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Chapter 1

Magnetohydrodynamics

From a long view of history —seen from, say, ten

thousand years from now- –

there can be little doubt that the most significant event

of the 19th century

will be judged as Maxwell’s discovery of the laws of

electrodynamics.

Richard Feynman
The Feynman Lectures on Physics, vol. II (1964)

To sum it all up in a single sentence, magnetohydrodynamics (hereafter MHD)
is concerned with the behavior of electrically conducting but globally neutral
fluids flowing at non-relativistic speeds and obeying Ohm’s Law. Remarkably,
most astrophysical fluids meet these apparently stringent requirements, the
most glaring exception being the relativistic inflows and outflows powered by
compact objects such as black holes or neutron stars.

The focus of these lectures is on the amplification of solar and stellar mag-
netic fields through the inductive action of fluid flows, a process believed to
be well-described by MHD for physical conditions characterizing the interior
of the sun and (most) stars. Before we dive into MHD proper, we will first
clarify what we mean by “fluid” (§0.3), and review the fundamental physical
laws governing the flow of unmagnetized fluid, i.e., classical hydrodynamics
(§0.4). We then introduce magnetic fields into the fluid picture (§§0.5—0.15),
and close by reflecting upon the ultimate origin of astrophysical magnetic
fields (§0.16), and establishing the various incarnations of the so-called dy-
namo problem (§0.17) which will occupy our attention in the subsequent
chapters.

7



8 P. Charbonneau

0.3 The fluid approximation

0.3.1 Matter as a continuum

It did take some two thousand years to figure it out, but we now know that
Democritus was right after all: matter is composed of small, microscopic
“atomic” constituents. Yet on our daily macroscopic scale, things sure look
smooth and continuous. Under what circumstances can an assemblage of mi-
croscopic elements be treated as a continuum? The key constraint is that
there be a good separation of scales between the “microscopic” and “macro-
scopic”.

Consider the situation depicted on Figure 1, corresponding to an amor-
phous substance (spatially random distribution of microscopic constituents).
Denote by λ the mean interparticle distance, and by L the macroscopic scale
of the system; we now seek to construct macroscopic variables defining fluid
characteristics at the macroscopic scale. For example, if we are dealing with
an assemblage of particles of mass m, then the density (ρ) associated with a
cartesian volume element of linear dimensions l centered at position x would
be given by something like:

Fig. 1 Microscopic view of a fluid. In general the velocity of microscopic constituents
is comprised of two parts: a randomly-oriented thermal velocity, and a systematic drift
velocity, which, on the macroscopic scale amounts to what we call a flow u. A fluid
representation is possible if the mean inter-particle distance λ is much smaller than
the global length scale L.

ρ(x) =
1

l3

∑

k

mk , [kg m−3] , (1)
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where the sum runs over all particles contained within the volume element.
One often hears or reads that for a continuum representation to hold, it is
only necessary that the density be “large”. But large with respect to what?
For the above expression to yield a well-defined quantity, in the sense that the
numerical value of ρ so computed does not depend sensitively on the size and
location of the volume element, or on time if the particles are moving, it is
essential that a great many particles be contained within the element. More-
over, if we want to be writing differential equations describing the evolution
of ρ, the volume element better be infinitesimal, in the sense that it is much
smaller that the macroscopic length scale over which global variables such as
ρ may vary. These two requirements translate in the double inequality:

λ ¿ l ¿ L . (2)

Because the astrophysical systems and flows that will be the focus of our
attention span a very wide range of macroscopic sizes, the continuum/fluid
representation will turn out to hold in circumstances where the density is in
fact minuscule, as you can verify for yourself upon perusing the collection
of astrophysical systems listed in Table 1.1 below1. In all cases, a very good
separation of scales does exist between the microscopic (λ) and macroscopic
(L).

Table 1 Spatial scales of some astrophysical objects and flows

System/flow ρ [kg/m3] N [m−3] λ [m] L [km]

Solar interior 100 1029 10−10 105

Solar atmosphere 10−4 1023 10−8 103

Solar corona 10−11 1017 10−6 105

Solar wind (1 AU) 10−21 107 0.006 105

Molecular cloud 10−20 107 0.001 1014

Interstellar medium 10−21 106 0.01 1016

1 All density-related estimate assume a gas of fully ionized Hydrogen (µ = 0.5) for
the Sun, of neutral Hydrogen for the interstellar medium (µ = 1), and molecular
Hydrogen (µ = 2) for molecular clouds. Solar densities are for the base of the convec-
tion zone (solar interior), optical depth unity (atmosphere), and typical coronal loop
(corona). N is the number density of microscopic constituents. The length scale listed
for the solar atmosphere is the granulation dimension, for the corona it is the length
of a coronal loop, for the solar wind the size of Earth’s magnetosphere, and that for
the interstellar medium is the thickness of the galactic (stellar) disk; all rounded to
the nearest factor of ten.
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0.3.2 Solid versus fluid

Most continuous media can be divided into two broad categories, namely
solids and fluids. The latter does not just include the usual “liquids” of the
vernacular, but also gases and plasmas. Physically, the distinction is made on
the basis of a medium’s response to an applied stress, as illustrated on Figure
2. A volume element of some continuous substance is subjected to a shear
stress, i.e., two force acting tangentially and in opposite directions on two of
its parallel bounding surface (black arrows). A solid will immediately generate
a restoring force (white arrows), ultimately due to electrostatic interactions
between its microscopic constituents, and vigorously resist deformation (try
shearing a brick held between the palms of your hands!). The solid will rapidly
reach a new equilibrium state characterized by a finite deformation, and will
relax equally rapidly to its initial state once the external stress vanishes. A
fluid, on the other hand, can offer no resistance to the applied stress, at least
in the initial stages of the deformation.

Fig. 2 Deformation of a mass element in response to a stress pattern producing an
horizontal shear (black arrows). A solid will rapidly reach an equilibrium where inter-
nal stresses (white arrows) produced by the deformation will equilibrate the applied
shear. A fluid at rest cannot generate internal stresses, and so will be increasingly
deformed for as long as the external shear is applied.

0.4 Essentials of hydrodynamics

The governing principles of classical hydrodynamics are the same as those of
classical mechanics, transposed to continuous media: conservation of mass,
linear momentum, angular momentum and energy. The fact that these prin-
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ciples must now be applied not to point-particles, but to spatially extended
and deformable volume elements (which may well be infinitesimal, but they
are still finite!) introduces some significant complications, mostly with re-
gards to the manner in which forces act. Let’s start with the easiest of our
conservation statements, that for mass, as it exemplifies very well the manner
in which conservation laws are formulated in moving fluids.

0.4.1 Mass: the continuity equation

Consider the situation depicted on Figure 3, namely that of an arbitrarily
shaped fictitious surface S fixed in space and enclosing a volume V embedded
in a fluid of density ρ(x) moving with velocity u(x). The mass flux associated
with the flow across the (closed) surface is

Φ =

∮

S

ρu · n̂dS , [kg s−1] (3)

where n̂ is a unit vector everywhere perpendicular to the surface, and by

Fig. 3 An arbitrarily shaped volume element V bounded by a closed surface S, both
fixed in space, and traversed by a flow u.

convention oriented towards the exterior. The mass of fluid contained within
V is simply

M =

∫

V

ρdV . [kg] (4)

This quantity will evidently vary if the mass flux given by eq. (3) is non-zero:
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∂M

∂t
= −Φ . (5)

Here the minus sign is a direct consequence of the exterior orientation of n̂.
Inserting eq. (3) and eq. (4) into (5) and applying the divergence theorem to
the RHS of the resulting expression yields:

∂

∂t

∫

V

ρdV = −
∫

V

∇ · (ρu)dV . (6)

Because V is fixed in space, the ∂/∂t et
∫

V
operators commute, so that

∫

V

[
∂ρ

∂t
+ ∇ · (ρu)

]

dV = 0 . (7)

Because V is completely arbitrary, in general this can only be satisfied pro-
vided that

∂ρ

∂t
+ ∇ · (ρu) = 0 . (8)

This expresses mass conservation in differential form, and is known in hydro-
dynamics as the continuity equation.

Incompressible fluids have constant densities, so that in this limiting case
the continuity equation reduces to

∇ · u = 0 , [incompressible]. (9)

Water is perhaps the most common example of an effectively incompressible
fluid (under the vast majority of naturally occuring conditions anyway). The
gaseous nature of most astrophysical fluids may lead you to think that incom-
pressibility is likely to be a pretty lousy approximation in cases of interest in
this course. It turns out that the incompressibility can lead to a pretty good
approximation of the behavior of compressible fluids provided that the flow’s
Mach number (ratio of flow speed to sound speed) is much smaller than unity.

0.4.2 The D/Dt operator

Suppose we want to compute the time variation of some physical quantity (Z,
say) at some fixed location x0 in a flow u(x). In doing so we must take into
account the fact that Z is in general both an explicit and implicit function of
time, because the volume element “containing” Z is moving with the fluid,
i.e., Z → Z(t,x(t)). We therefore need to use the chain rule and write:

dZ

dt
=

∂Z

∂t
+

∂Z

∂x

∂x

∂t
+

∂Z

∂y

∂y

∂t
+

∂Z

∂z

∂z

∂t
. (10)
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Noting that u = dx/dt, this becomes

dZ

dt
=

∂Z

∂t
+

∂Z

∂x
ux +

∂Z

∂y
uy +

∂Z

∂z
uz =

∂Z

∂t
+ (u · ∇)Z . (11)

This corresponds to the time variation of Z following the fluid element as

it is carried by the flow. It is a very special kind of derivative in hydrody-
namics, known as the Lagrangian derivative, which will be represented by the
operator:

D

Dt
≡ ∂

∂t
+ (u · ∇) . (12)

Note in particular that the Lagrangian derivative of u yields the acceleration
of a fluid element:

a =
Du

Dt
, (13)

a notion that will soon come very handy when we write F = ma for a fluid.
A material surface is defined as an ensemble of points that define a surface,

all moving along with the flow. Therefore, in a local frame of reference S ′ co-
moving with any infinitesimal element of a material surface, u′ = 0. The
distinction between material surfaces, as opposed to surfaces fixed in space
such as in eq. (3), has crucial consequences with respect to the commuting
properties of temporal and spatial differential operators. In the latter case
∫

V
commutes with ∂/∂t, whereas for material surfaces and volume elements

it is D/Dt that commutes with
∫

V
(and

∮

S
, etc.).

0.4.3 Linear momentum: the Navier-Stokes equations

A force F acting on a point-object of mass m is easy to deal with; it simply
produces an acceleration a = F/m in the same direction as the force (sounds
simple but it still took the genius of Newton to figure it out...). In the presence
of a force acting on the surface of a spatially extended fluid element, the
resulting fluid acceleration will depend on both the orientation of the force
and the surface. We therefore define the net force t in terms of a stress tensor :

tx = êxsxx + êysxy + êzsxz , (14)

ty = êxsyx + êysyy + êzsyz , (15)

tz = êxszx + êyszy + êzszz , (16)
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where “sxy” denotes the force per unit area acting in the y-direction on a
surface perpendicular to the x-direction, tx is the net force acting on the
surfaces perpendicular to the x-direction, and similarly for the other com-
ponents. Consider now a unit vector perpendicular to a surface arbitrarily
oriented in space:

n̂ = êxnx + êyny + êznz , n2
x + n2

y + n2
z = 1 . (17)

The net force along this direction is simply

tn̂ = (n̂ · êx)tx + (n̂ · êy)ty + (n̂ · êz)tz = n̂ · s . (18)

We can now use the Lagrangian acceleration to write “a = F/m” for the
fluid element:

D

Dt

∫

V

udV =
1

ρ

∮

S

s · n̂dS . (19)

where the LHS represents the mean acceleration of the fluid element, and ρ
on the RHS is its mean density. We now pull the same tricks as in §0.4.1: use
the divergence theorem to turn the surface integral into a volume integral,
commute the temporal derivative and volume integral on the RHS, invoke
the arbitrariness of the actual integration volume V , and finally make good
use of the continuity equation (8), to obtain the differential equation for u:

Du

Dt
=

1

ρ
∇ · s , [m s−2] . (20)

We now define the pressure (units: pascal; 1 Pa≡ 1N m−2) as the isotropic
part of the force acting perpendicularly on the volume’s surfaces, and separate
it explicitly from the stress tensor:

s = −pI + ττττ , (21)

where I is the identity tensor, and the minus sign arises from the convention
that pressures acts on the bounding surface towards the interior of the volume
element, and ττττ will presently become the viscous stress tensor. Since ∇·(pI) =
∇p, eq. (20) becomes

Du

Dt
= −1

ρ
∇p +

1

ρ
∇ · ττττ . (22)

This is the celebrated Navier-Stokes equation. Any additional forces (gravity,
pressure gradients, Lorentz force, etc.) are simply added to the RHS.

The next step is to obtain expressions for the components of the tensor
ττττ . The viscous force, which is what ττττ stands for, can be viewed as a form
of friction acting between contiguous laminae of fluid moving with different
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velocities, so that we expect it to be proportional to velocity derivatives.
Consider now the following decomposition of a velocity gradient:

∂uk

∂xl
=

1

2

(
∂uk

∂xl
+

∂ul

∂xk

)

︸ ︷︷ ︸

Dkl

+
1

2

(
∂uk

∂xl
− ∂ul

∂xk

)

︸ ︷︷ ︸

Ωkl

. (23)

The first term on the RHS is a pure shear, and is described by the (symmetric)
deformation tensor Dkl; the second is a pure rotation , and is described by the
antisymmetric vorticity tensor Ωkl. It can be shown that the latter causes no
deformation of the fluid element, therefore the viscous force can only involve

Dkl. A Newtonian fluid is one for which the (tensorial) relation between ττττ
and Dkl is linear:

τij = fij(Dkl) , i, j, k, l = (1, 2, 3) ≡ (x, y, z) (24)

Since ττττ and D are both symmetric tensors, this linear relationship can involve
up to 36 independent numerical coefficients. The next step is to invoke the
invariance of the physical laws embodied in eq. (24) under rotation of the
coordinate axes. The mathematics is rather tedious, but at the end of the
day you end up with:

τxx = 2µDxx + (µϑ − 2
3µ)(Dxx + Dyy + Dzz) (25)

τyy = 2µDyy + (µϑ − 2
3µ)(Dxx + Dyy + Dzz) (26)

τzz = 2µDzz + (µϑ − 2
3µ)(Dxx + Dyy + Dzz) (27)

τxy = 2µDxy (28)

τyz = 2µDyz (29)

τzx = 2µDzx (30)

which now involves only two numerical coefficients, µ and µϑ, known as the
the dynamical viscosity and bulk viscosity, respectively. It is often conve-
nient to define a coefficent of kinematic viscosity as

ν =
µ

ρ
, [m2 s−1] . (31)

In an incompressible flow, the terms multiplying µϑ vanish and it is possible
to rewrite the Navier-Stokes equation in the simpler form:

Du

Dt
= −1

ρ
∇p + ν∇2u . [incompressible] (32)

Note here the presence of a Laplacian operator acting on a vector quan-
tity (here u); this is only equivalent to the Laplacian acting on the scalar
components of u in the special case of cartesian coordinates.
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Incompressible or not, the behavior of viscous flows will often hinge on
the relative importance of the advective and dissipative terms in the Navier-
Stokes equation:

ρ(u · ∇)u ↔ ∇ · ττττ . (33)

Introducing characteristic length scales u0, L, ρ0 and ν0, dimensional analysis
yields:

ρ0
u2

0

L
↔ 1

L
ρ0ν0

u0

L
, (34)

where we made use of the fact that the viscous stress tensor has dimensions
µ×Dik, with µ = ρν and the deformation tensor Dik has dimension of velocity
per unit length (cf. eq. 23). The ratio of these two terms is a dimensionless
quantity called the Reynolds Number :

Re =
u0L

ν0
. (35)

This measures the importance of viscous forces versus fluid inertia. It is a
key dimensionless parameter in hydrodynamics, as it effectively controls fun-
damental processes such as the transition to turbulence, as well as more
mundane matters such as boundary layer thicknesses.

A few words on boundary conditions; in the presence of viscosity, the flow
speed must vanish wherever the fluid is in contact with a rigid surface S:

u(x) = 0 , x ∈ S . (36)

This remains true even in the limit where the viscosity is vanishingly small.
For a free surface (e.g., the surface of a fluid sphere floating in a vacuum),
the normal components of both the flow speed and viscous stress must vanish
instead:

u · n̂(x) = 0 , ττττ · n̂ = 0 , x ∈ S . (37)

0.4.4 Angular momentum: the vorticity equation

The “rotation” and “angular momentum” of a fluid system cannot simply
be reduced to simple scalars such as angular velocity and moment of inertia,
because the application of a torque to a fluid element can alter not just its
rotation rate, but also its shape and mass distribution. A more useful measure
of “rotation” is the circulation Γ about some closed contour γ embedded in
and moving with the fluid:
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Γ (t) =

∮

γ

u(x, t) · d`̀̀̀ =

∫

S

(∇× u) · n̂ dS =

∫

S

ωωωω · n̂dS , (38)

where the second equality follows from Stokes’ theorem, and the third from
the definition of vorticity :

ωωωω = ∇× u . (39)

Thinking about flows in terms of vorticity ωωωω rather than speed u can be
useful because of Kelvin’s theorem, which states that in the inviscid limit
ν → 0 (or, equivalently, Re → ∞), the circulation Γ along any closed loop γ
advected by the moving fluid is a conserved quantity:

DΓ

Dt
= 0 . (40)

Applying again Stokes’ theorem yields the equivalent expression

D

Dt

∫

S

ωωωω · n̂ dS = 0 , (41)

stating that the flux of vorticity across any material surface S bounded by γ
is also a conserved quantity, both in fact being integral expressions of angular
momentum conservation.

An evolution equation for ωωωω can be obtained via the Navier-Stokes equa-
tion, in a particularly illuminating manner in the case of an imcompressible
fluid (∇ · u = 0) with constant kinematic viscosity ν, in which case eq. (32)
can be rewritten as

Du

Dt
= −∇

(
p

ρ
+ Φ

)

− ν∇× (∇× u) , [incompressible] (42)

where it was assumed that gravity can be expressed as the gradient of a
(gravitational) potential. Taking the curl on each side of this expression then
yields:

∇×
(

∂u

∂t

)

+ ∇× (u · ∇u) = ∇×
[

∇
(

p

ρ
+ Φ

)]

︸ ︷︷ ︸

=0

−ν∇×∇× (∇× u) ,(43)

then, commuting the time derivative with ∇× and making judicious of some
vector identities to develop the second term on the LHS, remembering also
that ∇ · ωωωω = 0, eventually leads to:

Dωωωω

Dt
− ωωωω · ∇u = ν∇2ωωωω , [incompressible] . (44)
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This is the vorticity equation, expressing in differential form the conservation
of the fluid’s angular momentum. A useful vorticity-related quantity is the
kinetic helicity, defined as

h = u · ωωωω , (45)

which measures the amount of twisting in a flow. This will prove an important
concept when investigating magnetic field amplification by fluid flows.

0.4.5 Energy: the entropy equation

Omitting to begin with the energy dissipated in heat by viscous friction, the
usual accounting of energy flow into and out of a volume element V fixed in
space leads to the following differential equation expressing the conservation
of the plasma’s internal energy per unit mass (e, in units J/kg):

De

Dt
+ (γ − 1)e∇ · u =

1

ρ
∇ ·

[

(χ + χr)∇T
]

, (46)

where for a perfect gas we have

e =
1

γ − 1

p

ρ
=

1

γ − 1

kT

µm
, (47)

with γ = cp/cv the ratio of specific heats, and (χ+χr)∇T the heat flux in or
out of the fluid element, with χ and χr the coefficients of thermal and radia-
tive conductivity, respectively (units: J K−1m−1s−1). Equation (46) expresses
that any variation of the specific energy in a plasma volume moving with the
flow (LHS) is due to heat flowing in or out of the volume by conduction or
radiation (here in the diffusion approximation). The “extra” term ∝ ∇ · u
on the LHS of eq (46) embodies the work done against (or by) the pressure
force in compressing (or letting expand) the volume element.

It is often convenient to rewrite the energy conservation equation in terms
of the plasma’s entropy S ∝ ρ−γp, which allows to express eq. (46) in the
more compact form:

ρT
DS

Dt
= ∇ ·

[

(χ + χr)∇T
]

, (48)

which states, now unambiguously, that any change in the entropy S as one
follows a fluid element (LHS) can only be due to heat flowing out of or into
the domain by conduction (RHS).

While this is seldom an important factor in astrophysical flows, in general
we must add to the RHS of eq. (48) the heat produced by viscous dissipation
(and, as we shall see later, by Ohmic dissipation). This is given by the so-
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called (volumetric) viscous dissipation function:

φν =
µ

2

(
∂ui

∂xk
+

∂uk

∂xi
− 2

3
δik

∂us

∂xs

)2

+ µϑ

(
∂us

∂xs

)2

, [J m−3s−1] , (49)

where summation over repeated indices is implied here. Note that since φν

is positive definite, its presence on the RHS of eq. (48) can only increase
the fluid element’s entropy, which makes perfect sense since friction, which is
what viscosity is for fluids, is an irreversible process.

For more on classical hydrodynamics, see the references listed in the bib-
liography at the end of this chapter.

0.5 The magnetohydrodynamical induction equation

Our task is now to generalize the governing equations of hydrodynamics to
include the effects of the electric and magnetic fields, and to obtain evolu-
tion equations for these two physical quantities. Keep in mind that electrical
charge neutrality, as required by MHD, does not imply that the fluid’s mi-
croscopic constituents are themselves neutral, but rather that positive and
negative electrical charges are present in equal numbers in any fluid element.

The starting point, you guess it I hope, is Maxwell’s celebrated equations:

∇ · E =
ρe

ε0
, [Gauss′ Law] (50)

∇ · B = 0 , [Anonymous] (51)

∇× E = −∂B

∂t
, [Faraday′s Law] (52)

∇× B = µ0J + µ0ε0
∂E

∂t
, [Ampere/Maxwell′s Law] (53)

where, in the SI system of units, the electric field is measured in N C−1

(≡ V m−1), and the magnetic field2 B in tesla (T). The quantity ρe is the
electrical charge density (C m−3), and J is the electrical current density
(A m−2). The permittivity ε0 (= 8.85 × 10−12C2 N−1m−2 in vacuum) and
magnetic permeability µ0 (= 4π× 10−7 N A−2 in vacuum) can be considered

2 Strictly speaking, B should be called the magnetic flux density or somesuch, but
on this one we’ll stick to common astrophysical usage.
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as constants in what follows, since we will not be dealing with polarisable or
ferromagnetic substances.

The first step is (with all due respect to the man) to do away altogether
with Maxwell’s displacement current in eq. (53). This can be justified if the
fluid flow is non-relativistic and there are no batteries around being turned
on or off, two rather sweeping statement that will be substantiated in §0.7.
For the time being we just revert to the original form of Ampère’s Law:

∇× B = µ0J . (54)

In general, the application of an electric field E across an electrically con-
ducting substance will generate an electrical current density J. Ohm’s Law
postulates that the relationship between J and E is linear:

J′ = σE′ , (55)

where σ is the electrical conductivity (units: C2s−1m−3kg−1 ≡ Ω−1m−1,
Ω ≡Ohm). Here the primes (“′”) are added to emphasize that Ohm’s Law is
expected to hold in a conducting substance at rest. In the context of a fluid
moving with velocity u (relativistic or not), eq. (55) can only be expected to
hold in a reference frame comoving with the fluid. So we need to transform
eq. (55) to the laboratory (rest) frame. In the non-relativitic limit (u/c ¿ 1,
implying γ → 1), the usual Lorentz transformation for the electrical current
density simplifies to J′ = J, and that for the electric field to E′ = E+u × B,
so that Ohm’s Law takes on the generalized form

J = σ(E + u × B) , (56)

or, making use of the pre-Maxwellian form of Ampère’s Law and reorganizing
the terms:

E = −u × B +
1

µ0σ
(∇× B) . (57)

We now insert this expression for the electric field into Faraday’s Law (52)
to obtain the justly famous magnetohydrodynamical induction equation :

∂B

∂t
= ∇× (u × B − η∇× B) . (58)

where

η =
1

µ0σ
[m2s−1] (59)
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is the magnetic diffusivity3. The first term on the RHS of eq. (58) represents
the inductive action of fluid flowing across a magnetic field, while the second
term represents dissipation of the electrical currents sustaining the field.

Keep in mind that any solution of eq. (58) must also satisfy eq. (51) at all
times. It can be easily shown (try it!) that if ∇ · B = 0 at some initial time,
the form of eq. (58) guarantees that zero divergence will be maintained at all
subsequent times4.

0.6 Scaling analysis

The evolution of a magnetic field under the action of a prescribed flow u will
depend greatly on whether or not the inductive term on the RHS of eq. (58)
dominates the diffusive term. Under what conditions will this be the case? We
seek a first (tentative) answer to this question by performing a dimensional
analysis of eq. (58); this involves replacing the temporal derivative by 1/τ
and the spatial derivatives by 1/`, where τ and ` are time and length scales
that suitably characterizes the variations of both u and B:

B

τ
=

u0B

`
+

ηB

`2
, (60)

where B and u0 are a “typical” values for the flow velocity and magnetic field
strength over the domain of interest. The ratio of the first to second term
on the RHS of eq. (60) is a dimensionless quantity known as the magnetic

Reynolds number5:

Rm =
u0`

η
, (61)

which measures the relative importance of induction versus dissipation over

length scales of order `. Note that Rm does not depend on the magnetic field
strength, a direct consequence of the linearity (in B) of the MHD induction
equation. Our scaling analysis simply says that in the limit Rm À 1, induction
by the flow dominates the evolution of B, while in the opposite limit of

3 A note of warning: some MHD textbooks use the symbol “η” for the inverse conduc-
tivity (units Ω m), so that the dissipative term on the RHS of the induction equation

retains a µ−1

0
prefactor.

4 This is true under exact arithmetic; if numerical solutions to eq. (58) are sought,
care must be taken to ensure ∇ · B = 0 as the solution is advanced in time.
5 Not the structural similarity with the usual viscous Reynolds number defined in
§0.4.3, with the magnetic diffusivity η replacing the kinematic viscosity ν in the de-
nominator. Had we not absorbed µ0 in our definition of η, the magnetic permeability
µ0 would appear in the numerator of the magnetic Reynolds number, which I per-
sonally find objectionable.
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Rm ¿ 1, induction makes a negligible contribution and B simply decays
away under the influence of Ohmic dissipation.

One may anticipate great simplifications of magnetohydrodynamics if we
operate in either of these limits. If Rm ¿ 1, only the second term is retained
on the RHS of eq. (60), which leads immediately to

τ =
`2

η
, (62)

a quantity known as the magnetic diffusion time. It measures the time taken
for a magnetic field contained in a volume of typical linear dimension ` to dis-
sipate and/or diffusively leak out of the volume. Now, for most astrophysical
objects, this timescale turns out to be quite large, indeed often larger than
the age of the universe! (see Table 1.2). This is not so much because astro-
physical plasmas are such incredibly good electrical conductors, but rather
because astrophysical objects tend to be very, very large. The existence of
solar and stellar magnetic field is then not really surprising; any large-scale
fossil field present in a star’s interior upon its arrival on the ZAMS would still
be there today at almost its initial strength. The challenge in modeling the
solar and stellar magnetic fields is to reproduce the peculiarities of their spa-
tiotemporal variations, most notably the decadal cyclic variations observed
in the Sun and solar-type stars.

The opposite limit Rm À 1, defines the ideal MHD limit. Then it is the
first term that is retained on the RHS of eq. (60), so that

τ = `/u0 , (63)

corresponding to the turnover time associated with the flow u. Note already
that under ideal MHD, the only non-trivial (i.e., u 6= 0 and B 6= 0) steady-
state (∂/∂t = 0) solutions of the MHD equation are only possible for field-
aligned flows.

Table 1.2 below lists estimates of the magnetic Reynolds number (and
related physical quantities) for the various astrophysical systems considered
earlier in Table 1.16:

The magnetic Reynolds number is clearly huge in all cases, which would
suggest that the ideal MHD limit is the one most applicable to all these astro-
physical systems. But things are not so simple. From a purely mathematical
point of view, taking the limit Rm → ∞ of the MHD induction equation is

6 Choices for length scale ` (≡ L) as in Table 1.1. Velocity estimates correspond
to large convective cells (solar interior), granulation (photosphere), solar wind speed
(corona and solar wind), and turbulence (molecular clouds and interstellar medium).
All these numbers (especially the turbulent velocity estimates) are again very rough,
and rounded to the nearest factor of ten. The magnetic diffusivity estimates given for
molecular clouds and interstellar medium depend critically on the assumed degree of
ionization, and so are also very rough.
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Table 2 Properties of some astrophysical objects and flows

System/flow L [km] σ [Ω−1m−1] η [m2s−1] τ [yr] u [km/s] Rm

Solar interior 106 104 100 109 0.1 109

Solar atmosphere 103 103 1000 102 1 106

Solar corona 105 106 1 108 10 1012

Solar wind (1 AU) 105 104 100 108 300 1011

Molecular cloud 1014 102 104 1017 100 1018

Interstellar medium 1016 103 1000 1022 100 1021

Sphere of copper 10−3 108 10−1 10−7 — —

problematic, because the order of the highest spatial derivatives decreases by
one. This situation is similar to the behavior of viscous flows at very high
Reynolds number: solutions to eq. (58) with η → 0 in general do not smoothly
tend towards solutions obtained for η = 0. Moreover, the distinction between
the two physical regimes Rm ¿ 1 and Rm À 1 is meaningful as long as one
can define a suitable Rm for the flow as a whole, which, in turn, requires one
to estimate, a priori, a length scale ` that adequately characterizes the evolv-
ing magnetic field at all time and throughout the spatial domain of interest.
As we proceed it will become clear that this is not always straightforward,
or even possible. Finally, the scaling analysis does away entirely with the
geometrical aspects of the problem, by substituting u0B for u × B; yet there
are situations (e.g. a field-aligned flow) where even a very large u has no
inductive effect whatsoever.

0.7 The Lorentz force

Getting to eq. (58) was pretty easy because we summarily swept the displace-
ment current under the rug, but it represents only half (in fact the easy half)
of our task; we must now investigate the effect of the magnetic field on the
flow u; and this, it turns out, is the tricky part of the MHD approximation.

You will certainly recall that the Lorentz force acting on an electrically
charge particle moving at velocity u in a region of space permeated by electric
and magnetic fields is given by

f = q(E + u × B) , [N] . (64)

where q is the electrical charge. Consider now a volume element ∆V con-
taining many such particles; in the continuum limit, the total force per unit
volume (F) acting on the volume element will be the sum of the forces acting
on each individual charged constituents divided by the volume element:
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F =
1

∆V

∑

k

fk =
1

∆V

∑

k

qk(E + uk × B)

=

(

1

∆V

∑

k

qk

)

E +

(

1

∆V

∑

k

qkuk

)

× B

= ρeE + J × B , [Nm−3] . (65)

where the last equality follows from the usual definition of charge density and
electrical current density. At this point you might be tempted to eliminate
the term proportional to E, on the grounds that in MHD we are dealing with
a globally neutral plasma, meaning ρe = 0, therefore ρeE ≡ 0 and that’s the
end of it. That would be way too easy...

Let’s begin by taking the divergence on both side of the generalized form
of Ohm’s Law (eq. (56)). We then make use of Gauss’s Law (eq. (51)) to get
rid of the ∇ · E term, and of the charge conservation Law

∂ρe

∂t
+ ∇ · J = 0 (66)

to get rid of the ∇ · J term. The end result of all this physico-algebraical
juggling is the following expression:

∂ρe

∂t
+

ρe

(ε0/σ)
+ σ∇ · (u × B) = 0 . (67)

The combination ε0/σ has units of time, and is called the charge relaxation

time, henceforth denoted τe. It is the timescale on which charge separation
takes place in a conductor if an electric field is suddenly turned on. For most
conductors, this a very small number, of order 10−18 s !! This is because the
electrical field reacts to the motion of electric charges at the speed of light
(in the substance under consideration, which is slower than in a vacuum but
still mighty fast). Indeed, in a conducting fluid at rest (u = 0) the above
expression integrates readily to

ρe(t) = ρe(0) exp(−t/τe) , (68)

thus the name “relaxation time” for τe.
Now let us consider the case of a slowly moving fluid, in the sense that it

is moving on a timescale much larger than τe; this means that the induced
electrical field will vary on a similar timescale (at best), and therefore the
time derivative of ρe can be neglected in comparison to the ρe/τe term in
eq. (67), leading to

ρe = ε0∇ · (u × B) . (69)

This indicates that a finite charge density can be sustained inside a moving

conducting fluid. The associated electrostatic force per unit volume, ρeE, is
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definitely non-zero but turns out to much smaller than the magnetic force.
Indeed, a dimensional analysis of eq. (65), using eq. (69) to estimate ρe, gives:

ρeE ∼
(

ε0uB

`

)(
J

σ

)

∼
(uτe

`

)

JB , (70)

J × B ∼ JB , (71)

where Ohm’s Law was used to express E in terms of J, and once again ` is
a typical length scale characterizing the variations of the flow and magnetic
field. The ratio of electrostatic to magnetic force is thus of order uτe/`. Now
τe ¿ 1 to start with, and for non-relativistic fluid motion we can expect that
the flow’s turnover time `/u is much larger than the crossing time for an
electromagnetic disturbance ∼ `/c ∼ τe; both effects conspire to render the
electrostatic force absolutely minuscule compared to the magnetic force, so
that eq. (65) becomes

F = J × B , [MHD approximation] . (72)

and this must be added to the RHS of the Navier-Stokes equation (22)... with
a 1/ρ prefactor so we get a force per unit mass, rather than per unit volume.

Now, getting back to this business of having dropped the displacement
current in the full Maxwellian form of Ampère’s Law (eq. (53)); it can now
be all justified on the grounds that the time derivative of the charge density
can be neglected in the non-relativistic limit. Indeed, to be consistent the
charge conservation equation (66) now reduces to

∇ · J = 0 ; (73)

taking the divergence on both sides of eq. (53) then leads to

∇ · J = −ε0∇ ·
(

∂E

∂t

)

= ε0
∂

∂t
(∇ · E) =

∂ρe

∂t
; (74)

this demonstrates that dropping the time derivative of the charge density
is equivalent to neglecting Maxwell’s displacement current in eq. (53). To
sum up, provided we exclude very rapid transient events (such as turning a
battery on or off, or any such process which would generate a large ∂ρe/∂t),
under the MHD approximation the following statements are all equivalent:

– The fluid motions are non-relativistic;
– The electrostatic force can be neglected as compared to the magnetic force;
– Maxwell’s displacement current can be neglected.
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0.8 Joule heating

In the presence of finite electrical conductivity, the volumetric heating asso-
ciated with the dissipation of electric currents must be included on the RHS
of the energy equation, in the form of the so-called Joule heating function :

φB =
η

µ0
(∇× B)2 , [J m−3s−1] . (75)

Note however that in very nearly all astrophysical circumstances, Joule heat-
ing makes an insignificant contribution to the energy budget. When it occurs,
heating by magnetic energy dissipation, such as in flares, involves dynamical
mechanisms that lead to effective dissipation far more rapid and efficient than
Joule heating.

0.9 The full set of MHD equations

For the record, we now collect the set of partial differential equations gov-
erning the behavior of magnetized fluids in the MHD limit. In anticipation
of developments to follow, we write these equations in a frame of reference
rotating with angular velocity ΩΩΩΩ, with the centrifugal force absorbed within
the pressure gradient term:

∂ρ

∂t
+ ∇ · (ρu) = 0 , (76)

Du

Dt
= −1

ρ
∇p − 2ΩΩΩΩ × u + g +

1

µ0ρ
(∇× B) × B +

1

ρ
∇ · ττττ , (77)

De

Dt
+ (γ − 1)e∇ · u =

1

ρ

[

∇ ·
(

(χ + χr)∇T
)

+ φν + φB

]

, (78)

∂B

∂t
= ∇× (u × B − η∇× B) . (79)

Equations (76)—(79) are further complemented by the two constraint equa-
tions:

∇ · B = 0 , (80)

p = f(ρ, T, ...) , (81)
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and suitable expressions for the viscous stress tensor and for the physical
coefficient ν, χ, η, etc. Note that gravity g is explicitly included on the RHS
of (77), that e is the specific internal energy of the plasma (magnetic energy
will be dealt with separately shortly), and that eq. (81) is just some generic
form for an equation of state linking the pressure to the properties of the
plasma such as density, temperature, chemical composition, etc.

This is it in principle, but in what follows we shall seldom solve these
equations in this complete form. In the parameter regime characterizing most
astrophysical fluids, we usually have Re À 1, which means that the (u · ∇u)
term in eq. (77) will play important role; this, in turn, means turbulence,
already in itself an unsolved problem even for unmagnetized fluids. There is
also a strong nonlinear coupling between eqs. (77) and eqs. (79), so that the
turbulent cascade involves both the flow and magnetic field. Finally, with
both Re À 1 and Rm À 1, astrophysical flows will in general develop struc-
tures on length scales very much smaller than that characterizing the system
under study, so that even fully numerical solutions of the above set of MHD
equations will tax the power of the largest extant massively parallel com-
puters, and will continue to do so in the foreseeable future; which is why
judicious geometrical and/or physical simplification remains a key issue in
the art of astrophysical magnetohydrodynamics... and will also continue to
remain so in the same foreseeable future!

0.10 MHD waves

Although it looks innocuous enough, the magnetic force in the MHD approx-
imation has some rather complex consequences for fluid flows, as we will have
ample occasions to verify throughout this course. One particularly intricate
aspects relates to the types of waves that can be supported in a magne-
tized fluid; in a classical unmagnetized fluid, one deals primarily with sound
waves (pressure acting as a restoring force), gravity waves (gravity acting as
restoring force), or Rossby waves (Coriolis as a restoring force). It turns out
that the Lorentz force introduces not one, but really two additional restoring
forces.

Making judicious use of eqs. (51) and (54), together with some classical
vector identities, eq. (72) can be rewritten as

F =
1

µ0

[

(B · ∇)B − 1

2
∇(B2)

]

, (82)

where B2 ≡ B · B. The first term on the RHS is the magnetic tension, and the
second the magnetic pressure. Fluctuations in magnetic pressure can propa-
gate as a longitudinal wave, much as a sound wave, as depicted on Fig. 4A. In
fact, two such magnetosonic waves modes actually exist, according to whether
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the magnetic pressure fluctuation is in phase with the gas pressure fluctua-
tion (the so-called fast mode), or in antiphase (the slow mode). In addition,
magnetic tension can produce a restoring force that allows the propagation of
wave-on-a-string-like transverse waves, known as Alfvén waves, as illustrated
on Fig. 4B. Small-amplitude Alfvén waves travel with a speed uA given by

Fig. 4 The two fundamental MHD wave modes in a uniform background magnetic
field: (A) magnetosonic mode, and (B) Alfvén mode. The wave vector k is indicated as
a thick arrow, and highlights the fact that the magnetosonic mode is a longitudinal
wave, while the Alfvén mode is a transverse wave. In the presence of plasma, the
magnetosonic mode breaks into two submodes, according to the phasing between the
magnetic pressure and gas pressure perturbations (see text).

uA =
B0√
µ0ρ

, (83)

where B0 is the magnitude of the (uniform) magnetic field along which the
wave is propagating, and ρ is the (constant) fluid density. Mechanical forcing
of a magnetic field permeating a compressible fluid will in general excite all
three wave modes.

0.11 Magnetic energy

Consider the expression resulting from dotting B into the induction equa-
tion (58), integrating over the spatial domain (V ) under consideration, and
making judicious use of various well-known vector identities and of Gauss’
theorem:

d

dt

∫

V

B2

2µ0
dV = −

∮

S

(S · n̂) dS −
∫

V

(u · F) dV −
∫

V

σ−1J2 dV , (84)



1 Magnetohydrodynamics 29

where n̂ is a outward-directed unit vector normal to the boundary surface,
and the vector quantity S is the Poynting flux:

S =
1

µ0
E × B . (85)

Examine now the three terms on the RHS of eq. (84); the first is the Poynting
flux component into the domain, integrated over the domain boundaries,
i.e., the flux of electromagnetic energy in (integrand < 0) or out (integrand
> 0) of the domain. This term evidently vanishes in the absence of applied
magnetic or electric fields on the boundaries. The second is the work done
by the Lorentz force (F) on the flow. In general this term can be either
positive or negative; in the dynamo context we are interested in the u ·F < 0
situation, where the flow transfers energy to the magnetic field. The third
term is evidently always negative, and represents the rate of energy loss due
to Ohmic dissipation. Equations (84) then naturally leads to interpret the
quantity B2/2µ0 as the magnetic energy density, and the total magnetic

energy (EB) within the domain is:

EB =
1

2µ0

∫

V

B2dV . (86)

0.12 Magnetic flux freezing and Alfvén’s theorem

Let us return to the differential form of Faraday’s Law:

∇× E = −∂B

∂t
. (87)

Project now each side of this expression onto a unit vector normal to some
surface S fixed in space and bounded by a closed countour γ, integrate over
S, and apply Stokes’ theorem to the LHS:

∫

S

(∇× E) · n̂dS =

∮

γ

E · d`̀̀̀ = −
∫

S

(
∂B

∂t

)

· n̂dS . (88)

So far the surface S remains completely arbitrary. If it is fixed in space, then
we get the usual integral form of Faraday’s Law:

∮

γ

E · d`̀̀̀ = − ∂

∂t

∫

S

B · n̂dS , (89)

with the LHS corresponding to the electromotive force, and the RHS to the
time variation of the magnetic flux (ΦB). If we now assume instead that
the surface S is a material surface moving with the fluid, then (1) we must
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substitute the Lagrangian operator D/Dt for the partial derivative on the
RHS of eq. (89); and (2) we are allowed to invoke Ohm’s Law to substitute
J/σ for E on the RHS since any point of the (material) contour is by definition
co-moving with the fluid:

1

σ

∮

γ

J · d`̀̀̀ = − D

Dt

∫

S

B · n̂dS . (90)

Now, obviously, in the limit of infinite conductivity we have

D

Dt

∫

S

B · n̂dS = 0 . (91)

This states that in the ideal MHD limit σ → ∞, the magnetic flux threading
any (open) surface is a conserved quantity as the surface is advected (and
possibly deformed) by the flow. This results is known as Alfvén’s theorem.
Note in particular that in the limit of an infinitisemal surface pierced by

“only one” fieldline, Alfvén’s theorem is equivalent to saying that magnetic
fieldlines must move in the same way as fluid elements; it is customary to
stay that the magnetic flux is frozen into the fluid. In this manner it behaves
just like vorticity in the inviscid limit ν → 0. And like in the case of vorticity,
sheared flows can amplify magnetic fields by stretching, a subject we will
investigate in detail in the following chapter.

Alfvén’s theorem can be arrived at in a different way, upon noting that
the magnetic field is a solenoidal vector, in that ∇ · B = 0; any such vector
transported by a flow u is subjected to the so-called kinematic theorem,
stating that:

D

Dt

∫

Sm

B · n̂dS =

∫

Sm

[
∂B

∂t
−∇× (u × B)

]

· n̂dS . (92)

Now in the ideal limit, the RHS is zero as per our MHD induction equation
(58) with η = 0, and the LHS is just the magnetic flux threading the material
surface Sm, so there we have it.

0.13 The magnetic vector potential

It will often prove useful to work with the MHD induction equation written
in terms of a vector potential, A (units T m), such that B = ∇×A. Equation
(58) is then readily integrated to

∂A

∂t
= u × (∇× A) − η∇× (∇× A) + ∇ϕ , (93)
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where, in “uncurling” the induction equation we may elect to append the
gradient of a scalar function to the RHS, with no effect on B. This additional
term may contribute to the electric field E, however, and so ϕ is conveniently
regarded as the electrostatic potential. We will often pick the Coulomb gauge
ϕ = ∇ · A in order to express the Ohmic dissipation term simply as η∇2A.

0.14 Magnetic helicity

In anology with fluid helicity, one can define the magnetic helicity as

hB = A · B . (94)

Consider now the variation of the total magnetic helicity (HB) in a co-moving
fluid volume V ; making judicious use of eqs. (58), (93) and (54), a good deal of
vector algebra eventually leads to the following evolution equation for (HB):

D

Dt

∫

V

A · BdV

︸ ︷︷ ︸

HB

= −2µ0η

∫

V

J · BdV

︸ ︷︷ ︸

HJ

, (95)

where the integral on the RHS defines the total current helicity HJ , which
measure the topological linkage between magnetic fieldlines and electrical
currents within the volume, much like the way in which the total magnetic
helicity HB measures the linkage of magnetic flux systems within V .

Equation (95) indicates that in the ideal MHD limit, magnetic helicity
becomes a conserved quantity. This will turn out to pose a severe constraint
on magnetic field amplification in astrophysical dynamos, an issue to which
we will return in due time.

0.15 Force-free magnetic fields

In many astrophysical systems, the magnetic field dominates the dynamics
and energetics of the system. Left to itself, such a system would tend to evolve
to a force-free state described by

F = J × B = 0 . (96)

Broadly speaking, this can be achieved in two physically distinct ways (ex-
cluding the trivial solution B = 0). The first is J = 0 throughout the system.
Then Ampère’s Law becomes ∇×B = 0, which means that, as with the elec-
tric field in electrostatic, B can be expressed as the gradient of a potential.
Such a magnetic field is called a potential field. Substitution into ∇ · B = 0
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then yields a Laplace-type problem:

B = ∇ϕ , ∇2ϕ = 0 , [Potential field] . (97)

Alternately, a system including a non-zero current density can still be force
free, provided the currents flow everywhere parallel to the magnetic field, i.e.,

∇× B = αB , (98)

where α need not necessarily be a constant, i.e., it can vary from one fieldline
to another, vary in space, and even depend on the (local) value of B. Imagine
now a situation where, in some domain (for example, the exterior of a star),
we are provided with a boundary condition on B and the task is to construct
a force-free field. Adopting the potential field Anzatz can lead to very different
reconstructions than if we adopt instead eq. (98), given that in the latter case
one is free to specify any electric current distribution within the domain, as
long as J remains parallel to B.

A very important result in this context is known as Aly’s Theorem; it states
that in a semi-infinite domain with B⊥ imposed at the boundary and B → 0
as x → ∞, the (unique) potential field solution satisfying the boundary
conditions has a magnetic energy that is lower than any of the (multiple)
solutions of eq. (98) that satisfy the same boundary conditions, even with
complete freedom to specify α(x) within the domain. This poses a strict limit
to the amount of magnetic energy stored into a system that can actually be
tapped into to power astrophysically interesting phenomena.

0.16 The ultimate origin of astrophysical magnetic fields

0.16.1 Why B and not E?

Pretty much anywhere we look in the known universe, there are magnetic
fields of all strengths and shapes everywhere; but electric fields are conspicu-
ously absents. Why is that? You might think, looking at Maxwell’s equations
(50)–(53) that E and B appear therein on apparently equal footing, leaving
nothing to allow us to anticipate the observed astrophysical preponderance of
magnetic fields over electrical fields. Moreover, one observer’s magnetic field
can be turned into another’s electric field by a simple change of reference
frame. So what’s the deal here?

Well, for one thing if you use any sort of sensible “rest frame” for astro-
nomical observation (Earth at rest; solar system at rest; Milky Way at rest;
local group at rest; etc ad infinitum) there is a lot of B around and precious
little E. The crucial difference between E and B in Maxwell’s equations is
not the fields themselves, nor the reference frame in which they are measured,
but their sources. The Universe may be largely empty, but the fact is that
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is contains a whopping number of electrically charged particles of various
sorts (free electrons, ionized atoms or molecules, photoelectrically charged
dust grains, etc). If a large-scale electric field were suddenly to be turned on,
all these charges will do the honorable thing, which is to separate along the
electric field direction until the secondary electric field so produced cancels
the externally applied electric field, at which point charge separation ceases.
Moreover, the low densities of most astrophysical plasmas lead to very large
mean-free paths for microscopic constituents, leading in turn to fairly good
electrical conductivities and very short electrostatic relaxation times τe (see
eq. (68)), even when the ionisation fraction is quite low (such as in molecular
clouds). In other words, astrophysical electric fields, if and whenever they
appear, get shortcircuited mighty fast.

Not so with magnetic fields. For starters, as far as anyone can tell there
are no magnetic monopoles out there (well, maybe just one, of primordial ori-
gin... more on this shortly), so shortcircuiting the magnetic field by monopole
separation is out of the question. Magnetic fields, left to themselves, will sim-
ply decay as the electrical currents that support them (remember Ampère’s
Law) suffer Ohmic dissipation. We already obtained a timescale for this pro-
cess given by eq. (62), and we already noted, on the basis of the compilation
presented in Table 1.2, that this timescale is extremely large, often exceed-
ing the age of the universe. Once magnetic fields are produced, by whatever
means, they stick around for a long, long time. But when and how do they
first appear? If we remain within the realm of MHD, then we immediately
hit a Big Problem, arising from the linearity of the MHD induction equation
(58): if B = 0 at some time t0 then B = 0 at all subsequent times t > t0, a
problem that persists unabated as t0 is pushed all the way back to the Big
Bang. We need something else.

0.16.2 Monopoles and batteries

In subsequent chapters we will see that astrophysical flows are actually quite
apt at amplifying magnetic fields, so what we are after here is a very small
seed field to start up the process. Cheap and easy explanations along the
line of an original seed magnetic field being a primordial relic of the Big
Bang need not concern us here. Nor is early-universe ferromagnetism a viable
option, since permanent magnets require an externally-applied magnetic field
to become magnetized in the first place. Interestingly, the two options that
are currently deemed viable stand at the opposite ends of the physical exotism
scale: magnetic monopoles... and batteries7.

Already back in 1931 Paul Dirac (1902-1984) pointed out that there is
nothing to prevent there being magnetic monopoles so long as the magnetic
charge on a particle is some integer multiple of g ≡ hc/(4πe) ≈ 69e, where

7 This section is adapted from class notes written by Thomas J. Bogdan for the
graduate class APAS7500 we co-taught in 1997 at CU Boulder.
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h is Planck’s constant, and e is the fundamental electric charge. With just
one magnetic monopole in the universe we have our basic seed field. Some
Grand Unified (field) Theories “predict” that very early in the formation
of the universe a lot of mg ≈ 1016 GeV/c2 magnetic monopoles should be
produced, to the point that an inflationary cosmological scenarios are needed
to ensure that only a few such massive monopoles end up within each inflated
subdomain.

In light of the fact that no one has yet seen a magnetic monopole, it would
be wise to find a more pedestrian means to create seed magnetic fields, relying
on basic physics that we know functions sensibly at least in our part of the
universe. To this end, we return to our derivation of the induction equation
(§0.5). Recall that one essential step toward MHD from Maxwell required
stipulating Ohm’s law, in the form of eq. (56) for the laboratory frame of
reference. Consider now the possibility of a “mechanically-driven” process of
charge separation (i.e., not related to the presence of an electric field in any
reference frame); Ohm’s law then picks up an extra term:

J = σ
[

E + u × B
]

+ Jmech . (99)

If we keep only the very first term on the RHS of equation (99), and drop
the displacement current in equation (53), then we get back to the induction
equation (58). If we avail ourselves of neither of these opportunities then we
obtain instead:

{

1 +
η

c2

∂

∂t

}∂B

∂t
= ∇×

(

u × B − η∇× B + µ0Jmech

)

. (100)

Notice that our only hope for creating B out of nothing (so to speak) is the
Jmech term; retaining the displacement current gives us no advantage.

The Jmech term represents our ability to mechanically grab a hold of elec-
tric charges and force currents to flow; in other words, an electromotive force.
In the dense interior of a conducting star, plasma kinetic theory permits one
to write down a prescription for this “battery” contribution to the total elec-
tric current density as:

Jmech =
σ

ene

[

∇pe −
1

c
J × B

]

, (101)

where pe is the contribution of the electrons alone to the thermal pressure (see
references in bibliography). For a completely ionized pure hydrogen plasma,
pe is just half of the total gas pressure, and ne = ρ/mp, and so,

Jmech =
σmp

2eρ

[

∇p − 2

c
J × B

]

. (102)

Now, the second term on the RHS of equation (102) does not do us any
good since it carries a factor of B, so the whole plan rests upon the first
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term generating a seed magnetic field. For a spherically symmetric star, we
know from hydrostatic equilibrium that ∇Φ = (∇p)/ρ, and so the product
ηJmech ∝ ∇Φ. This will not work because of the curl operator on the RHS of
equation (100) will yield zero upon acting on Jmech since (∇p) is a gradient of
a scalar function. How can we get around this constraint? A viable possibility
is rotation. If a star is rotating, then there is a centrifugal force per unit
density of sΩ2ês which adds to ∇Φ and which leads to the generation of
a seed magnetic field. This process of the centrifugal force driving a flow
of electrons relative to the ions was first pointed out by Ludwig Biermann
(1907–1986) and is now called the Biermann battery.

In fact any process that can produce a relative motion between the ions
and electrons is a potential battery mechanism, and a possible candidate for
creating seed magnetic fields. For example, consider a rotating proto-galaxy,
where the outer portions of the proto-galaxy move at a speed U = RΩ
relative to the frame in which the microwave background is isotropic. The
Thomson scattering of the microwave photons by the electrons results in
the so-called Compton drag effect, which causes the electrons to counter-
rotate with respect to the ions. The net result is an azimuthal current which
generates a dipole-like magnetic field.

Of course, if you bother to put typical numbers in these various examples
you will find that you don’t really generate very much magnetic field. But
generating a lot of field is not the point, that can be done via magnetic flux
conservation in a collapsing protostellar cloud, or, as we shall see in due time,
via the u × B term in our MHD induction equation. The basic idea to take
away from this section is that invoking weird, unproven physics to get away
from B = 0 is not necessary.

0.17 The astrophysical dynamo problem(s)

Before moving on with astrophysical dynamos, it will prove instructive to
first consider the following example of a simple laboratory dynamo, which
illustrates nicely how the idea of amplifying magnetic field by bodily moving
electrical charges across a magnetic field is not so mysterious as one may
initially think.

0.17.1 A simple dynamo

One of the many practical inventions of Michael Faraday (1791–1867) was a
DC electric current generator based on the rotation of a conducting metallic
disk threaded by an external magnetic field. Figure 5(A) illustrates the basic
design: a circular disk of radius a mounted on an axle, rotating at angular
velocity ω through the agency of some external mechanical force (e.g., Fara-
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Fig. 5 A homopolar generator (A) versus a homopolar dynamo (B). An external
magnetic field B is applied across a rotating conducting disk, producing an electro-
motive force that drives a radial current, a wire connecting the edge of the disk to the
axle, forming a circuit of resistance R. The only difference between the two electro-
mechanical devices illustrated here is that in the latter case, the wire completing the
circuit by connecting on the axle is wrapped into a loop in a plane parallel to the
disk, so that a secondary vertical magnetic field is produced (see text).

day turning a crank). A vertical magnetic field is imposed across the disk.
Electrical charges in the disk will feel the usual Lorentz force F = qv × B

where, (initially) v is just the motion imposed by the rotation of the disk.
Working in cylindrical coordinates (s, φ, z) one can write

v = (ωs)êφ , B = B0êz , (103)

so that

F = (qωsB0)ês . (104)

Now consider the circuit formed by connecting the edge of the disk to the
base of the axle via frictionless sliding contacts. With the lower part of the
circuit away from the imposed magnetic field, the only portion of the circuit
where the magnetic force acts on the charges is within the disk, amounting
to an electromotive force

E =

∮

circuit

(
F

q

)

· d`̀̀̀ =

∫ a

0

ωB0sds =
ωB0a

2

2
. (105)

Neglecting for the time being the self-inductance of the circuit, the current
flowing through the resistor is simply given by I = E/R. This device is called
a homopolar generator.
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There is a subtle modification to this setup that can turn this generator
into a homopolar dynamo, namely a device that converts mechanical energy
into self-amplifying electrical currents and magnetic fields. Instead of simply
connecting the resistor straight to the axle as on 5(A), the wire is wrapped
around the axle in a loop lying in a plane parallel to the disk, and then
connected to the axle, as shown on 5(B). Use your right-hand rule to convince
yourself that this current loop will now produce a secondary magnetic field
B∗ that will superpose itself on the external field B0. The magnetic flux
through the disk associated with this secondary field will be proportional
to the current flowing in the wire loop, the proportionality constant being
defined as the inductance (M):

MI = Φ = πa2B∗ , (106)

where the second equality comes from assuming that the secondary field is
vertical and constant across the disk; but what really matters here is that
B∗ ∝ I since the geometry is fixed. We now write an equation for the electrical
current, this time taking into consideration the counter-electromotive force
associated with self-inductance of the circuit:

E − L
dI

dt
= RI (107)

where L is the coefficient of self-inductance, and the current I is now a func-
tion of time. Substituting eqs. (105) and (106) into this expression, leads
to

L
dI

dt
=

ωa2

2

(

B0 +
MI

πa2

)

− RI (108)

indicating that the current –and thus the magnetic field– will grow provided
that initially,

ωa2B0

2
> RI . (109)

which it certainly will at first since I = 0 at t = 0. There will eventually
come a time (t∗) when the secondary magnetic field will be comparable in
strength to the externally applied field B0, at which point we may as well
“disconnect” B0; eq. (108) then becomes

L
dI

dt
=

(
ωM

2π
− R

)

I , (110)

which integrates to

I(t) = I(t∗) exp

[
1

L

(
ωM

2π
− R

)

t

]

. (111)
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indicating that the current —and magnetic field— will grow provided the
externally-imposed angular velocity exceeds a critical value:

ω > ωc =
2πR

M
. (112)

This is not a (dreaded) case of perpetual motion, or creating energy out of
nothing, or anything like that. The energy content of the growing magnetic
field ultimately comes from the biceps of the poor experimenter working ever
harder and harder to turn the crank and keep the angular velocity ω at a
constant value.

There are many features of this dynamo system worth noting, and which
all find their equivalent in the MHD dynamos to be studied in chapters to
follow:

1. There exist a critical angular velocity that must be reached for the self-
inductance to beat Ohmic dissipation in the resistor, leading to an ex-
ponential growth of the magnetic field; below this critical value, the field
decays away exponentially once the initial field B0 is removed.

2. Not all circuits connecting the edge of the disk to the axle will operate in
this way; if we suddenly reverse the rotation of the disk, or wrap the wire
the other way around the axle, the magnetic field produced by the loop
will oppose the applied field;

3. The externally applied magnetic field B0 is only needed as a seed field to
initiate the amplification process.

4. The homopolar dynamo is really nothing more than a device turning me-
chanical energy into electromagnetic energy, more specifically magnetic
energy.

0.17.2 The challenges

Copper wires and sliding contacts being a rather sparse commodity in the
universe, we must now figure out to apply the general idea of a dynamo
to astrophysical fluids. In the MHD limit, our hope lies evidently with the
induction term ∇× (u × B) in the induction equation (58).

In its simplest form, the dynamo problem consists in finding a flow field
u that can sustain a magnetic field against Ohmic dissipation. We will en-
counter in the following chapter flows that can amplify a magnetic field during
a transient time interval, after which B decays again. So we tighten our def-
inition of the dynamo problem by demanding that a flow be a dynamo if it
can lead to EB > 0 for times much larger than all relevant advective and
diffusive timescales of the problem. To make things even harder, we’ll add
the additional condition that no electromagnetic energy be supplied across
the domain boundaries i.e., S · n = 0 in eq. (84).
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We must distinguish the kinematic dynamo problem, where the flow field
u is considered given a priori and constructed without any regards for its
underlying dynamics, from what can only be called (for lack of a generally
agreed-upon terminology) the full dynamo problem, in which the flow u re-
sults from a solution of the full set of MHD equations (§0.9), including the
backreaction of the magnetic field on the flow via the Lorentz force term
J × B on the RHS of the Navier-Stokes equation. The kinematic regime
carries the immense practical advantage that the induction equation then
becomes truly linear in B, and the dynamo problem reduces to finding a
(smooth) flow field u that has the requisite topological properties to lead
to field amplification. In the following chapters we will concentrate mostly
on this kinematic regime, but will occasionally touch upon the much more
difficult dynamical problem.

The solar dynamo problem can be tackled either in kinematic or fully
dynamical form. The aim there is to reproduce observed spatiotemporal pat-
terns of solar (and stellar) magnetic field evolution, including things like cyclic
polarity reversals, equatorward migration of activity belts, relative strengths
and phase relationships between poloidal and toroidal component, etc. This
will prove to be a very tall order. Yet, from solar irradiance variations and
their possible influence on Earth’s climate, space weather prediction, and the
understanding of stellar magnetic fields, it all begins with the solar cycle.
Keep this in mind as we now start to dig into the mathematical and physical
intricacies of magnetic field generation in electrically conducting fluids. We’ll
seem to venture pretty far away from the sun and stars at times, but stick to
it and you’ll see it all fitting together at the end. And now, into the abyss...
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rageously priced. The Mestel book was issued in paperback in 2003, but is
still quite pricey.

For some “light” reading on magnetic monopoles in field theory and astro-
physics, try,

Dirac, P.A.M., Proc. R. Soc. Lond. A, 133, 60 (1931)
Parker, E.N., Astrophys. J., 160, 383 (1970)
Cabrera, B., Phys. Rev. Lett., 48, 1378 (1982)
Kolb, E.W., & Turner, M.S., The Early Universe, (New York: Addison-

Wesley), §7.6 (1990).

and references therein. For more on Biermann’s battery, see



2 Decay and Amplification of Magnetic Fields 41

Biermann, L., Zeits. f. Naturforsch. A, 5, 65 (1950),
Roxburgh, I.W., Mon. Not. Roy. Astron. Soc., 132, 201 (1966),
Chakrabarti, S.K., Rosner, R., & Vainshtein, S.I., Nature 368, 434 (1994),

as well as chap. 13 in the Kulsrud book cited earlier.





Chapter 2

Decay and Amplification of Magnetic
Fields

It’s not whether a thing is hard to understand.

It’s whether, once understood, it makes any sense.

Hans Zinsser
Rats, Lice and History (1934)

We now begin our long modelling journey towards astrophysical dynamos.
This chapter will for the most part concentrate on a series of (relatively)
simple model problems illustrating the myriad of manners in which a flow
and a magnetic field can interact. We will first consider the purely resistive
decay of magnetic fields (§0.18), then examine various circumstances under
which stretching by a flow can amplify a magnetic field (§0.19), followed by
a deeper look at some important subtleties of this process in the context of
some (relatively) simple 2D flows (§0.20). We then move on to the so-called
anti-dynamo theorems (§0.21), which will shed light on results from previous
sections and indicate the way towards true magnetohydrodynamical dynamo
action, which we will finally encounter in §0.22, and which will provide us
with a tentative explanatory model for the small spatial scales of the magnetic
fields of the sun and stars (§0.23).

Some of the material contained in this chapter may feel pretty far remote
from the realm of astrophysics at times, but please do stick to it because
the physical insight (hopefully) developed in the following sections will prove
essential to pretty much everything that will come next.

0.18 Resistive decays of magnetic fields

Before we try to come up with flows leading to field amplification and dynamo
action, we better understand the enemy, namely magnetic field decay by
Ohmic dissipation. Consequently, and with the sun and stars in mind, we first

43
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consider the evolution of magnetic fields in a sphere (radius R) of electrically
conducting fluid, in the absence of any fluid motion (or, more generally, in
the Rm ¿ 1 limit). The induction equation then reduces to

∂B

∂t
= −∇× (η∇× B) = η∇2B − (∇η) × (∇× (Bêφ)) . (113)

Were it not that we are dealing here with a vector —as opposed to scalar—
quantity, for constant η this would look just like a simple heat diffusion equa-
tion, with η playing the role of thermal diffusivity. Our derivation of the mag-
netic energy equation (84) already indicates that under such circumstances,
the field can only decay. Back in chapter 1 we already obtained an order-
of-magnitude estimate for the timescale τη over which a magnetic field B

with typical length scale ` can be expected to resistively decay on a timescale
τη ∼ `2/η, which in the case of the stellar interiors ended up at ∼ 1010 yr, i.e.,
about the main-sequence lifetime of the Sun. Let’s now validate this estimate
by securing formal solutions to the diffusive decay problem.

0.18.1 Axisymmetric magnetic fields

Without any significant loss of generality, we can focus on axisymmetric mag-
netic fields, i.e., fields showing symmetry with respect to an axis, usually ro-
tational. Working in spherical polar coordinates (r, θ, φ) with the polar axis
coinciding with the field’s symmetry axis, the most general axisymmetric
(now meaning ∂/∂φ = 0) magnetic field can be written as:

B(r, θ, t) = ∇× (A(r, θ, t)êφ) + B(r, θ, t)êφ . (114)

Here the vector potential component A defines the poloidal components of
the magnetic field, i.e., the component contained in meridional (r, θ) planes.
The azimuthal component B is often called the toroidal field. Equation (114)
satisfies the constraint ∇·B = 0 by construction, and another great advantage
of this mixed representation is that the MHD induction equation for the
vector B can be separated in two equations for the scalar components A
and B. In the case of pure diffusive decay, and for a magnetic diffusivity η
depending at worst only on r, substitution of eq. (114) into (113) leads to:

∂A

∂t
= η

(

∇2 − 1

$2

)

A , (115)

∂B

∂t
= η

(

∇2 − 1

$2

)

B +
1

$

∂η

∂r

∂($B)

∂r
, (116)
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where $ = r sin θ. These are still diffusion-like PDEs, now fully decoupled
from one another. In the “exterior” r > R there is only vacuum, which
implies vanishing electric currents. In practice we will need to match whatever
solution we compute in r < R to a current-free solution in r > R; such a
solution must satisfy

µ0J = ∇× B = 0 . (117)

For an axisymmetric system, eq. (117) translates into the requirement that

(

∇2 − 1

$2

)

A(r, θ, t) = 0 , r > R , (118)

B(r, θ, t) = 0 , r > R . (119)

Solutions to eq. (118) have the general form

A(r, θ, t) =

∞∑

l=1

al

(
R

r

)l+1

Yl0(cos θ) r > R , (120)

where the Yl0 are the usual spherical harmonics of m = 0 azimuthal quantum
number, and l is a positive integer, modes with negative l being discarded to
ensure proper behavior as r → ∞.

0.18.2 Reformulation as an eigenvalue problem

Let us now seek specific solutions for a few situations of solar/stellar interest.
The first point to note is that the coefficients that appear in eqs. (115)–(116)
have no explicit dependence on time; provided that the magnetic diffusivity η
is at worst a function of r, it is then is profitable to seek a separable solution
of the form:

e−λtfλ(r)Ylm(θ, φ) , (121)

where the Ylm are again the spherical harmonic, the natural functional basis
for modal development on a spherical surface. Substitution of this Ansatz

into eqs. (115) or (116), with m = 0 in view of axisymmetry, yields the ODE:

[ 1

r2

d

dr
r2 d

dr
− l(l + 1)

r2
+

λ

η(r)

]

fλ(r) = 0 . (122)

Assume now that the magnetic diffusivity η is constant; the spherical Bessel
functions j(kr), with k2 = λ/η, are then the appropriate solution. The decay
rate, λ, is then determined by the above 1D eigenvalue problem, along with



46 P. Charbonneau

some boundary conditions at the surface of the sphere, which turns out to
depend on the vector character of the decaying magnetic field.

0.18.3 Poloidal field decay

We first consider the decay of a purely poloidal field, i.e., fλ(r) is taken to
describe the radial dependency of the toroidal vector potential component
A(r, θ, t). Both the interior solution and outer potential field solution carry
the Yl0 angular dependency, so continuity of A at r = R imposes

fλ(r) =

{
jl(kr) r < R

jl(kR)
(

R
r

)l+1

r > R
(123)

The continuity of the radial derivative at r = R, necessary for the continuity
of the latitudinal component of the magnetic field, then requires

kRj′l(kR) + (l + 1)jl(kR) = kRjl−1(kR) = 0 , (124)

which means that the decay rate of a poloidal magnetic field is determined by
the zeros of a spherical Bessel function. An l = 1 dipole calls for the positive
zeros of j0(x) = sin x/x:

λn =
η0π

2n2

R2
, for l = 1 , n = 1, 2, 3, ... (125)

Notice the many possible overtones associated with n ≥ 2. These decay more
rapidly than the fundamental (n = 1), since the radial eigenfunctions possess
n− 1 field reversals. For such overtones, the effective length scale to be used
in the decay-time estimate is roughly the radial distance between the field
reversals, or ≈ R/n.

Figure 6 (top row) shows the first three fundamental (n = 1) modes of an-
gular degrees l = 1, 2, 3, corresponding to dipolar, quadrupolar, an hexapolar
magnetic fields, as well as a few higher overtones for l = 1, 2 (bottom row).
The decay time estimate provided by eq. (62) turns out to be too large by a
factor π2 ≈ 10, for a sun with constant diffusivity. Still not so bad for a pure
order-of-magnitude estimate!

0.18.4 Toroidal field decay

Computing the decay rate of a purely toroidal magnetic field follows the same
basic logic. We now require B = 0 at r = R, but we must further demand
that its radial derivative also be continuous, to avoid a blowup of the current
density at the surface. This second requirement is what ends up determining
the decay rate, which again ends up related to the zero of a spherical Bessel
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Fig. 6 Six diffusive eigenmodes for a purely poloidal field pervading a sphere of
constant magnetic diffusivity embedded in vacuum. The top row shows the three
fundamental (n = 1) diffusive eigenmodes with smallest eigenvalues, i.e., largest decay
times. They correspond to the well-known dipolar, quadrupolar, and hexapolar modes
(l = 1, 2 and 3). The bottom row shows a few eigenmodes of higher radial overtones.
Poloidal fieldlines are shown in a meridional plane, and the eigenvalues are given in
units of the inverse diffusion time (τ−1 ∼ η/R2).

function—only of index l rather than l − 1 as was found for the decay of
the poloidal field. Hence, a dipole (l = 1) toroidal magnetic field decays at
precisely the same rate as a quadrupole (l = 2) poloidal magnetic field (still
for constant diffusivity). Sneaking a peak in a handbook of special functions
soon reveals that the decay rate of a dipole toroidal field follows from the
transcendental equation:

tan kR = kR . (126)
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The smallest non-zero solution of this equation gives,

λ1 =
η(4.493409...)2

R2
, l = 1 toroidal and l = 2 poloidal. (127)

0.18.5 Results for a magnetic diffusivity varying with depth

We end this section by a brief examination of the diffusive decay of large-scale
poloidal magnetic fields in the solar interior. The primary complication cen-
ters on the magnetic diffusivity, which is no longer constant throughout the
domain, and turns out to be rather difficult to compute from first principles8.
To begin with, the depth variations of the temperature and density in a solar
model causes the magnetic diffusivity to increase from about 10−2 m2s−1 in
the central core to ∼ 1m2s−1 at the core-envelope interface. This already
substantial variation is however dwarfed by the much larger increase in the
net magnetic diffusivity expected in the turbulent environment of the con-
vective envelope. We will look into this in some detail in chapter 3, but for
the time being let us simply take for granted that η is much larger in the
envelope than in the core.

In order to examine the consequences of a strongly depth-dependent mag-
netic diffusivity on the diffusive eigenmodes, we consider a simplified situ-
ation whereby η assumes a constant value ηc in the core, a constant value
ηe (À ηc) in the envelope, the transition occurring smoothly across a thin
spherical layer coinciding with the core-envelope interface. Mathematically,
such a variation can be expressed as

η(r) = ηc +
ηe − ηc

2

[

1 + erf

(
r − rc

w

)]

, (128)

where erf(x) is the error function, rc is the radius of the core-envelope inter-
face, and w is the half-width of the transition layer.

We are still facing the 1D eigenvalue problem presented by eq. (122)!
Expressing time in units of the diffusion time R2/ηe based on the envelope
diffusivity, we seek numerical solutions, subjected to the boundary conditions
fλ(0) = 0 and smooth matching to a potential field solution in r/R > 1, with
the diffusivity ratio ∆η = ηc/ηe as a parameter of the model. Since we can
make a reasonable guess at the eigenvalue on the basis of the diffusion time
and adopted values of l and ηc (∼ π2nl∆η, for l and n not too large), inverse
iteration is the technique of choice.

Figure 7 shows the radial eigenfunctions for the slowest decaying poloidal
eigenmodes (l = 1, n = 1), with rc/R = 0.7, w/R = 0.05 in eq. (128) and
diffusivity contrasts ∆η = 1 (constant diffusivity), 10−1 and 10−3. The cor-
responding eigenvalues, in units of R2/ηe, are λ = −9.87, −2.14 and −0.028.

8 See the bibliography at the end of this chapter for some references.
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Clearly, the (global) decay time is regulated by the region of smallest diffusiv-

Fig. 7 Radial eigenfunctions for the slowest decaying (` = 1) poloidal eigenmodes
(l = 1, n = 1) in a sphere embedded in a vacuum. The diffusivity computed using
eq. (128) with rc/R = 0.7, w/R = 0.05, and for three values of the core-to-envelope
diffusivity ratio (∆η). The eigenvalues, in units of ηe/R2, are λ = −9.87, −2.14 and
−0.028 for ∆η = 1, 0.1, and 10−3, respectively. The diffusivity profile for ∆η = 10−3

is also plotted (dash-dotted line). The dashed line indicates the location of the core-
envelope interface.

ity, since λ scales approximately as (∆η)−1. Notice also how the eigenmodes
are increasingly concentrated in the core region (r/R ∼< 0.7) as ∆η decreases,
i.e., they are “expelled” from the convective envelope.

0.18.6 Fossil stellar magnetic fields

The marked decrease of the diffusive decay time with increasing angular and
radial degrees of the eigenmodes is a noteworthy result. It means that left to
decay long enough, any arbitrarily complex magnetic field in the Sun or stars
will eventually end up looking dipolar. Conversely, a fluid flow acting as a
dynamo in a sphere and trying to “beat” Ohmic dissipation can be expected
to prefentially produce a magnetic field approximating diffusive eigenmodes
of low angular and radial degrees (or some combination thereof), since these
are the least sensitive to Ohmic dissipation.
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There exists classes of early-type main-sequence stars, i.e. stars hotter and
more luminous than the Sun and without deep convective envelope, that are
believed to contain strong, large-scale fossil magnetic fields left over from
their contraction toward the main-sequence. The chemically peculiar Ap/Bp
stars are the best studied class of such objects. Reconstruction of their sur-
face magnetic field distribution suggests almost invariably that the fields are
largely dominated by a large-scale dipole-like component, as one would have
expected from the preceding discussion if the observed magnetic fields have
been diffusively decaying for tens or hundreds of millions of years. It is in-
deed quite striking that the highest strengths of large-scale magnetic fields in
main-sequence stars (a few T in Ap stars), in white dwarfs (∼ 105 T) and in
the most strongly magnetized neutron stars (∼ 1011 T) all amount to similar
total surface magnetic fluxes, ∼ 1019 Wb, lending support to the idea that
these high field strengths can be understood from simple flux-freezing argu-
ments (§0.12). We will revisit the origin of A-star magnetic fields in chapter
5.

0.19 Magnetic field amplification by shearing

Having thus investigated in some details the resistive decay of magnetic field,
we turn to the other physical mechanism embodied in eq. (58): growth of the
magnetic field in response to the inductive action of a flow u. We first take
a quick look at field amplification in a few idealized model, and in the next
section move on to a specific example using a “real” flow.

0.19.1 Hydrodynamical stretching and field amplification

Let’s revert for a moment to the ideal MHD case (η = 0). The induction
equation can then expressed as

∂B

∂t
+ (u · ∇)B = B · ∇u , (129)

where it was further assumed that the flow is incompressible (∇·u = 0). The
LHS of eq. (129) is the Lagrangian derivative of B, expressing the time rate
of change of B in a fluid element moving with the flow. The RHS expresses
the fact that this rate of change is proportional to the local shear in the flow
field. Shearing has the effect of stretching magnetic fieldlines, which is what
leads to magnetic field amplification.

As a simple example, consider on Figure 8 a cylindrical fluid element of
length L1, threaded by a magnetic field parallel to the axis of the cylinder,
imbedded in a perfectly conducting incompressible fluid and subjected to a
stretching motion (∂ux/∂x > 0) along its central axis such that its length
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increases to L2. Mass conservation demands that R2/R1 =
√

L1/L2. Con-
servation of the magnetic flux (= πR2B) in turn leads to

B2

B1
=

L2

L1
, (130)

i.e., the field strength is amplified in direct proportion to the level of stretch-

Fig. 8 Stretching of a magnetized cylindrical fluid element by a diverging flow. The
magnetic field is horizontal within the tube, has a strength B1 originally, and B2

after stretching. In the flux-freezing limit mass conservation within the tube requires
its radius to decrease, which in turn leads to field amplification (see text).

ing. This almost trivial result is in fact at the very heart of any magnetic field
amplification in the magnetohydrodynamical context, and illustrates two cru-
cial aspects of the mechanism: first, this works only if the fieldlines are frozen
into the fluid, i.e., in the high-Rm regime. Second, mass conservation plays
an essential role here; the stretching motion along the tube axis must be ac-
companied by a compressing fluid motion perpendicular to the axis if mass
conservation is to be satisfied. It is this latter compressive motion, occur-
ring perpendicular to the magnetic fieldlines forming the flux tube, that is
ultimately responsible for field amplification; the horizontal motion occurs
parallel to the magnetic fieldline, and so cannot in itself have any inductive
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effect as per eq. (58)9. The challenge, of course, is to realize this idealized
scenario in practice, i.e., to find a flow which achieves the effect illustrated
on Figure 8.

0.19.2 Toroidal field production by differential rotation

A situation of great (astro)physical interest is the induction of a toroidal
magnetic field via the shearing of a poloidal magnetic field threading a dif-
ferentially rotating sphere of electrically conducting fluid. Assuming overall
axisymmetry (i.e., the poloidal field and differential rotation share the same
symmetry axis), the flow velocity can be written as:

u(r, θ) = $Ω(r, θ)êφ , (131)

where the angular velocity Ω(r, θ) is assumed steady (∂/∂t = 0), correspond-
ing to the kinematic regime introduced earlier. Neglecting once again mag-
netic dissipation, the induction equation take on the reduced form

∂A

∂t
= 0 , (132)

∂B

∂t
= $[∇× (Aêφ)] · ∇Ω . (133)

where we took again advantage of the poloidal/toroidal decomposition intro-
duced in in §0.18. Equation (133) integrates immediately to

B(r, θ, t) = B(r, θ, 0) +
(

$[∇× (Aêφ)] · ∇Ω
)

t . (134)

Anywhere in the domain, the toroidal component of the magnetic field grows
linearly in time, at a rate proportional to the net local shear and local poloidal
field strength. A toroidal magnetic component is being generated by stretch-

ing the initially purely poloidal fieldlines in the φ-direction; the magnitude of
the poloidal magnetic component remains unaffected, as per eq. (132). Note
also that for such an axisymmetric configuration, the only possible steady-
state (∂/∂t = 0) solutions must have

[∇× (Aêφ)] · ∇Ω = 0 , t . (135)

i.e., the angular velocity must be constant on any given poloidal flux surface.
This result is known as Ferraro’s theorem.

9 How do you reconcile this statement with eq. (129), which indicates rather unam-
biguously that one can have ∂B/∂t > 0 with B = Bxêx and u = ux(x)êx?
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Evidently computing B via eq. (134) requires a knowledge of the so-
lar internal (differential) rotation profile Ω(r, θ). Consider the following
parametrization:

Ω(r, θ) = ΩC +
ΩS(θ) − ΩC

2

[

1 + erf

(
r − rC

w

)]

, (136)

where

ΩS(θ) = ΩEq(1 − a2 cos2 θ − a4 cos4 θ) (137)

is the surface latitudinal differential rotation. We will make repeated use of
this parametrization in this and following and chapters, so let’s look into it
in some detail. Figure 9A shows isocontours of angular velocity (in black)
generated by the above parameterization with parameter values ΩC/2π =
432.8 nHz, ΩEq/2π = 460.7 nHz, a2 = 0.1264, a4 = 0.1591, rc = 0.713R,
and w = 0.05R, as obtained by a best-fit to helioseismic frequency splittings.
This properly reproduces the primary features of full helioseismic inversions,
namely:

1. A convective envelope (r ∼> rc) where the shear is purely latitudinal, with
the equatorial region rotating faster than the poles;

2. A core (r ∼< rc) that rotates rigidly, at a rate equal to that of the surface
mid-latitudes;

3. A smooth matching of the core and envelope rotation profiles occurring
across a thin spherical layer coinciding with the core-envelope interface
(r = rc), known as the tachocline.

It should be emphasized already at this juncture that such a solar-like
differential rotation profile is quite complex, in that it is characterized by
three partially overlapping shear regions: a strong positive radial shear in the
equatorial regions of the tachocline, an even stronger negative radial shear in
its polar regions, and a significant latitudinal shear throughout the convective
envelope and extending partway into the tachocline. For a tachocline of half-
thickness w/R¯ = 0.05, the mid-latitude latitudinal shear at r/R¯ = 0.7
is comparable in magnitude to the equatorial radial shear; as we will see in
the next chapter, its potential contribution to dynamo action should not be
casually dismissed.

Figure 9B shows the distribution of toroidal magnetic field resulting from
the shearing of the slowest decaying, n = 1 dipole-like diffusive eigenmode
of §0.18 of strength 10−4 T at r/R = 0.7, using the diffusivity profile given
by eq. (128) with diffusivity contrast ∆η = 10−2 (part A, red lines). This is
nothing more that eq. (134) evaluated for t = 10 yr, with B(r, θ, 0) = 0. Not
surprisingly, the toroidal field is concentrated in the regions of large radial
shear, at the core-envelope interface (dashed line). Note how the toroidal field
distribution is antisymmetric about the equatorial plane, in agreement with
Hale’s polarity rules, and precisely what one would expect from the inductive
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action of a shear flow that is equatorially symmetric on a poloidal magnetic
field that is itself antisymmetric about the equator.

Fig. 9 Shearing of a poloidal field into a toroidal component by a solar-like dif-
ferential rotation profile. Part A shows isocontours of the rotation rate Ω(r, θ)/2π
(solid lines, contour spacing 10 nHz). The red lines are fieldlines for the n = 1 dipo-
lar diffusive eigenmode with core-to-envelope diffusivity contrast ∆η = 10−2. The
dashed line is the core-envelope interface at r/R = 0.7. Part B shows isocontours of
the toroidal field, with yellow-red (green-blue) corresponding to positive (negative)
B. The maximum toroidal field strength is about 0.2T, and contour spacing is 0.02T.
Part C shows logarithmically spaced isocontours of the φ-component of the Lorentz
force associated with the poloidal/toroidal fields of panels A and B.

Knowing the distributions of toroidal and poloidal fields on Figure 9 allows
us to flirt a bit with dynamics, by computing the φ-component of the Lorentz
force:

[F]φ =
1

µ0$
Bp · ∇($B) , (138)

The resulting spatial distribution of [F]φ is plotted on Figure 9C. Examine
Fig. 9 carefully to convince yourself that the Lorentz force is such as to
oppose the driving shear. This is an important and totally general property
of interacting flows and magnetic fields: the Lorentz force tends to resist the
hydrodynamical stretching responsible for field induction. The ultimate fate
of the system depends on whether the Lorentz force become dynamically
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significant before the growth of the toroidal field is mitigated by resistive
dissipation; in solar/stellar interiors the former situation is far more likely.

Clearly, the growing magnetic energy of the toroidal field is supplied by the
kinetic energy of the rotational shearing motion (this is hidden the second
term on the RHS of eq. (84)). In the solar case, this is an attractive field
amplification mechanism, because the available supply of rotational kinetic
energy is immense10. But don’t make the mistake of thinking that this is
a dynamo! In obtaining eq. (134) we have completely neglected magnetic
dissipation, and remember, the dynamo we are seeking are flows that can
amplify and sustain a magnetic field against Ohmic dissipation. Nonetheless,
shearing of a poloidal field by differential rotation will turn out to be a central
component of all solar/stellar dynamo models constructed in later chapters.
It is also believed to be an important ingredient of magnetic amplification in
accretion disks, and even in galactic disks.

0.20 Magnetic field evolution in a cellular flow

Having examined separately the resistive decay and hydrodynamical induc-
tion of magnetic field, we now turn to a situation where both processes op-
erate simultaneously.

0.20.1 A cellular flow solution

Working now in Cartesian geometry, we consider the action of a steady, in-
compressible (∇ · u = 0) two-dimensional flow

u(x, y) = ux(x, y)êx + uy(x, y)êy (139)

on a two-dimensional magnetic field

B(x, y, t) = Bx(x, y, t)êx + By(x, y, t)êy . (140)

Note that neither the flow nor the magnetic field have a z-component, and
that their x and y-components are both independent of the z-coordinate. The
flow is said to be planar because uz = 0, and has an ignorable coordinate (i.e.,
translational symmetry) since ∂/∂z ≡ 0 for all field and flow components.
Such a magnetic field can be represented by the vector potential

A = A(x, y, t)êz , (141)

10 This may no longer be the case, however, if dynamo action takes place in a thin
layer below the base of the convective envelope; see references in the bibliography for
more on this aspect of the problem.
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where, as usual, B = ∇ × A. Under this representation, lines of constant
A in the [x, y] plane coincide with magnetic fieldlines. The only non-trivial
component of the induction equation (93) is its z-components, which takes
the form

∂A

∂t
+ u · ∇A = η∇2A . (142)

This is a linear advection-diffusion equation, describing the transport of a
passive scalar quantity A by a flow u, and subject to diffusion, the magnitude
of which being measured by η. In view of the symmetry and planar nature
of the flow, it is convenient to write the 2-D flow field in terms of a stream
function Ψ(x, y):

u(x, y) = u0

(
∂Ψ

∂y
êx − ∂Ψ

∂x
êy

)

. (143)

It is easily verified that any flow so defined will identically satisfy the con-
dition ∇ · u = 0. As with eq. (141), a given numerical value of Ψ uniquely
labels one streamline of the flow. Consider now the stream function

Ψ(x, y) =
L

4π

(

1 − cos

(
2πx

L

))(

1 − cos

(
2πy

L

))

, x, y ∈ [0, L](144)

This describes a counterclockwise cellular flow centered on (x, y) = (L/2, L/2),
as shown on Figure 10. The maximal velocity amplitude max‖u‖ = u0 is
found along the streamline Ψ = u0L/(2π), plotted as a thicker line on Figure
10. This streamline is well approximated by a circle of radius L/4, and its
streamwise circulation period turns out to be 1.065πL/2u0, quite close to
what one would expect in the case of a perfectly circular streamline. In what
follow this timescale is denoted τc and referred to as the turnover time of
the flow. Note that both the normal and tangential components of the flow
vanish on the boundaries x = 0, L and y = 0, L. This implies that the domain
boundary is itself a streamline (Ψ = 0, in fact), and that every streamline
interior to the boundary closes upon itself within the spatial domain. These
(simple) topological properties of the flow defined by eqs. (143) and (144)
may seem largely irrelevant at this stage of our inquiries, but later chapters
will reveal that they are in fact crucial to the dynamo problem.

We now investigate the inductive action of this flow by solving a nondi-
mensional version of eq. (142), by expressing all lengths in units of L, and
time in units of L/u0, so that

∂A

∂t
= −∂Ψ

∂y

∂A

∂x
+

∂Ψ

∂x

∂A

∂y
+

1

Rm

(
∂2A

∂x2
+

∂2A

∂y2

)

, x, y ∈ [0, L] ,(145)

where Rm = u0L/η is the magnetic Reynolds number for this problem, and
the corresponding diffusion time is then τη = Rm in dimensionless units.
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Fig. 10 Counterclockwise cellular flow generated by the streamfunction given by
eq. (144). Part (A) shows streamlines of the flow, with the thicker streamline corre-
sponding to Ψ = u0L/(2π), on which the flow attains its maximum speed u0. Part
(B) shows the profile of uy(x) along an horizontal cut at y = 1/2. A “typical” length
scale for the flow is then ∼ L.

Equation (145) is solved as an initial-boundary value problem in two spatial
dimensions. All calculations described below start at t = 0 with an initially
uniform, constant magnetic field B = B0êx, equivalent to:

A(x, y, 0) = B0 y . (146)

We consider a situation where the magnetic field normal to the boundaries
is held fixed, which amounts to holding the vector potential fixed on the
boundary. Figure 11 shows the variation with time of the magnetic energy
(eq. (86)), for four solutions having Rm = 10, 102, 103 and 104. Figure 12
shows the evolving shape of the magnetic fieldlines in the Rm = 103 solution
at 9 successive epochs11. The solid dots are “floaters”, namely Lagrangian
markers moving along with the flow. At t = 0 all floaters are equidistant and
located on the fieldline initially coinciding with the coordinate line y/L = 0.5,
that (evolving) fieldline being plotted in the same color as the floaters on all
panels. Figure 12 covers two turnover times.

At first, the magnetic energy increases quadratically in time. This is pre-
cisely what one would expect from the shearing action of the flow on the initial
Bx-directed magnetic field, which leads to a growth of the By-component that
is linear in time. However, for t/τc ∼> 2 the magnetic energy starts to decrease
again and eventually (t/τc À 1) levels off to a constant value. To understand
the origin of this behavior we need to turn to Figure 12 and examine the
solutions in some detail.

11 An animation of this evolving solution can be viewed on the course Web Page.
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Fig. 11 Evolution of the magnetic energy for solutions with increasing Rm. The
solutions have been computed over 10 turnover times, at which point they are getting
reasonably close to steady-state, at least as far as magnetic energy is concerned. One
turnover time corresponds to t/π = 0.532.

The counterclockwise shearing action of the flow is quite obvious on Fig. 12
in the early phases of the evolution, leading to a rather pretty spiral pattern as
magnetic fieldlines get wrapped around one another. Note that the distortion
of magnetic fieldlines by the flow implies a great deal of stretching in the
streamwise direction. This is most obvious upon noting that the distance
between adjacent floaters increases monotonically in time. It is no accident
that the floaters end up in the regions of maximum field amplification on
frames 2—5; they are initially positioned on the fieldline coinciding with the
line y = L/2, everywhere perpendicular to the shearing flow (see Fig. 10),
which pretty much ensures maximal inductive effect, as per eq. (142). The
fact that all floaters remain at first “attached” onto their original fieldline is
what one would have expected from the fact that this is a relatively high-
Rm solution, so that flux-freezing is effectively enforced. As the evolution
proceeds, the magnetic field keeps building up in strength (as indicated by
the color scale), but is increasingly confined to spiral “sheets” of decreasing
thickness.

By the time we hit one turnover time (corresponding approximately to
frame 5 on Fig. 12), it seems that we are making progress towards our goal of
producing a dynamo; we have a flow field which, upon acting on a preexisting
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Fig. 12 Solution to equation (145) starting from an initially horizontal magnetic
field. The panels show the shape of the magnetic fieldlines at successive times. The

color scale encodes the absolute strength of the magnetic field, i.e.,
√

B2
x + B2

y. The x-

and y-axes are horizontal and vertical, respectively, and span the range x, y ∈ [0, L].
Time t is in units of L/u0. The solid dots are “floaters”, i.e., Lagrangian marker
passively advected by the flow. The magnetic Reynolds number is Rm = 103.

magnetic field, has intensified the strength of that field, at least in some
localized regions of the spatial domain. However, beyond t ∼ τc the sheets of
magnetic fields are gradually disappearing, first near the center of the flow cell
(frames 5—7), and later everywhere except close to the domain boundaries
(frames 7—9). Notice also how, from frame 5 onward, the floaters are seen
to “slip” off their original fieldlines. This means that flux-freezing no longer
holds; in other words, diffusion is taking place. Yet, we evidently still have
t ¿ τη (≡ Rm = 103 here), which indicates that diffusion should not yet have
had enough time to significantly affect the solution. What is going on here?
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0.20.2 Flux expulsion

The solution to this apparent dilemma lies with the realization that we have
defined Rm in terms of the global length scale L characterizing the flow. This
was a perfectly sensible thing to do on the basis of the flow configuration and
initial condition on the magnetic field. However, as the evolution proceeds
beyond ∼ τc the decreasing thickness of the magnetic field sheets means that
the global length scale L is no longer an adequate measure of the “typical”
length scale of the magnetic field, which is what is needed to estimate the
diffusion time τη (see eq. (62)). Figure 13 shows a series of cuts of the vector
potential A in a Rm = 104 solution, plotted along the coordinate line y =
L/2, at equally spaced successive time intervals covering two turnover times.
Clearly the inexorable winding of the fieldline leads to a general decrease of

Fig. 13 Cuts of a Rm = 104 solution along the coordinate line y = 0.5, at successive
times. Note how the “typical” length scale ` for the solution decreases with time, from
`/L ∼ 0.25 at t/π = 0.269, down to `/L ∼ 0.05 after two turnover times (t/π = 1.065).

the length scale characterizing the evolving solution. In fact, each turnover
time adds two new “layers” of alternating magnetic polarity to the spiraling
sheet configuration, so that the average length scale ` decreases as t−1:

`(t)

L
∝ L

u0t
, (147)
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which in turn implies that the local dissipation time is also decreasing as t−1.
On the other hand, examination of Fig. 12 soon reveals that the (decreasing)
length scale characterizes the thickness of elongated magnetic structures that
are themselves more or less aligned with the streamlines, so that the turnover
time τc remains the proper timescale measuring field induction. With τc fixed
and τη inexorably decreasing, the solution is bound to reach a point where
τη ' τc, no matter how small dissipation actually is. To reach that stage just
takes longer in the higher Rm solutions, since more winding of the fieldlines
is needed. Larger magnetic energy can build up in the transient phase, but
the growth of the magnetic field is always arrested. Equating τc (∼ L/u0)
to the local dissipation time `2/η, one readily finds that the length scale `
at which both process become comparable can be expressed in terms of the
global Rm as

`

L
= (Rm)−1/2 , Rm =

u0L

η
. (148)

That such a balance between induction and dissipation materializes means
that a steady-state can be attained. Figure 14 shows four such steady state
solutions for increasing values of the (global) magnetic Reynolds number Rm.
The higher Rm solutions clearly show flux expulsion from the central regions
of the domain. This is a general feature of steady, high-Rm magnetized flows
with closed streamlines: magnetic flux is expelled from the regions of closed
streamlines towards the edges of the flow cells, where it ends up concentrated

in boundary layers which indeed have a thickness of order R
−1/2
m , as suggested

by eq. (148). It is important to understand how and why this happens.
To first get an intuitive feel for how flux expulsion operates, go back to

Figure 12. As the flow wraps the fieldlines around one another, it does so
in a manner that folds fieldlines of opposite polarity closer and closer to
each other. When two such fieldlines are squeezed closer together than the
dissipative length scale (eq. [148]), resistive decay takes over and destroys the
field faster than it is being stretched. This is an instance of destructive folding,
and can only be avoided along the boundaries, where the normal component
of the field is held fixed. For flux expulsion to operate, flux-freezing must
be effectively enforced on the spatial scale of the flow. Otherwise the field is
largely insensitive to the flow, and fieldlines are hardly deformed with respect
to their initial configuration (as on panel [A] of Fig. 14).

Consider now the implication for the total magnetic flux across the domain;
flux conservation requires that the normal flux B0L imposed at the right
and left boundaries must somehow cross the interior, otherwise Maxwell’s
equation ∇ · B = 0 would not be satisfied; because of flux expulsion, it can
only do so in the thin layers along the bottom and top boundaries. Since

the thickness of these layers scales as R
−1/2
m , it follows that the field strength
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Fig. 14 Steady-state solutions to the cellular flow problem, for increasing values
of the magnetic Reynolds number Rm. The Rm = 104 solution is at the resolution
limit of the Nx × Ny = 128 × 128 mesh used to obtain these solutions, as evidenced
on part (D) by the presence of small scale irregularities where magnetic fieldlines
are sharply bent. The color scale encodes the local magnitude of the magnetic field.
Note how, in the higher Rm solutions, magnetic flux is expelled from the center of
the flow cell. With EB(0) denoting the energy of a purely horizontal field with same
normal boundary flux distribution, the magnetic energy for these steady states is
EB/EB(0) = 1.37, 2.80, 5.81 and 11.75, respectively, for panels (A) through (D).

therein scales as
√

Rm, which in turn implies that the total magnetic energy
in the domain also scales as

√
Rm in the t À τc limit 12.

12 Hold it, EB ∝ B2 as per eq. (86); how can the magnetic field strength and magnetic
energy both scale as

√
Rm?
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0.20.3 Digression: the electromagnetic skin depth

You may recall that a sinusoidally oscillating magnetic field imposed at the
boundary of a conductor will penetrate the conductor with an amplitude
decreasing exponentionally away from the boundary and into the conductor,
with a length scale called the electromagnetic skin depth :

` =

√

2η

ω
. (149)

Now, go back to the cellular flow and imagine that you are an observer located
in the center of the flow cell, looking at the domain boundaries while rotating
with angular frequency u0/L; what you “see” in front of you is an “oscillating”
magnetic field, in the sense that it flips sign with “angular frequency” u0/L.
The corresponding electromagnetic skin depth would then be

`

L
=

√
2η

u0L
≡

√
2

Rm
. (150)

which basically corresponds to the thickness of the boundary layer where
significant magnetic field is present in the steady-states shown on Figure 14.
How about that for a mind flip...

0.20.4 Timescales for field amplification and decay

Back to our cellular flow. Flux expulsion or not, it is clear from Figure 11
(solid lines) that some level of field amplification has occurred in the high Rm

solutions, in the sense that EB(t → ∞) > EB(0). But is this a dynamo? The
solutions of Fig. 14 have strong electric currents in the direction perpendic-
ular to the plane of the paper, and these currents are subjected to resistive
dissipation. Have we then reached our goal, namely to amplify and maintain
a weak, preexisting magnetic field against Ohmic dissipation?

In a narrow sense yes, but a bit of reflection will show that the boundary
conditions are playing a crucial role. The only reason that the magnetic en-
ergy does not asymptotically go to zero is that the normal field component
is held fixed at the boundaries, which, in the steady-state, implies a non-zero
Poynting flux into the domain across the left and right vertical boundaries.
The magnetic field is not avoiding resistive decay because of field induction
within the domain, but rather because external energy (and magnetic flux) is
being pumped in through the boundaries. This is precisely what is embodied
in the first term on the RHS of eq. (84).

What if this were not the case? One way to work around the boundary
problem is to replace the fixed flux boundary conditions by periodic boundary
conditions on B, which in terms of A becomes:
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A(0, y) = A(L, y) ,
∂A(x, 0)

∂y
=

∂A(x, L)

∂y
. (151)

There is still a net flux across the horizontal boundaries at t = 0, but the
boundary flux is now free to decay away along with the solution. It is time to
reveal that the hitherto unexplained dotted lines on Fig. 11 correspond in fact
to solutions computed with such boundary conditions, for the same cellular
flow and initial condition as before. The magnetic energy now decays to zero,
confirming that the boundaries indeed played a crucial role in the sustenance
of the magnetic field in our previous solutions. What is noteworthy is the
rate at which it does so. In the absence of the flow and with freely decaying
boundary flux, the initial field would diffuse away on a timescale τη ∼ L2/η,
which is equal to Rm units of L/u0. With the flow turned on, the decay
proceeds at an accelerated rate because of the inexorable decrease of the
typical length scale associated with the evolving solution, which we argued
earlier varied as t−1. What then is the typical timescale for this enhanced
dissipation? The decay phase of the field (for t À L/u0) is approximately
described by

∂A

∂t
= η∇2A . (152)

An estimate for the dissipation timescale can be obtained once again via
dimensional analysis, by replacing ∇2 by 1/`2, as in §0.18 but now with the
important difference that ` is now a function of time:

` → `(t) =

(
L

t

) (
L

u0

)

, (153)

in view of our previous discussion (cf. Fig. 13 and accompanying text). This
leads to

∂A

∂t
' −ηu2

0t
2

L4
A , (154)

where the minus sign is introduced in view of the fact that ∇2A < 0 in the
decay phase. Equation (154) integrates to

A(t)

A0
= exp

[

− ηu2
0

3L4
t3

]

= exp

[

− 1

3Rm

(
u3

0t
3

L3

)]

. (155)

This last expression indicates that with t measured in units of L/u0, the

decay time scales as R
1/3
m . This is indeed a remarkable situation: in the low

magnetic diffusivity regime (i.e., high Rm), the flow has in fact accelerated

the decay of the magnetic field, even though large field intensification can
occur in the early, transient phases of the evolution. This is not at all what
a dynamo should be doing!
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As it turns out, flux expulsion is even trickier than the foregoing discussion
may have led you to believe! Flux expulsion destroys the mean magnetic field
component directed perpendicular to the flow streamlines. It cannot do a thing
to a mean component oriented parallel to streamlines. For completely gen-
eral flow patterns and initial conditions, the dissipative phase with timescale

∝ R
1/3
m actually characterizes the approach to a state where the advected

trace quantity —here the vector potential A— becomes constant along each

streamline, at a value Ā equal to the initial value of A averaged on each of
those streamlines. For the cellular flow and initial conditions used above, this

average turns out to be Ā = 0.5 for every streamline, so that the R
1/3
m decay

phase corresponds to the true decay of the magnetic field to zero amplitude.

If Ā varies from one fieldline to the next, however, the R
1/3
m phase is followed

by a third decay phase, which proceeds on a timescale ∼ Rm, since induc-
tion no longer operates (u · ∇A = 0) and the typical length scale for A is
once again L. At any rate, even with a more favorable initial condition we
have further delayed field dissipation, but we still don’t have a dynamo since
dissipation will proceed inexorably, on the “long” timescale Rm(L/u0).

0.20.5 Flux expulsion in spherical geometry: axisymmetrization

You may think that the flux expulsion problem considered in the preceding
section has nothing to do with any astronomical objects you are likely to
encounter in your astrophysical careers. Wroooong!

Consider the evolution of a magnetic field pervading a sphere of electri-
cally conducting fluid, with the solar-like differential rotation profile already
encountered previously (§0.19.2 and eqs. (136)—(137)), and with the field
having initially the form of an dipole whose axis is inclined by an angle Θ
with respect to the rotation axis (θ = 0). Such a magnetic field can be ex-
pressed in terms of a vector potential having components:

Ar(r, θ, φ) = 0 (156)

Aθ(r, θ, φ) = (R/r)2 sinΘ(sin β cos φ − cos β sin φ) (157)

Aφ(r, θ, φ) = (R/r)2[cos Θ sin θ − sin Θ cos θ(cos β cos φ + sinβ sinφ)](158)

where β is the azimuthal angle locating the projection of the dipole axis on
the equatorial plane.

Now, the vector potential for an inclined dipole can be written as the sum
of two contributions, the first corresponding to an aligned dipole (Θ = 0), the
second to a perpendicular dipole (Θ = π/2), their relative magnitude being
equal to tan Θ. Since the governing equation is linear, the solution for an
inclined dipole can be broken into two independent solutions for the aligned
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and perpendicular dipoles. The former is precisely what we investigated al-
ready in §0.19.2, where we concluded there that the shearing of an aligned
dipole by an axisymmetric differential rotation would lead to the buildup of
a toroidal component, whose magnitude would grow linearly in time at a rate
set by the magnitude of the shear.

The solution for a perpendicular dipole is in many way similar to the cellu-
lar flow problem of §0.20. You can see how this may be the case by imagining
looking from above onto the equatorial plane of the sphere; the fieldlines
contained in that plane will have a curvature and will be contained within
a circular boundary, yet topologically the situation is similar to the cellular
flow studied in the preceding section: the (sheared) flow in the equatorial
plane is made of closed, circular streamlines contained within that plane, so
that we can expect flux expulsion to occur. The equivalent of the turnover
time here is the differential rotation timescale, namely the time for a point
located on the equator to perform a full 2π revolution with respect to the
poles:

τDR = (ΩEqu − ΩPole)
−1 = Ω¯(a2 + a4) , (159)

where the second equality follows directly from eq. (137). For a freely de-
caying dipole, the perpendicular component of the initial dipole will then
be subjected to flux expulsion, and dissipated away, at a rate far exceeding
purely diffusive decay in the high Rm limit, as argued earlier.

But here is the amusing thing; for an observer looking at the magnetic
field at the surface of the sphere, the enhanced decay of the perpendicular
component of the dipole will translate into a gradual decrease in the inferred
tilt axis of the dipole. Figure 15 shows this effect, for the differential rotation
profile given by eq. (136) and a magnetic Reynolds number Rm = 103. Con-
tours of constant Br are plotted on the surface r/R = 1, with the neutral
line (Br = 0) plotted as a thicker line. At t = 0 the field has the form of a
pure dipole tilted by π/3 with respect to the coordinate axis, and the sphere
is oriented so that the observer (you!) is initially looking straight down the
magnetic axis of the dipole. Advection by the flow leads to a distorsion of the
initial field, with the subsequent buildup of small spatial scales in the r- and
θ−directions (only the latter can be seen here)13. After two turnover times
(last frame), the surface field looks highly axisymmetric.

So, in a differentially rotating fluid system with high Rm, flux expulsion
leads to the symmetrization of any non-axisymmetric magnetic field com-
ponent initially present —or contemporaneously generated. The efficiency
of the symmetrization process should make us a little cautious in assuming
that the large-scale magnetic field of the Sun, which one would deem roughly
axisymmetric upon consideration of surface things like the sunspot butterfly
diagram, is characterized by the same level of axisymmetry in the deep-seated

13 An animation of this solution, as well as a few others for different Rm and/or tilt
angle, can be viewed on the course Web Page.
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Fig. 15 Symmetrization of an inclined dipole in a electrically conducting sphere in
a state of solar-like axisymmetric differential rotation. Each panel shows contours of
constant Br at the surface of the sphere, and the solution is matched to a potential in
the exterior (r/R > 1). The differential rotation is given by eq. (136). Time is given
in units of τDR, in which the turnover period (or differential rotation period) is equal
to 2π.

generating layers, where the dynamo is presumed to operate. After all, stand-
ing in between is a thick, axisymmetrically differentially rotating convective
envelope that must be reckoned with. In fact, observations of coronal density
structures in the descending phase of the solar cycle can be interpreted in
terms of a large-scale, tilted dipole component, with the tilt angle steadily
decreasing over 3—4 years towards solar minimum. Interestingly, the dif-
ferential rotation timescale for the Sun is ∼ 6 months. Are we seeing the
axisymmetrization process in operation ? Maybe. Axisymmetry is certainly
a very convenient modeling assumption when working on the large scales of
the solar magnetic field, but it may be totally wrong. Axisymmetrization has
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also been invoked as an explanation for the almost perfectly axisymmetric
magnetic field of the planet Saturn, which stands in stark contrast to the
other solar system planetary magnetic fields.

0.21 Two anti-dynamo theorems

The cellular flow studied in §0.20, although it initially looked encouraging
(cf. Fig. 11), proved not to be a dynamo after all. Is this peculiar to the flow
defined by eqs. (143)–(144), or is this something more general? Exhaustively
testing for dynamo action in all possible kinds of flow geometries is clearly
impractical. However, it turns out that one can rule out a priori dynamo
action in many classes of flows. These demonstrations are known as anti-

dynamo theorems.

0.21.1 Zeldovich’s theorem

A powerful anti-dynamo theorem due to Ya. B. Zeldovich (1914-87), has a
lot to teach us about our cellular flow results. The theorem rules out dynamo
action in steady planar flows in cartesian geometry, i.e., flows of the form

u2(x, y, z) = ux(x, y, z)êx + uy(x, y, z)êy (160)

in a bounded volume V at the boundaries (∂V ) of which the magnetic field
vanishes. Note that no other restrictions are placed on the magnetic field,
which can depend on all three spatial coordinate as well as time. Nonetheless,
in view of eq. (160) it will prove useful to consider separately the z-component
of the magnetic field Bz(x, y, z, t) from the (2D) field component in the [x, y]
plane (hereafter denoted B2). It is readily shown that the z-component of
the induction equation then reduces to

∂Bz

∂t
+ u · ∇Bz = η∇2Bz (161)

for spatially constant magnetic diffusivity. Now, the LHS is just a Lagrangian
derivative, yielding the time variation of Bz as one moves along with the fluid.
Multiplying this equation by Bz and integrating over V yields, after judicious
use of a suitable vector identity and of the divergence theorem:

1

2

∫

V

DB2
z

Dt
dV =

∫

∂V

Bz(∇Bz) · ndS − η

∫

V

(∇Bz)
2dV . (162)
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Now, the first integral on the RHS vanishes since B = 0 on ∂V by assumption.
The second integral is positive definite, therefore Bz always decays on the

diffusive timescale (cf. §0.18 ).
Consider now the magnetic field B2 in [x, y] planes. The most general such

2D field can be written as the sum of a solenoidal and potential component:

B2(x, y, z, t) = ∇× (Aêz) + ∇Φ , (163)

where the vector potential A and scalar potential Φ both depend on all three
spatial coordinates and time. Evidently, the constraint ∇ · B = 0 implies

∇2
2Φ = −∂Bz

∂z
, (164)

where ∇2
2 ≡ ∂2/∂x2+∂2/∂y2 is the 2D Laplacian operator in the [x, y] plane.

Clearly, once Bz has resistively dissipated, i.e., for times much larger than
the global resistive decay time τ , Φ is simply a solution of the 2D Laplace
equation ∇2

2Φ = 0.
Here comes the sneaky part. We take the curl of the induction equation.

Upon substituting eq. (163), the z-component of the resulting expression
yields

∇×∇×
[
∂(Aêz)

∂t
+ u2 · ∇(Aêz) − η∇2

2(Aêz) − u2 ×∇Φ

]

= 0 , (165)

with ∇ · (Aêz) = 0 as a choice of gauge. Note that only one term involving Φ
survives, because ∇×∇Φ = 0 identically. In general, the above expression is
only satisfied if the quantity in square brackets itself vanishes, i.e.,

DA

Dt
= η∇2

2A + (u2 ×∇Φ) · êz . (166)

This expression is identical to that obtained above for Bz, except for the pres-
ence of the source term u2 × ∇Φ. However, we just argued that for t À τ ,
∇2

2Φ = 0. In addition, B vanishes on ∂V by assumption, so that the only
possible asymptotic interior solutions are of the form Φ =const, which means
that the source term vanishes in the limit t À τ . From this point on eq. (166)
is indeed identical to eq. (161), for which we already demonstrated the in-
evitability of resistive decay. Therefore, dynamo action, i.e., maintenance of
a magnetic field against resistive dissipation, is impossible in a planar flow
for any 3D magnetic field.

0.21.2 Cowling’s theorem

Another powerful anti-dynamo theorem, predating in fact Zeldovich’s, is due
to T.G. Cowling (1906-90). This anti-dynamo theorem is particularly impor-
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tant historically, since it rules out dynamo action for 3D but axisymmetric
flows and magnetic fields, which happen to be the types of flows and fields one
sees in the Sun, at least on the larger spatial scales. Rather than going over
one of the many formal proofs of Cowling’s theorem found in the literature,
let’s just follow the underlying logic of our proof of Zeldovich’s theorem.

Assuming once again that there are no sources of magnetic field exterior
to the domain boundaries, we consider the inductive action of a 3D, steady
axisymmetric flow on a 3D axisymmetric magnetic field. Working in spherical
polar coordinates (r, θ, φ), we write:

u(r, θ) =
1

ρ
∇× (Ψ(r, θ)êφ) + $Ω(r, θ)êφ (167)

B(r, θ, t) = ∇× (A(r, θ, t)êφ) + B(r, θ, t)êφ (168)

where $ = r sin θ. Here the vector potential component A and stream func-
tion Ψ defines the poloidal components of the flow, and Ω is the angular ve-
locity (units rad s−1). Note that the form eq. (167) guarantees ∇ · (ρu) = 0,
describing mass conservation in a steady flow. Separation of the (vector)
MHD induction equation into two components for the 2D scalar fields A and
B, as done in §0.18, now leads to:

(
∂

∂t
+ up · ∇

)

($A) = $η

(

∇2 − 1

$2

)

A , (169)

(
∂

∂t
+ up · ∇

) (
B

$

)

=
η

$

(

∇2 − 1

$2

)

B +
1

$2

dη

dr

∂($B)

∂r

−
(

B

$

)

∇ · up + Bp · ∇Ω , (170)

where Bp and up are notational shortcuts for the poloidal field and merid-
ional flow. Notice that the vector potential A evolves in a manner entirely
independent of the toroidal field B, the latter being conspicuously absent on
the RHS of eq. (169). This is not true of the toroidal field B, which is well
aware of the poloidal field’s presence via the ∇Ω shearing term.

The LHS of these expressions is again a Lagrangian derivative for the
quantities in parentheses, and the first terms on each RHS are of course
diffusion. The next term on the RHS of eq. (170) vanishes for incompressible
flows, and remains negligible for very subsonic compressible flows. The last
term on the RHS, however, is a source term, in that it can lead to the growth
of B as long as A does not decay away. This is the very situation we have
considered in §0.19.3, by holding A fixed as per eq. (132). However, there
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is no similar source-like term on the RHS of eq. (169), which governs the
evolution of A.

This should now start to remind you of Zeldovich’s theorem. In fact,
eq. (115) is structurally identical to eq. (161), for which we demonstrated
the inevitability of resistive decay in the absence of sources exterior to the
domain. This means that A will inexorably decay, implying in turn that B
will then also decay once A has vanished. Since axisymmetric flows cannot
maintain A against Ohmic dissipation, a 3D axisymmetric flow cannot act as

a dynamo for a 3D axisymmetric magnetic field. 14. Cowling’s theorem is not
restricted to spherical geometry, and is readily generalized to any situation
where both flow and field showing translational symmetry in one and the
same spatial coordinate. Such physical systems are said to have an ignorable

coordinate.
It is worth pausing and reflecting on what these two antidynamo theorems

imply for the cellular flow of §0.20. It was indeed a planar flow (uz = 0), and
moreover the magnetic field had an ignorable coordinate (∂B/∂z ≡ 0)! We
thus fell under the purview of both Zeldovich’s and Cowling’s theorems, so in
retrospect our failure to find dynamo action is now understood. Clearly, the
way to evade both theorems is to consider flows and fields that are fully three-
dimensional, and lack translational symmetry at least in the magnetic field.
We now consider one such flow, and examine some of its dynamo properties.

0.22 The CP flow and fast dynamo action

Our chosen flow is the co-called CP flow (for “Circularly Polarized”). It is a
spatially periodic, incompressible flow, defined in cartesian coordinate over a
2D domain (x, y) ∈ [0, 2π]:

ux(x, y, t) = A cos(y + ε sin ωt) , (171)

uy(x, y, t) = C sin(x + ε cos ωt) , (172)

uz(x, y, t) = A sin(y + ε sin ωt) + C cos(x + ε cos ωt) . (173)

This defines a periodic array of counterotating flow cells “precessing” in uni-
son in the [x, y] plane along circular paths of radius ε, undergoing a full
revolution in a time interval 2π/ω. Note that even though the velocity com-
ponents are independent of the z-coordinate, here the flow does have a non-
zero z-component, which alternates direction from one cell to the next. The
flow is made up of a series of parallel, contiguous helices, which have the same

14 A fact often unappreciated is that Cowling’s theorem does not rule out the dynamo
generation of a non-axisymmetric 3D magnetic field by a 3D axisymmetric flow.
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kinetic helicity h = u ·∇×u in each cell15. The choice of a spatially periodic
flow (and magnetic field) is made here to avoid the potentially misleading
role of boundary conditions in mimicking dynamo action, as encountered in
§0.20. Dynamo action, if and when it occurs, is then evidently a property of
the flow itself, rather than a boundary effect.

Figure 16 shows one periodic “unit” of this flow pattern at a fixed time
t = 0. Here and in what follows we set ω = 1, ε = 1, A = C =

√

3/2,
without any loss of generality. Note the presence of two stagnation points in
the periodic cell, where four flow cells meet at (x, y) = (0, 3π/2) and (π, π/2).

Fig. 16 A snapshot of the CP flow “frozen” at t = 0. The flow is periodic in the
[x, y] plane, and independent of the z-coordinate (but uz 6= 0!). Flow streamlines are
shown projected in the [x, y] plane, and the +/− signs indicate the direction of the z-
component of the flow. The thicker contour defines the network of separatrix surfaces
in the flow, corresponding to cell boundaries. The uz(x, y) isocontours coincide with
the projected streamlines.

15 This represents an example of a Beltrami flow, i.e., it satisfies the relation ∇×u =
αu, where α is a numerical constant. Such flow are maximally helical, in the sense
that the vorticity ωωωω is everywhere parallel to the flow speed u, which guarantees the
largest possible kinetic helicity h = u · ωωωω for a given flow speed.



2 Decay and Amplification of Magnetic Fields 73

0.22.1 Dynamo action at last

Let’s first consider why one should expect the CP flow to evade Cowling’s
and Zeldovich’s theorems. Even without explicit the time-dependence, this
is not a planar flow in the sense demanded by Zeldovich’s theorem, since we
do have three non-vanishing flow components. However, the z-coordinate is
ignorable in the sense of Cowling’s theorem, since all flow components are
independent of z. If this flow is to evade Cowling’s theorem and act as a

dynamo, it must act on a magnetic field that is dependent on all three spatial

coordinates. Consequently, we consider the inductive effects of this flow acting
on a fully three dimensional magnetic field B(x, y, z, t). Since the flow speed
is independent of z, we can expect solutions of the linear induction equation
to be separable in z, i.e.:

B(x, y, z, t) = b(x, y, t)eikz , (174)

where k is a (specified) wavevector in the z-direction, and the 2D magnetic
amplitude b is now a complex quantity. We are still dealing with a fully 3D
magnetic field, but the problem has been effectively reduced to two spatial
dimensions (x, y), which represents a great computational advantage. Substi-
tution of eq. (174) into the magnetic induction equation leads to

∂b

∂t
= (b · ∇xy)u − (u · ∇xy)b − ikuzb + R−1

m (∇2
xyb − k2b) , (175)

with periodic boundary conditions imposed on b(x, y, t). As before, dynamo
action is monitored by tracking the growth (or decay) of the magnetic energy,
with the growth rate s computed via:

s = lim
t→∞

[
1

2t
log(EB)

]

. (176)

Computing solutions for varying k soon reveals that dynamo action (i.e.,
positive growth rates s(k,Rm)) occur in a finite range of vertical wavenumber
k, with exponential growth setting in after a time of order of the turnover
time. Figure 17 shows snapshot of the vertical magnetic field bz(x, y, t) in this
phase of exponential growth, for a Rm = 2000 solutions with k = 0.57, which
here yields the largest growth rate. The solution is fully time-dependent, and
its behavior is best appreciated by viewing it as an animation16.

The solution is characterized by multiple sheets of intense magnetic field,

of thickness once again ∝ R
−1/2
m . The magnetic field exhibits spatial intermit-

tency, in the sense that if one were to randomly choose a location somewhere
in the [x, y] plane, chances are good that only a weakish magnetic field would
be found. In high-Rm solutions, strong fields are concentrated in small re-

16 which you can do, of course, on the course’s Web Page, and for a few Rm values,
moreover...
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Fig. 17 Snapshot of the z-component of the magnetic field in the [x, y] plane, for a
CP Flow solution with Rm = 2000 and k = 0.57, in the asymptotic regime t À τc.
The color scale codes the real part of the z-component of b(x, y, t) (gray-to-blue
is negative, gray-to-red positive). The green straight lines indicate the separatrix
surfaces of the underlying pattern of flow cells. (see Fig. 16). This is a strongly time-
dependent solution, exhibiting overall exponential growth of the magnetic field.

gions of the domain; in other words, their filling factor is small. This can
be quantified by computing the probability density function (hereafter PDF)
of the magnetic field strength, f(|Bz|). This involves measuring Bz at every
(x, y) mesh point in the solution domain, and simply counting how many
mesh points have |Bz| between values B and B + dB. The result of such
a procedure is shown in histogram form on Figure 18. The PDF shows a
power-law tail at high field strengths,

f(|Bz|) ∝ |Bz|−γ , |Bz| ∼> 10−5 , (177)

spanning over four orders of magnitude in field strength, and with γ ' 0.75
here. This indicates that strong field are still far more likely to be detected
than if the magnetic field was simply a normally-distributed random variable
(for example). The fact that the power law index γ is smaller than unity
means the largest local field strength found in the domain will always domi-
nate the computation of the spatially-averaged field strength.
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Fig. 18 Probability density function for the (unsigned) strength of the z-component
of the magnetic field, for a Rm = 103, k = 0.57 CP flow dynamo. The peak field
strength has been normalized to a value of unity. Note the power-law tail at large
field strength (straight line in this log-log plot, with slope ∼ −0.75).

The CP flow dynamo solutions also exhibit temporal intermittency ; if one
sits at one specific point (x, y) point in the domain and measures Bz at
subsequent time steps, a weak Bz is measured most of the time, and only
occasionally are large values detected. Once again the PDF shows a power-
law tail with slope flatter than −1 indicating that a temporal average of Bz

at one location will always be dominated by the largest Bz measured to date.

0.22.2 Dynamo action and chaotic trajectories

Dynamo action in the CP flow turns out to be intimately tied to the presence
of chaotic trajectories in the flow. This can be quantified in a number of
ways, the most straightforward (in principle) being the calculations of the
flow’s Lyapunov exponents. This is another fancy name for a rather simple
concept: the rate of exponential divergence of two neighbouring fluid element
located at x1, x2 at t = 0 somewhere in the flow. The Lyapunov exponent
λL can be (somewhat loosely) defined via

`(t) = `(0) exp(λLt) , (178)

where ` ≡ ‖x2 − x1‖ is the length of the tangent vector between the two
fluid elements. Because there are three independent possible directions in
3D space, one can compute three distinct Lyapunov exponents at any given
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point in the flow, and it can be shown that for an incompressible flow their
sum is zero. Now, recalling the simple flux tube stretching example of §0.19,
exponential divergence of two points located in the same fieldline within the
tube clearly implies exponential increase in the tube’s length, and therefore,
via eq. (130), exponential increase of the magnetic field strength.

Calculating a Poincaré section, as plotted on Figure 19 for our CP flow,
is another very useful way to check for chaotic trajectories in a flow. It is
constructed by launching tracer particles at z = 0 (and t = 0), and following
their trajectories as they are carried by the flow. At every 2π time interval,
the position of the particle is plotted in the [x, y] plane (modulo 2π in x and
y, since most particles leave the original 2π-domain within which they were
released as a consequence of cell precession). Some particles never venture too

Fig. 19 Poincaré section for the CP flow, for ε = 1, ω = 1, and A = C =
√

3/2. The
plot is constructed by repeatedly “launching” particles at z = 0, t = 0, following their
trajectories in time, and plotting their (projected) position (modulo 2π) in the [x, y]
plane at interval ∆t = 2π. The flow is chaotic within the featureless “salt-and-pepper”
regions, and integrable in regions threaded by close curves.

far away from their starting position in the [x, y] plane. They end up tracing
closed curves which, however distorted they may end up looking, identify re-
gions of space where trajectories are integrable. Other particles, on the other
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hand, never return to their starting position. If one waited long enough, one
such particle would eventually come arbitrarily close to all points in the [x, y]
plane outside of the integrable regions. The corresponding particle trajectory
is said to be space filling, and the associated particle motion chaotic. The
region of the [x, y] plane defined by the starting positions of all particles with
space filling trajectories is called the chaotic region of the flow.

Let’s get back to the idea of exponential stretching of a flux tube, as
on Fig. 8 even though the field strength may be growing exponentially, the
radius of the tube will decrease exponentially in time, and therefore so will the
diffusion time; as with the cellular flow problem of §0.20, even in the Rm → ∞
there will come a time when diffusion operates on the same timescale as
induction. How this pans out actually defines two fundamentally distinct
modes of dynamo action: fast and slow.

0.22.3 Fast versus slow dynamos

Of particular importance in the astrophysical context is the behavior of the
dynamo growth rate in the Rm → ∞ limit. This is illustrated on Figure 20,
showing the variation with Rm of the growth rate associated with vertical
wavenumber k = 0.57 solutions, which yield the largest growth rate at large
Rm (∼> 102) for the flow parameter values used here. Here the growth rate
remains constant at s(kmax) ' 0.3 as Rm → ∞; flows behaving in this way
are called fast dynamos, the formal requirement being that

lim
Rm→∞

s(kmax) > 0 . (179)

Without its time-dependency, the CP flow becomes the so-called Roberts
Cell flow, which has also been extensively studied. Like the CP flow, it does
yield dynamo action in some range of vertical wavenumber, but the growth
rate falls to zero (albeit slowly) in the Rm → ∞ limit; such flows are called
slow dynamos.

The distinction between fast and slow dynamos hinges on the profound
differences between the strict mathematical case of Rm = ∞ (ideal MHD),
and the more physically relevant limit Rm → ∞. Theorems have been proven,
demonstrating that

1. A smooth flow cannot be a fast dynamo if λL = 0, so that λL > 0, or,
equivalently, the existence of chaotic regions in the flow, is a necessary
(although not sufficient) condition for fast dynamo action;

2. In the limit Rm → ∞, the largest Lyaponuv exponent of the flow is an
upper bound on the dynamo growth rate.
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Fig. 20 Growth rate of k = 0.57 CP flow dynamo solutions, plotted as a function
of the magnetic Reynolds number (solid line). The constancy of the growth rate in
the high-Rm regime suggests (but does not strictly prove) that this dynamo is fast.

Proofs of these theorems need not concern us here (but see bibliography),
but they once again allow us to rule out fast dynamo action in many classes
of flows.

0.22.4 Magnetic flux versus magnetic energy

With the CP flow, we definitely have a pretty good dynamo on our hands.
But how are those dynamo solutions to be related to the Sun (or other as-
trophysical bodies)? So far we have concentrated on the magnetic energy as
a measure of dynamo action, but in the astrophysical context magnetic flux

is also important. Consider the following two (related) measures of magnetic
flux:

Φ =| 〈B〉 | , F = 〈| B |〉 , (180)

where the angular brackets indicate some sort of suitable spatial average over
the whole computational domain. The quantity Φ is nothing but the average
magnetic flux, while F is the average unsigned flux. Under this notation the
magnetic energy can evidently be written as EB =

〈
B2

〉
. Consider now the

scaling of the two following ratios as a function of the magnetic Reynolds
number:

R1 =
EB

Φ2
∝ Rn

m , (181)
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R2 =
F 2

Φ2
∝ Rκ

m . (182)

A little reflection will reveal that a large value of R1 indicates that the mag-
netic field is concentrated in a small total fractional area of the domain, i.e.,
the filling factor is much smaller than unity17. The ratio R2, on the other
hand, is indicative of the dynamo’s ability to generate a net signed flux. The
exponent κ measures the level of folding in the solution; large values of κ
indicate that while the dynamo may be vigorously producing magnetic flux
on small spatial scales, it does so in a manner such that very little net flux is
being generated on the spatial scale of the computational domain. Figure 21
shows the variations with Rm of the two ratios defined above. Least squares
fits to the curves yields n = 0.35 and κ = 0.13. Positive values for the ex-

Fig. 21 Variations with Rm of the two ratios defined in eqs. (181)–(182). Least
squares fits (solid lines) yield power law exponents n = 0.35 and κ = 0.13.

ponents κ and n indicate that the CP flow dynamo is relatively inefficient
at producing magnetic flux in the high Rm regime, and even less efficient at
producing net signed flux. While other flows yielding fast dynamo actions
lead to different values for these exponents, in general they seem to always
turn out positive, with κ < n, so that the (relative) inability to produce net
signed flux seems to be a generic property of fast dynamos in the high-Rm

regime.

17 If you can’t figure it out try this: take a magnetic field of strength B1 crossing a
surface area A1; now consider a more intense magnetic field, of strength B2 = 4B1,
concentrated in one quarter of the area A1; calculate EB, Φ, and R1... get it?
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0.22.5 Fast dynamo action in the nonlinear regime

We conclude this section by a brief discussion of fast dynamo action in the
nonlinear regime. Evidently the exponential growth of the magnetic field will
be arrested once the Lorentz force becomes large enough to alter the original
CP flow. What might the nature of the backreaction on u look like?

Naively, one might think that the Lorentz force will simply reduce the
amplitude of the flow components, leaving the overall geometry of the flow
more or less unaffected. That this cannot be the case becomes obvious upon
recalling that in the high Rm regimes the eigenfunction is characterized by

magnetic structures of typical thickness ∝ R
−1/2
m , while the flow has a typical

length scale ∼ 2π in our dimensionless units. The extreme disparity between
these two length scales in the high-Rm regime suggests that the saturation of
the dynamo-generated magnetic field will involve alterations of the flow field
on small spatial scales, so that a flow very much different from the original
CP flow is likely to develop in the nonlinear regime.

That this is indeed what happens was nicely demonstrated some years
ago by F. Cattaneo and collaborators (see references in bibliography), who
computed simplified nonlinear solutions of dynamo action in a suitably forced
CP flow. They could show that

1. the r.m.s. flow velocity in the nonlinearly saturated regime is comparable
to that in the original CP flow;

2. magnetic dissipation actually decreases in the nonlinear regime;
3. dynamo action is suppressed by the disappearance of chaotic trajectories

in the nonlinearly modified flow.

0.23 The solar small-scale magnetic field

The CP flow is arguably more akin to malfunctioning washing machines than
any sensible astrophysical object. Nonetheless some of the things we have
learned do carry over to more realistic circumstances, and in particular to
turbulent, thermally-driven convective fluid motions. Most importantly, fast
dynamos such as the CP flow:

1. produce magnetic fields that are highly intermittent, both spatially and
temporally;

2. produce flux concentrations on scales ∝ R
−1/2
m ;

3. produce little or no mean-field, i.e., signed magnetic flux on a spatial scale
comparable to the size of the system;

4. require chaotic flow trajectories to operate.

The fundamental physical link between turbulent convection and the CP
flow is the presence of chaotic trajectories in both flows, which leads to the
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expectation that fast dynamo action should be possible in convection zones
of the Sun and stars.

Now consider figure 22 which shows a high-resolution magnetogram of a
small piece of the solar photosphere, far away from sunspots or active regions.
Note how the magnetic field is spatially very intermittent, and seems to have
no marked preference for either magnetic polarity (red or green).

Fig. 22 High resolution magnetogram (0.6 arcsec/pixel) of a small piece of “quiet
sun”, obtained my the MDI instrument onboard SOHO. The color scale encodes
the line-of-sight component of the magnetic field, with red/green corresponding to
positive/negative magnetic polarities

High time-cadence and spatial resolutions of the solar small-scale magnetic
field have shown that the associated photospheric magnetic flux is replenished
on a very short timescale, commensurate with the convective turnover time
immediately below the photosphere, and thus offers further support to the
turbulent dynamo-based explanation for the solar small-scale magnetic field,
away from active regions at least. Nice and fine, but the Sun also has a
fairly well-defined large-scale component characterized by a substantial signed
magnetic flux, for which something else than fast dynamo action must then
be invoked. It turns out that the turbulent nature of the flow in the solar
convective envelope can still do the trick, but to examine this we will need
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to adopt a statistical approach to turbulence and to the associated flow-field
interactions.
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Chapter 3

Dynamo models of the solar cycle

Was einmal gedacht wurde,

kann nicht mehr zurückgenommen werden.

Friedrich Dürrenmatt
Die Physiker (1962)

The time has now come to put together everything (well... almost) we have
learned so far to construct dynamo models for solar and stellar magnetic
fields. In this and the following chapter we concentrate on the Sun, for which
the amount of observational data available constrains dynamo models to a
degree much greater than for other stars. Dynamo action in stars other than
the Sun will be considered in chapter 5, using solar dynamo models as sky-
hooks.

We begin (§0.24) by briefly reviewing the basic properties of the solar
magnetic cycle, which are to be (hopefully) reproduced by the (relatively)
simple dynamo models to be constructed in the remainder of this chapter.
The different classes of solar dynamo models to be discussed differ primarily
in the choice they make regarding the physical mechanism responsible for the
regeneration of the poloidal magnetic component. They all share the shearing
of a poloidal field by differential rotation (§0.19.2) as a source of toroidal field,
and all invoke some sort of enhanced, “turbulent” magnetic diffusivity in the
solar convective envelope (more on that very shortly!).

We first consider dynamo models in which the poloidal field is produced
through the inductive action of convective turbulence (§0.25). We then look
into what currently stands as their main “competitors”, namely solar cycle
models based on poloidal field regeneration by the surface decay of active
regions, more succinctly known as Babcock-Leighton models (§0.26). We then
turn to cycle models relying on various hydrodynamical or MHD instabilities,
which can under certain circumstances act as sources of poloidal magnetic
fields (§0.27). We close with an overview of the current state of affairs with
regards to investigations of the solar dynamo problem through large-scale

85
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MHD simulations of turbulent convection in a thick, stratified rotating shell
(§0.28).

0.24 The solar large-scale magnetic field and its cycle

Figure 23 shows a magnetogram and corresponding continuum image of the
sun on 30 March 2001. The former is a magnetic map of the solar surface,
where the gray scale encodes the strength of the magnetic field component
along the line-of-sight, with gray-to-black encoding increasingly strong mag-
netic fields pointing into the image plane, and gray to white increasingly
strong magnetic field pointing out of the image plane. Other than limb dark-
ening, the most obvious features visible on the continuum image are the dark
sunspots, with a hint of the filamentary faculae visible near the limb. Compar-
ison between the magnetigram and continuum image reveals a a clear corre-
spondence between the more strongly magnetized regions (black/white on the
magnetogram) and the sunspots visible on the continuum image. However, it
is important to note that regions of strong magnetic fields spread significantly
farther than the visible boundaries of sunspots. Away from these “magneti-
cally active regions”, the magnetic field is weaker, more spatially fragmented,
and distributed evenly over the whole surface. Sunspots and active regions,
in contrast, are restricted to mid-to-low heliographic latitudes.

As argued in §0.23, fast dynamo action associated with turbulent convec-
tion can probably account for much of the small-scale magnetic field making
up the magnetic network (viz. Fig. 22), although the decay of active regions
also contributes magnetic flux that is reprocessed into magnetic network el-
ements. From here onwards, we focus on the large-scale solar magnetic field,
by which we mean the part of the Sun’s magnetic field spatially organized
on scales commensurate with the solar radius. While it may not be imme-
diately obvious on Fig. 23, sunspots provide one of the better tracers of this
large-scale magnetic component.

On any given day, the solar surface magnetic field may look like a total
mess. However, on larger spatial scales and long temporal scales, some well-
defined and striking spatiotemporal patterns do emerge. Figure 24 is a syn-
optic (time-latitude) diagram of the longitudinally-averaged radial magnetic
field component, covering three sunspot cycles. Such a diagram is constructed
by averaging magnetograms (like the one on Fig. 23) in longitude over each
successive solar rotation, and stacking side-by-side the resulting latitudinal
distribution of φ-averaged magnetic field to form a temporal sequence. The
most immediately striking global patterns apparent on Figure 24 are certainly
the cyclic variations on a ∼ 20 yr period, accompanying polarity reversals,
and the (anti)symmetry about the solar equator.

The magnetic signal present within the latitudinal band extending 30 de-
grees or so on either side of the equator is the magnetographic imprint of
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Fig. 23 Full disk line-of-sight magnetogram (top) and continuum intensity im-
age (bottom) of the solar photosphere, both taken on 30 March 2001 by the MDI
instrument onboard the SOHO satellite. The sun’s rotation axis is vertical on
both images. Public domain images downloaded from the SOHO mission Website:
http://wwwsoho.nascom.nasa.gov
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Fig. 24 A synoptic magnetogram covering the last three sunspot cy-
cles. The radial component of the sun’s magnetic field is azimuthally aver-
aged over a solar rotation, and the resulting latitudinal strips stacked one
against the other in the form of a time-latitude diagram. Recall that 1T≡
104 Gauss. Data and graphics courtesy of David Hathaway, NASA/MSFC.
[http://solarscience.msfc.nasa.gov/images/magbfly.gif]

the sunspot butterfly diagram. Although sunspots have magnetic fields of
strength often exceeding 0.1T, they tend to appear in close pairs of opposite
magnetic polarities with comparable (unsigned) flux, and so when the magne-
tograms are averaged longitudinally much weaker net field strengths ensue. At
the beginning of a sunspot cycle (e.g., 1976, 1986, 1996 on Fig. 24), sunspots
are observed at relatively high (∼ 40◦) heliocentric latitudes, but emerge at
lower and lower latitudes as the cycle proceeds, until at the end of the cycle
they are seen mostly near the equator, at which time spots announcing the
onset of the next cycle begin to appear again at ∼ 40◦ latitude. This results
in the so-called “butterfly diagram” of sunspot distribution. Cycle maximum
(as measured by sunspot number) occurs about midway along each butterfly,
when sunspot coverage is maximal at about 15 degrees latitude, here 1980,
1991 and 2002.

We will return to sunspots an their spatiotemporal variations in numbers
in §0.29, when we consider the origin of fluctuations in the solar cycle. For
the time being we will just stick to what they tell us about the sun’s internal

magnetic field. Almost exactly a century ago George Ellery Hale (1868–1938)
and collaborators demonstrated that sunspot pairs always show the same or-
dering of magnetic polarities (leading spot versus following spot, as measured
with respect to the direction of solar rotation) in a given hemisphere, with the
polarity ordering +/− being opposite in the N and S solar hemispheres, and
reversing from one sunspot cycle to the next. This polarity ordering is fairly
easy to discern on the magnetogram of Fig. 23. It has since been realized that
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such pairs of sunspots represent the surface manifestations of toroidal mag-
netic flux ropes produced in the solar interior, then buoyantly rising through
the atmosphere as “Ω-loops”, their intersection with the photosphere produc-
ing sunspot pairs of opposite polarities. The sign of this toroidal component
is then given by the the magnetic polarity of the trailing sunspots, and Hale’s
polarity laws thus indicate the presence of a spatially well-organized large-
scale toroidal magnetic field in the solar interior, antisymmetric about the
equator and reversing polarities from one cycle to the next.

Modelling of the buoyant rise of thin toroidal magnetic flux tube has shown
that low-latitude emergence requires field strengths in excess of a few Teslas.
On the other hand, emergence of pairs showing the proper pattern of tilt
with respect to the E-W direction (i.e., leading spot at lower latitude than the
trailing spot) is only possible for field strengths under about 20T. While some
level of field amplification is likely during the (ill-understood) process of flux
tube formation from the spatially diffuse large-scale magnetic field produced
by the dynamo, these modelling results are usually taken to indicate that the
toroidal magnetic field at or below the base of the convective envelope, where
stability analyses indicate sunspots must originate, must have a strenth in
the range of a few tenths to a few Teslas.

At high heliocentric latitude (∼> 50◦) there exists a cleaner pattern of
polarity changes occurring at or near sunspot maximum. For example, during
the 1976—1986 cycle the toroidal field was negative in the N-hemisphere, and
the Northern polar field reversed from positive to negative magnetic polarity;
taken at face value, Figure 24 then indicates that the high latitude poloidal
field lags the toroidal field by a phase interval ∆ϕ ' π/2. At mid-latitudes
the most prominent feature is a fairly regular poleward drift of magnetic fields
originating in sunspot latitudes, presumably released there by the decay of
sunspot and active regions. It is quite likely that this poleward transport of
magnetic flux from active region belts is what leads to the polarity reversal
of the polar fields.

A ∼ 10−3 T polar field pervading a polar cap of ∼ 30◦ angular width,
as on Fig. 24, adds up to a poloidal magnetic flux of ∼ 1014 Wb. The total
unsigned flux emerging in active regions, taken to be representative of the
solar internal toroidal magnetic component, adds up to a few 1017 Wb over
a full sunspot cycle. This is usually taken to indicate that the solar internal
magnetic field is dominated by its toroidal magnetic component.

To close this very brief overview, let’s now collect a short list of fundamen-
tal observational features that a physical model of the solar magnetic cycle
should reproduce (anything related to amplitude fluctuation being deferred
to chapter 4):

1. A large-scale magnetic field, axisymmetric to a good approximation and
antisymmetric about the solar equator;

2. A cyclic variation of this large-scale magnetic field, characterized by po-
larity reversals with a ∼ 20 yr oscillation period;
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3. An internal toroidal field of strength ∼ 0.1—1T, concentrated at low solar
latitudes (∼< 45◦, say), and migrating equatorward in the course of the cycle
with minimal spatiotemporal overlap between successive cycles;

4. A large-scale surface poloidal field of a few 10−3 T, migrating poleward in
the course of the cycle, and reversing polarity at sunspot maximum.

0.25 Mean-field dynamo models

The ‘toy” dynamo model considered in §0.22 exemplified the fact that high-
Rm turbulent flows can be quite effective at producing a lot of small-scale

magnetic fields, where “small-scales” is roughly R
−1/2
m times the length scale

of the flow. At the solar surface, the latter is around ∼ 106 m and the former
∼ 108 (for granulation), which yields very small scales indeed, ∼ 100m! So,
at some level, the small-scale magnetic fields on the sun and stars are already
taken care of. It turns out that under certain conditions, solar/stellar con-
vective turbulence can also produce magnetic fields with a mean component
building up on large spatial scales. These mean-field dynamo models remain
arguably the most “popular” descriptive models for dynamo action in the
Sun and stars, but also in planetary metallic cores, stellar accretion disks,
and even galactic disks. Accordingly, we will look into the formulation of
these models at some depth18.

0.25.1 Mean-field electrodynamics

The fundamental idea on which mean field theory rests is the two scales ap-

proach, which consists of a decomposition of the field variables into mean and
fluctuating parts. This process naturally implies that an averaging procedure
can meaningfully be defined. The derivation of mean field theory can proceed
equally from the choice of space averages, time averages or ensemble aver-
ages. In the context of axisymmetric dynamo models, longitudinal averages
impose themselves rather naturally. For the time being let’s just define our
averaging operator as:

〈A〉 =
1

λ3

∫

V

A dx . (183)

We also assume that the velocity and magnetic field can be decomposed into
a mean and fluctuating part so that

18 §§0.25.1 through 0.25.6 are to a large extent adapted from class notes written by
Thomas J. Bogdan for the graduate class APAS7500 we co-taught in 1997 at CU
Boulder.
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U = 〈U〉 + u , and B = 〈B〉 + b . (184)

The decomposition (184) makes sense provided 〈u〉 = 〈b〉 = 0. The physical
interpretation of (184) is as follows. The velocity and magnetic fields are
characterized by a slowly varying component, 〈U〉 and 〈B〉, which vary on
the characteristic large scale L, plus rapidly fluctuating parts, u and b, which
vary on the much smaller scale `. The volume averages are computed over
some intermediate scale λ such that

` ¿ λ ¿ L . (185)

Whenever (185) is satisfied we say that we have a “good” scale separation.
The objective of mean field theory is to produce a closed set of equations for

the mean quantities. Substituting (184) into the induction equation (58) with
constant η, and averaging, we obtain equations for the mean and fluctuating
quantities, namely

∂〈B〉
∂t

= ∇×
(
〈U〉 × 〈B〉

)
+ ∇× EEEE + η∇2〈B〉 , (186)

and

∂b

∂t
= ∇×

(
〈U〉 × b

)
+ ∇×

(
u × 〈B〉

)
+ ∇× G + η∇2b , (187)

where

EEEE = 〈u × b〉, and G = u × b − 〈u × b〉 . (188)

The important thing is that (186) now contains a source term associated with
the average of products of fluctuations, which in general does not vanish upon
averaging even though u and b individually do. The term EEEE , which is called
the mean electromotive force, or emf for short, plays a central role in this
theory.

Now, the whole point of the mean-field procedure is to avoid having to deal
explicitly with the small scales, so we do not want to be integrating eq. (187)
explicitly. But the we have a closure problem: eq. (186) is a 3-component
vector equation, for the six components of 〈B〉 and b (leaving the flow out of
the picture for the moment). Therefore it is clear that to solve (186), EEEE must
be expressed as some function of 〈U〉 and 〈B〉.

In order to obtain the the desired expression, we note that (187) is a
linear equation for b with the term ∇×

(
u× 〈B〉

)
acting as a source. There

must therefore exist a linear relationship between B and b , and hence, one
between B and 〈u × b〉. The latter relationship can be expressed formally by
the following series

Ei = αij〈B〉j + βijk∂k〈B〉j + γijkl∂j∂k〈B〉l + · · ·, (189)
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where the tensorial coefficients, α, β, γ, and so forth must depend on 〈U〉,
what we might loosely term the statistics of the turbulent velocity fluctua-
tions, u, and on the diffusivity η—but not on 〈B〉. In this sense, equations
(186) and (189), constitute a closed set of equations for the evolution of 〈B〉.
The convergence of the series representation provided by equation (189) can
be anticipated in those cases where the good separation of scales applies. For
in these cases each successive derivative in equation (189) is smaller than the
previous one by approximately a factor of `/L ¿ 1. With any luck, we may
expect equation (189) to be dominated by the first few terms.

0.25.2 The α–effect

We have already remarked that EEEE in (186) acts as a source term for the mean
field. It is instructive to examine the contributions to EEEE deriving from the
individual terms in the expansion (189). The first contribution is associated
with the second-rank tensor, αij , thus

E(1)
i = αij〈B〉j . (190)

The first thing to note is that αij must be a pseudo–tensor since it establishes
a linear relationship between a polar vector–the mean emf, and an axial
vector–the mean magnetic field. We can divide αij into its symmetric and
antisymmetric parts, thus19

αij = αs
ij − εijkak , (191)

where 2ak = −εijkαij . From (190) we have

E(1)
i = αs

ij〈B〉j +
(
a × 〈B〉

)

i
. (192)

The effect of the antisymmetric part is to provide an additional advective
velocity (not in general solenoidal), so that the effective mean velocity be-
comes 〈U〉 + a. It can result in turbulent pumping of magnetic fields. The
nature of the symmetric part is most easily illustrated in the case when u is
an isotropic random field.20 Then a is zero, αij must be an isotropic tensor

19 Here, εijk is the Levi-Civita tensor density, also known as the unit alternating
tensor, and has the values εijk = 0 when i, j, k are not all different, εijk = +1 or −1
when i, j, k are all different and in cyclic, or acyclic, order respectively. A particularly
useful formula is (Einstein summation over repeated indices in force):

εijkεklm = δilδjm − δimδjl ,

where δij is the Kronecker-delta, and has the value δij = 0 if i, j are different, and
δij = 1 when i = j.
20 Throughout the rest of this chapter, we will have cause to repeatedly refer to
the statistical properties of the turbulent velocity field. In order to avoid confusion
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of the form αij = αδij , and (192) reduces to

EEEE(1) = α〈B〉 . (193)

Using Ohm’s law, this component of the emf is found to generate a contribu-
tion to the mean current of the form

j(1) = ασe〈B〉 , (194)

where σe is the electrical conductivity. For nonzero α, equation (194) implies
the appearance of a mean current everywhere parallel to the mean magnetic
field—the so-called α–effect. This is in sharp contrast to the more conven-
tional case where the induced current σe

(
U×B

)
is perpendicular to the mag-

netic field. We are used to thinking as electrical currents being the source of
magnetic fields (think of the Biot-Savart Law, of the pre-Maxwellian form
of Ampère’s Law); but a mechanically forced magnetic field can become a
source of electrical current. That’s really what induction is all about.

In the context of axisymmetric large-scale astrophysical magnetic fields,
the importance of the α–effect is immediately apparent. We recall from our
deliberations in §0.19.2 that a toroidal field could be generated from a poloidal
one by differential rotation (velocity shear). The α–effect makes it possible
to drive a mean toroidal current parallel to the mean toroidal field, which, in
turn will regenerate a poloidal field thereby closing the dynamo cycle.

To appreciate the physical nature of the α–effect we pause to examine the
original 1955 physical picture put forth by E.N. Parker. We define a cyclonic
event to be the rising of a fluid element associated with a definite twist, say
anticlockwise when seen from below (see Figure 25). In spherical geometry,
we then consider the effect of many such events, distributed randomly in
longitude and time, on an initially purely toroidal field line. Each cyclonic
event creates an elemental loop of field with an associated current distribution
that will have a component parallel to the initial field if the angle of rotation
is less than π and antiparallel if it is greater. By assuming that the individual
events are short lived we can rule out rotations of more than 2π. It is clear
that the combined effect of many such events is to give rise to a net current
with a component along 〈B〉.

An important property of α is its pseudoscalar nature, i.e., α changes sign
under parity transformations. This implies that α can be nonzero only if the
statistics of u lacks reflectional symmetry. In other words the velocity field
must have a definite chirality. For example, on Fig. 25 there is a definite
relationship between vertical displacements and sense of twist, set by the

we state the following definitions: a (random) field is stationary if its probability
density function (pdf) is time independent, it is homogeneous if its pdf is independent
of position, it is isotropic if its pdf is independent of orientation (or equivalently,
invariant under rotations), and it is reflectionally symmetric if its pdf is invariant
under parity reversal. We should note that isotropy and reflectional symmetry are
taken here to be distinct properties, although this protocol is not universally accepted.
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Fig. 25 A sketch of magnetic line of force entrained by a cyclonic, rising fluid
element in the frozen-in limit. Note that the resulting cyclonic loop can be viewed as
resulting from an element of electric current flowing parallel to the original, uniform
magnetic field. [from: Parker 1970, The Astrophysical Journal, vol. 162, Figure 1].

Coriolis force. In general the lack of reflectional symmetry of the fluid velocity
manifests itself through a nonzero value of the mean fluid helicity 〈u·(∇×u)〉,
itself a pseudo scalar. As we shall presently see there is an important relation
between fluid helicity and the α–effect.

It is important to establish those cases in which α and β can rigorously be
computed from knowledge of u. Not counting methods based on the direct
numerical solutions of the induction equation, there are two distinct ways to
proceed. In both cases the success of the approach depends on some simplifi-
cation of equation (187). In one case the term ∇×G is neglected leading to
the so-called first order smoothing approximation (FOSA). In the other, the
term η∇2b is neglected, leading to the Lagrangian approximation. The two
approaches are complementary in the sense that the former is applicable (for
most physically relevant circumstances) when the diffusivity is large and the
latter when it is small. Even these two most severe simplifying assumptions
do not exactly lead to simple mathematics, and to add insult to injury the
parameter regimes for which they are expected to hold do not square well
with what we think we know about solar interior conditions. The closest we
can get to the Sun and stars, in a tractable manner, is the so-called Second-
Order Correlation Approximation (SOCA), which neglects cross-correlations
between the different velocity components but retains the possibility that the
intensity of turbulence itself can vary with position. Under this assumption
of near-isotropy, we then have

〈ujuk〉 =
1

3
〈u2〉δjk . (195)
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This leads to a simple diagonal forms for the α tensor:

α = −1

3
τc〈u · (∇× u)〉 , [m s−1] (196)

where τc is the correlation time for the turbulent flow. Equation (196) tells us
that the α-effect is a direct function of the helicity of turbulent component of
the flow; think back of Parker’s picture of twisted magnetic fieldlines (Fig. 25)
and convince yourself that this is indeed how it should be for the “cartoon”
to work.

If one assumes that the (mild) inhomogeneity arises from the stratification,
the (mild) anisotropy from the Coriolis force, and the lifetime of turbulent ed-
dies is commensurate with their turnover time, then eq. (196) can be brought
to the form:

α = −1

3
τ2
c u2ΩΩΩΩ · ∇ ln(ρu) , (197)

where u =
√

〈u2〉 is the local r.m.s. turbulent velocity, and ΩΩΩΩ is the angular
velocity vector. With the turbulent velocity increasing outwards through the
convective envelope faster than the density decreases, eq. (197) would “pre-
dict” an α-effect varying as cos θ and positive (negative) in the solar Northern
(Southern) hemisphere. Such expression can be validated through MHD nu-
merical simulations of turbulent flows including an externally-imposed weak
magnetic field, and from the simulation statistics compute α by appropri-
ate averaging21. There has been many such simulations, which, almost sur-
prisingly, have corroborated the expressions obtained from SOCA. The key
parameter is the so-called Coriolis number, defined as the ratio of rotation
period to convective turnover time:

Co = 2Ωτc , (198)

equivalent to the inverse of the Rossby number of common usage in atmo-
spheric sciences. Estimates for this quantity in the Sun, with τc estimated
from mixing length theory, yield Co ¿ 1 in the outer convection zone, up
to Co ∼ 1–10 at the base of the convective envelope. For Co ∼< 1, the αφφ

component of the α-tensor, which is the term responsible for poloidal field
regeneration in axisymmetric mean-field models, does turn out positive in the
bulk of the convection zone, with a ∼ cos θ latitudinal dependency. At larger
rotation rate, the peak in αφφ is displaced from the pole to lower latitudes,
reaching ∼ 30◦ at Co ∼ 10. These simulations also produce a sign change in
all components of the α-tensor at the very base of the convective envelope,
with the region of negative αφφ growing in size as Co increases from 1 to 10.

21 See the papers by Ossendrijver et al. (2001) and Käpylä et al. (2006) cited in the
bibliography, on which the foregoing discussion is based.
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The above expressions for the α-coefficients are predicated on the small-
scale field b being much weaker than the mean-field 〈B〉, a situation expected
to hold only in the Rm ¿ 1 regime, or if the coherence time of the turbulent
flow is much smaller than its turnover time. The first condition is the regime
entirely opposite to that expected in solar/stellar interiors, while the second
is at best marginaly satisfied. High-Rm MHD turbulence simulations indicate
that in this regime one has in fact b ∼> 〈B〉, and that eq. (196) should be
replaced by:

α = −1

3
τc

(

〈u · (∇× u)〉 − 1

ρ
〈j · b〉

)

. (199)

with j = (∇×b)/µ0. Notice that the second term on the RHS, corresponding
to the current helicity associated with the small-scale magnetic field, has a
sign opposite to that kinetic helicity. This says once again, in essence, that
the Lorentz force opposes the twisting of the large-scale magnetic field by the
turbulent flow. This impact of current helicity on the α-effect represents a
potentially powerful quenching mechanism for the α-effect, a topic we shall
revisit further below.

0.25.3 Turbulent pumping

The non-diagonal part of the α tensor provides a contribution to the turbulent
emf taking the form of a non-solenoidal advective velocity (second term on
RHS of eq. (192)). This can also be measured in numerical simulations, which
indicate that the predominant effect is a downward pumping driven by the
stratification, with magnetic fields being expelled from the high-diffusivity
regions to the low diffusivity regions. In the presence of rotation turbulent
pumping also takes place in the latitudinal direction, with a velocity reaching
values of the order of a few meters per second at high rotation rates (Co = 10).

Although turbulent pumping is seldom explicitly included in the simple
mean-field dynamo models to be discussed presently, its impact on dynamo
action in the sun and solar-type stars is likely important; this is because it
can offset flux loss through magnetic buoyancy, and favors accumulation of
magnetic fields in the tachocline, where the large shear and low magnetic
diffusivity are conducive to the production of strong toroidal flux rope-like
structures, believed to give rise to sunspots following their destabilization,
buoyant rise through the convection zone and surface emergence.

0.25.4 The turbulent diffusivity

We now turn to the next term in the expansion (189), namely
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E(2)
i = βijk∂k〈B〉j . (200)

The physical interpretation of the third-rank pseudotensor, βijk, is again
most easily gained when u is isotropic, in which case βijk = βεijk, where β
is a scalar, and so we have

∇× E(2) = ∇×
(
−β∇× 〈B〉

)
= β∇2〈B〉. (201)

We recognize the scalar β as an additional contribution to the effective dif-
fusivity of 〈B〉, which thus becomes ηe ≡ η + β. In cases where β À η one
refers to ηe ≈ β as the turbulent diffusivity. In the case of homogeneous and
isotropic turbulence, it can be formally related to the intensity of turbulence
as

β =
1

3
τc〈u2〉 , [m2s−1] , (202)

where τc is once again the correlation time of the turbulent flow22. Equation
(202) states that the turbulent diffusivity is more efficient when the turbu-
lence is more vigorous, which makes intuitive sense since, in order to destroy
the magnetic field by folding, the flow must do work work against the Lorentz
force.

Simple mixing length models of solar convection suggest u ∼ 10m s−1 and
τc ∼ 1month at the base of the convection zone (r/R¯ ∼ 0.7), which then
leads to β ∼ 108 m2 s−1. This is very much larger than the ordinary magnetic
diffusivity ηc ∼ 1m2s−1, so that we indeed expect β À η. This is why, back in
the previous chapter, whenever trying to model the “real” Sun we made used
of a magnetic diffusivity profile characterized by a sharp increase when going
from the radiative core to the overlying convective envelope (viz. eq. (128)
and dash-dotted line on Fig. 7). Note also that the magnetic diffusion time
(62) for the solar convection zone (` ∼ 0.3R¯) is now ∼ 10 yr, which is com-
mensurate to the solar cycle period, and means that (turbulent) dissipation
can be expected to play an important in solar cycle models.

0.25.5 The mean-field dynamo equations

In summary, our heuristic treatment of mean-field electrodynamics has led
us to an evolution equation for the large-scale magnetic field, 〈B〉, which
takes account of coherences between fluctuation-fluctuation interactions of
the small-scale turbulent magnetic and velocity fields. For homogeneous, sta-
tionary, and isotropic velocity turbulence, this equation assume the particu-
larly elegant and physically intuitive form

22 This expression that still holds under SOCA, in which case β becomes a function
of position in the flow.
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∂〈B〉
∂t

= ∇×
(
〈U〉 × 〈B〉 + α〈B〉 − β∇× 〈B〉

)
, (203)

which, according to SOCA, should remain valid in the case of mildly-
inhomoneoneus, mildly anisotropic turbulence as well, with α and β then
given by eqs. (196) and (202). The fluctuation-fluctuation interactions enter
this equation through the electromotive force described by the α–effect, and
the turbulent diffusion of the mean magnetic field accounted for by β. In
principle, these coefficients can be calculated from the lowest-order statistics
of the turbulent flow, namely the spatial distribution of turbulent intensity,
as measured by 〈u2〉.

The fact remains that more often that not, and certainly in all mean-field
dynamo models to be considered in what follows, the mean-field coefficients
α and β will be chosen a priori, although we will take care to embody in
these choices what we have learned from our brief excursion into mean-field
theory. Consequently, the resulting dynamo models will have a descriptive,
rather than predictive value. We will be picking numerically “reasonable”
turbulent dynamo coefficient that “do the right thing” for the Sun, and see
how the resulting models behave as we change other aspects of the model,
or, later on, apply them to stars other than the Sun. Yet, as the following
example will show, we can still learn a lot from mean-field electrodynamics,
even though we have foregone physical and mathematical determinism.

0.25.6 Dynamo waves

The sunspot butterfly diagram suggests that the deep-seated toroidal mag-
netic flux system giving rise to sunspots migrates equatorward in the course
of the cycle. It turns out that this remarkable pattern can arise naturally
in the context of cycle models based on mean-field electrodynamics. Con-
sider a local cartesian coordinate system oriented so that the direction y
corresponds to an ignorable coordinate (∂/∂y = 0), which we associate with
the azimutal direction in an axisymmetric spherical system, and with x and
z mapping onto the latitudinal and radial directions, respectively. Consider
now the action of a spatially constant α-effect acting in conjunction with a
vertically-sheared flow:

〈U〉 = Ωz êy , (204)

where Ω is a constant [units: s−1]. We shall further assume that the mean-
field coefficients α [units: m s−1] and ηe = β + η [units: m2 s−1] are constant.
The cartesian equivalent of eq. (114) is now

〈B〉(x, z, t) = ∇× (A(x, z, t)êy) + B(x, z, t)êy . (205)
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Substitution of eqs. (204) and (205) into our mean-field induction equation
(203) leads to

∂A

∂t
− ηe

(
∂2A

∂x2
+

∂2A

∂z2

)

= αB , (206)

∂B

∂t
− ηe

(
∂2B

∂x2
+

∂2B

∂z2

)

= −Ω
∂A

∂x
+ α

(
∂2A

∂x2
+

∂2A

∂z2

)

. (207)

The two terms on the RHS of this equation parameterize the α–effect and the
Ω–effect. Recall that the Ω–effect describes generation of a toroidal magnetic
field by the shearing out of a poloidal field. The (mean-field) α–effect accounts
for the regeneration of both poloidal and toroidal magnetic fields due to the
chirality, or handedness, of the turbulent flow field. These two terms offer the
possibility of dynamo action overcoming the magnetic diffusion term which
resides on the LHS of this equation.

Equations (206)—(207) are again PDEs with constant coefficients. We can
therefore seek elementary plane-wave solutions of the form

[
A(x, z, t)
B(x, z, t)

]

=

[
a
b

]

exp
[
λt + ik(z cos ϑ + x sin ϑ)

]
. (208)

We may assume that k ≥ 0 and 0 ≤ ϑ ≤ 2π are prescribed (real) parameters,
where the latter sets the orientation of the wavevector in the [x, z] plane.
If equation (208) is substituted into eqs. (206)—(207), the requirement that
there be nontrivial eigenvectors leads to the dispersion relation:

(
λ + ηek

2
)2

= αk
(
αk + iΩ sin ϑ

)
. (209)

This is a quadratic (complex) polynomial in λ, with the two solutions:

λ± = − ηek
2 ±

√

|α|k
2

{
(√

Ω2 sin2 ϑ + α2k2 + |α|k
) 1

2

+i sign(Ωα sinϑ)
(√

Ω2 sin2 ϑ + α2k2 − |α|k
) 1

2

}

. (210)

The λ− solution can only produce a disturbance which decays with the pas-
sage of time, so our hope rests on the λ+ root, with dynamo action occurring
when Re(λ+) > 0. Examination of equation (210) indicates that an exponen-
tially growing dynamo wave is obtained when 0 < k < k?, where the critical
wavenumber k? is one of the (six) roots of the equation,
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k6
? − α2

η2
e

k4
? − α2Ω2

4η4
e

sin2 ϑ = 0 . (211)

If k? → 0 then the “window” for dynamo action disappears. This occurs
when α → 0, in agreement with Cowling’s theorem. From a physical per-
spective it makes a good deal of sense that the dynamo window inhabits the
small-wavenumber, large-wavelength, end of the range of possible parame-
ters. Clearly dynamo waves with rapid spatial fluctuations are susceptible to
severe damping due to the enhanced diffusivity ηe ≈ β. On the other hand,
if the spatial variations of 〈A〉 are too large, then there is very little 〈B〉 for
the α–effect to work on, and so the dynamo process again stalls as k → 0.

Equation (211) can be solved exactly for as a cubic equation for ζ ≡ k2
?,

but for our purposes it is sufficient to simply estimate k? by inspection of
eq. (211) in the limiting cases of “strong” shear, usually most relevant to
dynamo action in the sun and stars:

k? ≈
[ |αΩ sinϑ|

2η2
e

] 1

3

, |α| ¿
√

ηe|Ω sin ϑ| . (212)

We use the word “wave” to describe these exponentially growing solutions
of the mean field equations, because it is clear from equation (210) that
Im(λ+) 6= 0. Note also that the direction of propagation clearly depends
upon the sign of the product of α and Ω, and that the largest growth rate
will occur for ϑ = π/2, i.e., wave propagating in the “latitudinal” x-direction,
which is a most excellent first step towards reproducing the sunspot butterfly
diagram!

0.25.7 The axisymmetric mean-field dynamo equations

We now proceed to reformulate the mean-field induction equation (203) into a
form suitable for axisymmetric large-scale magnetic fields pervading a sphere
of electrically conducting fluid. We proceed as we did way back in §0.21, which
is to express the poloidal field as the curl of a toroidal vector potential, and
restrict the large-scale flow to the axisymmetric forms given by eq. (167), with
the magnetic diffusivity restricted to vary at most only with r. It will also
prove convenient to express the resulting equations in nondimensional form.
Toward this end we opt to scale all lengths in terms of R, and time in terms
of the diffusion time τ = R2/ηe based on the (turbulent) diffusivity in the
convective envelope, which we assume to be provided by the (scalar) β-term
of mean-field electrodynamics. Henceforth dropping the averaging brackets
for notational simplicity, the poloidal/toroidal separation procedure applied
to the mean-field dynamo equation (203 ) now leads to

∂A

∂t
= η

(

∇2 − 1

$2

)

A − Rm

$
up · ∇($A) + CααB , (213)



3 Dynamo models of the solar cycle 101

∂B

∂t
= η

(

∇2 − 1

$2

)

B +
1

$

(
dη

dr

)
∂($B)

∂r

−Rm$∇ ·
(

B

$
up

)

+ CΩ$(∇× A) · (∇Ω) + Cαêφ · ∇ × [α∇× (Aêφ)] ,(214)

where the following three nondimensional numbers have materialized:

Cα =
αeR

ηe
, (215)

CΩ =
ΩeR

2

ηe
, (216)

Rm =
ueR

ηe
, (217)

with αe (dimension m s−1), ue (dimension m2s−1) and Ωe (dimension s−1)
as reference values for the α-effect, meridional flow and envelope rotation,
respectively. Remember that the functionals α, η, up and Ω are hereafter
dimensionless. The quantities Cα and CΩ are dynamo numbers, measuring
the importance of inductive versus diffusive effects on the RHS of eqs. (213)–
(214). The third dimensionless number, Rm, is a magnetic Reynolds num-
ber, which here measures the relative importance of advection (by merid-
ional circulation) versus diffusion in the transport of A and B in meridional
planes. For simplicity of notation, we continue to use η for the total mag-
netic diffusivity, retaining the possibility of variation with depth and with
the understanding that within the convective envelope this now includes the
(dominant) contribution from the β-term of mean-field theory.

Equations (213)–(214) will hereafter be refered to as the dynamo equations

(rather than the technically preferable but cumbersome “axisymmetric mean-
field dynamo equations”). Structurally, they only differs from eqs. (115)—
(116) by the presence of not one but two new source terms on the RHS,
both associated with the α-effect. The appearance of this term in eq. (213)
is crucial, since this is what allows us to evade Cowling’s theorem. Acting in
conjunction with the new α-effect term in eq. (214), it makes dynamo action
possible in the absence of a large-scale shear, i.e., with ∇Ω = 0 in eq. (214).
Such dynamos are known as α2 dynamos, and regenerate their magnetic
field entirely via the inductive action of small-scale turbulence. Traditionally,
dynamo action in planetary cores has been assumed to belong to this variety
(at least from the point of view of mean-field theory). Another possibility is
that the shearing terms entirely dominates over the α-effect term, in which
case the latter is altogether dropped out of eq. (214). This leads to the αΩ
dynamo model, which is believed to be most appropriate to the Sun and
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solar-type stars. Finally, retaining both source terms in eq. (214) defines, you
guessed it I hope, the α2Ω dynamo model. This has received comparatively
little attention in the context of solar/stellar dynamos, since (simple) a priori
estimates of the dynamo numbers Cα and CΩ usually yield Cα/CΩ ¿ 1;
caution is however warranted if dynamo action takes place in a thin shell, in
which case the α-term can still dominate toroidal field production.

In general, solutions are sought in a meridional plane of a sphere of radius
R, and as with the diffusive problem of §0.18, are matched to a potential field
in the exterior (r/R > 1), and regularity requires that A(r, 0) = A(r, π) = 0
and B(r, 0) = B(r, π) = 0 be imposed on the symmetry axis. In practice it
is often useful to solve explicitly for mode having odd and even symmetry
with respect to the equatorial plane. To do so, one simply solves the dynamo
equations in a meridional quadrant, and imposes the following boundary con-
ditions along the equatorial plane. For a dipole-like antisymmetric mode,

∂A(r, π/2)

∂θ
= 0, B(r, π/2) = 0 , [Antisymmetric] , (218)

while for symmetric (quadrupole-like) modes one sets instead

A(r, π/2) = 0,
∂B(r, π/2)

∂θ
= 0 , [Symmetric] . (219)

We are now ready, if not to rock, at least to roll...

0.25.8 Linear αΩ dynamo solutions

In constructing mean-field dynamos for the sun, it has been a common proce-
dure to neglect meridional circulation, on the grounds that it is a very weak
flow (but more on this further below), and to adopt the αΩ model formu-
lation, on the grounds that with R ' 7 × 108 m, Ω0 ∼ 10−6 rad s−1, and
α0 ∼ 1m s−1, one finds Cα/CΩ ∼ 103, independently of the assumed (and
poorly constrained) value for ηe. We also restrict the models to the kine-
matic regime, i.e., all flow fields posed priori and deemed steady (∂/∂t = 0).
Equations (213)—(214) then reduce to the so-called αΩ dynamo equations:

∂A

∂t
=

(

∇2 − 1

$2

)

A + CααB , (220)

∂B

∂t
=

(

∇2 − 1

$2

)

B + CΩ$(∇× Aêφ) · (∇Ω) +
1

$

dη

dr

∂($B)

∂r
. (221)

In the spirit of producing a model that is solar-like we use a fixed value
CΩ = 2.5 × 104, obtained assuming Ωe ≡ ΩEq ∼ 10−6 rad s−1 and ηe =
5 × 107 m2s−1, which leads to a diffusion time τ = R2/ηe ' 300 yr.
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In the parameter regime characterizing the strongly turbulent solar con-
vection zone, the strength (or even sign) of the α-effect cannot be computed
in any reliable manner from first principles, so this will remain the major
unknown of the model. In accordance with the αΩ approximation of the dy-
namo equations, we restrict ourselves to cases where |Cα| ¿ CΩ . For the
dimensionless functional α(r, θ) we use an expression of the form

α(r, θ) = f(r)g(θ) , (222)

where

f(r) =
1

4

[

1 + erf

(
r − rc

w

)] [

1 − erf

(
r − 0.8

w

)]

. (223)

This combination of error functions concentrates the α-effect in the bottom
half of the envelope, and lets it vanish smoothly below, just as the net mag-
netic diffusivity does (i.e., we again set rc/R = 0.7 and w/R = 0.05). Various
lines of argument point to an α-effect peaking at the bottom of the convective
envelope, since there the convective turnover time is commensurate with the
solar rotation period, a most favorable setup for the type of toroidal field
twisting at the root of the α-effect. Likewise, the hemispheric dependence of
the Coriolis force suggests that the α-effect should be positive in the Northern
hemisphere, and change sign across the equator (θ = π/2). The “minimal”
latitudinal dependency is thus

g(θ) = cos θ . (224)

The Cα dimensionless number, measuring the strength of the α-effect, is
treated as a free parameter of the model. You may be shocked by the fact
that we are, in a very very cavalier manner, effectively treating the α-effect as
a (almost) free-function; this sorry situation is unfortunately the rule rather
than the exception in mean-field dynamo modelling23.

With α, β and the large-scale flow given, the αΩ dynamo equations (220)—
(221) become linear in the mean-field B. With none of the PDE coefficients
depending explicitly on time, one can seek eigensolutions of the form

[
A(r, θ, t)
B(r, θ, t)

]

=

[
a(r, θ)
b(r, θ)

]

eλt , (225)

where the amplitudes a and b are in general complex quantities. Substituting
eqs. (225) into the αΩ dynamo equations yields a classical linear eigenvalue
problem. It will prove convenient to write the eigenvalue explicitly as

λ = σ + iω , (226)

23 References to some of the more noteworthy exceptions are provided in the bibli-
ography at the end of this chapter.
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so that σ is the growth rate and ω the cyclic frequency, both expressed in
terms of the inverse diffusion time τ−1 = η/R2. In a model for the (oscilla-
tory) solar dynamo, we are looking for solutions where σ > 0 and ω 6= 0.

Armed (and dangerous) with the above model, we plow ahead and solve
numerically the αΩ dynamo equations as a 2D eigenvalue problem. We first
produce a sequence of solutions for increasing values of |Cα|, holding CΩ

fixed at a its “solar” value 2.5 × 104, Figure 26 shows the variation of the
growth rate σ and frequency ω as a function of Cα. Four sequences are shown,
corresponding to modes that are either antisymmetric or symmetric with
respect to the equatorial plane (“A” and “S” respectively), computed with
either positive or negative Cα. For |Cα| smaller than some threshold value,
the induction terms make too small a contribution to the RHS of eq. (220),
leaving the dissipation terms dominant, so that solutions all have σ < 0, as
per Cowling’s theorem. As |Cα| increases, the growth rate eventually reaches
σ = 0. At this point we also have ω 6= 0, so that the corresponding solution
oscillates with neither growth of decay of its amplitude. Further increases of
|Cα| lead to σ > 0. We are now finally in the dynamo regime, where a weak
initial field is amplified exponentially in time.

Computing similar sequences for the same model but different values of
CΩ soon reveals that the onset of dynamo activity (σ > 0) is controlled by
the product of Cα and CΩ :

D ≡ Cα × CΩ =
α0Ω0R

3

η2
e

. (227)

The value of D for which σ = 0 is called the critical dynamo number (denoted
Dcrit). This, at least, is similar to what we found for the analytical solution
of §0.25.6. Modes having σ < 0 are called subcritical, and those having σ > 0
supercritical. Note on Fig. 26 how little the growth rate and dynamo frequency
depend on the assumed solution parity.

Here the first mode to become supercritical is the negative Cα mode, for
which Dcrit = −0.9× 105, followed shortly by the positive Cα mode (Dcrit =
−1.1 × 105). The dynamo frequency for these critical modes is ω ' 300,
which corresponds to a full cycle period of ∼ 6 yr. This is within a factor
of four of the observed full solar cycle period. Once again we should not be
too impressed by this, since we have quite a bit of margin of manoeuver in
specifying numerical values for ηe and Cα, and there is no reason to believe
that the Sun should be exactly exactly at the critical threshold for dynamo
action.

Figure 27 shows a half a cycle of the dynamo solution, in the form of
snapshots of the toroidal (color scale) and poloidal (fieldlines) eigenfunctions
in a meridional plane, with the rotation/symmetry axis oriented vertically.
The four frames are separated by a phase interval ϕ = π/3, so that panel (D)
is identical to (A) except for reversed magnetic polarities in both magnetic
components. Such linear eigensolutions leave the absolute magnitude of the
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Fig. 26 Variations of the dynamo growth rate (A) and frequency (B) as a function
of increasing |Cα| in the minimal αΩ model. Sequences are shown for either positive
or negative dynamo number (as labeled), and symmetric (triangles) or antisymmetric
(dots) parity. Modes having σ < 0 are decaying, and modes with σ > 0 exponentially
growing. Here modes with A or S parity have very nearly identical eigenvalues. In
this model the first mode to reach criticality is the negative Cα mode, for which
Dcrit = −0.9 × 105. The positive Cα mode reaches criticality at Dcrit = 1.1 × 105.
The diamonds on panel (B) correspond to the dynamo frequency measured in a
nonlinear version of the same minimal αΩ model, including algebraic α-quenching,
to be discussed in §0.25.10.

magnetic field undetermined, but the relative magnitude of the poloidal to
toroidal components is found to scale as ∼ |Cα/CΩ |

The toroidal field peaks in the vicinity of the core-envelope interface, which
is not surprising since, in view of eqs. (136)—(137), the radial shear is max-
imal there and the magnetic diffusivity and α-effect are undergoing their
fastest variation with depth. But why is the amplitude of the dynamo mode
vanishing so rapidly below the core-envelope interface? After all, the poloidal
and toroidal diffusive eigenmodes investigated in §0.18 were truly global,
and the adopted contrast in magnetic diffusivity between core and envelope
should favor stronger fields in the lower diffusivity core. The crucial differ-
ence lies with the oscillatory nature of the solution: because the magnetic
field produced in the vicinity of the core-envelope interface is oscillating with
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Fig. 27 Four snapshots in meridional planes of our minimal linear αΩ dynamo
solution with defining parameters CΩ = 25000, ηe/ηc = 10, ηe = 5 × 107 m2 s−1.
With Cα = +5, this is a mildly supercritical solution (cf. Fig. 26). The toroidal field
is plotted as filled contours (green to blue for negative B, yellow to red for positive B,
normalized to the peak strength and with increments ∆B = 0.2), on which poloidal
fieldlines are superimposed (blue for clockwise-oriented fieldlines, orange for counter-
clockwise orientation). The dashed line is the core-envelope interface at rc/R = 0.7.
The four snapshots shown here cover a half magnetic cycle, i.e., panel (D) is identical
to (A) except for reversed magnetic polarities.

alternating polarities, its penetration depth in the core is limited by the elec-
tromagnetic skin depth ` =

√

2ηc/ω (§0.20), with ηc the core diffusivity.
Having assumed ηe = 5 × 107 m2s−1, we have ηc = ηe∆η = 5 × 106 m2s−1.
A dimensionless dynamo frequency ω ' 300 corresponds to 3 × 10−8 s−1, so
that `/R ' 0.026, quite small indeed.

Careful examination of 27A→D also reveals that the toroidal/poloidal flux
systems present in the shear layer first show up at high-latitutes, and then
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migrate equatorward to finally disappear at mid-latitudes in the course of the
half-cycle24. If you haven’t already guessed it, what we are seeing on Figure
27 is the spherical equivalent of the dynamo waves investigated in §0.25.6 for
the cartesian case with uniform α-effect and shear. In more general terms,
the dynamo wave travel in a direction s given by

s = α∇Ω × êφ , (228)

i.e., along isocontours of angular velocity. This result is known as the Parker-

Yoshimura sign rule. Here with a negative ∂Ω/∂r in the high-latitude region
of the tachocline, a positive α-effect results in an equatorward propagation
of the dynamo wave.

0.25.9 Nonlinearities and α-quenching

Obviously, the exponential growth characterizing supercritical (σ > 0) lin-
ear solutions must stop once the Lorentz force associated with the growing
magnetic field becomes dynamically significant for the inductive flow. This
magnetic backreaction can show up here in two distinct ways:

1. Reduction of the differential rotation,
2. Reduction of turbulent velocities, and therefore of the α-effect (and per-

haps also of the turbulent magnetic diffusivity).

Because the solar surface and internal differential rotation shows very little
dependence on the phase of the solar cycle, it has been customary to assume
that magnetic backreaction occurs at the level of the α-effect. In the mean-
field spirit of not solving dynamical equations for the small-scales, it has
been standard practice to assume a dependence of α on B that “does the
right thing”, namely reducing the α-effect once the magnetic field becomes
“strong enough”, the latter usually taken to mean when the growing dynamo-
generated mean magnetic field reaches a magnitude such that its energy per
unit volume is comparable to the kinetic energy of the underlying turbulent
fluid motions:

B2
eq

2µ0
=

ρu2
t

2
→ Beq = ut

√
µ0ρ . (229)

This expression defines the equipartition field strength, denoted Beq, which
varies from ∼ 1T at the base of the solar convective envelope, to ∼ 0.1T in
the surface layers. It has become common practice to introduce an ad hoc

algebraic nonlinear quenching of α (and sometimes ηe as well) directly on the
mean-toroidal field B by writing:

24 An animation of this solution, as well as the one discussed next, can be viewed on
the course Web Page.
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α → α(B) =
α0

1 + (B/Beq)2
. (230)

Needless to say, this remains an extreme oversimplification of the complex
interaction between flow and field that is known to characterize MHD turbu-
lence, but its wide usage in solar dynamo modeling makes it a nonlinearity
of choice for the illustrative purpose of this section.

0.25.10 Kinematic αΩ models with α-quenching

With algebraic α-effect included in the poloidal source term, the mean-field
αΩ equations are now nonlinear, and are best solved as an initial-boundary-
value problem. The initial condition is an arbitrary seed field of very low
amplitude, in the sense that B ¿ Beq everywhere in the domain. Boundary
conditions remain the same as for the linear analysis of the preceding section.

Consider again the minimal αΩ model of §0.25.8, where the α-effect as-
sumes its simplest possible latitudinal dependency, ∝ cos θ. We use again
CΩ = 2.5 × 104 and positive Cα ≥ 5, so that the corresponding linear so-
lution are in the supercritical regime (see Figure 26). With a very weak B

as initial condition, early on the model is essentially linear and exponential
growth is expected. This is indeed what is observed, as can be seen on Fig. 28,
showing time series of the total magnetic energy in the simulation domain for
increasing values of Cα, all above criticality. Eventually however, B starts to
become comparable to Beq in the region where the α-effect operates, leading
to a break in exponential growth, and eventual saturation at some constant
value of magnetic energy. Evidently, α-quenching is doing what it was de-
signed to do! Note how the saturation energy level increases with increasing
Cα, an intuitively satisfying behavior since solutions with larger Cα have a
more powerful poloidal source term. The cycle frequency for these solutions is
plotted as diamonds on Fig. 26B and, unlike in the linear solutions, now shows
very little increase with increasing Cα. Moreover, the dynamo frequency of
these α-quenched solutions are found to be slightly smaller that the frequency
of the linear critical mode (here by some 10—15%), a behavior that is typical
of mean-field dynamo models. Yet the overall form of the dynamo solutions
closely resembles that of the linear eigenfunctions plotted on Fig. 27. Indeed,
the full cycle period is here P/τ ' 0.027, which translates into 9 yr for our
adopted ηe = 5 × 107 m2 s−1, i.e., a little over a factor of two shorter than
the real thing. Not bad!

As a solar cycle model, these dynamo solutions do suffer from one obvious
problem: magnetic activity is concentrated at too high latitudes (see Fig. 27).
This is a direct consequence of the assumed cos θ dependency for the α-
effect. One obvious way to push the dynamo mode towards the equator is
to concentrate the α-effect at low latitude. This is not as ad hoc as one
may think, given that the numerical simulation results discussed in §0.25.2
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Fig. 28 Time series of magnetic energy for a set of αΩ dynamo solutions using our
minimal αΩ model including algebraic α-quenching, and different values for Cα, as
labeled. Magnetic energy is expressed in arbitrary units. The dashed line indicates
the exponential growth phase characterizing the linear regime.

do indicate that in the high rotation regime (Co ∼> 4), the peak in the α-
effect is indeed displaced to low latitudes. We therefore proceed using now a
latitudinal dependency in ∝ sin2 θ cos θ for the α-effect.

Figure 29 shows a selection of three αΩ dynamo solutions, in the form
of time-latitude diagrams of the toroidal field extracted at the core-envelope
interface, here rc/R¯ = 0.7. If sunspot-producing toroidal flux ropes form
in regions of peak toroidal field strength, and if those ropes rise radially
to the surface, then such diagrams are directly comparable to the sunspot
butterfly diagram. These three models all have CΩ = 25000, |Cα| = 10, ∆η =
0.1, and ηe = 5 × 107 m2 s−1. To facilitate comparison between solutions,
antisymmetric parity is imposed via the boundary condition at the equator25.
On such diagrams, the latitudinal propagation of dynamo waves shows up as
a “tilt” of the flux contours away from the vertical direction.

The first solution, on Figure 29A, is once again our basic solution of Fig. 27,
with an α-effect varying in cos θ. The other two use an α-effect varying in
sin2 θ cos θ, and so manage to produce dynamo action that materializes in two
more or less distinct branches, one associated with the negative radial shear
in the high latitude part of the tachocline, the other with the positive shear
in the low-latitude tachocline. These two branches propagate in opposite
directions, in agreement with the Parker-Yoshimura sign rule, since the α-

25 Animations of the evolving solutions in meridional quadrant can be viewed on the
course Web Page.
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Fig. 29 Northern hemisphere time-latitude (“butterfly”) diagrams for a selection
of nonlinear αΩ dynamo solutions including α-quenching, constructed at the depth
r/R¯ = 0.7 corresponding to the core-envelope interface. Isocontours of toroidal field
are normalized to their peak amplitudes, and plotted for increments ∆B/max(B) =
0.2, with yellow-to-red (green-to-blue) contours corresponding to B > 0 (< 0). The
assumed latitudinal dependence of the α-effect is on given each panel. Other model
ingredients as on Fig. 27. Note the co-existence of two distinct cycles in the solution
shown on panel C, with periods differing by about 25%.

effect here does not change sign within an hemisphere, but the radial gradient
of Ω does.

It is noteworthy that co-existing dynamo branches, as on Fig. 29B and C,
can have distinct dynamo periods, which in nonlinearly saturated solutions
leads to long-term amplitude modulation. Such modulations are typically not
expected in dynamo models where the only nonlinearity present is a simple
algebraic quenching formula such as eq. (230). Note that this does not occur
for the Cα < 0 solution, where both branches propagate away from each
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other, but share a common latitude of origin and so are phased-locked at
the onset (cf. Fig. 29B). We are seeing here a first example of potentially
distinct dynamo modes interfering with one another, a direct consequence of
the complex profile of solar internal differential rotation.

The solution of Fig. 29B is characterized by a low-latitude equatorially
propagating branch, and a full cycle period of 16 yr, which is getting pretty
close to the “target” 22yr. But again the strong high-latitude, poleward-
propagating branch has no counterpart in the sunspot butterfly diagram. This
is often summarily dealt with by flatly zeroing out the α-effect at latitudes
higher than ∼ 40◦, but this is clearly not a very satisfying approach. Let’s
try something else instead.

0.25.11 αΩ models with meridional circulation

Meridional circulation is unavoidable in turbulent, compressible rotating
convective shells. It basically results from an imbalance between Reynolds
stresses and buoyancy forces. The ∼ 15m s−1 poleward flow observed at the
surface has been detected helioseismically, down to r/R¯ ' 0.85 without
significant departure from the poleward direction, except locally and very
close to the surface, in the vicinity of active region belts. Mass conservation
evidently requires an equatorward flow deeper down.

Meridional circulation can bodily transport the dynamo-generated mag-
netic field (terms ∝ up · ∇ in eqs. (169)–(170)), and therefore, for a (pre-
sumably) solar-like equatorward return flow that is vigorous enough, can
overpower the Parker-Yoshimura propagation rule and produce equatorward
propagation no matter what the sign of the α-effect is. At low circulation
speeds, the primary effect is a Doppler shift of the dynamo wave, leading to
a small change in the cycle period. The behavioral turnover from dynamo
wave-like solutions to circulation-dominated magnetic field transport sets in
when the circulation speed in the dynamo region becomes comparable to the
propagation speed of the dynamo wave. In the circulation-dominated regime,
the cycle period loses sensitivity to the assumed turbulent diffusivity value,
and becomes determined primarily by the circulation’s turnover time. Solar
cycle models achieving equatorward propagation of the deep-seated toroidal
field in this manner are often called flux transport dynamos.

These properties of dynamo solutions with meridional flows can be cleanly
demonstrated in simple αΩ models using a purely radial shear at the core-
envelope interface (see references in bibliography), but with a solar-like dif-
ferential rotation profile the situation turns out to be far more complex.
Consider for example the three αΩ dynamo solutions of Fig. 29, now recom-
puted including meridional circulation taking the form of a single cell per
meridional quadrant, with the equatorward closing at the core-envelope in-
terface, as illustrated on Figure 30A. As Rm is increased, for the solution
of Fig. 29A, the dynamo is decaying in 102 ∼< Rm ∼< 600, and then kicks
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in again at Rm ' 800 with a double-branched structure in its butterfly dia-
gram. The negative-Cα solution (Fig. 29B), on the other hand transits to a
steady mode around Rm ∼ 102 that persists at least up to Rm = 5000; The
solution of Fig. 29C, develops a dominant equatorial branch at Rm ∼ 200,
but a dominant high-latitude branch takes over from Rm ∼ 103 onward.

Figure 30B through I shows half a cycle of our α ∝ cos θ reference solution,
now for parameter values Cα = 0.5, CΩ = 5×105, ∆η = 0.1, and Rm = 2500,
which for an envelope diffusivity reduced to ηe = 5× 106 m2 s−1 corresponds
to a solar-like surface poleward flow and differential rotation. The transport
of the magnetic field by meridional circulation is clearly apparent, and con-
centrates the toroidal field to low latitudes, which is great from the point
of view of the sunspot butterfly diagram. Note also how poloidal fieldlines
suffer very strong stretching in the latitudinal direction within the tachocline
(panels C through F), a direct consequence of shearing —in addition to plain
transport— by the equatorward flow. One interesting consequence is that in-
duction of the toroidal field is now effected primarily by the latitudinal shear
within the tachocline, with the radial shear, although larger in magnitude,
playing a lesser role since Br/Bθ ¿ 1. The meridional flow also has a pro-
found impact on the magnetic field evolution at r = R, as it concentrates the
poloidal field in the polar regions. This leads to a large amplification factor
through magnetic flux conservation, so that dynamo solutions such as shown
on Fig. 30 are typically characterized by very large polar field strengths, here
0.07 T, for an equipartition field strength Beq = 0.5T in eq. (230). This is
only a factor of 4 or so smaller than the toroidal field in the tachocline, even
though we have here Cα/CΩ = 10−6. This concentrated poloidal field, when
advected downwards to the polar regions of the tachocline, is responsible
for the strong polar branch often seen in the butterfly diagram of dynamo
solutions including a rapid meridional flow.

It is noteworthy that to produce a butterfly-like time-latitude diagram of
the toroidal field at the core-envelope interface, the required value of Rm in
conjunction with the observed surface meridional flow speed and reasonable
profile for the internal return flow, ends up requiring a rather low envelope
magnetic diffusivity, ∼< 107 m2 s−1, which stands at the very low end of the
range suggested by mean-field estimates such as provided by eq. (202). Still,
kinematic αΩ mean-field models including meridional circulation and simple
algebraic α-quenching can produce equatorially-concentrated and equatori-
ally propagating dynamo modes with a period resembling that of the solar
cycle for realistic, solar-like differential rotation and circulation profiles. Nice
and fine, but it turns out we have another potential problem on our hands.

0.25.12 Interface dynamos

The α-quenching expression (eq. (230)) used in the two preceding sections
amounts to saying that dynamo action saturates once the mean, dynamo-
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Fig. 30 Snapshots covering half a cycle of an αΩ dynamo solution including merid-
ional circulation, starting at the time of polarity reversal in the polar surface field.
Meridional circulation streamlines are plotted on panel A, the flow being poleward
at the surface and equatorward at the core-envelope interface. Color coding of the
toroidal field and poloidal fieldlines as on Fig. 27. This α-quenched solution uses the
same differential rotation, diffusivity, and α-effect profiles as on Fig. 27, with pa-
rameter values Cα = 0.5, CΩ = 5 × 105, ∆η = 0.1, Rm = 2500. Note the strong
amplification of the surface polar fields, the latitudinal stretching of poloidal field-
lines by the meridional flow at the core-envelope interface, and the weak, secondary
dynamo mode in the equatorial region of the tachocline.
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generated field reaches an energy density comparable to that of the driving
turbulent fluid motions, i.e., Beq ∼ √

µ0ρu, where u is the turbulent veloc-
ity amplitude. This appears eminently sensible, since from that point on a
toroidal fieldline would have sufficient tension to resist deformation by cy-
clonic turbulence, and so could no longer feed the α-effect. At the base of the
solar convective envelope, one finds Beq ∼ 0.1T, for u ∼ 10m s−1, according
to standard mixing length theory of convection. However, various calculations
and numerical simulations have indicated that long before the mean toroidal
field B reaches this strength, the helical turbulence reaches equipartition with
the small-scale, turbulent component of the magnetic field. Such calculations
also indicate that the ratio between the small-scale and mean magnetic com-

ponents should itself scale as R
1/2
m , where Rm = v`/η is a magnetic Reynolds

number based on the turbulent speed but microscopic magnetic diffusivity.
This then leads to the alternate quenching expression

α → α(B) =
α0

1 + Rm(B/Beq)2
. (231)

known in the literature as strong α-quenching or catastrophic quenching.
Since Rm ∼ 108 in the solar convection zone, this leads to quenching of
the α-effect for very low amplitudes of the mean magnetic field, of order
10−5 T. Even though significant field amplification is likely in the formation
of a toroidal flux rope from the dynamo-generated magnetic field, we are now
a very long way from the 1—10T demanded by simulations of buoyantly ris-
ing flux ropes and sunspot formation.

A way out of this difficulty was proposed by E.N. Parker in the form of in-

terface dynamos. The idea is beautifully simple: if the toroidal field quenches
the α-effect, amplify and store the toroidal field away from where the α-effect
is operating! Parker showed that in a situation where a radial shear and α-
effect are segregated on either side of a discontinuity in magnetic diffusivity
taken to coincide with the core-envelope interface, the constant coefficient
αΩ dynamo equations considered already in §0.25.6 support solutions in the
form of travelling surface waves localized on the discontinuity. The key as-
pect of Parker’s (linear, cartesian, analytical) solution is that for supercritical
dynamo waves, the ratio of peak toroidal field strength on either side of the
discontinuity surface is found to scale with the diffusivity ratio as

max(Be)

max(Bc)
∼

(
ηe

ηc

)−1/2

. (232)

If the core diffusivity ηc assumes the microscopic value, and that the envelope
diffusivity (ηe) is of turbulent origin so that ηe ∼ `u, then the toroidal field

strength ratio then scales as ∼ (u`/ηc)
1/2 ≡ R

1/2
m . This is precisely the factor

needed to bypass strong α-quenching, at least as embodied in eq. (231).
As an illustrative example, Figure 31A shows a series radial cuts of the

toroidal magnetic component at 15◦ latitude, spanning half a cycle in a nu-
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merical interface solution with CΩ = 2.5 × 105, Cα = +10, and a core-
to-envelope diffusivity contrast ∆η = 10−2. The differential rotation and
magnetic diffusivity profiles are the same as before, but here the α-effect is
now (even more artificially) concentrated towards the equator, by imposing a
latitudinal dependency α ∼ sin(4θ) for π/4 ≤ θ ≤ 3π/4, and zero otherwise.

Fig. 31 A representative interface dynamo model in spherical geometry. This solu-
tion has CΩ = 2.5 × 105, Cα = +10, and a core-to-envelope diffusivity contrast of
10−2. Panel (A) shows a series of radial cuts of the toroidal field at latitude 15◦.
The (normalized) radial profiles of magnetic diffusivity, α-effect, and radial shear are
also shown, again at latitude 15◦. The core-envelope interface is again at r/R¯ = 0.7
(dotted line), where the magnetic diffusivity varies near-discontinuously. Panels (B)
and (C) show the variations of the core-to-envelope peak toroidal field strength and
dynamo period with the diffusivity contrast, for a sequence of otherwise identical
dynamo solutions.
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This model does achieve the kind of toroidal field amplification one would
like to see in interface dynamos. Notice how the toroidal field peaks below the
core-envelope interface (vertical dotted line), well below the α-effect region
and near the peak in radial shear. Figure 31B shows how the ratio of peak
toroidal field below and above rc varies with the imposed diffusivity contrast
∆η. The dashed line is the dependency expected from eq. (232). For relatively
low diffusivity contrast, −1.5 ≤ log(∆η) ∼< 0, both the toroidal field ratio and
dynamo period increase as ∼ (∆η)−1/2. Below log(∆η) ∼ −1.5, the max(B)-
ratio increases more slowly, and the cycle period falls, as can be seen on
Fig. 31C. This is basically an electromagnetic skin-depth effect; unlike in the
original picture proposed by Parker, here the poloidal field must diffuse down
a finite distance into the tachocline before shearing into a toroidal component
can commence. With this distance set by our adopted profile of Ω(r, θ), as
∆η becomes very small there comes a point where the dynamo period is such
that the poloidal field cannot diffuse as deep as the peak in radial shear in
the course of a half cycle. The dynamo then runs on a weaker shear, thus
yielding a smaller field strength ratio and weaker overall cycle.

0.26 Babcock-Leighton models

Solar cycle models based on what is now called the Babcock-Leighton mech-
anism were first developed in the early 1960’s, yet they were temporarily
eclipsed by the rise of mean-field electrodynamics a few years later. Their re-
vival was motivated in part by the fact that synoptic magnetographic moni-
toring over solar cycles 21 and 22 has offered strong evidence that the surface
polar field reversals are indeed triggered by the decay of active regions (see
Fig. 24). The crucial question is whether this is a mere side-effect of dy-
namo action taking place independently somewhere in the solar interior, or
a dominant contribution to the dynamo process itself.

Figure 32 illustrates the basic idea of the Babcock-Leighton mechanism.
Consider the two bipolar magnetic regions (BMR) sketched in (A). Recall
that each of these is the photospheric manifestation of a toroidal flux rope
emerging as an Ω-loop. The leading (trailing) component of each BMR is that
located ahead (behind) in the direction of the Sun’s rotation (from E to W).
Joy’s Law states that, on average, the leading component is located at lower
latitude than the trailing component, so that a line joining each component
of the pair makes an angle with respect to the E-W line. Hale’s polarity law
also informs us that the leading/trailing magnetic polarity pattern is oppo-
site in each hemisphere, a reflection of the equatorial antisymmetry of the
underlying toroidal flux system. Horace W. Babcock (1912–2003) demon-
strated empirically from his early magnetographic observation of the sun’s
surface solar magnetic field that as the BMRs decay (presumably under the
influence of turbulent convection), the trailing components drift to higher
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Fig. 32 [INCOMPLETE] Cartoon of the Babcock-Leighton mechanism. In (A), two
bipolar magnetic regions (BMR) have emerged, one in each hemisphere, with opposite
leading/following polarity patterns, as per Hale’s polarity Law. After some time, in
(B), the BMRs have started decaying, with the leading components experiencing
diffusive cancellation across the equator, while the trailing components have moved
to higher latitudes. At later time, in (C), the net effect is the buildup of an hemispheric
flux of opposite polarity in the N and S hemisphere, i.e., a net dipole moment (see
text).

latitudes, leaving the leading components at lower latitudes, as sketched on
Fig. 32B. Babcock also argued that the trailing polarity poloidal flux released
to high latitude by the cumulative effects of the emergence and subsequent
decay of many BMRs was responsible for the reversal of the sun’s large-scale
dipolar field.

More germane from the dynamo point of view, the Babcock-Leighton
mechanism taps into the (formerly) toroidal flux in the BMR to produce
a poloidal magnetic component. To the degree that a positive dipole moment
is being produced from a toroidal field that is positive in the N-hemisphere,
this is a bit like a positive α-effect in mean-field theory. In both cases the Cori-
olis force is the agent imparting a twist on a magnetic field; with the α-effect
this process occurs on the small spatial scales and operates on individual
magnetic fieldlines. In contrast, the Babcock-Leighton mechanism operates
on the large scales, the twist being imparted via the the Coriolis force acting
on the flow generated along the axis of a buoyantly rising magnetic flux tube.

0.26.1 Sunspot decay and the Babcock-Leighton mechanism

Evidently this mechanism can operate as sketched on Figure 32 provided
the magnetic flux in the leading and trailing components of each (decaying)
BMR are separated in latitude faster than they can diffusively cancel with
one another. Moreover, the leading components must end up at low enough
latitudes for diffusive cancellation to take place across the equator. This is
not trivial to achieve, and we now take a more quantitative looks at the
Babcock-Leighton mechanism, first with a simple 2D numerical model.

The starting point of the model is the grand sweeping assumption that,
once the sunspots making up the bipolar active region lose their cohesiveness,
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their subsequent evolution can be approximated by the passive advection and
resistive decay of the radial magnetic field component. This drastic simplifi-
cation does away with any dynamical effect associated with magnetic tension
and pressure within the spots, as well as any anchoring with the underlying
toroidal flux system. The model is further simplified by treating the evolution
of Br as a two-dimensional transport problem on a spherical surface corre-
sponding to the solar photosphere. Consequently, no subduction of the radial
field can take place.

Even under these simplifying assumptions, the evolution is still governed
by the MHD induction equation, specifically its r-component. The imposed
flow is made of an axisymmetric “meridional circulation” and differential
rotation:

u(θ) = 2u0 sin θ cos θêθ + ΩS(θ)R sin θêφ , (233)

where ΩS is the surface differential rotation profile used in the preceeding
chapter (see eq. (137)). Note that ∇ ·u 6= 0, a direct consequence of working
on a spherical surface without possibility of subduction. Introducing a new
latitudinal variable µ = cos θ and neglecting all radial derivatives, the r-
component of the induction equation (evaluated at r = R) becomes:

∂Br

∂t
=

2u0

R
(1 − µ2)

[

Br + µ
∂Br

∂µ

]

− ΩS(1 − µ2)1/2 ∂Br

∂φ

+
∂

∂µ

[
η

R2

∂Br

∂µ

]

+
∂

∂φ

[
η

R2(1 − µ2)

∂Br

∂φ

]

, (234)

with η being the net magnetic diffusivity. As usual, we work with the nondi-
mensional form of eq. (234), now obtained by expressing time in units of
τc = R/u0, i.e., the advection time associated with the meridional flow. This
leads to the appearance of the following two nondimensional numbers in the
scaled version of eq. (234):

Rm =
u0R

η
, Ru =

u0

Ω0R
. (235)

Using Ω0 = 3 × 10−6 rad s−1, u0 = 15m s−1, and η = 6 × 108 m2s−1 yields
τc ' 1.5 yr, Rm ' 20 and Ru ' 10−2. The former is really a measure of the
(turbulent) magnetic diffusivity, and is the only free parameter of the model,
as Ru is well constrained by surface Doppler measurements. The correspond-
ing magnetic diffusion time is τη = R2/η ' 26 yr, so that τc/τη ¿ 1.

Figure 33 shows a representative solution. The initial condition (panel A,
t = 0) mimics a series of eight BMRs, four per hemisphere, equally spaced
90o apart at latitudes ±45◦. Each BMR consists of two Gaussian profiles of
opposite sign and adding up to zero net flux, with angular separation d = 10◦
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Fig. 33 Evolution of the surface radial magnetic field component of a BMR located
at 15 degrees latitude, as described by the 2D advection-diffusion equation (234).
Parameter values are Ru = 10−2 and Rm = 50, with time given in units of τc = R/u0.
The bottom right panel shows the evolution of the longitudinally averaged radial
magnetic field.
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and with a line joining the center of the two Gaussians tilted with respect
to the E-W direction26 by an angle γ, itself related to the latitude θ0 of the
BMR’s midpoint according to the Joy’s Law-like relation:

sin γ = 0.5 cos θ0 . (236)

The symmetry of the initial condition means that the problem can be solved
in a single hemisphere with Br = 0 enforced in the equatorial plane, in a 90◦

wide longitudinal wedge with periodic boundary conditions in φ.
The combined effect of circulation, diffusion and differential rotation is

to concentrate the magnetic polarity of the trailing “spot” to high latitude,
while the polarity of the leading spot remains near the original location of
the active region. This is readily seen upon calculating the longitudinally
averaged latitudinal profiles of Br, as shown on Fig. 33F for the five successive
epochs shown on (A)—(E). The poleward displacement of the trailing polarity
“bump” is the equivalent to Babcock’s original cartoon (cf. Fig. 32). The time
required to achieve this here is t/τc ∼ 1, and scales as (Rm/Ru)1/3.

Consider again the mean signed and unsigned magnetic flux:

Φ =| 〈Br〉 | , F = 〈| Br |〉 , (237)

where the averaging operator is now defined on the spherical surface:

〈Br〉 = −
∫ 2π

0

∫ +1

−1

Brdµdφ . (238)

Figure 34 shows the time-evolution of the signed (Φ, solid line) and unsigned
(F , dashed) fluxes for the solution of Fig. 33. The unsigned flux decreases
rapidly at first, then settles into a slower decay phase. Meanwhile a small but
significant hemispheric signed flux is building up. This is a direct consequence
of (negative) flux cancellation across the equator, mediated by diffusion, and
is the Babcock-Leighton mechanism in action. Note the dual, conflicting role
of diffusion here; it is needed for cross-hemispheric flux cancellation, yet must
be small enough to allow the survival of a significant trailing polarity flux on
timescales of order τc.

The efficiency (Ξ) of the Babcock-Leighton mechanism, i.e., converting
toroidal to poloidal field, can be defined as the ratio of the signed flux at
t = τc to the BMR’s initial unsigned flux:

Ξ = 2
Φ(t = τc)

F (t = 0)
. (239)

26 Remember that this is meant to represent the result of a toroidal flux rope erupting
through the surface, so that in this case the underlying toroidal field is positive, which
is the polarity the polarity of the trailing “spot”, as measured with respect to the
direction of rotation, from left to right here.
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Fig. 34 Evolution of the signed (solid line) and unsigned (dashed line) magnetic
flux for BMRs emerging at latitudes 15 degrees.

Note that Ξ is independent of the assumed initial field strength of the BMRs
since eq. (234) is linear in Br. Looking back at Fig. 34, one would eyeball the
efficiency at about 1% in converting the BMR flux to polar cap signed flux.
This conversion efficiency turns out to be a rather complex function of BMR
parameters; it is expected to increases with increasing tilt γ, and therefore
should increasing with latitudes as per Joy’s Law, yet proximity to the equa-
tor favors transequatorial diffusive flux cancellation of the leading component;
moreover, having duθ/dθ < 0 favors the separation of the two BMR compo-
nents, thus minimizing diffusive flux cancellation between the leading and
trailing components. These competing effects lead to an efficiency toroidal-
to-poloidal conversion efficiency peaking at low to mid-latitudesxa, depending
on the latitudinal variation of the adopted surface meridional flow profile. At
any rate, we noted already (§0.24) that the sun’s polar cap flux peaks at
solar minimum, at a value amounting to ∼ 0.1% of the cycle-integrated ac-
tive region (unsigned) flux; the efficiency required of the Babcock-Leighton
mechanism is indeed quite modest.

0.26.2 Axisymmetrization revisited

Take another look at Fig. 33; at t = 0 (panel A) the surface magnetic field
distribution is highly non-axisymmetric. By t/τc = 1 (panel E), however, the
field distribution shows a far less pronounced φ-dependency, especially at high
latitudes where in fact Br is nearly axisymmetric. This should remind you of
something we encountered earlier: axisymmetrization of a non-axisymmetric
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magnetic field by an axisymmetric differential rotation (§0.20.5), the spherical
analog of flux expulsion. In fact a closer look at the behavior of the unsigned
flux on Fig. 34A (dashed line) already shows a hint of the two-timescale
behavior we have come to expect of axisymmetrization: the rapid destruction
of the non-axisymmetric flux component and slower (∼ τη) diffusive decay of
the remaining axisymmetric flux distribution.

Since the spherical harmonics represent a complete and nicely orthonormal
functional basis on the sphere, it follows that the initial condition for the
simulation of Fig. 33 can be written as

B0
r (θ, φ) =

∞∑

l=0

+l∑

m=−l

blmYlm(θ, φ) , (240)

where the Ylm’s are the spherical harmonics:

Ylm(θ, φ) =

√

2l + 1

4π

(l − m)!

(l + m)!
Pm

l (cos θ)eimφ , (241)

and with the coefficients blm given by

blm =

∫ 2π

0

∫ π

0

B0
r (r, θ)Y ∗

lm(θ, φ) , (242)

where the “∗” indicates complex conjugation27. Now, axisymmetrization will
wipe out all m 6= 0 modes, leaving only the m = 0 modes to decay away on the
slower diffusive timescale28. Therefore, at the end of the axisymmetrization
process, the radial field distribution now has the form:

Br(θ) =
∞∑

l=0

√

2l + 1

4π
bl0P

0
l (cos θ) , t/τc À Ru . (243)

which now describes an axisymmetric poloidal magnetic field. Voilà!

0.26.3 Dynamo models based on the Babcock-Leighton

mechanism

So now we understand how the Babcock-Leighton mechanism can provide
a poloidal source term in eq. (169). Now we need to construct a solar cy-
cle model. One big difference with the αΩ models considered in §0.25 is
that the two source regions are now spatially segregated: production of the

27 What are the non-zero blm for the inclined dipole treated in §0.20.5?
28 With u = 0, the decay rate of those remaining modes are given by the eigenvalues
of the 2D pure resistive decay problem, much like in §0.18.
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toroidal field takes place in the tachocline, as before, but now production of
the poloidal field takes place in the surface layers.

The mode of operation of a generic solar cycle model based on the Babcock-
Leighton mechanism is illustrated in cartoon form on Figure 35. Let Pn rep-
resent the amplitude of the high-latitude, surface (“A”) poloidal magnetic
field in the late phases of cycle n, i.e., after the polar field has reversed. The
poloidal field Pn is advected downward by meridional circulation (A→B),
where it then starts to be sheared by the differential rotation while being
also advected equatorward (B→C). This leads to the growth of a new low-
latitude (C) toroidal flux system, Tn+1, which becomes buoyantly unstable
(C→D) and starts producing sunspots (D), which subsequently decay and
release the poloidal flux Pn+1 associated with the new cycle n + 1. Pole-
ward advection and accumulation of this new flux at high latitudes (D→A)
then obliterates the old poloidal flux Pn, and the above sequence of steps
begins anew. Meridional circulation clearly plays a key role in this “conveyor
belt” model of the solar cycle, by providing the needed link between the two
spatially segregated source regions.

Fig. 35 Operation of a solar cycle model based on the Babcock-Leighton mecha-
nism. The diagram is drawn in a meridional quadrant of the sun, with streamlines of
meridional circulation plotted in blue. Poloidal field having accumulated in the sur-
face polar regions (“A”) at cycle n must first be advected down to the core-envelope
interface (dotted line) before production of the toroidal field for cycle n + 1 can take
place (B→C). Buoyant rise of flux rope to the surface (C→D) is a process taking
place on a much shorter timescale.
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0.26.4 The Babcock-Leighton poloidal source term

The definition of the Babcock-Leighton source term S to be inserted in
eq. (169) is evidently the crux of the model. Consider the following:

S(r, θ, B(t)) = s0f(r)g(θ) erf

(
B(rc, θ, t) − B1

w1

) [

1 − erf

(
B(rc, θ, t) − B2

w2

)]

B(rc, θ, t) .(244)

f(r) =
1

2

[

1 + erf

(
r − r2

d2

)] [

1 − erf

(
r − r3

d3

)]

, (245)

g(θ) = sin θ cos θ , (246)

where s0 is a numerical coefficient setting the strength of the source term
(corresponding dynamo number being CS = s0R/η0), and with the various
remaining numerical coefficients taking the values r2/R = 0.95, r3/R = 1,
d2/R = d3/R = 10−2.

The combination of error functions in eq. (245) concentrate the source term
immediately beneath the surface, while the latitudinal dependency defined
through eq. (246) reflects the fact that the Babcock-Leighton mechanism is
most efficient for flux ropes emerging at mid-latitudes. Note that the depen-
dency on B is non-local, i.e., it involves the toroidal field evaluated at the
core-envelope interface rc, (but at the same polar angle θ). This nonlocality
in B represents the fact that the strength of the source term is proportional
to the field strength in the bipolar active region, itself presumably reflect-
ing the strength of the diffuse toroidal field near the core-envelope interface,
where the magnetic flux ropes eventually giving rise to the bipolar active
region originate. The combination of error functions in eq. (244) restricts the
operating range of the model to a finite interval in toroidal field strength.
This is motivated by simulations of the stability and buoyantly rise thin flux
tubes, which indicate that toroidal flux ropes require a minimal strength of
∼ 1 tesla for destablization, and emerge at the surface without the tilt neces-
sary for the Babcock-Leighton mechanism to operate if B exceeds a few tens
of teslas.

At any rate, inserting this source term into eq. (169) is what we need to
bypass Cowling’s theorem and produce a viable dynamo model. The nonlo-
cality of S notwithstanding, at this point the model equations are definitely
mean-field like. Yet no averaging on small scales is involved. What is implicit
in eq. (244) is some sort of averaging process at least in longitude and time.
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0.26.5 A sample solution

Figure 36 shows a series of meridional quadrant snapshot of one such
Babcock-Leighton dynamo solution, in the now usual format. The Figure cov-
ers a half-cycle, corresponding to one sunspot cycle, starting approximately
at the time one would identify as sunspot minimum, with sunspot maximum
(based on magnetic energy as a SSN proxy) occurring between panels E and
F, and reversal of the polar field shortly thereafter, between panels F and G.
As with the advection-dominated αΩ solution of the preceding section, this
solution is characterized by an equatorward propagation of the toroidal field
in the tachocline driven by the meridional flow. The turnover time of the
meridional flow is here again the primary determinant of the cycle period.
With ηe = 3×1011 cm2 s−1, this solution has a nicely solar-like half-period of
12.4 yr. All in all, this is once again a reasonable representation of the cyclic
spatiotemporal evolution of the solar large-scale magnetic field.

The strong toroidal fields building up within the polar regions of the
tachocline in the course of the cycle (see panel C through G on Fig. 36)
are entirely unrelated to the adopted latitudinal dependency of the Babcock-
Leighton source term. It results instead from the strong polar field advected
downwards by the meridional flow, inducing a toroidal component through
the inductive action of both the latitudinal shear within the convective enve-
lope, and the negative radial shear in the polar regions of the tachocline. Here
this toroidal component mostly decays away under the influence of Ohmic
dissipation, and contributes very little to the production of the next cycle’s
poloidal component, which builds up at lower latitude (panel E) and is then
carried poleward by the meridional flow (panels E→H).

Although it exhibits the desired equatorward propagation, the toroidal
field butterfly diagram on Fig. 36A peaks at much higher latitude (∼ 45◦)
than the sunspot butterfly diagram (∼ 15◦–20◦. This occurs because this is
a solution with high magnetic diffusivity contrast, where meridional circula-
tion closes at the core-envelope interface, so that the latitudinal component
of differential rotation dominates the production of the toroidal field. This
difficulty can be alleviated by letting the meridional circulation penetrate
below the core-envelope interface, but this often leads to the production of
a strong polar branch, again a consequence of both the strong radial shear
present in the high-latitude portion of the tachocline, and of the concentra-
tion of the poloidal field taking place in the high latitude-surface layer prior
to this field being advected down into the tachocline by meridional circu-
lation (viz. Figs. 35 and 36). Another interesting option to avoid excessive
polar field amplification is to rely on turbulent pumping to carry the surface
field downward into the convection zone faster than it can accumulate at the
poles.

A noteworthy property of this class of model is the dependency of the
cycle period on model parameters; over a wide portion of parameter space,
the meridional flow speed is found to be the primary determinant of the cycle
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Fig. 36 Snapshot covering half a cycle of a Babcock-Leighton dynamo solution, as
described in the text. Color coding of the toroidal field and poloidal fieldlines as
on Fig. 27. This solution uses the same differential rotation, magnetic diffusivity
and meridional circulation profile as for the advection-dominated αΩ solution of
§0.25.11, but now with the non-local surface source term defined through eq. (244),
with parameter values Cα = 5, CΩ = 5×104, ∆η = 0.003, Rm = 840. Note again the
strong amplification of the surface polar fields, the latitudinal stretching of poloidal
fieldlines by the meridional flow at the core-envelope interface.

period (P ). This behavior arises because, in these models, the two source
regions are spatially segregated, and the time required for circulation to carry
the poloidal field generated at the surface down to the tachocline is what
effectively sets the cycle period. The corresponding time delay introduced
in the dynamo process has rich dynamical consequences, to be discussed in
§0.32 below. On the other hand, P is found to depend very weakly on the
assumed values of the source term amplitude s0, and turbulent diffusivity
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ηe; the latter is very much unlike the behavior typically found in mean-field
models, where P scales nearly as η−1

e in α-quenched αΩ mean-field models29.

0.27 Models based on HD and MHD instabilities

In the presence of stratification and rotation, a number of hydrodynamical
(HD) and magnetohydrodynamical (MHD) instabilities associated with the
presence of a strong toroidal field in the stably stratified, radiative portion
of the tachocline can lead to the growth of disturbances with a net helic-
ity, which under suitable circumstances can produce a toroidal electromotive
force, and therefore act as a source of poloidal field. Different types of solar
cycle models have been constructed in this manner, two promising ones being
briefly reviewed in this section. In both cases the resulting dynamo models
end up being described by something closely resembling our now well-known
axisymmetric mean-field dynamo equations, the novel poloidal field regener-
ation mechanisms being once again subsumed in an α-effect-like source term
appearing of the RHS of eq. (169).

0.27.1 Models based on shear instabilities

Hydrodynamical stability analyses of the latitudinal shear profile in the so-
lar tachocline indicate that the latter may be unstable to non-axisymmetric
perturbations, with the instabilities planforms characterized by a net kinetic
helicity, which, loosely inspired by eq. (196), allows the construction of an
azimuthally-averaged α-effect-like source term that is directly proportional
to the large-scale toroidal component, just as in mean-field electrodynamics.

Figure 37 shows representative time-latitude diagrams of the toroidal field
at the core-envelope interface, and surface radial field. This is a solar-like
solution with a mid-latitude surface meridional (poleward) flow speed of 17
m s−1, envelope diffusivity ηT = 5× 107 m2 s−1, a core-to-envelope magnetic
diffusivity contrast ∆η = 10−3, and a simple α-quenching-like amplitude
nonlinearity30. Note the equatorward migration of the deep toroidal field, set
here by the meridional flow in the deep envelope, and the poleward migration
and intensification of the surface poloidal field, again a direct consequence
of advection by meridional circulation, as in the mean-field dynamo mod-
els discussed in §0.25.11) in the advection-dominated, high Rm regime. The
three-lobe structure of each spatiotemporal cycle in the butterfly diagram

29 OK hold it, how do you reconcile this statement with the near independence of
the cycle period on Cα for the periods of α-quenched models plotted in Fig. 26B
(diamonds)?
30 See the Dikpati & Gilman (2001) paper cited in the bibliography for more details.
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reflects the latitudinal structure in kinetic helicity profiles associated with
the instability planforms.

Fig. 37 Time-latitude “butterfly” diagrams of the toroidal field at the core-envelope
interface (left), and surface radial field (right) for a representative dynamo solution
with the tachocline α-effect of Dikpati & Gilman. This solution has a solar-like half-
period of eleven years. Note how the deep toroidal field peaks at very low latitudes, in
good agreement with the sunspot butterfly diagram. For this solution the equatorial
deep toroidal field and polar surface radial field lag each other by ∼ π, but other
parameter settings can bring this lag closer to the observed π/2. Diagrams kindly
provided by M. Dikpati.

The primary weakness of these models, in their present form, is their re-
liance on a linear stability analysis that altogether ignores the destabilizing ef-
fect of magnetic fields, especially since stability analyses have shown that the
MHD version of the instability is easier to excite for toroidal field strengths
of the magnitude believe to characterize the solar tachocline, Moreover, the
planforms in the MHD version of the instability are highly dependent on the
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assumed underlying toroidal field profile, so that the kinetic helicity can be
expected to (1) have a time-dependent latitudinal distribution, and (2) be
intricately dependent on the mean toroidal field in a manner that is unlikely
to be reproduced by a simple amplitude-limiting quenching formula.

0.27.2 Models based on flux tube instabilities

As briefly discussed in §0.24, modelling of the rise of thin toroidal flux tubes
throughout the solar convection zone has met with great success, in particular
in reproducing the latitudes of emergence and tilt angles of bipolar sunspot
pairs. It is also possible to use the thin-flux tube approximation to study the
stability of toroidal flux ropes stored immediately below the base of the con-
vection zone, to investigate the conditions under which they can actually be
destabilized and give rise to sunspots. Once the tube destabilizes, calculations
show that under the influence of rotation, the correlation between the flow
and field perturbations is such as to yield a mean azimuthal electromotive
force, equivalent to a positive α-effect in the N-hemisphere.

Figure 38 shows a stability diagram for this flux tube instability, in the
form of growth rate contours in a 2D parameter space comprised of flux tube
strength and latitudinal position at the core-envelope interface. The key is
now to identify regions where weak instability arises (growth rates ∼> 1 yr). In
the case shown on Fig. 38, these regions are restricted to flux tube strengths
in the approximate range 6—15T.

Although it has not yet been comprehensively studied, this dynamo mecha-
nism has a number of very attractive properties. It operates without difficulty
in the strong field regime (in fact in requires strong fields to operate). It also
naturally yields dynamo action concentrated at low latitudes. Difficulties in-
clude the need of a relatively finely tuned magnetic diffusivity to achieve a
solar-like dynamo period, and a relatively finely-tuned level of subadiabaticity
in the overshoot layer for the instability to kick on and off at the appropriate
toroidal field strengths.

The effects of meridional circulation in this class of dynamo models has
yet to be investigated; this should be particularly interesting, since both
analytic calculations and numerical simulations suggest a positive α-effect in
the Northern-hemisphere, which should then produce poleward propagation
of the dynamo wave at low latitude. Meridional circulation could then perhaps
produce equatorward propagation of the dynamo magnetic field even with a
positive α-effect, as it does in true mean-field models (cf. §0.25.11).

As an interesting aside, note on Fig. 38 how flux tubes located at high
latitudes are always stable; this is due to the stabilizing effect of magnetic
tension associated with high curvature of the toroidal flux ropes. Even if flux
ropes were to form there, they may not necessarily show up at the surface
as sunspots. This should be kept in mind when comparing time-latitudes
diagrams produced by this or that dynamo model to the sunspot butterfly
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III
I

II

Fig. 38 Stability diagram for toroidal magnetic flux tubes located in the overshoot
layer immediately beneath the core-envelope interface. The plot shows contours of
growth rates in the latitude-field strength plane. The gray scale encodes the azimuthal
wavenumber of the mode with largest growth rate, and regions left in white are
stable. Dynamo action is associated with the regions with growth rates ∼ 1 yr, here
labeled I and II. Region III is associated with the rapid destabilisation, buoyant rise
and emergence of magnetic flux, without significant dynamo action. Diagram kindly
provided by A. Ferriz-Mas.

diagram; the two may not map onto one another as well as often implicitly
assumed.

0.28 Global MHD simulations

After this grand tour of (relatively) simple solar cycle models, it is worth
briefly looking at the theoretical “real thing”, namely full MHD simulations
of thermally-driven convection in a thick, stratified rotating spherical shell,
across which a solar heat flux is forced to flow. In the solar and stellar dy-
namo context, the MHD equations (76)—(80) are solved numerically under
either one of two physical approximations. Under the Boussinesq approxi-

mation the fluid density ρ is considered constant, except where it multiplies
gravity on the RHS of the momentum equation, thus retaining the effect of
thermal buoyancy. In this case eq. (76) reverts to the form appropriate for
an incompressible fluid, i.e., ∇ · u = 0. The anelastic approximation retains
the possibility that ρ be a function of position, and is thus better applica-
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ble to stratified environment, but still precludes any temporal variation of
density other than associated with thermal buoyancy. The mass conserva-
tion equation is then replaced by ∇ · (ρu) = 0. In both cases the primary
practical advantage is to filter out sound waves and the magnetosonic wave
modes, which it turns allow the use of a much larger time step than in fully
compressible MHD. Both approximations still capture the Alfvén wave mode,
and the anelastic approximation also allows the propagation of gravity waves
in stably stratified environments.

We focus in what follows on a specific set of simulations carried out in
the anelastic regime31. The simulation domain includes most the convection
zone (here 0.718 ∼< t/R¯ ∼< 0.96), as well as a stably stratified fluid layer
underneath (0.61 ∼< r/R¯ ∼< 0.718). The background stratification is solar-
like, and covers 4 scale heights in density.

Figure 39 shows time series of the kinetic energy (solid line) and magnetic
energy (dashed line) in a typical simulation, starting from a static, unmag-
netized configuration (u = 0, B = 0) and small random seed magnetic field
and velocity perturbation at t = 0. Thermal convection sets in very rapidly,
and leads to a rapid growth of kinetic energy in the simulation domain in the
first few solar days (1 sd ≡ 30 Earth days). Once convection has stabilized,
dynamo action powered by this turbulent flow commences, and leads to the
exponential growth of magnetic energy. This phase of exponential growth
lasts a few solar days, after which the Lorentz force starts to backreact on
the turbulent flow, leading to a saturation of the magnetic energy (remines-
cent of α-quenching, cf. Fig. 28), here completed at ∼ 40 solar days. With the
magnetic energy reaching ∼ 4% of the flow kinetic energy here, this turbulent
dynamo is not a particularly efficient one, but the higher resolution simula-
tions discuss below, using a less dissipative form of the numerical integration
scheme, can easily produce magnetic energy reaching 20% of the flow energy.

Figure 40 shows snapshots at t = 100 sd of the radial flow (top) and mag-
netic field (middle) components extracted near the top of the simulation do-
main. The morphological asymmetry between the broad, diffuse upflows and
narrow concentrated downflows is quite typical of thermally-driven convec-
tion in a stratified environment. The magnetic field is swept horizontally in
the broad areas of upflow and ends up preferentially concentrated in regions
where downflow lanes meet, a feature that is typical of MHD convection. As
with the CP flow solutions considered earlier, the subsurface magnetic field is
spatially and temporally very intermittent, and is characterized by significant
magnetic energy but very little net magnetic flux on large spatial scales.

By this time, at least on the basis of these energy time series, one would
judge the system to have reached a statistically stationary state. However,
integrating further in time reveals variations setting in on longer timescales,
associated with the slow buildup a large-scale magnetic field. This spatially
well-organized magnetic component is particularly prominent at and beneath

31 The results presented here are taken pretty directly from the Ghizaru, Charbon-
neau & Smolarkiewicz paper listed in the bibliography.
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Fig. 39 (A) Time series of kinetic (solid line), magnetic (dashed line) and total
(dotted line) energies in a 3D anelastic simulation of thermally-driven anelastic con-
vection in a thick, stratified rotating spherical shell. Time is measured in units of
“solar day” (≡ 30 terrestrial days). The phase of exponential growth in the magnetic
energy (5 ∼< t ∼< 40) begins once the convection has attained a statistically station-
ary state. The longer-timescale modulation kicking in at r ' 70 is associated with
the buildup of a large-scale magnetic component. This is a low-resolution simulation
computed using a relatively dissipative setting for the numerical integration scheme.

the base of the convective envelope, where the significant differential rotation,
stably stratified environment, and injection of magnetic fields from above by
downward turbulent pumping, all conspire to favor the buildup of significant
magnetic flux. Indeed the presence of a tachocline-like stable layer underlying
the convection zone proper is now believed to be an essential ingredient for
the generation of a large-scale magnetic component. The bottom Mollweide
projection on Figure 40 shows the zonal magnetic component at a depth
slightly below the base of the convective envelope. Here the zonally-averaged
toroidal field is seen to be well-organized on the larger scales, and in particular
shows a clear antisymmetry with respect to the equatorial plane, in agree-
ment with inferences made on the basis of Hale’s polarity laws. Even through
the stratification is convectively stable at this depth, convective undershoot
from above introduces strong local fluctuations in the magnetic field, without
however destroying its large-scale organization.

What is truly remarkable is that this large-scale toroidal field undergoes
fairly regular solar-like polarity reversals on decadal timescales. This is shown
on Figure 41, in the form of a time-latitude diagram of the zonally-averaged
toroidal magnetic component at the core-envelope interface (part A), and a
time-latitude diagram of the zonally-averaged surface radial magnetic com-
ponent (part B). This simulation spans 255 years, in the course of which 8
polarity reversals have taken place, with a mean (half-) period of almost ex-
actly 30 yr here. Examination of Fig. 41A reveals a tendency for equatorward
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Fig. 40 Mollweide projections of the radial components of the flow velocity (top)
and magnetic field (middle) on a spherical surface near the top of the simulation
domain. Flow speeds are color-coded in m s−1, and field strengths in Tesla. Note the
asymmetry in the upflow/downflow structures, and the relatively small spatial scale
of the subsurface magnetic field. The bottom Mollweide projection shows the the
zonal magnetic component immediately beneath the base of the convective envelope,
where a strong and well-organized axiymmetric component builds up.
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migration in the course of each cycle. Figure 41B also shows the existence of a
well defined dipole moment aligned with the rotational axis, reversing polarity
approximatey in phase with the deep-seated toroidal component. Note also
how, despite significant fluctuations in the amplitude and timing of the cycle
in each hemisphere, in general both hemispheres remain well-synchronized
throughout the whole simulation. This is all extremely solar-like!

Fig. 41 (A) Time-latitude diagram of the zonally-averaged toroidal magnetic field
at a depth corresponding to the top of the stable layer, immediately beneath the
base of the convection zone. Note the antisymmetry of the large-scale field about the
equatorial plane, the regular polarity reversals fairly synchronous across hemispheres,
and the hint of equatorward migration of the toroidal field in the course of each
cycle. Part B shows the corresponding time-latitude diagram for the surface radial
component. The latter reveals a well-defined axisymmetric dipole moment, oscillating
essentially in phase with the deep-seated toroidal component. The color scale codes
the magnetic field strength, measured in tesla. Compare to Fig. 24.

What kind of dynamo could this be? To answer this question we need in
more detail at the flow fields. Figure 42 shows the zonally averaged kinetic
helicity and angular velocity, plotted in a meridional [r, θ] plane. Typical
for such simulations, the angular velocity profile is not a very good repre-
sentation of the helioseismically-inferred profile in the real sun, although it
does show some solar-like features, notably equatorial acceleration, decelera-
tion at high latitudes, and a thin radial shear layer coinciding approximately
with the core-envelope interface. The tendency for alignment of Ω-isocontours
with with the rotation axis is a reflection of the Taylor-Proudman theorem,
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which states that in rotation-dominated systems (Coriolis term dominating
over inertial and viscous terms on the RHS of eq. (77)), the flow velocity
cannot vary in the direction parallel to the rotation axis. Here the pole-to-
equator angular velocity contrast is about one third of what is observed on
the Sun. However, an unmagnetized, purely hyrodynamical cousin simulation
develops about the right contrast, which suggests that magnetically-mediated
reduction of the large-scale flows is an important dynamo amplitude-limiting
mechanism in this simulation, an inference supported by the fact that sig-
nificant torsional oscillations are also present, varying on the same sim30 yr
period as the large-scale magnetic field. The kinetic helicity is predominantly
negative in the Northern solar hemisphere across the bulk of the convective
envelope, as expected from cyclonic convection, with a sign change near its
base produced with the rapid decrease of the turbulent intensity with depth.

Fig. 42 Zonal and 10-s.d. temporal averages of the angular velocity (left), and kinetic
helicity (right), both plotted in meridional [r, θ] planes at simulation time t = 385 s.d.
The rotation axis is oriented vertically. Note the rapid disappearance of differential
rotation as one crosses below the core-envelope interface, and the hemispheric anti-
symmetry of the kinetic helicity pattern.

The combination of a well-defined mean axisymmetric differential rota-
tion and clear-cut hemispheric pattern of kinetic helicity suggests that this
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simulation may be operating as the αΩ dynamos considered earlier (§0.25).
The production of a positive dipole moment from a positive toroidal field in
the Northern hemisphere is what one would associate in mean-field theory
with a positive α-effect (more precisely, a positive αφφ tensor component),
which, if eq. (196) were to hold, is what would result from a negative kinetic
helicity in the N-hemisphere, as on Figure 42B. Explicit calculations of the
φ-component of the mean (zonally-averaged) electromotive force 〈u × b〉 in-
dicates a well-defined spatial pattern, of like sign in both hemispheres but
changing sign from one cycle to the next, again exactly what one would expect
from an αΩ turbulent dynamo. On the other hand, the poloidal component
of the electromotive force has a magnitude comparable to the shearing term
arising from differential rotation, which would then suggest the α2Ω mode of
dynamo action.

Although such simulations are just beginning to to yield solar-like regular
cyclic global magnetic polarity reversals, they remain extremely demanding
computationally, and are still a long way from producing anything resembling
a toroidal flux rope, let alone a sunspot. This is why the much simpler cycle
models described in this chapter remain at this writing the favored mod-
elling framework within which to investigate the observed characteristics of
solar and stellar cycles, and the origin of fluctuations in their amplitude and
duration on long timescales. This is the topic to which we now turn.
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Chapter 4

Fluctuations, intermittency and
predictivity

It is nice to know that the computer understands the

problem,

but I would like to understand it too.

Attributed to E.P. Wigner

Given that the basic physical mechanism(s) underlying the operation of the
solar cycle are not yet agreed upon, attempting to understand the origin of
the observed fluctuations of the solar cycle may appear to be a futile un-
dertaking. Nonetheless, work along these lines continues at full steam in part
because of the high stakes involved: the solar radiative output and frequencies
of all eruptive phenomena relevant to space weather are strongly modulated
by the amplitude of the solar cycle; varying levels of solar activity may con-
tribute significantly to climate change; and certain aspects of the observed
fluctuations may actually hold important clues as to the physical nature of
the dynamo process.

We first briefly review some classical solar cycle fluctuation patterns, as
inferred from the sunspot number time series (§0.29). With an eye on re-
producing these patterns, we then study the response of some of the basic
dynamo models considered in the preceding chapter to stochastic forcing
(§0.30), dynamical nonlinearities (§0.31), and time delays (§0.32). We then
examine how the interaction of some of these modulation mechanisms can
lead to intermittency (§0.33), and close with a brief survey of the current
status of model-based solar cycle prediction schemes (§0.34).
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0.29 Observed patterns of solar cycle variations

0.29.1 The sunspot cycle

Early sunspots observers noted the curious fact that sunspots rarely appear
outside of a latitudinal band of about ±30◦ centered about the solar equator,
but otherwise failed to discover any clear pattern in the appearance and dis-
appearance of sunspots. This fell to the German amateur astronomer Samuel
Heinrich Schwabe (1789-1875), who in 1843, after a 17-years telescopic hunt
for intra-mercurial planets, announced the existence of a decadal periodicity
in the average number of sunspots visible on the Sun. Much impressed by
Schwabe’s discovery, the Swiss astronomer Rudolf Wolf (1816-1893) launched
in a life-long quest for sunspot data and drawings from previous centuries,
with the aim of tracking the sunspot cycle all the way back to the beginning
of the telescopic era. Faced with the daunting task of comparing sunspot
observations carried out by many different astronomers using various instru-
ments and observing techniques, Wolf defined a elative sunspot number (r)
as follows:

r = k(f + 10g) , (247)

where g is the number of sunspots groups visible on the solar disk, f is
the number of individual sunspots (including those distinguishable within
groups), and k is a correction factor that varies from one observer to another
(with k = 1 for Wolf’s own observations). This definition is still in used
today, but r is now usually called the Wolf (or Zürich) sunspot number.
Wolf succeeded in reliably reconstructing the variations in sunspot number
as far as the the 1755–1766 cycle, which has since been known conventionally
as “Cycle 1”, with all subsequent cycles numbered consecutively thereafter;
at this writing (December 2009), we are still in the (unusually extended)
minimal activity phase delineating cycle 23 from the upcoming cycle 24.

Figure 43 shows two time series of the relative sunspot number. The first
(thin black line) is the monthly-averaged value of r as a function of time, and
the thick red line is a 13-month running mean of the same. The amplitude,
duration and even shape of sunspots cycles can vary substantially from one
cycle to the next. The period, in particular, ranges from 9 (cycle 2) to 14 years
(cycle 4), although it remains customary to speak of the “11-year cycle”.

As discussed in 0.24, sunspots are effectively tracers of the deep-seated so-
lar magnetic field. With the latter representing the primary energy reservoir
for all manifestations of solar activity, one could then expect a strong corre-
lation between measures of the latter and sunpot numbers. This expectation
is indeed borne out, as shown on Figure 44. The sunspot cycle is found to
modulate the sun’s radiative emission from the radio to the X-ray domain
of the electromagnetic spectrum, as well as the frequency of eruptive events
such as flares and coronal mass ejections. This is why understanding the ori-



4 Fluctuations, intermittency and predictivity 143

Fig. 43 Two time series of the celebrated Wolf Sunspot Number. The thin black
line is the monthly-averaged sunspot number, and the thick red line a 13-month
running mean thereof. On the basis of the latter, one can calculate a mean cycle peak
amplitude of SSN=115 with standard deviation ±40, and a mean period 10.8 yr with
standard deviation ±1.6 yr. These and other related data are publicly available at the
Solar Influences Data Analysis Center in Brussels, Belgium (http://sidc.oma.be).

gin of fluctuations in the amplitude of the solar cycle remains such an active
area of research.

0.29.2 The Waldmeier and Gnevyshev-Ohl Rules

The sunspot numbers is our longest direct record of solar activity, and thus
remains a favored dataset for the analysis and modelling of solar cycle fluctu-
ations. Starting with Wolf himself, the sunspot number time series (monthly,
monthly smoothed, yearly, etc) have been analyzed in every possible manner
known to statistics, nonlinear dynamics, and numerology32. Some of the var-
ious patterns so uncovered appear to be robust, in that they do not depend
too much on the manner the analysis is being carried out, and are also found

32 Two colleagues, David J. Thomson and Werner Mende, both world-renowned ex-
perts in time series analysis, have independently remarked to me that the sunspot
number time series are quite possibly the “natural” time series having produced the
largest number of research journal pages per byte of actual data!
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Fig. 44 The solar activity cycle, as measured via various proxies. from bottom to
top: the sunspot number, the F10.7 radio flux, the disk-averaged line-of-sight magnetic
field, the total solar irradiance, the MgII index (a good proxy of ultraviolet emission),
and the solar flare index. Plot constructed from public-domain data from NOAA
(USA), available at http://www.ngdc.noaa.gov.

in other indicators of solar activity; for example the so-called Gleissberg cycle

refers to a ∼ 80 yr modulation of the overall envelope of cycle amplitudes.
Some sunspot number patterns have even proven resilient enough to be up-
graded to the status of empirical “Rules”, two of the more convincing ones
being the so-called Waldmeier Rule, and Gnevyshev-Ohl Rule.

The Waldmeier Rule refers to an anticorrelation observed between cycle
amplitude and rise time (or duration). Starting for example from the time
series of smoothed monthly sunspot number (red line on Figure 43), it is
straightforward to assign to each cycle n a peak amplitude An and a dura-
tion Tn, the latter being simply the time interval between the two minima
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bracketing a given cycle. Similarly, the rise time is the time interval between
a minimum and the subsequent maximum. Figure 45A shows a correlation
plot of cycle rise time and amplitude, which is characterized by a linear cor-
relation coefficient of r = −0.7, definitely large enough to merit attention. A
similar, through weaker anticorrelation exists between cycle amplitude and
duration, a consequence of a similarly weak correlation (r = +0.4) existing
between cycle rise time and duration (see Fig. 45). The latter correlation is
taken to be indicative of some level of self-similarity in the temporal unfold-
ing of sunspot cycles. The amplitude-duration anticorrelations are intriguing,
because one might have (naively) expected that high amplitude cycles should
take longer to build up and also last longer, but in fact the opposite seems
to hold.

The Gnevyshev-Ohl Rule is another intriguing pattern, and is illustrated
on Fig. 45C. Cycle peak amplitude An are plotted as solid dots, versus cycle
number n, following Wolf’s numbering convention. Compute now a 1-2-1
running mean of cycle amplitude, i.e.,

〈An〉 =
1

4
(An−1 + 2An + An+1) , n = 2, 3, ... (248)

The resulting time series for 〈An〉 is plotted as a thick blue line on Fig. 45C;
notice now how most odd-numbered cycles (orange) lie above the running
mean curve, while even-numbered cycles (red) usually lie below. In fact, from
cycle 9 to 21 inclusive, the pattern has held true without interruption.

0.29.3 The Maunder Minimum

One final, peculiar feature associated with the sunspot cycle needs to be dis-
cussed, because of its implications for dynamo modelling. The historical re-
constructions began by Wolf have been pushed as far back as the invention of
the telescope in the opening decade of the seventeenth century, which marks
the beginning of regular sunspot monitoring by astronomers. One such full
reconstruction, starting in 1610, is shown on Figure 46 (bottom panel). While
observations are a tad patchy from 1610 to 1640, coverage is actually quite
good beyond this date. The lack of sunspots in the period 1645-1715 is there-
fore not due to lack of data, but represents a phase of strongly suppressed
solar activity now known as the Maunder Minimum. The documented oc-
currence of exceptionally cold winters throughout Europe during those years
may be causally related to reduced solar activity, although this remains a
topic of controversy.

That this is not just a matter of failing to form sunspots is confirmed by
historical reconstructions of auroral counts, which are also strongly reduced
during the Maunder Minimum (cf. Fig. 46). On the other hand, cosmogenic
radioisotopes such as 10Be, whose production frequency is known to be mod-
ulated by the frequency of solar eruptive phenomena and general strength of
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Fig. 45 A sample of solar cycle fluctuation patterns. (A) The anticorrelation be-
tween cycle rise time and amplitude, known as the Waldmeier Rule. A similar an-
ticorrelation, although weaker, characterizes cycle amplitudes and durations; this is
because a correspondingly weak correlation is found between cycle rise time and du-
ration, as shown in (B). The Gnevyshev-Ohl Rule is illustrated in (C). Under Wolf’s
numbering convention, the odd-numbered cycles (orange dots) are more often found
above the running mean (blue line) than even-numbered cycles (red dots), a pattern
that held true uninterrupted from cycle 9 to 21 inclusively.

the interplanetary magnetic field, continue to show a cyclic pattern through-
out the Maunder minimum (Fig. 46, top panel), indicating that the cycle had
actually not come to a complete standstill. The Maunder Minimum remains
a real puzzle in many ways.

The cosmogenic isotope record also indicates that episodes of markedly
reduced solar activity occurred in 1282-1342 (Wolf minimum) and 1416-1534
(Spörer minimum), and that solar activity was significantly above its mod-
ern average in the time period 1100-1250 (dubbed Medieval Maximum by
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Fig. 46 The Maunder minimum, as seen through cosmogenic radioisotopes (top
panel) and sunspot and auroral counts (bottom panel). The thick red line is the so-
called Group Sunspot Number, a reconstruction similar to Wolf’s (thin orange line)
but deemed more reliable in the eighteenth century because it relies exclusively on
the more easily observable sunspot groups. Beryllium 10 data courtesy of J. Beer,
EAWAG/Zürich.

Min/Max aficionados). Some recent such reconstructions (see bibliography)
have in fact identified 27 grand minima in the past 11,000 years. No con-
vincing periodicity or other temporal pattern has yet been identified in the
occurence of these grand minima. The 1798—1823 Dalton Minimum, span-
ning the low and oddly-shaped cycles 5 and 6, is sometimes categorized as
a “failed Grand Minima”, although supporting arguments tend to be of a
botanical flavor.

0.29.4 From large-scale magnetic fields to sunspot number

Pondering over the Maunder Minimum puzzle leads naturally into one major
difficulty that plagues any and all mean-field-type dynamo models, when
trying to reproduce this or that solar cycle fluctuation patterns seen in the
sunspot number: what is the quantitative relationship between the internal
large-scale magnetic field and the number of sunspots emerging at the solar
surface? The process through which the dynamo-generated magnetic field
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produces toroidal flux ropes in the tachocline is not understood, but the few
extant calculations attempting to simulate this formation process indicate
that it is much more than a mere matter of toroidal field strength. The
destabilization and rise of these toroidal flux ropes is also not just a matter
of field strength, as the stability diagram of Fig. 38 already shows quite well.
Once the flux rope emerges, it is not at all clear that the number of sunspots
is uniquely and proportionally related to the magnetic field strength or flux
in the rope; a bipolar magnetic region made up of two monolithic sunspots
would contribute 10+2 to the sunspot number, as defined by eq. (247); with
the trailing component of the bipolar region broken up into 10 small spots
(say), as often observed, one gets intead 10 + 11 to the sunspot number; this
is a difference by nearly a factor of two, for the the same magnetic flux!

The fact remains that the sunspot number does correlate well with other
more “physical” measures of the solar magnetic field, such as photospheric
magnetic flux, active region magnetic flux, and the F10.7 solar radio flux.
Until strong evidence to the contrary is presented, it is probably reasonable to
assume that a more strongly magnetized sun will produce more sunspots, but
it would be really surprising if that relationship were nicely and conveniently
linear.

We are used to thinking of sunspot numbers as a proxy for the solar
internal magnetic field; but starting from a dynamo solution for the solar
large-scale magnetic field, we must now construct a proxy for the sunspot
number! Consider the following equally “reasonable” simple proxies: the total
magnetic energy, the magnetic energy within the tachocline, and the net
toroidal magnetic flux in the tachocline:

SSN1(t) =

∫

V

B2(r, θ, t) dV , (249)

SSN2(t) = 2π

∫ π

0

∫ rc+w

rc−w

B2(r, θ, t) r2 sin θdrdθ , (250)

SSN3(t) =

∣
∣
∣
∣
2π

∫ π

0

∫ rc+w

rc−w

B(r, θ, t) r2 sin θdrdθ

∣
∣
∣
∣

, (251)

Even though these three proxies are closely related, they lead to SSN proxy
timeseries that show some significant differences. This is illustrated on Fig-
ure 47, for the advection-dominated mean-field αΩ model of §0.25.11, sub-
jected to stochastic forcing (more on this shortly, in §0.30). Athough the
three proxies correlate rather well, and show similar long-term trends and
cycle durations, some significant differences materalize at the level of indi-
vidual cycle amplitudes, with different proxies sometimes showing markedly
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different patterns. Consider for instance the time interval [0.35, 0.40]. The
peak amplitude in the magnetic energy time series (solid line) shows a mild,
monotonic decrease, while the tachocline energy and toroidal flux show an op-
posite alternance of higher and lower peak amplitudes. With this important

Fig. 47 Time series of the three different sunspot number proxies defined through
eqs. (249)—(251), constructed for the advection-dominated mean-field αΩ solution
of Fig. 30, subjected to stochastic fluctuations. The black like is the total magnetic
energy in the domain, the red line the magnetic energy within the tachocline, and
the purple line the net toroidal magnetic flux within the tachocline. To facilitate
comparison, each time series is normalized to its peak amplitude.

caveat under the belt, we proceed with our study of solar cycle fluctuations,
using the total magnetic energy as a SSN proxy.

0.30 Cycle modulation through stochastic forcing

An obvious means of producing amplitude fluctuations in dynamo models is
to introduce stochastic forcing in the governing equations. Sources of stochas-
tic “noise” certainly abound in the solar interior; large-scale flows in the con-
vective envelope, such as differential rotation and meridional circulation, are
observed to fluctuate, an unavoidable consequence of dynamical forcing by
the surrounding, vigorous turbulent flow. This convection is known to pro-
duce its own small-scale magnetic field (viz. Fig. 22), and amounts to a form
of rapidly varying zero-mean “noise” superimposed on the slowly-evolving
mean magnetic field. This can be readily incorporated into dynamo mod-
els by introducing, on the RHS of the governing equations, an additional
zero-mean source term localized at the surface, and varying randomly from
node-to-node in latitude and from one time step to the next:

A(R, θ, t) → A(R, θ, t) + ρ × δA , ρ ∈ [−1, 1] , (252)

with δA a fixed amplitude, and the random number ρ is uniformly distributed
in the interval. Note that the current-free boundary condition at r/R = 1
for the toroidal component requires B(R, θ, t) = 0, therefore we only add a
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perturbation to the poloidal component. This is a classical instance of additive

noise.
In addition, the azimuthal averaging implicit in all models of the solar cycle

considered earlier will yield dynamo coefficients showing significant deviations
about their mean values, as a consequence of the spatiotemporally discrete
nature of the physical events (e.g., cyclonic updrafts, sunspot emergences, flux
rope destabilizations, etc.) whose collective effects add up to produce a mean
electromotive force. The impact of these statistical fluctuations about the
mean can be modeled in a number of ways. Perhaps the most straightforward
is to let the dynamo number fluctuate randomly in time about some pre-set
mean value C̄α:

Cα → C̄α + ρ × δC , ρ ∈ [−1, 1] , if(t mod τc) = 0 . (253)

By most statistical estimates, the expected magnitude of these fluctuations
is quite large, i.e., many times the mean value, a conclusion also supported
by numerical simulations. One typically also introduces a coherence time (τc)
during which the dynamo number retains a fixed value. At the end of this time
interval, this value is randomly readjusted. Depending on the dynamo model
at hand, the coherence time can be related to the lifetime of convective eddies
(α-effect-based mean-field models), to the decay time of sunspots (Babcock-
Leighton models), or to the growth rate of instabilities (hydrodynamical shear
or buoyant MHD instability-based models). Equation (253) represents an
instance of multiplicative noise, since the fluctuating quantity is multiplying
a source term in the governing equations, which is itself a function of the
system’s dependent variables.

The effect of stochastic forcing varies according to the type of dynamo
model being forced, but some common trends and tendencies nonetheless
emerge. In most models stochastic forcing or noise increases both the av-
erage amplitudes and durations of cycles. It also introduces long-timescale
modulations in the overall cycle amplitudes, “long” in the sense of being
much longer than the assumed coherence time for the noise and/or forcing,
and often significantly longer than the cycle period itself. Often this can be
traced to the production and storage of strong magnetic fields in the low-
diffusivity regions of the domain, below the core-envelope interface, where
the resistive decay time of these structures can be quite long.

Figures 48 and 49 show some representative results for the advection-
dominated mean-field αΩ model of §0.25.11, and for the Babcock-Leighton
model of §0.26.5, respectively. In both cases the total magnetic energy (red
line on panels A) is used as a proxy for sunspot number. These two specific
stochastically forced solutions were selected because they exhibit a number of
solar-like features, including relative ranges of variations in cycle amplitudes
(± ∼ 40% of the mean) and duration (± ∼ 15% of the mean), ampli-
tude modulation patterns spanning many cycles, and shorter-lived Dalton-
minimum-like intervals of markedly reduced amplitude.
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Fig. 48 Impact of stochastic fluctuations of the Cα dynamo number on the behav-
ior of an advection-dominated mean-field solar cycle model including a meridional
circulation. This is the solution of Fig. 30, with 100% forcing of the poloidal dynamo
number (δCα/Cα = 1 in eq. (253)). The top panel shows part of a time series for the
magnetic energy (red), together with a 1-2-1 running mean of the peak amplitudes
(purple), as defined in eq. (248). Subtracting this from the temporal sequence of peak
amplitudes yield the “detrended” sequence shown on panel (B), where odd- (even-
) numbered cycles are plotted in red (green), and the horizontal gray bars indicate
epochs where a Gnevyshev-Ohl-like pattern holds. Panels (C) and (D) are Waldmeier-
Rule-like correlation plots between cycle peak, rise time and duration (cf. Fig. 45),
with cycle peak and duration normalized to their mean values over the full simulation
run.

Both of these solutions (and many of their “cousins” computed with vary-
ing amplitude of stochastic forcing) do fairly well at reproducing Gnevyshev-
Ohl-like alternating patterns of variations in cycle amplitude about their run-
ning mean. This is illustrated on panels (B) of both Figure. A 1-2-1 running
mean of cycle amplitudes is first computed according to eq. (248), yielding
the thin purple line on panels (A). This is then subtracted from the tempo-
ral sequence of cycle amplitudes, to give the “detrended” amplitudes plotted
on panels (B). The gray horizontal bars flag the temporal intervals during
which a regular alternance of above-and-below the mean is sustained. That
such sequences should exist is in itself not surprising, in view of the detrend-
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Fig. 49 Identical in format to Fig. 48, but now the parent model is the Babcock-
Leighton solution of Fig. 36, with poloidal source term fluctuating at the level
δCα/Cα = 0.5. The moderately strong positive correlation between cycle ampli-
tudes and rise time is markedly non-solar, but the similar correlation between cycle
duration and rise time is in better agreement with solar cycle data.

ing procedure adopted here; purely random numbers would distribute them-
selves symetrically about their mean, so that the Gnevyshev-Ohl patterns
can materialize only by chance. What is striking here is the distributions of
durations for these epochs, which can greatly exceed (especially here in the
Babcock-Leighton solution) what one could rightfully expect from Poissonian
statistics.

Most stochastically forced models, including the two shown on Figs. 48 and
49, do produce a positive correlation between cycle rise time and duration (cf.
panels (C) and Fig. 45C). In the case of the mean-field model of Fig. 48 that
correlation is too weak compared to solar, while for the Babcock-Leighton
model it is too strong, but adjustement of the amplitude of stochastic forcing
can readily yield a more solar-like correlation.

The situation is nowhere as good with regards to the observed anticor-
relation between cycle amplitude and rise time (or duration) embodied in
the Waldmeier Rule (viz. Fig. 45A). Whether forced stochastically through
the dynamo number or via additive noise in the surface layers, most of
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the kinematic models considered here end up producing a positive corre-
lation (rather than an anticorrelation) between these two cycle parameters.
A Waldmeier-like anticorrelation has been observed in stochastically-forced
linear αΩ model near criticality33, but this interesting result in general does
not carry over to nonlinearly-saturated αΩ dynamo solutions. It has also
been observed in a Babcock-Leighton models subjected to stochatic pertur-
bations imposed on the form of the meridional flow profile34, but again it
is not clear how generic or robust this actually is. It may well be that the
key to the Waldmeier Rule lies at least in part with non-kinematic effects,
such as the nonlinear backreaction of the dynamo-generated magnetic field
on differential rotation and/or meridional circulation.

0.31 Cycle modulation through the Lorentz force

The dynamo-generated magnetic field will, in general, produce a Lorentz force
that will tend to oppose the driving fluid motions. This is a basic physical
effect that should be included in any dynamo model. It is not all trivial to
do so, however, since in a turbulent environment both the fluctuating and
mean components of the magnetic field can affect both the large-scale flow
components, as well as the small-scale turbulent flow providing the Reynolds
stresses powering the large-scale flows. One must thus distinguish between
two (related) amplitude-limiting mechanisms:

1. Lorentz force associated with the mean magnetic field directly affecting
large-scale flow (sometimes called the “Malkus-Proctor effect”);

2. Large-scale magnetic field indirectly affecting large-scale flow via effects on
small-scale turbulence and associated Reynolds stresses (sometimes called
“Λ-quenching”)

Introducing magnetic backreaction on differential rotation and/or merid-
ional circulation is a tricky business, because one must then also, in principle,
provide a model for the Reynolds stresses powering the large-scale flows in
the solar convective envelope as well as a procedure for computing magnetic
backreaction on these. This rapidly leads into the unyielding realm of MHD
turbulence, although algebraic “Λ-quenching” formulae akin to α-quenching
have been proposed based on specific turbulence models. Alternately, one can
add an ad hoc source term to the RHS of eq. (77), designed in such a way that
in the absence of the magnetic field, the desired solar-like large-scale flow is
obtained. As a variation on this theme, one can simply divide the large-scale
flow into two components, the first (U) corresponding to some prescribed,
steady profile, and the second (U′) to a time-dependent flow field driven by

33 See the paper by Ossendrijver & Hoyng (1996) cited in the bibliography.
34 see the paper by Charbonneau & Dikpati (2000) cited in the bibliography.
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the Lorentz force

u = U(x) + U′(x, t,B) , (254)

with the (non-dimensional) governing equation for U′ including only the
Lorentz force and a viscous dissipation term on its RHS. If u amounts only
to differential rotation, then U′ must obey a (nondimensional) differential
equation of the form

∂U′

∂t
=

Λ

4πρ
(∇× B) × B + Pm∇2U′ , (255)

where time has been scaled according to the magnetic diffusion time τ =
R2/ηe, as before. Two dimensionless parameters appear in eq. (255). The
first (Λ) is a numerical parameter measuring the influence of the Lorentz
force. The second, Pm = ν/η, is the magnetic Prandtl number. It measures
the relative importance of viscous and Ohmic dissipation. When Pm ¿ 1,
large velocity amplitudes in U′ can be produced by the dynamo-generated
mean magnetic field. This effectively introduces an additional, long timescale
in the model, associated with the evolution of the magnetically-driven flow;
the smaller Pm, the longer that timescale.

The majority of studies published thus far and using this approach have
only considered the nonlinear magnetic backreaction on differential rotation.
This has been shown to lead to a variety of behaviors, including amplitude
and parity modulation, periodic or aperiodic, as well as intermittency (more
on the latter in §0.33). It has been argued that amplitude modulation in such
models can be divided into two main classes:

1. Type-I modulation corresponds to a nonlinear interaction between modes
of different parity, with the Lorenz Force-mediated flow variations control-
ling the transition from one mode to another;

2. Type-II modulation refers to an exchange of energy between a single
dynamo mode (of some fixed parity) with the flow field. This leads to
quasiperiodic modulation of the basic cycle, with the modulation period
controlled by the magnetic Prandtl number.

Both types of modulation can co-exist in a given dynamo model, leading
to a rich overall dynamical behavior. Figure 50 shows two time-latitude di-
agrams produced by a nonlinear mean-field interface model35. The model is
defined on cartesian slab with a reference differential rotation varying only
with depth, and includes backreaction on the differential rotation according
to the procedure described above. The model exhibits strong, quasi-periodic
modulation of the basic cycle, leading to epochs of strongly reduced ampli-
tude. Note how the dynamo can emerge from such epochs with strong hemi-
spheric asymmetries (top panel), or with a different parity (bottom panel). It

35 For details on this model see paper by Tobias (1997) cited in the bibliography.
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is not clear, at this writing, to what degree these behaviors are truly generic,
in the sense of carrying over to spherical models using a solar-like internal
differential rotation.

Fig. 50 Amplitude and parity modulation in a dynamo model including magnetic
backreaction on the differential rotation. These are the usual time-latitude diagrams
for the toroidal magnetic field, now covering both solar hemispheres, and exemplify
type I (bottom) and type II (top) modulation arising in a nonlinear, non-kinematic
dynamo model defined over a cartesian slab, including magnetic backreaction on the
differential rotation (see text). Figure kindly provided by S.M. Tobias.

The differential rotation can also be supressed indirectly by magnetic back-
reaction on the small-scale turbulent flow that produce the Reynolds stresses
driving the large-scale mean flow. Inclusion of this so-called “Λ-quenching”
in mean-field dynamo models, alone or in conjunction with other amplitude-
limiting nonlinearities, has also been shown to lead to a variety of periodic
and aperiodic amplitude modulations, provided the magnetic Prandtl num-
ber is small36. This type of models stand or fall with the turbulence model
used to compute the various mean-field coefficients, and it is not yet clear
which aspects of the results are truly generic to Λ-quenching.

36 See, e.g., the paper by Küker et al. (1999) cited in the bibliography.
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The dynamical backreaction of the large-scale magnetic field on meridional
circulation has received comparatively little attention. The few calculations
published so far37 suggest that diffuse toroidal magnetic fields of strength up
to 0.1T can probably be advected equatorward at the core-envelope interface.
That it can indeed do so is crucial models relying on the meridional flow to
produce equatorward propagation of magnetic fields as the cycle unfolds.

0.32 Cycle modulation through time delays

It was already noted that in solar cycle models based on the Babcock-
Leighton mechanism of poloidal field generation, meridional circulation ef-
fectively sets —and even regulates— the cycle period. In doing so, it also
introduces a long time delay in the dynamo mechanism, “long” in the sense
of being comparable to the cycle period. This delay originates with the time
required for circulation to advect the surface poloidal field down to the
core-envelope interface, where the toroidal component is produced (A→C
on Fig. 35). In contrast, the production of poloidal field from the deep-seated
toroidal field (C→D), is a “fast” process, growth rates and buoyant rise times
for sunspot-forming toroidal flux ropes being of the order of tens of days. The
first, long time delay turns out to have important dynamical consequences.

The long time delay inherent in B-L models of the solar cycle allows a
formulation of cycle-to-cycle amplitude variations in terms of a simple one-
dimensional iterative map. Working in the kinematic regime, neglecting resis-
tive dissipation, and in view of the conveyor belt argument outlined in §0.26,
the toroidal field strength (Tn+1) at cycle n + 1 is assumed to be linearly
proportional to the poloidal field strength (Pn) of cycle n, i.e.,

Tn+1 = aPn . (256)

Now, because flux eruption is a fast process, the strength of the poloidal field
at cycle n + 1 is (nonlinearly) proportional to the toroidal field strength of
the current cycle:

Pn+1 = f(Tn+1)Tn+1 . (257)

Here the “Babcock-Leighton” function f(Tn+1) measures the efficiency of
surface poloidal field production from the deep-seated toroidal field. Substi-
tution of eq. (256) into eq. (257) leads immediately to a one-dimensional
iterative map:

pn+1 = αf(pn)pn , (258)

37 See papers by Rempel (2001, 2002) cited in the bibliography.
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where the pn’s are normalized amplitudes, and the normalization constants
as well as the constant a in eq. (256) have been absorbed into the definition of
the map’s parameter α, here operationally equivalent to a dynamo number.
In analogy with eq. (244), we adopt here the following nonlinear function

f(p) =
1

4

[

1 + erf

(
p − p1

w1

)] [

1 − erf

(
p − p2

w2

)]

, (259)

with p1 = 0.6, w1 = 0.2, p2 = 1.0, and w2 = 0.8. This catches an essential
feature of the B-L mechanism, namely the fact that it can only operate in a
finite range of toroidal field strength.

A bifurcation diagram for the resulting iterative map is presented on Figure
51A. For a given value of the map parameter α, the diagram gives the locus
of the amplitude iterate pn for successive n values. The “critical dynamo
number” above which dynamo action becomes possible, corresponds here
to α = 0.851 (pn = 0 for smaller α values). For 0.851 ≤ α ≤ 1.283, the
iterate is stable at some finite value of pn, which increases gradually with α.
This corresponds to a constant amplitude cycle. As α reaches 1.283, period
doubling occurs, with the iterate pn alternating between high and low values
(e.g., pn = 0.93 and pn = 1.41 at α = 1.4). Further period doubling occurs
at α = 1.488, then at α = 1.531, then again at α = 1.541, and ever faster
until a point is reached beyond which the amplitude iterate seems to vary
without any obvious pattern (although within a bounded range); this is in
fact a chaotic regime.

As in any other dynamo model where the source regions for the poloidal
and toroidal magnetic field components are spatially segregated, the type of
time delay considered here is unavoidable. The B-L model is just a particu-
larly clear-cut example of such a situation. One is then led to anticipate that
the map’s rich dynamical behavior should find its counterpart in the original,
arguably more realistic spatially-extended, diffusive axisymmetric model that
inspired the map formulation. Remarkably, this is indeed the case.

Fig. 51B shows a bifurcation diagram, conceptually equivalent to that
shown on part A, but now constructed from a sequence of numerical solu-
tions of the Babcock-Leighton model discussed earlier in §0.26, for increasing
values of the dynamo number. Time series of magnetic energy were calculated
from the numerical solutions, successive peaks found and their peak ampli-
tude plotted for each individual solution. The sequence of period doubling,
leading to a chaotic regime, is strikingly similar to the bifurcation diagram
constructed from the corresponding iterative map, down to the narrow multi-
periodic windows interspersed in the chaotic domain. This demonstrates that
time delay effects are a robust feature, and represent a very powerful source
of cycle amplitude fluctuation in Babcock-Leighton models, even in the kine-
matic regime. Although transition to chaos does not always occur through
such a classical period doubling sequence, transition to chaos is ubiquitous
in this model’s parameter space.



158 P. Charbonneau

Fig. 51 Two bifurcation diagrams for a kinematic Babcock-Leighton model, where
amplitude fluctuations are produced by time-delay feedback. The top diagram is
computed using the one-dimensional iterative map given by eqs. (258)–(259), while
the bottom diagram is reconstructed from numerical solutions in spherical geometry,
of the type discussed in §0.26. The shaded area in panel (A) maps the attraction basin
for the cyclic solutions, with initial conditions located outside of this basin converging
to the trivial solution pn = 0.

0.33 Intermittency

The term “intermittency” refers to systems undergoing apparently random,
rapid switching from quiescent to bursting behaviors, as measured by the
magnitude of some suitable system variable. In the context of solar cy-
cle model, intermittency is invoked to explain the existence of Maunder
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Minimum-like quiescent epochs of strongly suppressed activity randomly in-
terspersed within periods of “normal” cyclic activity38.

Intermittency has been shown to occur through stochastic fluctuations of
the dynamo number in mean-field dynamo models operating at or near criti-
cality39. This mechanism for “on-off intermittency” works well, however there
is no strong reason to believe that the solar dynamo is running just at criti-
cality, so that is not clear how good an explanation this is of Maunder-type
grand minima. Parity modulation driven by stochastic noise can also lead
to a form of intermittency in linear or α-quenched models, by exciting the
higher-order modes that perturb the normal operation of the otherwise dom-
inant dynamo mode, producing marked hemispheric asymetries and strongly
reduced cycle amplitudes. The transition from active to quiescent (and vice
versa) being controlled by stochstic noise, the durations of active and qui-
escent phases tend to have exponential distributions, which agrees tolerably
well with inferences from the radioisotope record40.

Another way to trigger intermittency in a dynamo model is to let nonlinear
dynamical effects, for example a reduction of the differential rotation ampli-
tude, push the effective dynamo number below its critical value; dynamo
action then ceases during the subsequent time interval needed to reestablish
differential rotation following the diffusive decay of the magnetic field; in the
low Pm regime, this time interval can amount to many cycle periods, but
Pm must not be too small, otherwise grand minima become too rare. Values
Pm ∼ 10−2 seems to work best. Such intermittency is most readily produced
when the dynamo is operating close to criticality41.

Intermittency has also been observed in strongly supercritical model in-
cluding α-quenching as the sole amplitude-limiting nonlinearity. Such so-
lutions can enter grand minima-like epochs of reduced activity when the
dynamo-generated magnetic field completely quenches the α-effect. The dy-
namo cycle restarts when the magnetic field resistively decays back to the
level where the α-effect becomes operational once again. The physical origin
of the “long” timescale governing the length of the “typical” time interval

38 It should be noted, however, that dearth of sunspots does not necessarily means a
halted cycle; as noted earlier, flux ropes of strengths inferior to ∼ 1 T will not survive
their rise through the convective envelope, and the process of flux rope formation from
the dynamo-generated mean magnetic field may itself be subjected to a threshold in
field strength. The same basic magnetic cycle may well have continued unabated all
the way through the Maunder Minimum, but at an amplitude just below one of these
thresholds. This idea finds support in the 10Be radioisotope record, which shows a
clear and uninterrupted cyclic signal through the Maunder minimum (see Fig. 46).
39 see paper by Ossendrijver & Hoyng (1996) cited in the bibliography for a partic-
ularly lucid discussion.
40 For more on this version of noise-driven intermittency, see the papers by Mininni
& Gomez (2004) and Moss et al. (2008) cited in the bibiography.
41 See, e.g., the papers by Küker et al. (1999) and Brooke et al. (2002) cited in the
bibliography.
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between successive grand minima episodes is unclear, and the physical un-
derpinning of intermittency harder to identify42.

Intermittency can also arise naturally in dynamo models characterized
by a lower operating threshold on the magnetic field. These include models
where the regeneration of the poloidal field takes place via the MHD insta-
bility of toroidal flux tubes (§0.27.2). In such models, the transition from
quiescent to active phases requires an external mechanism to push the field
strength back above threshold. This can be stochastic noise43, or a secondary
dynamo process normally overpowered by the “primary” dynamo during ac-
tive phases. Figures 52 show one representative solution of the latter variety,
where intermittency is driven by a weak α-effect-based kinematic dynamo
operating in the convective envelope, in conjunction with magnetic flux in-
jection into the underlying region of primary dynamo action by randomly
positioned downflows44. The top panel shows a sample trace of the toroidal
field, and the bottom panel a butterfly diagram constructed near the core-
envelope interface in the model.

Dynamo models exhibiting amplitude modulation through time-delay ef-
fects are also liable to show intermittency in the presence of stochastic noise.
This intermittency mechanism hinges on the fact that the map’s attrac-

tor has a finite basin of attraction (indicated by gray shading on Fig. 51A).
Stochastic noise acting simultaneously with the map’s dynamics can then
knock the solution out of this basin of attraction, which then leads to a col-
lapse onto the trivial solution pn = 0, even if the map parameter remains
supercritical. Stochastic noise eventually knocks the solution back into the
attractor’s basin, which signals the onset of a new active phase. This behav-
ior does materialize in the Babcock-Leighton model of §0.26. Figure 53 shows
one such representative solution, in the same format as Fig. 52. This is a dy-
namo solution which, in the absence of noise, operates in the singly-periodic
regime. Stochastic noise is added to the vector potential Aêφ in the surface
layers, and the dynamo number is also allowed to fluctuate randomly about
a pre-set mean value, as described in §0.30. The resulting solution exhibits
both amplitude fluctuations and intermittency.

With its strong polar branch often characteristic of dynamo models with
meridional circulation, Fig. 53 is not a particularly good fit to the sunspot
butterfly diagram. Yet its fluctuating behavior is solar-like in a number of
ways, including epochs of alternating higher-than-average and lower-than-
average cycle amplitudes (the Gnevyshev-Ohl rule, cf. Fig. 45), and residual
pseudo-cyclic variations during quiescent phases, as suggested by 10Be data.
This latter property is due at least in part to meridional circulation, which
continues to advect the (diffusively decaying) magnetic field after the dynamo
has fallen below threshold.

42 For representative models exhibiting intermittency of this type, see the paper by
Tworkowski et al. (1998) cited in the bibliography.
43 See the paper by Schmitt et al. (1996) cited in the bibliography.
44 for more details see paper by Ossendrijver (2000) in bibliography
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Fig. 52 Intermittency in a dynamo model based on flux tube instabilities
(cf. §0.27.2). The top panel shows a trace of the toroidal field, and the bottom panel
is a butterfly diagram covering a shorter time span including a quiescent phase at
9.6 ∼< t ∼< 10.2, and a “failed Minimum” at t ' 11. Figure produced from numerical
data kindly provided by M. Ossendrijver.

0.34 Model-based cycle predictions

Over the past decade, the prediction of solar eruptive events and their geo-
magnetic impacts, known as space weather, has become a Very Big Business.
Even then, the prediction of the overall level of solar activity is also of in-
terest, as it could be useful, among other things, to the planning of space
missions and interplanetary travel. The understanding and prediction of ac-
tivity levels on timescales decadal and longer is becoming known as space

climate, and its primary data are the time series of sunspot numbers, and
proxies such as the radioisotopes records.

One “hot” prediction problem, lying at the boundary of space weather
and space climate, is forecasting the characteristic of the next solar activity
cycle, which is usually equated with the timing and amplitude of the cycle
as measured in the sunspot number time series (see Fig. 43). It is of course
possible to treat this prediction problem as an exercice in time series analysis
and forecasting, without any physical input. The SSN time series is just a
time series, and it can be extended using a number of techniques coming from
statistics (spectral analysis, wavelets, etc) or dynamical system theory (such
as attractor reconstruction). To this day, forecasts based on such techniques
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Fig. 53 Intermittency in a dynamo model based on the Babcock-Leighton mech-
anism (cf. §0.26). The top panel shows a trace of the toroidal field sampled at
(r, θ) = (0.7, π/3). The bottom panel is a time-latitude diagram for the toroidal field
at the core-envelope interface. Numerical data from the Charbonneau et al. (2004)
paper cited in the bibliography.

have not fared significantly better than so-called “climatological” forecasts,
which consists in simply “predicting”, e.g., that the next cycle will have the
same amplitude as the current cycle, or an amplitude equal to the mean cycle
amplitude over the length of the sunspot record, etc. In this section we will
focus here instead on prediction schemes based, in one form or another, on
dynamo models.

In light of what we have learned thus far, we know we are facing a number
of difficulties in trying to use dynamo models to forecast the solar cycle. A
basic list of questions that need to be answered (excluding technical details
for the time being) should include, at the very least, the following:

1. What type of dynamo powers the solar cycle: αΩ, α2Ω, interface, Babcock-
Leighton, etc.?

2. Which mechanism is driving duration and amplitude fluctuations: stochas-
tic forcing, nonlinear modulation due to the Lorentz force, or time delay,
etc.?

3. How do we “predict” sunspot number from a dynamo solution which de-
scribes the spatiotemporal evolution of just the diffuse, large-scale mag-
netic field?
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It is a sobering fact that none of these very basic fundamental questions can be
answered with confidence at this writing. Nonetheless, we have learned some
important things that are useful in the forecasting context. To start with, the
dynamo feeds on the existing magnetic field, therefore trying to forecast the
next cycle using characteristics of the current cycle (and maybe recent past
cycles as well) is definitely justified. This is the physical underpinning of all
so-called “precursor methods”, which we’ll first look into.

0.34.1 The solar polar magnetic field as a precursor

Temporally extended synoptic magnetograms, such as Fig. 24, suggest that
the solar cycle can be divided into sequences of substeps whereby a poloidal
field (P ) produces a new toroidal component (T ), which then leads to the
buildup of a new poloidal component, with accompanying polarity reversals;
schematically:

... → P (+) → T (−) → P (−) → T (+) → P (+) → ... (260)

This suggests that the optimal precursor for the amplitude of the sunspot-
generating toroidal component should be sought by moving back up the
causal chain by one substep, to the poloidal component produced in the pre-
vious sunspot cycle. This is the basis for the set of dynamo-inspired precursor
schemes pioneered by A.I. Ohl and brought to maturity by K. Schatten and
collaborators now over thirty years ago (see bibliography).

This idea is readily tested using our various dynamo models, as illustrated
on Figure 54 for the stochastically forced Babcock-Leighton model of Fig. 49.
The top panel shows a short segment of the magnetic energy time series, used
again here as a proxy for the sunspot number, together with a time series of
the surface polar field strength (in green). The bottom panel shows a time-
latitude diagram of the surface radial magnetic component, together with the
latitudes of peak toroidal field strength at the core-envelope interface, where
sunspots are presumed to originate. The overall spatiotemporal evolution of
the surface field, and its phase relationship to the deep-seated toroidal field,
are both remarkably solar-like. Examination of the two proxies on the top
panels of Figs. 54 reveals that the surface radial field peaks shortly following
what one would identify with solar minimum on the basis of our SSN proxy.
It is then a simple matter to pair the peak polar field at solar minimum with
the SSN proxy of the following cycle, as indicated on Fig. 54 by the purple
connecting line segments.

The next step is to correlate the peak poloidal field and peak SSN proxy,
in order to ascertain the viability of poloidal field-based precursor schemes.
The result is shown on Figure 55A, for three different levels of stochastic
forcing, as color-coded, with the solution of Fig. 54 in red. In all cases the
time series for the SSN proxies and surface poloidal field strength have been
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Fig. 54 Portion of a simulation run of a Babcock-Leighton model, with fluctuations
at the ±50% level imposed in the magnitude of the surface source term. The un-
perturbed reference solution is that illustrated on Figure 36. The top panel shows
time series of the surface radial magnetic field sampled at the pole (green), together
with a time series of the total magnetic energy (red), used here as a proxy for the
sunspot number. The purple line segment join the peak poloidal field at (or near)
“sunspot minimum” with the peak in the SSN proxy for the following cycle. The
bottom panel is a time-latitude diagram of the surface radial field, and the purple
dots trace the latitude of peak toroidal field strength at the core-envelope interface as
a function of time. Figure taken from the Charbonneau & Barlet (2010) paper cited
in the bibliography.

normalized to the peak values characterizing a parent run without stochastic
forcing.

The peak polar field at solar minimum clearly has precursor value, but
stochastic forcing rapidly degrades the forecasting accuracy. Consider for ex-
ample the solution with 100% fluctuation of the dynamo number Cα (green);
while a linear correlation coefficient of 0.83 may sound pretty good, the fact
remains that for a polar field of 0.8 (say) in the normalized units of Fig. 55
would lead to a SSN forecast covering a very broad range, namely 0.6—1.2
in normalized units, which is not a very accurate forecast at all.

Performing the same analysis on our other solar cycle model reveals
that the polar surface field is also a good precursor of cycle amplitude for
the advection-dominated mean-field model with meridional circulation of
§0.25.11, more robust with respect to high-amplitude stochastic forcing in
fact, but no precursor at all for the classical αΩ model of §0.25.10. This cu-
rious situation can be traced to the fact that in the former, the surface polar
field does feed back into the dynamo loop, as circulation drags it down back
into the tachocline, where it merges with the poloidal field produced there
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Fig. 55 (A) Correlations between peak SSN and surface poloidal field strength in the
stochastically-forced Babcock-Leighton solutions of Fig. 36, for three different level
δCα/Cα of forced stochastic fluctuations in the surface source term, color-coded as
indicated. The red dots correspond to the simulation run illustrated on Fig. 54. The
amplitudes are normalized to those caracterizing the non-fluctuating parent simula-
tion. The linear correlation coefficients r are again given. (B) Similar plot, but this
time attempting to correlate the peak SSN peak values for pairs of successive cycles.

by the α-effect (see Fig. 30). In the circulation-free models, on the other
hand, the poloidal field diffuses more or less radially outwards to the sur-
face, with poloidal field of the subsequent cycle being generated completely
independently at the base of the envelope (see Fig. 27).

In retrospect, the logic behind Schatten et al.’s precursor argument can
be understood to hold only for a subset of dynamo models, namely those
where some “feedback” of the surface polar field on the dynamo loop takes
place. In Babcock-Leighton-type models, the surface field is the true source
of the next cycle’s toroidal field, and so is good precursor. In advection-
dominated mean-field models including circulation, the surface poloidal field
is a significant source of toroidal field, albeit not the only one. In classical αΩ
mean-field models of the type considered in §0.25.10, where the surface field is
only a “passive” manifestation of dynamo action taking place independently
in the deep interior, the surface field has no precursor value.

As final point of interest, it is noteworthy that in all solar cycle models
considered here, the value for the peak SSN proxy has little or no precursor
value in forecasting the next SSN proxy peak. This is illustrated on Fig. 55B
for the set of stochastically-forced Babcock-Leighton solutions. This is some-
what surprising, since the peak polar field at the solar minimum separating
two successive cycles is here a rather good precursor (cf. Fig. 55A). This situ-
ation can be traced to the manner in which stochasticity is introduced in the
model. In the case of imposed stochastic fluctuations in the poloidal source
term, the scheme given by eq. (260) must be replaced by something like:
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...
stoch−→ P (+) −→ T (−)

stoch−→ P (−) −→ T (+)
stoch−→ P (+) −→ ... (261)

Precursor forecasts based on either component is only possible if the forecast
does not go across a “stochastic” arrow. For classical mean-field models,
where the shear and α-effect are spatially coincident and operate concurrently
in time, the above sequence should instead be schematized as:

...
stoch

↗↘ P (+)

T (−)

stoch

↗↘ P (−)

T (+)

stoch

↗↘ P (+)

T (−)

stoch

↗↘ ... (262)

which precludes any precursor relationship from previous-cycle magnetic field
measurements... unless of course stochastic forcing is very weak or absent, and
cycle amplitude modulation is produced primarily by deterministic effects, as
briefly considered in §0.31.

0.34.2 Model-based prediction using solar data

Some recent solar cycle amplitude forecasts have used solar cycle models
of the Babcock-Leighton variety (§0.26), in conjunction with input of solar
magnetic field observations in a manner usually (and incorrectly) described
as “data assimilation”. It is particularly instructive to compare the forecast
schemes (and cycle 24 predictions) of Dikpati and collaborators on the one
hand, and Choudhuri and collaborators on the other. As detailed in Table
4.1 below, these two schemes are remarkably similar, differing mostly in their
formulation of the poloidal source term, solar data used to drive the model,
and manner in which this driving is implemented.

As similar as they may be, except at the level of what one would usually
consider modelling details, these two forecasting schemes end up producing
cycle 24 amplitude forecasts that stand at opposite ends of the very wide
range of cycle 24 forecasts produced by other techniques, as well as opposite
ends of the range of past cycle amplitudes. A cycle 24 with SSN=80 would
place it amongst the weakest of the past century, while SSN=180 would make
it second only to the highest cycle amplitude on record, that for cycle 19 (see
Fig. 43).

These model-based forecast have been subjected to strident criticism, for
a variety of reasons. One of the most fundamental is the possibility —some
would say “certainty”— that the solar dynamo is a nonlinear system oper-
ating in the chaotic regime, in which case long-term prediction is severely
restricted by the exponential divergence of trajectories of the model in phase
space. This criticism probably does not apply to the DdTG scheme, which
is really a quasi-linear magnetic flux processing “machine”, rather than a
truly nonlinear dynamo model; it probably does not apply either to the CCJ
scheme, which uses a simple algebraic amplitude-quenching nonlinearity that
is usually not conducive to chaotic modulation, although this remains to be
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Table 3 Two dynamo-based solar cycle forecasting schemes

Authors Dikpati, deToma & Gilman Choudhuri, Chatterjee, & Jiang
Code name DdTG CCJ
Reference GRL 33, L05102 (2005) PRL 98, 131103 (2007)
Dynamo model kinematic axisymmetric kinematic axisymmetric

Babcock-Leighton Babcock-Leighton
Core-CZ interface r/R = 0.7 r/R = 0.7
Magnetic diffusivity eq. (128), ∆η = 300 eq. (128), ∆η = 104

plus high-η surface layer
Differential rotation solar-like parameterization solar-like parameterization

eqs. (136)–(137), w/R = 0.05 eqs. (136)–(137), w/R = 0.015
all other parameters same all other parameters same

Meridional circulation single cell per quadrant single cell per quadrant
closing at r/R = 0.71 closing at r/R = 0.635

Poloidal source term data-driven surface forcing subsurface α-effect
plus weak tachocline α-effect plus buoyancy algorithm

Nonlinearity algebraic α-quenching algebraic α-quenching
only in tachocline α-effect in subsurface α-effect

Solar data time series of total sunspot area DM Index
used to (continuously) drive used to reset amplitude of A
parametric surface forcing of A at “solar minimum”

Calibration interval Cycles 16—23 Cycles 21—23
Cycle 24 forecast SSN=155–180 SSN=80

verified in the context of their specific choice of dynamo model. More to the
point has been the explicit demonstration that very small changes in some
unobservable and poorly constrained input parameters to the dynamo model
used for the forecast, or alternate but by all appearances equally reasonable
means of carrying out data input into the model, can introduce significant
errors already for next-cycle amplitude forecasts45.

In the context of Babcock-Leighton models, this model-based approach
to forecasting is definitely viable in principle, since the solar surface mag-
netic field is that which will serve as seed to produce the sunspot-generating
toroidal component of the next cycle. The one thing that the two model-
based forecasting schemes compiled in Table 4.1 have demonstrated, beyond
any doubts, is that modelling details matter a lot.
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Chapter 5

Stellar dynamos

ELWOOD: It’s 106 miles to Chicago, we’ve got a full

tank of gas, half a pack of cigarettes, it’s dark and

we’re wearing sunglasses.

JAKE: Hit it!

Dan Ackroyd and John Belushi
The Blues Brothers (1980)

The problem —and the beauty— with the Sun is that it overwhelms us with
data. Many of the intricacies we have busied ourselves with in the preceding
chapter were directly motivated by the detailed observations and magnetic
measurements made possible by the sun’s astronomical proximity. The sun
remains for sure an exemplar, but with other stars observational contraints
are much more sparse, and theoretical considerations take on an enlarged
role.

What have we learned in the preceding three chapters about dynamo ac-
tion in electrically conducting fluids? At the most fundamental level, a top-
three list could run as follows:

– We learned in chapter 2 that rotation, and especially differential rotation,
is one very powerful mechanism allowing to build a large-scale magnetic
field;

– We also learned in chapter 2 that flows with chaotic trajectories, such as
arising from strongly turbulent convection, can act as dynamos;

– We learned in chapter 3 that in turbulent flows, the presence of rotation
and stratification can break isotropy and reflectional symmetry, and in
doing so generate a mean electromotive force that can produce large-scale
magnetic fields.

So, offhand we are not in too bad a shape with regards to stellar dynamos.
Stars certainly are stratified, and certainly rotate. Thermally-driven convec-
tion is also present across large-part of the HR diagram, but here we start
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to encounter complications that restrict the use of the “solar exemplar”. Fig-
ure 56 illustrates, in schematic form, the internal structure of main-sequence
stars, more specifically the presence or absence of convection zones. A G-star
like the Sun has a thick outer convection zone, spanning the outer 30% in
radius in the solar case. As one moves down to less massive stars, the relative
thickness of the convective envelope increases until, somewhere around spec-
tral type M5, stars become fully convective. Moving instead from the Sun
to higher masses, the convective envelope becomes ever thinner, until some-
where around spectral type A0 it essentially vanishes. However, at around
the same spectral type Hydrogen burning switches from the p-p chain to the
CNO cycle, for which nuclear reaction rates are much more sensitively depen-
dent on temperature. Core energy release becomes strongly depth-dependent,
leading to a steep —and convectively unstable— temperature gradient. This
produces a small convective core, which grows in size as one moves up to
larger masses. In a “typical” B-star of solar metallicity, the convective core
spans the inner 25% or so in radius of the star. In main-sequence O and B

Fig. 56 Schematic representation of the radiative/convective internal structure of
main-sequence stars. The thickness of the outer convection zone for the A-star is
here greatly exaggerated; drawn to scale it would be thinner than the black circle
delineating the stellar surface on this drawing. Relative stellar sizes are also not
to scale; a main-sequence M0 star has a radius some 12 times smaller than its B0
counterpart.

stars, the presence of a turbulent convective core combined with high rota-
tion then makes dynamo action more than likely. However, as we shall see in
§0.35 below, the challenge is actually to bring the magnetic field produced in
the core to the surface.

Intermediate stars (from early-A to early-F spectral type) stand out as
the least likely to support dynamo action, because they lack a convective re-
gion of substantial size. This squares well with various lines of observations;
in particular, main-sequence A-stars are amongst the most “magnetically
quiet” stars in the HR diagram. A subset of late-B and A stars, namely the
slowly-rotating, chemically peculiar Ap/Bp stars, do show strong magnetic
fields, but those show no sign of anything even mildly analogous to solar
activity. This is why to this day the fossil field hypothesis remains the fa-
vored explanatory model for the magnetic field of Ap stars. The case for the
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fossil field hypothesis is reviewed in §0.36, along with some dynamo-based
alternatives.

Until strong evidence to the contrary is brought to the fore, we are allowed
to assume that late-type stars with a thick convective envelopes overlying a
radiative core host a solar-type dynamo. This is buttressed by the observation
of solar-like cyclic activity in many such stars. We will therefore begin (§0.37)
by looking into the way(s) the various types of solar-cycle models considered
in the preceding chapter can be “scaled” to other solar-type stars, of varying
masses, rotation rates, etc. Some of these issues are discussed in §0.37 below.

With fully convective stars (§0.38), we encounter potential deviations from
a solar-type dynamo mechanism; without a tachocline and radiative core to
store and amplify toroidal flux ropes, the Babcock-Leighton mechanism be-
comes problematic. Mean-field models based on the turbulent α-effect re-
main viable, but the dynamo behavior becomes dependent on the presence
and strength of differential rotation, about which we really don’t know very
much in stars other than the sun.

0.35 Early-type stars

0.35.1 Mean-field models

We first consider dynamo action in massive stars, beginning with a few simple,
representative solutions obtained in the framework of mean-field theory46.
Within the core, thermally-driven turbulent fluid motions are assumed to
give rise to an α-effect and turbulent diffusivity, which both vanish for r ∼> rc

(under the assumption that the radiative envelope is turbulence free). In the
spirit of the other mean-field models discussed earlier, we consider kinematic
dynamos with parametric profiles for α and η:

α(r, θ) =
1
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cos(θ) , (263)
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w

)]

, (264)

where erf(x) is the error function. Equations (263) once again represent “min-
imal” assumptions on the spatial dependency of the α-effect: it changes sign
across the equator (θ = π/2), vanishes at r = 0, rises to a maximum value
within the convective core, and falls again to zero for r ∼> rc, the transition
occurring across a spherical layer of thickness ∼ 2w. All dynamo solutions

46 The content of this section is based on the paper by P. Charbonneau & K.B. Mac-
Gregor, ApJ, 559, 1094 (2001)
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discussed below are obtained as eigenvalue problems, as in §0.25.8, solving
now the α2 form or the axisymmetric kinematic mean-field dynamo equa-
tions. Remember that such linear solutions leave the absolute scale of the
magnetic field unspecified. However, an interesting physical quantity acces-
sible from linear models is the ratio of the surface field field strength to the
field strength in the dynamo region, here the convective core. In what follows
we use towards this purpose the ratio (Σ) of the r.m.s. surface poloidal field
to the r.m.s. poloidal field at the core-envelope interface rc:

Σ =

(
R2

∫
|∇ × A|2r=R sin θdθ

r2
c

∫
|∇ × A|2r=rc

sin θdθ

)1/2

. (265)

Figure 57 shows a series of typical linear α2 solution with increasing diffu-
sivity contrasts between the core and envelope. Linear mean-field dynamo of
the α2 type with a time-independent scalar functional α(r) always produce
steady magnetic fields, i.e., the solution eigenvalue is purely real (ω = 0 in
eq. (226)). The solution plotted on Figure 57A is dipole-like (i.e., antisym-
metric), and is the fastest growing solution for our model with constant η, at
the adopted value for Cα

47. The poloidal and toroidal magnetic components
have comparable strengths, which is again typical of α2 mean-field models
with scalar α-effect. Here the growth rate of the eigenmode is about 20 yr in
dimensional units, leaving no doubt that ample time is available to amplify a
weak seed magnetic field in the core of a massive star. Note also on Figure 57
how the dynamo-generated magnetic field becomes trapped within and in the
immediate vicinity of the convective core for even moderately large values of
magnetic diffusivity contrast between core and envelope.

In the presence of significant differential rotation, core dynamo action can
produce polarity reversals and wave-like propagation of the magnetic field,
much like in the αΩ solar cycle models considered earlier. Figure 58 illus-
trates a half-cycle of a representative α2Ω solution, constructed by imposing
a radial gradient of angular velocity across a thin shear layer coinciding with
the core-envelope interface:

Ω(r, θ) = Ωc +
Ωe − Ωc

2

[

1 + erf

(
r − rc

w

)]

. (266)

The magnetic field distribution is shown at five distinct phases, at constant
intervals of ∆ϕ = π/4, in a format identical to that of Fig. 57 for each panel
(note in particular that the eigenmodes are again plotted only in the inner

47 The α2 form of the mean-field dynamo equations also admits growing solutions
than are non-axisymmetric even though the α-effect profile exhibits axisymmetry
with respect to the rotation axis. Growth rates for non-axisymmetric modes are of-
ten comparable to those of their axisymmetric counterparts. Motivated largely by
the challenge posed by planetary magnetic fields, α2 models can and have been con-
structed where non-axisymmetric modes are the fastest growing, and dominate in the
moderately supercritical nonlinear regime.
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Fig. 57 Four antisymmetric steady α2 dynamo solutions, computed using varying
magnetic diffusivity ratios between the core and envelope. The solutions are plotted
in a meridional quadrant, with the symmetry axis coinciding with the left quadrant
boundary. Poloidal fieldlines are plotted superimposed on a gray scale representation
for the toroidal field (light to dark is weaker to stronger field). The dashed line marks
the core-envelope interface depth rc, and the two dotted lines indicates the depths
rc ±w corresponding to the width of the transition layer between core and envelope.
These solutions have a surface-to-core magnetic field strength ratio Σ ' 10−2 at
ηe/ηc = 1, down already to 3 × 10−4 at ηe/ηc10−1 and falling below 10−8 for
ηe/ηc ∼< 10−2.

half of the star). At a given phase the solutions bear some resemblance to the
α2 solutions of Fig. 57C, in that the magnetic field is again trapped in the
interior. As before, the toroidal field is concentrated near the core-envelope
interface, and in fact here peaks slightly outside r = rc (dashed circular arc).

The availability of an additional energy source in the toroidal component
of the dynamo equations leads to solutions where the toroidal field strength in
general exceeds that of the poloidal field, scaling roughly as the ratio CΩ/Cα

in the limit CΩ À Cα. For a given diffusivity ratio ηe/ηc, oscillatory α2Ω
solutions have a smaller surface-to-core field strength ratio Σ than α2 models,
a direct consequence of the oscillatory nature of the field, which restricts
the radial extent of the eigenfunction above the core-envelope interface to a
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Fig. 58 A representative α2Ω solution. As this is an oscillatory solution, the eigen-
function is plotted at five equally spaced phase intervals (∆ϕ = π/4), covering half
an oscillation cycle. The format in each panel is similar to Fig. 57. White (black)
lines indicate fieldlines oriented in a clockwise (counterclockwise) direction. Note the
wave-like propagation of the magnetic field from low to high latitudes. This symmetric
solution has Cα = −21, CΩ = 2000, w/R = 0.1, ηe/ηc = 10−2, and is characterized
by a growth rate σ = 21.8 τ−1 and frequency ω = 186 τ−1. For ηc = 1013 cm2 s−1,
this corresponds to a dynamo period of about 7 yr, quite short compared to any other
relevant timescales.

distance comparable to the electromagnetic skin depth, which is very much
smaller than the stellar radius for ηe/ηc ¿ 1.

0.35.2 Numerical simulations of core dynamo action

It is interesting to compare and contrast core dynamo action, as modeled
via mean-field electrodynamics, to what is produced by three-dimensional
MHD simulations48. Such simulations do yield vigorous core dynamo action,
with the magnetic energy approching equipartition with the turbulent fluid
motions. However, most of the magnetic energy is contained in small spatial
scales, with the axisymmetric large-scale component accounting for only a
few percent of the total magnetic energy. The simulations generate a highly
time-variable differential rotation that contributes significantly to the induc-

48 The content of this section is based primarily on the paper by A.S. Brun,
M.K. Browning, & J. Toomre, ApJ, 629, 461 (2005).
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tion of a toroidal component by shearing of the poloidal fields. This is most
pronounced in the vicinity of the core-envelope boundary, where a persis-
tent system of magnetic field bands approximately aligned in the azimutal
direction are produced.

These simulations could be said to behave like α2Ω mean-field dynamo,
but the analogy is only superficial because significant differences exist, most
notably perhaps the absence of a well-defined, persistent mean-field-aligned
turbulent electromotive force. Except in the innermost portion of the convec-
tive core, the mean kinetic helicity is negative in the Northern hemisphere,
but in contrast the mean magnetic helicity does not show a well-defined, per-
sistent hemispheric pattern, again a departure from mean-field expectations.

One important similarity with the mean-field models considered in §0.35.1
is the trapping of the magnetic field within or in the immediate vicinity of the
convective core. This is shown on Figure 59, which depicts two temporal and
azimutal averages at different epochs in a a representative simulation. The
weak axisymmetric toroidal field present in the inner portion of the radiative
envelope is produced primarily by the shearing effect of the differential rota-
tion, which is imprinted from the core to the lower envelope by the relatively
high viscous forces characterizing this simulation.

Fig. 59 Temporal+Azimuthal average of the toroidal magnetic field in a 3D MHD
numerical simulation of dynamo action in the core of a 2 M¯ early A-star. The mag-
netic field reaches strengths in the tens of kG, evolves rapidly, and is structured on
a broad range of spatial scales, but remains confined to the convective core (dashed
cicular arc; the simulation domain only covers the inner 30% in radius of the star).
Figure taken from Brun et al. 2005, ApJ, 629, 461 (Figure 18, p. 478).
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0.35.3 Getting the magnetic field to the surface

Whatever the mode of core dynamo action, a universal feature is the “trap-
ping” of the magnetic field within the core and in the lower part of the
radiative envelope, a direct consequence of the difficulty experienced by a
magnetic field to diffusively penetrate a good electrical conductor. This is
long-recognized property of stellar core dynamos, and represents a rather
formidable obstacle to be bypassed if the magnetic fields generated by dy-
namo action in the convective core are to become observable at the stel-
lar surface. For O and B main-sequence stars, estimates for the diffusion
time yield values largely in excess of the main-sequence lifetime. Introducing
thermally-driven meridional circulation in the radiative envelope, expected
to be a significant internal flow in rapidly rotating stars, does accelerate the
transport of the deep field to the surface, but also impedes dynamo action.
Another possibility is that the dynamo-generated magnetic field manages to
produce toroidal flux ropes that subsequently rise buoyantly to the surface.
The analogy with the sun becomes even more compelling if a rotational shear
layer does exist at the boundary between the inner convective core and outer
radiative envelope. However, and unlike in the solar case, here the toroidal
flux ropes are rising through a stably stratified environment, and so lose their
buoyant force as they rise, because they cool faster than the surrounding
stratification. Calculations performed in the thin flux tube approximation
suggest that such toroidal flux ropes, assuming they do form, could rise per-
haps halfway across the radiative envelope, but are unlikely to make it all the
way to the surface through buoyancy alone. References listed in the bibliogra-
phy should provide helpful entry points into the literature to those interested
in further pursuing this aspect of massive star magnetism.

0.35.4 Alternative to core dynamo action

Dynamo-based explanations for the magnetic fields of early-type main-
sequence stars certainly exist. One intriguing possibility that clearly requires
serious modelling is that dynamo action in the outer layers of massive stars
could take place in convection zones associated with a peak in iron opacities.
Recent years have also witnessed renewed interest in the possibility that dy-
namo action could take place in the radiative envelope of intermediate- and
high-mass main-sequence stars, through turbulence associated with one or
more global instabilities of the magnetic field. This idea has attracted atten-
tion outside of the dynamo circles because the associated turbulent transport
would also cause enhanced chemical mixing, known to be required to properly
fit evolutionary tracks of massive stars, but whose origin remains mysterious.
Introduction of simple parametrizations for the associated chemical and an-
gular momentum mixing in models of evolving massive stars has shown that
it is difficult to maintain sufficient differential rotation for the instability to
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operate, while keeping chemical mixing at the required level. The interested
reader will find entry point in this vast literature in the bibliography at the
end of this chapter.

This instability-driven dynamo mechanism probably cannot explain the
strong magnetic fields observed in the very slowly rotating Ap/Bp stars (more
on these presently), again because significant internal differential rotation is
unlikely in the radiative envelope of these stars.

0.36 A-type stars

0.36.1 The fossil field hypothesis

Stars with spectral types ranging from late-B to early-F stand out as the
least likely to support dynamo action, because they lack a convective re-
gion of substantial size. This squares well with various lines of observations;
in particular, main-sequence A-stars are amongst the most “magnetically
quiet” stars in the HR diagram. A subset of late-B and A stars, namely the
slowly-rotating, chemically peculiar Ap/Bp stars, do show strong magnetic
fields, but even those show no sign of anything even mildly analogous to solar
activity. The single pattern of temporal evolution noted is a decrease, by fac-
tors of 2-3, in the overall strength of the surface field, most prominent in the
early stages of main-sequence evolution. This seems compatible with the idea
of diffusive decay of residual higher-degree eigenmodes, and slow decreases
associated with flux conservation as the stars slowly expand in the course of
their main-sequence evolution (cf. §0.18).

0.36.2 Dynamical stability of large-scale magnetic fields

The study of the purely resistive decay of large-scale magnetic field in stellar
interiors carried out in §0.18 precluded, by it very design, the development of
flows propelled by potential hydromagnetic instabilities. Investigations into
the latter have shown that under typical stellar interior conditions, large-scale
magnetic fields in stably-stratified radiative interiors are indeed susceptible
to the development of instabilities with growth rates much smaller than any
relevant evolutionary timescales. Even simple field configurations, such as
low-order multipole purely toroidal or purely poloidal fields are found to be
unstable, with rotation possibly providing a stabilizing influence at high ro-
tation rates (see references in the bibliography at the end of this chapter).
Although these (linear) stability analyses rely on a number of strong sim-
plifying assumptions, they lead to a picture whereby the most likely stable
global configurations are magnetic fields comprised of a mixture of large-scale
poloidal and toroidal component with comparable strengths. Remarkably,
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this has recently been confirmed by full MHD simulations. Such configura-
tions would establish themselves on very short timescales, after which they
would undergo resistive decay on the magnetic diffusion timescale. Short-lived
unstable phase early in their evolution notwithstanding, this overall picture
remains generally consistent with the fossil field Ansatz for Ap/Bp stars.

0.36.3 The transition to solar-like dynamo activity

On the main-sequence, as one move down from late-A to late-F spectral
types, solar-type surface convection sets in, with the convection zone rapidly
gaining in depth as below spectral type F5. How and when solar-type dynamo
action sets in is a relatively unexplored question that clearly deserves further
attention, from both the observational and modelling standpoints.

0.37 Solar-type stars

The observational picture of magnetic activity in solar-type stars is reviewed
at length in the series of chapters by Solanki in this volume, and consequentlyREF to Solanki

chapters will not be duplicated here. From the point of view of dynamo theory and
modelling, the following empirical facts are particularly noteworthy:

1. Magnetic activity, as measured e.g. by the level of CaH+K emission, gen-
erally increases with increasing rotation rate (decreasing Prot).

2. Stellar cycle periods increase with increasing rotation periods Prot.

At a given spectral type the relationship between cycle period and rotation
rate is well represented by a power-law of the form Pcyc ∝ Pn

rot, with n varying
between 0.75 and 1.75 depending on spectral type. Interestingly, all these data
can be described reaonably well by a a single power-law fit to the ratio of
the rotation period to the convective turnover time, known as the Rossby
Number (Ro; the inverse Rossby number is often referred to as the Coriolis
number):

Pcyc ∝
(

Prot

τc

)n

, n = 1.25 (267)

Recall from the discussion of the preceding chapter that this ratio is sup-
posed to measure the efficiency of the Coriolis force in breaking the mirror-
symmetry of convective turbulence, and thus producing a non-zero α-effect.
Recall also that the larger the dynamo number, the more magnetic energy
mean-field models can produce (viz. Fig. 28). So, in a rough qualitative sense,
observations seem to fit our (naive) theoretical expectations.
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In reality, there are of course significant complications to this highly sim-
plified picture. For example, coronal (X-Ray) and chromospheric (Ca H+K)
emission is observed to saturate as Ro falls below about 0.1, and even de-
creases a bit beyond Ro ∼ 10−2, although it not clear whether this reflects a
saturation of the emission mechanism, or of magnetic field generation by the
dynamo. The Prot vs Ro relationship becomes a lot tighter if stars for which
reliable cycle periods are known are first divided into “active” and “inactive”
subgroups on the basis of their overall level of Ca emission. Solar-like cyclic
activity is by no means the rule among solar-type stars, with only about 60%
of stars showing well-defined cycles, 25% showing aperiodic variations, and
the remaining 15% being “flatliners” with low level, constant chromospheric
emission. Indeed, the Sun has “twins”, i.e., main-sequence stars of closely
similar surface temperature, gravity and rotation rate, which do not show
any variability in chromospheric emission. An intriguing possibility is that
these stars just happened to have been caught in a Maunder Minimum-like
phase of suppressed cyclic activity.

0.37.1 Solar and stellar spin-down

Stellar observations indicate that there is evidently a lot more to dynamo
action than just rotation, nonetheless the latter is clearly a key factor. For
this reason, in any attempt to secure a coherent picture of dynamo action in
solar-type stars, an important global feedback mechanism of dynamo action
must first be considered: angular momentum loss, and its effect on stellar
rotation rates.

Although the existence of systematic differences between the average rota-
tion rates of early- and late-type stars was known already for nearly a hundred
years, observational evidence for main-sequence spin-down process of solar-
type stars was established much later. Figure 60 below is a reproduction of
a diagram put together by Robert Kraft in 1967, showing the distribution in
a HR diagram of projected equatorial rotational velocities (v sin i) measured
in a sample of field stars. As one runs down the main sequence, there oc-
curs a sharp drop in v sin i starting around spectral type F5. Slow rotation
is the rule on the cool side of this so-called rotational dividing line, while on
the hot side rapid rotation is common. Kraft went on to show that under
the assumption of solid-body rotation, in the interval 1.5 ∼< M/M¯ ∼< 20
observed rotation rates are consistent with a power-law dependence between
stellar angular momentum (J) and mass (M) of the form J ∝ M 1.57, which
abruptly breaks down below F5.

The decrease in the moment of inertia of stars associated with their con-
traction towards the main-sequence can easily account for ZAMS equatorial
rotational velocities of a few hundreds of kilometers per second. As was al-
ready understood then, the anomaly in Kraft’s diagram lay in fact with the
slowly-rotating low-mass stars. A most spectacular illustration that this is
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Fig. 60 Distribution of projected rotational velocities (v sin i) for main-sequence
stars, plotted in an observational HR diagram. Luminosity increases vertically up-
wards, and effective temperature horizontally leftward. Astronomical spectral types
are listed along the upper axis. Solid lines are stellar evolutionay tracks, labeled ac-
cording to mass in solar units. These tracks, particularly for M/M¯ ∼> 1.2, are now
somewhat obsolete. Diagram reproduced from Kraft, R. 1967, ApJ, 150, 551 (Figure
1, p. 558).

due to main-sequence spin-down and is associated with magnetism was pro-
vided in a short, now classical 1972 paper by Andrew Skumanich. Figure 61,
reproduced from this paper, illustrates the simultaneous and gradual decrease
of both the average rotation rates and magnetic activity for late-type stars
—as mesured by emission in the core of the Ca H and K lines— in a few open
clusters of known ages. Later observations focusing on young oclusters such
as αPersei and the Pleiades have revealed that main-sequence spin-down for
late-type stars is very swift, with the bulk of it completed in the first few
100Myr after arrival on the ZAMS.

The key in explaning main-sequence spin-down is the realisation that stars
with hot coronae lose mass through thermally-driven winds, and that the
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Fig. 61 Main-sequence temporal evolution of rotation rates, Calcium emission and
Lithium abundance in solar-type stars. Diagram reproduced from Skumanich, A.
1972, ApJ, 171, 565 (Figure 1, p. 566).

presence of a coronal magnetic field —ultimately of dynamo origin— turns
out to greatly enhance the loss of angular momentum in the wind. We first ex-
amine this issue, using a geometrically simple but dynamically self-consistent
MHD wind solution known as the Weber-Davis model.

Working under ideal MHD, we consider steady (∂/∂t = 0) spherically sym-
metric (∂/∂θ = ∂/∂φ = 0) outflow from a star rotating at angular velocity
Ω and characterized by a known surface radial component of the magnetic
field Br0. The coronal base temperature T (r0) ≡ T0 is considered given, and
the energy equation by assuming a polytropic relationship between pressure
and density. Outflow solutions are sought only in the equatorial plane, where
we also set Bθ = 0. This may smell of monopolar magnetic fields, but this
is actually a fair representation of the interplanetary magnetic field during
solar minimum conditions. Under these assumptions, mass continuity and
the ∇ ·B = 0 constraint yield two conservation statements for the mass and
magnetic flux across a spherical surface:

1

r2

∂

∂r
(r2ρur) = 0 , → r2ρur = C1 , (268)

1

r2

∂

∂r
(r2Br) = 0 → r2Br = C2 , (269)
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where C1 and C2 are integration constants, corresponding respectively to
the mass and magnetic flux carried by the wind. The φ-component of the
induction equation is also readily integrated to yield:

1

r

∂

∂r
(rurBφ − ruφBr) = 0 , → r(urBφ − uφBr) = C3 . (270)

To evaluate the integration constant C3 we transform to a reference frame
co-rotating with the star, i.e., uφ → u′

φ + Ωr, where the prime indicates
evaluation in the co-rotating frame. Note that this (non-relativistic) trans-
formation leaves the radial components of u and B unaffected. In that frame
B is stationary, and since we are working under the flux-freezing approxima-
tion u and B must be parallel: u′

r/u
′
φ = B′

r/B
′
φ. Since Br = B′

r, eq. (270)

yields C3 = −Ωr2Br, so that

Bφ =
Br

ur
(uφ − Ωr) . (271)

Now, under the geometry and flow symmetry considered here, the φ-components
of the momentum equation can be brought to the form:

∂

∂r
(ruφ) =

Br

µ0ρur

∂

∂r
(rBφ) ; (272)

but in view of eqs. (268) and (269), we have Br/µ0ρur = C2/µ0C1, i.e., a
constant! Consequently, eq. (272) integrates immediately to

ruφ − rBφBr

µ0ρur
= L , (273)

where L is yet another integration constant. It has a well-defined physical
meaning, as it corresponds to the total angular momentum carried away
by the wind, which is made up of two contributions: the specific angular
momentum of the expanding fluid (first term on LHS), and the torque den-
sity associated with magnetic tension. Using eq. (271) to substitute for Bφ,
and expressing the magnetic field components in terms of the corresponding
Alfvén velocity components (§0.10):

ar =
Br√
µ0ρ

, aφ =
Bφ√
µ0ρ

, (274)

produces, after some straightforward algebra:

uφ = Ωr
(u2

rL/Ωr2) − a2
r

u2
r − a2

r

. (275)

The denominator of this expression vanishes if if the radial flow velocity ever
becomes equal to the radial Alfvén speed, unless the numerator also happens
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to vanish. Regularity of the solution through this critial point then requires
that we set

L = Ωr2
A , (276)

where rA is the Alfvén radius, defining the spherical shell where ur = ar.
Now, remember that L is the total angular momentum carried away by the
wind, including the torque density provided by magnetic tension. Equation
(276) states that this is equal to the angular momentum that would be carried
away by an unmagnetized wind flowing strictly radially, and co-rotating with
the solar/stellar surface out to radius rA. This expression holds only in the
equatorial plane, where the WD solution is computed. The WD model can
be “stretched” to the whole sphere by assuming that a whole spherical shell
is co-rotating out to rA; this means replacing eq. (269) by:

Lsph =
2

3
Ωr2

A , (277)

where the factor 2/3 arises from the moment of inertia integral. The angular
momentum loss rate then follows directly from mutiplication by the mass loss
rate:

dJ

dt
= Ṁ × Lsph = −4πρAr2

AurA

(
2

3
Ωr2

A

)

. (278)

At the Alfvén radius we have urA = arA, with B2
rA = 4πρAa2

rA. Moreover,
conservation of magnetic flux implies r2

0Br0 = r2
ABrA. Putting all this into

eq. (278) leads to

dJ

dt
= −2

3
B2

r0r
4
0Ωa−1

rA . (279)

Knowing the stellar moment of inertia I and assuming rigid rotation through-
out the interior, the spin-down timescale is readily calculated:

τsp = IΩ

(
dJ

dt

)−1

. (280)

Now, for rotating magnetized winds that are mostly thermally driven, arA is
of the order of the sound speed (cs =

√

kT/µmp ∼ 105 m s−1 for a coronal
temperature of ∼ 106 K) to within a factor of two or so. If the coronal tem-
perature is held fixed, this means that the angular momentum loss rate is
only a function of the rotation rate and surface magnetic field strength. We
encountered in earlier chapters various lines of argument indicating that the
dynamo-generated magnetic field strength should increase with increasing ro-
tation rate, an expectation also buttressed by observations of chromospheric
activity in solar-type stars of varying rotation rates. If one assumes Br0 ∝ Ω,
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and for a fixed moment of inertia on the main-sequence (a very good approx-
imation, for a change...), eq. (278) then lead to

dΩ

dt
∝ Ω3 . (281)

This already indicates that faster rotating stars spin down a lot faster than
their more slowly rotating cousins, which provides a natural explanation for
the convergence of rotation rates observed at a given spectral types when
looking at stellar rotation in progressively older clusters. Now, eq. (281) read-
ily integrates to.

1

Ω2(t)
− 1

Ω2(t0)
∝ t − t0 , (282)

where t0 is the time of arrival on the ZAMS (or shortly thereabouts). In the
asymptotic limit t À t0, Ω ¿ Ω(t0), this becomes

Ω(t) ∝ t−1/2 , (283)

which, how about that, is precisely the power-law relationship inferred ob-
servationally by Skumanich (cf. Fig. 61). For the sun, with I ' 1054 CGS,
Ω = 2.6×10−6 rad s−1 and B0 ∼ 2G one finds a leasurely spin-down timescale
of about 5 Gyr; but in a “young sun” with a rotation period of 2 day and
B0 = 25G, this drops to a few 107 yr, indicating that rapidly rotating young
solar-type stars spin down swiftly after arriving on the ZAMS.

0.37.2 Modelling dynamo action in solar-type stars

The above discussion indicates that one could expect dynamo action to be
far more vigorous in young, rapidly rotating solar-type stars, and the good
fit of our spin-down model prediction with Skumanich’s t−1/2 relationship
even suggests a linear increase of magnetic field strength with rotation rate,
at least up to ∼ 10 times the present solar rotation if coronal X-Ray emission
can be taken as proxy of dynamo efficiency. Can such trends be convincingly
recovered from the various solar dynamo models introduced in chapter 3?
In practice, we are facing a number of difficulties in carrying out such an
“extrapolation” to stars other than the sun, with convection zones of greater
or lesser depths, and a range of rotation rates. At the very least we need to
be able to specify:

1. How the form and magnitude of differential rotation and meridional circu-
lation change with rotation rate and luminosity, the latter determining the
magnitude of convective velocities, and thus the magnitude of the turbu-
lent Reynolds stresses powering the large-scale flows important for dynamo
action;
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2. How the α-effect and turbulent diffusivities vary in stars with different
rotation rates and convection zone properties;

3. How the process of sunspot formation (essential in Babcock-Leighton mod-
els) vary with varying convection zone depth, rotation, etc.

It is quite sobering to reflect upon the fact that we currently do not have
theories or models allowing us to provide firm, quantitative and robust an-
swers to any of these questions. Moreover, the preceding two chapters should
have made it clear that even in the sun, we don’t really know for sure what
is the mechanism responsible for the regeneration of the poloidal magnetic
component. How then can we hope to go about modelling stellar dynamos
with anything resembling confidence? At this point in time I would argue
that we cannot. However, the problem can be turned around, in that stellar
observations can perhaps be used to distinguish between different classes of
dynamo models. The possibility hinges on features like the distinct depen-
dency of the cycle period on model parameters in various models. For the
simple α-quenched mean-field dynamo solutions discussed in §0.25.9, the (di-
mensionless) cycle period is, to a first approximation, independent on the
dynamo numbers (see Fig. 26B), so that the physical period scales primarily
as

Pcyc ∝ η−1 , [α−quenched αΩ model] (284)

where η is the assumed turbulent diffusivity. Mean-field models including
more complex form of nonlinearities produce produce more complex para-
metric dependencies, but a strong dependency on η always emerges. On the
other hand, in Babcock-Leighton dynamo models the cycle period is found to
be controlled primarily by the turnover time of the meridional flow cell, with
a much weaker dependency on the assumed value for the turbulent diffusivity.
For the specific “solar” model described in §0.26, the cycle period is found to
vary as:

Pcyc ∝ u−0.89
0 s−0.13

0 η−0.22 , [Babcock − Leighton] (285)

where u0 is the surface meridional flow speed (see Fig. 30, top left), and s0

is the parameter measuring the magnitude of the Babcock-Leighton source
term in eq. (244)49. Unfortunately, using this relationship in conjunction with
observed stellar cycle data requires one to specify how the meridional flow
speed varies with rotation, which currently remains highly uncertain on the
theoretical and simulation fronts. But this is a very promising avenue.

49 Note however that the above relation was calibrated in a relatively narrow range of
parameters: 2 ≤ u0 ≤ 30m s−1, 0.03 ≤ s0 ≤ 1m s−1, 2 × 106 ≤ η ≤ 5 × 107 m2s−1,
and is only expected to hold in the so-called advection-dominated regime; see the
paper by Dikpati & Charbonneau (1999) cited in the bibliography.
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0.38 Fully convective stars

We now move to the bottom end of the main-sequence, where stars become
fully convective around spectral type M5. Observationally, no obvious dis-
continuity is observed in X-Ray or Ca H+K emission as one moves into
spectral types M, and indeed some of the more active (single) flare stars
are fast rotators of very late spectral type. Yet with such fully convective
stars we certainly encounter potential deviations from a solar-type dynamo
mechanism; without a stably stratified tachocline and radiative core to store
and amplify toroidal flux ropes, the Babcock-Leighton mechanism (§0.26),
the tachocline α-effect and the flux-tube α-effect (§0.27) all becomes prob-
lematic. Mean-field models based on the turbulent α-effect remain viable in
principle, but the dynamo behavior becomes dependent on the presence and
strength of differential rotation, about which we really don’t know very much
in stars other than the sun.

One might have expected dynamo action in fully convective stars —either
in late-M main-sequence or pre-main sequence TTauri stars— to be a mere
variant on core dynamo action in massive stars, but in fact a number of
significant differences come into play, related to the physical conditions at
the boundary of the convecting sphere. Full-sphere MHD simulations 50 of
a “M-star in a box” by Dobler, Stix & Brandenburg (2006) are particularly
interesting in this respect. They indicate that vigorous dynamo action does
occur, with the magnetic energy at ∼ 20% of equipartition with the turbu-
lent fluid motions at low to moderate rotation, and reaching equipartition
at high rotation rates. The simulations are characterized by a very well-
defined, persistent spatial pattern of mean kinetic helicity, again negative in
N-hemisphere (see Fig. 62A). This leads to the production of a well-defined
large-scale magnetic component, with energy content going from some 20%
of the total magnetic energy at low rotation, up to ∼ 50% at high rotation
rates. The large-scale field has poloidal and toroidal components of compara-
ble strength, typical of mean-field α2 dynamos, and is often dominated by a
well-defined quadrupolar component (see Fig. 62B). Because the convecting
sphere cannot exchange angular momentum across its outer boundary (here
the stellar surface), differential rotation is much weaker than in the massive
star core dynamo simulations reviewed in §0.35.2), and is concentrated in the
vicinity of the rotation axis, as shown on Fig. 62C).

Much like in the core dynamo simulations briefly described in §0.35.2,
these simulations only reach moderate values of the viscous and magnetic
Reynolds numbers, many orders of magnitude below what one would expect
under stellar interior conditions. Nonetheless the important bottom line, once
again, is that production of magnetic field through dynamo action here also
appears inescapable.

50 The content of this section is based primarily on the paper by W. Dobler, M. Stix
& A. Brandenburg, ApJ, 638, 336 (2006)
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Fig. 62 Temporal+Azimuthal average of (A) kinetic helicity, (B) toroidal and
poloidal magnetic field, and (C) large-scale flows the toroidal magnetic field in a
complete MHD simulation (including overall structure) of a fully convective star in-
cluding central heat source and surface cooling. The gray scale codes kinetic helicity
in part (A), the toroidal magnetic component in (B), and the zonal flow component
in (C), gray to black (white) coding negative (positive) values. Figure adapted from
Dobler et al. 2006, ApJ, 638, 336 (Figure 5, p. 341, and Figure 10, p. 343).
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Appendix A: Useful identities and theorems from vector
calculus

A.1 Vector Identities

A · (B × C) = C · (A × B) = B · (C × A)

A × (B × C) = B(A · C) − C(A · B)

(A × B) × C = B(A · C) − A(B · C)

∇×∇f = 0

∇ · (∇× A) = 0

∇ · (fA) = (∇f) · A + f(∇ · A)

∇× (fA) = (∇f) × A + f(∇× A)

∇ · (A × B) = B · (∇× A) − A · (∇× B)

∇(A · B) = (B · ∇)A + (A · ∇)B + B × (∇× A) + A × (∇× B)

∇ · (AB) = (A · ∇)B + (B · ∇)A

∇× (A × B) = (B · ∇)A − (A · ∇)B − B(∇ · A) + A(∇ · B)

∇× (∇× A) = ∇(∇ · A) −∇2A
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The Gradient Theorem

For two points a, b in a space where a scalar function f with spatial deriva-
tives everywhere well-defined up to first order,

∫
b

a

(∇f) · d`̀̀̀ = f(b) − f(a) ,

independently of the integration path between a and b.

The Divergence Theorem

For any vector field A with spatial derivatives of all, its scalar components
everywhere well-defined up to first order,

∫

V

(∇ · A)dV =

∮

S

A · n̂ dS ,

where the surface S encloses the volume V .

A.4 Stokes’ theorem

For any vector field A with spatial derivatives of all, its scalar components
everywhere well-defined up to first order,

∫

S

(∇× A) · n̂ dS =

∮

γ

A · d`̀̀̀ ,

where the contour γ delimits the surface S, and the orientation of the unit
normal vector n̂ and direction of contour integration are mutually linked by
the right-hand rule.

Appendix B: Coordinate systems and the fluid
equations

This Appendix is adapted in part from Appendix B of the book by Jean-
Louis Tassoul entitled Theory of Rotating Stars (Princeton University Press,
1978), with a number of additions, including the MHD induction equation,
expressions for the operators u · ∇, ∇ × ∇×, and ∇2 acting on a vector
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field. Also, the Note that in sections 0.38.1.4 and 0.38.2.4, the quantities
in square brackets correspond to the components of the deformation tensor
Djk = (1/2)(∂juk + ∂kuj).

B.1 Cylindrical coordinates (s, φ, z)

Fig. 63 Geometric definition of cylindrical coordinates. The coordinate ranges are
s ∈ [0,∞], φ ∈ [0, 2π], z ∈ [−∞,∞]. The cylindrical radius s is measured perpendic-
ularly from the cartesian z-axis. The zero point of the azimuthal angle φ is on the
cartesian x-axis. The local unit vector triad is oriented such that êz = ês × êφ.

B.1.1 Conversion to cartesian coordinates

x = s cos φ , y = s sin φ , s =
√

x2 + y2 , φ = atan(y/x) , z = z .
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êx = cos φês − sinφêφ , êy = sin φês + cos φêφ ,

ês = cos φêx + sinφêy , êφ = − sin φêx + cos φêy , êz = êz .

B.1.2 Infinitesimals

d`̀̀̀ = dsês + sdφêφ + dzêz

dV = sdsdφdz

B.1.3 Vector operators

D

Dt
=

∂

∂t
+ us

∂

∂s
+

uφ

s

∂

∂φ
+ uz

∂

∂z

∇f =
∂f

∂s
ês +

1

s

∂f

∂φ
êφ +

∂f

∂z
êz

(u · ∇)A =

(

u · ∇As −
uφAφ

s

)

ês +

(

u · ∇Aφ +
uφAs

s

)

êφ + (u · ∇Az) êz

∇ · A =
1

s

∂

∂s
(sAs) +

1

s

∂Aφ

∂φ
+

∂Az

∂z

∇× A =

(
1

s

∂Az

∂φ
− ∂Aφ

∂z

)

ês +

(
∂As

∂z
− ∂Az

∂s

)

êφ +
1

s

(
∂(sAφ)

∂s
− ∂As

∂φ

)

êz

∇2 =
1

s

∂

∂s

(

s
∂

∂s

)

+
1

s2

∂2

∂φ2
+

∂2

∂z2

∇2A =

(

∇2As −
As

s2
− 2

s2

∂Aφ

∂φ

)

ês +

(

∇2Aφ − Aφ

s2
+

2

s2

∂As

∂φ

)

êφ +
(
∇2Az

)
êz
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B.1.4 The divergence of a second-order tensor

[∇ · T]s =
1

s

∂(sTss)

∂s
+

1

s

∂Tφs

∂φ
+

∂Tzs

∂z
− Tφφ

s

[∇ · T]φ =
1

s

∂sT(sφ)

∂s
+

1

s

∂Tφφ

∂φ
+

∂Tzφ

∂z
+

Tφs

s

[∇ · T]z =
1

s

∂(sTsz)

∂s
+

1

s

∂Tφz

∂φ
+

∂Tzz

∂z

B.1.5 Components of the viscous stress tensor

τss = 2µ

[
∂us

∂s

]

+ (µϑ − 2

3
µ)∇ · u

τφφ = 2µ

[
1

s

∂uφ

∂φ
+

us

s

]

+ (µϑ − 2

3
µ)∇ · u

τzz = 2µ

[
∂uz

∂z

]

+ (µϑ − 2

3
µ)∇ · u

τsφ = τφs = 2µ

[
1

2

(
1

s

∂us

∂φ
+ s

∂

∂s

uφ

s

)]

τφz = τzφ = 2µ

[
1

2

(
∂uφ

∂z
+

1

s

∂uz

∂φ

)]

τzs = τsz = 2µ

[
1

2

(
∂uz

∂s
+

∂us

∂z

)]

B.1.6 Equations of motion
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ρ

(

Dus

Dt
−

u2
φ

s

)

= −ρ
∂Φ

∂s
− ∂p

∂s
+

Bz

µ0

(
∂Bs

∂z
− ∂Bz

∂s

)

− Bφ

µ0s

(
∂(sBφ)

∂s
− ∂Bs

∂φ

)

+
1

s

∂

∂s
(sτss) +

1

s

∂τsφ

∂φ
+

∂τsz

∂z
− τφφ

s

ρ

(
Duφ

Dt
− uφus

s

)

= −ρ

s

∂Φ

∂φ
− 1

s

∂p

∂φ
+

Bs

µ0s

(
∂(sBφ)

∂s
− ∂Bs

∂φ

)

− Bz

µ0

(
1

s

∂Bz

∂φ
− ∂Bφ

∂z

)

+
1

s

∂

∂s
(sτφs) +

1

s

∂τφφ

∂φ
+

∂τφz

∂z
+

τsφ

s

ρ
Duz

Dt
= −ρ

∂Φ

∂z
− ∂p

∂z
+

Bφ

µ0

(
1

s

∂Bz

∂φ
− ∂Bφ

∂z

)

− Bs

µ0

(
∂Bs

∂z
− ∂Bz

∂s

)

+
1

s

∂

∂s
(sτzs) +

1

s

∂τzφ

∂φ
+

∂τzz

∂z

B.1.7 The energy equation

ρT
Ds

Dt
= Φu + +Φη +

1

s

∂

∂s

[

χs
∂T

∂s

]

+
1

s2

∂

∂φ

[

χ
∂T

∂s

]

+
∂

∂z

[

χ
∂T

∂z

]

Φu = 2µ(D2
ss + D2

φφ + D2
zz + 2D2

sφ + 2D2
φz + 2D2

zs) + (µϑ − 2

3
µ)(∇ · u)2

Φη =
η

µ0

[(
1

s

∂Bz

∂φ
− ∂Bφ

∂z

)2

+

(
∂Bs

∂z
− ∂Bz

∂s

)2

+
1

s2

(
∂(sBφ)

∂s
− ∂Bs

∂φ

)2
]

B.1.8 The MHD induction equation

∂Bs

∂t
=

1

s

∂

∂φ
(usBφ − uφBs) −

∂

∂z
(uzBs − usBz)

− 1

s2

∂η

∂φ

(
∂(sBφ)

∂s
− ∂Bs

∂φ

)

+
∂η

∂z

(
∂Bs

∂z
− ∂Bz

∂s

)

+ η

(

∇2Bs −
Bs

s2
− 2

s2

∂Bφ

∂φ

)
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∂Bφ

∂t
=

∂

∂z
(uφBz − uzBφ) − ∂

∂s
(usBφ − uφBs)

−∂η

∂z

(
1

s

∂Bz

∂φ
− ∂Bφ

∂z

)

+
1

s

∂η

∂s

(
∂(sBφ)

∂s
− ∂Bs

∂φ

)

+ η

(

∇2Bφ − Bφ

s2
+

2

s2

∂Bs

∂φ

)

∂Bz

∂t
=

1

s

∂

∂s
(suzBs − susBz) −

1

s

∂

∂φ
(uφBz − uzBφ)

−∂η

∂s

(
∂Bs

∂z
− ∂Bz

∂s

)

+
1

s

∂η

∂φ

(
1

s

∂Bz

∂φ
− ∂Bφ

∂z

)

+ η
(
∇2Bz

)

B.2 Spherical coordinates (r, θ, φ)

B.2.1 Conversion to cartesian coordinates

x = r sin θ cos φ , y = r sin θ sin φ , z = r cos θ .

r =
√

x2 + y2 + z2 , θ = atan(
√

x2 + y2/z) , φ = atan(y/x) .

êx = sin θ cos φêr + cos θ cos φêθ − sin φêφ ,

êy = sin θ sin φêr + cos θ sinφêθ + cos φêφ ,

êz = cos θêr − sin θêθ .

êr = sin θ cos φêx + sin θ sin φêy + cos θêz ,

êθ = cos θ cos φêx + cos θ sinφêy − sin θêz ,

êφ = − sin φêx + cos φêy .
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Fig. 64 Geometric definition of polar spherical coordinates. The coordinate ranges
are r ∈ [0,∞], θ ∈ [0, π], φ ∈ [0, 2π]. The zero point of the azimuthal angle φ is
on the cartesian x-axis and the zero point of the polar angle θ (sometimes called
colatitude) is on the cartesian z-axis. Note that in so-called geographical coordinates,
longitude ≡ φ, but latitude ≡ π/2 − θ. The local unit vector triad is oriented such
that êr = êθ × êφ.

B.2.2 Infinitesimals

d`̀̀̀ = drêr + rdθêθ + r sin θdφêφ

dV = r2 sin θ dr dθ dφ

B.2.3 Operators

D

Dt
=

∂

∂t
+ ur

∂

∂r
+

uθ

r

∂

∂θ
+

uφ

r sin θ

∂

∂φ
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∇f =
∂f

∂r
êr +

1

r

∂f

∂θ
êθ +

1

r sin θ

∂f

∂φ
êφ

(u · ∇)A =

(

u · ∇Ar −
uθAθ

r
− uφAφ

r

)

êr

+

(

u · ∇Aθ −
uφAφ

r
cot θ +

uθAr

r

)

êθ +

(

u · ∇Aφ +
uφAr

r
+

uφAθ

r
cot θ

)

êφ

∇ · A =
1

r2

∂

∂r
(r2Ar) +

1

r sin θ

∂(Aθ sin θ)

∂θ
+

1

r sin θ

∂Aφ

∂φ

∇× A =
1

r sin θ

(
∂(Aφ sin θ)

∂θ
− ∂Aθ

∂φ

)

êr

+
1

r sin θ

(
∂Ar

∂φ
− ∂(Aφr sin θ)

∂r

)

êθ +
1

r

(
∂(rAθ)

∂r
− ∂Ar

∂θ

)

êφ

∇2 =
1

r2

∂

∂r

(

r2 ∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

∇2A =

(

∇2Ar −
2Ar

r2
− 2

r2 sin θ

∂Aθ sin θ

∂θ
− 2

r2 sin θ

∂Aφ

∂φ

)

êr

+

(

∇2Aθ +
2

r2

∂Ar

∂θ
− Aθ

r2 sin2 θ
− 2 cos θ

r2 sin2 θ

∂Aφ

∂φ

)

êθ

+

(

∇2Aφ +
2

r2 sin θ

∂Ar

∂φ
+

2 cos θ

r2 sin2 θ

∂Aθ

∂φ
− Aφ

r2 sin2 θ

)

êφ

B.2.4 The divergence of a second-order symmetric tensor

[∇ · T]r =
1

r2

∂(r2Trr)

∂r
+

1

r sin θ

∂(Tθr sin θ)

∂θ
+

1

r sin θ

∂Tφr

∂φ
− Tθθ + Tφφ

r
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[∇ · T]θ =
1

r2

∂(r2Trθ)

∂r
+

1

r sin θ

∂(Tθθ sin θ)

∂θ
+

1

r sin θ

∂Tφθ

∂φ
+

Tθr

r
− Tφφ cot θ

r

[∇ · T]φ =
1

r2

∂(r2Trφ)

∂r
+

1

r sin θ

∂(Tθφ sin θ)

∂θ
+

1

r sin θ

∂Tφφ

∂φ
+

Tφr

r
+

Tφθ cot θ

r

B.2.5 Components of the viscous stress tensor

τrr = 2µ

[
∂ur

∂r

]

+ (µϑ − 2

3
µ)∇ · u

τθθ = 2µ

[
1

r

∂uθ

∂θ
+

ur

r

]

+ (µϑ − 2

3
µ)∇ · u

τφφ = 2µ

[
1

r sin θ
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+
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]
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τrθ = τθr = 2µ
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1

2
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1

r

∂ur
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∂

∂r
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r
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τθφ = τφθ = 2µ
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1

2
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1
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r

∂

∂θ
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τφr = τrφ = 2µ
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1

2

(

r
∂

∂r

uφ
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+

1

r sin θ

∂ur

∂φ
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B.2.6 Equations of motion

ρ

(
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Dt
−

u2
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φ

r

)

= −ρ
∂Φ

∂r
− ∂p
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+

Bφ
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∂Br
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ρ
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Duθ
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+
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−
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r

∂Φ

∂θ
− 1

r

∂p

∂θ
+

Br

µ0r

(
∂(rBθ)

∂r
− ∂Br

∂θ

)

− Bφ

µ0r sin θ

(
∂(Bφ sin θ)

∂θ
− ∂Bθ

∂φ

)

+
1

r sin θ

[
sin θ

r

∂

∂r
(r2τθr) +

∂

∂θ
(τθθ sin θ) +

∂τθφ

∂φ

]

+
τrθ

r
− τφφ cot θ

r

ρ

(
Duφ

Dt
+

uruφ

r
+

uθuφ cot θ

r

)

= − ρ

r sin θ

∂Φ

∂φ
− 1

r sin θ

∂p

∂φ

+
Bθ

µ0r sin θ

(
∂(Bφ sin θ)

∂θ
− ∂Bθ

∂φ

)

− Br

µ0r sin θ

(
∂Br

∂φ
− ∂(Bφr sin θ)

∂r

)

+
1

r sin θ

[
sin θ

r

∂

∂r
(r2τφr) +

∂

∂θ
(τφθ sin θ) +

∂τφφ

∂φ

]

+
τrφ

r
+

τθφ cot θ

r

B.2.7 The energy equation

ρT
Ds

Dt
= Φu + Φη +

1

r2

∂

∂r

[

χr2 ∂T

∂r

]

+
1

r2 sin θ

∂

∂θ

[

χ sin θ
∂T

∂θ

]

+
1

r2 sin2 θ

∂

∂φ

[

χ
∂T

∂φ

]

Φu = 2µ(D2
rr + D2

θθ + D2
φφ + 2D2

rθ + 2D2
θφ + 2D2

φr) + (µϑ − 2

3
µ)(∇ · u)2

Φη =
η

µ0r2 sin2 θ

[(
∂(Bφ sin θ)

∂θ
− ∂Bθ

∂φ

)2

+

(
∂Br

∂φ
− ∂(Bφr sin θ)

∂r

)2

+ sin2 θ

(
∂(rBθ)

∂r
− ∂Br

∂θ

)2
]

B.2.8 The MHD induction equation

∂Br

∂t
=

1

r sin θ

[
∂

∂θ
(sin θ (urBθ − uθBr)) −

∂

∂φ
(uφBr − urBφ)

]

− 1

r2

∂η

∂θ

(
∂(rBθ)

∂r
− ∂Br

∂θ

)

+
1

r2 sin2 θ

∂η

∂φ

(
∂Br

∂φ
− ∂(Bφr sin θ)

∂r

)

+ η

(

∇2Br −
2Br

r2
− 2

r2 sin θ

∂(Bθ sin θ)

∂θ
− 2

r2 sin θ

∂Bφ

∂φ

)
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∂Bθ

∂t
=

1

r sin θ

∂

∂φ
(uθBφ − uφBθ) −

1

r

∂

∂r
(rurBθ − ruθBr) −

1

r2 sin2 θ

∂η

∂φ

(
∂(Bφ sin θ)

∂θ
− ∂Bθ

∂φ

)

+
1

r

∂η

∂r

(
∂(rBθ)

∂r
− ∂Br

∂θ

)

+ η

(

∇2Bθ +
2

r2

∂Br

∂θ
− Bθ

r2 sin2 θ
− 2 cos θ

r2 sin2 θ

∂Bφ

∂φ

)

∂Bφ

∂t
=

1

r

[
∂

∂r
(ruφBr − rurBφ) − ∂

∂θ
(uθBφ − uφBθ)

]

− 1

r sin θ

∂η

∂r

(
∂Br

∂φ
− ∂(Bφr sin θ)

∂r

)

+
1

r2 sin θ

∂η

∂θ

(
∂(Bφ sin θ)

∂θ
− ∂Bθ

∂φ

)

+ η

(

∇2Bφ +
2

r2 sin θ

∂Br

∂φ
+

2 cos θ

r2 sin2 θ

∂Bθ

∂φ
− Bφ

r2 sin2 θ

)
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Appendix C: Physical and astronomical constants

C.1 Physical constants

C.2 Astronomical constants

Apendix D: Maxwell’s equations and physical units

Electromagnetism is, unfortunately, a subfield of physics where the choice of
units does not only influence the numerical values assigned to measurements,
but also the mathematical form of the fundamental laws, i.e., Maxwell’s equa-
tions.
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Physical Quantity Symbol Value Units (SI)

Charge of electron e 1.602 × 10−19 C
Mass of electron me 9.109 × 10−31 kg
Mass of proton mp 1.673 × 10−27 kg
Permittivity of vacuum ε0 8.854 × 10−12

Permeability of vacuum µ0 4π × 10−7

Speed of light c 2.998 × 108 m s−1

Planck constant h 6.626 × 10−34 J s
Boltzmann constant h 1.381 × 10−23 J K−1

Stefan-Boltzmann constant σ 5.670 × 10−Y Y J K−4m−2s−1

Gravitational constant G 6.671 × 10−11 m3kg−1s−2

Astronomical Quantity Symbol Value Units (SI)

Earth mass M⊕ 5.977 × 1024 kg
Earth radius R⊕ 6.378 × 106 m
Astronomical Unit AU 1.496 × 1011 m
Solar mass M¯ 1.989 × 1030 kg
Solar radius R¯ 6.960 × 108 m
Solar luminosity L¯ 3.83 × 1026 J s−1

Parsec pc 3.086 × 1016 m
Light-year ly 9.461 × 1015 m

D.1 Maxwell’s equations

The whole mess in converting SI units to the astrophysically ubiquitous CGS
units all harks back to the definition for the unit of charge, as embodied in
Coulomb’s Law. Under the SI system we write the electrostatic force between
two charges q1 and q2 located at positions x1 and x2 as

F =
1

4πε0

q1q2

r2
r̂ , [SI] , (286)

with electrical charge measured in coulomb, and with r ≡ x1 − x2 for no-
tational brevity. whereas under the CGS system the constant 1/4πε0 is ab-
sorbed into the definition of the unit of charge:

F =
q1q2

(x1 − x2)2
[CGS] , (287)

with electrical charge now measured in “electrostatic units”, abbreviated
“esu” and sometimes also called “statcoulomb”. It electrostatics it is rela-
tively easy to switch from CGS to SI with the simple substitution ε0 →
1/(4π). With electrical currents now measured in esu s−1 in the CGS system,
and remembering that c2 = (ε0µ0)

−1, the µ0/4π prefactor in the Biot-Savart
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Law now becomes 1/c:

B =
1

c

∫
d`̀̀̀ × r

r2
, [CGS] , [Biot − Savart] (288)

If you then now go through the process of re-constructing Maxwell’s equa-
tions under these two new forms for the fundamental relations (electric and
magnetic forces), you eventually get to

∇ · E = 4πρe , [Gauss′ Law] (289)

∇ · B = 0 , [Anonymous] (290)

∇× E = −1

c

∂B

∂t
, [Faraday′s Law] (291)

∇× B =
4π

c
J +

1

c

∂E

∂t
, [Ampere/Maxwell′s Law)] (292)

In some sense, the CGS system is perhaps more “natural”, as it omits the
introduction of new, apparently fundamental physical constants ε0 and µ0,
to simply stick with the speed of light c, the only price to pay being an
extraneous factor 4π in Gauss’ Law. The Lorentz force and Poynting vector
become, in CGS units:

F = q(E +
1

c
u × B) [Lorentz Force] (293)

S =
c

4π
(E × B) [Poynting] (294)

and the electrostatoic and magnetic energies:

Ee =
1

8π

∫

E2dV , (295)

EB =
1

8π

∫

B2dV . (296)
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D.2 Conversion of units

The Table that follows gives you the conversion factor (f) required to go
from SI to cgs units, i.e., SI Unit = f × cgs units. Any “3” appearing in a
given value for f is a notational shortcut for 2.99792458.

Table 4 Conversion between SI ands CGS units

Quantity SI name SI symbol conversion factor f CGS name CGS symbol

Length meter m 102 centimeter cm
Mass kilogram kg 103 gram g
Force newton N 105 dyne dyne
Energy joule J 107 erg erg
Charge coulomb C 3 × 109 electrostatic units esu
Current ampere A 3 × 109 statampere esu s−1

Potential volt V 1/300 statvolt statvolt
Electric field — V m−1 (1/3)×10−4 — statvolt cm−1

Magnetic field tesla T 104 gauss G
Magnetic flux weber Wb 108 maxwell Mx

For a somewhat humourous close to this rather dry Appendix, here are
five different ways, actually to be found in various textbooks or research
monographs, to express teslas in terms of other fundamental SI units:

1T = 1
V s

m2
= 1

N

Am
= 1

kg

A s2
= 1

Wb

m2
= 1

kg

C s
. (297)
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