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12900 Édouard-Montpetit, Montréal, Québec, Canada H3T 1J4
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– 2 –

ABSTRACT

We present a numerical simulation of the formation and evolution of the solar

photospheric magnetic network over a full solar cycle. The model exhibits realis-

tic behavior inasmuch as it produces large, unipolar concentrations of flux in the

polar caps, a power-law flux distribution with index −1.69, a flux replacement

timescale of 19.3 h, and supergranule diameters of 20 Mm. The polar behavior

is especially telling of model accuracy, as it results from lower-latitude activity,

and accumulates the residues of any potential modeling inaccuracy and oversim-

plification. In this case, the main oversimplification is the absence of a polar sink

for the flux, causing an amount of polar cap unsigned flux larger than expected

by almost one order of magnitude. Nonetheless, our simulated polar caps carry

the proper signed flux and dipole moment, and also show a spatial distribution of

flux in good qualitative agreement with recent high-latitude magnetographic ob-

servations by Hinode. After the last cycle emergence, the simulation is extended

until the network has recovered its quiet Sun initial condition. This permits an

estimate of the network relaxation time towards the baseline state characterizing

extended periods of suppressed activity, such as the Maunder Grand Minimum.

Our simulation results indicate a network relaxation time of 2.9 yr, setting at

October 2011 at the soonest the time after which the last solar activity minimum

could have qualified as a Maunder-type Minimum. This suggests that photo-

spheric magnetism did not reach its baseline state during the recent extended

minimum between cycles 23 and 24.

Subject headings: Sun: surface magnetism, photosphere, activity
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1. Introduction

The Sun, like all stars, is magnetic. Its observed photospheric magnetism covers several

scales in flux, from sunspots reaching 1023 Mx, to faculae, ephemeral regions, the network,

all the way down to the inter-network (1016−17 Mx), at the resolution limit of current

observations (see de Wijn et al. 2009, and references therein). These scales reflect in part

the emergence from subphotospheric layers, but they are also coupled by flux reprocessing

caused by surface flows: small flux concentrations aggregate, sunspots and large flux

concentrations fragment and decay, releasing magnetic flux in the photosphere, contributing

to the buildup of faculae and active network (Martin 1988, Schrijver et al. 1997, Simon et

al. 2001, Krijger & Roudier 2003).

The photospheric magnetic network is made up of a disjoint assemblage of magnetic

flux concentrations, found predominantly at the vertices of adjacent supergranular cells.

It represents one of the smallest magnetic flux and length scales currently resolvable on

the Sun. Its baseline emissivity contributes to the total solar irradiance (TSI) even in the

absence of active regions. It plays a significant role in determining the solar total and

spectral irradiance, and, in particular, represents a crucial contribution during extended

periods of suppressed magnetic activity, such as the seventeenth century Maunder Minimum,

or the recent extended low-activity epoch having preceded the onset of cycle 24.

Because of the wide range of scales involved between the largest active regions (50

Mm and 1023 Mx (Foukal 2004, p. 234)) and the network elements (1-10 Mm and 1018−19

Mx (Martin et al. 1988; de Wijn 2009)), global simulations of the solar magnetic activity

cycle have seldom taken the network explicitly into account (Wang, Nash & Sheeley 1989a,

1989b, Schrijver et al. 2002), or have treated it only statistically as a population (Schrijver

et al. 1997, Schrijver 2001). Consequently, the interaction of individual network elements
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with one another and between network elements and other larger magnetic structures has

so far been left out of full-sphere photospheric flux evolution models. On the other hand,

such interactions have been treated in local models “resolving” only a small portion of the

solar surface. (Parnell 2001, Simon et al. 2001, Rast 2003, Crouch et al. 2007, Cranmer

& van Ballegooijen 2010, Meyer et al. 2011). These processes are highly non-linear, with

smaller structures aggregating to form larger ones, and larger structures disintegrating into

smaller ones, making models complex and computationally demanding.

The interactions of network elements are driven by the small-scale surface flows

(granulation, supergranulation) which displaces elements, leading to surface processes

of emergence, coalescence, cancellation, fragmentation, and submergence, and local

amplification/regeneration by fast dynamo action. Properties of the magnetic network are

thus influenced by the surface flows via the surface interactions.

The magnetic network can be physically characterized through properties such as

its distributions of magnetic flux, filling factor, distance between network elements, etc.

How these properties vary over the solar activity cycle has remained difficult to establish

observationally, with many studies yielding contradictory results. What is now established

beyond doubt is that the situation is far more complex than simple in-phase variations.

The network’s filling factor does vary in phase with the activity cycle, increasing by

almost a factor of four between minimum and maximum (Hagenaar et al. 2003). The flux

distribution of the magnetic concentrations, including the network elements, is found to be

constant by Parnell et al. (2009), while Hagenaar et al. (2003) find that the distribution of

larger fluxes varies in phase with the activity cycle, and that only magnetic elements with

flux ≤ 1019 Mx retain a constant distribution. The supergranular size, which sets the spatial

scale of the network, increases with solar activity according to McIntosh et al. (2011),
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while Meunier et al. (2008) find a decrease in size. Photospheric unsigned magnetic flux

varies with the activity cycle (Wang et al. 2005), and so does hemispheric signed flux, with

opposite magnetic polarities dominating in opposite hemispheres. The dominant polarity

of an hemisphere is the same as the trailing polarity in that hemisphere’s active regions, in

agreement with Hale’s law. Globally, the opposite polarities just about cancel out so that

net polarity remains close to zero, as expected from the solenoidal constraint ∇ · B = 0

applied to the complete solar surface.

Latitudinal variations of the network’s properties are still little known. While the

magnetic filling factor varies in time, Ishikawa et al. (2010) found that at a given phase

of the cycle it remains the same at all latitudes (Ishikawa et al. 2010). According to

Rimmele & Schroter (1989), smaller supergranules are found around active latitudes, so

that the spatial dependence is also time-dependent, due to the drift of active regions from

mid-latitudes to the equator as the cycle progresses. Some ranges of flux are found to be

typically correlated with active regions and show a similar butterfly diagram, and other

flux ranges are found to be anticorrelated, and show a very different butterfly diagram (Jin

& Wang 2012). The magnetic network’s general behavior thus seems related to the solar

activity cycle, although it remains uncertain whether it is the baseline network that varies,

or the part of the network fed by the disintegration of active regions, or both.

Observationally, the decomposition of the network into cyclic component and base-

line level is difficult, complicating the modelling of the network’s contribution to solar

activity and TSI, even though the correlation between changes in network coverage and

changes in the solar irradiance is well established (Foukal & Lean 1988). Recent findings

show that the network’s contribution to TSI per unit area strays from linearity at low

activity levels, increasing by a factor of 2-4 compared with active region faculae (Foukal
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et al. 2011). Low activity levels are of particular interest because they are the ones for

which the reconstructed TSI departs from the solar activity indices used in long-term

reconstructions (Tapping et al. 2007, Tapping & Valdes 2011).

The level and nature of solar activity in the absence of sunspots and active regions

is also uncertain. There is evidence that absence of sunspots does not mean cessation

of solar activity: solar eruptions and the interplanetary magnetic field strength both

show a cyclic pattern with a period similar to sunspots, and modulate the production

of cosmogenic isotopes such as 10Be; the time series for 10Be shows uninterrupted cyclic

activity during the Maunder minimum (Beer 2000). The physical nature of this residual

cyclic activity remains unknown. The recent 2007-2009 extended minimum in solar

activity raised several questions, notably: how long does it take the Sun to return to

its baseline activity level after the end of active region emergence, such as seen during

long minima? Based on the overall constancy of activity measurements observed in

2009 throughout the unusually long minimum between cycles 23 and 24, during which

sunspots all but failed to emerge for nearly 21 months, Schrijver et al. (2011) suggested that

the Sun had reached its baseline state, similar to its condition during the Maunder Minimum.

An evolutionary model for the network, covering up to global spatial scales and ac-

tivity cycle, can provide useful insights towards this question. In this paper we present

one such model, and its application to sunspot cycle 21 (1976–1986), a cycle for which

detailed information is available regarding the location, flux and magnetic polarity of

emerging sunspots and active regions. This surface flux evolution model, described in

Crouch et al. (2007) and Thibault et al. (2012; hereafter Paper I), captures the interaction

of photospheric network elements as a diffusion-limited aggregation process, subjected to

photospheric flux input by emergence and decay of active regions. An overview of the
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model is presented in §2 herein. In Paper I we showed that it successfully reproduces the

observed power-law form and logarithmic index of the network flux distribution. We could

also show that the form of this distribution is rapidly established through surface processes,

so that “memory” of the injection scale is rapidly erased. However, by performing distinct

simulations with or without injection of active regions, we could also show that the value

of the power-law index for the flux distribution is influenced by the presence or absence

of active region injection, going from −1.69 in the former case, up to −2.10 in the latter.

This indicates that network properties are indeed influenced by the activity cycles, and

motivates the present study, which spans a full solar cycle in order to examine in detail the

dependence of network properties on latitude and phase of the global activity cycle (§3).

We then focus in §4 on the properties and evolution of the polar cap magnetic flux, as a key

test on the degree of realism (or lack thereof) of our simulation extended over a solar cycle

timescale. We then extend our simulation in §5 with the goal of estimating the relaxation

time of the network, i.e., the time required for the network properties to return to their

baseline level following the end of active regions emergence at the end of an activity cycle.

2. The network model

Our surface magnetic flux evolution model is described in detail in Crouch et al. (2007)

and Paper I; what follows is an overview of its most salient aspects. The model is a Monte

Carlo process of diffusion-limited aggregation (DLA) on a spherical surface, where the basic

dynamical unit consists of elementary magnetic flux tubes, each assumed to carry the same

flux of 1017 Mx, consistent with current high resolution magnetographic observations. The

latter have a resolution limit in the range 1016—1017 Mx (de Wijn et al. 2009). Individual

tubes, and clusters thereof, undergo a random walk under the influence of the granular

flow. The basic step length and time interval of the random walk is set here at 1.7 Mm and
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30 min, somewhat larger than granular scales, in order to permit cycle-length simulations

in a reasonable amount of computing time (see Paper I). Tubes are treated as point

particles, are assigned a positive or negative magnetic polarity, and undergo clustering or

cancellation when they come within an interaction distance di = 0.34 Mm of one another.

Solar-like differential rotation and poleward meridional flow are also included and contribute

a temporally steady displacement of tubes and clusters. Individual tubes are injected

randomly all over the photosphere, while tubes and clusters undergo random submergence

at a size-dependent rate. In Crouch et al. (2007) the various parameters in this model

were adjusted to yield a best fit to the observed spatial distribution and probability density

function of magnetic flux; these optimal parameter values also yield a flux reprocessing time

in the quiet Sun commensurate with observations, even though this quantity was not used

to constrain the fit (see Paper I, §2.2, for further discussion).

As in Paper I, the simulations reported upon herein also include the injection of

magnetic flux in the form of active regions. We opted to use the Wang and Shee-

ley sunspot database for cycle 21, which covers emergences from 1976 August 16 to

1986 April 5, for 9.63 years worth of data. All the active regions with unsigned flux

≥ 2 × 1020 Mx that emerged during that cycle were included, with their time, latitude and

longitude of first appearance, maximum (initial) magnetic flux and —importantly for our

purposes— polarity of leading spot (see Fig. 1). There are 3047 such entries in the database.

Injected sunspots undergo decay through boundary erosion, releasing elementary

flux at a rate proportional to their radius (see Paper I, §2.3). These are carried radially

away from the spot by a specified moat flow, as they gradually begin their random

walk and interaction with other tubes and aggregates. This procedure is equivalent to

a sunspot disintegration rate proportional to A/T , where A is their maximum area and
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T their lifetime, in agreement with the Gnevyshev-Waldmeier law (see Petrovay & Van

Driel-Gesztelyi 1997; also eq. (4) of Paper I). This boundary erosion process operates until

all the spot’s magnetic flux has been released as elementary tubes.

Fig. 1.— Unsigned flux injection from active regions per trimester for cycle 21, from the

Wang and Sheeley active region database. For the purpose of this plot, the Southern hemi-

sphere unsigned flux is (arbitrarily) plotted as negative. The surface flux evolution through-

out cycle 21 has been extensively analysed and modeled by these authors (Wang & Sheeley

1989, 1991, 1994; Wang et al. 1989a, 1989b, 2002), and so allows a detailed testing and

validation of our own modelling approach. The first cycle 21 active region appearance is

on 1976 August 16, and the last takes place on 1986 April 5. The total unsigned magnetic

flux injected in the Northern and Southern hemisphere is 1.10 × 1025 Mx and 1.08 × 1025,

respectively.

Our Monte Carlo surface flux evolution model represents an extreme simplification of

the magnetohydrodynamical (MHD) processes driving solar photospheric magnetic flux

evolution. With the modelled system spanning some five orders of magnitude in length
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scale, six orders of magnitude in timescale, and six orders of magnitude in magnetic flux

scale, a formal MHD treatment is clearly ruled out. Even our highly simplified model

remains computationally challenging. The simulations typically involve the tracking of

Nt ∼ 107 flux tubes at any given time, every pair of which needing to be tested for

interaction with neighbours at every time step, during ≃ 2 × 105 time steps. The direct

approach, calculating each pair of distance, scaling as N2
t would be clearly impractical (as

well as wasteful).

We opted to make use of a tiling algorithm appropriate for N-body simulations (Allen

& Tildesley 1990; Mattson & Rice 1999), which leads to order-of-magnitude savings in

computing time. To find interactions between flux tubes we loop only over neighbouring

tiles within the interaction distance. The tile size is chosen as a function of the interaction

distance and the number of flux tubes in the simulation to minimize the computing time.

The number of tiles per latitude band varies from the equator to the poles, with only one

tile at each pole (Figure 2).

Fig. 2.— Subdivision of the simulation domain with tiles, shown on a latitude-longitude

projection.
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Flux tubes are stored in linked lists according to the tile where they belong and their

polarity, to avoid testing for cancellation of same-polarity tubes or clustering of opposite-

polarity tubes. A further optimization that greatly reduces the simulation time is the

merging of same-polarity flux tubes in a special cluster considered as a particle when the

distance between the tubes gets smaller than 0.01 times the interaction distance. The

polarity of this cluster is simply the sum of the fluxes of the merged tubes. We limit the

number of flux tubes that can thus merge to 100. The interaction algorithm starts by

merging flux tubes of the same polarity, then it proceeds with cancellation of flux tubes of

opposite polarity within the interaction distance. Finally, it creates clusters with remaining

tubes of the same polarity within the interaction distance. Even with these optimizations,

one time step ends up requiring ≃ 2.5 core-minutes, adding up to 1.5 core-years for the

cycle-length simulations discussed in what follows.

3. Simulated evolution of the magnetic cycle over cycle 21

3.1. Simulation design

The simulations discussed in what follows represent the extensions to solar cycle

timescale of the three reference simulations discussed in Paper I (see also Table 1 herein).

Simulation 1 incorporates only spatially and temporally uniform injection of individual flux

tubes. The statistically stationary state of this simulation thus represents a true quiet Sun,

i.e., one that has never experienced the emergence and decay of active regions. Simulation

2 injects magnetic flux only as sunspots according to Wang and Sheeley’s sunspot database

for cycle 21. Unlike simulation 1, here magnetic flux injection occurs across a range of

flux scales, in a spatiotemporally intermittent manner, and at an overall rate also varying

slowly in time (viz. Fig. 1). Those sunspots then disintegrate into individual flux tubes.

Simulation 3 combines injection of sunspots at large scales with injection of elementary



– 12 –

flux tubes at small scales. The numerical parameters controlling the displacement and

interaction of magnetic elements are the same in all three simulations, and set at the

scaled-up best-fit values established by Crouch et al. (2007; see also Table 1 in Paper I, and

discussion therein of the scaling-up procedure).

Table 1: Simulation results after 3 yr

Injection PDF slope Fractal Initial

dimension condition

Parnell et (Real Sun) −1.85 ± 0.14 —

al. (2009)

Crouch et Flux tubes −2.3 1.70

al. (2007)

Sim 1 Flux tubes −2.10 ± 0.06 1.70 Unmagnetized

photosphere

Sim 2 Active regions −1.31 ± 0.04 1.66±0.004 Unmagnetized

photosphere

Sim 3 Flux tubes + −1.69 ± 0.02 1.69±0.002 Equilibrium

active regions state of Sim 1

Simulation 3 turns out to be the best of the three, in terms of simultaneously

reproducing the observed power law slope of magnetic flux distribution, as well as the

observationally-inferred fractal dimension of large network elements. It is also, in principle,

the most realistic of our three global simulations, in the sense that flux injection takes places

over a wide range of scales, although intermediate injection scales, associated e.g. with

ephemeral active regions, are not included. Most results discussed in what follows pertain

to this simulation, unless explicitly noted otherwise.
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3.2. Surface magnetic flux evolution

Figure 3 shows a modeled magnetogram of the surface flux buildup in simulation

3, in which magnetic flux emergence occurs through the injection of both active regions

and individual flux tubes. The five frames are taken two years apart, spanning activity

cycle 21, with the full latitude-longitude computational plane displayed here in Mollweide

projection. Active regions begin appearing at mid-latitudes by t=1 yr (first panel). The

largest aggregates forming poleward of the activity belts from the decay of active regions

reach a size sufficiently large that they persist long enough to be carried poleward by

meridional circulation. By t=3 yr (second panel), some of these clusters have reached the

polar regions. Because the surface meridional flow is poleward-directed, equatorial regions

remain mostly cluster-free in the early part of the cycle. As the cycle unfolds and active

regions emerge progressively closer and closer to the equator, aggregates start to populate

that region (third panel). Most longer-lived, large clusters remain until the seventh year

(fourth panel). By the ninth year (fifth panel), most large clusters have disappeared from

the mid-latitudes, but some survive in polar regions, as well as low latitudes, building up in

response to the decay the few active regions emerging in the late phase of the cycle.

Figure 4A shows the modeled evolution of unsigned hemispheric fluxes (dotted lines),

along with total signed magnetic flux across the computational plane (solid line), over the

duration of cycle 21. Recall that simulation uses as its initial condition the “quiet Sun”

equilibrium state of simulation 1, which is characterized by a total unsigned magnetic

flux of 4×1023 Mx. Around the activity maximum in 1981, the global unsigned flux in

simulation 3 has increased by an order of magnitude, up to almost 4×1024 Mx. Now, given

our flux tube injection rate, the entire cycle 21 has undergone the injection of 1.5×1027

Mx in elementary flux tubes, while active regions provided only 2.2×1025 Mx, two orders
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Fig. 3.— Surface evolution of magnetic flux following the injection of active regions from

the Wang & Sheeley database for simulation 3. Time zero corresponds to 1976 August

16, marking sunspot minimum between cycles 20 and 21. Each frame shows a pixellized

snapshot in Mollweide projection of the magnetic flux in the computational plane, spaced

two years apart and spanning cycle 21. Aggregates forming from the decay of active regions

are transported poleward by the meridional flow, and sheared horizontally by differential

rotation. Note also how large bipolar active regions emerging at mid-latitudes nearly all

show the same ordering of magnetic polarity with respect to the longitudinal direction,

negative (black) leading positive (white) in the Northern hemisphere, and opposite in the

Southern hemisphere; this is a reflection of Hale’s polarity laws.
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of magnitude lower. Notwithstanding the challenge of observing ∼ 100 km wide structures

carrying a ∼ 1016 Mx flux, observational analyses suggest an even larger contribution of

the internetwork, possibly going as high as four orders of magnitude over the contribution

of active regions over an eleven-year solar cycle, especially if transient horizontal magnetic

fields are included in the flux budget (de Wijn et al. 2009, Ishikawa et al. 2010). Nonetheless,

the total unsigned flux in simulation 3 is very similar to that measured in simulation 2

(not shown). This suggests the main contribution to the total unsigned flux comes from

the injection and decay of active regions. While this may seem contradictory with the two

orders-of-magnitude discrepancy between the amount of flux injected through sunspots and

individual flux tubes, it can be explained by the lifetime of small flux concentrations being

a lot shorter than that of the large ones. Moreover, Crouch et al. (2007) could show that in

their local version of our simulation 1, the vast majority of injected elementary flux tubes

disappear through cancellation with a tube of opposite polarity, rather than disappearing

“spontaneously” via the probability test mimicking the effects of convective submergence

(see their §3.1).

The global photospheric signed flux stabilizes around +1.4 × 1023 Mx, comparable

to the Southern hemisphere value +1.7 × 1023 Mx, after the end of sunspot injection in

March 1986. This global flux imbalance, non-physical as per the solenoidal constraint

∇ · B = 0, arises as a consequence of the statistical procedure used to reproduce convective

submergence. In the late phases of the simulation the signed flux is dominated by a

small population of large, long-lived clusters of mixed polarity (more on these in §4

below). At each simulated time step, the probability tests that govern the disappearance

of these clusters are performed independently for each cluster, so it is entirely conceivable

that the loss of one, large unipolar cluster suddenly leads to a net global signed flux

of the opposite polarity, which will persist until a comparably large cluster of opposite
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Fig. 4.— Simulation 3 : (a) Total signed (full line) and hemispheric unsigned (dotted line,

grey for North hemisphere, black for South) magnetic fluxes. South-hemisphere unsigned

flux plotted as negative-valued, as on Figure 1. (b) Hemispheric signed flux over the course of

the simulation: North hemisphere (full line) and South hemisphere (dotted line). (c) Dipole

magnetic field strength. The vertical dashed line indicates the time of sunspot minimum

delineating cycle 21 from cycle 22. The various time series stabilize following the last injection

on 1986 April 5. The intermittent abrupt variations are due to the disappearance of a large

cluster.
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polarity vanishes in turn. In other words, our injection processes generate no net flux,

our cancellation procedure respects flux balance, but the “submergence” mechanism built

into the simulation does not. Note however that net signed flux imbalance at the end

of the cycle remains quite small, at the 0.1 % level, compared to the total unsigned flux

injected in the simulation throughout the cycle. Flux imbalance at this level is insignif-

icant with regards to the evolution of the network properties that are the focus of this Paper.

Even though the last spot injection is taking place on 1986 April 5 in the Wang &

Sheeley database, we continued running the simulation all the way to 1993, without

injecting any cycle 22 active region. This procedure thus allows us to measure the system’s

relaxation time, a topic to which we shall return in §5 below. At this juncture, note simply

on Figure 4A how the photospheric unsigned flux is still decreasing towards its initial “quiet

Sun” value, more than 4 years after the end of sunspot injection, indicative of persistence

of network elements on long timescales.

A well-known observed property of emerging large bipolar active regions is the sys-

tematic pattern of average tilt with respect to the E-W direction of the line segment

joining the center of each member of the pair, with the leading member of the pair (with

respect to the direction of rotation) being usually located closer to the equator than the

trailing member, and the associated tilt angle increasing with heliographic latitude. This

statistical pattern is known as Joy’s Law, and is now believed to reflect the action of

Coriolis force on the flow developping along the axis of the rising magnetic flux ropes

forming bipolar active regions upon emergence through the photosphere (Fan 2009). In

conjunction with Hale’s hemispheric polarity rule, this tilt also implies that upon decay, the

decay products of the leading members are more likely to undergo cross-equatorial diffusive

cancellation with the leading polarity decay product of bipolar active regions emerging in
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the other hemisphere. The net effect is the buildup of a signed hemispheric flux having

the polarity of the trailing members of the bipolar active regions in each hemisphere. This

phenomenon also materializes in our simulation, as already evident on Figure 4B. Transport

and accumulation of the decay products to high latitudes can then lead to the buildup of a

dipole moment, and reversal of the Sun’s surface magnetic dipole moment having built up

in the preceeding cycle (Babcock 1961; Leighton 1969; Wang & Sheeley 1989). This forms

the basis of the so-called Babcock-Leighton solar cycle model (Charbonneau 2010).

Our initial condition is such that the initial dipole field strength is originally (and

unrealistically) zero. As shown on Figure 4C, simulation 3 generates a dipole of strength

−7 G by the end of the cycle, increasing to stabilize at −6 G thereafter (recall that we do

not inject cycle 22 active regions). This buildup of a negative dipole moment compares

favorably with that modeled by Wang & Sheeley (1991) who find that the dipole went

from 3 G to −4 G during cycle 21. As another point of contact with the simulation of

Wang & Sheeley (1989, 1991), we can estimate a diffusion coefficient from the random

walk step length and time steps used in our simulations. With these parameters set

at dw=
√

3 Mm and ∆t=30 minutes respectively in simulation 3, the implicit diffusion

coefficient is D = d2
w/4∆t = 416 km2 s−1. This is compatible with the value D=600

± 200 km2 s−1 used in Wang et al. (1989b)’s advection-diffusion flux evolution model,

confirming that our stronger 1986 dipole results directly from our dipole-free initial condition.

Figure 4A, showing the evolution of total signed and hemispheric unsigned flux, can

be compared to Fig. 3 of Schrijver & Harvey (1994). They observe from 3 to 9×1023 Mx of

total photospheric flux from the 1976 minimum to the activity maximum, whereas we have

from 5 to 40×1023 Mx for the same times. The flux they measure at the 1986 minimum is

the same as during the 1976 minimum. We, on the other hand, do not recover the initial
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flux due to certain large persistent flux concentrations. However, Schrijver & Harvey (1994)

have a detection threshold of 8×1019 Mx, compared to our magnetic unit of 1017 Mx, so

they excluded a large amount of smaller magnetic flux concentrations that would have

otherwise increased their total unsigned flux. Wang & Sheeley (1989) find a variation from

18×1023 Mx in 1977 to 36×1023 Mx in 1979 to 4×1023 Mx in 1985 for bipolar magnetic

regions of at least 3×1020 Mx. This is comparable to the total (N+S hemisphere) unsigned

flux at cycle peak in our simulation. Our higher flux in the late phases of cycle 21 is likely

caused by the absence of a polar sink. The extra flux does not influence the index of the

flux distribution (see Section 5), only its offset from the origin, as flux processing by surface

flows operates on all scales.

3.3. Magnetic flux distribution

Our simulation yields not only the evolution of the total magnetic flux, but also the

evolution of the size distribution of the magnetic flux contained in the various clusters

populating our computational domain. As shown on Figure 5, this size distribution takes

the form of a power law, with index −1.69. Both the power law form and index compare

favorably to the flux distribution inferred observationally by Parnell et al. (2009), who find

a power law index −1.85 ± 0.14.

Paper I showed that the form of this flux distribution is set primarily by the sur-

face processes of diffusion-limited aggregation, which rapidly erases the “memory” of

the flux injection scale(s). Even when working with two extreme flux injection scenarios

—simulation 1 with injection of elementary flux tubes only, or simulation 2 with injection

of active regions only,— power law distributions spanning many orders of magnitude in

magnetic flux build up in less than one year of simulation time. These analyses lumped
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Fig. 5.— Power-law distribution of unsigned magnetic flux for all photospheric magnetic

structures present in simulation 3 at t=3 yr after the beginning of cycle 21. The darker

histogram isolates the contribution of decaying sunspots to the distribution. The largest

sunspot present in the Wang & Sheeley cycle 21 database carries an unsigned flux of 7 ×

1022Mx, and appears on 1982 June 15.

together all magnetic structures present on the simulation domain at a given time. We

now refine the analysis by examining the latitudinal and temporal variations of network

characteristics.

3.4. Network magnetic flux

We henceforth focus on the magnetic network building up in our simulation 3. Our

first task is to define criteria that will allow us to select which clusters are considered

part of the network. We obviously do not include decaying spots, nor should we include
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individual elementary flux tubes continuously injected in the domain. Following Crouch

et al. (2007), we define network elements as clusters containing 10 or more elementary

flux tubes. The associated magnetic flux, 1018 Mx, is comparable to the threshold used in

observational studies to distinguish the network from the so-called inter-network magnetic

flux concentration, although the distinction is arbitrary to some significant degree (see

Stenflo 2013, and discussion therein). In simulation 3, the network elements so defined

collectively carry between 1.3×1023 Mx and 34×1023 Mx at its peak coverage, amounting

to 95 % of the total photospheric unsigned flux.

3.5. Network filling factor

The photospheric network coverage is expressed as the filling factor, which is the area

occupied by clusters of flux tubes (excluding spots), over the total area under study. With

the cross-sectional area of our elementary flux tubes set directly by our adopted values for

their associated magnetic flux (Φt = 1017 Mx) and assumed (vertical and uniform) field

strength Bt = 1000 G, it is straightforward to compute a photospheric filling factor by

simply multiplying the equivalent area At = Φt/Bt = 10−2 Mm2 by the total number of flux

tubes. The absolute values of the filling factors so computed will end up scaling inversely

with the chosen value for the magnetic flux density Bt; however, the relative variations of

the filling factor with latitude and phase of the cycle, which are the focus of the foregoing

analysis, remain independent of this choice. We note that for a 1 kG field strength the

“diameter” of our elementary tubes is D ≃ 113 km, comparable to the current resolution

limits of magnetographic observations (see Stenflo 2013 for further discussion).

We first segment our spatial domain in latitudinal strips of angular width ∆θ = 5◦,
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so as to extract the variation of the network filling factor in latitude and time. Figure 6

shows the latitudinal distribution of the network filling factor at 4 successive epochs during

cycle 21, spaced two years apart. The solid line is the latitudinal distribution characterizing

Simulation 1, i.e., without active region injection but otherwise identical in its parameter

settings, which is used here as the initial condition. The latter only shows a very mild

increase of the filling factor with increasing latitude, hardly visible on the scale of this plot.

This may appear surprising, as the poleward meridional flow is inexorably leading to the

accumulation of tubes and clusters at high latitudes. However, the increased proximity of

clusters and tubes, being gradually concentrated in the small surface of the polar cap, also

increases the probability of tubes and clusters disappearing by cancellation with tubes and

clusters of opposite polarity. On the other hand, as we shall see presently, in the presence

of a net signed flux this proximity will also favor the formation of large, persistent unipolar

clusters, given that our submergence probability decreases with cluster size.

The dotted, dashed, dash-dotted and long-dashed distributions are extracted 1, 3, 5, and 7

years following the beginning of cycle 21, and correspond to the first four panels of Fig. 3,

for the simulation with the network and active regions. As expected, the network filling

factor increases rapidly at mid-latitudes during the rising phase of the cycle, in response to

the emergence and decay of active regions. The equatorial latitudes are lagging behind, due

to the paucity of low-latitude emergences in the early phases of the cycle, and the poleward

advection of mid-latitudes magnetic structures by the meridional flow, which partly offsets

the random walk of tubes and clusters towards equatorial regions. Even in the late phases

of the solar cycle, the increase of the network filling factor at equatorial latitudes remains

modest, by about a factor of three over the initial condition. At high latitudes, on the other

hand, poleward advection by the meridional flow leads to a large increase in filling factor,

starting after about 2 years and already reaching a factor of ten three years after cycle onset.
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Fig. 6.— Latitudinal distribution of magnetic filling factor for simulation 3 after 1 year,

3 years, 5 years and 7 years since the beginning of cycle 21. The solid line shows the

(statistically stationary) latitudinal distribution for simulation 1, which does not include

injection of active regions. The small increase of the high latitude filling factor characterizing

simulation 1 reflects the inexorable poleward transport by the meridional flow (see text).

The filling factor becomes sharply peaked at polar latitudes in the descending phases of the

solar cycle, reaching values almost two orders of magnitude higher than in the spot-free sim-

ulation used as initial condition. This occurs because the decay of active region by boundary

erosion tends to produce larger clusters (i.e., comprised of more than 104 elementary tubes)

than does random injection of individual tubes all over the surface. Such large clusters have

longer lifetimes and consequently are more likely to survive long enough to be advected by

the meridional flow all the way into polar regions. In our simulation, clusters have a life

expectancy scaling as τ
√

ne, with τ=6.9 d being the lifetime parameter and ne the number
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of elementary flux tubes in a cluster. For a 104-tubes cluster (carrying a 1021 Mx flux),

the life expectancy reaches 2.0 years, which is a significant fraction of the cycle duration

and commensurate with the advection time from low to polar latitudes. Our simulation

has generated 491 such clusters after 5 years. Moreover, while the simulation incorporates

a form of convective submergence via the lifetime parameter, global subduction of tubes

and clusters by the meridional flow at high latitude is not included here. Such subduction,

if it does take place, would lead to a significant reduction of the filling factor in polar regions.

Figure 7 shows the variation of the latitudinally-integrated filling factor versus cycle

phase, the latter measured here via the amount of active region flux injected as a function

of time (viz. Fig. 1). The filling factors are taken and injected flux values summed over

successive, contiguous three-month blocks, successive blocks being joined by a line segment,

with the cycle unfolding here in a counterclockwise direction. The loop-like path traced

in the course of the cycle indicates that the network filling factor is not simply set by the

instantaneous rate of flux emergence, but instead exhibits a significant “memory” of past

emergences, primarily via the long lifetimes of large clusters. Our model therefore predicts a

complex dependence of the network filling factor on cycle phase and latitude, characterized

by a latitude-dependent temporal lag.

Figure 8 shows a synoptic map of the filling factor for the whole cycle 21 and the following

extended time period during which the simulation was pursued without the injection of any

cycle 22 active regions. The grey scale saturates at a filling factor value of 0.2. The inclined

streaks are associated with large clusters, forming at active regions latitudes from the decay

of the injected active regions, carried to high latitudes by the surface meridional flow. Once

active region injection ceases (vertical dashed line), the filling factor rapidly drops, except

at polar latitudes, and for the drifting trace of a few large clusters formed at the end of the
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Fig. 7.— Three-month samples of the filling factor vs summed injected flux in simulation

3. The cycle unfolds in a counterclockwise direction on this plot, starting in August 1976 in

the bottom left corner, with the trimester at which activity maximum occurs also indicated.

The curve does not return to the origin because of the remaining large clusters’ contribution

to the filling factor at the end of the simulation.

cycle near the equator.

Although the distinction carries some arbitrariness (Stenflo 2013), an attempt can

be made to distinguish the network from the so-called inter-network, referring to the

small magnetic flux concentrations omnipresent on the quiet Sun, away from granular

cell boundaries. Here we can assign network versus inter-network status simply on the

basis of magnetic flux, the latter including all structures with flux smaller than 1018 Mx,

a value comparable to the 2 × 1018 Mx used by Wang et al. (1995) as the flux threshold

in their observational analysis. Our inter-network so-defined carries an unsigned flux of

1.1 × 1023 Mx, a value remaining essentially constant throughout our simulated cycle 21, in

contrast to the network unsigned flux which increases markedly as the cycle unfolds. At
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Fig. 8.— Synoptic map of the filling factor, saturated at 0.2, for simulation 3. Sunspot injec-

tion ceases at 1986 April 5, the end of cycle 21, with no cycle 22 active regions being injected

thereafter. The vertical dashed line indicates the time of sunspot minimum delineating cycle

21 from cycle 22.

cycle maximum, the peak of cycle 21, our simulations yield an inter-network to network ratio

of magnetic flux equal to 35%, significantly smaller than the 41% characterizing reference

simulation 1, which excludes injection of active regions; this confirms that the injection and

subsequent decay of active regions favors the formation of larger clusters of elementary flux

tubes. Since this simple calculation distinguishes inter-network elements only on the basis

of magnetic flux value and not spatial location, it is expected that the ratio so obtained

be higher than the 20 % determination of Wang et al. (1995). Nonetheless, our simulation

results certainly remain consistent with the notion that a large fraction of photospheric mag-

netic flux resides in the inter-network, and is largely independent of cycle phase or amplitude.

Overall, our filling factor values stand at the upper end of observational determina-
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tions for the solar photospheric network (cf., e.g., Orozco Suarez et al. 2007, Ishikawa &

Tsuneta 2009). Recall however that our simulations are formulated in terms of elementary

magnetic flux carrying a flux of 1017 Mx, and thus that the basic scale of our filling factor

calculation is entirely set by the (uniform) 1 kG field strength assigned to our elementary

flux tubes; our filling factor values thus scale inversely with this assumed field strength.

What remains independent of this assumption is the relative variation of the filling factor

with latitude and/or time, which can thus be considered a robust result.

3.6. Inter-cluster distance

Inter-cluster distance is calculated by computing the distance to each cluster’s ten

nearest neighbors, and by averaging these ten measurements. As demonstrated in Crouch

et al. (2007, §3.5), this very simple procedure yields results that compare well with more

involved (and computationally expensive) techniques, such as Voronoi tessellation or

spectral methods. In the following analysis, square patches of 100 Mm side are sampled at

one-month cadence, set at various latitudes. The monthly evolution of average inter-cluster

distance is shown in Figure 9 for latitudes 0◦, 15◦, 30◦, 45◦ and 60◦. This quantity remains

remarkably steady, fluctuating around 20 Mm for all of the activity cycle at most of the

latitudes, and decreases slightly with increasing latitude at most phases of the cycle. Some

temporal variations are observed at active region latitudes as the cycle unfolds, in the form

of a mild increase of the inter-cluster distance during a ∼ 3 yr time interval centered on

cycle maximum. Intercluster distance in our simulation does not seem to be otherwise

affected by sunspot activity. This suggests that the mechanism responsible for establishing

the characteristic length scale in the spatial distribution of network elements depends
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mainly on the injection rate of elementary flux tubes, at least away from active latitudes.

Fig. 9.— Monthly evolution of inter-cluster distance for simulation 3 at five latitudes: strad-

dling the equator (solid line), 15◦ (dotted line), 30◦ (dashed line), 45◦ (dot-dashed line) and

60◦ (triple dot-dashed line). The time series plotted are box-car averages of 5-month width.

Error bars are shown for the equator, 30◦ and 60◦. The vertical dashed line indicates the

time of the last active region injection for cycle 21. Note that the inter-cluster distance

stabilizes after the last injection.

In the following discussion, we use inter-cluster distance as a proxy for supergranule size.

We will restrict our analysis to simulation 3. The range of observed supergranule sizes

lies between 12 and 75 Mm (Rieutord & Rincon 2010), with values around 30 Mm most

often quoted as peak or mean of the distribution. Our values fall within this range, at

around 20 Mm, with a decrease to ∼ 16 Mm at high latitude. Here this decrease is a direct

consequence of the poleward meridional flow, which inexorably decreases the distance

between neighbouring clusters. Qualitatively, this trend is consistent with the analysis of
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Raju et al. (1998) who also find a dependence of supergranule diameter with latitude at

different activity minima, with a broad minimum around 20◦ N, however with a measured

average supergranule diameter of 32 ± 1 Mm.

The cycle-trend produced by our simulation at 30◦ latitude is qualitatively similar

to the observational trend inferred by McIntosh et al. (2011) for cycle 23, with supergranule

sizes increasing with activity from 25 Mm at the minimum to around 30 Mm at the

maximum. In our simulation, however, the 2 Mm min-to-max increase is smaller by a factor

of two. Note however that these trends stand in opposition to the observational analysis

of Meunier et al. (2008), who found instead that supergranular size decreases as activity

increases, so smaller supergranules should be seen in activity belts and at activity maximum

as opposed to polar regions and activity minimum. Rimmele & Schroter (1989) also found a

latitudinal trend in supergranular size at the 1986 activity minimum, cells being some 10%

smaller at mid-latitudes than in equatorial regions, roughly consistent with our simulation

results although in absolute terms their inferred supergranular diameters are significantly

larger (34–38 Mm) than our typical inter-cluster distances.

Srikanth et al. (2000), in their analysis of supergranules, calculated statistical mo-

ments of their size distribution. They found a mean supergranular size ranging from

16 to 23 Mm, depending on the data used. Their distribution with the larger mean is

characterized by a skewness of 1.1 ± 0.01 and a kurtosis (peakedness) of 4.6 ± 0.09. We

find for simulation 3 a skewness fluctuating around 0.5 ± 0.5, implying that our distribution

is less asymetric than in Srikanth et al. (2000), but a comparable kurtosis of 5 ± 1. Our

standard deviation varies around 9 ± 1. Our skewness, kurtosis and standard deviation do

not significantly change over time.
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To sum up; despite its simplicity, our network formation and evolution model yields

results that compare favorably to a number of observational inferences, including (1) the

power-law form and index of the distribution of magnetic flux observed in photospheric

structures; (2) their fractal index; (3) the length scale of their spatial distribution, to

the extent that our inferred length scales can be compared to the supergranular scale;

(4) when applied to cycle 21, and accounting for our field-free initial condition, the

buildup of a global dipole component of strength in agreement with observations and

other modelling approaches to surface magnetic flux transport; (5) an overall signed and

unsigned hemispheric magnetic flux balance also in reasonable agreement with observational

inferences and other model calculations. As a further test on the degree of realism in our

modeled evolution of the magnetic network, we now turn more specifically to the behavior of

the network at polar latitudes, for which recent observations have yielded some remarkable

and unexpected results.

4. Polar cap evolution

Because of the combined flux dispersal by surface convection and inexorable poleward

advection by the Sun’s surface meridional flow, the evolution of polar cap magnetism

is closely related to the global evolution of surface magnetism throughout successive

activity cycles. From the modelling point of view, this means that any conceptual error

or oversimplification in the design of a surface flux evolution model will have a large,

cumulative impact in the polar caps. A detailed comparison of model predictions to

observed polar behavior thus offers a strong test of the model. In the following we follow

Tsuneta et al. (2008) in defining the polar caps as the areas contained above ±75◦ in latitude.

Detection of the Sun’s dipole moment goes back over half a century (Babcock
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1959), but detailed investigation of polar behavior is a relatively recent endeavour (e.g.

Okunev & Kneer 2004, Blanco Rodriguez et al. 2007), and has reached a detailed level

with the high-resolution, high-sensitivity spectropolarimetric observations recently provided

by the Hinode mission (Tsuneta et al. 2008). Analysis of Hinode data by Shiota et

al. (2012) revealed a remarkable and unexpected property of polar cap magnetism, namely

the fact that the polar magnetic field is far from uniform and diffuse, but instead is

concentrated in a relatively small number of strongly magnetized structures. These

polar magnetic flux concentrations are characterized by higher total magnetic flux and

average area than their quiet Sun counterparts, and a predominance of one (opposite)

polarity in each hemisphere, in contrast to the balanced positive and negative fluxes of

the quiet Sun away from active regions. More specifically, Ito et al. (2010) determined

the flux in the magnetic concentrations at the poles to be 4.8 times higher than in the

quiet Sun at the end of cycle 23 (Ito et al. 2010), with a per-structure average of 2.0×1019 Mx.

Figure 10 shows our simulated North pole in simulation 3 at the same 2-yr cadence

as on Fig. 3. At t = 1 yr, the few large clusters having formed from the decay of active

regions injected to date in the computational plane in the quiet Sun have not had time to be

carried to polar regions by the meridional flow, so that the polar cap remains largely devoid

of significant magnetic flux, as per our dipole-free initial condition. Of course, injection of

elementary flux tubes takes place in the polar caps as well, which leads to the buildup of

clusters of moderate size (reaching a few 1019 Mx), but these are too small and do not carry

enough flux to be visible on the grayscale of Fig. 10. The situation is markedly different

three years after cycle onset, when larger clusters of either polarity are now present at high

latitudes, with some already present in the polar caps. This time lag is consistent with our

adopted meridional flow profile. By t = 5 yr, the polar cap contains many such clusters,

packed closely together, which leads to high local filling factor (viz. Fig. 6). However,
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this close proximity favors both merging of clusters of similar polarities, as well as erosion

and/or fragmentation of clusters of opposite polarities when they collide. Nonetheless,

approximately from sunspot maximum (1980) onward, the polar caps are populated with

many large clusters of both polarities.

Although one would be hard-pressed to ascertain this visually on Fig. 10, after 7 yr

of simulation time the polar cap carries a small, negative signed magnetic flux of a few

∼ 1022 Mx, falling to a few −1021 Mx after 9 yr of simulation. Figure 11 illustrates this

evolution of the signed (dotted lines) and unsigned (dashed lines) magnetic flux for the two

polar caps. The buildup of a net signed (positive) magnetic flux in the Southern polar cap

is more pronounced than in the North, in agreement with the modelling results of Wang et

al. (1989a, 1989b) and Schrijver et al. (2002). Except in the early years of the simulation,

the polar caps carry an unsigned magnetic flux largely in excess of their respective signed

fluxes.

Another fascinating result having come out of vector magnetographic observations by

Hinode during cycle 23 is the realization that the largest flux concentrations observed in

polar regions carry the bulk of the polar cap’s net signed flux. Our modeled polar caps turn

out to also show a similar behavior. The solid lines on Fig. 11 show the time evolution of

the signed flux associated with the single largest cluster present in each polar cap at a given

time. In the Southern hemisphere, this tracks very well the time series of total signed polar

cap flux (dotted line), although the match is less impressive in the Northern hemisphere.

At t = 7 yr of simulation 3, we get 14 times more flux per polar concentration

compared to the quiet Sun instead of the 4.8 found by Ito et al. (2010) for cycle 23.
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Fig. 10.— Polar view of the Northern hemisphere in simulation 3 at t=1, 3, 5, 7 and 9 yr.

The saturation threshold is set at 2×1021 Mx per pixel (20 000 flux tubes). The red cirle

indicates the 75◦ latitude used to define the polar cap.
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Fig. 11.— Contribution of the largest cluster to the unsigned (grey dashed line) and signed

(dotted line) magnetic flux in the Southern (top) and Northern (bottom) polar caps. The

solid line on each panel shows the contributions of the largest cluster in each polar cap to

the signed flux in that cap. The jumps in those curves are associated with cluster merging

and breakup, which can instantaneously change which cluster is being tracked as the largest.

The vertical dashed line indicates the time of sunspot minimum delineating cycle 21 from

cycle 22.
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The higher amplitude of cycle 21 likely contributes to this discrepancy. More important,

however, is the lack of a global polar sink in our model, associated with downward

entrainement by the meridional flow sinking at high latitudes. As a consequence, our largest

aggregates are very large, with fluxes exceeding 1022 Mx. The average flux in our polar

concentrations is nonetheless 2.37 × 1019 Mx, close to the average determined by Ito et al.

(2010). The large amount of smaller concentrations makes our average similar to theirs.

5. Network relaxation time

The recent, unusually extended period of very low magnetic activity observed before

the onset of current cycle 24 has lead to the conjecture that the Sun had reached its

true magnetic baseline state, where any remaining magnetism is associated exclusively

with surface magnetic flux reprocessing. If this is indeed the case, then the observed

state of the Sun in the first half of 2009 should have been similar to conditions prevailing

during the 1645–1715 Maunder Grand Minimum, offering a much needed window into

a magnetohydrodynamical state of the solar photosphere never observed since at least

1913 (see Schrijver et al. 2011, and discussion and references therein). This is particularly

germane to the ongoing debate regarding the impact of solar activity on Earth’s atmosphere

and climate. The key question is: how long does it take for the solar photosphere to lose its

“magnetic memory” of a waning activity cycle?

In Paper I we showed that the size distribution of surface magnetic elements estab-

lished itself quite quickly, from 6 months to a year, independently of the mode of flux

injection. This, however, does not automatically imply that this distribution will return to

its “quiet Sun” state in a comparable time interval, because of the population of long-lived,

large clusters forming in response to the decay of active regions, and accumulating in
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polar regions (viz. Fig. 10 herein). Our simulation 3 offers a useful exploratory tool

to quantify these effects. Even though the last sunspot appearance in the Wang &

Sheeley database occurs on 1986 April 5, we pushed the simulation all the way to

the year 1993, maintaining injection of elementary flux tubes everywhere in the photo-

sphere, with the same parameters as before, but without injecting any cycle 22 active regions.

Figure 12 shows a time series of sunspot number (in red) and network filling factor

for this extended experiment. As noted already in the context of Fig. 7, the network filling

factor increases in the rising phase of the cycle, but ends up lagging in phase behing the

sunspot number (SSN), with the peak in filling factor occurring in mid-1982, over two years

after the peak in SSN. This simply reflects the fact that the largest network clusters build

up at high latitude, following their transport and concentration by the meridional flow and

diffusive dispersal from active region latitudes.

Figure 12 clearly shows that the network filling factor decreases more slowly than the SSN

in the descending phase of cycle 21, a joint consequence of the size-dependent lifetime of

clusters built into the model, coupled to the fact that the merging (and thus growth) of

existing clusters of the same magnetic polarity is enhanced as they are advected poleward

as the cycle unfolds. The SSN minimum between cycles 21 and 22 occurred in March 1986

(vertical dashed line on Fig. 12; see Hathaway 2010). At this point the network filling factor

is still almost ten times higher than at the beginning of the simulation, where the initial

condition (simulation 1) is a “true” quiet Sun, i.e., having never experienced active region

injection. Only by mid-1988, some 2 yr after sunspot minimum, does the network fall back

below 50 % of its value at the minimum’s onset. Fitting an exponential decay law to the

filling factor decrease in the 1985–1990 time interval yields a good fit, with an e-folding time

of 2.9 yr. However, removing the contribution of the largest polar clusters (Φ > 1022 Mx),



– 37 –

Fig. 12.— Time series of the smoothed monthly sunspot number (red), network filling

factor sampled over 3-month blocks (black diamonds), and network filling factor without

the contribution of polar clusters of flux larger than 1022 Mx (orange diamonds). The two

vertical dashed lines indicate respectively the date of last cycle 23 active region emergence,

and the SSN minimum between cycles 21 and 22, as labeled. Note the ∼ 2.5 yr lag between

the peaks in SSN and filling factor, and the slower decrease of the filling factor in the

descending phase of cycle 21. Here the last sunspot injection occurred on 1986 April 5, after

which no cycle 22 active regions were injected (see text).
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the filling factor is only half as much at the minimum’s onset, and fitting an exponential

decay law in the 1985–1988.5 time interval yields an e-folding time of 1.9 yr.

Figure 13 shows a different view of network relaxation, now in the shape of the dis-

tribution of cluster sizes (as measured by magnetic flux), constructed and plotted at a

one year cadence starting at the SSN minimum. Here these distributions have not been

normalized to yield probability density functions, so as to show both the overall decrease in

the number of network elements, as well as variations in the shape of the distributions.

Fig. 13.— Evolving distributions of network cluster flux, extracted at a 1-yr cadence starting

at sunspot minimum (1986 April 5). These distributions are not normalized, so as to simul-

taneously show the overall decay of the network as well as changes in its size distribution.

The distribution farthest in the lower left is that of simulation 1, corresponding to the “true”

baseline quiet Sun within our simulation framework. The low end of all distributions, below

1019 Mx, are well-fit by a power-law with index −2.12.
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The distribution of magnetic flux values remains essentially invariant below ∼ 1019 Mx,

maintaining its power-law shape and logarithmic slope. This is not the case in the flux range

1019—1021 Mx, where scale invariance is broken by our size-dependent decay probability.

Note however that the very high end of the distribution changes comparatively less over the

time span covered here, a consequence of the very largest clusters having a (mean) lifetime

in excess of 5 yr. This may be an unrealistic consequence of the size-dependent relationship

we assumed for the probability ps of spontaneous disappearance of clusters (assumed to

occur via convective submergence):

ps = (τs

√
ne)

−1 , (1)

where ne is the number of elementary flux tubes in the cluster, and τ = 6.9 d is the lifetime

parameter. This decay model was tuned in Crouch et al. (2007) to reproduce as best as

possible the size distribution and spatial distribution of network elements in local “quiet

Sun” simulations where the largest clusters barely reached 1020 Mx in flux. Extrapolating

eq. (1) to clusters with flux ∼ 1022 Mx thus takes us well beyond the flux range in which

it was calibrated. Nonetheless, Figure 13 indicate that the magnetic memory of cycle 21

persists here for many years, even at intermediate flux values reaching into the upper part

of the calibration range for eq. (1).

The filling factor recovery time was estimated for the case where the largest polar

clusters (those with fluxes exceeding 1022 Mx) were omitted. It turns out the recovery time

then goes from 2.9 yr to 1.9 yr.

Sunspot cycle 23 had a significantly lower amplitude than cycle 21, as well as a

waning phase more extended temporally. Care is thus warranted in directly carrying over

our modelling results for cycle 21 to cycle 23. This caveat notwithstanding, taking at face

value the network recovery time ≃ 3 yr resulting from our cycle 21 modelling would indicate
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that the base state of solar photospheric magnetism had not yet been reached in the first

half of 2009, the deepest portion of the extended cycle 23–24 minimum. Indeed, directly

transposing Fig. 12 to cycle 23 would place the return to a true quiet Sun state well into

the year 2011, 2010 if large polar clusters are omitted.

6. Conclusion

We have presented in this Paper a simulation of the solar photospheric magnetic

network evolving over a full solar cycle. The simulation incorporates statistically uniform

magnetic flux injection all over the photosphere, as well as flux injection through the

emergence and subsequent decay of active regions. Although formulated as a Monte

Carlo simulation reducing the full magnetohydrodynamical complexity of the problem to

a simple point-particle interactions and probabilistic rules, the model fares quite well in

capturing a number of observed properties of the magnetic network, including its power-law

form, fractal index of large network elements, and length scale characterizing the spatial

distribution of network elements. The cycle-length simulation also reproduces many

observed global properties, including the buildup of a dipole component, in agreement with

observations and other modelling approaches to surface magnetic flux evolution. Amongst

the quantitative failures of the model, the most prominent is arguably the very high

unsigned flux values attained in polar regions in the late phases of the cycle. This results in

part from the long lifetimes of the large clusters forming in our simulation, but also from the

absence of a global polar sink associated with downward entrainement by the meridional flow.

The simulated distribution of magnetic flux in the polar caps also shows some strik-

ing similarities to recent magnetographic observations, notably the fact that most of the

flux is concentrated in large, unipolar magnetic concentrations, with the flux of the largest
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concentrations carrying the bulk of the signed flux (Shiota et al. 2012). Polar behavior

being an integrated result of low-latitude activity and poleward flux transport over solar

cycle timescales, the good match with these observations suggests that despite its simplicity,

our model succeeds in catching the salient aspects of the underlying physical mechanisms

governing the evolution of the magnetic network on these long timescales.

In the late descending phase of our modeled cycle 21, the magnetic flux and filling

factor are found to decay exponentially, with an e-folding time of 2.9 yr. We performed a

numerical experiment whereby the simulation was extended beyond the last cycle 21 active

region emergence, without any cycle 22 active region injection, to follow this exponential

decay until the network had recovered its “quiet Sun” distribution used as initial condition

to the simulation. In this manner we mimic the onset of a Grand Minimum in activity,

and simulate the relaxation of the magnetic network to its baseline state. Applied at face

value to the extended activity minimum between cycles 23 and 24, this long decay time

indicates that even as late as 2009, the network had not yet reached its baseline state, as

it still carried “memory” of active region emergences throughout cycle 23. In the absence

of cycle 24 active region emergences, this magnetic network memory would have persisted

well into 2011. Even with the removal of the contribution from the largest polar clusters,

and its corresponding e-folding time of 1.9 yr, the conclusion that the baseline state had

not been reached by late 2009 remains valid. On the other hand, our model also shows

that the network is most persistent in polar regions, so that its impact on total and

spectral irradiance may have remained modest. This issue clearly deserves further detailed

investigation.
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