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Solar activity 
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TSI reconstructions 
[ Bolduc et al. 2015, ApJ, submitted ] 
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Two schools of thoughts 

1.  All TSI variation on all relevant timescales are 
due to varying surface coverage of magnetic 
features (spots, faculae, network, etc.). 
Strongest evidence: reconstructions based on 
photospheric data can reproduce 95% of 
observed variance. 

2.  Some TSI variations on timescales decadal 
and longer originate from deep inside the sun 
(changes in solar radius, photospheric 
temperature gradient, magnetic modulation 
of convective energy flux, etc.). Strongest 
evidence: cyclic modulation of p-mode 
frequencies. 
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A model for the solar magnetic network 
and its evolution over a solar cycle  
[ with A. Crouch, P. K. Thibault , M. Béland ] 
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Diffusion-limited aggregation 
[ Crouch et al. 2007, ApJ, 677, 723; Thibault et al. 2012, ApJ, 757, 187 ] 

A simulation of magnetic network formation and evolution	

through Diffusion-Limited Aggregation (DLA):	

	

1.  Elementary « flux tubes » are injected on a computational	

      solar photosphere and left to random walk with step length	

      corresponding to granulation.	

2.  Tubes coming closer than some preset interaction distance	

      stick together (same polarities) or annihilate (opposite 	

      polarities).	

3.  Individual tubes and aggregates have a size-dependent	

      probability of spontaneous diappearance (simulating 	

      convective submergence).	
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Local area DLA simulations (1) 
[ Crouch et al. 2007, ApJ 719 ] 

declines. In general, the cancellation ratio tends to decrease as the
number of interactions decreases, which corresponds to a smallerdi
(as shown in Fig. 5) or a smaller nin (not shown).

3.2. The Lifetime of the Magnetic Flux Elements

The lifetime parameter, ! , controls the probability of an element
or cluster being removed from the simulation on any given time
step. However, because a significant proportion of the elements
can be removed from the simulation by cancellation (as dis-
cussed above), the average lifetime of the individual magnetic

elements is generally less than ! . The actual lifetime is easily
calculated by tracking when the individual elements enter and
exit the simulation (the lifetime of clusters is not addressed here,
because it is more difficult to evaluate due to labeling issues). For
example, for the simulation of duration 105 time steps with dw ¼
0:01, di ¼ 0:002, nin ¼ 50, and ! ¼ 1000, the average element
lifetime was 171 time steps.
Figure 6 shows how the average element lifetime for a given

simulation varies with the model parameters ! and di. All cases
displayed in that plot have nin ¼ 50. The behavior is very similar
for other choices of nin. Obviously, there is a strong connection
between the actual lifetime and ! . But there is also a strong
dependence on the other model parameters di and nin. Larger
interaction distances, di, lead to a greater number of interactions
(cancellations) and therefore, shorter average lifetimes. Like-
wise, larger injection rates result in shorter average lifetimes (not
shown). Figure 6 also shows that the range of lifetime parame-
ters that we have examined is quite reasonable. Lifetimes of 50Y
400 time steps (granule lifetimes) correspond to roughly 4Y30 hr,
a range that is consistent with observations (e.g., Liu et al. 1994;
Zhang et al. 1998a, 1998b, 2003; Hagenaar et al. 1999; Hagenaar
& Shine 2005).
It turns out that a significant fraction of the magnetic elements

survive for longer than the average lifetime. This is partly due to
the elements retaining their individual identity when part of a
cluster. Elements in clusters live longer because they are shiel-
ded from cancellations, and ! is increased by

ffiffiffiffiffi
ne

p
. This point is

well illustrated by Figure 7, where we have plotted the path taken
by one of the elements during a simulation using dw ¼ 0:01,
di ¼ 0:002, nin ¼ 100, and ! ¼ 1000 (not the case we have
mostly focused on in this section). For the first five time steps
after its injection, the element is unclustered and therefore takes
relatively large strides. It then aggregates to a cluster or another
unclustered element, and its strides are reduced (although only
slightly, indicating that the aggregate is quite small). Some time
later, the element breaks away from the cluster and then spends

Fig. 5.—Cancellation ratio, the number of cancellations per time step divided
by nin/2, as a function of the lifetime parameter ! for a variety of simulations with
nin ¼ 50. Each data point represents the cancellation ratio for a simulation with a
given set of parameters (the curves are for guidance only). The diamonds joined
by solid curves are simulations with di ¼ 0:005, the crosses joined by solid
curves are di ¼ 0:002, the diamonds joined by dashed curves are di ¼ 0:001, and
the crosses joined by dashed curves are di ¼ 0:0005.

Fig. 4.—Left : Plot showing the position of the clustered magnetic elements after 5 ; 104 time steps for a simulation with dw ¼ 0:01, di ¼ 0:005, nin ¼ 400, and
! ¼ 4000.Right : Plot showing the position of the clusteredmagnetic elements after 5 ; 104 time steps for a simulationwith dw ¼ 0:01, di ¼ 0:002, nin ¼ 50, and ! ¼ 200.
The formatting in both cases is the same as in Fig. 3 (left).

CROUCH, CHARBONNEAU, & THIBAULT720 Vol. 662

Sample solutions in « non-solar » parameter regimes 
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Local area DLA simulations (2) 
[ Crouch et al. 2007, ApJ 719 ] 

element, we could determine the global average field strength sus-
tained by a given simulation. By comparing the resultant value to
the observed quiet-Sun value, we could use Figure 2 to help con-
strain nin and the other model parameters (e.g., Schrijver et al.
1997b).

The maximum cluster size (Fig. 1, third from top) also builds
up over the first several thousand time steps and does not appear
to settle. This is indicative of the processes that affect all clusters.
In addition to the gradual aggregation or decay and erosion (by
cancellation), clusters can collide with other clusters (for the larg-
est cluster, these correspond to sharp upward jumps), and clusters
can be broken apart by internal cancellation (sharp drops). The
sharp dips are evidence of an internal cancellation breaking a ten-
uous link between two fragments that subsequently recombine
a few time steps later.

The net flux in the simulation at a given time is determined
simply by adding together the total number of elements with
positive polarity and subtracting the total number of elements
with negative polarity (Fig. 1, bottom). The instantaneous net
flux is equal to the cumulative net flux injected into the simulation
minus the cumulative net flux removed (as clusters and unclus-
tered elements vanish due to their finite lifetimes). Cancellations
have no effect on the net flux. The net flux injected is essentially
zero, because we alternate the polarity of each injected element.
This approach is reasonable for quiet Sun; however, in the vicinity
of a large decaying flux concentration, one polarity may dom-
inate. In Figure 1 (bottom) sharp fluctuations in the net flux are
due to clusters vanishing (because all of the elements in a cluster
have the same polarity). In x 3.6 we comment on the spatial dis-
tribution of the net flux.

Figure 3 shows the configuration of the clustered magnetic
flux elements after 5 ; 104 time steps (to avoid clutter, elements
that are not part of a cluster are not shown). That particular case
appears to be fairly realistic (at least superficially). In contrast,
Figure 4 gives the reader an example of less realistic regions of
parameter space. For the case on the left, the parameter settings
are dw ¼ 0:01, di ¼ 0:005, nin ¼ 400, and ! ¼ 4000. Because

the interaction distance, the injection rate, and the lifetime are all
increased, the resultant clusters grow much larger and collec-
tively cover a greater fraction of the domain. For the case on the
right in Figure 4, the parameter settings are dw ¼ 0:01, di ¼
0:002, nin ¼ 50, and ! ¼ 200. The combination of small injec-
tion rate and a small lifetime makes it very difficult for large,
long-lived clusters to build up (the largest cluster in that frame
has ne ¼ 29).

3.1. Cancellations

The number of cancellations per time step is interesting be-
cause each cancellation will release a small amount of energy.
The total energy liberated could contribute significantly to the
quiet-Sun coronal heating budget (e.g., Wang et al. 1996; Zhang
et al. 1998a; Longcope&Kankelborg 1999). At this stage, we do
not intend to quantify this effect in detail, as the model is too
simple. Figure 1 (second from the bottom) shows that the number
of cancellations quickly reaches an approximately statistically sta-
tionary state. For this particular simulation, the average number of
cancellations per time step was 22.53, which is roughly 90% of
nin/2 (to determine the average value throughout the simulation,
we only consider time steps after 104). This implies that the in-
jection of fresh elements into the simulation is largely balanced by
cancellations (injection is balanced by cancellation in the mag-
netic carpet models of Parnell [2001] and Simon et al. [2001]).
The remaining 10% of the injected elements are removed by the
finite-lifetime effect, as prescribed by the parameter !. It should
be noted that smaller values of ! will result in more clusters and
elements being removed by the finite-lifetime effect, and there-
fore fewer will be removed by cancellation. Figure 5 further
clarifies this point, where we plot the cancellation ratio, the av-
erage number of cancellations per time step divided by nin/2, as a
function of the lifetime parameter !. Larger values of ! give the
elements more time to collide (and cancel), and, therefore, the
injection rate is approximately balanced by the cancellation rate
in that regime. On the other hand, when ! is reduced, fewer ele-
ments are removed by cancellation and the cancellation ratio

Fig. 3.—Position of the clustered magnetic elements after 5 ; 104 time steps for a simulation with dw ¼ 0:01, di ¼ 0:002, nin ¼ 50, and ! ¼ 1000. Left : Entire domain
( length and width of unity). Right : Enlargement of the area outlined on the left. Its length and width are 0.16. In both plots the individual elements are represented by filled
circles with radius di/2. White points have negative polarity, and black ones have positive polarity.

EMERGENT SUPERGRANULATION 719No. 1, 2007

A « solar magnetic network » solution 
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Local area DLA simulations (2) 

a smaller ! (comparatively more large clusters because clusters
have longer to grow); (2) a smaller di leads to fewer interactions and
therefore a larger! (fewer large clusters); and (3) of the threemodel
parameters, nin has the least impact on ! (not shown in Fig. 9).

Broadly speaking, the cluster size ne can be used as a surrogate
for the magnetic flux contained in a cluster. Several studies have
attempted to characterize the distribution of magnetic flux in var-
ious concentrations at the solar surface. Wang et al. (1995) found
that the distribution shows a peak at 6 ; 1016 and 2 ; 1018 Mx for
intranetwork and network elements, respectively; for fluxes
greater than the peak value, the distribution appears to follow a
power law. Schrijver et al. (1997b) found that the flux contained
in concentrations in the quiet network is distributed according to
an exponential over the range (1Y5) ; 1018 Mx (see also Schrijver
et al. 1996). Parnell (2002) found that the most likely fit for the
flux distribution of concentrations in quiet Sun over the range
(1Y100) ; 1018 Mx is a Weibull distribution (in comparison to a
power law). Abramenko & Longcope (2005) compared lognor-
mal, exponential, and power-law distribution functions for con-
centrations in active regions with fluxes in the range (10Y800) ;
1018 Mx. They found that the observations are only consistent
with a lognormal distribution. As stated above, the power law ob-
tained here is a property of the aggregation-cancellation process,
which is a simplified model of the dispersal of magnetic flux ele-
ments. There are a couple of unmodeled effects that could cause
the distribution to deviate from a power law; these include frag-
mentation and injection of flux on a range of scales (e.g., Schrijver
et al. 1996, 1997b; Parnell 2001, 2002).

3.4. Cluster Fractal Dimension

The best known and best established property of DLA is the
cluster mass-radius scaling relation (e.g., Witten & Sander 1981,
1983; Meakin 1983a),

N ! RD; ð2Þ

where N is the number of particles found inside a spatial tem-
plate of size R (square of side length R or circle of radius R) and
D is the fractal dimension (or Hausdorff dimension). Nonfractal
structures, such as perfect circles or squares, have D ¼ 2, and
smallerD values are associated withmore fractal-type structures.
The fractal dimension of the clusters is a simple, yet effective,
tool for characterizing their structural complexity. For simple
two-dimensional DLAmodels,D ¼ 1:71 (e.g., Witten & Sander
1981, 1983; Meakin 1983a), with a lower limit of D ¼ 1:5 for
DLA on a lattice (Kesten 1987); for DLA models with multiple
moving aggregates on a two-dimensional lattice,D % 1:45 (e.g.,
Meakin 1983b; Kolb et al. 1983). However, as discussed in x 2.2,
we do not expect the fractal dimension of the aggregates pro-
duced by our simulations to agree perfectly with classical DLA
models. This definition of fractal dimension has also been used
to study the geometry of solar magnetic regions (e.g., Tarbell et al.
1990; Schrijver et al. 1992; Balke et al. 1993; Meunier 1999),
alongwith themagnetic structures produced by numerical simula-
tions of magnetoconvection (e.g., Bushby & Houghton 2005),
where N represents the number of pixels occupied by the struc-
ture. We do not intend to make detailed comparisons to obser-
vations, because it is difficult to pixelate the clusters in a manner
that could be compared to observations that is also self-consistent
over a broad range of di.
In the plot in Figure 10 we have displayed the cluster size, ne,

as a function of the cluster linear size (the size of the smallest
square box with sides parallel to the sides of the domain that can
contain the cluster) for 10 realizations of a simulation with dw ¼
0:01, di ¼ 0:002, nin ¼ 50, and " ¼ 1000. For larger clusters the
relationship between ne and the linear size appears to be roughly
linear in log-log space, which suggests that the structures are
statistically self-similar (as predicted by eq. [2]). For smaller
clusters the relationship is less clear, due to the relatively large
spread in their linear size; this is because element spacingswithin
a cluster can be less than or equal to di (i.e., a two-element cluster
can have a comparatively broad range of linear sizes). For this
reason, to calculate the fractal dimension, we only consider clusters

Fig. 9.—Power-law exponent ! as a function of the lifetime parameter " for a
variety of simulations (all with nin ¼ 100). Each data point represents the com-
bined result from 10 realizations of one simulation with fixed parameters (the
curves joining the points are only a guide). The diamonds joined by solid curves
are simulations with di ¼ 0:005, the crosses joined by solid curves are di ¼
0:002, the diamonds joined by dashed curves are di ¼ 0:001, and the crosses
joined by dashed curves are di ¼ 0:0005. To produce a reliable estimate for!, we
require that each simulation produce at least one cluster with ne & 50 (in the 10
realizations). The simulation with " ¼ 200, nin ¼ 100, and di ¼ 0:0005 was run,
but the largest cluster produced had ne ¼ 24.

Fig. 10.—Cluster size, ne, as a function of the cluster linear size for the sim-
ulation with dw ¼ 0:01, di ¼ 0:002, nin ¼ 50, and " ¼ 1000. Each data point rep-
resents the properties of a cluster from 1 of 10 realizations from time steps t ¼
10;000, 20,000, . . . , 100,000 (a total of 4073 individual clusters were examined).
The solid curve is the linear best fit in log-log space for clusters with ne & 10; its
gradient is the fractal dimension D (see eq. [2]).

CROUCH, CHARBONNEAU, & THIBAULT722 Vol. 662

several time steps alone. At x ! 0:785 and y ! 0:145 the ele-
ment aggregates again, but this time to a relatively large cluster
(indicated by the very small strides taken during that phase),
where it spends the remainder of its life (its cause of death was
cancellation). The life story of this particular element demon-
strates how the element lifetimes can be longer than average.
The lifetime of the element tracked in Figure 7 was 522 time
steps (roughly 4 times the average for the simulation, which was
129 time steps).

3.3. Cluster Size Probability Density Function

The plot in Figure 8 shows the probability density function
(PDF) of cluster size for a simulationwithdw ¼ 0:01,di ¼ 0:002,
nin ¼ 50, and ! ¼ 1000. To improve statistics, results are com-
bined from 10 realizations taken from equally spaced time steps:
t ¼ 10;000, 20,000, . . . , 100,000 (which are assumed to be un-
correlated). A total of 4073 individual clusters were examined.
For each bin, the probability density is defined as

PDF neð Þ ¼ 1

Ntot

!N

!ne
; ð1Þ

where ne is the size of the cluster,!ne is the bin width (which is
constant in log-space in Fig. 8),!N is the number of clusters in
the size range [ne, ne þ!ne), and Ntot is the total number of
clusters examined. Therefore, the probability that a cluster has a
size in the range [ne, ne þ!ne) is PDF(ne)!ne.

The dashed curve in Figure 8 represents the power law

PDF neð Þ ¼ " & 1

n0

ne
n0

! "&"

;

where" is the exponent (calculated using themethod of maximum
likelihood estimation [MLE]) and n0 ¼ 2 is the smallest cluster
size. The PDF of cluster size is well approximated by a power law
over the range of parameter space that we have explored. This is
not entirely surprising, because power-law size distributions are a
property of the aggregates produced byDLAmodels (e.g., Vicsek
& Family 1984; Meakin et al. 1985; Vicsek et al. 1985). Power
laws are scale-invariant, meaning that PDF(cne) ¼ c&"PDF(ne),
for some scaling factor c and for all ne (over which the power-law
relationship holds). This implies that the aggregation-cancellation
process is independent of cluster size.

Figure 9 shows how " varies with the model parameters ! and
di. A couple of general patterns are evident: (1) a larger ! produces

Fig. 7.—Path taken by one of the elements during a simulation with dw ¼
0:01, di ¼ 0:002, nin ¼ 100, and ! ¼ 1000. Each path segment corresponds to
the trajectory taken by the element from one time step to the next. The style of
each segment refers to the state of the element at the beginning of the time step:
for solid segments it was part of a cluster, for dotted segments it was not. The birth
and death locations of the element are labeled with arrows. The lifetime for this
particular element was 522 time steps. It should be noted that the this particular
plot was made with an earlier version of the model using a fixed (non-Gaussian)
step length.

Fig. 8.—Probability density function (PDF) of cluster size (in terms of the
number of magnetic elements constituting each cluster, ne), for the simulation
with dw ¼ 0:01, di ¼ 0:002, nin ¼ 50, and ! ¼ 1000. The results are combined
from 10 realizations at time steps t ¼ 10;000, 20,000, . . . , 100,000 (a total of 4073
individual clusters were examined). The diamonds represent the PDF (see eq. [1]).
The dashed curve shows a power-law fit, where the exponent " has been deter-
mined by maximum likelihood estimation (MLE).

Fig. 6.—Average lifetime of the individual magnetic elements as a function of
the lifetime parameter ! for a variety of simulations (all with nin ¼ 50). Each data
point represents the average lifetime for elements in a simulation with a given set
of parameters (the curves are for guidance only). The labeling of data points is
identical to Fig. 5.

EMERGENT SUPERGRANULATION 721No. 1, 2007

This « solar »  solution reproduces observed power-law shape and index  
of the size distribution of network elements (Parnell 2001, SolP 200),  
as well as their observationally-inferred  fractal dimension  
(Criscuoli et al. 2007, A&A 461) 
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Global DLA simulation (1) 
[ Thibault et al. 2012, ApJ 757; 2014, ApJ, 796 ] 

The Astrophysical Journal, 796:19 (13pp), 2014 November 20 Thibault, Charbonneau, & Béland

Figure 2. Subdivision of the simulation domain with tiles, shown on a latitude–longitude projection.

Figure 3. Surface evolution of magnetic flux following the injection of active regions from the Wang & Sheeley database for simulation 3. Time zero corresponds to
1976 August 16, marking the sunspot minimum between cycles 20 and 21. Each frame shows a pixelated snapshot in Mollweide projection of the magnetic flux in the
computational plane, spaced 2 yr apart and spanning cycle 21. Aggregates forming from the decay of active regions are transported poleward by the meridional flow,
and sheared horizontally by differential rotation. Note also how large bipolar active regions emerging at mid-latitudes nearly all show the same ordering of magnetic
polarity with respect to the longitudinal direction, positive (white) leading negative (black) in the northern hemisphere, and opposite in the southern hemisphere; this
is a reflection of Hale’s polarity laws.

in principle, the most realistic of our three global simulations,
in the sense that flux injection takes places over a wide range
of scales, although intermediate injection scales, associated,
e.g.,with ephemeral active regions, are not included. Most
results discussed in what follows pertain to this simulation,
unless explicitly noted otherwise.

3.2. Surface Magnetic Flux Evolution

Figure 3 shows a modeled magnetogram of the surface flux
buildup in simulation 3, in which magnetic flux emergence

occurs through the injection of both active regions and individual
flux tubes. The five frames are taken 2 yr apart, spanning
activity cycle 21, with the full latitude–longitude computational
plane displayed here in Mollweide projection. Active regions
begin appearing at mid-latitudes by t = 1 yr (first panel). The
largest aggregates forming poleward of the activity belts from
the decay of active regions reach a size sufficiently large that
they persist long enough to be carried poleward by meridional
circulation. By t = 3 yr (second panel), some of these clusters
have reached the polar regions. Because the surface meridional
flow is poleward-directed, equatorial regions remain mostly

4

Global (full-sphere) version of local area DLA simulation: 
need to account or additional surface source of magnetic 
flux: decaying active regions; use Wang & Sheeley database 
for cycle 21; add also differential rotation and meridional flow. 
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Global DLA simulation(2) 
The Astrophysical Journal, 757:187 (8pp), 2012 October 1 Thibault, Charbonneau, & Crouch

Figure 3. Pixelized snapshot of the computational plane after t = 3 yr of evolution (1979 August 16), in a simulation combining random injection of elementary flux
tubes as well as (non-random) injection of spots according to the Wang & Sheeley database for cycle 21. The bottom panel is a pixelized synthetic magnetogram, each
pixel containing a great many tubes and aggregates yielding partial polarity cancellation, while in the two closeups all clusters comprised of more than 10 elementary
flux tubes have been plotted. Pixels, tubes, and clusters are color-coded according to magnetic polarity, with black/white corresponding to negative/positive. The
square inside the zooms indicates the pixel size used to generate the bottom diagram.

(cf. left and right closeups), as a consequence of our size-
dependent decay law they tend to live much longer, up to many
months of simulated time. Consequently, many of them are
transported to higher latitudes through the action of the pole-
ward meridional flow.

Our magnetic flux injection mechanisms range here from
1017 Mx for elementary flux tubes up to 1023 Mx for the largest
spots in the Wang & Sheeley database. Figure 3 also reveals
that our Monte Carlo simulations “catch” spatial scales ranging
from ∼0.1 Mm up to the solar diameter, thus spanning nearly
five orders of magnitude in linear size. With a time step of
30 minutes and the simulation covering a significant fraction
of a full activity cycle, the range of modeled temporal scales
spans six orders of magnitude. Such a wide range of spatial,
temporal, and flux scales is entirely unfeasible for current
magnetohydrodynamic simulations of solar surface convection,
and are likely to remain so in the foreseeable future.

4. PROPERTIES OF THE SIMULATED
MAGNETIC NETWORK

Unsigned and hemispheric signed flux in simulations includ-
ing active region decay evolve throughout the course of the
solar cycle, so that strictly speaking a truly statistically sta-
tionary state is never attained in such simulations. However,
some geometric properties of the simulated magnetic network do

stabilize after a few years of simulation time. This is illustrated
in Figure 4, which show length–area scatterplots for clusters
(left column) and PDF for cluster flux (right column) after three
years of simulation time, for the three reference simulations:
random injection of elementary flux tubes only (top), injection
of active regions only (middle), and injection of both elementary
flux tubes and active regions (bottom). The statistical distribu-
tions are built from a single snapshot of each simulation. No
attempt was made to distinguish clusters having built up from
the decay products of active regions, versus those formed away
from active region (cf. the two closeups in Figure 3).

Cluster area is here taken proportional to the number of
elementary flux tubes in the aggregate times 0.01 Mm2, flux
is the number of flux tubes times 1017 Mx, and linear size is
taken as the diagonal of a rectangular box covering the cluster
in the latitude–longitude plane, corrected for sphericity. The
logarithmic slope of the length–area scatterplot thus offers a
measure of the cluster’s fractal dimension, and is listed in Table 2
for the three simulations, together with the total number of
clusters present at t = 3 yr, and the size of the largest cluster
at that time (two rightmost columns). Only clusters containing
more than 10 elementary flux tubes were retained for this fractal
analysis.

Despite the widely different flux injection regimes, the fractal
dimension of clusters is essentially identical in all cases, and
quite close to the value 1.71 expected from classical DLA in

5
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DLA simulation of surface flux evolution 
[ Thibault et al. 2014, ApJ, 796 ] The Astrophysical Journal, 796:19 (13pp), 2014 November 20 Thibault, Charbonneau, & Béland

Figure 10. Polar view of the northern hemisphere in simulation 3 at t = 1, 3, 5, 7, and 9 yr. The saturation threshold is set at 2 × 1021 Mx per pixel (20,000 flux tubes).
The red circle indicates the 75◦ latitude used to define the polar cap.
(A color version of this figure is available in the online journal.)

2.37 × 1019 Mx, close to the average determined by Ito et al.
(2010). The large amount of smaller concentrations makes our
average similar to theirs.

5. NETWORK RELAXATION TIME

The recent, unusually extended period of very low magnetic
activity observed before the onset of current cycle 24 has led
to the conjecture that the Sun had reached its true magnetic
baseline state, where any remaining magnetism is associated
exclusively with surface magnetic flux reprocessing. If this is
indeed the case, then the observed state of the Sun in the first
half of 2009 should have been similar to conditions prevailing

during the 1645–1715 Maunder Grand Minimum, offering a
much needed window into a magnetohydrodynamical state of
the solar photosphere never observed since at least 1913 (see
Schrijver et al. 2011 and discussion and references therein).
This is particularly germane to the ongoing debate regarding the
impact of solar activity on Earth’s atmosphere and climate. The
key question is: how long does it take for the solar photosphere
to lose its “magnetic memory” of a waning activity cycle?

In Paper I we showed that the size distribution of surface mag-
netic elements established itself quite quickly, from six months
to a year, independently of the mode of flux injection. This,
however, does not automatically imply that this distribution will
return to its “quiet Sun” state in a comparable time interval,

10

Polar behavior offer validation (of sorts): dominance 
of large clusters of mixed polarities containing the bulk 
of polar cap magnetic flux, with one polarity slightly 
dominating the other (as revealed by Hinode !)  
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Network evolution over a solar cycle 
[ Thibault et al. 2014, ApJ, 796 ] The Astrophysical Journal, 796:19 (13pp), 2014 November 20 Thibault, Charbonneau, & Béland

Figure 11. Contribution of the largest cluster to the unsigned (gray dashed line)
and signed (dotted line) magnetic flux in the southern (top) and northern (bottom)
polar caps. The solid line on each panel shows the contributions of the largest
cluster in each polar cap to the signed flux in that cap. The jumps in those curves
are associated with cluster merging and breakup, which can instantaneously
change which cluster is being tracked as the largest. The vertical dashed line
indicates the time of sunspot minimum delineating cycle 21 from cycle 22.

because of the population of long-lived, large clusters forming
in response to the decay of active regions, and accumulating in
polar regions (see Figure 10 herein). Our simulation 3 offers a
useful exploratory tool to quantify these effects. Even though
the last sunspot appearance in the Wang & Sheeley database
occurs on 1986 April 5, we pushed the simulation all the way
to the year 1993, maintaining injection of elementary flux tubes
everywhere in the photosphere, with the same parameters as
before, but without injecting any cycle 22 active regions.

Figure 12 shows a time series of the sunspot number (in
red) and network filling factor for this extended experiment. As
noted already in the context of Figure 7, the network filling factor
increases in the rising phase of the cycle, but ends up lagging
in phase behind the sunspot number (SSN), with the peak in
filling factor occurring in mid-1982, over 2 yr after the peak
in SSN. This simply reflects the fact that the largest network
clusters build up at high latitude, following their transport and
concentration by the meridional flow and diffusive dispersal
from active region latitudes.

Figure 12 clearly shows that the network filling factor
decreases more slowly than the SSN in the descending phase of
cycle 21, a joint consequence of the size-dependent lifetime of
clusters built into the model, coupled to the fact that the merging
(and thus growth) of existing clusters of the same magnetic
polarity is enhanced as they are advected poleward as the cycle
unfolds. The SSN minimum between cycles 21 and 22 occurred
in 1986 March (vertical dashed line in Figure 12; see Hathaway
2010). At this point the network filling factor is still almost ten
times higher than at the beginning of the simulation, where the
initial condition (simulation 1) is a “true” quiet Sun, i.e., having
never experienced active region injection. Only by mid-1988,
some 2 yr after sunspot minimum, does the network fall back

Figure 12. Time series of the smoothed monthly sunspot number (red), network
filling factor sampled over three-month blocks (black diamonds), and network
filling factor without the contribution of polar clusters of flux larger than 1022 Mx
(orange diamonds). The two vertical dashed lines indicate respectively the date
of the last cycle 23 active region emergence, and the SSN minimum between
cycles 21 and 22, as labeled. Note the ∼2.5 yr lag between the peaks in SSN
and filling factor, and the slower decrease of the filling factor in the descending
phase of cycle 21. Here the last sunspot injection occurred on 1986 April 5,
after which no cycle 22 active regions were injected (see the text).
(A color version of this figure is available in the online journal.)

Figure 13. Evolving distributions of network cluster flux, extracted at a 1 yr
cadence starting at sunspot minimum (1986 April 5). These distributions are
not normalized to simultaneously show the overall decay of the network as well
as changes in its size distribution. The distribution farthest in the lower left is
that of simulation 1, corresponding to the “true” baseline quiet Sun within our
simulation framework. The low end of all distributions, below 1019 Mx, are
well-fit by a power-law with index −2.12.

below 50% of its value at the cycle 21–22 sunspot minimum.
Fitting an exponential decay law to the filling factor decrease in
the 1985–1990 time interval yields a good fit, with an e-folding
time of 2.9 yr.

Figure 13 shows a different view of network relaxation, now
in the shape of the distribution of cluster sizes (as measured
by magnetic flux), constructed and plotted at a 1 yr cadence
starting at the SSN minimum. Here these distributions have not
been normalized to yield probability density functions, so as
to show both the overall decrease in the number of network
elements, as well as variations in the shape of the distributions.

The distribution of magnetic flux values remains essentially
invariant below ∼1019 Mx, maintaining its power-law shape
and logarithmic slope. This is not the case in the flux range
1019—1021 Mx, where scale invariance is broken by our size-
dependent decay probability. Note however that the very high
end of the distribution changes comparatively less over the time

11

Magnetic network relaxation timescale: 2.9 yr 
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Magnetically-mediated cyclic modulation 
of convective energy transport  

[ with J.-F. Cossette, P. Smolarkiewicz, M. Ghizaru ] 
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EULAG-MHD 
[ Smolarkiewicz & Charbonneau, J. Comput. Phys. 236, 608-623 (2013) ] 

EULAG: a robust, general solver for multiscale geophysical flows 
 
EULAG-MHD: MHD generalization of above; developed mostly 
at UdeM in close collaboration with Piotr Smolarkiewicz 
 
Core advection scheme: MPDATA, a minimally dissipative 
iterative upwind NFT scheme; equivalent to a dynamical, adaptive 
subgrid model.  
 
Thermal forcing of convection via volumetric Newtonian cooling term 
in energy  equation, pushing reference adiabatic profile towards a 
very slightly superadiabatic ambiant profile 
 
Strongly stable stratification in fluid layers underlying convecting layers. 
 
Model can operate as LES or ILES 

15 
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Simulation design 
Simulate anelastic convection in thick, 
rotating and unstably stratified fluid shell 
of electrically conducting fluid, overlaying 
a stably stratified fluid shell. 
 
Recent such simulations manage to reach 
Re, Rm ~102-103, at best; a long way from 
the solar/stellar parameter regime. 
 
Throughout the bulk of the convecting 
layers, convection is influenced by 
rotation, leading to alignment of  
convective cells parallel to the rotation axis. 
 
Stratification leads to downward pumping 
of the magnetic field throughout the  
convecting layers. 
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Magnetic cycles (1) Zonally-averaged Bphi at r/R =0.718 

  Zonally-averaged Bphi at -58o latitude 
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Successes and problems 
KiloGauss-strength large-scale magnetic fields, antisymmetric about 
equator and undergoing regular polarity reversals on decadal timescales. 

Cycle period four times too long, and strong fields concentrated 
at mid-latitudes, rather than low latitudes.  

Reasonably solar-like internal differential rotation, and solar-like 
cyclic torsional oscillations (correct amplitude and phasing). 

Internal magnetic field dominated by toroidal component and 
strongly concentrated immediately beneath core-envelope interface.  

Well-defined dipole moment, well-aligned with rotation axis, 
but oscillating in phase with internal toroidal component.  

On long timescales, tendency for hemispheric decoupling, and/or 
transitions to non-axisymmetric oscillatory modes. 

Cyclic modulation of the convective energy flux, in phase with the 
magnetic cycle.  
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Simulated magnetic cycles (1) 

Large-scale organisation of the magnetic field takes place primarily 
 at and immediately below the base of the convecting fluid layers 
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Magnetic modulation  of convective energy 
transport in EULAG-MHD simulation 

[ Cossette et al. 2013, ApJL, 777, L29 ] 

The simulation is more « luminous » at magnetic cycle 
maximum, by a solar-like 0.2% Lsol ! 
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How to modulate convective energy transport 

1.  Lorentz force modulates convective velocity ur ; 
2.  Change in magnitude of temperature perturbations; 
3.  Change in degree of correlation between the two;  
4.  Change in latitudinal distribution of F . 
5.  All of above ? And/or something else … ?  

Temperature deviation from horizontal mean 

Vertical flow speed 
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Spatiotemporal variability 
of the convective flux 

[ Cossette et al. 2013, ApJL, 777, L29 ] 
Zonally-averaged toroidal field and convective flux at r/R=0.87 
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Pinning it down… 
[ Cossette et al. 2013, ApJL, 

777, L29 ] 

Differences are in the tails 
of the flux distributions: hot 
spots are enhanced, turbulent 
entrainment is suppressed.  

The strongest (anti)correlations 
with the magnetic cycle are 
for the negative convective 
fluxes. 
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Small (multi)periodic signal in temperature 
[ Beaudoin et al. 2015, submitted. ] 

95% confidence 

Foukal et al. 2006, Nature 443, 161-166: this cannot produce TSI variations ! 
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Convection is NOT diffusion ! 

1.  The Newtonian diffusive heat flux is 
proportional to the temperature gradient; the 
heat flux is entirely determined by local 
conditions. 

2.  The convective heat flux is proportional to 
temperature at point of origin of upflows and 
downflows; for strongly turbulent convection, 
these flow structures can cross many scale 
heights; the heat flux is strongly non-local. 
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Convection is NOT diffusion ! 
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A few bits to remember from this talk  
Diffusion-limited aggregation can serve as the basis of a simple model 
of the magnetic network which properly reproduces many of its geometrical 
properties 
 
Augmented by magnetic flux injection due to decaying active regions, 
it becomes possible to construct a simple model for the evolution of 
the magnetic network over a solar cycle. 
 
Such a model suggests a network relaxation time of 2.9yr after 
active region injection ceases, suggesting that the cycle 23-24 minimum 
was not long enough for the network to reach it basal state. 
 
On long timescales (decadal and up), deep-seated, magnetically-driven 
modulation of heat transport may play a significant role in TSI variations. 
 
Global MHD numerical simulations now allow quantitative investigations 
of these effects; but need to get closer to the surface to allow detailed 
comparison to observations 
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The ones who did the real work 

Kim Thibault 
PhD granted April 2014 
Later MITACS postdoc in industry, Montréal 

Jean-François Cossette 
PhD granted November 2014 
Now Hale postdoctoral Fellow at the 
University of Colorado/Boulder, U.S.A. 
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FIN 
 
 

Collaborators: Piotr Smolarkiewicz (ECMWF), Mihai Ghizaru, 
Étienne Racine (CSA), Jean-François Cossette, Patrice Beaudoin, 
Nicolas Lawson, Amélie Bouchat, Corinne Simard, Caroline Dubé, 
Dario Passos, Kim Thibault, Cassandra Bolduc, Antoine Strugarek 
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The « millenium simulation » 
[ Passos & Charbonneau 2014, A&A, in press ]  

Define a SSN proxy, measure cycle characteristics (period, 
amplitude…) and compare to observational record. 
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The magnetic self-organization 
conundrum  

How can turbulent convection, a flow with a length scale <<R 
and coherence time of ~month, generate a magnetic component 
with scale ~R varying on a timescale of ~decade ?? 

Mechanism/Processes favoring organization on large 
spatial scales: 1. rotation (cyclonicity); 2. differential rotation 
(scale ~R); and 3. turbulent inverse cascades. 


