MEDIUM THRESHOLD (1LL<<15)
long long histo small[SMALL2MEDIUM THRESHOLD]={0LL};
#define MEDIUM2LARGE THRESHOLD (1LL<<30)
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#define MEDIUM SHIFT (12)
long histo medium[(MEDIUM2LARGE THRESHOLD−
ë SMALL2MEDIUM THRESHOLD)>>MEDIUM SHIFT]={0L};
#define LARGE THRESHOLD (1LL<<45)
#define LARGE SHIFT (27)
int histo large[(LARGE THRESHOLD−MEDIUM2LARGE THRESHOLD)
ë >>LARGE SHIFT]={0};
int histo out of range=0;
long long int s; /∗ event size ∗/

...

if (s<SMALL2MEDIUM THRESHOLD) histo small[s]++;
else if (s<MEDIUM2LARGE THRESHOLD) histo medium[(s−
ë SMALL2MEDIUM THRESHOLD)>>MEDIUM SHIFT]++;
else if (s<LARGE THRESHOLD) histo large[(s−
ë MEDIUM2LARGE THRESHOLD)>>LARGE SHIFT]++;
else histo out of range++;

Here the event size to be tallied is s. In the block of if statements, it is com-
pared to various thresholds before it is rescaled and counted into a histogram.
Because vectors in many programming languages start with index 0, a shift
an offset is subtracted as well. It can pay of to re-arrange the if statements
as to test against the most frequent case as early as possible. One case, in
the present example the last one, counts the number of times the counter
overspills, here histo_out_of_range.

Some subtleties of the above implementation are worth discussing. Firstly,
the types used for the histogram typically decrease in size with increasing
event size while the size of the type needed to represent the event size at
the respective thresholds increases. This is because normally the frequency
is an inverse power law of the event size. Great care must be taken to avoid
unnecessary typecasts and undesired outcomes, as some languages, in partic-
ular C, are rather idiosyncratic when it comes to (integer) type-promotion in
comparisons, in particular when they involve signs.

In the above examples, automatic vector variables are used and initialised
by assigning {0}, which is expanded by the compiler to a suitable size by
adding zeroes. Initialisation of vectors in C has been further simplified in the
C99 standard.

Secondly, it is important to choose the thresholds together with the
planned bit-shifts, in order to avoid an off-by-one error. The problem is that,
say,
s<MEDIUM2LARGE_THRESHOLD, does not imply

(s−SMALL2MEDIUM THRESHOLD)/((1<<MEDIUM SHIFT) < (
ë MEDIUM2LARGE THRESHOLD−SMALL2MEDIUM THRESHOLD)
ë /(1<<MEDIUM SHIFT)

because for some s<MEDIUM2LARGE_THRESHOLD their bitshifted value
s>>MEDIUM_SHIFT in fact equals MEDIUM2LARGE_THRESHOLD>>MEDIUM_SHIFT,
namely precisely when MEDIUM2LARGE_THRESHOLD is not an integer multiple of
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1<<MEDIUM_SHIFT. It is therefore a matter of defencive programming to write
the thresholds for the macros in this form:

#define MEDIUM2LARGE THRESHOLD ((1LL<<18) ∗ (1LL<<
ë MEDIUM SHIFT))

As for a rudimentary output routine

for (i=0; i<SMALL2MEDIUM THRESHOLD; i++)
if (histo small[i]) printf(”%i %i %lli %i\n”, i, i, histo small[i], 1);

for (i=0; i<((MEDIUM2LARGE THRESHOLD−
ë SMALL2MEDIUM THRESHOLD)>>MEDIUM SHIFT); i++)

if (histo medium[i]) printf(”%li %i %li %i\n”, ((long)
ë SMALL2MEDIUM THRESHOLD)+(((long)(i))<<MEDIUM SHIFT),
ë i, histo medium[i], 1<<MEDIUM SHIFT);
for (i=0; i<((LARGE THRESHOLD−MEDIUM2LARGE THRESHOLD)
ë >>LARGE SHIFT); i++)

if (histo large[i]) printf(”%lli %i %i %i\n”, ((long long)
ë MEDIUM2LARGE THRESHOLD)+(((long long)(i))<<
ë LARGE SHIFT), i, histo large[i], 1<<LARGE SHIFT);
printf(”out of range: %i\n”, histo out of range);

care must again be taken that the formatting of the output is in line with the
type of the data and does not spoil it. Fortunately, most modern compilers
spot clashes between the formatting string used in printf and the actual
argument. As discussed below, it is generally advisable to have only one
output stream, namely stdout, and to use tags to mark up data for easy
fetching by post-processing tools. In the example above, the bins have not
been rescaled by their size which instead has been included explicitly in the
output. A sample of the PDF can be inspected by plotting the third column
divided by the fourth against the first.
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Chapter 8

SOC Laboratory Experiments

Gunnar Pruessner

Abstract The experimental verification of Self-Organised Criticality (SOC),
or, as in the particular case, its falsification, stands at the very beginning of its
long history. Many laboratory experiments have been performed, in diverse
areas such as granular media, disordered systems, mechanical instabilities and
living systems, some of which have immediate links to observed natural phe-
nomena where SOC is widely studied as a model and explanatory framework,
such as earthquakes. In the following, after a brief discussion of experimen-
tal data analysis methods, a wide range of experiments are presented. Many
of them remain ambiguous in the outcome, but a number provide striking
evidence for SOC in nature.

8.1 Introduction

The ultimate authority of physical theories is the experiment. Soon after Self-
Organised Criticality (SOC) was proposed as an explanation of fractality in
nature, laboratory experiments were conducted to probe for its existence in
controlled environments.

There is a fine line between conducting an SOC experiment and analysing
observational data for the signature of SOC. Given that individual chapters in
this book are dedicated for the search for SOC in earthquakes, solar physics,
financial markets etc., the following sections focus on experimental setups
that can be manipulated and controlled by the experimenter.

One may argue that some experiments addressed questions that were not
addressed and not intended to be addressed by the original work by Bak et al.
(1987). One might even go as far as claiming that the Sandpile Model was
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not intended to be a model of sandpiles at all. Rather, it received that name
because some of its features resemble some of the physics one might imagine
to be relevant in the dynamics of real sandpiles. This point remains open to
interpretation and is better left to historians. It is clear, however, that a large
number of researchers expected the Sandpile Model, as well as others, such
as the Forest Fire Model (Bak et al. 1990, Henley 1989, Drossel and Schwabl
1992a) and the Olami-Feder-Christensen (Olami et al. 1992), to have some
immediate bearing on experiments.

The remainder of this section contains some general remarks of how to
identify SOC in experiments and observations (and how not to). This is then
followed by four sections about different areas of experimental physics and
biology, which have been proved to be a fruitful hunting ground for SOC
in nature. Much of this material is based on my earlier review (Pruessner
2012b), which in turn has drawn on a number of reviews, articles and theses
by other authors (Turcotte 1993, Carlson et al. 1994, Feder 1995, Malcai
et al. 1997, Turcotte 1999, Gisiger 2001, Dickman et al. 2000, Altshuler and
Johansen 2004, Kakalios 2005, Wijngaarden et al. 2006, Bonachela 2008).

8.1.1 Identifying SOC in experimental data

The numerical and experimental data analysis in the early days of SOC
is riddled with technical problems and misunderstandings. They are often
caused by assumptions being made at the stage of the data analysis, for ex-
ample when assuming that the normalisation of a probability density function
(PDF) should give rise to a scaling relation (even though it does not, Frette
et al. 1996, Christensen et al. 2008) or by analysing rescaled quantities (even
when that spoils the scaling, Planet et al. 2009, 2010, Pruessner 2010). This
may not come as a surprise given the effort experimenters have to make in
order to obtain the raw data. The methods to extract power laws from data
remain the subject of an ongoing debate (e.g., Clauset et al. 2009).

One of the most damaging problems within the SOC community is the
lack of an agreed definition of SOC. In the original spirit of Bak et al. (1987)
many theoreticians would probably agree that SOC systems

• relax intermittently, i.e. in avalanches. More specifically, in SOC sys-
tems the time scales of driving and relaxation are (normally not perfectly)
separated, with the external drive being very slow compared to the in-
ternal relaxation.
• display non-trivial scale invariance (as often indicated by power-law

distributions and correlations). Non-trivial scaling is normally due to the
presence of non-linearities, which in SOC are usually caused by the
dynamics being subject to thresholds.
• do not require tuning of some control parameter. Instead, the system

seems to tune itself to the critical point of a continuous phase transition.
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As a result, the only scaling parameter is the (necessarily finite) system
size, i.e. SOC systems display finite size scaling.

Ideally, SOC systems have associated with them a continuous phase transi-
tion, as originally envisaged. SOC systems are thus truly systems that organ-
ise themselves to a critical point without the need of external manipulation,
other than the separation of time scales which does not, however, provide an
independent scale like a critical temperature in traditional critical phenomena
(Stanley 1971).

Much of the confusion in the literature about SOC has been caused by the
usage of the term criticality. In their original work Bak et al. (1987) use it
to mean “scale invariance” as found in ordinary phase transitions and critical
phenomena. However, and very unfortunately, they also use it to denote the
local thresholds in the dynamics. That threshold being a maximum slope,
the notion of criticality as the system being globally close to the threshold,
in a state of maximum susceptibility, marginally stable (Diamond and Hahm
1995), standing at “edge of chaos” (Langton 1990), has become ingrained
in the literature. In fact, some authors (e.g., Phillips 2009) consider SOC
as a mechanism that optimises the response of the system by pushing to a
“tipping point”.

However, in general, the local degree of freedom in an SOC is not expected
to be particularly close to the threshold. SOC systems do not stand at the
edge of a precipice in that sense. However, they are (meant to be) critical in
the sense of a susceptibility (and thus response) divergent in the system size.
For example, in the Manna Model, which bears every feature of a critical,
scale-invariant system that self-organises to the critical point, a macroscopic
fraction of sites is fully relaxed. The system is not critical in the sense of
all sites being charged to just below the critical level. If the system is in
that stage, the response to an external perturbation is uncharacteristically
big and in fact not sustainable by repeated driving and relaxation. In fact,
neither correlation nor distribution functions would display broad, algebraic
behaviour and moments of event sizes would be trivial functions of the system
size.

An SOC system generally does not optimise or maximise anything be-
yond the quantities normally associated with singular behaviour at continu-
ous phase transitions. In particular, SOC systems are generally not particu-
larly “efficient” or “tolerant”. SOC should not be regarded as the framework
to satisfy the demand for such features, as often argued in the context of
evolution (“it’s SOC because it must evolve to an optimal state”).

As for the critical state and the continuous phase transition, as mentioned
above, it is often very difficult to identify it in the underlying process. Only
very few authors have managed to do so (Peters et al. 2002, Peters and Neelin
2006, Neelin et al. 2009).

Another feature that is commonly searched for in suspected SOC systems
is 1/f noise. While interesting in its own right, and famously studied for
very many years (van der Ziel 1950), it provided the initial motivation for
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SOC, but is no longer thought to be at the centre of interest. This is, firstly,
because SOC is concerned with long range spatio-temporal correlations which
are often much better captured in observables other than the power spectrum.
Secondly, a power law power spectrum is not necessarily indicative of power
law temporal correlations. Also, such time correlations are often regarded as
trivial — in non-equilibrium they are often found generically and thus for
rather simple reasons (Grinstein 1995). Finally, intermittent, avalanche-like
behaviour, clearly a distinctive feature of SOC systems, is not well captured
by 1/f noise.

It seems popular to assume that the presence of scaling (in the PDF,
a correlation function etc.) alone means that SOC is at work. Obviously
this is not the case, as demonstrated by the broad variety of traditional
critical phenomena. In fact, the initial claim was a different one, namely that
SOC might underpin virtually all spontaneous occurrence of scaling in nature
and, in turn, that slowly driven, intermittent, interaction dominated systems
(Jensen 1998) display scaling. This programme, however, has clearly and
undoubtedly failed, in computer experiments just as much as in laboratory
experiments. The observation of scaling in connection with a claim of its
cause being SOC does not amount to evidence in its favour.

Finally, it is worth stressing that self-organisation does not necessarily
amount to self-organised criticality. In the more recent literature those two
concept are sometimes regarded as the same.

8.1.2 Tools and features

To positively determine SOC, as characterised in the list above (Sec. 8.1.1,
p. 312), the system considered should display avalanching, non-trivial scale
invariance and no external tuning of a control parameter. The avalanching,
or, more generally, intermittent behaviour, should be due to a separation
of time scales between internal relaxation and external drive, which slowly
supplies the system with energy, particles or any other quantity which may be
conserved in the bulk but dissipated at the boundaries. This is a qualitative
features and fairly easy to determine, with the proviso that any time scale
separation is bound to be imperfect in any real-life system.

As for the absence of tuning, this is normally quite obvious and becomes
a problem in experiments only when a lot of tweaking, data-detrending and
general “clean-up” is necessary to extract the “desired” feature. Many exper-
imentalists rescale histograms so that Gaussian behaviour is easily identified,
namely by shifting the observable by its mean and rescaling by its standard
deviation. This, however, might obstruct the search for scaling (Pruessner
2010).

The non-trivial scaling is the most prominent feature in the data anal-
ysis of an SOC system: Non-trivial is to be understood in the non-technical
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sense of significant and not expected for obvious reasons, as well as in the tech-
nical sense where trivial scaling is found in the absence of interaction, for
example in Gaussian theories (Cardy 1997). It should be clear from the data
and the physics of the system under consideration that interaction between
constituent parts are important. It might even be obvious how thresholds
come into play.

As for the scaling to be identified in SOC systems, that refers to an alge-
braic, i.e.power law relation between observables. These power laws are
parameterised by exponents, which are expected to be universal. They are
therefore the prime candidates to be compared between different systems and
models, although many more universal quantities exist.

One reason why SOC is so fascinating is the emergence of effective
long-range interaction that arises from the presence of algebraic correla-
tions — the correlation functions in time and space are not governed by an
internal scale, as would be found in the form of a characteristic scale as it
enters the archetypal exponential. Rather, they are power laws of distance in
time and space, with the dimensional consistency being restored by metric
factors which are related to microscopic parameters like the resolution of the
measuring device. While correlation functions provide the immediate test for
emergent behaviour, they are often difficult to obtain and too noisy to be
analysed. The typical observable in an SOC study are therefore histograms,
which are estimates of the underlying probability density function (PDF).
The observables are usually some geometric features (in the widest sense) of
the avalanches, such as the avalanche size or extent, but also its duration.

Most experimental systems and numerical models are necessarily finite and
therefore the algebraic, scaling regime can only ever be approximate and in-
termediate (Barenblatt 1996), i.e. PDFs and correlation functions are cut off
sharply at some characteristic scale. Scaling is an asymptotic phenomenon.
Finite size scaling is thus, strictly, the only form of scaling in SOC. This
is because the system size is, supposedly, the only constraining feature in
SOC that keeps it away from the critical point (also Pruessner 2012a). Al-
though some experiments have been set up so that finite size scaling can be
implemented (Held et al. 1990, Frette et al. 1996), this is often not possi-
ble, in particular not when analysing observational data. In these cases, one
can introduce cutoffs that implement effectively a finite size through another
constraint (e.g., Peters and Neelin 2006) — while it is difficult to make the
system effectively bigger, it might be straight-forward to make it effectively
smaller. Another, very promising route is block scaling (e.g., Pruessner
2008).

Some authors are very strict about the number of decades an observables
needs to cover in order to allow for the extraction of a power law (e.g.,
Malcai et al. 1997, Avnir et al. 1998). Some expect at least two, better three
decades,1 which is, however, somewhat arbitrary as it depends strongly on

1 It is popular in the experimental literature to plot the logarithm of the data on
linear scales, rather than the original data on a logarithmic scale. This practice makes
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the control parameter. Plotting, for example, the PDF of the volume of the
avalanches may cover many more decades than plotting the same data for
the linear extent of avalanches. What matters is the statistics of the data
and what can be reliably inferred from it. If only a handful of data points
are present per decade (typically 5 to 10), then fitting a power law over little
more than one might be futile.

While some very precise methods for fitting power laws have been proposed
(Clauset et al. 2009), assuming

P(s) = as−τ (8.1)

for the PDF of the avalanche sizes and thus extracting the (avalanche size)
exponent τ is often inferior to other methods. If finite size scaling applies,
or block scaling for that matter, the PDF follows

P(s) = as−τG(s/sc) for s� s0 , (8.2)

with metric factor a and scaling function G. The upper cutoff sc is a
function (normally to leading order a power law itself) of the system size
in case of finite size scaling and of the constraint in case of block scaling.
Eq. (8.2) applies for s sufficiently large compared to the lower cutoff s0.
Because of the presence of the scaling function, Eq. (8.2) is difficult to fit
against (but see the discussion on data analysis in Chapter 7), in particular
if data is sparse. It might be much easier and much more reliable to perform a
moment analysis (De Menech et al. 1998), which uses the fact that Eq. (8.2)
implies that the nth moment of s, is a power law in sc,

〈sn〉 ' as1+n−τ
c gn (8.3)

with (leading order2) amplitude gn. Because gn in Eq. (8.3) and G in Eq. (8.2)
are a priori unknown, one cannot extract the exponent τ without varying sc.

The upper cutoff sc is normally itself a power-law (with corrections) in the
system size or any other constraint L,

sc ' bLD , (8.4)

with metric factor b and avalanche dimension D. Studying therefore the mo-
ments as a function of L will therefore produce another universal exponent.

It is striking that in the experimental literature finite size scaling is rarely
performed, even when it is at the very heart of SOC. Also, instead of study-
ing moments, most authors are content with the histogram, fitting it in some
essentially arbitrary region against a power law and thus extracting an esti-

it difficult to extract data for particular values and makes the scale ambiguous when
the basis of the logarithm is not stated explicitly.
2 As with all asymptotic behaviour, sub-leading terms are expected to enter, but are
omitted in the present discussion.
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Fig. 8.1: The three different experimental setups used by Jaeger
et al. (1989). The sand falling out of the open countainers was de-
tetected by the capacitor underneath. Reprinted figure with permission
from H. M. Jaeger, C.-h. Liu, and S. R. Nagel, Physical Review Let-
ters, 62, 40, 1989. Copyright (1989) by the American Physical Society.
http://link.aps.org/abstract/PRL/v62/p40

mate of the exponent τ . This is all the more regrettable as histograms often
come without estimates of their statistical errors. For large, rare events, they
can be very large which can, to some extent be controlled by binning of the
data (see Chapter 7).

8.2 Granular Media

Experiments on 1/f noise in granular media, as if in anticipation of SOC
decades later, go back to Schick and Verveen (1974). The first experiments to
be published in direct response to the original BTW Sandpile Paper was the
work by Jaeger et al. (1989), also known as the Chicago group. As shown
in Figure 8.1, their experiments were conducted with three different setups.
In each, a drum filled with a granular material (glass beads or aluminium-
oxide particles) was slowly tilted. As the tilt angle grows beyond the angle of
repose, avalanches are triggered and subsequently the granular material may
fall out of the drum into a capacitor which determines the volume of the spill
by changes in the capacitance. Similar experiments by the group were based
on “top loading”, whereby grains were slowly added at random to the open
surface.

The time series obtained in these early experiments did not display the
expected scale invariance. Rather, it displayed oscillatory behaviour as
is sometimes also observed in earthquake data (Schwartz and Coppersmith
1984).3 Jensen et al. (1989) argued that the experiment differed in a number
of aspects from the original model: Sand was added continuously in time and
space, i.e. time scales of driving and relaxation were not perfectly separated.
Also, as opposed to the original model, the avalanche size was not measured

3 The author would like to acknowledge S Hergarten for providing this reference.
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as the number of sites toppling (also known as the flip number, Kadanoff
et al. 1989), but as the number of particles falling off the rim, the drop
number.

Fig. 8.2: The slowly driven sandpile of Held et al. (1990) on the plate of a
balance. Avalanches that lead to sand spilling over the edge were detected as
a (sudden) decrease in weight, which stopped the feeding mechanism for a
suitable amount of time. Figure reprinted with permission from Cambridge
University Press and the author (Pruessner, Self-Organised Criticality, 2012,
Cambridge University Press; Fig 3.2, p. 55).

Held et al. (1990), also known as the IBM group responded to some
of this criticism by implementing a stricter separation of timescales in their
experiments on sandpiles on a balance and by considering, for the first
time, systematic finite size scaling. As can be seen in their experimental setup,
Figure 8.2, avalanche sizes were again measured by their drop number, namely
by recording the weight of the sandpile as a function of time. A feedback loop
allowed the slow sprinkling of the grains to stop whenever an avalanche was
running.

The results supported the SOC paradigm to large extent, as the data
showed much clearer scaling of the power spectrum of the signal, as well
as finite size scaling. However, in sufficiently large systems, the oscillatory
behaviour reported earlier was also observed. One may therefore argue that
the physics on the large scale is in fact different from that operating on
smaller scales (Rosendahl et al. 1993).

While the experimental results were encouraging, they also suggested that
the expected ubiquity and thus the ease with which SOC should be found in
natural and experimental system was an illusion. The slight publication bias
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towards what may be perceived as successful experiments (but see for exam-
ple Jaeger et al. 1989, Zieve et al. 1996, Nowak et al. 1997, Kirchner and Weil
1998) blurs the picture further. Experimentalists had to go to great length to
find the desired scaling bahviour, controling, for example, the environmental
humidity to avoid unintended cohesion (Nagel 1992, Jaeger and Nagel 1992,
Albert et al. 1997). Around the same time, however, Evesque (1991) raised
inertia as a problem (also Grinstein 1995, Jensen 1998, Dickman et al. 2000).
In principle, inertia “works both ways”, namely by preventing movement as
well as sustaining it. However, the thresholds believed to dominate avalanch-
ing in sandpiles, such as static friction and steric constraints, are not directly
linked to a minimal velocity. Inertia is therefore expected to be much more
important when the momentum of oncoming grains helps them to overcome
a force threshold. In the light of this competition of inertia and thresholds,
one may thus expect cohesion to be a desirable feature.

Bretz et al. (1992) introduced two important experimental improvements:
Firstly they fixed a layer of sand to the bottom of the tilting box to suppress
the unintended instability caused by the reduced friction between sand and
container material, a phenomenon studied further for example by Altshuler
et al. (2001) and Costello et al. (2003). Secondly Bretz et al. (1992) measured
the flip number of the avalanches by means of a CCD camera (used slightly
differently by Jánosi and Horváth 1989). This method was later also employed
for example by Frette et al. (1996) and Aegerter et al. (2003).

Grumbacher et al. (1993) were still using the drop number but improved
Held et al.’s (1990) experimental setup by changing the external driving to
guarantee that only one bead is delivered by the feeding mechanism at a time.
They reported a high degree of universality across different materials, system
sizes and covering of the pile’s base plate (also Vandewalle et al. 1999).

The famous ricepile experiment by Frette et al. (1996), Figure 8.3, was
concerned with granular material with shape anisotropy, as rice grains were
dropped, one by one, in the narrow slit between two sheets of PerspexR©. In
this experiment, again a CCD camera was used to determine the avalanche
size in terms of potential energy release. Its resolution also determined the
maximum size of the experiment. Although the feeding was slow, it was
turned on permanently. The scaling was found to vary with the type of rice
used, which was attributed to a difference in surface structure. The ricepile
experiment triggered the development of the rice pile model (Christensen
et al. 1996), now more widely known as the Oslo Model. The original ex-
periment was extended to three dimensions by Aegerter et al. (also Aegerter
et al. 2004a 2004a), producing a data collapse with exponents, however, that
do not match those from theoretical models.

Observational data of avalanches in granular media have been analysed
for a signature of SOC as well. Notably, the early study by Noever (1993)
on snow avalanches suggests the absence of SOC, even though the data is
remarkably smooth and broadly distributed (across twelve orders of mag-
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Fig. 8.3: The setup of the ricepile experiment by Frette et al. (1996). Two
piles (a very large one on the left and a smaller one within the same ar-
rangement towards the right) appear in the narrow slit created by two sheets
of PerspexR©. Photograph courtesy of V. Frette, K. Christensen, A. Malthe-
Sørenssen, J. Feder, T. Jøssang and P. Meakin.

nitude). A later study by Faillettaz et al. (2004) supports scaling over two
orders of magnitude.

There are a number of reviews of scaling in granular media. Early exper-
imental work was discussed in the review by Feder (1995), concluding that
there is little support for SOC. The well-known review by Turcotte (1999)
contains a section on granular media, in particular on landslides, as do other
more broadly themed reviews, such as the one by Dickman et al. (2000) or
the relevant chapter by Grinstein (1995) and Bonachela (2008). The reviews
by Jaeger et al. (1996) and more recently Kakalios (2005) address the physics
of granular media in broader terms.

8.3 Systems with internal disorder

Avalanching behaviour in type II superconductors was compared very
early to sand piles (de Gennes 1966). In these systems, flux lines penetrating
the material from the outside are pinned at defects. Because of the repul-
sion between flux vortices, a defect has an effective carrying capacity. At the
Bean critical state (Bean 1962), almost all defects are nearly filled com-
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Fig. 8.4: The superconducting SOC experiment by Field et al. (1995).
A coil in the centre of a (thin) tube of superconducting material
registered the change of flux as flux lines arrived there after pass-
ing through the superconductor. Reprinted figure with permission from
S. Field, J. Witt, F. Nori, and X. Ling, Physical Review Letters,
74, 1206, 1995. Copyright (1995) by the American Physical Society.
http://link.aps.org/abstract/PRL/v74/p1206

pletely with flux lines. Further flux lines entering might therefore trigger an
avalanche. This phenomenon is sometimes studied from the point of view
of interface propagation in random media (Frette 1993, Fisher 1998, Sethna
et al. 2001). It is closely related to Barkhausen noise discussed below.

The experiments on superconductor avalanches normally use a pickup coil
wound around a superconducting specimen which is then exposed to an in-
creasing or decreasing external field, which, for energetic purposes, either
forces flux lines to enter or to leave the specimen. The change in flux is
picked up by the coil, Figure 8.4.

Pla and Nori (1991) were the first to analyse computer models of super-
conductivity from an SOC perspective, while Ling et al. (1991) were the first
to apply it to experimentally obtained current-voltage data, identifying an
avalanche-like dynamics and thus confirming the validity of the approach.
Wang and Shi (1993) clarified that depending on the strength of th exter-
nal drive, flux line motion is initially thermally activated before entering an
avalanching regime. The experimental setup was further improved by Field
et al. (1995) who placed the pickup coil at the centre of a tube made of
the superconducting material, Figure 8.4. Measuring the flux lines arriving
there amounts to measuring the drop number. There are various experimen-
tal problems, in particular when flux lines move through the material without
significant interaction with the defects or when they intersect the pickup coil
only partially.

Zieve et al. (1996) were the first to use a Hall probe inside the supercon-
ductor, finding no indication of scale invariance in the event statistics. Pla
et al. (1996) qualified this finding by pointing out that depending on the
size and the distribution of pinning centres some materials seem to be more
suitable to display SOC-like behaviour than others (also ??).4 The negative
finding of Zieve et al. (1996) was confirmed by Nowak et al. (1997) who, in

4 The author would like to thank Franco Nori for bringing these references to his
attention.
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addition, found that there was little evidence for avalanching at all in the su-
perconductor. However, the data obtained by Aegerter (1998) using a SQUID
(superconducting quantum interference device) displays a broad distribution
which seems to be governed by a power law, although only on a narrow range.

Further experimental improvements were made by Behnia et al. (2000)
using an 8× 8 array of Hall probes, which for the first time gave them access
to the flip number, i.e. the usual measure of the avalanche size in SOC (also
Jensen et al. 1989). Depending on the temperature range, their findings were
compatible with a power-law distribution of events. At low temperatures,
avalanches became “catastrophic” moving thousands of flux lines simultane-
ously.

In 2004 a number of authors published results based on magneto-optical
imaging (Vlasko-Vlasov et al. 2004, Altshuler et al. 2004, Aegerter et al.
2004b), all of which confirmed a form of scaling, however with strongly vary-
ing exponents. While this might be a matter of material, i.e. its physical and
chemical composition, and observable, it challenges the assumption of univer-
sality, namely that the scaling found in superconductors is merely controlled
by its basic microdynamics. However, it is clear that this more recent work on
superconductors is one of the best evidence of SOC in experimental systems
(reviewed by Altshuler and Johansen 2004, Wijngaarden et al. 2006), on a
par with granular materials and the observational evidence in rain (Peters
et al. 2002) and earthquakes (Bak et al. 2002, Hergarten 2002).

The Barkhausen (1919) effect is another large hunting ground for SOC.
It is found in the magnetisation of a ferromagnetic material as it is exposed
to a slowly changing external field. Because domains have to re-arrange in-
ternally with the changing field, the pinning and depinning of their walls
causes sudden changes in the magnetisation as do topological changes due
to merging and sudden appearance and disappearance of domains. The result-
ing sudden changes in magnetisation are picked up by a coil wound around
the sample. Barkhausen noise has a long-standing history, with the distribu-
tion of the magnetisation jumps probably first measured by Stierstadt and
Boeckh (1965). As early as 1990 Babcock and Westervelt (also Babcock and
Westervelt 1989, Babcock et al. 1990, Che and Suhl 1990) studied the sudden
topological changes in the domain structure using magneto-optical imaging
techniques. They found a broad avalanche size distribution which was com-
patible with a power law. Topological avalanching is generally different from
avalanching due to pinning and depinning (Bak and Flyvbjerg 1992, Urbach
et al. 1995).

Geoffroy and Porteseil (1991a,b, 1994) analysed the power-spectrum of
the magnetisation signal, finding 1/f -noise, strong correlations and further
evidence for scaling. Cote and Meisel (1991) confirmed these results, finding
even signs for universality. One might therefore be tempted to conclude that
Barkhausen noise is a prime example of SOC. This view, however, has been
challenged (O’Brien and Weissman 1994, Urbach et al. 1995) on the basis of
the experimental setup as well as on the basis of the theoretical reasoning
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(Alessandro et al. 1990, Hardner et al. 1993). One widely accept interpreta-
tion is that put forward by Perković et al. (1995, also Dahmen and Sethna
1993, Sethna et al. 1993, Dahmen et al. 1994, Dahmen and Sethna 1996, Car-
rillo et al. 1998), namely that a Barkhausen system might simply be close
to a critical point and therefore display scale invariance over many orders
of magnitude without having to self-tune exactly to the critical point. These
authors studied Barkhausen noise in the context of the random field Ising
Model.

Many experiments on dry friction and stick-slip motion (Heslot et al.
1994, for the physics) also belong to the class of systems with internal dis-
order. The first experiment of this kind was performed by Feder and Feder
(1991a) who analysed the stick-slip motion of a piece of sandpaper pulled
across a carpet in the light of the Burridge-Knopoff Model (Burridge and
Knopoff 1967, Olami et al. 1992). Earlier experimental work in this context
has been (briefly) reviewed by Tullis and Weeks (1986). Feder and Feder
(1991a) found the scaling behaviour confirmed over about two orders of mag-
nitude. Ciliberto and Laroche (1994) created a macroscopically rough surface
using steel balls embedded in rubber. Again, approximate scaling was found
at sufficiently low (driving) speeds. Experiments by ? on sheared media (with
tuning ?) in a process resembling slow loading of a geological fault, displayed
scaling over about one and a half decades. Vallette and Gollub (1993) and
Johansen et al. (1993) performed friction experiments on materials with dis-
order on a microscopic scale. While the former were not able to confirm power
law behviour, the latter found scaling at sufficiently slow driving speeds, com-
patible with the separation of time scales necessary in SOC. In more recent
experiments, Buldyrev et al. (2006) found scaling across almost two orders
of magnitude in experiments involving friction of two metal surfaces.

Disorder is also expected to dominate the behaviour often observed of
droplets forming and subsequently running across a glass pane (Fisher 1998).
Jánosi and Horváth (1989) were the first to analyse such a system in the light
of SOC, using an electronic camera and image processing software. They
found scale invariance in the power spectrum of the coverage of the pane.
Focusing on the ensuing avalanches, Plourde et al. (1993) used a similar setup
of water droplets forming under in a PerspexR© dome. They measured the
amount of water arriving at the rim, i.e. the drop number, and found scaling
governed by exponents which were apparently dependent on the temperature.

8.4 Mechanical instabilities: Fracture and rapture

A number of experiments are concerned with the acoustic properties of
cracking material. These experiments clearly are to be seen in the context of
earthquake models, although cracking is very different from model systems of
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interconnected blocks and springs because it is irreversible and the material
is destroyed during the course of the experiment.

The literature is somewhat divided as to the extent to which the present
phenomena can justifiably be labelled self-organised critical. Two main ob-
jections are generally mounted: Firstly, the requirement of slow ramping of
forces, i.e. tuning, and associated with that, the eventual destruction of the
material. This argument has also been made in the context of computer
models. Given, however, that infinitely slow drive does not provide a finite
scale, one might argue that a separation of time scales does not consti-
tute a form of tuning of a control parameter. The second objection (terminal
destruction) raised, concerns the self-organisation of the material. Provided
the material remains intact, cracking and fracturing stops as soon as it sup-
ports the imposed stress (or otherwise when it fails completely). Similar to
invasion percolation (Wilkinson and Willemsen 1983) this feature might be
regarded as a form of extremal dynamics (Miller et al. 1993, Cafiero et al.
1995, Paczuski et al. 1996), which is sometimes itself considered a form of
SOC. Further discussions can be found in the theoretical work by Zapperi
et al. (1997) and Sornette and Andersen (1998). A review with a broader
theoretical scope has been published by Sethna (2007), but to large extent
those about internal disorder (Frette 1993, Fisher 1998, Sethna et al. 2001)
also apply in the present context.

One of the first cracking observations was undertaken by Diodati et al.
(1991) who studied the ultrasonic acoustic emisions found in volcanic rock
below the earth surface in Stromboli (Italy). Stresses are caused by volcanic
tremors and explosions and result in ultrasonic sound waves emitted by the
surrounding volcanic rock. Typical scaling regions identified in the distribu-
tion of event sizes stretch over about one order of magnitude or less.

Cannelli et al. (1993) performed a laboratory experiment investigating a
somewhat similar phenomenon in hydrogen precipitation in niobium. Micro-
scopic cracks occur as hydrogen solved in the metal changes its chemical
composition by forming a hydride as temperatures are slowly lowered. Mi-
croscopic cracks occur due to the strain and the resulting stress caused by
difference in density of neighbouring domains. Clean power law behaviour of
the event size distribution was observed across about two decades.

The ultrasonic sound emitted by cracking plaster under unaxial stress
was analysed by Petri et al. (1994), who extended their study to the time
autocorrelation function of the acoustic signal. Scaling was identified not only
in the histograms (with exponents apparently depending on the samples and
the experimental conditions) but also in the correlation function, although,
unsurprisingly, being somewhat noisier. Remarkably, the authors find that
the exponents extracted display universality and compare well for example
to those found by Diodati et al. (1991) and Cannelli et al. (1993).

In their experiment on single crystals of ice, Weiss and Grasso (1997)
studied the acoustic emission of a cylindrical ice crystal subject to uniaxial
stress as well as torsion (shear). Although statistics for large events is sparse,
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the scaling found covers around three orders of magnitude for uniaxial stress.
As opposed to fracturing experiments, the structural changes in ice are due
to creep rather than cracks (see also the plastic instabilities discussed by ?).
The authors extracted the same exponents for different levels of stress.

Garcimart́ın et al. (1997) identified a scaling region over more than two
decades in the acoustic energy emission of cracking plaster, wood and fibre-
glass prior to breakup over a period of about 2 hours. They argued that the
need to slowly increase the pressure in the material (rather than the strain)
might well be responsible for the occurrence of power laws and thus were re-
luctant to label the phenomenon self-organised critical (Guarino et al. 1998).
However, the material straining to a level to support the imposed pressure
might be seen precisely as a process of self-organisation.

Maes et al. (1998) analysed their fracturing experiments on cellular glass
(a type of foamy glass) along these lines, pointing out in particular that a sep-
aration of time scales between driving (over about 100 hours) and relaxation
takes place. Clean power law behaviour was found, with exponents robust
against a change of the time window considered.

A very different experiment, but one that attracted a lot of attention, is
the one on paper crumpling by Houle and Sethna (1996). Again, the acoustic
signal was analysed, displaying approximate scaling over about three orders of
magnitude in the event size distribution, with no evidence for a systematic de-
pendence on experimental parameters (paper size and method of crumpling).
Around the same time, similar experiments had been performed on MylarR©

by Kramer and Lobkovsky (1996) who found significant wear of the material
and scaling of the event size histogram with an exponent around 1, clearly less
than the result by Houle and Sethna (1996). Kramer and Lobkovsky (1996)
also studied the energy autocorrelation function, which displays some noisy
long-time scaling behaviour. One may argue that the experiments on paper
should feature in the section on systems with internal disorder, Sec. 8.3, but
this is more difficult to uphold in case of the crumpling of Mylar. Experiments
on paper tearing performed by Salminen et al. (2002) also found scaling (with
an exponent depending on the strain rate), but seems to have avoided the
discussion in relation to SOC altogether.

8.5 Biological systems

The difference between laboratory experiments and analysis of observational
data is probably most blurred in the case of biological systems, which are
normally too complex to be controlled and tempered with, let alone built
from scratch, yet might be studied on a laboratory bench. Chialvo and Bak
(1999) promoted the idea that some brain function (learning, plasticity) can
be explained by features that are typical for systems displaying SOC. A
number of researchers have addressed the open questions in experiments.
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At least three extensive reviews are available on the subject area (Stanley
et al. 1996, Brown and West 2000, Gisiger 2001), which focus on scaling and
scale invariance in living systems, yet not on SOC. Evidence for power-law
correlations “in the brain” has been collated by Chialvo (2004) and more
recently by Chialvo et al. (2008).

The first vast area to mention in the present context is that of neural
networks (Tononi and Edelman 1998). Starting with the theoretical overview
Hopfield (1994), the first to study neural networks from the point of view
of SOC were Corral et al. (1995), Chen et al. (1995) and Herz and Hopfield
(1995). Although some authors discussed self-similarity and scaling in neural
systems (Teich et al. 1997, Lowen et al. 1997, Toib et al. 1998) the first test
for SOC in experimental data was done by Papa and da Silva (1997) based
on the results by Gattass and Desimone (1996), who studied the activity of
cortex neurons of macaques. Worrell et al. (2002) used data obtained from
human brains to make the case for SOC in an epileptic brain and Bédard
et al. (2006) developed a model of brain platicity on the basis of SOC.

Probably because of the original work by Bak et al. (1987), Linkenkaer-
Hansen et al. (2001) used 1/f noise as an indicator for the presence of SOC
(as found earlier by Teich et al. 1997). This view was later criticised by Bédard
et al. (2006, also Mazzoni et al. 2007).

Segev et al. (2002) were the first to study spatiotemporal patterns in neu-
ronal networks, however not with an SOC perspective, even when many of
the histograms found display scaling over up to two orders of magnitude.
The phrase of “neural avalanches” (possible inspired by the “earthquakes in
the brain” as of Papa and da Silva 1997) was coined in the much-celebrated
work by Beggs and Plenz (2003), who considered the critical state as one
with optimal information transmission and processing (Beggs 2008).

Rather than studying the physiological properties of the brain, some re-
searchers focused on the behavioural, psychological side. Van Orden et al.
(2003) identified SOC in human cognition, again on the basis of 1/f noise.
The experimental basis was a reaction-time task (the time series being the
sequence of 1100 reaction times to an event) and a word-naming task (series
of 1100 pronounciations, i.e. namings, of randomly chosen four- or five-letter
words appearing on a screen). Although the data is bound to be noisy and
sparse, there is indication of scaling. The analysis and its conclusion was
heavily criticised by Wagenmakers et al. (2005, response: Van Orden et al.
2005), who also tested the data against a range of standard statistical models.

In particular in biology, while evidence for scaling exists it does not always
seem possible to identify the functional role of avalanches or, more specifically,
SOC (Mazzoni et al. 2007). At least two studies use SOC at most as a point
of view rather than an explanatory framework. In fact, Tsumiyama et al.
(2009) seem to use the term to mean “maximum sustainable level before
breakdown”. Similarly, Phillips (2009) refers to it as a maximisation principle
in an analysis of protein properties (Feder et al. 1984, Jossang et al. 1985,
Moret and Zebende 2007).
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On the other hand, it is clear that much of the data obtained in experi-
ments on living systems does not lend itself naturally to an extensive analysis,
probing for critical behaviour and finite size scaling as described in the in-
troduction (p. 315). For example, the extensive data analysis performed by
Moret and Zebende (2007) on amino acids does not go much beyond a decade.
One may wonder whether a concept like SOC can be at work in a system
where it cannot be probed for, not even in principle.
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Perković, O., K. Dahmen, and J. P. Sethna, 1995, Phys. Rev. Lett. 75(24), 4528.
Peters, O., C. Hertlein, and K. Christensen, 2002, Phys. Rev. Lett. 88(1), 018701

(pages 4).
Peters, O., and J. D. Neelin, 2006, Nat. Phys. 2(6), 393.
Petri, A., G. Paparo, A. Vespignani, A. Alippi, and M. Costantini, 1994, Phys. Rev.

Lett. 73(25), 3423.
Phillips, J. C., 2009, Phys. Rev. E 80, 051916.
Pla, O., and F. Nori, 1991, Phys. Rev. Lett. 67(7), 919.
Pla, O., N. K. Wilkin, and H. J. Jensen, 1996, Europhys. Lett. 33(4), 297.
Planet, R., S. Santucci, and J. Ort́ın, 2009, Phys. Rev. Lett. 102(9), 094502 (pages 4),

comment (Pruessner 2010).
Planet, R., S. Santucci, and J. Ort́ın, 2010, Phys. Rev. Lett. 105(2), 029402 (pages 1),

reply to comment (Pruessner 2010).
Plourde, B., F. Nori, and M. Bretz, 1993, Phys. Rev. Lett. 71(17), 2749.
Pruessner, G., 2008, New J. Phys. 10(11), 113003 (pages 13).
Pruessner, G., 2010, Phys. Rev. Lett. 105(2), 029401 (pages 1), comment on (Planet

et al. 2009), reply (Planet et al. 2010).
Pruessner, G., 2012a, The average avalanche size in the manna model and other

models of self-organised criticality, arXiv:1208.2069.



8 SOC Laboratory Experiments 331

Pruessner, G., 2012b, Self-Organised Criticality (Cambridge University Press, Cam-
bridge, UK).
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Chapter 9

Self-Organizing Complex Earthquakes:
Scaling in Data, Models, and Forecasting

Michael K. Sachs, John B. Rundle, James R. Holliday, Joseph Gran, Mark
Yoder, Donald L. Turcotte and William Graves

Abstract In many natural and social systems, observations of the frequency-
size distributions of events can be approximated by power-law (scaling or
fractal) distributions. An important question is whether the probability of ex-
treme events can be estimated by extrapolating the power-law distributions,
or whether the largest events occur more frequently than the power-law ex-
trapolation would predict. In this paper we consider specifically earthquake
systems, and discuss both the data supporting these ideas, as well as simple
models. Extrapolations using power-laws are widely used in probabilistic haz-
ard assessment. As a result, the existence of events not falling on the scaling
line will be misrepresented by these simple models. We also discuss earth-

Michael K. Sachs
Department of Physics, University of California, Davis, CA e-mail: mksachs@ucdavis.
edu

John B. Rundle
Department of Physics, University of California, Davis, CA e-mail: jbrundle@

ucdavis.edu

James R. Holliday
Department of Physics, University of California, Davis, CA e-mail: jrholliday@

ucdavis.edu

Joseph Gran
Department of Physics, University of California, Davis, CA e-mail: jdgran@ucdavis.
edu

Mark Yoder
Department of Physics, University of California, Davis, CA e-mail: mryoder@ucdavis.
edu

Donald L. Turcotte
Department of Geology, University of California, Davis, CA e-mail: dlturcotte@

ucdavis.edu

William Graves
Open Hazards Group, Davis, CA e-mail: graveswr@gmail.com

Self-Organized Criticality Systems - Dr.Markus J. Aschwanden (Ed.)
Copyright c©Open Academic Press, www.openacademicpress.de



334 Michael K. Sachs et al.

quake forecast models that arise from scaling ideas, specifically the Natural
Time Weibull (NTW) model. This idea is based on the premise that the scal-
ing distribution is eventually filled in by smaller events following a previous
large event. We illustrate these results by direct application to California and
Japan.

9.1 Introduction

Extreme events are large fluctuations that occur suddenly against a back-
ground of smaller events. Details of the nature of such events have been
discussed recently in Sachs et al. (2012). The statistics of extreme events
have been studied extensively (Kinnison 1985). Applications include floods,
wars, financial crashes, and many others. Extreme events that change global
society were characterized as black swans by Taleb (2007). The frequency-
size distributions associated with many natural hazards satisfy power-law
(fractal) statistics to a good approximation (Turcotte 1997). They have also
been cited as examples of Self-Organized Criticality (SOC). Examples in-
clude earthquakes, landslides, volcanic eruptions, and wildfires. In the finan-
cial markets, the largest events correspond to financial crashes of markets,
currency valuations, and bankruptcy of the largest corporations or financial
institutions (Mantegna & Stanley 2000, Sornette 2004). In this paper, we are
interested not so much in the scaling behavior itself, but in the departures
from pure scaling or SOC.

Forecasting future events generally relies on pattern matching to previ-
ous histories of events. An important question in probabilistic hazard assess-
ment is whether future extreme events can be forecast by extrapolating the
power-law behavior, and whether the largest outliers recur in some kind of
predictable fashion.

In some cases small events satisfy power-law scaling but one or more ex-
treme events are significantly larger than the extrapolation of the power-law
scaling. Sornette (2009) refers to this class of extreme events as dragon kings,
but they may be more commonly known as nucleation events, or first order
phase transitions. Examples might be the population of London and Paris
relative to the power-law distribution of the population of the other cities
in the U.K. and France. Another example is material fracture. When stress
on a brittle material is increased there is often a power-law distribution of
acoustic emissions before an unstable fracture propagates through the sample
(Guarino et al. 1998). The precursory emissions are a nucleation process and
the fracture can be classified as a phase change (Alava et al. 2006).

We will address the question: Are these off-scaling events relevant to prob-
abilistic hazard assessment, or are they inherently unpredictable? Our dis-
cussion will emphasize seismic hazard and to a lesser extent, financial hazard.
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On relatively large geographic scales the frequency-rupture-area statistics
of earthquakes are well represented by power-law statistics even for the largest
events. However, this behavior does not seem to be the case locally. On major
faults, such as the San Andreas in California, seismic activity is dominated by
great earthquakes, like the 1906 San Francisco earthquake. These are known
as “characteristic” earthquakes. As a specific example we will consider a
characteristic earthquake cycle on the Parkfield segment of the San Andreas
fault. We will then consider in some detail the use of slider-block models to
represent seismicity.

In the financial area, the tail of the distribution of market moves in the
Standard and Poors 500 index is represented by a power-law. The distribution
itself is known to be leptokurtotic (Mantegna & Stanley 2000), meaning that
the central part of the statistical distribution of price moves is higher than
the corresponding Gaussian distribution, but the tails are fatter. Some of
the largest moves, such as the famous market crash of October 19, 1987, are
outliers on the general trend of power-law scaling (Sornette 2004). They are
therefore candidates for nucleation, or dragon king events.

9.2 Earthquakes

The frequency-magnitude statistics of earthquakes have been recognized to
satisfy log-linear scaling both globally and regionally. It is widely accepted
that earthquakes satisfy the Gutenberg-Richter (GR) scaling relation (Guten-
berg & Richter 1954):

logN = a− bm, (9.1)

where N is the cumulative number of earthquakes in a region and time inter-
val with magnitudes greater than m. The scaling relation given in equation
(9.1) has been shown to be equivalent to a power-law scaling between N and
Ar, the earthquake rupture area (Turcotte 1997):

N ∼ A−br . (9.2)

Thus earthquakes satisfy power-law scaling. Great earthquakes will be nucle-
ation events or “characteristic earthquakes” if their magnitude significantly
exceed the extrapolated scaling relation given in equation (9.1).

In this section we will consider global seismicity. Because of the many
problems associated with the magnitudes of large earthquakes, the preferred
approach to global seismicity is to use the Global Central Moment Ten-
sor catalog (www.globalcmt.org) Dziewoński et al. (1981), Ekström et al.
(2005). We utilize this catalog for the period January 1, 1977 to September
30, 2010. In order to update our results through August 15, 2011 we use mo-
ment magnitudes given in the ANSS catalog (www.ncedc.org/cnss/). Using



336 Michael K. Sachs et al.

these catalogs the cumulative number of global earthquakes with magnitudes
greater than for the period 1977 to August 15, 2011 is given in Figure 9.1.
The roll over for small magnitudes mw ≤ 5.25 is attributed to the sensitivity
limit of the global network used to obtain moment magnitudes mw Engdahl
et al. (1998). The roll over for mw ≥ 7.5 is more controversial (Rundle 1989,
Sornette et al. 1996). It is usually attributed to the transition from small
earthquakes with near equal lengths and depths to large earthquakes with
lengths much larger than depths.

Fig. 9.1: Cumulative number of global earthquakes with magnitude greater
than mw are given as a function of moment magnitudes mw. Observed values
for the period January 1, 1977 to September 30, 2010 are obtained from the
global CMT catalog, values for the period October 1, 2010 to August 15, 2011
are obtained from the ANSS catalog. The least-squares best fit of equation
(9.1) to the values in the range 5.5 ≤ mw ≤ 7.5 is given taking a = 9.643 and
b = 0.996. Also included are the 2004 mw = 9.1 Sumatra earthquake and the
2011 mw = 9.1 Tohoku earthquake.



9 Self-Organizing Complex Earthquakes 337

Included in Figure 9.1 is the least squares fit of equation (9.1) to the data
taking a = 9.643 and b = 0.996. The fit is carried out between m = 5.5 and
7.5 and includes some 30,000 earthquakes. Also included in Figure 9.1 are
the mw = 9.1 Sumatra earthquake on December 26, 2004 and the mw = 9.1
Tohoku (Japan) earthquake on March 11, 2011. These were the largest earth-
quakes during the study period. The tsunami generated by the Sumatra
earthquake killed some 230,000 people. The earthquake and tsunami gen-
erated by the Tohuko earthquake killed some 22,000 people. In addition the
tsunami resulted in a nuclear meltdown at the Fukushima power plant (Hi-
rose 2012). This meltdown created serious economic disruption in Japan and
threatens to curtail the global use of nuclear power plants to reduce the emis-
sion of greenhouse gasses. The size and impact of the Sumatra and Tohoku
earthquakes clearly qualify them as black swans. However, since they lie be-
low the extrapolation of the power-law scaling they would not be considered
nucleation events or characteristic earthquakes on a global scale. We will ar-
gue in the next section that earthquakes do exhibit characteristic behavior
on a regional scale.

9.3 Characteristic Earthquakes

There are two limiting hypotheses for the behavior of faults. In the first, each
fault (or fault segment) has a sequence of earthquakes that rupture the entire
fault (or fault segment). The global GR (power-law, fractal) distribution of
earthquakes illustrated in Figure 9.1 is attributed to a power-law (fractal)
distribution of fault areas. Each fault has an earthquake with rupture area
equal to the area of the fault. In seismology these are known as “character-
istic” earthquakes. The other limiting hypothesis is that every fault has a
GR distribution of earthquake magnitudes. The global GR scaling is the sum
of the GR scaling on individual faults. The actual behavior of the earth lies
between these two limits (Wesnousky 1994).

Ideally, observations would discriminate between the two limiting hypothe-
ses. However, it is impossible to attribute smaller earthquakes to specific
faults because only the largest faults can be mapped and identified. Also,
location errors of smaller earthquakes make their association with each other
and individual faults very difficult. The generally accepted view in seismol-
ogy is that smaller earthquakes on a fault obey power-law (GR) scaling but a
large fraction of the deformation on the fault is associated with large quasi-
periodic “characteristic” earthquakes. Thus these large characteristic earth-
quakes satisfy the condition to be fault-wide nucleation events. Wesnousky
(1994) has given data to support the generally accepted view that a working
definition of characteristic earthquakes is that they are large earthquakes on
plate-boundary faults. As examples we consider two major plate-boundary
faults: 1) The San Andreas fault in California is a major boundary fault be-
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tween the Pacific and North American plates and 2) the subduction zone
fault (unnamed) above the Pacific plate as it is being subducted beneath
Japan.

A comprehensive study of characteristic earthquakes has been carried out
on the southern section of the San Andreas fault. Paleoseismic studies us-
ing radiocarbon dating of fluidized sediments at the Wrightwood site (Biasi
et al. 2002) date characteristic earthquakes at (in years CE): 534 (407-628),
634 (551-681), 697 (657-722), 722 (695-740), 781 (736-811), 850 (800-881),
1016 (957-1056), 1116 (1047-1181), 1263 (1191-1305), 1487 (1448-1518), 1536
(1508-1569), 1685 (1647-1717), 1812 (historic), 1857 (historic). The ranges of
values are the 95% confidence intervals on the radiocarbon dates. The 1857
earthquake was an historic earthquake that ruptured some 400km of the
fault from central California to the Los Angeles area. No seismic recordings
were available at the time of this earthquake but measurements of surface
displacements indicate a magnitude m ' 8.2. In the past 75 years no earth-
quake with m > 5.5 has occurred on this fault segment. If GR scaling were
valid for this fault, there should be approximately 500 m > 5.5 earthquakes
for each m = 8.2 earthquake. These cannot all be in the form of aftershocks,
because Bath’s law (Scholz & Anderson 2002) implies that the largest af-
tershock should be approximately m ' 7. For this largest aftershock, GR
scaling then implies that there should be approximately 10 m > 6 after-
shocks, approximately 100 m > 5 aftershocks, and so on. Even accounting
for aftershocks of aftershocks, it is unlikely that the aftershock sequence will
have 500 m > 5.5 events.

Seismologists generally accept that the sequence of paleo-earthquakes
listed above are characteristic earthquakes (Scholz & Anderson 2002, Wes-
nousky 1994). Similarly the 1906 earthquake that destroyed San Francisco
is generally accepted to be a characteristic earthquake on the northern San
Andreas fault. However, paleoseismic sites are not available on the rupture
zone of this earthquake.

Similar paleoseismic studies have dated characteristic earthquakes on the
southern Nankai Trough segment of the subduction zone beneath Japan.
Characteristic earthquakes occurred in 684, 887, 1099, 1361, 1605, 1707, 1854,
and 1946. The dates for these earthquakes were obtained using a variety
of historic and other records (Ando 1975). The Tohoku earthquake was a
characteristic earthquake on the northern section of this fault and is similar
to the San Francisco earthquake in that paleoseismic data are not available
(Wesnousky 1994).

The best documented sequence of characteristic earthquakes occurred on
the Parkfield segment of the San Andreas fault in California. Evidence sug-
gests that earthquakes with m ' 6 occurred in 1857, 1881, 1901, 1922, 1934,
1966, and 2004 (Bakun et al. 2005). Based on seismograms the 1922, 1934,
1966, and 2004 events were remarkably similar in magnitude. The Parkfield
earthquakes are globally unique in that they are a sequence of relatively small
plate-boundary “characteristic” earthquakes. Thus they occur frequently and
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a complete “characteristic” earthquake cycle can be studied. In order to study
the seismicity associated with the 2004 “characteristic” earthquake we con-
sider earthquakes during the period 1972 (five years after the m = 6.0, June,
1966 earthquake) to 2009 (five years after the m = 5.95, 28 September, 2004
earthquake). To isolate seismicity associated with the characteristic Parkfield
earthquake we confine our study to the region where aftershocks of the 2004
earthquake were concentrated (Shcherbakov et al. 2006).

The region is elliptical, centered at 35.9◦N and -120.5◦W with semi-major
and semi-minor axes of 0.4◦ and 0.15◦ respectively, oriented at 137◦NW. Both
the aftershocks and the elliptical region are shown in Figure 9.2. It is stan-
dard practice to associate the aftershock regions with correlated seismicity to
study a characteristic earthquake (Hofmann 1996, Ishibe & Shimazaki 2009,
Wesnousky 1994). Another advantage of the Parkfield region is the localiza-
tion of the correlated seismicity. This region clearly excludes the aftershocks
of the m = 6.5 (2004) San Simean earthquake (lower left hand corner in Fig-
ure 9.2 and the aftershocks of the m = 6.5 (1983) Coalinga earthquake (just
above the red elliptical area).

Parkfield is the site of the highest quality local seismic network in the
world (Bakun et al. 2005). This network was constructed by the U.S. Ge-
ological Survey in the 1980’s in the expectation that the next characteris-
tic earthquake would occur. In our analysis we have used the catalog pro-
vided by the Northern California Earthquake Data Center (NCSN catalog,
http://quake.geo.berkeley.edu/ncedc/) .

The cumulative frequency-magnitude distribution of earthquakes in the
Parkfield aftershock region for the period 1972 to 2009 is given in Figure
9.3. The best-fit scaling to this distribution is given by equation (9.1) with
a = 5.65 and b = 1. This is the least-squares best fit to the data in the range
2.5 ≤ m ≤ 4.5. Over this range there are some 3,000 data points. The roll
over for m ≤ 2.5 is attributed to a lack of sensitivity of the network for small
magnitudes (Shcherbakov et al. 2006). The roll over for m ≥ 4.5 is attributed
to the relatively small number of earthquakes: N ∼ 10 (Shcherbakov et al.
2006).

If this scaling was applicable to the characteristic earthquake (N = 1)
it’s magnitude would have been m = 5.65. The m = 5.95 Parkfield main
shock clearly lies above the extrapolation of the power-law correlation of
the smaller earthquakes. An important question is whether the difference
between m = 5.65 and m = 5.95 can be attributed to the statistical variabil-
ity of the characteristic earthquakes. Excellent seismic records are available
for the 1934, 1966, and 2004 characteristic earthquakes. The magnitudes are
m = 6.0 ± 0.1. In addition the seismic records of the 1934 and 1966 earth-
quakes are essentially identical indicating near identical points of rupture
initiation and propagation pattern. The 2004 earthquake has a somewhat
different rupture pattern but the rupture zone is considered to very nearly
identical to the earlier earthquakes. The evidence is that these are truly char-
acteristic earthquakes that rupture the same specified segment of the San
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Fig. 9.2: Seismicity in central California for the period 28 September, 1999
to 28 September 2009. The aftershocks of the 18 September, 2004 Parkfield
earthquake are shown in the red elliptical area. Aftershocks of the 2004 San
Simean earthquake and residual aftershocks of the 1983 Coalinga earthquake
are clearly seen to the south-west and north-east of the study region.

Andreas fault. The possibility that one of these characteristic earthquakes
could have had a magnitude as low as 5.65 is excluded by the available data.
Thus we conclude that the sequence of characteristic earthquakes of the Park-
field segment are dragon kings. Although the ∆m = 0.3 difference between
the 2004 Parkfield event and what one would expect from extrapolating the
scaling relation in equation may not seem large, it represents about a factor
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Fig. 9.3: Cumulative number of earthquakes with magnitude greater than
m as a function of m for the Parkfield earthquake cycle 1972 to 2009. The
best-fit scaling from equation (9.1) is also shown. The m = 5.65 Parkfield
earthquake is shown as an outlier, sometimes called a “Dragon King”.

of three difference in energies which does set it above the extrapolated GR
background.

For reasons stated above the Parkfield characteristic earthquake cycle is
the only such cycle that can be studied in detail using a high quality earth-
quake catalog. However, based on the absence of earthquakes adjacent to
other segments of the San Andreas fault and other faults where characteris-
tic earthquakes occur, we conclude that characteristic earthquakes are dragon
kings with respect to the correlated seismicity (including aftershocks). The
background seismicity satisfies power-law Gutenberg-Richter statistics but
the characteristic earthquakes lie above the extrapolation as shown in Figure
9.3.
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9.4 Models of Earthquakes

The multiple slider-block model has been proposed as a deterministic example
of self-organized critical behavior (Carlson & Langer 1989). This model had
previously been proposed as a simple model of earthquake behavior (Burridge
& Knopoff 1967). Utilizing the multiple slider-block simulations of Abaimov
et al. (2008) we will demonstrate characteristic earthquake behavior. A linear
chain of 100 slider blocks was pulled over a surface at a constant velocity by
a loader plate as illustrated in Figure 9.4. Each block is connected to the
loader plate by a spring with spring constant kL and adjacent blocks are
connected to each other by springs with spring constant kC . An important
parameter in the problem is the ratio of spring constants α = kC/kL. This is
a measure of the stiffness of the system. The blocks interact with the surface
through a static-dynamic friction law. With the static coefficient of friction
larger than the dynamic (sliding) coefficient of friction, stick-slip behavior is
observed. The size of a slip event is given by the number of blocks L that
slip simultaneously in the event. The stiffness α acts as a tuning parameter
in this problem.

We consider a linear chain of 100 slider blocks of mass m pulled over a surface at a

constant velocity VL by a loader plate as illustrated in Figure 7. Each block is connected

to the loader plate by a spring with spring constant kL. Adjacent blocks are connected to

each other by springs with spring constant kC.
The blocks interact with the surface through a static-dynamic friction law. The static

stability of each slider-block is given by

kLyi þ kC 2yi " yi"1 " yiþ1ð Þ\FSi; ð6Þ

where FSi is the maximum static friction force on block i, and yi is the position of block i
relative to the loader plate.

When the cumulative force from the springs connected to block i exceeds the

maximum static friction FSi, the block begins to slide. The dynamic slip of block i is
controlled by the equation
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Cumulative distribution of recurrence intervals (in time steps) between model fires. The continuous line is the

distribution of simulated recurrence times. The discontinuous line is the best-fit Weibull distribution (l = 7385,

r = 2908, CV = 0.394, s = 8300, and b = 2.74).
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Figure 7
Illustration of the one-dimensional slider-block model. A linear array of N blocks of mass m are pulled along a

surface by a constant velocity VL loader plate. The loader plate is connected to each block with a loader spring

with spring constant kL and adjacent blocks are connected by springs with spring constant kC. The frictional

resisting forces are F1, F2, .... , FN .
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Fig. 9.4: Illustration of the one-dimensional slider-block model. A linear array
of N blocks of mass m are pulled along a surface by a constant velocity VL
loader plate. The loader plate is connected to each block with a loader spring
with spring constant kL and adjacent blocks are connected by springs with
spring constant kC . The frictional resisting forces are F1, F2, ..., FN .

For soft systems (α small) only small slip events occur, there is an expo-
nential decay for larger slip events. As α is increased system wide (L = 100)
events begin to occur. The frequency-size distribution of the slip events for a
stiff system (α = 1000) is given in Figure 9.5. Statistics for 10,000 events are
given and about 1,500 are system wide (L = 100) events. The small events
are well approximated by the power-law relation equation (9.1).



9 Self-Organizing Complex Earthquakes 343

the Olami-Feder-Christensen cellular automaton model. SANCHEZ et al. (2002) found that
the interoccurrence time statistics for the sandpile model satisfy Poissonian statistics.

We next give results for a sti!system witha = 1000. The motion organizes itsel" nto
the recurrence of system-wide (100 block) events separated by sets of small size events.
Frequency-size statistics for 10,000 events are given in Figure 10. Again the smaller
events are well approximated by a power-law relation with exponent -2.12. In this case
there are about 1500 system-wide (100 block) events. We consider that these are
equivalent to characteristic earthquakes. We next consider the recurrence time statistics
for these events. The cumulative distribution of these recurrence times is given in
Figure 11. Also included in this "gure is the best log likelihood (- 1779.) "t of the Weibull
distribution (4) to these data obtained by takings = 0.206 ± 0.002 andb = 2.60 ± 0.05.
There is excellent agreement between the data and the Weibull distribution.

9. Discussion

A variety of self-organizing complex systems have been shown to exhibit power-law
frequency-magnitude scaling of ‘‘avalanche’’ sizes (TURCOTTE , 1999a,b). Examples
include ‘‘sandpile’’ models, forest-"re models, and slider-block models as well as natural
phenomena such as landslides, wild "res, and earthquakes. This behavior appears to be
‘‘universal’’ under a wide range of conditions.

The question addressed in this paper is whether the Weibull recurrence time scaling
also has universality, particularly with regard to earthquakes. The Weibull distribution is
unique in that it has a scale invariant hazard function. The hazard functionh(t0) is the pdf
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Figure 10
Frequency-size distribution of 10,000 slip events for a ‘‘sti!’’ system witha=1000. The ratio of the number
of eventsNL of event size L to the total number of eventsNT is given as a function ofL . The solid line is a

power-law dependence with exponent- 2.12.
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Fig. 9.5: Frequency-size density function of 10,000 slip events for a “stiff”
system with α = kC/kL = 1000. The ratio of the number of events NL of
event size L to the total number of events NT is given as a function of L.
The solid line is a power-law dependence with exponent −(b + 1) = −2.12.
System-wide (L = 100) characteristic or “Dragon-King” events are clearly
evident.

9.5 Forecasting

Earthquake forecasting is of considerable importance for public safety, and to
set earthquake insurance rates (Field 2007a). Recently a series of earthquake
forecasts were solicited for a truly prospective forecast evaluation exercise
in California (Field 2007b, Lee et al. 2011). This Relative Earthquake Likeli-
hood Model (RELM) exercise led to the submission of nine complete forecasts
by six participants for the testing region (primarily California). Participants
submitted expected probabilities of occurrence of m ≥ 4.95 earthquakes in
0.1◦ × 0.1◦ cells for the period 1 January 1, 2006, to December 31, 2010.
Probabilities were submitted for 7,682 cells in California and adjacent re-
gions. During this period, 31 m ≥ 4.95 earthquakes occurred in the test
region. These earthquakes occurred in 22 test cells. The seismic activity was
dominated by earthquakes associated with the m = 7.2, April 4, 2010, El
Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred
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Fig. 9.6: Map of the California-Nevada region showing the epicenters of all
ml ≥ 6 earthquakes that have occurred in the region from January 1, 1980
through July 17, 2012. Data were obtained from the ANSS catalog.

in the test region, and 16 of the other 30 earthquakes in the test region could
be associated with it.

All of these forecasts relied on the Gutenberg-Richter scaling relation to
partition the earthquakes into magnitude levels or “bins”, and to adjust the
projected rates of occurrence of the m ≥ 4.95 events. The basic idea for most
of the forecasts was to project the rate of small earthquakes, which occur
at a reasonably steady rate through time, to compute the rate of the large
(m ≥ 4.95) earthquakes.
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Fig. 9.7: Optimized timeseries for earthquake probabilities in the California-
Nevada region. Top: Chance of an earthquake having magnitude ml ≥ 6
during the next 12 months as a function of time. Bottom: Magnitudes of
all events in the region as a function of time. Blue dots and vertical dashed
lines are earthquakes in the region having ml ≥ 6. “X” represents current
12-month probability of ∼56%.

Lee et al. (2011) evaluated the success of the forecasts by means of a
test rewarding forecasts for the most accurate locations of the prospective
earthquakes. Most of the forecasts were successful in that the great majority
of the 31 earthquakes occurred in the highest probability areas. There were
several “rogue” earthquakes that occurred in low probability areas, but these
were very much the exception.

While this exercise in forecasting the locations of future earthquakes shows
considerable promise, less progress has been made on forecasting the time of
the next large earthquake in a region. Typically, the assumption is made
that earthquakes occur randomly in time and should therefore be described
by Poisson statistics. This leads to a probability (Yates & Goodman 2005)
for the recurrence of an event during the next time interval ∆t:

P (t) = 1− e−ν∆t, (9.3)

where ν is the long term Poisson rate of the earthquakes, and ∆t is a fixed
future time interval. One of the primary justifications for this assumption
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Fig. 9.8: Reliability (scatterplot) diagram for earthquake probabilities cor-
responding to the timeseries shown in Figure 9.7. In the figure, there are 7
bins having forecast probability, and these are plotted against observed fre-
quencies. A perfectly reliable forecast would have zero reliability error, and
the blue dots would lie along the black dashed line having slope = 1. The
red dashed line is the no skill line, and the large red dot is the “climatology
point”, or average forecast. Inset: The fraction of samples in each of the 20
forecast bins of 0% to 5%, 5% to 10%, ..., 95% to 100%.

originates in a study by Gardner & Knopoff (1974), in which they removed
increasing numbers of “foreshocks” and “aftershocks” from the earthquake
catalog until the remaining “main shocks” could be described by a Poisson
statistics. Other more recent studies assert that earthquakes should be de-
scribed by negative binomial statistics (Schorlemmer et al. 2010). It should be
recalled that Poisson statistics are meant to describe random events that are
IID and uncorrelated such as nuclear decay, assumptions that may be ques-
tionable for earthquakes. The existence of aftershocks (e.g., Scholz (1990))
implies that earthquake correlations exist, while observations of progressively
propagating mainshocks along the Anatolian fault suggest that major earth-
quakes are not independent (Stein et al. 1997).

As a result, we are motivated to turn to a new type of forecast, the Natural
Time Weibull (NTW) model (Rundle et al. 2012). This model is based on the
idea that over any period of time, the distribution of earthquake sizes should
most likely be the observed Gutenberg-Richter distribution (equation (9.1)).
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Fig. 9.9: Temporal Receiver Operating Characteristic diagram for the forecast
of Figure 9.7. The solid blue line is the ROC diagram for January 1, 1980
through July 17, 2012.

For example, suppose that the large earthquake of interest has magnitude
ml ≥ 6, and our catalog completeness level is ms ≥ 3. Further, suppose
that the b-value in the GR relation is the typical value b = 1. Then for each
ml ≥ 6 earthquake we expect 1000 ms ≥ 3 earthquakes. Using equation (9.1),
we can compute the number of small earthquakes for every large earthquake
Nls = 10b(ml−ms). Another way of making the same statement is that the
natural time scale for the occurrence of large earthquakes is not, in fact, the
number of round trips of the earth around the sun (calendar time), but is
instead the number of small earthquakes that occur between the occurrence
of the large earthquakes. This can be construed as a natural time scale, or
alternatively a stress-release time scale. It depends only on the observed fat-
tailed statistics of the process, rather than an approximation by the Poisson
law.

The NTW method is then based on the idea of counting the number of
small earthquakes since the last large earthquake. Once 1000 ms ≥ 3 earth-
quakes have occurred, it is likely that another ml ≥ 6 earthquake is due to
occur soon. To transform this idea into a probability, we use the Weibull
probability law, which is often used in engineering calculations of hazard and



348 Michael K. Sachs et al.

reliability. In the time domain, the Weibull failure law is usually stated as
(Evans et al. 2000):

P (t) = 1− e−( tθ )
β

. (9.4)

Here t is the time to failure of the test element, θ is a time scale, and β is a
constant.

Recalling the previous discussion, we apply the Weibull law (9.4) in the
natural time, or event count domain. In addition, we note that earthquakes
are a repetitive sequence of events. So we wish to compute the probability
of observing the next large event, say ml ≥ 6 conditioned on the observation
that n smaller events having 3 ≤ ms ≤ 6 since the last large event. In the
natural time domain, this requirement leads to the equation:

P (∆n|n) = 1− e−γ
((

n+∆n
Nls

)β
−
(

n
Nls

)β)
. (9.5)

Here P (∆n|n) is the conditional probability that a large earthquake ml ≥ 6
will occur after a number ∆n of subsequent small earthquakes 3 ≤ ms ≤ 6
have occurred, given that n small earthquakes have previously occurred since
the last large earthquake.

Equation (9.5) does not depend explicitly on time, or on future (calendar)
time ∆t. To map this probability back to the dual (calendar) time domain,
we make the reasonable assumption that for a small time interval ∆t:

∆n ' νs∆t, (9.6)

where νs is the Poisson rate of small events computed from having magnitude
3 ≤ ms ≤ 6. Using (9.6) in (9.5), we can estimate the conditional probability
in the dual, time domain:

P (∆t|t) = 1− e−γ
(
(n(t)+νs∆t

N )
β
−(n(t)

N )
β
)
. (9.7)

Here γ, β are constants.
We now address the question of how to determine the optimal values of γ,

β. We first rewrite equation (9.7) as:

P (∆t|t) = 1− e−HR(t,∆t), (9.8)

where HR(t) is the hazard rate (Evans et al. 2000). HR(t,∆t) is a function of
time t since the number of small earthquakes since the last large earthquake
is a function of time, n = n(t).

We next use the principle that the NTW probability represents a fluctua-
tion around the long-term Poisson rate. Thus we require that:

〈HR(t,∆t)〉T = νs∆t. (9.9)
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Here 〈...〉T is the time average over a long (multi-decadal) time scale T con-
sidered to be much longer than the ml ≥ 6 recurrence interval τ :

〈x(t)〉T =

∫ t=0

t=−T
x(t′)dt′, (9.10)

t = 0 is assumed to be the present.
Using (9.9) and (9.10) together with (9.7) and (9.8), we find that:

γ =
νs∆t〈(

n(t)+νs∆t
N

)β
−
(
n(t)
N

)β〉
T

. (9.11)

Since νs and N are assumed to be known, ∆t is a chosen time interval,
and n = n(t) is known from past data, γ can be determined once β is known.

To determine β, we optimize the probability using standard methods for
data assimilation via backtesting with prior data. A considerable literature
has accumulated in the weather and financial communities relating to forecast
validation (Jolliffe & Stephenson 2011). Of particular interest are Reliabil-
ity/Attributes (R/A) tests (Hsu & Murphy 1986, Murphy & Daan 1985),
and Receiver Operating Characteristic (ROC) tests (Green & Swets 1966,
Kharin & Zwiers 2003, Mason 1982, Murphy & Winkler 1987). The R/A test
is essentially a scatter plot, in which the frequency of observed large events is
plotted against the computed large event probabilities. The ROC test plots
successful forecasts (H = “hit rate”) against false alarms (F =“false alarm
rate”). In the R/A test, reliability is computed by a weighted measure known
as the Briar Skill Score (BSS), and is displayed as a scatter plot of observed
frequency versus forecast probability (Hsu & Murphy 1986). In the R/A test,
the BSS can be decomposed into a set of terms that represent respectively
the Reliability, Sample Skill and the Resolution, which are all measures of
forecast quality.

While these tests are most often used to evaluate forecasts following the
forecast events, they can also be used to assimilate data into the forecast
model, thereby optimizing the forecast during backtesting. It is this applica-
tion that is employed to determine the value γ, β. Details are described in
Rundle et al. (2012), but the basic idea is the following.

Using a grid search method, we pick a value of β, then solve (9.11) for
γ. We then compute the R/A scatter plot and the ROC plot. Balancing the
attributes of reliability, resolution and skill, we repeat the process many times
to find an optimal value of β, and from that value, we compute γ via equation
(9.11). Our basic result is that, for a broad range of regions, we find a typical
optimal value of β = 1.4. Figures 9.7 - 9.9, 9.11 - 9.13 are computed using
this value of β.

There are several ways to estimate uncertainty in the computation of reli-
ability, skill and resolution. The method we use is the bootstrap method, in
which large earthquake times are sampled with replacement (Rundle et al.
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2011). Estimates of reliability or other parameters are computed for suites
of models having the optimal parameters, and the envelope of uncertainty is
computed. Details are described in Rundle et al. (2011).

Fig. 9.10: Map of the Japan region showing the epicenters of all m ≥ 7.25
earthquakes shallower than 40 km depth that have occurred in the region
from January 1, 1980 through July 17, 2012. Data were obtained from the
ANSS catalog.
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In a similar way, we compute a forecast in the Japan region over the period
January 1, 1980 - July 17, 2012. This forecast is for ml ≥ 7.5 over 4 years
(48 months), in the region between latitudes 28◦ and 42◦ north, and between
longitudes 127◦ and 146◦ degrees east. For the Japan calculations, we use
ms ≥ 4.25, a maximum depth of 40 km (shallow events), and again use a
time step of 0.01 year. The map of large events is shown in Figure 9.10, the
forecast is shown in Figure 9.11, and the R/A and ROC curves are shown
in Figures 9.12 and 9.13. In the Japan figures, the R/A and ROC curve use
data only through 06:25:50.30 GMT on March 11, 2011, the date of the great
m = 9.1 Tohoku, Japan earthquake. Again, the portion of the forecast in
Figure 9.11 would be counted as a false alarm by the R/A and ROC methods
if we were to use that data in calculations, so again the forecast since March
11, 2011 represents an actual forecast of future activity.

Fig. 9.11: Optimized timeseries for earthquake probabilities in Japan. Top:
Chance of an earthquake having magnitude m ≥ 7.25 during the next 48
months as a function of time. Bottom: Magnitudes of all events in the region
as a function of time. Blue dots and vertical dashed lines are earthquakes in
the region having m ≥ 7.25. “X” represents current 48-month probability of
∼83%.
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Fig. 9.12: Reliability (scatterplot) diagram for earthquake probabilities cor-
responding to the timeseries shown in Figure 9.11. In the figure, there are
12 bins having forecast probability, and these are plotted against observed
frequencies. A perfectly reliable forecast would have zero reliability error, and
the blue dots would lie along the black dashed line having slope = 1. The
red dashed line is the no skill line, and the large red dot is the “climatology
point”, or average forecast. Inset: The fraction of samples in each of the 20
forecast bins of 0% to 5%, 5% to 10%, ..., 95% to 100%.

9.6 Results

Applying these ideas to earthquakes in California, we use data from the area
between latitudes 29◦ and 42◦ north, and between longitudes -127◦ and -
113◦ degrees west. We consider the time interval from January 1, 1980 until
present (July 17, 2012), using data from the ANSS catalog with a catalog
completeness level of magnitude ms ≥ 3.5. For data analysis and plotting
purposes, we use a time step equal to 0.01 year, about 3.65 days. Larger
earthquakes closer together in time than this value will not appear indepen-
dently in the time series plots, although they are treated as separate events
in the verification analyses. Examples include the June 28, 1992 Landers-Big
Bear events (m = 7.3, m = 6.5, 3 hours apart), and the November 23-24,
1987 Elmore Ranch-Superstition Hills events (m = 6.2, m = 6.6, 12.3 hours
apart).
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Fig. 9.13: Temporal Receiver Operating Characteristic diagram for the fore-
cast of Figure 9.11. The solid blue line is the ROC diagram for January 1,
1980 through July 17, 2012.

To make practical calculations, we first compute the Poisson rate of small
earthquakes νs(m ≥ 3.5) in the defined region. Figure 9.6 shows a map of
the region, and Figure 9.7 shows the optimal forecast as a function of time in
years over the period January 1, 1980 - July 17, 2012. Figure 9.8 is a plot of
the Reliability Diagram, and Figure 9.9 is a plot of the Receiver Operating
Characteristic. Details are given in Rundle et al. (2012, 2011).

For the backtesting process, we use data only up until 22:40:41.77 GMT
on April 4, 2010, the time and date of the m = 7.2 El Mayor-Cucapah (Baja)
earthquake. The reason is that any forecast arising from any of the data from
April 4 until present would automatically be counted as false alarm, since
by definition, no earthquake with ml ≥ 6 has occurred since April 4, 2010.
Therefore, any forecast after April 4, 2010, for example in Figure 9.7, can
be considered as an actual future forecast for ml ≥ 6 earthquakes within the
California-Nevada study area.

In a similar way, we compute a forecast in the Japan region over the period
January 1, 1980 - July 17, 2012. This forecast is for ml ≥ 7.5 over 4 years
(48 months), in the region between latitudes 28◦ and 42◦ north, and between
longitudes 127◦ and 146◦ degrees east. For the Japan calculations, we use
ms ≥ 4.25, a maximum depth of 40 km (shallow events), and again use a
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time step of 0.01 year. The map of large events is shown in Figure 9.10, the
forecast is shown in Figure 9.11, and the R/A and ROC curves are shown
in Figures 9.12 and 9.13. In the Japan figures, the R/A and ROC curve use
data only through 06:25:50.30 GMT on March 11, 2011, the date of the great
m = 9.1 Tohoku, Japan earthquake. Again, the portion of the forecast in
Figure 9.11 would be counted as a false alarm by the R/A and ROC methods
if we were to use that data in calculations, so again the forecast since March
11, 2011 represents an actual forecast of future activity.

9.7 Summary

We have discussed the role of scaling and self-organization in both earth-
quake data and earthquake models. We have also discussed the problem of
earthquake forecasting, and show that forecasts can be developed based on
the idea of “filling in” a fat-tailed (scaling) distribution. We then show that
earthquake forecasts can be computed, with validation and verification based
on standard methods in the literature.

As of this writing (July 17, 2012), it can be seen from Figures 9.7 and 9.11
that significant large earthquake activity is expected in the relatively near
future in both California-Nevada (ml ≥ 6, ∆t ≤ 1 year from 2012/7/17) and
Japan (ml ≥ 7.25, ∆t ≤ 4 years from 2012/7/17).
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Chapter 10

Wildfires and the Forest-Fire Model

Stefan Hergarten

The Drossel-Schwabl forest-fire model (Drossel and Schwabl 1992), often re-
ferred to as the forest-fire model, is one of the three most widely studied
models in the context of SOC. Remarkably, it is in principle identical to
a self-organized percolation model proposed some years earlier by Henley
(1989). Beyond this, it is an impressive example of modeling real-world phe-
nomena since its relevance to nature was discovered several years after the
model was proposed. In contrast, the first and most widespread model of
SOC, the Bak-Tang-Wiesenfeld model (Bak et al 1987, 1988), is often enti-
tled sandpile model, and the model results were compared with real sandpiles
and ricepiles (Frette et al 1996), but its relationship to sandpile dynamics is
still vague (Hergarten 2002). So the Bak-Tang-Wiesenfeld model is still some
kind of paradigm of a self-organized critical system, but it is more an abstract
representation of general avalanching phenomena than a model for any real-
world phenomenon. In contrast, the third of the tree most widespread models
of SOC, the Olami-Feder-Christensen model (Olami et al 1992) aimed at ex-
plaining known scale-invariant properties of earthquakes from the beginning.
The forest-fire model was believed to be too much oversimplified to capture
any important properties of wildfire dynamics until Malamud et al (1998)
put real wildfires into the context of SOC using wildfire size distributions
from different regions. Although the model is indeed too simple to describe
wildfire dynamics in detail, there is growing evidence that it even captures
more properties of wildfires than just the size distribution (Zinck and Grimm
2008). Furthermore, differences between natural and human-induced forest
fires have been reproduced correctly (Krenn and Hergarten 2009). However,
its acceptance in the scientific community of fire ecology is still not very high.
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10.1 The Forest-Fire Model

The Drossel-Schwabl forest-fire model is a stochastic cellular automaton
model that is usually considered on a two-dimensional square lattice with
L× L sites and periodic boundary conditions.

The forest-fire model published by Bak et al (1990) may be seen as the
ancestor of the Drossel-Schwabl forest-fire model. In this model, each site can
be either empty or occupied by a tree which may be green or burning. In each
step, the lattice is updated according to the following rules:

1. A green tree catches fire if any of its four nearest neighbors is burning.
2. A burning tree turns into an empty site.
3. At each empty site, a green tree grows with a given probability p.

These rules are applied simultaneously to all sites.
The results presented in the original paper pointed towards SOC. At least

under certain conditions, the model evolves towards a quasi-steady state
where the number of burning trees in each step is power-law distributed.
However, it was soon recognized that this model suffers from some problems.
In principle, it does not simulate sequences of fires, but only one fire which
extends over the whole simulation and is kept alive by the regrowth of trees.
Apart from the problem that the fire might die, this behavior is not very re-
alistic with respect to forest fires in reality. Further simulations (Grassberger
and Kantz 1991, Moßner et al 1992) revealed that this forest-fire model is not
SOC, but exhibits a mainly regular behavior with spiral-shaped fire fronts.

Drossel and Schwabl (1992) fixed the shortcoming that there is just one
fire by introducing a spontaneous ignition of green trees as it takes place in
reality by lightning or by human impact by adding the following rule:

4. A green tree becomes a burning tree with a probability f even if none of
its neighbors is burning.

In addition, they introduced a separation of time scales. In analogy to real
forest fires, burning down a cluster of trees takes place much more rapidly
than raising new trees. Therefore, it is assumed that growth and spontaneous
ignition stop as long as any trees are burning. Formally, this separation of
time scales can be achieved by performing the limit p→ 0 and f → 0, while
the ratio θ = p

f is kept constant. In a computer model, the separation of time
scales can be realized by burning down the entire cluster of trees connected to
a tree that has been ignited within one model step. This leads to a modified
set of rules for updating the lattice in each step:

1. Each tree is ignited with a probability f . The cluster of trees connected
to an ignited tree is burnt down immediately, i.e., the corresponding sites
become empty.

2. At each empty site, a green tree grows with a probability p.
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As a consequence of the separation of time scales, only two states are required
instead of three, there is no need to consider burning sites explicitly. Thus,
the model can be implemented with a storage requirement of only one bit per
site, which is the minimum storage requirement for a model where each site
has at least one degree of freedom. This allows larger lattices than all other
models in the field of SOC.

This version of the model suggested by Drossel and Schwabl (1992) is
essentially the same as the self-organized percolation model published by
Henley (1989) three years before. Maybe the detour to the version of Bak
et al (1990) was necessary to put this model into the wider context of SOC,
so that the model is today mostly associated with the names Drossel and
Schwabl instead of Henley.

The two rules given above come quite close to the simplest ideas on the
propagation of forest fires in reality, but the numerical realization is cumber-
some. In each step, all sites must be checked for either the growth of a new
tree or for ignition. Therefore, the numerical effort per step is proportional
to the total number of sites, even if not any site is finally ignited. Therefore,
a further modification was suggested (Grassberger 1993, Clar et al 1994) in
order to make the model feasible on large grids. Based on the easily recog-
nized property that θ = p

f attempts to plant new trees are made between two
ignition events in the mean, it is assumed that exactly θ attempts are made
until a spark is thrown. So the model rules turn into what is usually referred
to as the forest-fire model:

1. A randomly chosen site is ignited. If it is occupied by a tree, this tree and
all trees connected by nearest-neighbor relations to it are immediately
burnt down.

2. A total of θ new trees is randomly placed on the grid. If a site is already
occupied by a tree, the new tree is ignored.

Unfortunately, the use of the symbol θ is not unique in the literature. Several
authors (e.g., Grassberger 1993, 2002, Pastor-Satorras and Vespignani 2000,
Krenn and Hergarten 2009, Hergarten and Krenn 2011) use it as it is defined
above and several authors retain p

f or f
p (e.g., Drossel and Schwabl 1992,

Christensen et al 1993, Clar et al 1994, Schenk et al 2002). On the other
hand, some authors introduce θ just the other way round, θ = f

p (Vespignani

and Zapperi 1998, Pruessner and Jensen 2002, 2004), so that their parameter
θ is the inverse of θ defined above.

10.2 Numerical and Theoretical Results

In the last 20 years, considerable effort has been spent to understand the
behavior of the forest-fire model.
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It was, of course, immediately recognized that the forest-fire model self-
organizes towards a quasi-steady state with roughly power-law distributed
events up to a cutoff size that depends on the growth rate θ. In this state,
the mean tree density ρ, i.e., the number of occupied sites divided by the
total number of sites, is about 0.41.

The dependence of the large-size cutoff on θ can be easily understood by
balancing the number of trees destroyed by fires with the number of growing
trees in equilibrium. Since trying to plant a tree at a site that is already
occupied has no effect, (1− ρ)θ new trees grow in each step. If s is the mean
fire size, the mean number of trees destroyed per model step is ρs, so that
equilibrium requires

s =
1− ρ
ρ

θ ≈ 1.44θ. (10.1)

Thus, criticality can only be expected in the limit θ →∞. As the total size of
the lattice should be much larger than the largest fires, this requires L→∞,
too. But since the model only requires one bit per site, large lattices are not
such a problem here.

In contrast to, e.g., the Bak-Tang-Wiesenfeld model, the forest-fire model
generates quite patchy spatial patterns consisting of regions with different
tree densities. Figure 10.1 provides an example. On a qualitative level, this
behavior can be easily understood. A large fire clears an area almost com-
pletely, while very few small patches of trees survive. Thus, the tree density
is almost zero in a region just burnt down. During regrowth of such an area,
large fires are unlikely since they require large clusters of trees and thus a
high tree density. As the trees are randomly distributed in the domain, the
probability of large fires remains low until the density approaches the thresh-
old of site percolation for the square lattice (e.g., Stauffer and Aharony 1994),
ρp = 0.59275 (Newman and Ziff 2000). Thus, the density oscillates more or
less periodically like a saw-tooth function between almost zero and ρp even
on large scales. As a result, Fig. 10.1 shows large areas which were recently
burnt as well as large areas of high density which are prone to large fires in
future.

However, quantitative understanding of this behavior is still poor. The
mean density ρ has been addressed in several numerical studies, resulting
in an extrapolation ρ → 0.4084 ± 0.0005 for θ → ∞ (Pastor-Satorras and
Vespignani 2000). But there is still no theory how the mean density relates
to the temporal variability in the density on all scales up to the largest
events, and whether it is just a coincidence that the mean density is close to
the density of the empty sites in site percolation, i.e., 1− ρp (Pruessner and
Jensen 2002). So it seems that even better estimates of ρ may be of limited
value, and furthermore it seems to be unlikely that the exact value of ρ has
any relevance to modeling real-world phenomena.

The scaling exponent τ of the event-size distribution

f(s) ∝ s−τ (10.2)
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Fig. 10.1: A snapshot from a simulation of the forest-fire model with θ = 1024
on a 1024× 1024 lattice.

is, of course, the most important property of a self-organized critical system.
Apart from the theoretical interest, it is also the most manifest property to be
compared with real-world data. Drossel and Schwabl (1992) suggested τ = 1
first, but this was soon refuted and replaced with estimates τ ∈ [1.14, 1.16]
(Christensen et al 1993, Grassberger 1993, Henley 1993, Clar et al 1994, Ho-
necker and Peschel 1997). It may be surprising that the variability in the
estimates of τ increased in the following years. Pastor-Satorras and Vespig-
nani (2000) obtained τ = 1.08 by analyzing the moments of the distribution
instead of the slope in a double-logarithmic plot. Schenk et al (2002) even sug-
gested τ = 1.43, but this value was partially based on theoretical arguments
which were refuted. Hergarten (2002) obtained τ = 1.23, and the presumably
most widely accepted value is τ = 1.19 (Grassberger 2002, Pruessner and
Jensen 2002, 2004, Hergarten and Krenn 2011).

Figure 10.2 illustrates why it is difficult to give a reliable estimate of τ
in the limit θ → ∞. The breakdown of the power law at large event sizes
is accompanied by an excess of fires within a certain range of sizes, visible
as a bump in the distribution. This bump becomes even relatively larger
if θ increases, leading Grassberger (2002) to the conclusion that the forest-
fire model violates the simple scaling behavior found, e.g., in the Bak-Tang-
Wiesenfeld model. Grassberger (2002) found a different scaling exponent τ =
1.11 if an envelope of the curves including the bump is considered instead of
the apparently straight part left of the bump, so that the question may be
raised whether it makes sense to define a scaling exponent τ at all for the
forest-fire model (Pruessner and Jensen 2004).

In the childhood of the forest-fire model in the 1990s, numerical facil-
ities were far from being able to address these questions adequately. For
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Fig. 10.2: Non-cumulative frequency density of the fires in the forest-fire
model for different growth rates θ (Hergarten and Krenn 2011). The dashed
line corresponds to a power law with an exponent τ = 1.19.

instance, the large-scale simulations of Honecker and Peschel (1997) involved
only growth rates up to θ = 10, 000.

A theoretical approach to determine the scaling exponent τ was recently
published by Hergarten and Krenn (2011). This approach still does not pre-
dict τ from the model rules alone, but relates it to a geometrical property
of the clusters of trees, the so-called accessible perimeter. In this approach,
clusters are characterized only by their size without regard to spatial corre-
lations between clusters. In its spirit, the idea is similar to the hierarchical
clustering idea of Gabrielov et al (1999) who obtained τ = 1 under some
extreme simplifications.

In the forest-fire model, each new tree planted on the grid either forms
a new cluster of size one, extends the size of an existing cluster by one or
connects two or more existing clusters. Growth of clusters by individual new
trees depends on the total perimeter pt of the clusters, consisting of all empty
sites adjacent to sites in the cluster. Since clusters are not dense in general, the
total perimeter includes both external and internal empty nearest-neighbor
sites and increases almost linearly with the cluster size s in the mean:

pt(s) = fs (10.3)

with f ≈ 0.7. Coalescence of existing clusters is obviously the most efficient
process to make mid-sized and large clusters even larger, but also more com-
plicated than growth by individual new trees. It was conjectured that coales-
cence does not depend on the total perimeter of clusters, but on the accessi-
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ble perimeter pa consisting of those perimeter sites which can be reached, in
principle, by a random walker coming from infinity (Grossman and Aharony
1986). The difference between accessible and total perimeter is illustrated in
Fig. 10.3. It was numerically found that the accessible perimeter has a fractal
scaling relation

pa(s) = gsh (10.4)

with g = 3 and h = 0.69 for intermediate cluster sizes. As discussed by
Krenn and Hergarten (2009), this behavior is almost identical to that ob-
tained for site percolation clusters by combining numerical results on the
fractal dimension of the accessible perimeter (Grossman and Aharony 1986)
with theoretical arguments.

Fig. 10.3: Illustration of the total and the accessible perimeter of a cluster.
Sites belonging to the accessible perimeter are orange. Internal perimeter
sites, i.e., sites belonging to the total perimeter, but not to the accessible
perimeter, are colored blue.

Neglecting higher-order coalescence (more than two clusters) and assuming
that the process is most efficient if both clusters are of similar sizes, Hergarten
and Krenn (2011) derived the ordinary differential equation

1

2s

d

ds

(
spa(s)2u(s)2

)
+ f

d

ds
u(s) +

u(s)

θ
= 0. (10.5)

The first term refers to coalescence, the second to growth by individual trees,
and the third to the loss by burning. It was shown that the first term domi-
nates for mid-sized and large clusters, leading to

spa(s)2u(s)2 = const, (10.6)

and thus in combination with Eq. (10.4)

u(s) ∝ s−(h+ 1
2 ). (10.7)
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So the frequency density of the fires follows a power law with an exponent

τ = h+
1

2
= 1.19 (10.8)

in perfect agreement with the presumably most reliable numerical estimates
(Grassberger 2002, Pruessner and Jensen 2002, 2004).

Hergarten and Krenn (2011) also suggested an explanation for the bump in
the distribution at large event sizes. The idea hinges on the finding that very
large clusters have less smooth boundaries than smaller clusters. This was
attributed to the dominance of coalescence over growth by individual trees
which smoothes the boundary. Although reasonable, this approach requires
some ad hoc assumptions, and the exponential decay at the right-hand side
of the bump of the distribution is not predicted well.

After all, knowledge on the forest-fire model is still far off from being a
complete theory. However, at least the presumably most important property
of the model, the scaling exponent τ = 1.19, can be derived from known
scaling properties of percolation clusters. In return, knowledge on the mean
tree density ρ going beyond numerical results is still sparse.

10.3 The Relationship to Real Wildfires

At least until the seminal paper published by Malamud et al (1998), all
publications on the forest-fire model only addressed the model’s behavior in
itself. It seems that nobody dared to think about a potential relevance of such
an oversimplified model to real wildfires. As mentioned in the introduction of
this chapter, it was much easier for the Olami-Feder-Christensen earthquake
model as it was immediately found to reproduce an important, well-known
statistical relationship of earthquakes.

Malamud et al (1998) analyzed four datasets on the sizes of forest fires and
wildfires in the United States and Australia, each of them consisting of 120
to 4284 fires. As illustrated in Fig. 10.4, they indeed found power-law distri-
butions over several orders of magnitude. The estimated scaling exponents of
the four distributions fall into a rather narrow range τ ∈ [1.31, 1.49].

Power-law statistics or at least heavy-tailed distributions have been rec-
ognized in several other wildfire data sets under a broad range of conditions,
too (Minnich and Chou 1997, Ricotta et al 1999, Song et al 2001, Malamud
et al 2005, Krenn and Hergarten 2009). The majority of the scaling exponents
is in the range τ ∈ [1.1, 2.0]. so that the variablity in the exponents has con-
siderably increased since the study of Malamud et al (1998). In this paper,
it was attempted to reproduce the observed variability in τ by a variation
of the growth rate θ and the system size. However, all values of τ obtained
from this were lower than the theoretical limit value τ = 1.19 discussed in the
previous section, so that the result stayed outside the range τ ∈ [1.31, 1.49]
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Fig. 10.4: Frequency-area distributions for actual forest fires and wildfires
in the United States and Australia (Malamud et al 1998): (A) 4284 fires
on U.S. Fish and Wildlife Service lands (1986–1995), (B) 120 fires in the
western United States (1150–1960), (C) 164 fires in Alaskan boreal forests
(1990–1991), and (D) 298 fires in Australia (1926–1991).

found in this study, and only the lower edge of the wider range τ ∈ [1.1, 2.0]
can be explained this way.

There are, of course, several reasons to assume that the scaling exponent
of the wildfire size distribution indeed varies in nature. It may depend, e.g.,
on topographic or climatic constraints and particularly on human impact.
Fire mitigation may perhaps be the strongest impact, but timber harvesting
may be important as well. The question how suppressing small and mid-
sizes affects the frequency of large fires seems to be the most controversially
discussed topic in this context.

However, it is in general difficult to attribute differences between datasets
to a single reason. As an example, Minnich and Chou (1997) and Minnich
(2001) found significant differences in the wildfire size distributions of south-
ern California and the adjacent region of Baja California Norte, Mexico. Large
fires occur more frequently in southern California, manifested in a scaling ex-
ponent τ = 1.44 vs. τ = 2.02 for Baja California Norte. The difference was
attributed to the suppression of small fires in California leading to a tempo-
ral shift of the fire season towards hot and dry conditions, but the authors
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admitted that factors such as flora conservation programs, livestock grazing
practices, and wildlife populations may also contribute significantly.

There is at least one data set where the direct human impact by intentional
or careless ignition can be delineated. The Canadian Large Fire Database
(LFDB) (Canadian Forest Service 2002) contains information on 11,231 fires
of more than 2 km2 in area for the 1959 to 1999 period and distinguishes
between fires caused by lightning and human action. 72% of the fires recorded
in the LFDB were initiated by lightning, and 25% by humans (the rest is
unknown).

Figure 10.5 shows the probability densities of the fire sizes estimated from
the LFDB data. Assuming that the deviation of the graphs at large event
sizes is due to a cutoff, Krenn and Hergarten (2009) fitted a power-law distri-
bution with τ = 1.30 for all fires (green line). For the lightning-induced fires,
τ = 1.20 (blue line) was found which is very close to the theoretical value
τ = 1.19 of the forest-fire model. In return, very large anthropogenic fires
occur less frequently, manifested in a larger scaling exponent τ = 1.61 (red
line). In these data, the human impact is obvious, and an extended forest-fire
model addressing the difference between natural and human-made fires will
be discussed in the next section.

Fig. 10.5: Probability densities derived from the Canadian Large Fire
Database (Krenn and Hergarten 2009). Points represent the logarithmically
binned data (6.6 bins per decade), straight lines correspond to power laws
fitted by a least-squares procedure.

So the forest-fire model predicts the power-law distribution of wildfires
at least qualitatively well, and perhaps even the case of natural fires in an
undisturbed environment (or whatever the situation with the lowest scaling
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exponents may be) quantitatively. But as stated by Zinck and Grimm (2008),
it has been largely ignored by fire ecologists. Admittedly, the occurrence of
a power-law distribution is one single property, and the scaling exponent is
just one number. As, e.g., recently pointed out by Stumpf and Porter (2012),
this is in general a rather weak proof of a model’s relevance to nature. Apart
from this, the forest-fire model appears to be oversimplified. The propagation
of real wildfires is, of course, much more complicated than assumed in the
model, and it is clearly influenced by temperature, wind, rainfall, and the
vegetation itself for each individual fire. However, the forest-fire model was
never designed as a model of wildfire dynamics, and its applicability in a
short-term regional prediction is clearly limited. Instead, the model rather
addresses the susceptibility to large fires at intermediate to long time scales.

Apart from the huge number of parameters disregarded in the forest-fire
model, the type of its randomness is often criticized. A random ignition is
indeed reasonable in a simplified world. But as pointed out by Zinck and
Grimm (2008), the idea that trees pop up randomly, while the propagation
of fire is completely deterministic, reverses the typical ecologists view that
the vegetation succession is deterministic and the individual fires stochastic.
But this is, in principle only a good example of pre-judgment without taking
a closer look. In fact, spreading of fire is not really random in nature. If the
conditions are good, fires propagate very well, while nothing happens, e.g.,
under wet conditions. The forest itself contributes to propagation by provid-
ing the amount of fuel, and once a fire is ignited, the rest is more or less
deterministic. And what about the trees randomly popping on a lattice? As
discussed in the previous section, areas are cleared by large fires and then
regrow through time in the model. The potential for a new large fire hinges
on the mean density of the trees in this area, and it rapidly increases when
the density approaches the percolation threshold. So if we do not look at each
individual tree (which indeed pops up unrealistically), but consider aggrega-
tions of several sites, the model continuously develops fuel to allow large fires.
In this sense, the behavior of an individual model tree is as unimportant for
large fires as the behavior of each single raindrop for a flood. Motivated by
their results on the shape of wildfires (Zinck and Grimm 2008), Zinck et al
(2010) designed a coarse-grained version of the forest-fire model where each
site corresponds to a larger unit, e.g., a forest stand of several hectares. In
their model, the sites do not pop up randomly, but are characterized by a
time-dependent susceptibility to burning. This susceptibility is zero immedi-
ately after a fire and then increases until a fire destroys this part of the forest.
As it can already be expected from the behavior of patches in the original
forest-fire model, the results of this model are essentially the same.

Nevertheless, it seems that the model proposed by Ratz (1995) where the
role of randomness is just opposite to the forest-fire model is more accepted in
forest ecology. This model is also a simple cellular automaton ignoring topog-
raphy, weather, and details of the forest structure, but fire spread is stochas-
tic, and regrowth or, more precisely, aging, is deterministic. This model does
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not reproduce the observed power-law size distribution of wildfires, which
was admittedly not in discussion when the model was developed. Instead,
the author validated his model using the structural properties of 68 wildfires
analyzed by Eberhart and Woodard (1987). These properties mainly refer to
the scaling of the outer perimeter of the fires, similarly to Eq. 10.4, and the
number and sizes of unburnt islands within burnt areas. In return, Caldarelli
et al (2001) concluded from an analysis of three large fires that the Drossel-
Schwabl forest-fire model cannot reproduce realistic fires shapes. In contrast,
Zinck and Grimm (2008) found that the forest-fire model reproduces the ge-
ometric properties of the 68 fires mentioned above after spatial rescaling of
the Drossel-Schwabl model as well as the model of Ratz. The result that the
accessible perimeter of fires in the forest-fire model is very similar to that of
percolation clusters (Eq. 10.4) may lead to the conclusion that these geomet-
ric properties of fires are not a very sensitive criterion, so that several models
will finally yield good results here. From this point of view the comparison be-
tween the Drossel-Schwabl forest-fire model and the model of Ratz ends with
the power-law distribution on the side of the Drossel-Schwabl model versus
the feeling that the model of Ratz is more realistic from its basic assumptions
apparently shared in the scientific community of fire ecology.

10.4 Extensions of the Forest-Fire Model

As discussed in the previous section, the scaling exponents of wildfire statis-
tics in nature show a variation that cannot be explained by the statistical
uncertainty alone. The forest-fire model apparently predicts the lower edge of
the range found in nature well, while the larger exponents frequently found
may arise from specific conditions not captured by the simple model. Most
ideas on these specific conditions go into the direction of human impact. So
there have been several attempts to extend the forest-fire model in order to
predict a variation in the scaling exponent.

The first extension of the model documented in the literature concerns
the assignment of an immunity to the sites (Clar et al 1994, 1996). This was
implemented in the way that fire spreads from one site to another fails at a
given probability g, so that a green tree only catches fire with the probability
1− gn if n of its neighbors are burning. A simple bifurcation was found with
respect to the parameter g: The power-law distribution with the original
scaling exponent persists for g < 1

2 , while the power law vanishes and the
distribution decays exponentially for g > 1

2 .
Similarly, Hergarten (2002) investigated the forest-fire model with modi-

fied rules of fire spreading in order to mimic the influence of climate. Prop-
agation towards the eight nearest and second-nearest (diagonal) neighbors
was considered as a representation of a drier climate where fires spread more
easily. It turned out that the self-organization towards a power law with the
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original scaling exponent is strong enough to compensate this modification.
The modified forest-fire model approaches a state where the mean tree density
is significantly lower than in the original model (about 0.27 instead of 0.41),
but the event-size distribution remains almost the same. Similar results were
obtained if only propagation towards two (non-opposite) of the four nearest
neighbors is considered, corresponding to a highly anisotropic propagation
arising from a preferred direction of wind. Figure 10.6 gives an example of
the spatial pattern if propagation is allowed only towards the southern and
the eastern neighbor. The anisotropy induced by the wind direction is clearly
visible in the pattern, and the strong difference towards the critical state of
the original forest-fire model (Fig. 10.1) is obvious. But again, the model just
self-organizes to a critical state with a different spatial pattern in order to
maintain the fire size distribution with the original exponent τ .

Fig. 10.6: A snapshot from a simulation of the forest-fire model where fires
can only spread towards the southern and the eastern neighbor mimicking a
preferred wind direction (Hergarten 2002).

In the same study, transient states with respect to the model rules were
also considered. This is of particular interest with regard to climate change
(e.g., Pueyo 2007, Pueyo et al 2010). The results discussed above suggest
that even a much drier climate should not change the power-law distribu-
tion of the wildfires. This is, of course, not true during the transition from
the critical state with respect to the original rules to the new critical state.
This phenomenon was investigated by applying the new rules of fire propaga-
tion (i.e., allowing diagonal connections) to the original critical state. So this
analysis refers to the fire size distribution immediately after an instantaneous
transition to a drier climate. The results shown in Fig. 10.7 suggest that a
part of the distribution still follows a power law with the original scaling
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exponent, but a heavy tail in the distribution evolves which is clearly outside
the power-law. For the parameters considered there (θ = 2048, L = 8192)
it was found that the mean size of the fires increases by more than a factor
1000 compared to the original model due to the heavy tail of the transient
distribution. However, it seems that this research has not been continued sys-
tematically since then, although perhaps of particular interest with respect
to scenarios of climatic change.
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Fig. 10.7: Size statistics of the fires immediately after diagonal connections
have been allowed for θ = 2048 on a 8192× 8192 lattice (Hergarten 2002).

The differences in the statistics between lightning-induced and anthro-
pogenic fires discussed in the previous section were addressed by the acces-
sible perimeter ignition forest fire model (Krenn and Hergarten 2009). This
model hinges on the simple idea that all model trees have the same sus-
ceptibility of being ignited by lightning (as it is manifested in the rules of
the original forest-fire model), but ignition by human action should be more
likely at the border of a forest or at locations where the forest is not very
dense. This idea was implemented by assuming that a cluster of trees can be
ignited by human action only if a spark hits a site belonging to the accessible
perimeter of the cluster (see Fig. 10.3). Allowing ignition of all perimeter sites
(the total perimeter) would be even simpler, but as discussed in the previous
section, the finite tree density within the cluster would allow ignition almost
everywhere then, so that the effect of the restriction of ignition would be
almost negligible.

As illustrated in Fig. 10.8, this modification indeed results in a power-
law distribution with a larger scaling exponent than the original forest-fire
model. While the authors found τ = 1.22 for the original forest-fire model,
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the modified model predicts τ = 1.51 for ignition via the accessible perimeter.
These results are in very good agreement with the distributions of natural
and anthropogenic fires in Canada discussed in the previous section. The
data power-law fits in Fig. 10.5 yielded τ = 1.20 for the lightning-induced
fires and τ = 1.61 for the anthropogenic fires, so that the agreement with
the model data is almost perfect if we take the uncertainty arising from the
strong cutoff effects at large fire sizes into account.

Fig. 10.8: Event-size distributions for the original forest-fire model (DS-FFM,
blue) and the accessible perimeter ignition forest-fire model (AP-FFM, red).
Curves correspond to growth rates θ = 256, 1024 and 4096 from left to right.
The dotted lines indicate the slope for intermediate event sizes estimated by
extrapolation to θ →∞ (Krenn and Hergarten 2009).

An explanation for the difference in the scaling exponents between the
different modes of ignition was given in this study, too. It was found that the
size distribution of the existing clusters of trees is almost the same as in the
original model, so that the difference directly arises from the difference in the
probability of ignition. While the probability that a given cluster of size s is
ignited is linearly proportional to s, it scales only like s0.69 if ignition is re-
stricted to the accessible perimeter according to Eq. 10.4. This directly leads
to a difference of 0.31 in the scaling exponents of the fire size distributions.
Even the theory of Hergarten and Krenn (2011) reviewed in Sect. 10.2 can be
applied to the accessible-perimeter ignition and leads to τ = 1.50 instead of
τ = 1.19 for the original forest-fire model. The result that the size distribu-
tion of the existing clusters persists is remarkable because the modifications



372 Stefan Hergarten

discussed earlier introduced changes in existing patterns in such a way that
the size distribution of the fires persist.

Beyond this, Krenn and Hergarten (2009) also performed mixed simula-
tions involving both types of ignition. While the occurrence of an overall
power-law distribution with a scaling exponent depending on the mixture of
the fire types is not surprising, more interesting results were obtained con-
cerning the largest events. As shown in Fig. 10.8, the higher scaling exponent
of the anthropogenic fires in absence of natural fires is accompanied by a
shift of the large-size cutoff, so that the largest human-induced fires are fi-
nally larger than the largest lightning-induced fires. It was found that this
result does not hold in a mixed environment. As long as there are enough
lightning-induced fires, the long tail of the anthropogenic fires’ distribution
is cut off, so that the largest fires are finally dominated by lightning. So the
occurrence of natural fires prevents the system from developing very large
human-made fires which would be in principle even larger than the largest
natural fires.

Fire suppression is probably the most controversially discussed human
impact. One of the striking questions in this context is whether extinguishing
small (and perhaps mid-sized) fires in return may even increase the number
of large fires. The simplest idea to mimic fire suppression would be randomly
extinguishing burning sites. However, this would be essentially the same as
the immunity introduced by Clar et al (1994). This means that moderate fire
suppression would not affect the scaling exponent of the size distribution. In
return, the large fires would almost vanish if enough effort was spent for fire
suppression.

Yoder et al (2011) extended the forest-fire model by a fire resistance de-
pending on the current number of burning sites. Assuming that the resistance
decreases with increasing number of burning sites, the fact that it is more dif-
ficult to extinguish a large fire than a small fire can be regarded. As a simple
realization, the authors assumed that a fire is completely extinguished with
a probability

Pq(k
′
f ) =

ε

k′f
(10.9)

where k′f is the number of sites currently burning and ε is a tuning parameter.
In contrast to the original forest-fire model, this rule of extinction does not
allow burning down a cluster in one step. Fire spreading is the same as in
the first version of the forest fire model where all neighbors of the currently
burning sites catch fire in each step. After each step of spreading, it is decided
according to Eq. 10.9 whether the fire continues or stops at this stage. If it
continues, all neighbors of the burning sites catch fire, and so on. All burning
sites remain in this state until the fire has stopped, so that k′f in Eq. 10.9 is
not the size of the fire front at the moment, but the size of the area affected by
this fire so far. As Eq. 10.9 is evaluated after the first step of fire propagation
where k′f cannot be larger than 5 even in a dense cluster, ε must be lower
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than five. Otherwise, all fires would be immediately extinguished after the
first step of propagation.

Figure 10.9 shows the results obtained by the authors for θ = 4096 on
a 1024 × 1024 lattice. They obtained power-law distributions with scaling
exponents τ depending on the tuning parameter ε. For the largest value ε =
4.7 considered in this study, they obtained τ = 1.74. The authors observed
an almost linear increase of τ with ε up to ε ≈ 3.5, and that τ does not
increase further for larger values of ε. So their results suggest that variation
in fire susceptibility (including fire suppression) may introduce a variation in
the scaling exponent from about 1.2 to about 1.74, the largest value found
in their study. This range is wider than the difference between natural and
anthropogenic fires predicted by the ignition mechanisms discussed above
and covers a large part of the variability found in nature (see Sect. 10.3).

Fig. 10.9: Frequency-size distributions of the model with fire resistance for
different values of the tuning parameter ε (Yoder et al 2011). The scaling
exponent is denoted b in this diagram.

The increase of the scaling exponent with increasing fire resistance suggests
that fire suppression would indeed reduce the number of large fires. However,
the tails of the distributions in Fig. 10.9 show that the number of large fires in
fact increases. With regard to the system size L = 1024 used by the authors
even a considerable number of system-wide fires occurs for ε ≥ 3. Similarly
to the transition effects discussed earlier in this section, the total loss of
trees is dominated by extremely large fires outside the range of the power-
law distribution. This would in return imply that fire suppression leads to an
extremely increased hazard of large fires. This topic came into discussion even
before the idea of SOC was developed (Minnich 1983), but the occurrence
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and the significance of this phenomenon in nature seems to be rather complex
and might indeed not be captured by such simple models.

In both the accessible perimeter ignition forest-fire model of Krenn and
Hergarten (2009) discussed before and the model of Yoder et al (2011) in-
creases in the scaling exponent of the power-law distribution go along with a
heavier tail of the distribution. This is not a property of these two particular
extensions of the model, but an inherent weakness of the forest-fire model
itself. The forest-fire model hinges on the idea that all new trees will be de-
stroyed by fires, otherwise there could be no quasi-steady state. As discussed
when deriving Eq. 10.1, (1−ρ)θ trees must be burnt per ignition event in the
mean. If θ is given, this number can only be reduced significantly if the density
ρ approaches one. This is exactly how the introduction of immunity by Clar
et al (1994) avoids the occurrence of large fires if immunity is large enough.
Thus, the forest-fire model with an equilibrium of growth and burning is in
principle unsuitable to predict the effects of changes in fire suppression or in
fire propagation on the occurrence of large fires.

As mentioned above, the long tail of the distribution of the anthropogenic
fires in the accessible perimeter ignition forest-fire model vanishes in a mixed
environment of natural and human-induced fires. In principle, two competing
mechanisms of burning are present in this case, so that none of them has to
maintain an equilibrium with growth alone. In many regions on earth, timber
harvesting obviously contributes to the consumption of trees as well as fires.
This contribution may be even much higher than the loss of forest by fires.
In regions of low ignition, even the loss by naturally dying trees may be
significant. Therefore, the basic assumption that burning alone balances the
growth of new trees is in principle unrealistic in many environments and may
introduce serious artefacts.

A first study on the removal of fuel in the forest-fire model, e.g., by timber
harvesting, was recently conducted (Krenn and Hergarten 2013). As a simple
idea, the forest-fire model was extended by the rule that ω sites are randomly
(or according to a given spatial pattern) selected in each step, and that all
trees present on these sites are removed. This simple rule is just the opposite
of growing new trees with a parameter ω instead of θ.

Figure 10.10 shows the resulting fire size distributions obtained from this
model with random fuel removal. Instead of ω, the parameter h = ω

θ which
quantifies clearing by harvesting or other processes in relation to growth was
used. The scaling exponent of the fire size distribution roughly persists as
long as removal is not too strong. In return, the largest fires become smaller
since growth is now balanced by burning and removal in sum. Similarly to the
model with immunity of Clar et al (1994), the power-law distribution is lost if
removal becomes dominant compared to burning. In this regime, the patchy
spatial structure occurring in the original forest-fire model is destroyed, and
the model behaves like percolation below the percolation threshold. These
results may be important for the question in which environments a power-law
distribution of forest fires may be expected at all. Apart from this, it opens
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the door towards a better understanding of the effect of fire suppression or
climatic change. However, a combination with the other extensions of the
forest-fire models discussed in this section has not been performed so far.

Fig. 10.10: Size distribution of the fires in the model with fuel removal for
θ = 65, 536 and different values of the clearing parameter h (Krenn and
Hergarten 2013).

In sum, the simple forest-fire model is still a fascinating model in the
context of SOC after more than 20 years. Despite some theoretical progress
concerning the scaling exponent of the size distribution, the understanding
of the model’s behavior and its relationship to percolation is still incomplete.
The forest-fire model is clearly not a model of wildfire dynamics in detail, but
rather predicts the susceptibility to large fires at intermediate to long time
scales. The interest in this model in the field of fire ecology has obviously
grown in the last years, although the discussion is still controversial with
good arguments on both sides. But in view of its extensibility in various
directions, the forest-fire model should deserve even more attention in the
field of fire ecology than it presently receives.
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Chapter 11

SOC in Landslides

Stefan Hergarten

Scale invariance at the earth’s surface has attracted scientists for several
decades. Even the first formal description of scale invariance in nature con-
cerned geomorphic data. In his seminal work, Mandelbrot (1967) measured
the length of coastlines with rulers of different lengths and found a power-law
relation between the measured length and the ruler’s length. The scaling ex-
ponent of this power-law relation was used to assign a non-integer dimension
between one and two to these lines. The fractional dimension finally led to
the term fractals.

In the 1980s, when fractals became popular and subject of several mono-
graphs (e.g., Mandelbrot 1982, Feder 1988), geomorphology again provided
one of the most fascinating examples: artificial self-affine landscapes (e.g.,
Voss 1985, Feder 1988). Figure 11.1 shows an example with a local fractal
dimension (e.g., Mandelbrot 1985) Dl = 2.1, generated by Fourier methods
(e.g., Hergarten 2002).

Although these artificial surfaces may be beautiful and even somewhat
similar to the real topography of the earth at first, their value turned out
to be limited. First, the earth’s surface is not perfectly self-similar or self-
affine (Evans and McClean 1995) as it is shaped by a variety of processes
and shows strong correlations between elevation and slope (e.g., Kühni and
Pfiffner 2001) which are not reproduced by simple self-affine surfaces. Fur-
thermore, these surfaces lack important geomorphic elements such as river
valleys. And finally, the algorithms behind these surfaces seem to be far away
from the present understanding of the tectonic and geomorphic processes
shaping the real topography.

A few years after the concept of SOC was introduced, the first attempts to
recognize SOC in landform evolution were made (Kramer and Marder 1992,
Takayasu and Inaoka 1992, Rinaldo et al 1993). These studies addressed
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Fig. 11.1: A computer-generated, self-affine surface with a local fractal di-
mension Dl = 2.1. For a more realistic impression, the landscape was flooded
up to a certain level and placed on a section of a sphere in order to improve
the aerial view.

the statistical properties of river networks using models of fluvial erosion.
Scale-invariant properties of river networks were found even before the term
fractal was coined (Horton 1945, Strahler 1952, Hack 1957). The models
themselves were similar in their spirit. It was assumed that water takes the
direction of the steepest descent on the surface, and that the erosion rate
of a river segment depends on the discharge and on the local channel slope.
The simplest case addresses the evolution of the topography and the river
network under constant tectonic uplift where the surface elevation at one or
more pre-defined outlet points at the boundary is kept constant.

It was found that the topography including the river network evolves to-
wards a steady state under these conditions. Figure 11.2 shows an example
of such a tree-like network. The steady-state networks obtained from these
models were found to reproduce several statistical properties of real river
networks. Furthermore it turned out that the details of the model, i.e., the
constitutive law for the erosion rate as a function of discharge and slope, has
a minor effect on the statistical properties of the network.

So these models are examples of self-organization towards a steady state
with some scale-invariant properties. Takayasu and Inaoka (1992) even enti-
tled this behavior as a new type of SOC. But as pointed out by Sapozhnikov
and Foufoula-Georgiou (1996), this kind of self-organization is not SOC. The
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Fig. 11.2: A simulated river network (Hergarten 2002).

evolution ends at a steady state without further fluctuations, so that this
state is not critical.

However, tectonic forces and thus the uplift rates are not constant at ge-
ological timescales, which is one reason that real landscapes do not achieve
a steady state. In order to mimic these permanently changing driving forces,
Hergarten and Neugebauer (2001) suggested an extended landform evolution
model where the location of the outlet is not constant, but varies through time
along the boundary of the model domain. As a consequence, the river net-
work permanently changes and never achieves a steady state. These changes
are even reflected by a power law if each change in flow direction at any site
is considered as a geomorphic event, and if the event sizes are measured in
terms of changes in river discharge or, more precisely, catchment size. But
unfortunately, it is impossible to verify this event-size distribution in nature.
There is indeed evidence for historical changes in the river network even in
mountain belts with deep valleys, but only very few events can be clearly rec-
ognized, so that a reasonable statistics seems to be out of reach. Even analyz-
ing the changes in braided river systems which evolve very rapidly compared
to large-scale river networks may take more than a human lifetime, and the
results obtained from downscaled laboratory experiments (Sapozhnikov and
Foufoula-Georgiou 1997) are non-unique with regard to SOC.

So it seems that large-scale landform evolution is in principle unsuitable
for recognizing SOC. The rest of this chapter is devoted to landslides which
constitute a major natural hazard in almost all mountainous regions and are
the presumably the geomorphic process which is most widely studied in the
context of SOC.
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11.1 Landslide Statistics

Landslides cover an enormous range of scales and a variety of phenomena. In
the vast majority of the literature the term landslides is used as a synonym
for all gravity-driven mass movements. The involved masses may be either
rock fragments or an unconsolidated regolith layer (mainly soil). Depending
on the topographic characteristics and the properties of the material, the
motion may be dominated by flow, sliding, avalanching, toppling of falling.

The smallest noticeable landslides are rockfalls with a volume in the order
of magnitude of 10−3 m3. However, mass movements involving several million
cubic meters occur quite frequently. Figure 11.3 shows a rockslide with a
volume of about 3× 107 m3 that took place in the Matter valley in the Swiss
Alps in 1991. Only about 50 years ago, a block of more than one quarter
cubic kilometer detached above the Vaiont reservoir in the Dolomite Region
of the Italian Alps from a wall and slid into the lake at velocities of up to 30
meters per second. As a result, a wave of water overtopped the dam and swept
onto the valley below, with the loss of about 2500 lives. The largest rockslide
documented in the European Alps, the Flims rockslide, is even more than
30 times larger with respect to volume than the Vaiont reservoir disaster.
Estimates of its total volume cover the range from 8 to 15 km3 (e.g., von
Poschinger 2011).

Fig. 11.3: Debris deposits of a rockslide in the Matter valley (Swiss Alps).
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Extensive landslide statistics have been collected for several decades. More
than 40 years ago, Fuyii (1969) found a power-law distribution in 650 events
induced by heavy rainfall in Japan. In a more comprehensive study, Hovius
et al (1997) analyzed about 5000 regolith landslides in the western Southern
Alps of New Zealand. Malamud et al (2004) compiled regolith landslide data
sets from several regions, each of them consisting of about 1000 to 45,000
events. Some of them were derived from historical inventories, while other
consist of events attributed to one triggering event (rapid snowmelt, a rain-
storm or an earthquake).

Figure 11.4 shows the frequency density of eight data sets taken from
Hovius et al (1997) and Malamud et al (2004) where the area is used as a
measure of landslide size. The diagram displays the frequency density, which
is simply the product of the probability density and the total number of
events. It can be estimated by collecting the objects in (here logarithmic)
bins and dividing the number of objects in each bin by the bin width.

Fig. 11.4: Frequency density of eight landslide data sets (Hovius et al 1997,
Malamud et al 2004).

Malamud et al (2004) found a power-law distribution

f(A) ∝ A−αA (11.1)

with a scaling exponent αA ≈ 2.4 at large landslide sizes and a rather
small variation between the considered data sets. In particular, there seems
to be no systematic difference between the statistics of the landslides trig-
gered by a single earthquake, rainstorm or snowmelt event (red/orange in
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Fig. 11.4) and historical inventories involving events arising from various
triggers (green/blue).

All datasets displayed in Fig. 11.4 reveal a striking deviation from a power
law at small sizes. The rollover of at small sizes indicates a lack of small
landslides in all data sets. Although Malamud et al suggested a function to
describe it quantitatively, its origin is still unclear, but it seems not to be
an artefact of incomplete sampling. This rollover strongly limits the range of
landslide sizes where a power law can be found since the largest events are
in the order of magnitude of 1 km2 and thus occur at very low frequencies.
As a result, none of the distributions shows a clear power law over more than
two decades in area, which is only one decade in linear size. Compared to the
distributions of earthquakes (Chapter 9) and wildfires (Chapter 10) this is a
rather narrow range.

Available statistics of rock mass movements are much smaller than the
inventories of regolith landslides. Malamud et al (2004) reanalyzed three in-
ventories of rockfalls and rockslides originally published by Dussauge et al
(2002). Each data set consists of only 89 to 157 events compared to several
thousands in the regolith landslide inventories. The frequency densities are
displayed in Fig. 11.5. While landslide size was measured in terms of area,
volume is used here.

Fig. 11.5: Frequency density of three rockfall inventories (Dussauge et al 2002,
Malamud et al 2004). The dashed line illustrates a power law with a scaling
exponent of 1.07.

In contrast to the landslide statistics shown in Fig. 11.4, no obvious rollover
at small sizes is visible here. Consequently, the power-law distribution extends
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over a larger range of scales, about 5 to 7 decades in volume for each data set.
Malamud et al found that a power law with a scaling exponent αV = 1.07
fits well to the three datasets without any vertical shift of the curves. This
result suggests that the power law even extends over 9 orders of magnitude,
but fitting one power-law distribution to a merged data set is in principle
dangerous as it strongly depends on the number of events in each data set.
However, simultaneously fitting three power-law distributions with the same
scaling exponent, but different factors in front of the power law confirms the
result αV = 1.07.

As reviewed by Brunetti et al (2009), similar power-law distributions of
rockfall and rockslide volumes were found in several other studies. Applying
different methods of analysis in different regions on Earth, exponents αV =
1.1 (Guzzetti et al 2003), αV = 1.2 (Guzzetti et al 2004), αV ∈ [1.19, 1.23]
(Noever 1993), αV ∈ [1.41, 1.52] (the original results of Dussauge et al (2002)
reanalyzed by Malamud et al (2004), and αV ∈ [1.40, 1.72] (Hungr et al 1999)
were obtained. Except for two data sets which address rather small scales,
all these values fall into the range αV ∈ [1.07, 1.52]. So the finding that a
variation of more than 0.4 in αV was obtained by applying different methods
to the same data sets (Dussauge et al 2002, Malamud et al 2004) suggests
that the entire variation in αV may be a spurious effect of limited statistics.

In addition to an apparent independence on the triggering mechanism, no
significant difference between rockfalls and rockslides was revealed. Following
the majority of the references cited in this paper, the term rockfalls is there-
fore used for all types of rapid rock mass movements, in particular rockfalls
and rockslides, in the rest of this chapter.

When comparing scaling exponents obtained for rockfalls with those ob-
tained for regolith landslides, we must either transform the area-related
regolith landslide distributions to volumes or the volume-related rockfall-
size distributions to areas. The simplest assumption is isotropic scaling,
V ∝ A 3

2 , as used, e.g., by Hovius et al (1997) for regolith landslides. However,
anisotropic scaling was revealed in a comprehensive theoretical study by Klar
et al (2011), as it was also found much earlier in field studies (e.g., Simon-
ett 1967). Klar et al found a weaker increase of volume with area, V ∝ Aγ

with γ ∈ [1.32, 1.38], in very good agreement with field observations. Then,
comparing the cumulative distributions with respect to area and volume im-
mediately leads to the relation

αA − 1 = γ (αV − 1) , (11.2)

and thus for γ ≤ 1.4

αV ≥
αA − 1

1.4
+ 1 ≈ 2.0 (11.3)

for regolith landslides (αA ≈ 2.4). This value is clearly larger than the range
αV ∈ [1.07, 1.52] found in the rockfall inventories.
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In summary, there is growing evidence for power-law size statistics in both
regolith landslides and rockfalls (including rockslides). Neither significant re-
gional variations in the scaling exponent nor a dependence on the triggering
mechanism has been found. However, the values of the scaling exponent of
rockfall size distributions are significantly smaller than those found for re-
golith landslides.

11.2 Mechanical Models

The power-law distributions found for landslide sizes suggest a relationship
to SOC. In the following, the most important modeling approaches in this
context are discussed.

All these models address the mobilization of rock or regolith masses. With
respect to hazard assessment, this is only half of the story because the runout
of a mass movement is as important as the initial mobilization. In particular,
debris flows consisting of a mixture of rock and water may travel over dis-
tances of several kilometers. Rockfalls, rockslides, and rock avalanches may
also differ strongly in their runout behavior. Reviews on models predicting
the runout of rock mass movements are given by, e.g., Dorren (2003) and
Volkwein et al (2011). In principle the runout may affect the size distribution
of the landslides, too. First, rockfall and rockslide inventories mostly refer to
the deposited volume which is in general larger than the detached volume as
the compactness of the material decreases during the movement. And second,
the volume may also increase due to the entrainment of further rock masses.
However, dilatancy should not vary strongly with the event size, and the
second effect becomes significant for a small class of mass movements only.
Under these aspects it seems to be reasonable that the models attempting
to relate landslides to SOC only address the detached volumes or the related
areas.

The stability of slopes and cliffs is a mechanical problem involving stresses
mainly induced by gravity, but in some cases also by variations in temper-
ature or pore water pressure. In rock, pre-defined fracture patterns may be
of particular importance, while existing zones of weakness (e.g., clay layers)
may strongly affect the stability of a regolith layer. The topography defines
the boundary condition for the three-dimensional mechanical problem and is
thus at least as important as the mechanics inside the domain. Although this
is all clear on a qualitative level, and even the differential equations behind
it seem to be well-known, the question whether the power-law distribution
arises from an evolving fracture pattern (in rock), another type of stress
redistribution or the topography changing through type is still open.

In this section, two models addressing the redistribution of stress are dis-
cussed. Both are reduced to two dimensions and in principle concern the
stability along a pre-defined slip surface as it is often found in regolith land-
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slides. Topography is not directly considered in these models. In their spirit,
both models can be seen as extensions of the classical limit equilibrium ap-
proach going back to W. Fellenius in the 1920s. In this approach, the stability
of a given slip surface is characterized by the factor of safety FS that is de-
fined as the ratio of maximum shear stress τmax where the material remains
stable and the actual shear stress τ ,

FS =
τmax

τ
. (11.4)

So the slope remains stable as long as FS ≥ 1.
The models discussed in the following extend this approach by progres-

sive failure using a local factor of safety. If FS < 1 at any location, local
failure occurs and leads to an increase of τ and thus to a decrease of FS
in the neighborhood. This idea is basically the same as the idea behind the
Burridge-Knopoff earthquake model (Burridge and Knopoff 1967) and its
most widespread cellular automaton version, the Olami-Feder-Christensen
(OFC) model (Olami et al 1992). Although 20 years old, the OFC model
is still one of the most widely studied models in the field of SOC, and it is
discussed in detail in almost all books on SOC (e.g., Bak 1996, Jensen 1998,
Hergarten 2002). Figure 11.6(a) illustrates a physical realization of the OFC
model. A set of blocks on a regular lattice is interconnected by springs and
held by static friction at the ground. The force ui,j acting on each block
increases through time due to an additional connection with a rigid upper
plate moving at a constant velocity. When the force acting on a site reaches
the limit of friction, the site becomes unstable and is immediately displaced
to a new position characterized by zero total force. As a result, a fraction α
of the force ui,j is transferred to each of the four nearest neighbors, leading
to the relaxation rule of the OFC model

ui±1,j := ui±1,j +αui,j , ui,j±1 := ui,j±1 +αui,j , and ui,j := 0. (11.5)

Here, the symbol := means that the value of the variable is replaced with
the value at the right-hand side. As a part of the force is transferred to the
upper plate (depending on the strength of the springs), α must be smaller
than one quarter, making the model nonconservative.

The long-term driving introduced by a rigid upper plate in the earthquake
model mimics the long-term displacement between the walls of a geological
fault or a subduction zone. Such a way of driving is obviously absent in case
of landslides, so that the driver plate has been removed in the realization
shown in Fig. 11.6(b). Instead, the blocks connected by elastic springs have
been placed on an inclined surface, resulting in a constant driving force in
downslope direction.

But apart from the different way of long-term driving, the absence of the
rigid driver plate also affects the rule of relaxation in case of local instabil-
ity. In the earthquake model, the relaxed stress is redistributed among the
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(a) (b)

Fig. 11.6: (a) Geometric representation of the Olami-Feder-Christensen earth-
quake model. (b) Transfer of the idea to simulate progressive slope failure at
a given slip surface.

four nearest neighbor sites and the driver plate, resulting in a nonconserva-
tive relaxation rule (Eq. 11.5). This property is crucial for reproducing the
size-distribution of real earthquakes as the scaling exponent of the event-size
distribution roughly approaches 1.2 (e.g., Hergarten 2002) in the conserva-
tive limit, which is much too low. Without the driver rigid upper plate, the
redistribution of stress becomes conservative, and then the scaling exponent
of about 1.2 is clearly too far off from the value αA ≈ 2.4 found for regolith
landslides.

As the conservative character of the model stems from the principle of
conservation of momentum, Hergarten and Neugebauer (2000) looked for a
way to obtain larger scaling exponents under conservative stress transfer.
They extended the model by a component of time-dependent weakening,
which means that the threshold of instability decreases through time between
events and is reset after each event.

The model involves two local variables ui,j and vi,j defined on a square
lattice. The variable ui,j relaxes conservatively in case of instability like the
stresses in the model shown in Fig. 11.6(b) would do. In return, vi,j , describ-
ing time-dependent weakening, is locally reset to zero in case of instability
without any transfer to the neighbors:

ui±1,j := ui±1,j +
1

4
ui,j , ui,j±1 := ui,j±1 +

1

4
ui,j , ui,j := 0 , (11.6)

and vi,j := 0 .

Between events, both variables increase at given rates:

d

dt
ui,j = ru and

d

dt
vi,j = rv. (11.7)

The rate ru may describe an increase of stress due to long-term changes in
topography, while rv quantifies the rate of weakening through time. It was
assumed that slope stability depends on the product of both variables, i.e.,
that a site becomes unstable if
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ui,j vi,j ≥ 1. (11.8)

So the model can be directly transferred to the factor of safety approach
(Eq. 11.4) by defining ui,j = τ and vi,j = 1

τmax
locally. The latter means that,

as long as the slope remains stable, the threshold shear stress τmax decreases
like 1

t where t is the time since the last instability at this location. This is,
of course, just an ad hoc assumption.

A power-law distribution of the event sizes with a scaling exponent close to
2 was found, and it was theoretically shown that this exponent is independent
of the driving rates ru and rv. The value α ≈ 2 was within the range of
estimates of αA for regolith landslides at that time and even in fair agreement
with the apparently most reliable value αA ≈ 2.4 suggested by Malamud et al
(2004).

The model suggested by Piegari et al (2006a,b) is similar in its spirit, but
differs in some details and, more importantly, concerning its dissipative char-
acter. The local variable is the inverse of the factor of safety (Eq. 11.4) and
thus simply proportional to the local shear stress. Reasoned by the existence
of several dissipative components in landsliding processes, such as evapora-
tion of water or volume contractions, the authors skipped the conservation
of stress and allowed an arbitrary degree of dissipation in the relaxation rule.

At this level, the model is just another physical interpretation of the OFC
earthquake model. In extension of the OFC model, the authors replaced the
infinitely slow long-term driving with a finite driving rate, as it was investi-
gated by Hamon et al (2002) in the context of solar flares. Furthermore, they
introduced an anisotropic relaxation rule since stress transfer in direction of
the slope may be stronger than perpendicular to the slope.

Power-law distributions for the event sizes were found for several combi-
nations of the model parameters (dissipation, anisotropy, and driving rate),
resulting in a rather large range of scaling exponents. The range includes the
values found for regolith landslides in nature. In some cases, the power-law
distribution was even lost. In a more recent paper (Piegari et al 2009), the
results of this model were quantitatively compared to some of the landslide
inventories discussed in the previous section. The authors found combinations
of the model parameters that reproduce both the scaling exponent and the
rollover at small landslide sizes quite well after spatial scaling of the discrete,
nondimensional model. However, the choice of the parameters and the spatial
scale is only based on a fit to the data, and there seems to be no way to sup-
port this choice from physical principles so far. So it is still unclear why the
model parameters should always be in a rather narrow range to yield similar
landslide size distributions under strongly different conditions.

Despite the promising results obtained from the two models discussed in
this section, some critical comments should be made. The first one mainly
concerns the range of scaling exponents obtained from the model of Piegari
et al that is obviously much wider than the variation found in nature. This
problem also concerns the original OFC model with respect to real earth-
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quakes. In principle, the degree of dissipation introduces a tuning parameter
which cannot be constrained using physical arguments.

The second criticism arises from the existing knowledge on the behavior of
the OFC model. The occurrence of nearly periodic large events was soon dis-
covered (Olami and Christensen 1992), and recently a more or less complete
understanding how the power-law distribution arises from the synchroniza-
tion and the desynchronization of patches toppling almost periodically has
been achieved (Hergarten and Krenn 2011). The organization towards an
apparently critical state extends over many periods, so that these findings
may even support the arguments against the applicability of the OFC model
to real earthquakes. With respect to landslides, this argument may even be
more severe as it is very difficult to imagine that the power-law distribution
emerges after a long series of almost periodic sliding events involving parts
of a slope. Due to its similarity with the OFC model, it can be expected
that the nonconservative model of Piegari et al behaves exactly like this. For
the two-variable model of Hergarten and Neugebauer, there seems to be no
further knowledge on its organization towards a critical state, but a similar
behavior might be expected.

Finally, the question whether these mechanical models refer to the statis-
tical distributions derived from landslide inventories at all should be taken
into account. Since changes in topography are neglected in these models, they
describe slip events with a small displacement on an individual slope. Such
events have been subject of research in the last decades and may finally help
to understand landslide dynamics or even help to predict large landslides, but
the events recorded in landslide inventories take place on the landscape scale.
Apparently very little is known about the size statistics of these small slip
events, but even if they are power-law distributed it is not clear whether this
distribution has any relation to the landslide distribution on the landscape
scale.

11.3 Geomorphic Models

The second class of models attempting to relate landslides to SOC is part of
the large group of landform evolution models. In these models, stresses in the
material are not explicitly considered. Instead, slope instability is assumed
to depend on properties of the relief, mainly on local slope. In a simplified
view, these model approaches can be characterized by the key word sandpile
dynamics. Apart form numerical modeling, this topic was also addressed in
several laboratory experiments with different granular materials (e.g., Frette
et al 1996, Katz and Aharonov 2006, Juanico et al 2008).

In the context of sandpile dynamics, the Bak-Tang-Wiesenfeld (BTW)
model (Bak et al 1987, 1988) which was the first model of SOC and still
seems to be some kind of paradigm should be mentioned first. This model is
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often denoted sandpile model, and even the entire class of models which are
similar in their rules are often referred to as sandpile models.

For the two-dimensional BTW model, the presumably most reliable esti-
mate on the scaling exponent of the avalanche size distribution in the limit of
infinite system size is α = 1.27 (Chessa et al 1999). Interestingly, this value
is almost in the middle of the range αV ∈ [1.07, 1.52] found for rockfalls and
rockslides in nature. And as it should be no problem to accept sandpile dy-
namics as a simplified representation of rockslides, the problem of relating
rockslides (and in principle rockfalls, too) to SOC seems to be solved.

However, the problem in this reasoning is not the question whether sand-
pile dynamics captures the processes relevant for rockslide dynamics, but the
relationship between the BTW model and sandpile avalanches. In the BTW
model, a site becomes unstable if its local variable becomes too large. This
local variable is often considered as a number of grains at this site and may
thus be seen as a representation of surface height. In contrast, the stability
of a sandpile depends on the local slope gradient, which should be related
to differences in the numbers of grains at neighbored sites instead of their
absolute number. Furthermore, redistribution of grains in case of instability
should not be isotropic as it is in the BTW model, but mainly in downslope
direction.

To get around this fundamental problem, one may be tempted to skip the
idea that the variable in the BTW model represents a number of grains, but
interpret it as an abstract property that is somehow related to the slope of
a sandpile. However, the attempt to relate this variable to slopes succeeds
in one dimension, but quantitatively fails on a two-dimensional lattice (Her-
garten 2002, 2003). So the BTW model provides a fundamental description of
avalanche propagation on a rather abstract level, but a physically consistent
relation to sandpile dynamics or any type of gravity-driven mass movements
is not visible.

The presumably first geomorphic models to reproduce power-law statistics
in landslide dynamics were published 15 years ago (Densmore et al 1998,
Hergarten and Neugebauer 1998). Compared to the most widespread models
in the field of SOC, these models are rather complicated and involve several
parameters.

The model of Hergarten and Neugebauer (1998) is based on partial differ-
ential equations. It contains two variables, the surface elevation H(x1, x2, t)
and the thickness of an upper mobile layer κ(x1, x2, t), both being functions
of the horizontal coordinates x1 and x2 and the time t. The material in the
mobile layer flows at a velocity proportional to the slope of the surface if a
given threshold is exceeded. This behavior is represented by the differential
equation

∂H

∂t
= div

{
α (κ|∇H| − β) ∇H|∇H| if κ|∇H| > β

0 else
. (11.9)



392 Stefan Hergarten

The parameter α is related to the flow velocity at given slope, while β de-
fines the threshold where flow starts. The symbols div and ∇ refer to the
two-dimensional divergence and gradient operators, respectively. It was fur-
ther assumed that material from the lower solid layer becomes mobile at a
(spatially and temporally) random rate r which is the only random compo-
nent in the model. In return, the thickness of the mobile layer decays with a
given time constant τ . Furthermore, the entrainment of further material due
to flow was taken into account. These phenomena were incorporated by the
second differential equation

∂

∂t
(H − κ) = −r +

κ

τ
− γα (κ|∇H| − β) |∇H|︸ ︷︷ ︸

if κ|∇H|>β

(11.10)

where the additional parameter γ quantifies the entrainment of material by
flow. The model was applied to individual slopes, and long-term driving was
introduced by a constant rate of lowering at the toe of the slope mimicking
the incision of a river.

At that time, the system of differential equations could only be solved
with reasonable effort on lattices of no more than 64 × 64 sites. A power-
law distribution of the landslide sizes was found over only one and a half
order of magnitude in area. The authors analyzed cumulative distributions.
Transferred to non-cumulative frequency densities, they obtained a scaling
exponent αA ≈ 2.1 which is not far off from the values found for regolith
landslides. However, serious parameter studies have not been performed. So
the question remains whether this model predicts a universal scaling exponent
or whether there is a significant dependence on the model parameters. Apart
from this, the geometry of the events seems not to be very realistic. As
illustrated in Fig. 11.7, the landslides are rather long and tall and look even
a little like gorges in direction of the slope.

The model of Densmore et al (1998) is a rather comprehensive landform
evolution model where landsliding is only one component beside fluvial sedi-
ment transport and diffusive slope processes. As a major difference towards
the models discussed before, slope instability is not treated as a progressive
phenomenon. Only the initiation of a landslide at any location is considered,
while the size of the resulting event is completely determined by the existing
topography and by an ad hoc rule. This topography is, in return, the result
of all the processes considered in the model, including previous landslides.

Compared to the model discussed above, the authors attempted to include
more knowledge on the stability of real slopes instead of using ad hoc rules
for the initiation of landslides. Most of this knowledge hinges on the concept
of the factor of safety discussed in the previous section (Eq. 11.4) in com-
bination with the Mohr-Coulomb failure criterion. This criterion is widely
used in mechanics and states that failure occurs if the shear stress exceeds
the maximum shear stress given by
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Fig. 11.7: Surface after a large landslide in the model of Hergarten and Neuge-
bauer (1998). Regions that were unstable are yellow; regions where a signifi-
cant loss of height occurred (larger than the incision of the river) are red.

τmax = σ tanφ+ C (11.11)

where σ is the normal stress. The parameters φ and C describe the properties
of the material where φ is the angle of internal friction and C is the cohesion.
For the simplest case of a layer of constant thickness d on a potential failure
plane inclined by an angle θ, the Mohr-Coulomb criterion immediately leads
to

FS =
tanφ

tan θ
+

C

ρgd sin θ
(11.12)

where ρ is the density and g is the gravitational acceleration. This simple
relationship is often used as a first estimate. It states that planes with angles
of inclination θ < φ are always stable, while cohesion even enables steeper
planes to remain stable as long as the layer is thin.

Densmore et al used this criterion to discriminate sites where landslides
may be initiated and the maximum landslide volume at these locations. As
they wanted landslides to be initiated only close to the toe of hillslopes, they
searched the lowest pair of neighbored sites at each hillslope where the slope
angle β between both is larger than φ. In Fig. 11.8 these two sites are colored
yellow. In the next step, the authors used the Mohr-Coulomb criterion to
estimate the maximum height difference Hc between these sites where the
slope remains stable and related it to the actual height difference H. They
assumed that failure occurs at a probability
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p =
H

Hc
+ rt (11.13)

where t is the time since the last event at this site, and r gives the rate of in-
crease in probability due to time-dependent weakening. In case of instability,
a potential landslide volume is computed. For this, they made an estimate of
the most likely plane of failure using the Mohr-Coulomb criterion and found
that it dips at the angle θ = β+φ

2 . The volume above this plane, colored red
in Fig. 11.8, defines the maximum possible volume of a landslide at this hills-
lope. Based on their own empirical results (Densmore et al 1997), they finally
assumed that the real landslide volume is directly proportional to the time
since the last landslide initiated at this location, limited by the maximum
volume.

Fig. 11.8: Illustration of the landsliding algorithm suggested by Densmore
et al (1998). Landslides can be initiated at the lowest pair of sites on a
hillslope where the slope angle β exceeds φ (yellow). The maximum landslide
volume (red) is defined by a plane that dips at an angle θ = β+φ

2 .

Comparing the physical basis of the model with the number of ad hoc rules
raises the question whether the physically-based part of the model has any
effect on the results. But apart from this, the derivation of the most likely
dip angle θ and the maximum stable height difference Hc are wrong. The
authors considered the height difference H and the slope angle β between the
considered sites as independent and claimed a quite large degree of freedom
when deciding which one is variable and which one is given by the actual
topography. So it is not surprising that their result on the maximum stable
slope is not in agreement with the simple estimate given by Eq. 11.12.

Taking these aspects into account, the part of the model referring to land-
slides is just a combination of ad hoc rules, similarly to the model of Hergarten
and Neugebauer discussed above, but more complicated. However, it should
be kept in mind that such rules are not necessarily bad as long as they are rea-
sonable and the results make sense. Similarly to Hergarten and Neugebauer,
Densmore et al obtained power-law distributions of the landslide sizes within
a narrow range of scales. In two simulations involving different strength of the
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material (represented by φ and C) they found values αV = 2.2 and αV = 1.8
with respect to the volume over about one order of magnitude. These values
are in very good agreement with the estimate αV ≈ 2.0 (or slightly larger,
depending on the scaling between volume and area) for the volumes of real
regolith landslides given in Eq. 11.3. The smaller scaling exponent occurred
at higher strength, and this result goes even in the direction that the scaling
exponent for rockfalls and rockslides is smaller than that of regolith land-
slides. However, this may also be a matter of fitting straight lines over rather
narrow ranges, and if any error bars had been given, they would surely be
larger than the difference between the two values.

After several years of apparent silence in this field, a new approach focus-
ing on rockfalls (again including rockslides) has been recently published by
Hergarten (2012). This model is inspired by ideas on sandpile dynamics and
extremely simple compared to the other models reviewed in this chapter. In
return it is, however, more or less completely based on ad hoc rules. The
basic assumption is that landslides can in principle be triggered at any site
with a probability that depends on the local slope gradient. All other contri-
butions to rock instability in nature such as fracturing are mimicked by the
randomness of the triggering process.

In analogy to the fluvial erosion models mentioned in the introduction, the
gradient at each site is computed in the direction of steepest descent among
the eight (direct and diagonal) neighbors on a rectangular lattice, what is
called D8 algorithm (O’Callaghan and Mark 1984). It is further assumed that
slopes below a lower threshold slope smin remain stable under all conditions,
while slopes above an upper threshold slope smax are destabilized by any
impact. For slopes s between smin and smax a linear increase of the probability
of instability in case of an impact is assumed:

p =
s− smin

smax − smin
. (11.14)

If a site becomes unstable, material is removed until its slope decreases to
smin. The downslope motion of unstable rock masses and their deposition is
not computed, only the volume of detached material is recorded and used for
the event size statistics. The effect of the event on its vicinity, i.e., progressive
destabilization in the source area of the rockfall, is mimicked by exposing the
eight neighbored sites to the same random impact as the unstable site, so that
each of them may become unstable with a probability given by Eq. 11.14, too.
Those sites which were triggered without becoming unstable are assumed to
be stable at their present slope and cannot be destabilized by further impacts
unless their slope increases as a consequence of further removal of material
at neighbored sites. This is realized by replacing smin of these sites by the
present value of s.

In contrast to all the models discussed earlier, this model only simulates the
occurrence and the size of rockfalls on a given relief. Long-term driving forces,
mainly fluvial erosion in combination with tectonic uplift and, particularly
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Fig. 11.9: Probability density of the rockfalls predicted by the model of Her-
garten (2012) for the European Alps (43–48◦ N and 5–16◦ E), the central
part of the Himalayas (26–31◦ N, 82–92◦ E) and for the southern part of the
Rocky Mountains (35–45◦ N and from 105◦ W to the West Coast), computed
with smin = 1 and smax = 5. The straight line corresponds to a power-law
distribution with an exponent αV = 1.35.

important in the context of rockfalls, glacial erosion, are not considered. So
if this model yields a power-law distribution of the rockfalls, it only shows
that the relief it is applied to has critical properties with respect to this
mechanism. In the context of SOC, this is clearly a disadvantage, but in
return it might allow a hazard assessment for a given region which is not so
easy with models bringing their own mechanism of long-term driving.

The model was applied to Digital Elevation Models of three mountain
belts: the European Alps, the central part of the Himalayas, and the south-
ern part of the Rocky Mountains. The elevation data were taken from the
ASTER Global Digital Elevation Model (a product of METI and NASA)
with a resolution of 1 arc second, corresponding to about 20–30 m.

As illustrated in Fig. 11.9, the model predicts a power-law distribution with
a scaling exponent αV = 1.35 for all three regions, although they strongly
differ in their topographic characteristics. This value falls perfectly into the
range αV ∈ [1.07, 1.52] found for rockfalls and rockslides. Significant differ-
ences between the regions only concern the cutoff behavior at large event
sizes. The results shown in Fig. 11.9 were obtained using the parameter val-
ues smin = 1 and smax = 5, only justified by the rule of thumb that the
majority of real rockfalls and rockslides occurs at slope angles greater than
45◦. However, it was shown that a variation of the model parameters smin

and smax within a reasonable range has a minor effect on the scaling expo-
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Fig. 11.10: Rockfalls with V ≥ 10−3 km3 predicted for a 2000 year time span
in the Alps (Hergarten 2012). Black: V ∈ [0.001, 0.01) km3 (756 events), blue:
V ∈ [0.01, 0.1) km3 (301 events), red: V ≥ 0.1 km3 (21 events).

nent of the event-size distribution. Similarly to the differences between the
considered regions, variations in the parameters mainly affect the cutoff be-
havior at large event sizes. The regional differences in the cutoff behavior
were interpreted in terms of subcriticality of the present relief with respect
to the model’s mechanism. It was concluded that the Himalayas are closer to
a critical state than the Alps, which are themselves closer to a critical state
than the southern part of the Rocky Mountains.

In the same paper, a first attempt do derive a topography-based rockfall
hazard map from the model was also made. The map presented in Fig. 11.10
is based on a prediction of a 2000 year time span and shows a rather in-
homogeneous distribution of the hazard in the European Alps. The largest
predicted event is illustrated in Fig. 11.11. It involves a volume of about
0.5 km3 and is predicted to occur with a rather high probability of one per
500 years. However, it was already admitted in the original paper that quan-
titative assessments based on this model must be treated with some caution.
First, assigning an absolute time scale to the model is rather uncertain. And
second, variations in the parameters smin and smax which can only be guessed
so far have a stronger influence on the largest events than on the power-law
distribution itself. It was already discussed in the original paper that even a
small increase in smin and smax by 20 % reduces both the size and the proba-
bility of occurrence of the largest events by a factor of two. As even stronger
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Fig. 11.11: The largest event predicted for the Alps (Lauterbrunnen valley,
V ≈ 0.5 km3, red). The black lines correspond to smaller events predicted
for a 2000 year time span.

regional variations in these parameters can be expected due to lithology, esti-
mating the size and frequency of the largest events in a mountain belt seems
to be rather uncertain. So this model may provide a tool for hazard assess-
ment, but any serious application requires additional data that cannot be
derived from physical principles in a straightforward way.

Nevertheless, the model seems to have a large potential for both appli-
cation to rockfall hazard assessment and for clarifying the role of SOC in
rockfall dynamics. But as mentioned above, the latter first requires an ex-
tension of the model by long-term driving processes such as fluvial or glacial
erosion that locally steepen the relief and thus supply the potential for mass
movements.

To summarize, there is growing evidence for power-law size distributions
in different types of landslides. The scaling exponents found for regolith land-
slides strongly differ from those found for rockfalls and rockslides, but each
of this classes may be characterized by a universal scaling exponent. A hand-
ful of models has been designed to reproduce these power-law distributions.
Most of them address regolith landslides, an all hinge on ad hoc rules. So far
none of them provides a consistent explanation for the difference in the scal-
ing exponents found for different types of landslides. Even none of them can
uniquely identify any type of landsliding as a phenomenon governed by SOC,
but this applies to almost all natural phenomena considered in the context
of SOC.
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Chapter 12

SOC and Solar Flares

Paul Charbonneau

12.1 Introduction: solar magnetic activity and flares

Solar activity is made up of a broad range of physical phenomena, including
geoeffective eruptive events such as flares and coronal mass ejection, as well
as modulation of the Sun’s corpuscular and radiative output over the full
breadth of the observational energy range. Moreover, stellar observations in
the era of space observatories have revealed that the myriad of phenomena
collectively making up solar activity take place on every star in a comparable
mass range and evolutionary stage, when observed with sufficient sensitivity.

The Sun’s magnetic field is the engine for all of solar activity. Produced by
a hydromagnetical dynamo process taking place at least in part in the deep
interior, this magnetic field is imbedded in the strongly turbulent environment
of the solar convection zone, spanning the outer 30% of the Sun’s radius.
The broad range of spatial scales characterizing this turbulent convection is
imprinted on the solar magnetic field, which emerges at the solar photosphere
in the form of structures covering at least 6 orders of magnitude in magnetic
flux, their size distributed as a well-defined power law (Parnell et al. 2009).
The outward extension of this photospheric flux, in turn, structures the solar
corona wind, with its scale invariance in turn imprinted on a vast range of
coronal and interplanetary phenomena.

This chapter focuses on one specific solar phenomenon, flares, for which a
very strong physical case for a SOC scenario can be made. Solar flares, most
readily observed in the short-wavelength range of the electromagnetic spec-
trum (extreme ultraviolet to soft X-ray, from about 100nm down to 1nm),
result from the impulsive and spatially localized release of energy in the so-
lar corona (see, e.g., Benz 2008, and references therein). Figure 12.1 shows
one particularly spectacular example, having occurred on 04 November 2003.
The image was taken in the extreme ultraviolet (19.5nm) by the EIT instru-
ment onboard the SOHO spacecraft. This flare, occurring over a large active
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region (AR10486 in the NOAA numbering convention) just about to rotate
off the visible solar disk, remains to this day the most intense X-ray flare
ever recorded from space. The bottom panel on Fig. 12.1 shows X-ray time
series covering that same time period. The flare of Fig. 12.1 corresponds to
the tallest peak, at UT 19:48 on Nov 4. Note also the many other large flares
having taken place in the preceeding 48 hours, half of which originating over
active region AR10486. The many smaller X-ray spikes peppering the time
series are also flares, of much smaller magnitudes, many occurring elsewhere
on the solar disk, and blending into the more slowly varying background level
arising from diffuse emission over the whole Sun.

The vast majority of large flares, including that on Fig. 12.1, occur within
large solar active regions, which are strongly magnetized complexes coin-
cident at photospheric levels with sunspots and other strongly magnetized
structures. Even the smaller flares tend to occur in regions overlying mag-
netic structures, sometimes much smaller than bona fide active regions. This
spatial coincidence leaves little doubt that the solar magnetic field provides
the energy reservoir powering the flaring phenomenon. Hard X-ray observa-
tions (see, e.g., Masuda et al. 1994) indicate that flare onset usually takes
place above the photosphere, in the lower corona, where the electrical conduc-
tivity is quite large and therefore the magnetic diffusion time many orders of
magnitude longer than observationally-inferred onset times, which are of the
order of seconds (viz. Fig. 12.1). This extreme disparity between observed
onset time and the magnetic diffusion timescale leaves magnetic reconnec-
tion as the most likely (if not the only) physical candidate for a dynamical
(rather than diffusive) release of energy (see Shibata & Magara 2011, and ref-
erences therein). Despite decades of research on this topic, the instability(ies)
responsible for the triggering of magnetic reconnection have not yet been con-
vincingly identified, although numerous candidate magnetohydrodynamical
and plasma instabilities have been proposed.

Flares have been extensively studied, in part because of their potentially
damaging impact on communications networks and technological infrastruc-
tures, especially on satellites in high orbits where the shielding effect of
Earth’s magnetic field is reduced. From the very largest flares, so intense
as to damage satellite electronics, solar panels and imaging instruments and
even pose a health threat to orbiting astronauts, flare-like energy release
events have been observed down to the instrumental detection limit. The in-
ferred frequency distribution of flare energy takes the form of a well-defined
power-law, all in all covering over eight orders of magnitude in flare energy
(Dennis 1985; Aschwanden et al. 2000; Aschwanden 2011). While the conver-
sion of observed EUV or X-rays fluxes to flare energy does involve a number
of working hypotheses regarding the geometry of the flaring volume, physi-
cal conditions therein, and physical approximation in the treatment of hard
radiation emission (e.g., McIntosh & Charbonneau 2001; Aschwanden & Par-
nell 2002, McIntosh 2000; Parenti et al. 2006; and references therein), solar
flares stand as one of the most impressive examples of scale-invariance to be
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Fig. 12.1: Top: Extreme Ultraviolet (19.5nm) image of the solar disk on 4
Nov 2003, capturing a large flare near its peak phase (lower right quadrant;
the two thin, bright horizontal spikes are artefacts caused by oversaturation
of pixels in the camera’s CCD). This flare is the most intense X-ray flare
ever recorded from space, and topped off a series of strong flares, triggered
over active region AR10486 and neighbouring AR10488, starting on 28 Oc-
tober with the so-called “Halloween storm” event. Image obtained by the
EIT intrument onboard SOHO (Solar and Heliospheric Observatory), a joint
mission of NASA and ESA. Bottom: a time series of GOES soft-X-rays fluxes
in two wavelength bands, as color-coded, over a 3-day time period including
the large flare on the above EIT/SOHO image, late on 4 Nov. Note the very
rapid onset phase (the vertical scale is logarithmic!), followed by a slower
decay phase, a pattern largely independent of flare size. Plot courtesy of
NOAA/SEC.
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encountered in astrophysics. As remarkable perhaps, the power-law slope of
the PDF of flare energy release remains invariant in the course of the solar
cycle (Lu et al. 1993; Aschwanden 2011; Aschwanden & Freeland 2012), even
though flaring rates vary by many orders of magnitude between cycle minima
and maxima.

Understanding and modelling the flaring process presents a number of
substantial challenges beyond those posed by the ill-understood physics of
magnetic reconnection in the solar corona; a large flare, such as on Fig. 12.1,
can liberate a few 1033 erg of energy in a few minutes, which is approaching
1% of the per-second solar radiative luminosity. Moreover, the same active
region can produce many substantial flares within a relatively short period
of time (viz. Fig. 12.1). This apparent lack of “recovery time” indicates that
even a very large flare does not necessarily deplete its energy reservoir to a
significant extent. While many solar active regions exhibit higher flare activ-
ity during and immediately after their emergence at the photosphere, large
flares can also occur in mature active regions undergoing little no magnetic
evolution, at least on the scales resolved by photospheric magnetograms. In
other words, flaring often appears “spontaneous”, in the sense of having no
obvious observable external trigger, analogous in this sense to magnetospheric
substorms. All this suggests that flares are not directly driven by subphoto-
spheric processes such as magnetic flux emergence, but arise naturally as part
of intrinsic coronal dynamics.

The primary question is thus: how can the vast amounts of energy required
to power the flaring phenomenon be pumped into the corona, temporarily
stored there, and impulsively released in the observed scale-invariant man-
ner? It turns out that self-organized criticality can provide a viable answer.
However, the path towards this answer runs through what will look at first
like a conceptual detour —but will turn out not to be— involving another
great solar contemporary mystery, namely coronal heating.

12.2 Parker’s coronal heating hypothesis

The corona is the Sun’s outer atmosphere, and extends many solar radii
into interplanetary space where it smoothly blends into the expanding solar
wind. Even away from flaring regions, its temperature reaches 1.5 million
degrees kelvin, very much higher than the ∼ 6000 K of the photosphere. The
coronal gas is very tenuous, so energetically-speaking it should not be that
hard to heat it up to 106 K; however, while the corona is traversed by a huge
radiative energy flux, heat flows from hot to cold, so nothing like equilibrium
thermodynamics will do the trick. To make matters worse, the corona is losing
energy at a substantial rate. Given radiative and conductive losses at its base,
and thermal losses due to acceleration of the solar wind, the average energy
flux required to maintain a quasi-steady corona adds up to ∼ 106 erg cm2
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s−1, for a total of 6× 1028 erg s−1 integrated over the solar photosphere (see
Aschwanden 2004, §9.1). While this represents a mere ' 10−6 fraction of the
Sun’s radiative luminosity, how the required energy flux gets diverted into
the corona is not yet understood quantitatively (see, e.g., Klimchuk 2006 for
a review).

One very potent energy reservoir available to heat the corona is the me-
chanical energy associated with subphotospheric thermal convection, but
again the challenge is to transfer energy from that reservoir into the corona.
Copious emission of acoustic and magnetosonic waves is expected at photo-
spheric levels, but these are very rapidly absorbed as they propagate upwards,
contributing mostly to the heating of the chromosphere, a thin, 104 K inter-
mediate atmospheric layer sandwiched between the photosphere and the base
of the corona. Alfvén waves face the opposite problem: in magnetically open
regions they readily propagate up and through the corona, suffering very
little absorption and escaping instead into interplanetary space.

It turns out that the coronal magnetic field, ultimately anchored in these
same subphotospheric convective layers, can act as a transport and storage
agent for this mechanical energy. The idea has a long and tortuous history,
but was worked out in detail in the 1980’s by E.N. Parker (see Parker 1983,
1988), and is illustrated in cartoon form on Figure 12.2.

It is an observed fact that the solar corona is filled with magnetic loops,
anchored at both ends on unipolar magnetic flux concentrations of oppo-
site polarity scattered all over the photophere. Many such loops are actually
visible over the solar limb above the flare on Fig. 12.1, and can extend over
substantial heights well into the corona. Because of the high electrical conduc-
tivity of the coronal plasma, a very strong dynamical coupling exist between
the plasma and magnetic field. The latter is said to be “frozen” in the plasma.

Imagine now an “unbent” coronal loop, where the photospheric footpoints
have been cut out and the loop turned into a rectilinear magnetic structure
anchored on two planes at “top” and “bottom”, as depicted on Figure 12.2A.
At and below the photosphere, the energy density of the plasma greatly ex-
ceeds the energy density of the magnetic field in a typical coronal loop. As
a result, even if the loop was originally made of purely parallel magnetic
fieldlines, as drawn on Fig. 12.2A, their footpoints will be randomly shuf-
fled by the horizontal convective fluid motions at photospheric levels. In the
corona, on the other hand, due to the sharp drop in density with height (from
an few 10−7 g cm−3 at photospheric levels, down to ∼ 10−16 g cm−3 at the
coronal base, 3000 km higher up), it is the energy density of the magnetic
field that now largely exceeds that of the plasma. The coronal magnetic field
will consequently attempt to relax to a force-free configuration in response to
the footpoint displacements, but the high conductivity of the coronal plasma
poses a strong topological constraint: magnetic fieldlines cannot cross! As a
consequence, the magnetic field becomes entangled (A→C on Figure 12.2),
reaching a quasi-static force-free state everywhere except where fieldlines are
forced to wrap around one another, forming a local tangential discontinuity
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with which is associated a current sheet within which is flowing a strong
electrical current density (J), as per Ampère’s Law:

Fig. 12.2: Cartoon representation of an “unbent” coronal loop. The top and
bottom planes both represent the solar photosphere, where horizontal con-
vective motions inexorably shuffle the fieldlines’ footpoints (A→B→C). Mag-
netic tangential discontinuities form as the loop attempts to relax to a force-
free state under the topological constraints dictated by the high electrical
conductivity (C). Instability of these tangential discontinuities leads to mag-
netic reconnection, spatially localized energy release (D), and disruption of
neighbouring marginally stable current sheets (D→E). While the cascade of
reconnection events has reduced the overall stress (cf. panels C and F), the
system nonetheless retains a higher level of internal magnetic stress than in
its original configuration (panel A). Graphics courtesy of D. Passos.

4πJ

c
= ∇×B (12.1)

(CGS units are used throughout). As the magnitude of this current keeps
growing, it can become unstable with respect to a number of plasma instabil-
ities, leading to reconnection and rapid, spatially localized release of magnetic
energy at the sites of these tangential discontinuities (Fig. 12.2D).

Parker (1988) presents a simple order-of-magnitude estimate of the associ-
ated energy input into the corona, which is well worth recalling here. Consider
a coronal loop of length L and magnetic field strength B, with footpoints an-



12 SOC and Solar Flares 409

chored vertically into the photosphere and subjected there to advection of
an horizontal flow of magnitude v and typical length scale `. Over a time t
this flow will induce an angular deviation θ(t) with respect to the vertical of
magnitude given by

tan θ(t) ' vt/L . (12.2)

The associated horizontal magnetic component Bh has thus a strength

Bh = B tan θ(t) ' Bvt

L
. (12.3)

Now, in the high electrical conductivity regime of relevance here, a magnetic
field acted upon in this manner by a flow will resist the flow through the
buildup of a magnetic stress (Lorentz force per unit area) with horizontal
component of order S ∼ BhB/4π; the work done per unit surface by the
horizontal flow against this force in displacing a footpoint over an infinitesimal
distance dx is then

dW =
BhB

4π
dx , (12.4)

so that, making use of eq. (12.3):

dW

dt
=
vBhB

4π
' B2v2t

4πL
, [erg cm−2 s−1] (12.5)

since v = dx/dt. Parker goes on to argue that for plausible coronal loop pa-
rameters (B ∼ 100 G, v ∼ 0.5 km s−1, L ∼ 1010 cm), a heating rate of 107 erg
cm2 s−1, corresponding to total coronal energy losses over active regions, is
reached in a time interval t ∼ 5 × 104 s, amounting to a maximal deflection
angle of only θc ∼ 14◦. Now, this limiting angle, corresponding to the an-
gle subtented by pairs of magnetic fieldlines bending around one another on
Fig. 12.2, is likely set by whichever instability is responsible for triggering
magnetic reconnection; Parker observes that a higher instability threshold θc
would lead to higher Bh, and thus higher dW . In other words, the global vol-
umetric heat input into varies inversely with the efficiency of local dissipative
mechanism.

Only one additional “ingredient” needs to be added to this physical picture
to produce a model for flares of all sizes: the possibility that reconnection
at one unstable site alters the physical conditions at neighbouring sites of
tangential discontinuities in a manner such as to sometimes push these sites
over their stability threshold (D→E on Figure 12.2). Reconnection at these
sites can then trigger further reconnections at other neighbouring sites, and
so on in classical avalanching style until stability is restored across the whole
structure (Fig. 12.2F). Under this view, a large flare is just an ensemble of
elementary reconnection events (dubbed “nanoflares”) cascading through a
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stressed coronal loop. Larger (smaller) flares simply involve the avalanching of
more (fewer) elementary reconnection events, which is good recipe for scale
invariance. Note also that, as per the above power estimate, a (relatively
small) coronal loop of photospheric cross-section 1000×1000 km2 (comparable
to a granule) can accumulate ∼ 1028 erg of energy in about 10 hours, which
is comparable to the energy output of a mid-size flare.

Perhaps more importantly in the context of this chapter, this modified
form of Parker’s coronal heating conjecture contains all the components be-
lieved to be conducive to classical self-organized critical behavior (see, e.g.,
Jensen 1998): an open dissipative system (a coronal loop) undergoing slow
forcing (by photospheric fluid motions) and subject to a self-limiting local
threshold instability (magnetic reconnection).

12.3 SOC Models of solar flares

In retrospect, it was perhaps inevitable that following the seminal SOC pa-
pers of Bak, Tang & Wiesenfeld (1987, 1988; hereafter BTW), someone would
seek to interpret the remarkable scale invariance observed in solar flare statis-
tics in terms of a SOC process. Inspired by BTW but following more closely
Kadanoff et al. (1989), Lu & Hamilton (1991; hereafter LH91) developed the
first SOC sandpile model targeted at solar flares, that by now has become
a kind of “standard”. The many variations on the theme set by LH91 that
soon followed are reviewed in Charbonneau et al. (2001), to which we refer
the interested reader. Nearly twenty years later it should come as no surprise
that such models can be designed in such as way as to reproduce quite well
the observed power-law form of flare parameter statistics (peak flux, total re-
leased energy, duration, etc.), including the numerical value of the associated
exponents. The real challenge remains at the level of the physical interpreta-
tion to be attached to the various sandpile evolutionary rules. Accordingly,
in this section we describe the workings of the basic LH91 model (or, more
precisely, the variant subsequently published by Lu et al. (1993), hereafter
LH93; see also Lu 1995a and Vlahos et al. 1995). In the following section we
delve into the specific physical interpretations having been tagged onto this
model.

12.3.1 The Lu & Hamilton model

The LH91 and LH93 models are cellular automata defined over a 3D regular
cartesian grid with nearest-neighbour connectivity (top+ down+ right+ left+
front+ back) over which a vector field A is defined. Here we will consider
instead a scalar version of the model, where a nodal quantity Ati,j,k is defined
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over the lattice1. For the time being we will simply consider that the nodal
variable A is related in some way to the magnetic field. The superscript t is
a discrete time index, and the subscript triad (i, j, k) identifies a single node
on the 3D lattice.

Keeping A = 0 on the lattice boundaries, the cellular automaton is driven
by adding one small increment of A per time step, at some randomly selected
node that changes from one time step to the next:

At+1
r = Atr + δA , (12.6)

where the vector index r denotes a random node (i, j, k) on the 3D lattice.
The increment δA is extracted from a random distribution with non-zero
mean, so that its action over a large number of time steps will lead to the
buildup of A over the whole lattice, much as in any classical sandpile model.

A deterministic stability criterion is now defined in terms of the local
curvature of the field at node (i, j, k):

∆Ati,j,k = Ati,j,k −
1

6

∑
n

Atn , (12.7)

where the sum runs over the six nearest neighbours at nodes (i, j, k ± 1),
(i, j ± 1, k) and (i ± 1, j, k), hereafter denoted by the vector index n. If this
quantity exceeds some pre-set threshold Zc:

|∆Ati,j,k| > Zc , (12.8)

then an amount of nodal variable Z is redistributed to the same set of near-
est neighbours according to the following discrete, conservative deterministic
rules:

At+1
i,j,k = Ati,j,k −

6

7
Z , (12.9)

At+1
n = Atn +

1

7
Z , (12.10)

with Z = ∆Ati,j,k in the Lu & Hamilton (1991) model, but Z = sign(∆Ati,j,k)×
Zc in the LH93 model considered here2. Following this redistribution it is pos-
sible that one of the nearest-neighbour nodes now exceeds the stability thresh-
old. The redistribution process begins anew from this node, and so on in clas-
sical avalanching manner. Driving is suspended during avalanching, implicitly
implying a separation of timescales between driving and avalanching dynam-

1 Robinson (1994) has shown that for the type of driving used in the Lu & Hamilton
model, the use of a vector nodal variable yields results identical (statistically) to the
use of a scalar variable.
2 For slow driving (|δA| � A), the stability criterion (12.7) will (typically) only be
slightly exceeded when the instability is triggered, so these two choices yield similar
evolution, although their numerical implementation exhibit distinct stability proper-
ties; see Liu et al. (2003) for more on these matters.
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ics (“stop-and-go” sandpile), and all nodal values are updated synchronously
during avalanche to avoid introducing a directional bias in avalanche propa-
gation, after which the A = 0 condition is enforced at boundary nodes before
proceeding with the subsequent time iteration.

It is readily shown that these redistribution rules, while conservative in
A, lead to a decrease in A2 summed over the seven nodes involved in the
redistribution by an amount:

∆eti,j,k =
6

7

(
2
|∆Ati,j,k|

Zc
− 1

)
Z2
c , (12.11)

with the energy released being “assigned” to the unstable node (i, j, k). If
one identifies A2 with a measure of magnetic energy (more on this shortly),
the total energy liberated by all unstable nodes at a given iteration is then
equated to the energy release per unit time in the flare:

(∆E)t =
∑

unstable

∆eti,j,k , (12.12)

and the lattice energy at iteration t is simply given by

Et =
∑

all nodes

(Ati,j,k)2 . (12.13)

Note that strictly speaking, the expected relation

Et+1 = Et − (∆E)t , (12.14)

only holds for avalanches that do not reach the lattice boundaries, since the
imposed boundary conditions A = 0 also remove energy from the system in
a manner not accounted for in eq. (12.12). In practice, eq. (12.14) is found
to hold very well except on very small lattices.

A natural energy unit here, used in all that follows, is the quantity of
energy e0 liberated by a single node exceeding the stability threshold by an
infinitesimal amount; setting ∆Ai,j,k ' Zc in eq. (12.7) immediately leads to

e0 = (6/7)Z2
c . (12.15)

This is the model’s analog of nanoflares in Parker’s scenario previously dis-
cussed.
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12.3.2 Sample results

Figure 12.3, taken directly from Charbonneau et al. (2001) for illustrative
purposes, shows time series of lattice “energy” (eq. 12.13) and released energy
(eq. 12.12), produced by a 2D version of the LH93 model run on a small
48 × 48 lattice, starting from an empty lattice, i.e., A0

i,j,k = 0 at all nodes.
As the lattice energy gradually builds up, progressively larger avalanches are
triggered intermittently. After about 12 million iterations, the lattice energy
abruptly levels off, coinciding with a marked increase in the size of the largest
avalanches cascading over the lattice. At this point in time the SOC state
has been reached, A remains thereafter in a statistically stationary state
characterized by what looks like constant curvature over the global scale
of the lattice, and avalanche of sizes going from a single node up to the
lattice size evacuate A at the boundaries nodes (where A = 0 is enforced at
every time iteration) at mean rate equal to that associated with the random
driving process. As shown already in LH93, this very simple model yields a
good representation of flare statistics, namely the observed power-law form
(and associated exponents) of the frequency distributions of flare peak energy
release, total energy release, and, to a lesser extent, duration.

Figure 12.4 shows the distribution of the nodal variable A (top) and cur-
vature measure ∆A scaled to the threshold value Zc, over the 2D lattice in
the SOC state at the end of the same simulation as on the previous Figure.
The SOC state appears quite smooth on the scale of the top plot, yet in
fact the curvature measure (bottom) shows a lot of structure down to the
scale of the lattice, as one would have expected from the spatiotemporally
discrete and stochastic nature of the driving process used here. Indeed, even
in the statistically stationary SOC state the global curvature characterizing
the top plot is about 70% of the curvature corresponding to the instability
threshold Zc, meaning that the curvature at most nodes is significantly below
threshold. At this point in this simulation, a large avalanche is in the process
of dying off, with 10 nodes still exceeding threshold here. These nodes are
grouped in three small clusters, the most prominent near lattice center. As
with other sandpiles using stability criteria based directly on nodal value, or
its slope, it is quite common for large avalanches to be rather compact in
their growth phase, but fragment into spatially distinct sub-avalanches later
on. The automated identification of avalanches is not a trivial task here, as
they must be treated as spatiotemporal structures (see, e.g., Uritsky et al.
2007).

Figure 12.5 shows the ensemble of nodes having avalanched at least once
in the course of a large avalanche on a 3D version of the LH93 model ran on
a 64×64×64 lattice. Geometrical analyses of many such avalanches confirms
their fractal nature, with dimension 1.8 for the original LH93 model in 3D
at peak time, and 1.6 for the 2D version. An interesting exercise consists in
projecting this 3D fractal structure on a 2D observational plane, where each
pixel in this plane is assigned an intensity equal to the total energy released
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Fig. 12.3: Time series of energy released by avalanches (A), as given by
eq. (12.12), and total lattice energy (B), as given by eq. (12.13), in a 2D
scalar version of the LH93 model, on a very small lattice of size 48 × 48.
Note how the transition to a statistically stationary SOC state, with lattice
energy leveling off in B, is accompanied by a marked increase of the largest
avalanches running across the lattice, in A. Inset A1 is a closeup showing
the structure of a few individual avalanches. Inset B1 shows cuts across the
lattice center at the four epochs indicated by solid dot on the time series in B,
as labeled. Inset B2 is a close up on the lattice energy time series in the SOC
state, sudden drops corresponding to avalanches. Taken from Charbonneau
et al. (2001), Figure 3.

on the corresponding line-of-sight through the avalanche (a procedure ap-
propriate for an optically-thin medium). Three such synthetic “flare images”
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Fig. 12.4: Snapshot of the spatial profiles of the nodal variable Ai,j (top)
and curvature measure ∆Ai,j (bottom), the latter normalized to the stability
threshold Zc = 5, as extracted at the last iteration of the 48 × 48 2D LH93
simulation of Figure 12.3. While the nodal variable presents what looks like
a smooth distribution over the lattice on the scale of this plot, the curva-
ture measure shows a lot of node-to-node fluctuations about a mean value
correponding to the mean curvature so obvious on the top plot.

are plotted at right on Fig. 12.4, each corresponding to a different projection
plane. These projections are also fractal structures.
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Fig. 12.5: A large avalanche in the LH93 model on a 64 × 64 × 64 lattice.
A small cube is drawn at each lattice node having gone unstable at least
once in the course of this avalanche. The resulting structure is a fractal.
The three panels on the right show “views” of this avalanche from the three
cartesian planes defined by the lattice, where each pixel is assigned a grayscale
intensity proportional to the amount of energy liberated by all nodes located
along the corresponding line-of-sight through the course of the avalanche, as
would be observed by an “imaging instrument” observing the avalanche at a
time cadence much longer than its evolutionary timescale. These projected
“images” are also fractal. Taken from McIntosh et al. (2002), Figure 5.

12.4 Physical interpretation

For all its success at reproducing the statistical distributions of flare pa-
rameters, the discrete CA rules governing the operation of the LH93 model
remain very far removed from the MHD equations presumably governing
the process of magnetic reconnection and dynamical reconfiguration of the
coronal magnetic field. In this section we review in some detail the physical
interpretation that offers arguably the most convincing link to coronal mag-
netohydrodynamics. The task is to assign physically well-grounded meaning
to (1) the lattice; (2) the nodal variable; (3) the random forcing; (4) the sta-
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bility criterion; (5) the calculation of energy released in avalanches; and (6)
the redistribution rules. We consider these various components in turn.

12.4.1 The lattice and nodal variable

We adopt here a variation of the interpretative picture originally put forth by
Lu et al. (1993) and much elaborated by others (e.g., Vassiliadis et al. 1998;
Isliker et al. 1998, 2000, 2001). The 3D lattice will be considered as the interior
of a an “unbent” coronal loop (viz. Fig. 12.2), and the nodal variable A as
the z-component of the magnetic vector potential A, such that

B = ∇×A . (12.16)

Note already that any magnetic field defined in this manner will automatically
satisfies the solenoidal constraint ∇ ·B = 0. The vector potential component
Az then defines the magnetic field component in the xy plane, which can be
directly related to the degree of twist in the loop, i.e., the ratio of transversal
to longitudinal field components3. As argued by Lu et al. (1993), adding small
random increments of A at one lattice node then corresponds to adding a
small amount of twist somewhere in the loop, which fits nicely the Parker
scenario outlined above.

Isliker et al (2001) show that under this Ansatz, a number of realistic mag-
netic configurations can be produced from the original LH93 model (with
the nodal variable a vector quantity, namely the full magnetic vector poten-
tial A). Under different boundary conditions and driving schemes (isotropic
vs anisotropic), the magnetic field in the SOC state can take the form of
solenoidal structures organized around magnetic neutral lines, or arcades of
magnetic fieldlines connected to a boundary plane (see Isliker et al. 2001,
Figs. 1 and 2).

12.4.2 The stability criterion

Consider now Ampère’s Law (12.1), again written in terms of the vector
potential:

µ0J = ∇× (∇×A) = −∇2A , (12.17)

under the Coulomb gauge ∇·A = 0. Next, note that through simple algebraic
manipulation the curvature measure (12.7) can be rewritten as

3 The longitudinal magnetic field is assumed to remain unaffected by the variations
of the field components contained within any plane perpendicular to the loop axis,
as required by conservation of magnetic flux along the loop.
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∆Ati,j,k = −∆
2

6

( Ai+1,j,k − 2Ai,j,k +Ai−1,j,k

∆2

+
Ai,j+1,k − 2Ai,j,k +Ai,j−1,k

∆2
+
Ai,j,k+1 − 2Ai,j,k +Ai,j,k−1

∆2

)
. (12.18)

With ∆ denoting the internodal nearest-neighbour distance, the quantity
within parentheses on the RHS has the form of a second-order centered fi-
nite difference for the standard Laplacian operator acting on A, so that the
instability criterion becomes:

|∇2A| > 6Zc
∆2

, (12.19)

This is a threshold condition on ∇2(Az ẑ), i.e., the magnitude of the longitu-
dinal (Jz) component of the electric current, as per eq. (12.17). This is quite
satisfying from the point of view of MHD and plasma stability. Returning to
the bottom plot on Fig. 12.4, it is also clear that the current density shows a
lot of fine-scale structure, (see also Isliker et al. 2001, Fig. 6, for a 3D equiva-
lent), which is consistent with Parker’s picture of small current sheets being
ubiquitous throughout coronal magnetic loops.

12.4.3 Computing the released energy

As an Ansatz, the identification of the nodal variable in the LH93 model with
the magnetic vector potential suffers from one significant difficulty: there
is not necessarily a one-to-one correspondence between the squared nodal
variable and magnetic energy as conventionally defined:

EB =
1

8π

∫
B2dV ≡ 1

8π

∫
(∇×A)2dV 6= 1

8π

∫
A2dV . (12.20)

In the case of the 2D version of the LH93 model, with the nodal variable
identified with the z-component of the magnetic vector potential, eq. (12.13)
should be replaced by:

Et =
∑

all nodes

[(
Ati,j+1 −Ati,j−1

2∆

)2

+

(
Ati−1,j −Ati+1,j

2∆

)2
]
. (12.21)

assuming unit lattice spacing ∆ and using second-order centered finite dif-
ferences for the spatial derivatives. Evidently, for a fixed field geometry, one
expects the overall magnitude of B to be proportional to that of A; however,
the energy released in the LH93 model arises primarily from the small-scale
fluctuations about the mean global state (viz. Fig. 12.4 herein). We already
remarked that the LH93 redistribution rules lead to a decrease of A2 over the
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nodes involved in the redistributions, as per eq. (12.11). The key question
is then: are the redistribution rules really reducing the magnetic energy, as
defined physically though eq. (12.21)?

Figure 12.6 offers an answer to this question. Panels (A) and (B) show
energy release and lattice energy time series spanning the last 20000 iterations
of the simulation run plotted on Fig. 12.3. As expected, there is a perfect
temporal correlation between the occurrence or large avalanches in (A), and
drops of lattice energy in (B). Panel (C) is the lattice energy time series
computed this time using eq. (12.21). The overall correlation with the time
series in (B) appears quite good, in that most large drops in both time series
correlate temporally very well with one another; careful comparison of the two
time series reveals exceptions, however, the most prominent being flagged by
a vertical dashed line. The large avalanche beginning around iteration 11000
shows up as a large fluctuations in (C), but does not decrease the magnetic
energy as other avalanches of similar size do. Nonetheless, as a statistical rule,
avalanches do lead to a decrease of “true” magnetic energy in this model, a
rule holding especially well for the larger avalanches.

To sum up, the apparent ambiguity in the definition of magnetic energy
does not turn out to be problematic, and the identification of the sandpile
nodal variable with the magnetic vector potential is still holding up well at
this stage.

12.4.4 Nodal redistribution as nonlinear diffusion

The LH93 redistribution rules (12.9)–(12.10) clearly diperse locally the nodal
variable in a manner isotropic and reducing local gradients between the un-
stable node and its neighbours. As such it behaves as a diffusion process,
albeit a strongly nonlinear one since it is activated only once a node exceeds
the stability threshold, and is nil otherwise. Lu (1995b) investigated the SOC-
like avalanching behavior in a model 1D nonlinear diffusion equation of the
form:

∂A(x, t)

∂t
=

∂

∂x

(
D(A, t)

∂A(x, t)

∂x

)
+ S(x, t) , (12.22)

where S(x, t) is a spatiotemporally random driving function with non-zero
mean, and the space- and time-variable diffusion coefficient D evolves con-
tinuously between floor and ceiling values Dmin, Dmax according to:

∂D

∂t
=
Q(A)

τ
− D

τ
, (12.23)

with the switching function Q(A) defined in terms of the nodal variable slope
through the threshold relation:
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Fig. 12.6: Time series of (A) released energy, as given by eq. (12.12), and (B)
lattice energy as given by eq. (12.13), correponding to the last 20000 itera-
tions of the LH93 2D simulation of Fig. 12.3. Panel (C) is an alternate time
series of magnetic energy, computed this time using eq. (12.21). Although the
latter shows more fine structure, the overall correlation with the time series
in (B) is excellent, especially with regards to the energy drops associated with
large avalanches. The vertical dashed line identifies a large avalanche where
the expected energy drop does not appear on panel C; such occurrences are
the exception rather than the rule (see text). Here as in panels A1 and B2 of
Fig. 12.3, in plotting the time series the same time step size is used during
and in between avalanches, in order to illustrate the latter’s temporal struc-
ture; under the separation of timescale characterizing stop-and-go sandpiles,
avalanches and associated lattice energy drops should be nearly instantaneous
in comparison to the inter-avalanche wait time (cf. Fig. 2 in Lu et al. 1993)

Q(A) =

{
Dmin |∂A/∂x| < k

Dmax |∂A/∂x| > βk
(12.24)
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with a decay constant τ , threshold parameter k and hysterisis parameter β.
Note that under these definitions, and with 0 < β < 1, the gradient required
to turn the instability on (Dmin → Dmax) is larger than that required for
the instability to sustain itself once activated. Once the local gradient has
fallen below this threshold, the diffusion coefficient decays back to its floor
value Dmin on a timescale given by τ . Lu (1995b) shows that this (relatively)
simple nonlinear diffusion system, when driven long enough, settles in a state
where energy dissipation occurs through discrete avalanching-event with sizes
distributed as a power-law, in a manner qualitatively similar to sandpile
models.

12.4.5 Reverse engineering of discrete redistribution
rules

The nonlinear diffusion interpretation suggested by Lu (1995b) can be for-
malized by considering the redistribution rules as discretized forms of differ-
ential operators, which then allows to “reverse engineer” partial differential
equation describing the phenomenon, which can (perhaps) take us one step
closer to true magnetohydrodynamics. In the solar flare context many such
PDEs have been “inverted” from the LH93 and related cellular automata (e.g.
Vassiliadis et al. 1998; Isliker et al. 1998; Liu et al. 2003). For illustrative pur-
poses, we only describe here the reverse engineering procedure proposed in
Liu et al. (2003).

For simplicity, consider a 1D version of the LH91 model, with stability
criterion and redistribution rules given by:

∆Ati ≡ Ati −
1

2

∑
j=i±1

Atj , (12.25)

At+1
i = Ati −

2

3
∆Ati , (12.26)

At+1
i±1 = Ati±1 +

1

3
∆Ati . (12.27)

Consider now a situation where three neighbouring nodes (i− 1, i, i+ 1) are
avalanching; at the central node i Ai will vary according to:

At+1
i = Ati +

1

3
∆Ati−1 −

2

3
∆Ati +

1

3
∆Ati+1 , (12.28)

which, upon substitution of eq. (12.25), can be written as

{A}t+1 − {A}t = −2

3
[S][S]{A}t , (12.29)
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where {A}t the vector of nodal variables at time t, and [S] a tridiagonal
matrix operator defined as

Sij = −1

2
δi,j−1 + δi,j −

1

2
δi,j+1 , (12.30)

where δi,j is the usual Kronecker delta4. Now, the matrix operator (12.30)
is identical to that arising from second-order centered finite difference dis-
cretization of the 1D differential operator −(1/2)∂2/∂x2 on a spatial mesh
of constant, unit spacing ∆x = 1; likewise, the LHS of eq. (12.29) can be
interpreted as a simple forward-in-time first order discretization of ∂/∂t, for
a unit time step ∆t = 1. Consequently, the discrete evolutionary equation
(12.28) can be interpreted as a discretization of the following hyperdiffusion
equation:

∂A(x, t)

∂t
= D

∂4A(x, t)

∂x4
, (12.31)

with a hyperdiffusion coefficient D = 1/6.
In a more realistic situation where all nodes are not simultaneously

avalanching, we have to take into account of the fact this hyperdiffusion
coefficient is a function of time and space, being nonzero only at avalanching
nodes:

Dt
i =

{
1/6 |∆Ai| > Zc

0 otherwise
(12.32)

Equation (12.28) must then be replaced by

At+1
i = Ati + 2Dt

i−1∆A
t
i−1 − 4Dt

i∆A
t
i + 2Dt

i−1∆A
t
i+1 , (12.33)

which leads again to a hyperdiffusion equation, this time with a variable
diffusion coefficient:

∂A(x, t)

∂t
=

∂2

∂x2

(
D(A)

∂2A(x, t)

∂x2

)
. (12.34)

In more than one spatial dimension, and including a spatiotemporally random
forcing term S(x, t) acting only when the system is globally stable, one then
obtains an evolutionary equation of the general form:

∂A(x, t)

∂t
= ∇2

(
D(A)∇2A(x, t)

)
+ S(x, t) . (12.35)

now with

D(A) =

{
∇2A(x, t) |∆A(x)| > Zc

0 otherwise
(12.36)

4 For a 2D (3D) version of the model, [S] would be a sparse pentadiagonal (heptadi-
agonal) matrix operator.
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Compare this with Lu (1995b)’s model nonlinear diffusion equation (12.22).
Bélanger et al. (2007) have solved numerically the 2D form of this generalized
hyperdiffusion equation, and demonstrated that the system’s behavior in the
statistically stationary SOC state, including size distribution of avalanches,
is identical to the 2D version of the LH93 sandpile model, even though dif-
ferences in avalanching behavior are observed in the transient phase towards
SOC (compare their Figs. 1 and 2 to Fig. 12.3 herein).

What would then the link between eq. (12.35) and the governing equations
of magnetohydrodynamics? There is currently no clean answer to this key
question, but Liu et al. (2003) offer the following argument: in the strong
MHD turbulence regime expected to characterize the reconnection process,
the linear dissipative term in the MHD induction equation is expected to
become:

η∇2B → ηturb∇2B , (12.37)

where the magnitude of the “turbulent” magnetic diffusivity is set by the
vigor of the turbulent flow:

ηturb ∼ 〈u2〉 , (12.38)

where u is the (turbulent) plasma velocity and the angular brackets denote
some appropriate averaging operator (Pouquet et al. 1976). Now, eq. (12.37) is
second-order in physical space, but in conjunction with eq. (12.38), the mag-
netic diffusion term as a whole would becomes fourth order in Fourier space,
as would the RHS of eq. (12.35). The validity of this conceptual bridge should
be investigated through numerical simulations (see also Guo et al. (2012) for
a demonstration of hyperdiffusive behavior in magnetic reconnection under
different physical regimes).

12.5 Beyond the sandpile

While the physical interpretation and reverse engineering approach to the cel-
lular automata rules of sandpile models may appear convincing, they are, at
some level, fundamentally flawed. This is because finite-difference discretiza-
tion of partial differential equations makes mathematical sense only if the
quantities being discretized vary smoothly over the length scale of the spatial
mesh used for discretisation. Yet, by the very nature of most SOC sandpile
models, including the LH93 model which has been the focus of the preced-
ing section, the thresholded nature of the redistribution mechanism implies
that many physical quantities, notably the (hyper)diffusion coefficient, vary
discontinuously on the length scale of the lattice. Moreover, the (ad hoc)
choice of mapping between the lattice and the numerical mesh, and of fi-
nite difference formulae assumed to be represented by the discrete stability
and redistribution rules, has a determining influence on the mathematical
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form of the reverse-engineered PDEs (compare, e.g., the reverse engineering
approaches of Isliker et al. 1998 and Liu et al. 2003)

A distinct approach to the physical interpretation problem has been to
design SOC models of solar flares where the dynamical elements are more
directly related to the coronal magnetic field and plasma. A few such models
are reviewed in this section, after a brief survey of numerical simulations of
MHD coronal dynamics directly inspired by Parker’s physical scenario.

12.5.1 Numerical simulations

The numerical simulation of solar flares is an extremely active research area
and continues to generate a voluminous literature (see Shibata & Magara
2010, and references therein). The foregoing brief overview is restricted to
magnetohydrodynamical simulations meant to capture Parker’s physical pic-
ture of coronal heating by nanoflares, as per Fig. 12.2 herein. Many such
simulations have been published, starting with Mikić et al. (1989), Longcope
& Sudan (1994), and Galsgaard & Nordlund (1996). The geometrical and
physical setup is the same as illustrated in cartoon form on Fig. 12.2: an
initially uniform, rectilinear magnetic field threads a cartesian domain, with
the normal component of the field held fixed at the bounding planes. Ran-
dom horizontal displacements are then imposed within these planes, and the
simulations track the subsequent evolution of the magnetic field within the
computational box by solving the full set of magnetohydrodynamical equa-
tions. These pioneering simulations did demonstrate that boundary forcing
by random horizontal flows leads to the buildup and dissipation of spatially
localized electrical current systems within the domain. However, their un-
avoidably limited spatial resolution, coupled to the system’s natural tendency
to build up tangential discontinuities, makes it very difficult even with today’s
computing hardware to produce very thin current sheets prone to dynami-
cal instabilities, their dissipation taking place instead through simple Ohmic
decay, explicit or of numerical origin.

There are a number of ways around the resolution problem, besides waiting
for computers to become sufficiently powerful to crack the problem through
the brute force approach. Minimally-diffusive numerical algorithms are avail-
able in the literature, and in the MHD some have been shown able to track
the buildup of current sheets in an accurate and nonlinearly stable manner
down to the scale of the spatial mesh (Bhattacharyya et al. 2010). Such algo-
rithms are ideally-suited to simulate Parker’s scenario, and should be applied
to the problem.

Another approach is to introduce physical simplifications of the governing
equations, based on the idea that in a strongly magnetized coronal loop where
instability between neighbouring flux strands set in for a relatively small
crossing angles (recall Parker’s estimate of 14◦). The so-called reduced MHD
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approximation offers a promising avenue towards this goal. The geometrical
setup is once again our now familiar unbent coronal loop, with the loop axis
oriented in the cartesian z-direction, and the photosphere corresponding to
the z = 0 and z = L planes, with interior planes perpendicular to the z-
axis representing cross-sections of the coronal loop (viz. Fig. 12.2A). In the
present context, reduced MHD involves the following assumptions: (1) the
magnetic field along the axis of the loop (z-direction) is much stronger than
the orthogonal components in the plane perpendicular to the z-axis, denoted
by the subscript “⊥” in what follows; (2) magnetic field and velocity gradients
in the z-direction are much smaller than within the orthogonal planes; (3)
kinetic plasma pressure is much smaller than magnetic pressure; and (4) the
plasma is incompressible. Expressing the magnetic field in terms of the Alfvén
velocity:

a =
B√
4πρ

, (12.39)

the problem reduces to solving the MHD fluid and induction equations for
the perpendicular components of the flow and field:

∂v⊥
∂t

+ (v⊥ · ∇⊥)v⊥ = a0
∂a⊥
∂z

+ ν∇2
⊥v⊥ + (a⊥ · ∇⊥)a⊥ −

1

2
∇a2
⊥ ,(12.40)

∂a⊥
∂t

+ (v⊥ · ∇⊥)a⊥ = a0
∂v⊥
∂z

+ η∇2
⊥a⊥ + (a⊥ · ∇⊥)v⊥ , (12.41)

where a0 is the strength of the dominant longitudinal (z-directed) magnetic
component, and ν and η are the plasma viscosity and magnetic diffusivity,
respectively. Two-dimensional numerical solutions of this set of equations
subjected to random forcing at the photospheric planes have amply demon-
strated that the system reacts by producing numerous, small but intense
electrical current sheets within the interior volume, dissipation taking place
in a strongly intermittent manner (see, e.g., Dmitruk et al. 1998; Georgoulis
et al. 1998; and references therein). However, in these calculations the scale
invariance observed in the size distribution of discrete energy release events
is a direct reflection of a scale invariance in the size distribution of spatially
localised electrical current systems that develop in the simulation, itself a con-
sequence of scale invariance in the plasma turbulence generated by boundary
forcing. No bona fide avalanches are occurring in these simulations, in the
sense that dissipative events do not trigger one another.

If global simulations of the complete Parker scenario remain elusive, nu-
merical simulations have provided much insight on the working of individual
elements, in particular at the level of the formation and disruption of elec-
trical current sheets in (relatively) simple sheared magnetic configurations
(Dahlburg et al. 2005, 2009; Bhattacharyya et al. 2010). Such simulation have
confirmed that sheared magnetic flux system do become unstable beyond a
critical shear angle, and have shown that transition to MHD turbulence can
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occur through a sequence of at least two distinct instabilities (Dahlburg et
al. 2009). The physical underpinning of this key component of Parker’s sce-
nario thus appears well established.

12.5.2 SOC in reduced MHD

Yet another approach is to design cellular automata that derive directly from
the magnetohydrodynamical equations describing the flaring process. Buch-
lin et al. (2003; see also Einaudi & Velli 1999) have designed an interesting
cellular-automaton-type SOC model inspired by the reduced MHD simula-
tions just discussed. The mathematical structure of eqs. (12.41) is such that
the magnetic field can be expressed in terms of a z-directed vector potential
through two scalar fields αs, with s = ±, via the relation

v⊥ + sa⊥ = ∇⊥ × (αsẑ) , (12.42)

with the magnetic vector potential and the z-component of the electrical
current density given respectively by

Az = (α+ − α−)/2 , Jz = −∇2
⊥Az . (12.43)

With the nonlinear and dissipative terms neglected, eqs. (12.41) can be recast
in the form of a wave equation for αs describing the propagation of linear
Alfvén waves along the positive and negative z-direction. Any perturbation
(i.e., forcing) on the “photospheric” boundaries therefore propagates inwards
at a speed a0 = B0/

√
4πρ set by the strength B0 of the longitudinal magnetic

field. The Buchlin et al. (2003) cellular automaton proceeds by propagating
boundary forcing inwards by solving the aforementioned wave equation, keep-
ing track at every grid point of the resulting electrical current density. When-
ever the latter exceeds some preset threshold, the magnetic field is adjusted
so as to bring the current back below the instability threshold, on a timescale
δt much shorter than boundary forcing, in the spirit of stop-and-go sandpiles.
This is carried out by repeated application of the following evolutionary rule
on the vector potential at unstable grid points:

Az(x, y, z, t+ δt) = Az(x, y, z, t)− η δt Jz(x, y, z, t) , (12.44)

amounting to a first-order time-explicit, second-order centered-in-space dis-
cretization of a linear diffusion equation for the vector potential Az. The mag-
netic field and flow are then calculated via eqs. (12.42)–(12.43), and boundary
forcing resumes.

This system can be driven to statistically stationary state exhibiting SOC
behavior, including scale-invariant energy release events. Comparison of the
magnetic field and electrical current structures in the planes orthogonal to the
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loop axis, as obtained by the Buchlin et al. (2003) model and in the reduced
MHD simulations having inspired the model (Georgoulis et al. 1998), reveal
both similarities and differences, notably the (relative) paucity of current-
sheet-like structures in the former, as compared to the latter. Nonetheless,
the Buchlin et al. (2003) cellular automaton offers a very appealing alternate
connection to MHD, which clearly merits further investigation.

12.5.3 Fieldline-based models

Morales & Charbonneau (2008, 2009) have developed an anisotropic cellular
automaton model in which the dynamical elements are magnetic flux strands.
The geometrical setup and evolutionary rules follows closely Parker’s physical
picture of stressed coronal loops (Fig. 12.2 herein). A 2D N × N cartesian
lattice is filled with nodes having only top+down connectivity, thus defining
a set of N initially vertical lines. Each of these lines is taken to represent
a magnetic flux tube, the collection of which making up an unbent coronal
loop, with the photosphere corresponding to the top and bottom boundaries.
The system is assumed periodic in the horizontal, and is forced by imposing
sequential horizontal displacements at randomly selected nodes, the displace-
ment itself having non-zero mean. This process mimics the buildup of stresses
and twist within the loop, in response to horizontal photospheric fluid mo-
tions. Inevitably, two nodes will end up at the same lattice site, which is taken
to correspond to the appearance of a tangential discontinuity/current sheet.
When this happens, the angle subtended by the two associated flux strands
is calculated, and if this angle exceeds a pre-set threshold value the two flux
strands involved are cut-and-spliced, mimicking the topological change me-
diated by magnetic reconnection, and one node displaced away from the dual
occupancy lattice site, in order to restore stability. Figure 12.7 illustrates the
working of these operations on a very small lattice, in the early stage of the
evolution, when the flux strands have only suffered very little deformation.
Avalanching behavior results from the fact that the final nodal displacement
step can bring the displaced node to a site already occuppied by a node form
another flux strand, as on the example displayed on Figure 12.7; in such a
case the cut-and-splice-and-displace stabilization sequence begins anew if the
angle at this new crossing site exceeds the stability threshold, and so on until
there remain no unstable crossings throughout the lattice as a whole.

The driving mechanism here amounts to a form of one-dimensional biased
random walk, with the consequence that the length of the flux strands in-
exorably increases over time. In the incompressible limit, mass conservation
imposes that the product of the strand’s cross-section A and length L remains
constant. Therefore, after a length increase L→ L′, the cross section will be
A′ = A(L/L′). Magnetic flux conservation, in turn, requires BA = B′A′. The
magnetic energy content of strand k will therefore evolve in time according
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Fig. 12.7: Driving, instability and redistribution mechanism in the
anisotropic line-based SOC model of Morales & Charbonneau (2008, 2009).
Flux strands are numbered from left to right, and nodes from bottom to top
along each strand. On the left panel node (2,6) of strand # 2 (in green) and
node (6,6) of strand # 6 (in red) have both been displaced to an empty site
initially occupied by a node of strand #4 but left vacant follwing an earlier
displacement of node (4,6) to the right. The crossing of strands 2 and 4 de-
fines an angle exceeding here the stability threshold. The right panel shows
the result of the cut-and-splice-and-displace redistribution rule, with node
(2,6) displaced one lattice unit to the left after the cut-and-splice operation
at the unstable lattice site. Should this sequence of operations fail to lower
the system’s magnetic energy, an additional displacement would be imposed
at one of the four nearest neighbours along each flux strand, indicated by
square boxes on the left panel (see text). Note also that the displacement of
node (2,6) has led to the formation of a new crossing angle between strands
# 2 and 3. Adapted from Morales & Charbonneau (2009), Figure 1.

to

ek(t) =
1

8π

∫
strand

B2 dV =
A0

8πL0
B2

0L
2
k(t) , (12.45)

where B0, A0 and L0 are the strand’s magnetic field strength, cross-section
and length in the initial state, and keeping in mind that

∫
dV = A×L here.

The total lattice energy is then the sum of the contributions of each strand:
E(t) =

∑
ek(t). Clearly, the driving by nodal displacement will increase

the system’s magnetic energy, and the cut-and-splice-and-displace will tend
reduce it5.

5 In some instances, the cut-and-splice-and-displace sequence described above does
not lead to a reduction of magnetic energy. When this happens, an additional hori-
zontal displacement is imposed at a randomly selected node among the four nearest-



12 SOC and Solar Flares 429

This cellular automaton is readily driven into a SOC state characterized by
avalanches of “reconnections” events involving anywhere from 2 flux strands,
to the whole lattice. Morales & Charbonneau (2008) demonstrate that the
size distribution of energy release events take the form of power laws, with
index ' 1.66 for total liberated energy, ' 1.9 for peak energy release, and
' 1.9 for avalanche duration, independently of lattice size and assumed value
for the threshold angle. Assuming a loop of 200 G magnetic field strength,
length L0 = 1010 cm, and an aspect ratio, 1:100 between the loop’s cross-
section perimeter to length, the energy released by avalanches spans the range
1023—1029 erg for a threshold angle of ' 10◦. Assuming a larger instability
threshold angle leads to a lesser energy release, just as in Parker’s scenario.

Interpreting the lattice as the outer surface of a coronal loop, Morales and
Charbonneau (2009) have synthetized flare “images” by stretching and bend-
ing the lattice to yield a more realistic geometry and cross-section to length
aspect ratio, followed by projection of the loop so produced on an arbitrarily-
oriented observational plane. Synthetic flare images are then constructed by
adding the energy released by individual nodes along line-of-sight, in a man-
ner similar to the procedure illustrated on Fig. 12.5. The resulting frequency
distribution of flare “areas” as well as their fractal dimension both fall within
observational inferences.

Lopez-Fuentes & Klimchuk (2010) have designed an interesting variant
on the same idea, in which horizontal displacements are restricted to the
bottom boundaries, and fieldlines remain straight as they develop an incli-
nation with respect to the vertical (see their Fig. 2). They also introduce a
stability criterion defined in terms of the crossing angle between fieldlines,
and introduce discrete redistribution rules that reduce this crossing angle
whenever the instability threshold is exceeded. The resulting model is a 1D
cellular automaton that releases energy in three more or less distinct stages:
growth, statistically steady, and decay. Modelling the plasma response to the
associated spatiotemporally intermittent volumetric heating in a simple 1D
loop model leads to flare light curves that compare favorably to observations.
Although the energy release events do not display the scale-invariance typi-
cal of SOC systems, the model illustrates very well the effects of small-scale
spatiotemporally intermittent heating on the evolution of coronal loop, in
the general context of Parker’s physical picture of energy loading and release
through forced footpoint motions.

12.5.4 Loop-based models

The SOC model just discussed pertains to tangential discontinuities form-
ing within a single coronal magnetic loop made of many intertwined flux

neighbour of the nodes defining the unstable angle (indicated by square boxes on the
left panel of Fig. 12.7). See Morales & Charbonneau (2008) for more detail.
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strands, as per Parker’s now familiar physical picture. However, high spa-
tial resolution observations reveal that even away from large active region,
the solar atmosphere is filled with loops of a wide range of sizes, anchored
on photospheric magnetic flux concentrations forming the magnetic network.
These loops themselves sometimes cross in response to footpoint displace-
ments forced by photospheric flows, leading to the formation of reconnection-
prone tangential discontinuities, now between the surfaces of distinct loops,
rather than within them.

Hughes et al. (2003; see also Paczuski & Hughes 2004) have developed a
SOC model inspired by this so-called “magnetic carpet” picture of the so-
lar surface (Schrijver et al. 1997; Priest et al. 2002). Dynamical elements
are now individual magnetic loops populating a computational photospheric
plane. At each temporal iteration, a small random displacement is imposed
on a randomly-chosen footpoint (see Fig. 12.8, top panel). With footpoints
executing a 2D random walk, the length of the loop connecting them will
grow inexorably, leading to an increase of magnetic energy within the loop.
Moreover, with many loops present in the system, such random footpoint
displacements will inevitably lead to a situation where two loops cross one
another, as displayed on the top panel of Fig. 12.8. When this happens, the
loops reconnect by exchanging footpoints (middle panel), leading to a reduc-
tion of the loop’s lengths (bottom panel), which amounts to reducing the
magnetic energy within each loop; the excess energy is then released in the
corona. Clearly, the reconnection process changes the overall spatial orienta-
tion of each loop, and therefore can create new crossing points, leading to new
reconnections, and so on until all loop crossings have been eliminated. Re-
configurations can also be triggered by mutual annihilation of two footpoints
of opposite polarities, or by merging of footpoints of like polarity. The lat-
ter mechanism leads to distinct loops sharing one footpoint. Small loops are
removed from the system when their footpoint separation falls below some
preset threshold, the model’s analog of convective submergence, and the loop
population is sustained by injecting small loops at random locations, the
analog of flux emergence.

After an initial transient phase, this model settles in a statistically station-
ary SOC state characterized by an exponential distribution of loop lengths
and a power-law distribution for the sizes of energy release events, with loga-
rithmic slope −3. This is steeper than observed, but it remains interesting in
that it represents one of the few SOC model of the solar corona that produces
a power-law distribution of energy released events steeper than −2, mean-
ing that the smaller events dominate the global heat input into the corona
(Hudson 1991), as postulated by Parker in the context of coronal heating (see
§12.2 herein).

Figure 12.9 shows a snapshot of the computational plane in the SOC state,
and highlights the fact that the population of loops spans a size range going
from the smallest loop, barely large enough to avoid elimination as per the
submergence criterion, all the way to loops with length comparable to the
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Fig. 12.8: Footpoint displacement and reconnection in the loop-based SOC
model of Hughes et al. (2003). Here the random displacement of footpoint
a− (top) has a created a crossing point between the two loops; reconnection
(middle) effectively exchanges footpoints a− and b−, and leads to energy
release through a shortening of the lengths of both loops (bottom). Taken
from Hughes et al. (2003), Figure 2.

domain size. The connectivity network between footpoints established by
the loop is also scale-free, in the sense that the number of loops tied to each
footpoint is also described by a power-law; its logarithmic slope,−2, compares
quite well to the distribution inferred by Close et al. (2003) on the basis of
force-free reconstructions using photospheric magnetograms.

A very interesting elaboration on this general approach has been subse-
quently developed by Dimitropoulou et al. (2011). These authors reconstruct
nonlinear force-free coronal magnetic fields over temporal sequences of ob-
served magnetograms, and introduce LH93-like cellular automata rules to
identify unstable regions and reconfigure this field in response to the evolv-
ing lower boundary conditions. A SOC state is eventually reached, character-
ized by a power-law distribution of energy release events, flatter than in the
Hughes et al. (2003) model but in better agreement with the observationally-
inferred distribution.
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Fig. 12.9: Snapshot of the computational plane in the SOC state, as produced
by the model of Hughes et al. (2003). Once in the statistically stationary SOC
state, the distribution of loop lengths ranges from the injection scale to the
size of the system. Taken from Hughes et al. (2003), Figure 1.

12.6 Outlook

One of the more ambitious “grand challenge” of space weather research is
the prediction of large solar flares, with enough lead time to allow mitiga-
tion of some of their most dangerous impacts within geospace. What if flares
are a manifestation of SOC, along the lines described in this chapter? Under
the avalanche Weltanschau, the only difference between a large flare and a
small one is the number of elementary energy-releasing reconnection events
collectively making up the flare; moreover, in both cases the avalanche is trig-
gered by a single current sheet exceeding its stability threshold as the stressed
coronal loop adjusts to slow forcing taking place elsewhere in the system, a
process taking place at least in part on spatial scales still unaccessible to solar
observing platforms. This does not bode well at all for prediction...

It turns out that the situation may not be as dire. If a large avalanche can
be triggered in a sandpile, it is because many lattice nodes are very close to
their instability threshold; and the distribution of instability thresholds on
the lattice is set by the past history of the system, i.e., by avalanche having
cascaded through the system at earlier times. Even for a driving process that
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is entirely stochastic and on a scale too small to be directly observable, the
current state of the lattice does contain information on potential avalanches.
The numerical experiments of Bélanger et al. (2007) suggest that this infor-
mation is indeed retrievable through data assimilation of past avalanching
behavior, as observed through an energy release time series. In particular,
these authors showed that even with purely stochastic spatially uncorrelated
driving, production of an optimal initial condition for a 2D LH93-type SOC
model by 4DVAR data assimilation can lead to improvements of avalanche
forecasts, over direct numerical simulation of the model using an arbitrary
initial condition.

Processes or structures exhibiting scale-invariance abound in solar physics,
yet in many cases they do not necessarily need be traced to SOC. The outer
30% in radius of the Sun are in a state of strongly turbulent thermally-
driven convection, covering a very wide range of spatial scales, including
an inertial range spanning many orders of magnitude in wavenumber. That
the Sun’s magnetic field, imbedded in this strongly turbulent environment,
would not be “imprinted” with a corresponding scale invariance would be
surprising indeed. Moreover, at photospheric levels processes of advection
by convection, aggregation and cancellation can, in themselves, yield scale-
invariant distribution of flow and magnetic structures (e.g., Parnell 2001;
Rast 2003; Crouch et al. 2007; Thibault et al. 2012). One should certainly
not cry “SOC” too swiftly!

The focus of this chapter has been on solar flares, simply because a very
convincing physical scenario exists, compatible with the classical requirement
for SOC to materialize: a slowly-driven open dissipative system subject to a
self-limiting local threshold instability. Moreover, many components of this
scenario have received strong support from both observations and numerical
simulations. The physical “case” for solar flares as a manifestation of SOC
is, arguably, one of the strongest to be found in the geo- and space sciences.
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Chapter 13

SOC Systems in Astrophysics

Markus J. Aschwanden

The universe is full of nonlinear energy dissipation processes, which occur in-
termittently, triggered by local instabilities, and can be understood in terms
of the self-organized criticality (SOC) concept. In Table 2.1 (of chapter 2
of this book) we included a number of cosmic processes with SOC behav-
ior. On the largest scale, galaxy formation may be triggered by gravitational
collapses (at least in the top-down scenario), which form concentrations of
stars in spiral-like structures due the conservation of the angular momentum.
Similarly, stars and planets form randomly by local gravitational collapses of
interstellar molecular clouds. Blazars (BL Lac quasars) are active galactic
nuclei that have a special geometry with their relativistic jets pointed to-
wards the Earth, producing erratic bursts of synchrotron radiation in radio
and X-rays. Soft gamma repeaters are strongly magnetized neutron stars that
produce crust quakes (in analogy to earthquakes) caused by magnetic stresses
and star crust fractures. Similarly, pulsars emit giant pulses of radio and hard
X-ray bursts during time glitches of their otherwise very periodic pulsar sig-
nal. Blackhole objects are believed to emit erratic pulses by magnetic insta-
bilities created in the accretion disk due to rotational shear motion. Cosmic
ray particles are the result of a long-lasting series of particle acceleration
processes accumulated inside and outside of our galaxy, which is manifested
in a powerlaw-like energy spectrum extending over more than 10 orders of
magnitude. Solar and stellar flares are produced by magnetic reconnection
processes, which are observed as impulsive bursts in many wavelengths. Also
phenomena in our solar system exhibit powerlaw-like size distributions, such
as Saturn ring particles, asteroids, or lunar craters, which are believed to
be generated by collisional fragmentation processes or their consequences (in
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form of meteroid impacts). The magnetosphere of planets spawns magnetic
reconnection processes also, giving rise to substorms and auroras.

While these astrophysical processes have been interpreted in terms of the
self-organized criticality concept (for a comprehensive overview see Aschwan-
den 2011a), quantitative theoretical modeling of astrophysical SOC phenom-
ena is still largely unexplored. In the following Section 13.1 we outline a
general theory approach to SOC phenomena, which consists of a universal
(physics-free) mathematical/statistical aspect, as well as a physical aspect
that is unique to each astrophysical SOC phenomenon or observed wavelength
range. In the subsequent Section 13.2 we discuss then the astrophysical ob-
servations and compare the observed size distributions with the theoretically
predicted ones.

13.1 Theory

A system with nonlinear energy dissipation governed by self-organized criti-
cality (SOC) is usually modeled by means of cellular automaton (CA) simula-
tions (BTW model; Bak et al. 1987, 1988). A theoretical definition of a SOC
system thus can be derived from the mathematical rules of a CA algorithm,
which includes: (1) An S-dimensional rectangular lattice grid, (2) a place-
holder for a physical quantity zi,j,k associated with each cellular node xi,j,k,
(3) a definition of a critical threshold zcrit, (4) a random input ∆zi,j,k in space
and time; (5) a mathematical re-distribution rule that is applied when a local
physical quantity exceeds the critical threshold value which adjusts the state
of the nearest-neighbor cells, and (6) iterative time steps to update the system
state zi,j,k(t) as a function of time t. Although this definition is sufficient to
set up a numerical simulation that mimics the dynamical behavior of a SOC
system, it does not quantify the resulting powerlaw-like size distributions in
an explicit way, nor does is include any physical scaling law that is involved
in the relationship between statistical SOC parameters and astrophysical ob-
servables. A quantitative SOC theory should be generalized in such a way that
it encompasses both the mathematical/statistical aspects of a SOC system,
as well as the physical scaling laws between observables and statistical SOC
parameters. In the following we generalize the fractal-diffusive SOC model
(FD-SOC), described in Aschwanden (2012a) and outlined in Section 2.2.2,
which includes three essential parts: two universal statistical aspects, i.e., (i)
the scale-free probability conjecture, (ii) the fractal-diffusive spatio-temporal
relationship, and a physical aspect, i.e., (iii) physical scaling laws between
geometric SOC parameters and astrophysical observables, which may be dif-
ferent for each observed SOC phenomenon and each observed wavelength in
astrophysical data. Some basic examples of physical scaling laws are derived
for fragmentation processes, for thermal emission of astrophysical plasmas,
and for astrophysical particle acceleration mechanisms.
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System volume Vsys ~ Lsys
S

Euclidean volume VE ~ LS

Fractal volume VF ~ LDs

0 L L

Fig. 13.1: The geometric relationships between the Euclidean avalanche volume VE ∝
LS , the fractal avalanche volume V ∝ LDs , and the system volume Vsys ∝ LSsys is

visualized in 3D space (S = 3), as a function of the avalanche length scale L and

system size Lsys. Note that the probability for an avalanche with size L scales with

the ratio of the system volume Vsys to the Euclidean avalanche volume VE .

13.1.1 The Scale-Free Probability Conjecture

Powerlaw-like size distributions are an omnipresent manifestation of SOC
phenomena, a property that is also called a “scale-free” parameter distri-
bution, because no preferred scale is singled out by the process. Of course,
the scale-free parameter range, over which a size distribution exhibits a pow-
erlaw function, is always limited by instrumental sensitivity or a detection
threshold at the lower end, and by the finite length of the time duration
over which a SOC system is observed and sampled, at the upper end. Bak
et al. (1987, 1988) associated the scale-free behavior with the fundamental
property of 1/f-noise that is omnipresent in many physical systems, giving
rise to a power spectrum of P (ν) ∝ ν−1.

However, here we give a more elementary explanation for the powerlaw be-
havior of SOC size distributions, namely in terms of the statistical probability
for scale-free avalanche size distributions. A key property of SOC avalanches
is that random disturbances can produce both small-scale as well as unpre-
dictable large-scale avalanches of any size, within the limitations of a finite
system size Lsys at the upper end, and some “atomic” graininess ∆L at the
lower end (i.e., a sand grain in sand avalanches, or the spatial pixel size ∆L
in a computer lattice grid). The statistical probability distribution N(L) for
avalanches with size L can be calculated from the statistical probability. If
no particular size is preferred in a scale-free process, the number N(L) of
possible avalanches in an S-dimensional system with a volume Vsys = LSsys is

simply the system volume Vsys divided by the Euclidean volume VE = LS of
a single avalanche with length scale L (Fig. 13.1),

N(L) ∝
(
L0

L

)S
∝ L−S , (13.1)
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In a slowly-driven SOC system, none or only one avalanche happens at one
particular time, but the relative probability that an avalanche can happen
still scales with the reciprocal volume. This is the first basic assumption of
our generalized SOC model, which we call the scale-free probability conjec-
ture. This conjecture directly predicts a powerlaw function for the basic size
distribution of spatial scales, and is distinctly different from the gaussian dis-
tribution function that results from binomial probabilities. For 3-dimensional
SOC phenomena (S = 3), thus we expect a size distribution or differential
occurrence frequency distribution of N(L) ∝ L−3, or a cumulative occurrence
frequency distribution of N(> L) ∝ L−2.

We can now derive the expected size distributions for related geometric
parameters, such as for the Euclidean avalanche area AE or volume VE . If
we simply define the Euclidean area AE in terms of the squared length scale,

i.e., AE ∝ L2 or L ∝ A
1/2
E , which has the derivative dL/dAE ∝ A

−1/2
E , we

obtain for the area size distribution N(AE), using N(L) ∝ L−S (Eq. 13.1),

N(AE)dAE ∝ N [L(AE)]

∣∣∣∣ dLdAE
∣∣∣∣ dAE ∝ A−(1+S)/2

E dAE , (13.2)

yielding N(AE) ∝ A−2
E for 3D phenomena (S = 3). Similarly we define the

Euclidean volume, i.e., VE ∝ L3 or L ∝ V
1/S
E , which has the derivative

dL/dVE ∝ V 1/S−1, yielding a volume size distribution N(VE),

N(VE)dVE ∝ N [L(VE)]

∣∣∣∣ dLdVE
∣∣∣∣ dVE ∝ V −(2−1/S)

E dVE , (13.3)

yielding N(VE) ∝ V −5/3
E for 3D phenomena (S = 3).

In the case that avalanche volumes are fractal, such as characterized with
a Hausdorff dimension DS in Euclidean space with dimension S, the fractal
volume V scales as,

V ∝ LDS , (13.4)

which yields L ∝ V 1/DS and the derivative dL/dV ∝ V (1/DS−1), and thus
the size distribution,

N(V )dV ∝ N [L(V )]

∣∣∣∣ dLdV
∣∣∣∣ dV ∝ V −[1+(S−1)/DS ] . (13.5)

The Euclidean limit of non-fractal avalanches would yield for S = 3 and
DS = S = 3 the same powerlaw exponent αV = 1 + (S − 1)/DS = 5/3 as
derived for VE in Eq. (13.3). For fractal avalanches, withDS ≈ (1+S)/2 = 2.0
for S = 3, we obtain a slightly steeper powerlaw distribution, N(V ) ∝ V −2.0,

than for Euclidean avalanches, i.e., N(VE) ∝ V −5/3
E .

A similar effect occurs for fractal avalanche areas A. If we assume an fractal
structure with Hausdorff dimension D2 in 2D space
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A ∝ LD2 , (13.6)

which yields L ∝ A1/D2 and the derivative dL/dA = A1/DS−1, and thus a
size distribution of

N(A)dA ∝ N [L(A)]

∣∣∣∣dLdA
∣∣∣∣ dA ∝ A−[1+(S−1)/D2)] . (13.7)

For fractal avalanches in 2D space (S=2), with the fractal dimension
D2 ≈ (1 + S)/2 = 1.5, we obtain a powerlaw distribution N(A) ∝ A−5/3,

which is slightly steeper than for Euclidean avalanche areas, i.e., N(AE) ∝
A
−3/2
E .
In some astrophysical observations, such as in solar and planetary physics,

the areas A of SOC phenomena can be measured, while spatially integrated
emission (or spatially unresolved emission) in (optically-thin) soft X-ray or
extreme-ultraviolet wavelengths is often roughly proportional to the fractal
volume V of the emitting source, and thus the size distributions Eqs. (13.5)
and (13.7) can be used to test our scale-free probability conjecture (Eq. 13.1).

If the scale-free probability conjecture (Eq. 13.1) is correct, the derived size
distributions for spatial scales N(L), avalanche areas N(A), and avalanche
volumes N(V ), should be universally valid for SOC phenomena, without
any physical scaling laws. They should be equally valid for earthquakes or
solar flares, regardless of the physical mechanism that is involved in the non-
linear energy dissipation process of a SOC event. In Section 13.2 we will
present some astrophysical measurements of size distributions of such geo-
metric parameters (L,A) which can corroborate our assumption of the scale-
free probability conjecture. Volume parameters (V ) can usually not directly
be measured for astrophysical objects, except by means of stereoscopy or
tomography of nearby objects.

13.1.2 The Fractal-Diffusive Spatio-Temporal
Relationship

After we have established a framework for the statistics of spatial or geometric
parameters of SOC avalanche events, we turn now to temporal parameters,
which can be defined by a spatio-temporal relationship. The temporal evo-
lution of SOC avalanches is governed by the complexity of nearest-neighbor
interactions above some threshold value, which has erratically fluctuating
time characteristics according to cellular automaton simulations. However,
the mean radius r(t) of an evolving SOC avalanche was found to closely
mimic a time dependence of r(t) ∝ t1/2, which can be associated with a clas-
sical random-walk or diffusion process (Aschwanden 2012a). Measurements of
the spatial evolution of solar flares, which are considered to be an established
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SOC phenomenon, revealed a similar evolution, but tend to be sub-diffusive
for the analyzed dataset (Aschwanden 2012b). The observational result of
sub-diffusion in solar flares may be related to the highly anisotropic struc-
ture of the magnetic field, which inhibits cross-field transport of charged
particles, and this way suppresses random walk or classical diffusion, so that
the spatially-averaged expansion area corresponds to a sub-diffusive trans-
port process. Moreover, the instantaneous avalanche area was found to have
a fractal structure, while the time-integrated avalanche area is nearly space-
filling and thus can be described with an Euclidean area or volume. These two
properties of fractal geometry and diffusive evolution have been combined in
the fractal-diffusive SOC avalanche model (FD-SOC) (Aschwanden 2012a).
We generalize this concept now also for anomalous diffusion,

r(t) ∝ κ tβ/2 , (13.8)

where κ is the diffusion coefficient and the diffusive exponent β combines
classical diffusion (β = 1), as well as anomalous diffusion (β 6= 1). Anoma-
lous diffusion processes include both sub-diffusion (β = 0...1), as well as
super-diffusion (β = 1...2), also called hyper-diffusion or Lévy flights (see
also section 2.3.4 in chapter 2 of this book),

r(t) ∝ tβ/2
β < 1 (sub-diffusion)
β = 1 (classical diffusion)
β > 1 (super-diffusion or Lévy flights)

(13.9)

We show the generic time evolution of a sub-diffusion process with β = 1/2
and a super-diffusion process with β = 3/2 in Fig. 13.2. Anomalous diffusion
implies more complex properties of the diffusive medium than a homogeneous
structure, which may include an inhomogeneous fluid or fractal properties of
the diffusive medium.

The spatio-temporal evolution of an instability generally starts with an ex-
ponential growth phase (which we may call the acceleration phase), followed
by a saturation or quenching phase (which we may call deceleration phase).
In the logistic growth model (Section 2.2.1), the deceleration phase saturates
asymptotically at a fixed value, while diffusive models do not converge but
slow down progressively with time (Fig. 13.2).

The diffusive scaling (Eq. 13.9) implies then also a statistical correlation
between spatial L and temporal scales T ,

L ∝ T β/2 , (13.10)

where T is the time duration of a SOC avalanche. From the scale-free prob-
ability conjecture N(L) ∝ L−S (Eq. 13.1) we can then directly compute the
expected occurrence frequency distribution N(T ) for time durations T ,
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Fig. 13.2: Comparison of spatio-temporal evolution models: Logistic growth with

parameters tL = 1.0, r∞ = 1.0, τG = 0.1, sub-diffusion (β = 1/2), classical diffusion

(β = 1), Lévy flights or super-diffusion (β = 3/2), and linear expansion (r ∝ t). All

curves intersect at t = tL and have the same speed v = (dr/dt) at the intersection

point at time t = tL. (Aschwanden 2012b).

N(T )dT ∝ N [L(T )]

∣∣∣∣dLdT
∣∣∣∣ dT ∝ T−[1+(S−1)β/2] dT . (13.11)

For instance, for 3D SOC phenomena (S = 3) we expect a powerlaw dis-
tribution N(T ) ∝ T−(1+β), which amounts to N(T ) ∝ T−2.0 for classical
diffusion, N(T ) ∝ T−1.5 for a sub-diffusion case (β = 0.5), or N(T ) ∝ T−2.5

for a super-diffusion case (β = 1.5). The exponentially growing phase is ne-
glected in this derivation, which implies a slight underestimate of the number
of short time scales. Time scales can also directly be measured in most SOC
phenomena, and thus provide an immediat test of the fractal-diffusive as-
sumption made here, regardless of the physical process that is involved in
the observed signal of SOC avalanches.

13.1.3 Size Distributions of Astrophysical Observables

The previous theory on geometric (L,A, V ) and temporal (T ) parameters
should be universally valid for the statistics of SOC phenomena, and thus
constitutes a purely “physics-free” mathematical or statistical property of
SOC systems. All other observables of SOC events, however, are related to a
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physical (nonlinear) energy dissipation process, which needs to be modeled in
terms of a correlation or scaling law with respect to the physics-free spatio-
temporal SOC parameters. Say, if we observe a physical SOC variable x that
has a correlation or powerlaw scaling law of x ∝ Lγ with the geometric
SOC parameter L, we can infer the expected size distribution N(x)dx by
substituting the scaling law.

What is most common in astrophysical observations is the flux F or inten-
sity that is observed in some wavlength range λ (with physical units of energy
per time), originating from a source with unknown volume V . The flux F (t)
can exhibit strong fluctuations during an energy dissipation event, but we
can characterize the time profile of the event with a peak flux P , or with the
time-integrated flux, also called fluence (with physical untis of energy), which
we may denote with E. For optically-thin emission observed in soft X-ray or
EUV emission, the emissivity or flux is approximately proportional to the
source volume V , so it is most useful to quantify a scaling law of the flux F
with the 3D volume V , which we characterize with a powerlaw exponent γ,

F ∝ V γ . (13.12)

From the size distribution of the fractal volume N(V ) ∝ V −[1+(S−1)/DS ]

(Eq. 13.5) and the scaling law V ∝ F 1/γ (Eq. 13.12) and its derivative
dV/dF ∝ F 1/γ−1 we can then derive the size distribution N(F ) of fluxes
F ,

N(F )dF ∝ N [V (F )]

∣∣∣∣dVdF
∣∣∣∣ dF ∝ F−[1+(S−1)/(γDS)]dF . (13.13)

which has a typical powerlaw exponent of αF ≈ 2.0 (for S = 3, DS ≈
(1+S)/2 ≈ 2.0, and γ ≈ 1). For peak fluxes P we have the same distribution,
except for the fractal dimension having its maximum Euclidean value DS ≈
S, which yields,

N(P )dP ∝ N [V (P )]

∣∣∣∣dVdP
∣∣∣∣ dP ∝ P−[1+(S−1)/γS]dF . (13.14)

which has a typical value of αP ≈ 5/3 ≈ 1.67. Finally, the total flux or fluence
E =

∫
F (t)dt ≈ FT , is found to have a size distribution of,

N(E)dE ∝ N [V (E)]

∣∣∣∣dVdE
∣∣∣∣ dE ∝ E−[1+(S−1)/(γDS+2/β)]dE . (13.15)

which has a typical value of αE ≈ 3/2 = 1.5, for S = 3, DS ≈ (1+S)/2 ≈ 2.0,
γ ≈ 1, and β ≈ 1.

In summary, if we denote the occurrence frequency distributions N(x) of
a parameter x with a powerlaw distribution with power exponent αx,

N(x)dx ∝ x−αx dx , (13.16)
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we have the following powerlaw coefficients αx for the parameters x =
L,A, V, T, F, P , and E,

αL = S
αA = 1 + (S − 1)/D2

αV = 1 + (S − 1)/DS

αT = 1 + (S − 1)β/2
αF = 1 + (S − 1)/(γDS)
αP = 1 + (S − 1)/(γS)
αE = 1 + (S − 1)/(γDS + 2/β)

. (13.17)

Thus, the various powerlaw indices depend on four fundamental parameters:
the Euclidean dimension S of the SOC system, the fractal dimension DS of
SOC avalanches, the diffusion exponent β of the SOC avalanche evolution,
and the scaling law exponent γ between the observed flux and the SOC
avalanche volume. Note, that the powerlaw slopes of the geometric (L,A, V )
and flux parameters (F, P ) do not depend on the diffusion exponent β, and
thus are identical for classical or anomalous diffusion. Only the powerlaw
slopes of the length scale, time scale, and peak flux (L, T, P ) do not depend
on the fractal dimension. All flux-related parameters (F, P,E) depend on a
physical scaling law (γ), which may be different for every observed wavelength
range.

In the following we generally assume 3D SOC phenomena (S = 3), for
which the fractal dimension can be estimated by the mean value between the
minimum and maximum dimension where SOC avalanches can propagate co-
herently via nearest-neighbor interactions (which limits the minimum fractal
dimension to DS,min ≈ 1.0 and maximum fractal dimension to Dmax = S),

DS ≈
DS,min +Ds,max

2
=

(1 + S)

2
, (13.18)

which yields D3 ≈ 2.0 for S = 3 and simplifies the powerlaw indices to

αL = 2
αA = 7/3
αV = 2
αT = 1 + β ≈ 2
αF = 1 + 1/γ ≈ 2
αP = 1 + 2/(3γ) ≈ 5/3
αE = 1 + 1/(γ + 1/β) ≈ 3/2

. (13.19)

In astrophysics, the distributions of geometric parameters (L,A, V ) can only
be determined from imaging observations with sufficient spatial resolution (in
magnetospheric, heliospheric, and solar physics), while the distributions of all
other parameters (T, F, P , and E) can be measured from any non-imaging
observations, such as from point-like stellar objects.
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13.1.4 Scaling Laws for Thermal Emission of
Astrophysical Plasmas

Solar flares and stellar flares are observed in soft X-ray and extreme-
ultraviolet (EUV) wavelengths, where the observed intensity is measured in a
particular wavelength range λ given by the instrumental filter response func-
tion. Soft X-ray and EUV emission is produced by photons via the free-free
bremsstrahlung process, free-bound transitions, or radiative recombination.
In strong magnetic fields, cyclotron and gyrosynchrotron emission is also pro-
duced at radio wavelengths. Soft X-ray and EUV emission occur usually in
the optically thin regime, and thus the total emission measure EM , which is
proportional to the observed intensity in a given wavelength λ, is proportional
to the volume V of the emitting source,

Fλ ∝ EM =

∫
n2
e(x) dV ∝ 〈n2

e〉 V . (13.20)

Thus, if the electron density ne in a source would be constant, or the same
among different flare events, we would have just the simple relation Fλ ∝ V γ
(Eq. 13.12) with the scaling law exponent γ = 1, which is an approxima-
tion that is often made. In fact, this is quite a reasonable approximation for
measurements with a narrow-band temperature filter, which is sensitive to a
particular electron temperature Te, and thus probes also a particular range
of electron densities ne and plasma pressure p = 2nekBTe that depend on
this temperature Te, whatever the scaling law between electron temperature
Te and electron density ne is.

The proportionality constant between the flux intensity Fλ and emission
measure EM is dependent on the wavelength range λ, because each wave-
length filter is centered around a different temperature range Te that cor-
responds to the line formation temperature in the observed wavelengths λ.
Physical scaling laws have been derived to quantify the relationship between
electron temperature Te, electron density ne, and the spatial length scale Lloop
of coronal loops, e.g., by assuming a balance between the heating rate, con-
ductive, and radiative loss rate (i.e., the so-called RTV law; Rosner, Tucker,
and Vaiana 1978), being (in cgs-units),

Te ≈ 1400 (pLloop)
1/3 . (13.21)

which we can express in terms of the electron density ne, using the definition
of the ideal gas law, p = 2nekBTe,

ne ≈ 1.3× 109

(
Te

1 MK

)2(
Lloop

109 cm

)−1

[cm−3] . (13.22)

Thus, if there is no particular correlation between the loop length Lloop of the
densest flare loops (with the highest emission measure) and the volume V of
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the active region, the density is only a function of the electron temperature,
ne ∝ T 2

e . Consequently, if a narrowband temperature filter is used in a soft
X-ray or EUV wavelength range, sensitive to a peak temperature Tλ, the
corresponding electron density is given in a narrow range also, ne ∝ T 2

λ , and
thus the flux is essentially proportional to the flare volume (according to
Eq. 13.20), Fλ ∝ V γ , with a scaling exponent of γ ≈ 1. On the other hand, if
a different powerlaw exponent γ 6= 1 is measured, such an observation would
reveal a systematic scaling of some parameters (Te, ne, Lloop) of the densest
flare loops with the size L of the active region.

Another important quantity we want to calculate is the size distribution of
thermal energies Eth, for which we expect a scaling law of (using Eq. 13.22),

Eth = 3nekBTeV ∝ T 3
e V/Lloop , (13.23)

where the most dominant value of the electron temperature Te is given by
the peak of the differential emission measure distribution (DEM). Obser-
vationally, it was found that the DEM peak temperature of a flare scales
approximately with the size L of a flare, i.e., Te ∝ L (Aschwanden 1999),
which yields with V ∝ LDS (assuming that Lloop with the highest emission
measure is uncorrelated with the active region size L),

Eth ∝ L3+DS , (13.24)

or Eth ∝ L5 for DS ≈ 2.0 and S = 3. The size distribution for thermal
energies is then expected to be,

N(Eth)dEth = N(L[Eth])

∣∣∣∣ dLdEth
∣∣∣∣ dEth = E

−[1+(S−1)/(3+DS)]
th dEth (13.25)

which yields N(Eth) ∝ E−1.4
th for S = 3 and DS ≈ 2.0. However, we have

to be aware that this estimate of the thermal energy contained in a flare
requires multi-thermal measurements to derive the peak DEM temperature
and cannot be obtained from a single narrowband filter measurement. Note
that the size distribution of thermal energies with powerlaw exponent αEth =
1.4 is very similar to the total energy in photons in any wavelength range,
i.e., fluence, αE = 1.5 (Eq. 13.19).

The foregoing model for the thermal energy requires a scaling law between
the flare size L and its statistical temperature Te. In practice, however, ther-
mal energies were often estimated in a limited temperature range from the
filter ratio of two narrowband filters. Such filter ratio measurements are sen-
sitive to a particular temperature Te and electron density ne (Eq. 13.22),
which are then essentially constants in the expression for the thermal energy,
and thus the thermal energy is mainly proportional to the volume,

Eth,V ∝ V , (13.26)
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so that the size distribution of thermal energies V is identical to the size
distribution of volumes V , which has a powerlaw slope of αth,V = αV =
1 + (S− 1)/D3, yielding values in the range of αth,V = 1.67− 2.0, depending
on fractal (D3 ≈ (1+S)/2 = 2 for S = 3) or Euclidean (D3 = S = 3) volume
measurements.

In some studies, the volume is approximated with a “pill-box” geometry,
i.e., the product of the measured flare area A with a constant height h along
the line-of-sight, V = Ah, which makes the volume proportional to the area,
and consequently the thermal energy is mainly proportional to the flare area
A,

Eth,A ∝ A , (13.27)

leading to a size distribution of Eth,A that is identical with that of the area A,
which has the powerlaw slope αth,A = αA = 1 + (S − 1)/D2, yielding values
in the range of αth,A = 2.0−2.3, depending on fractal (D2 ≈ (1+S)/2 = 1.5)
or Euclidean (D2 = 2) area measurements in S = 3 space. Thus, accurate
measurements of these size distributions provide a sensitive tool to diagnose
the underlying physical scaling laws and model assumptions.

13.1.5 Scaling Laws for Astrophysical Acceleration
Mechanisms

Let us consider some simple examples of particle acceleration processes in
astrophysical plasmas, such as solar flares, stellar flares, or cosmic rays. The
simplest particle acceleration process is a coherent direct current (DC) electric
field, which can be characterized by an acceleration constant a over a system
length L. Newtonian (non-relativistic) mechanics predicts for an electron with
mass me a velocity v = at after a distance L = (1/2)at2, which corresponds
to a kinetic energy EL of (where the subscript L refers to the length scale of
the accelerator),

EL =
1

2
mev

2 = meaL , (13.28)

which implies a linear energy increase with system length, EL ∝ L. Thus, the
size distribution of energies EL is identical with that of length scales L, which
we obtain from the scale-free probability conjecture N(L) ∝ L−S (Eq. 13.1),

N(EL)dEL = N(L[EL])

∣∣∣∣ dLdEL
∣∣∣∣ dEL = E−SL dEL , (13.29)

yielding an energy spectrum N(EL) ≈ E−3
L for a 3D Euclidean volume. This

simplest case is given by coherent acceleration thoughout the entire source
volume.
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Alternative particle acceleration mechanisms in astrophysics are stochastic
acceleration via wave-particle interactions and shock acceleration. Although
the particle orbits in both of these acceleration mechanisms are much more
stochastic and random-like, in contrast to the linear path in a DC electric
field, the energy gain of the particle may scale with the size of the acceleration
region (in which a random walk may occur) and the number of subsequent
acceleration regions. For cosmic rays, for instance, which are accelerated over
enormous lenghts that make up a substantial fraction of our universe, the
energy spectrum has a powerlaw-like slope of αL ≈ 3, which is consistent
with an energy gain proportional to the combined length of the acceleration
path (see section 13.2.11).

Another approach could be made by assuming that the magnetic energy
density dEB/dV = B2/8π per volume element converted into nonthermal
particle energy is uncorrelated with the system size L, in which case the total
converted magnetic energy just scales with the Euclidean volume V ∝ LS

of the energy dissipation process, EB ∝ VE ∝ LS . The corresponding size
distribution of magnetic energy EB is then expected to scale as,

N(EB)dEB = N(L[EB)

∣∣∣∣ dLdEB
∣∣∣∣ dEB = E

−(2−1/S)
B dEB , (13.30)

which translates into N(EB) ∝ E
−5/3
B for a 3D Euclidean volume (S=3).

Interestingly, this value is also identical with the size distribution of the peak
flux P . Alternative scaling laws using the Alfvénic crossing time through the
flare volume have also been considered (e.g, Shibata and Yokoyama 1999,
2002; Nishizuka et al. 2008).

Thus, these acceleration models yield powerlaw size distributions in the
range of αEB = 1.67 to αEL = 3.0. The measurement of size distributions of
nonthermal energies thus can yield valuable diagnostics about the physical
nature of the underlying particle acceleration process.

A summary of all theoretically derived powerlaw indices expected in as-
trophysical systems is compiled in Table 13.1.

13.2 Observations

We discuss now a number of astrophysical observations with regard to their
observed size distributions, which we compare with the foregoing theoreti-
cal predictions. A more detailed review of these measurements is given in
Aschwanden (2011a; chapters 7 and 8). A list of astrophysical SOC phenom-
ena with their particular sources of free energy or physical mechanisms and
instabilities that trigger SOC events is provided in Table 2.1 of chapter 2
of this book (entitled Theoretical Models of SOC Systems). Detailed SOC
models with explicit physical mechanisms specifying the underlying scaling
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Table 13.1: Summary of powerlaw indices predicted in astrophysical systems, as

a function of the dimensionality S, the fractal dimension DS , the diffusion power

exponent β, and the energy-volume scaling exponent γ.

Parameter Powerlaw exponent Powerlaw exponent for
(general expression) S = 3, D3 = 2, D2 = 3/2

β = 1, γ = 1

Length scale L αL = S αL = 3
Area A αA = 1 + (S − 1)/D2 αA = 7/3
Volume V αV = 1 + (S − 1)/D3 αV = 2
Time duration T αT = 1 + β αT = 2
Flux F αF = 1 + 1/γ αF = 2
Peak flux P αP = 1 + 2/(3γ) αP = 5/3
Fluence E αE = 1 + 1/(γ + 1/β) αE = 3/2
Emission measure EMλ αEMλ

= αV αEMλ
= 2

Thermal energy Eth αEth = 1 + (S − 1)/(3 +DS) αEth = 7/5
Thermal energy Eth,A αEth,A = αA αEth,A = 7/3
Thermal energy Eth,V αEth,V = αV αEth,V = 2
Linear energy EL αEL = S αEL = 3
Magnetic energy EB αEB = (2− 1/S) αEB = 5/3

laws between spatial, temporal, and physical parameters are still lacking, but
could be worked out for each astrophysical phenomenon as a function of the
observed wavelengths using the formal framework outlined in Section 13.1.

13.2.1 Lunar Craters

The size of lunar craters was measured from pictures recorded with the lunar
orbiters Ranger 7, 8, 9 by Cross (1966). A size distribution of 1,600 lunar
craters, sampled in the Mare Tranquillitatis using data from Ranger 8, within
a range of 0.56 to 69,000 m, is shown in Fig. 13.3, exhibiting a powerlaw
distribution ranging over 5 orders of magnitude with a slope of β ≈ 2.0
for the cumulative occurrence frequency distribution, which translates into a
powerlaw slope of α ≈ β + 1 ≈ 3.0 for the differential occurrence frequency
distribution,

N(L) ∝ L−3 . (13.31)

This corresponds exactly to our prediction of the scale-free probability conjec-
ture for avalanche events in 3D-space (S = 3). A similar powerlaw exponent
of αL = 2.75 was also found for the size distribution of meteorites and space
debris from man-made rockets and satellites (Fig. 3.11 in Sornette 2004).
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Fig. 13.3: Left: The lunar crater Daedalus, about 93 km in diameter, was pho-

tographed by the crew of Apollo 11 as they orbited the Moon in 1969 (NASA photo

AS11-44-6611). Right: Cumulative frequency distribution of crater diameters mea-

sured from Ranger 8 in the lunar Mare Tranquillitatis (Cross 1966).

How can we interpret this result? The justification of our scale-free prob-
ability conjecture is the fact that the relative probability of partitioning a
system into smaller parts scales reciprocally with the volume (Fig. 13.1).
The leading theory of lunar crater formation is that their origin was caused
by impacts of meteorites, and thus the size distribution reflects that of the im-
pacting meteors and meteorites, which probably were produced by numerous
random collisions, similar to the origin of planets, asteroids, and planetesi-
mals. Both the Moon and the Earth were subjected to intense bombardment
of solar system bodies between 4.6 and 4.0 billion years ago, which was the
final stage of the sweep-up of debris left over from the formation of the so-
lar system. How can we interpret impacting meteorites as a SOC process?
The driving force is gravity in the solar system (like gravity drives the infall
of sandgrains on a sandpile), while the debris of planetesimals in our solar
system represent the sand grains in Bak’s sandpile. A self-organizing criti-
cal threshold is the result of the combined effect of self-gravity, gravitational
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disturbances, collisions, depletions, and captures of incoming new bodies, as
discussed in the next section 13.2.2 on the asteroid belt.

An alternative explanation of lunar or terrestrial craters is a volcanic ori-
gin. If we attribute volcanoes with nonlinear energy dissipation avalanches
in a slowly-driven system of stressing planet crust motions and build-up of
subtectonic lava pressure, volcanic eruptions can also be understood as SOC
phenomena.
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Fig. 13.4: Left top: A picture of the near-Earth asteroid Eros with a size of 30 km,

pictured by a space probe. Left bottom: The main asteroid belt located between

the Jupiter and Mars orbit. The subgroup of Trojan asteroids are leading and trail-

ing along the Jupiter orbit. (Courtesy of NASA/Johns Hopkins University Applied

Physics Laboratory). Right: Differential size distribution of asteroids observed in the

Sloan Digital Sky Survey collaboration (Ivezic et al. 2001).

13.2.2 Asteroid Belt

The asteroid size distribution has been studied in the Palomar Leiden Sur-
vey (Van Houten et al. 1970) and Spacewatch Surveys (Jedicke and Metcalfe
1998), where a power law of N cum(> L) ∝ L−1.8 was found for the cumula-
tive size distribution of larger asteroids (L > 5 km), which corresponds to a
differential powerlaw slope of αL ≈ 2.8. In a Sloan Digital Sky Survey collab-
oration (Fig. 13.4, right), a broken powerlaw was found with N(L) ∝ L−2.3
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for large asteroids (5-50 km) and N(L) ∝ L−4 for smaller asteroids (0.5-5
km) (Ivezic et al. 2001). In the Subaru Main-Belt Asteroid Survey, a cumula-
tive size distribution N cum(> L) ∝ L−1.29±0.02 was found for small asteroids
with L ≈ 0.6 − 1.0 km (Yoshida et al. 2003; Yoshida and Nakamura 2007),
which corresponds to a differential powerlaw slope of αL ≈ 2.3. Thus, the
observed range αL ≈ 2.3 − 4.0 of the powerlaw slopes of length scales L is
centered around the theoretically expected value of αL = 3.0, predicted by
our scale-free probability conjecture.

The origin of asteroids is thought to be a left-over distribution of planetes-
imals during the formation of planets, which were either too small to form
bigger planets by self-gravitation, or orbited in an unstable region of the solar
system where Mars and Jupiter constantly cause gravitational disturbances
that prevented the formation of another planet. Thus, the final distribution of
the asteroid belt is likely to be influenced by both the primordial distribution
of the solar system as well as by recent collisions and further fragmentation
of planetesimals. The collisional fragmentation process can be considered as
a mechanical instability that occurs in a multi-body gravitational field. The
collisional process is self-organizing in the sense that the N-body celestial
mechanics keeps the structure of the asteroid belt more or less stable, despite
of the combined effects of self-gravity, gravitational disturbances, collisions,
depletions, and captures of incoming new bodies. The quasi-stability of the
asteroid belt warrants the critical threshold in form of a finite collision prob-
ability maintained by the proximity of the co-orbiting asteroid bodies.

13.2.3 Saturn Ring

The distribution of particle sizes in Saturn’s ring was determined with radio
occultation observations using data from the Voyager 1 spacecraft and a
scattering model, which exhibited a powerlaw distribution of N(r) ∝ r−3

(Fig. 13.5) in the range of 1 mm < r < 20 m (Zebker et al. 1985; French and
Nicholson 2000). The size distribution revealed slightly different powerlaw
slopes in each ring zone, e.g., αL = 2.74 − 3.03 for ring A, αL = 2.79 for
the Cassini division, or αL = 3.05 − 3.22 for ring C (Zebker et al. 1985).
These results, again, are consistent with a fragmentation process that obeys
the scale-free probability conjecture, similar to the distribution of sizes of
asteroids and lunar craters, and predicts a size distribution of N(L) ∝ L−3.
The conclusion that Saturn’s ring particles are formed from the (collisional)
breakup of larger particles, rather than from original condensation as small
particles, was already raised earlier (Greenberg et al. 1977).

The Saturn ring, which mainly consists of particles ranging in size from
1 mm to 10 m, is located at a distance of 7,000-80,000 km above Saturn’s
equator, and has a total mass of 3× 1019 kg, just about a little less than the
moon Mimas. The origin of the ring is believed to come either from leftover
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Fig. 13.5: Top: Saturn’s rings A, B, C, and the Cassini division, photographed by the

Cassini spacecraft (credit: NASA, JPL, Space Science Institute). Bottom: Measure-

ments of the particle size distribution functions for 8 ring regions with Voyager I radio

occultation measurements (Ring C: C1.35, C1.51; Cassini division: CD2.01; Ring A:

A2.12, A2.10, A2.14, A2.19, A2.24). The slopes of the fitted powerlaw functions in

these 8 regions are: αL = 3.11, 3.05, 2.79, 2.74, 2.70, 2.75, 2.93, 3.03. The range of

particle sizes is L = 0.01− 10 m (Zebker et al. 1985).

material of the formation of Saturn itself, or from the tidal disruptions of a
former moon. The celestial mechanics of the Saturn rings is quite complex,
revealing numerous gaps in orbits that have harmonic ratios in their periods
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with one of the 62 (confirmed) moons (with 13 moons having a size larger
than 50 km). Similar to the asteroid belt, the Saturn ring can be considered
as a self-organizing system in the sense that the gravity of Saturn and the
gravitational disturbances caused by Saturn’s moons keep the ring quasi-
stable, which provides a critical threshold rate for collisional encounters due
to the proximity of the co-orbiting ring particles.

  

Fig. 13.6: Left: Global image of the auroral oval observed by the Ultraviolet Imager

(UVI) onboard the NASA satellite “Polar” on April 4, 1997 at 0519 UT, projected

onto an Earth map (credit: NASA, Polar/UVI Team, George Parks). Right: Occur-

rence rate frequency distributions of auroral blobs as a function of the area (in units

of square kilometers) during substorm-quiet time intervals, recorded with Polar UVI

during Jan 1-31, 1997 (Lui et al. 2000).

13.2.4 Magnetospheric Substorms and Auroras

The size distribution of auroral areas has been measured with the UV Im-
ager of the Polar spacecraft, which exhibits a powerlaw-like distribution with
a slope of αA = 1.21 ± 0.08 during active substorm time intervals, and
αA = 1.16± 0.03 during quiescent time intervals (Fig. 13.6; Lui et al. 2000).
The corresponding energy flux or power output P of auroral regions was de-
rived to have a powerlaw slope of αP = 1.05 ± 0.08 during active substorm
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time intervals, and αP = 1.00 ± 0.02 during quiescent time intervals (Lui
et al. 2000). These powerlaw slopes are significantly flatter than predicted
by our FD-SOC model, i.e., αA = 2.33 and αP = 1.67 for 3D phenomena
(S = 3, D2 ≈ 1.5). Although Lui et al. (2000) interpret auroras as a SOC
phenomenon, the observed powerlaw slopes are far out of the range observed
and predicted for other SOC phenomena. Thus, either the sampled distribu-
tions are incomplete, they underestimate the areas systematically for smaller
events, or SOC models are not applicable for these events.

Plasma flows in the magnetotail plasma with speeds v ≥ 400 km s−1 were
found to have a powerlaw distribution of durations T , with N(T ) ∝ T 1.59±0.07

(Angelopoulos et al. 1999), which is not too far off our theoretical prediction
(with αT = 2.0), given the relatively small powerlaw range of only ≈ 1.5
decades. Also the size distributions of the durations of AE index (α = 1.24;
Takalo 1993; Takalo et al. 1999) and AU index (α = 1.3; Freeman et al. 2000;
Chapman and Watkins 2001) were found to be much flatter than predicted
by our SOC model.

Electron bursts in the outer radiation belt (at 4 − 8 L-shell distances),
which may be modulated by fluctuations of the solar wind, were found to
have powerlaw distributions with slopes of αP = 1.5 − 2.1 and were inter-
preted as SOC phenomena (Crosby et al. 2005), which have slopes that are
quite consistent with our SOC model (αP = 1.67). The solar wind is thought
to be the source of these energetic electrons, although the solar wind veloc-
ity frequency distributions were found to exhibit significant deviations from
simple powerlaws (Crosby et al. 2005).

13.2.5 Solar Flares

Solar flares are the best studied SOC phenomena in astrophysics. The im-
pulsive energy release associated with solar flares, which can be observed
in virtually all wavelengths, from gamma-rays, hard X-rays, soft X-rays,
EUV, white-light, infrared, to radio wavelengths, has been interpreted as a
SOC phenomen from early on (Lu and Hamilton 1991). Large datasets with
n ≈ 104− 105 events sampled over up to eight orders of magnitude in energy
provide the necessary statistics to determine accurate slopes of the observed
powerlaw-like size distributions. However, major challenges exist still in the
elimination of sampling biases in incomplete event sets, the understanding
and modeling of powerlaw slopes in different wavelengths in terms of the un-
derlying physical scaling laws, and the automated determination of geometric
parameters for large event datasets. A detailed account of observational re-
sults sorted into different wavelength regimes is given in Aschwanden (2012a;
chapters 7 and 8). We summarize the results of powerlaw slopes observed in
size distributions of various SOC parameters in Table 13.2, selecting mostly
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Fig. 13.7: Occurrence frequency distributions of hard X-ray peak count rates P [cts

s−1] observed with HXRBS/SMM (1980 – 1989), BATSE (1991 – 2000), and RHESSI

(2002 – 2010), with powerlaw fits. An average pre-flare background of 40 [cts s−1]

was subtracted from the HXRBS count rates. Note that BATSE/CGRO has larger

detector areas, and thus records higher count rates (Aschwanden 2011b).

representative examples with large datasets from different instruments and
wavelength regimes.

Size distributions of peak fluxes P (Fig. 13.7), time-integrated fluxes or flu-
ences E (Fig. 13.8), and flare durations T (Fig. 13.9), have been measured for
energies > 25 keV in hard X-ray wavelengths with instruments on the space-
craft ISEE-3, SMM, CGRO, and RHESSI, in soft X-ray wavelengths with
Yohkoh and GOES, and in EUV with SOHO/EIT, TRACE, and AIA/SDO.
Most of the observed powerlaw slopes were measured close to the theoretical
predictions, i.e., αT = 2.0, αP = 1.67, and αE = 1.5 (Table 13.2), which
is consistent with a dimensionality of S = 3, a mean fractal dimension of
DS ≈ (1 + S)/2 = 2.0, an energy-volume scaling exponent of γ ≈ 1, and a
diffusion power exponent of β ≈ 1 (Eq. 13.17 and 13.19).

The measurements in soft X-rays and hard X-rays are all made in broad-
band energy and wavelength ranges, and thus are least biased regarding a
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Fig. 13.8: Occurrence frequency distributions of hard X-ray total counts or fluence E

[cts] observed with HXRBS/SMM (1980 – 1989), BATSE (1991 – 2000), and RHESSI

(2002 – 2010), with powerlaw fits. An average pre-flare background of 40 cts s−1

multiplied with the flare duration was subtracted in the total counts of HXRBS

(Aschwanden 2011b).

complete sampling of all energy and temperature ranges. The probably most
controversial measurements have been made for the smallest flares, also called
nanoflares, which have typical temperatures of T ≈ 1− 2 MK and originate
in small loops that barely stick out of the transition region. Since EUV mea-
surements with SOHO/EIT, TRACE, and AIA/SDO are all made with nar-
rowband temperature filters, the inferred thermal energies essentially scale
with the flare area (Eq. 13.27) or volume (Eq 13.26), for which we predict
powerlaw slopes of αth,A ≈ αA ≈ 2.3 and αth,V ≈ αV ≈ 2.0, which are sig-
nificantly steeper than what is predicted for thermal energies sampled with
broadband instruments, i.e., αth ≈ 1.5. This sampling bias has resulted into
a controversy whether nanoflares dominate coronal heating, because a pow-
erlaw slope steeper than the critical value of 2 indicates that the energy
integral diverges for the smallest events, as pointed out early on (Hudson
1991). Synthesizing measurements from narrowband EUV instruments with
broadband soft X-ray instruments, as well as taking the fractal geometry of
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Fig. 13.9: Occurrence frequency distributions of hard X-ray flare durations T [s] ob-

served with HXRBS/SMM (1980 – 1989), BATSE (1991 – 2000), and RHESSI (2002

– 2010) with powerlaw fits. The flare durations for RHESSI were estimated from the

time difference between the start and peak time, because RHESSI flare durations

were determined at a lower energy of 12 keV (compared with 25 keV for HXRBS and

BATSE), where thermal emission prolonges the nonthermal flare duration (Aschwan-

den 2011b).

flare structures into account, however, could reconcile the size distribution
for nanoflares with that of large flares with a corrected value that is close to
the theoretical prediction of αE ≈ 1.5 (Fig. 13.10; Aschwanden and Parnell
2002).

Problematic are also the measurements of flare durations T for several
reasons, such as the limited range of durations over which a powerlaw can be
fitted, the ambiguity of separating overlapping long-duration flares, and the
solar cycle dependence. While the event overlap problem is not severe during
the solar minimum, where a slope close to the theoretically predicted value of
αT = 2.0 is measured, the flare event pile-up bias becomes very severe during
the solar maximum, producing powerlaw slopes of up to αT <∼ 5 (Aschwanden
and Freeland 2012). Also the powerlaw slope of hard X-ray peak counts αP
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appears to reveal a solar cycle dependence due to a similar effect (Bai 1993,
Biesecker 1994, Aschwanden 2011b).
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Fig. 13.10: Synthesized frequency distributions from all three wavebands (TRACE

171 Å, 195 Å, and Yohkoh/SXT AlMg) (grey histograms), along with the separate

distributions from each waveband (in greyscales). Each of the distributions is fitted

with a powerlaw, with the slope values and formal fit errors given in each panel.

The four panels represent the four parameters of length L, area A, total emission

measure EM (which is proportional to the peak flux P ), and the thermal energy Eth

(Aschwanden and Parnell 2002).

The least explored size distributions of solar flares are the length scale L
and area A size distributions. Relatively small samples of flare areas have
been measured for EUV nanoflares (Aschwanden et al. 2000, Aschwanden
and Parnell 2002) and for the largest M and X-class flares (Aschwanden
2012b). Since the measurement of these parameters provides a direct test of
the scale-free probability conjecture (Eq. 13.1), without depending on any
other physical parameter or model assumption, priority should be given to
such measurements. Existing measurements have large error bars in the pow-
erlaw slope due to the small number of analyzed events, but are largely con-
sistent with the theoretical prediction of αL = 3.0 and αA = 2.33, calculated
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Fig. 13.11: A solar flare event is observed on 2011 Mar 7, 19:43-20:58 UT, with

AIA/SDO 335 Å, with GOES time profiles (top panel), the total EUV 335 Å flux

(second panel), the spatio-temporal evolution of the radius r(t) =
√
A(t)/π of the

time-integrated flare area A(t) for two thresholds, Fthresh = 100, 200 DN/s (third

panel; histogrammed), fitted with the anomalous diffusion model (third panel; solid

curve), and 5 snapshots of the baseline-subtracted flux (fourth row) and highpass-

filtered flux (bottom row), with the threshold flux Fthresh = 100 DN/s shown as

contour (Aschwanden 2012b).

for 3D SOC avalanches (S = 3) with a 2D (area S = 2) fractal dimension of
D2 ≈ (1 + S)/2 = 1.5.
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Fig. 13.12: A selection of 48 solar GOES M and X-class flares observed with

AIA/SDO at a wavelength of 335 Å during 2010-2012. The contour shows the time-

integrated flare area and the color-scale represents the intensity at 335 Å. Note the

complex spatial patterns that ressemble to the fractal avalanche patterns of cellular

automaton simulations.

Besides the scale-free probability conjecture, a second pillar of our FD-
SOC model is the fractal-diffusive spatio-temporal relationship L(t) ∝ κT β/2
(Eq. 13.8), which has been recently tested for a set of the 155 largest (GOES
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M and X-class) flare events (Aschwanden 2012b). An example of such a mea-
surement of the spatio-temporal evolution is shown in Fig. 13.11, which ex-
emplifies the spatial complexity of a large cluster of subsequent magnetic
reconnection events (Aschwanden 2012b) that form a fractal volume filled
with postflare loops (Aschwanden 2012a). Examples of another 48 large flares
(GOES M and X-class) are shown in Fig. 13.12. Interestingly, the statistics
of these 155 largest flares revealed a sub-diffusive regime (β = 0.53 ± 0.27),
while classical diffusion appears to be an upper limit. The diffusive charac-
teristics measured in solar flares is consistent with the FD-SOC model, as it
is was also found to be consistent with cellular automaton SOC simulations
(Aschwanden 2012a).

Another basic ingredient of the fractal-diffusive SOC model is the physical
scaling law between the flux observable Fλ (in a given wavelength λ) and
the avalanche volume V , which can be expressed by a powerlaw function
with coefficient γ, i.e., Fλ ∝ V γ (Eq. 13.12). This powerlaw exponent γ can
only be measured for astrophysical phenomena that are spatially resolved,
for instance for solar flares. Statistics of this exponent γ is very sparse in
literature, but was found to scale as F335 ∝ V γ335 with γ335 = 0.79 ± 0.17
(Aschwanden 2012b).

Radio bursts are produced in solar flares most frequently either by gy-
rosynchrotron emission of relativistic electrons that have been accelerated
in magnetic reconnection regions (Aschwanden et al. 1993), or by electron
beams that escape along magnetic field lines in upward-direction (evidenced
by metric type III bursts). Both types of radio bursts (microwave bursts and
type III bursts) occur as a consequence of a plasma instability, and thus rep-
resent a highly nonlinear energy dissipation process that is typical for SOC
processes.

Somewhat out of the predicted range are solar energetic particles, which
have rather flat size distributions N(P ) of the peak counts, typically in the
range of αP ≈ 1.1 − 1.4. However, since these are all high-energy particle
events (> 10 MeV protons and > 3 MeV electrons), we suspect that only
the largest flares produce such high energies, and thus the sample is biased
towards the largest flare events, which explains the flatter powerlaw slopes
as a consequence of missing weaker events.

13.2.6 Stellar Flares

Impulsive flaring with rapid increases in the brightness in UV or EUV has
been observed for a number of so-called flare stars, such as AD Leo, AB
Dor, YZ Cmi, EK Dra, or ε Eri. These types of stars include cool M dwarfs,
brown dwarfs, A-type stars, giants, and binaries in the Hertzsprung-Russell
diagram. Most of these stars are believed to have hot soft X-ray emitting
coronae, similar to our Sun (a G5 star), and thus magnetic reconnection



466 Markus J. Aschwanden

HD 2726 (F2 V)

33.0 33.5 34.0 34.5 35.0 35.5
 

-1.5

-1.0

-0.5

0.0

0.5

1.0

C: α1= 2.15
P: α1= 2.40

47 Cas (G0-5 V)

32.5 33.0 33.5 34.0 34.5 35.0 35.5
 

-1.5

-1.0

-0.5

0.0

0.5

1.0

 

C: α1= 1.95
P: α1= 1.79

EK Dra (G1.5 V)

32.5 33.0 33.5 34.0 34.5 35.0
 

-1.5

-1.0

-0.5

0.0

0.5

1.0

 

C: α1= 1.93
P: α1= 1.71

κ Cet, 1994 (G5 V)

31.5 32.0 32.5 33.0 33.5
 

-1.5

-1.0

-0.5

0.0

0.5

C: α1= 2.14
P: α1= 1.67

κ Cet, 1995 (G5 V)

31.5 32.0 32.5 33.0 33.5 34.0
 

-1.5

-1.0

-0.5

0.0

0.5

 

C: α1= 2.18
P: α1= 2.22

AB Dor (K1 V)

32.5 33.0 33.5 34.0 34.5
 

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

 

C: α1= 1.83
P: α1= 1.64

ε Eri (K2 V)

31.0 31.5 32.0 32.5 33.0
 

-1.5

-1.0

-0.5

0.0

0.5

1.0

C: α1= 2.68
P: α1= 2.00

GJ 411 (M2 V)

30.0 30.5 31.0 31.5 32.0 32.5
 

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

 

C: α1= 1.69
P: α1= 1.65

AD Leo (M3 V)

31.0 31.5 32.0 32.5 33.0 33.5 34.0
 

-1.0

-0.5

0.0

0.5

1.0

1.5

 

C: α1= 1.81
P: α1= 1.72

EV Lac (M4.5 V)

31.0 31.5 32.0 32.5 33.0 33.5 34.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

C: α1= 1.84
P: α1= 1.75

CN Leo, 1994 (M6 V)

30.0 30.5 31.0 31.5 32.0 32.5 33.0

-1.0

-0.5

0.0

0.5

1.0

1.5

 

C: α1= 1.79
P: α1= 2.20

CN Leo, 1995 (M6 V)

30.0 30.5 31.0 31.5 32.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

 

C: α1= 1.19
P: α1= 1.26

Fig. 13.13: Cumulative frequency distributions of flare energies (total counts) ob-

served for 12 cool (type F to M) stars with EUVE (Audard et al. 2000). The flare

events are marked with diamonds, fitted with a powerlaw fit in the lower half (P;

thick line), and fitted with a cumulative frequency distribution (C; curved function).

processes are believed to operate in a similar way as on our Sun (see, e.g.,
review by Guedel 2004).

However, what is different, is that the soft X-ray emission is several orders
of magnitude stronger than from our Sun, if we put the stars into the same
distance, and thus we expect an observational selection bias towards the
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largest possible flares. Another difference in flare statistics is that the meagre
observational time allocation in the order of a few hours per star reveals only
very few detectable flare events, with typically 5-15 events per observed star
(see example in Fig. 13.13). A consequence of this small-number statistics is
that we cannot determine a powerlaw slope from a log(N)-log(S) histogram,
as we do for larger statistics (of at least 102 up to 105 events in solar flare
data sets), but need to resort to rank-order plots, which correspond to the
inverse distribution of cumulative occurrence frequency distributions. So, in
principle, an inverse rank-order diagram can be plotted as shown in Fig. 13.13,
which shows the logarithmic rank versus the flare energy (or total counts)
for each star, from which the powerlaw slope can be determined. However, if
we deal with cumulative size distributions, we have also to be aware of the
drop-off that results at the upper end of the distribution due to the missing
part in the powerlaw differential occurrence frequency distribution above the
largest event. Thus, while a straight powerlaw function with slope α can be
fitted to a differential frequency distribution N(E),

N(E) ∝ E−α , (13.32)

the following function need to be fitted to the cumulative distributionNcum(>
E) (Aschwanden 2011a, section 7),

Ncum(> E) = n

∫ Emax
E

N(E′)dE′∫ Emax
Emin

N(E′)dE′
= n

∫ Emax
E

E′−αdE′∫ Emax
Emin

E′−αdE′
= n

(E1−α − E1−α
max)

(E1−α
min − E1−α

max)
.

(13.33)
The fit of this function to the cumulative distribution is shown in Fig. 13.13
for a set of 12 flare stars, and the resulting values for the powerlaw slope αE
of the inferred differential occurrence frequency distributions (labeled with
the letter C in Fig. 13.13). For comparison, we fit also a straight powerlaw
with slope β = α−1 to the lower half of the cumulative distribution, which is
less affected by the upper cutoff (labeled with the letter P in Fig. 13.13). In
Table 13.2 we summarize the means and standard deviations of the powerlaw
slopes of flare energies observed on flare stars (see individual values in Table
7.7 of Aschwanden 2011a), which have been reported based on various other
methods used by the authors, αE = 2.17 ± 0.25. Fitting only the lower half
of the distribution functions we find a significantly lower value of αE =
1.85±0.31, or by fitting Eq. (13.33) we find a similar range of αE = 1.93±0.35.
This subtle difference in the determination of the powerlaw slope is essential,
because it discriminates whether the total energy radiated during stellar flares
is dominated by the largest flares (if αE < 2.0) or by nanoflares (if αE > 2.0;
Hudson 1991). At this point it is not clear whether the difference in the
powerlaw slopes obtained for stellar versus solar flares is due to a methodical
problem of small-number statistics, or due to a sampling bias for super-large
stellar flares, by solar standards.
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Fig. 13.14: Left: Crab nebula, which harbors the pulsar in the center (photographed

by Hubble Space Telescope, NASA). Right: Frequency distribution of giant-pulse flux

densities measured from the Crab pulsar, observed during 15-27 May 1991 with the

Green Bank 43-m telescope at 1330, 800, and 812.5 MHz. The tail can be represented

by a powerlaw distribution NF ∝ F−α with α = 3.46 ± 0.04 for fluxes F > 200 Jy

(Lundgren et al. 1995).

13.2.7 Pulsars

Pulsars are fast-spinning neutron stars, which emit strictly periodic signals
in radio wavelengths, as well as occasional giant pulses that represent glitches
in the otherwise regular pulse amplitude and frequency. The glitches in pulse
amplitude and frequency shifts correspond to large positive spin-ups of the
neutron star, probably caused by sporadic unpinning of vortices that transfer
momentum to the crust. Conservation of the angular momentum produces
then an increase of the angular rotation rate. Thus, these giant pulses reveal
highly nonlinear energy dissipation processes that can be considered as a SOC
phenomenon and we expect a powerlaw function for their size distribution.
However, the pulse fluxes are believed to be determined by the magneto-
spheric physics of the pulsar, while the pulsar glitches are caused by the
internal physics of the pulsar crust, which constitutes two different, but pos-
sibly linked, SOC systems. Recent SOC models applied to pulsar glitches use
a cellular automaton model with superfluid vortex unpinning (Warszawski
and Melatos 2008, Melatos and Warszawski 2009, Warszawski and Melatos
2012).

Early measurements of the pulse height distribution of the Crab pulsar
(NGC 0532 or PSR B0531+21) observed at 146 MHz were indeed found to
have a powerlaw slope of αP ≈ β + 1 = 3.5 over a range of 2.25 to 300 times
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the average pulse size, in a sample of 440 giant pulses (Argyle and Gower
1972). Similar values were measured by Lundgren et al. (1995) in a sample of
30,000 giant pulses, with αP ≈ 3.06−3.36 (Fig. 13.14, right). While the Crab
pulsar is the youngest known pulsar (born in the year 1054), PSR B1937+21
is an older pulsar with a 20 times faster period (1.56 ms) than the Crab
pulsar (33 ms). Cognard et al. (1996) measured a powerlaw distribution with
a slope of αP ≈ β + 1 = 2.8 ± 0.1 from a sample of 60 giant pulses for
this pulsar. Statistics of nine other pulsars revealed powerlaw slopes in a
much larger range of αE = −0.13, ..., 2.4 for the size distribution of pulse
glitches (Melatos et al. 2008), but those measurements were obtained from
much smaller samples of 6-30 giant pulses, and thus represent small-number
statistics.

The typical value of αP ≈ 3.0 found in two pulsars deviates significantly
from the prediction (αP = 1.67) of our FD-SOC model, and thus requires
either a different model or more statistics from other pulsar cases. Preliminary
values of small samples from other pulsars indicate a wide range (αE =
−0.13, ..., 2.4, Melatos et al. 2008) that do not point towards a particular
value that can be explained with a single model.

Fig. 13.15: Left: The Soft Gamma-Ray Repeater SGR 1900+14 in the constellation of

Aquila photographed with the Spitzer Space Telescope in infrared (courtesy: NASA).

Right: Differential frequency distributions of the fluences of soft gamma-ray repeater

SGR 1900+14 observed with CGRO, RXTE, and ICE (Gogus et al. 1999).



470 Markus J. Aschwanden

13.2.8 Soft Gamma-Ray Repeaters

Gamma-ray bursts were observed from a variety of astrophysical objects,
such as neutron stars or black holes, but usually only one burst has been
observed from each object. An exception is a class of objects that show repet-
itive emission at low-energy gamma-rays (> 25 keV), which were termed soft
gamma-ray repeaters (GRS). Observations with the Compton Gamma Ray
Observatory (CGRO) revealed four such SGR sources up to 1999, three in
our galaxy and one in the Magellanic Cloud). At least three of these SGR
objects were associated with slowly rotating, extremely magnetized neutron
stars that are located in supernova remnants (Kouveliotou et al. 1998, 1999).
It is believed that these soft gamma-ray bursts occur from neutron star crust
fractures driven by the stress of an evolving, ultrastrong magnetic field in the
order of B >∼ 1014 G.

Occurrence frequency distributions of the fluence of soft gamma-ray re-
peaters were obtained from four SGR sources: a database of 837 gamma-ray
bursts from SGR 1900+14 during the 1998-1999 active phase showed a pow-
erlaw slope of αE = 1.66 over 4 orders of magnitude (Fig. 13.15; Gogus
et al. 1999); and a combined database from SGR 1806-20, using 290 events
detected with the Rossi X-Ray Timing Explorer, 111 events detected with
CGRO/BATSE, and 134 events detected with the International Cometary
Explorer (ICE), showing power laws with slopes of αE=1.43, 1.76, and 1.67
(Gogus et al. 2000). These measurements agree remarkably well with the fre-
quency distributions predicted by the FD-SOC model (αE = 1.50) as well
as with those observed during solar flares, which were also observed at the
same hard X-ray energies of > 25 keV. However, the physical energy dis-
sipation mechanism may be quite different in a solar-like star and a highly
magnetized neutron star, given the huge difference in magnetic field strengths
(B ≈ 102 G for solar flares versus B ≈ 1014 G in a magnetar), although mag-
netic reconnection processes could be involved in both cases. Nevertheless,
soft gamma-ray repeaters have been interpreted as a SOC system (Gogus
et al. 1999), in terms of a neutron star crustquake model (Thompson and
Duncan 1996), in analogy to the SOC interpretation of earthquakes.

13.2.9 Black Hole Objects

Cygnus X-1, a galactic X-ray source in the constellation Cygnus, is the first
X-ray source that has been widely accepted to be a black-hole candidate.
The mass of Cygnus X-1 is estimated to be about 14.8 solar masses and it
has been inferred that the object with (an event horizon at) a radius of 26
km is far too compact to be a normal star. Cygnus X-1 is a high-mass X-ray
binary star system, which draws mass from a blue supergiant variable star
(HDE 226868) in an orbit of 0.2 AU around the black hole. The stellar wind
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Fig. 13.16: Left: This artist concept of Cygnus X-1 shows the black hole drawing

material from a companion star (right) into a hot, swirling accretion disk that sur-

rounds the (invisible) black hole (Courtesy of Chandra X-Ray Observatory, NASA).

Right: Observed frequency distribution of the peak intensities of pulses in the light

curve of the black-hole object Cygnus X-1, exhibiting a powerlaw slope of αP ≈ 7.1

(Negoro et al. 1995; Mineshige and Negoro 1999).

of this blue companion star swirls mass onto an accretion disk around the
black hole (Fig. 13.16). The X-ray time profile from Cygnus X-1 reveals time
variability down to 1 ms, which is attributed to X-ray pulses from matter
infalling toward the black hole and the resulting turbulence in the accretion
disk.

Observations of the X-ray light curve of Cygnus X-1 with Ginga exhibit a
complex power spectrum that entails at least 3 piece-wise powerlaw sections,
which have been interpreted as a superposition of multiple 1/f-noise spec-
tra (Takeuchi et al. 1995). The occurrence frequency distribution of peak
intensities shows a powerlaw-like function with a steep slope of αP ≈ 7.1
(Fig. 13.16 right; Negoro et al. 1995; Mineshige and Negoro 1999). All these
properties have been modeled with a sophisticated cellular automaton model
in the framework of the SOC concept. Infalling mass lumps in the accretion
disk are thought to trigger turbulent instabilities in the neighborhood of an
infall site, which propagate avalanche-like and produce hard X-rays either
by collisional bremsstrahlung or some other magnetically driven instability
(e.g., a magnetic reconnection process). The cellular automaton simulations
(Takeuchi et al. 1995, Mineshige and Negoro 1999) were able to reproduce
steep powerlaw slopes of the peak fluxes in the range of αP ≈ 5.6 − 11.5,
depending on the effect of enhanced mass transfer by gradual diffusion in
addition to the avalanche-like shots, and this way could reproduce the obser-
vations.
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We note that the observed steep powerlaw slopes of peak fluxes (αP ≈ 7.1)
exceed the predictions of the FD-SOC model (αP = 1.67) by far. Such a steep
slope, αP = 1 + 2/(3γ) ≈ 7, can be produced by an extremely weak depen-
dence of the X-ray flux F on the avalanche volume V , i.e., F ∝ V γ with
γ ≈ 1/9, which is different from the flux-volume scaling law of optically-
thin soft X-ray or EUV emission (γ ≈ 1) generally observed in astrophysical
sources, and thus may indicate a nonthermal emission mechanism. Alterna-
tively, the very steep powerlaw slope of αP could by part of an exponential
frequency distribution near the upper cutoff, which could only be proven by
sampling peak fluxes with higher sensitivity. Simultaneous modeling of the
observed occurrence frequency distributions of time scales, peak fluxes, and
power spectra in terms of a SOC model may reveal the underlying physical
scaling law of the emission mechanism in black-hole accretion disks.

Fig. 13.17: Left: The anatomy of a blazar is shown in a top view and side view, having

the rotation axis with the relativistic jet oriented toward Earth or orthogonal to the

line-of-sight (Courtesy of The Encylopedia of Science). Right: Frequency distribution

of peak fluxes of flaring events in blazar GC 0109+224, including fluxes above a

3σ-threshold, fitted with a powerlaw function N(P ) ∝ P−1.55 (Ciprini et al. 2003).
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13.2.10 Blazars

Blazars (BL Lac quasars) are a special subgroup of quasars. This group in-
cludes BL Lacertae objects, high polarization quasars, and optically violent
variables. They are believed to be active galactic nuclei whose jets are aligned
within <∼ 10◦ of our line-of-sight (Fig. 13.17 left). Because we are observing
“down” the jet direction we observe a large degree of variability and apparent
superluminal speeds from the jet-aligned emission. The structure of blazars,
like all active galactic nuclie, is thought to be powered by material falling
onto the supermassive black hole at the center of the host galaxy, which emits
highly intermittent gyrosynchrotron emission (in radio wavelengths), inverse
Compton emission (in X-rays and gamma-rays), and free-free bremsstrahlung
emission (in soft X-rays), modulated by the variable rate of matter infalling
into the accretion disk of the central black hole.

The optical variability of blazar GX 0109+224 was monitored and the light
curves were found to exhibit flickering and shot noise, with a power spectrum
P (ν) ∝ ν−p with power exponent of p = 1.57−2.05 (Ciprini et al. 2003). The
occurrence frequency distribution of peak fluxes of flare events was found to
have a powerlaw slope of αp = 1.55 (Fig. 13.17, right; Ciprini et al. 2003),
which is close to the prediction of the FD-SOC model (αp = 1.67). Thus,
the highly-variable blazar emission was interpreted in terms of SOC models.
The fact that the peak size distribution of radio emission observed in the
blazar agrees with the prediction of the FD-SOC model is consistent with a
near-proportional radio flux-volume scaling, i.e., F ∝ V γ with γ ≈ 1, which
is generally the case for gyro-synchrotron emission. This is different from
the flux scaling of emission observed from the black hole Cygnus X-1. Thus,
SOC statistics allows us to discriminate between different physical emission
mechanisms in black holes and blazars.

13.2.11 Cosmic Rays

Cosmic rays are high-energy particles that have been accelerated during a
long journey through a large part of our universe, inside our Milky way as
well as from outside of our galexy. Their boosting to the highest energies of
up to <∼ 1021 eV can only occur by multi-step acceleration processes through-
out the universe over long time spans. The energy spectrum of cosmic rays,
as it can be measured from showers of secondary particles produced in the
Earth atmosphere (Fig. 13.18 left), exhibits a powerlaw-like energy spec-
trum extending from ≈ 109 eV (=1 GeV) over 12 orders of magnitude up
to <∼ 1021 erg (Fig. 13.18 right). The average slope is αE ≈ 2.7. However,
a more accurate model is a broken powerlaw with a “knee” in the spec-
trum around E ≈ 1016 eV. The widely accepted interpretation of this knee
is that it separates the origin of cosmic rays from inside and outside of our
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,

Fig. 13.18: Left: The diagram shows the cascade shower of a primary cosmic ray

particle, which produces in the Earth’s atmosphere a shower of secondary particles,

which can be detected by an unterground detector, such as CosmoALEPH (courtesy

of CosmoALEPH Team). Right: Cosmic ray spectrum in the energy range of E =

109−1021 eV, covering over 12 orders of magnitude. There is a “knee” in the spectrum

around E ≈ 1016 eV, which separates cosmic rays originating within our galaxy (at

lower energies) and those from outside the galaxy (at higher energies). (Credit: Simon

Swordy, University of Chicago).

galaxy. The powerlaw slope above the “knee” steepens to αE ≈ 3.0 − 3.3.
Interestingly, our FD-SOC model applied to the kinetic energy gain in a co-
herent direct current (DC) electric field implies a proportionality of EL ∝ L
(Eq. 13.28) for sub-relativistic energies, and thus predicts an energy distribu-
tion of N(EL) ∝ E−3

L , similar to the cosmic ray spectrum. Of course, cosmic
rays are highly relativistic and are likely to be produced by many (n) accel-
eration phases. However, even if each acceleration phase is local and has a
relatively small length of l � L, the energy gain of the particle would add
up linearly with increasing travel time and travel distance

∑
l and could still

fulfill the proportionality,

EL ∝
n∑
i=1

El ∝
n∑
i=1

l ∝ L , (13.34)

and end up with an energy spectrum of N(EL) ∝ L−3.
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So, can we understand the acceleration of a cosmic ray as a SOC process?
The lattice grid would cover a large fraction of the extragalactic space of our
universe, the ensemble of cosmic-ray particles would represent an avalanche
that nonlinearly dissipates energy from local acceleration processes (such as
by the first-order Fermi acceleration process between intergalactic or inter-
stellar magnetic clouds), which are self-organizing in the sense that acceler-
ating fields (of magnetic clouds) are constantly restored by the galactic and
interstellar dynamics.

Our fractal-diffusive spatio-temporal relationship (r(t) ∝ tβ/2, Eq. 13.8)
further predicts a random-walk through the universe and an age T that scales
as L ∝ T 1/2 with the straight travel distance L from the point of origin of the
cosmic ray particle. Using the “knee” in the cosmic-ray energy spectrum (at
Egal ≈ 1016 eV) as a calibration for the distance of the Earth to the center
of our galaxy (Lgal ≈ 50 light years ≈ 5 × 1022 cm), we can estimate the
straight length scale over which the cosmic ray particle travelled by random
walk

Lmax ≈ Lgal
(
Emax
Egal

)
, (13.35)

which yields Lmax ≈ 5 × 1027 erg, which corresponds to about 10% of the
size of our universe runi ≈ 4 × 1028 cm. Since the acceleration efficiency is
different in galactic and extragalactic space, the diffusion coefficient of the
random walk is also different and therefore we expect a different powerlaw
slope in the energy spectrum produced in these two regimes.

13.3 Conclusions

In this chapter we generalized the fractal-diffusive self-organized criticality
(FD-SOC) model in terms of four fundamental parameters: (i) the Euclidean
dimension S, (ii) the fractal dimension DS of the spatial SOC avalanche
structure, (iii) the diffusion exponent β that includes both sub-diffusion and
super-diffusion, and (iv) the energy-volume scaling law with powerlaw expo-
nent γ. This model predicts powerlaw functions for the occurrence frequency
distributions of the SOC model, and moreover predicts their powerlaw slope
as a function of the four fundamental parameters. For a Euclidean dimension
of S = 3, a mean fractal dimension of DS ≈ (1 +S)/2 = 2, classical diffusion
(β = 1), and linear flux-volume scaling (γ = 1), our generalized FD-SOC
model predicts then the following powerlaw slopes: αL = 3 for length scales,
αA = 2.333 for areas, αT = 2 for durations, α = 1.667 for peak fluxes, and
αE = 1.5 for fluences or total energies of the SOC avalanches.

Comparing these theoretical predictions with the observed powerlaws of
size distributions in astrophysical systems (summarized in Table 13.2) we
find acceptable agreement for the cases of lunar craters, asteroid belts, Sat-
urn rings, outer radiation belt electron bursts, solar flares, soft gamma-ray re-
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peaters, and blazars, if we apply the linear flux-volume scaling. Discrepancies
are found for magnetospheric substorms, stellar flares, pulsar glitches, black
holes, and cosmic rays, which apparently require a nonlinear flux-volume scal-
ing. Pulsar glitches and cosmic rays can indeed be modeled by assuming a
linear energy-length scaling, which leads to energy spectra of N(E) ≈ E−3.
Black-hole pulses have very steep size spectra, which indicates a quenching
or saturation process that prevents a large variation of pulse amplitudes.
Magnetospheric substorms and solar energetic particles have the flattest size
distributions, which possibly can be explained by a selection effect with a
bias for the largest events. In conclusion, the generalized FD-SOC model can
explain a large number of astrophysical observations and can discriminate
between different scaling laws of astrophysical observables. We envision that
more refined scaling laws between astrophysical observables will be devel-
oped that are consistent with the observed size distributions, and this way
will provide the ultimate predictive power of SOC models.
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Table 13.2: Summary of theoretically predicted and observed powerlaw indices of

size distributions in astrophysical systems.

Length Area Duration Peak flux Fluence
αL αA, αth,A αT αP αE

FD-SOC Theory 3.0 2.33 2.0 1.67 1.50

Lunar craters:
Mare Tranquillitatis 1) 3.0
Meteorites and debris 2) 2.75

Asteroid belt:
Spacewatch Surveys3) 2.8
Sloan Survey4) 2.3-4.0
Subaru Survey5) 2.3

Saturn ring:
Voyager 16) 2.74-3.11

Magnetosphere:
Active substorms7) 1.21± 0.08 1.05± 0.08
Quiet substorms7) 1.16± 0.03 1.00± 0.02
Substorm flow bursts8) 1.59± 0.07
AE index bursts9) 1.24
AU index bursts10) 1.3
Outer radiation belt11) 1.5-2.1
Solar Flares:
ISEE-3, HXR12 1.88-2.73 1.75-1.86 1.51-1.62
HXRBS/SMM, HXR13 2.17± 0.05 1.73± 0.01 1.53± 0.02
BATSE/CGRO, HXR14 2.20-2.42 1.67-1.69 1.56-1.58
RHESSI, HXR15 1.8-2.2 1.58-1.77 1.65-1.77
Yohkoh, SXR16 1.96-2.41 1.77-1.94 1.64-1.89 1.4-1.6
GOES, SXR17 2.0-5.0 1.86-1.98 1.88
SOHO/EIT, EUV18 2.3-2.6 1.4-2.0
TRACE, EUV19 2.50-2.75 2.4-2.6 1.52-2.35 1.41-2.06
AIA/SDO, 335 A, EUV20 1.96 2.17 1.34
Microwave bursts21 1.2-2.5
Type III bursts22 1.26-1.91
Solar energetic particles23 1.10-2.42 1.27-1.32

Stellar Flares:
Flare stars (reported)24 2.17± 0.25
Flare stars (powerlaw fit)24 1.85± 0.31
Flare stars (cumulative fit)24 1.93± 0.35

Astrophysical Objects:
Crab pulsar25 3.06-3.50
PSR B1937+2126 2.8± 0.1
Soft Gamma-Ray repeaters27 1.43− 1.76
Cygnus X-1 black hole28 7.1
Blazar GC 0109+22429 1.55
Cosmic rays30 2.7− 3.3



478 Markus J. Aschwanden

References to Table 13.2: 1) Cross (1966); 2) Sornette (2004); 3) Jedicke and Met-

calfe (1998); 4) Ivezic et al. (2001); 5) Yoshida et al. (2003), Yoshida and Nakamura

(2007); 6) Zebker et al. (1985), French and Nicholson (2000); 7) Lui et al. (2000);
8) Angelopoulos et al. (1999); 9) Takalo (1993), Takalo et al. (1999); 10) Freeman et

al. (2000); Chapman and Watkins (2001); 11) Crosby et al. (2005) 12) Lu et al. (1993),

Lee et al. (1993); 13) Crosby et al. (1993); 14) Aschwanden (2011a,b); 15) Christe

et al. (2008), Lin et al. (2001), Aschwanden (2011a,b); 16) Shimizu (1995), As-

chwanden and Parnell (2002); 17) Lee et al. (1995), Feldman et al. (1997), Veronig

et al. (2002a,b), Aschwanden and Freeland (2012); 18) Krucker and Benz (1998),

McIntosh and Gurman (2005); 19) Parnell and Jupp (2000), Aschwanden et al. 2000,

Benz and Krucker (2002), Aschwanden and Parnell (2002), Georgoulis et al. (2002);
20) Aschwanden (2012b) 21) Akabane (1956), Kundu (1965), Kakinuma et al. (1969),

Das et al. (1997), Nita et al. (2002); 22) Fitzenreiter et al. (1976), Aschwanden et

al. (1995), Das et al. (1997), Nita et al. (2002); 23) Van Hollebeke et al. (1975),

Belovsky and Ochelkov (1979), Cliver et al. (1991), Gabriel and Feynman (1996),

Smart and Shea (1997), Mendoza et al. (1997), Miroshnichenko et al. (2001), Geron-

tidou et al. (2002); 23) Gabriel and Feynman (1996); 24) Robinson et al. (1999),

Audard et al. (2000), Kashyap et al. (2002), Güdel et al. (2003), Arzner and Güdel
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Kashyap, V.L., Drake, J.J., Güdel, M., and Audard, M. 2002, Flare heating
in stellar coronae, Astrophys. J. 580, 1118-1132.

Kouveliotou,C., Dieters, S., Strohmayer, T., van Paradijs, J., Fishman, G.J.,
Meegan, C.A., Hurley, K., Kommers, J., Smith, I., Frail, D., Muakami,
T. 1998, An X-ray pulsar with a superstrong magnetic field in the soft
γ-ray repeater SGR 1806-20, Nature 393, 235-237.

Kouveliotou,C., Strohmayer, T., Hurley, K., van Paradijs, J., Finger, M.H.,
Dieters, S., Woods, P., Thomson, C., and Duncan, R.C. 1999, Discov-
ery of a magnetar associated with the soft gamma ray repeater SGR
1900+14, Astrophys. J. 510, L115-L118.

Krucker, S. and Benz, A.O. 1998, Energy distribution of heating processes in
the quiet solar corona, Astrophys. J. 501, L213-L216.

Kundu, M.R. 1965, Solar radio astronomy, Interscience Publication: New
York, 660 p.

Lee, T.T., Petrosian, V., and McTiernan, J.M. 1993, The distribution of
flare parameters and implications for coronal heating, Astrophys. J.
412, 401-409.

Lee, T.T., Petrosian, V., and McTiernan, J.M. 1995, The Neupert effect and
the chromospheric evaporation model for solar flares, Astrophys. J.
418, 915-924.

Lin, R.P., Feffer,P.T., and Schwartz,R.A. 2001, Solar Hard X-Ray Bursts and
Electron Acceleration Down to 8 keV, Astrophys. J. 557, L125-L128.



482 Markus J. Aschwanden

Lu, E.T. and Hamilton, R.J. 1991, Avalanches and the distribution of solar
flares, Astrophys. J. 380, L89-L92.

Lu, E.T., Hamilton, R.J., McTiernan, J.M., and Bromund, K.R. 1993, Solar
flares and avalanches in driven dissipative systems, Astrophys. J. 412,
841-852.

Lui, A.T.Y., Chapman, S.C., Liou,K., Newell, P.T., Meng, C.I., Brittnacher,
M., and Parks, G.K. 2000, Is the dynamic magnetosphere an avalanch-
ing system?, Geophys. Res. Lett. 27(7), 911-914.

McIntosh, S.W. and Gurman, J.B. 2005, Nine years of EUV bright points,
Solar Phys. 228, 285-299.

Mendoza, B., Melendez-Venancio, R., Miroshnichenko, L.I., and Perez-Enriquez,
R. 1997, Frequency distributions of solar proton events, Proc. 25th Int.
Cosmic Ray Conf. 1, 81.

Melatos, A., Peralta, C., and Wyithe, J.S.B. 2008, Avalanche Dynamics of
radio pulsar glitches, Astrophys. J. 672, 1103-1118.

Melatos, A. and Warszawski, L., 2008, Superfluid vortex ynpinning as a coher-
ent noise process, and the scale invariance of pulsar glitches, Astrophys.
J. 700(2), 1254-1540.

Mineshige, S. and Negoro, H. 1999, Accretion disks in the context of self-
organized criticality: How to produce 1/f fluctuations ?, in High energy
processes in accreting black holes, ASP Conf. Ser. 161, 113-128.

Miroshnichenko, L.I., Mendoza, B., and Perez-Enriquez R. 2001, Size distri-
butions of the >10 MeV solar proton events, Solar Phys. 202, 151-171.

Nishizuka, N., Asai, A., Takasaki, H., Kurokawa, H., and Shibata, K. 2009,
The Power-Law Distribution of Flare Kernels and Fractal Current
Sheets in a Solar Flare, Astrophys. J. 694, L74-L77.

Negoro, H., Kitamoto, S., Takeuchi, M., and Mineshige, S. 1995, Statistics of
X-ray fluctuations from Cygnus X-1: Reservoirs in the disk ? Astro-
phys. J. 452, L49-L52.

Nita, G.M., Gary, D.E., Lanzerotti, L.J., and Thomson, D.J. 2002, The peak
flux distribution of solar radio bursts, Astrophys. J. 570, 423-438.

Parnell,C.E. and Jupp,P.E. 2000, Statistical analysis of the energy distribu-
tion of nanoflares in the quiet Sun Astrophys. J. 529, 554-569.

Robinson, R.D., Carpenter, K.G., and Percival, J.W. 1999, A search for mi-
croflaring activity on dMe flare stars. II. Observations of YZ Canis
Minoris, Astrophys. J. 516, 916-923.

Rosner, R., and Vaiana, G.S. 1978, Cosmic flare transients: constraints upon
models for energy storage and release derived from the event frequency
distribution, Astrophys. J. 222, 1104-1108.

Shibata, K. and Yokoyama T. 1999, Origin of the universal correlation be-
tween the flare temperature and the emission measure for solar and
stellar flares, Astrophys. J. 526, L49-L52.

Shibata, K. and Yokoyama T. 2002, A Hertzsprung-Russell-like diagram for
solar/stellar flares and corona: emission measure versus temperature
diagram, Astrophys. J. 577, 422-432.



13 SOC Systems in Astrophysics 483

Shimizu, T. 1995, Energetics and occurrence rate of active-region transient
brightenings and implications for the heating of the active-region
corona, Publ. Astron. Soc. Japan 47, 251-263.

Smart, D.F. and Shea, M.A. 1997, Comment on the use of solar proton spectra
in solar proton dose calculations, in Proc. Solar-Terrestrial Prediction
Workshop V, Hiraiso Solar-Terrestrial Research Center, Japan, p.449.

Sornette, D. 2004, Critical phenomena in natural sciences: chaos, fractals, self-
organization and disorder: concepts and tools, Springer, Heidelberg,
528 p.

Stelzer, B., Flaccomio, E., Briggs, K., Micela, G., Scelsi, L, Audard, M., Pil-
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