
Chapter 7

Decay and Amplification of

Magnetic Fields

It’s not whether a thing is hard to understand.
It’s whether, once understood, it makes any sense.

Hans Zinsser
Rats, Lice and History (1934)

We now begin our long modelling journey towards astrophysical dynamos. It is a road
long and hard and, n’en déplaise à Nick Cave, we would like to avoid too many falling by the
side. Consequently this chapter will for the most part concentrate on a series of (relatively)
simple model problems illustrating the myriad of manners in which a flow and a magnetic
field can interact. We will first consider the purely resistive decay of magnetic fields (§7.1) 1,
then examine various circumstances under which stretching by a flow can amplify a magnetic
field (§7.2), and then examine some important subtleties of this process in the context of some
(relatively) simple 2D flows (§7.3). The chapter close with some so-called anti-dynamo theorems
(§7.4), which will shed light on results from previous sections and indicate the way towards true
magnetohydrodynamical dynamo action, which, I may as well admit it at the onset, we will
first encounter only in the next chapter. Some of the material contained in this chapter may
feel pretty far remote from the realm of astrophysics at times, but please do stick to it because
the physical insight (hopefully) developed in the following sections will prove essential to pretty
much everything that will come next.

7.1 Resistive decays of magnetic fields

Before we try to come up with flows leading to field amplification and dynamo action, we better
understand the enemy, namely magnetic field decay by Ohmic dissipation. Consequently, we
first consider the evolution of magnetic fields in a conducting fluid, in the absence of any fluid
motion (or, more generally, in the Rm ¿ 1 limit). The induction equation then reduces to

∂B

∂t
= −∇× (η∇× B) = η∇2B − (∇η) × (∇× B) . (7.1)

Were it not that we are dealing here with a vector —as opposed to scalar— quantity, for
constant η this would look just like a simple heat diffusion equation, with η playing the role
of thermal diffusivity. Way, way back in chapter 1 we already obtained an order-of-magnitude
estimate for the timescale τη over which a magnetic field B with typical length scale ` can be

1With the exception of §7.1.4, all of this section was written by Thomas J. Bogdan.
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132 CHAPTER 7. DECAY AND AMPLIFICATION OF MAGNETIC FIELDS

expected to resistively decay:

τη ∼ `2

η
. (7.2)

which in the case of the solar interior ended up at τ ∼ 1010 yr, i.e., about the main-sequence
lifetime of the Sun. You should also recall that this is due primarily to the large spatial scale
of the system, as opposed to an exceedingly low diffusivity. The existence of a solar magnetic
field is then not really surprising; any large-scale fossil field present in the Sun’s interior upon
its arrival on the ZAMS would still be there today at almost its initial strength. The challenge
in modeling the solar magnetic field is to reproduce the peculiarities of its spatial and temporal
variations, in particular the cyclic variation of its large-scale component on a ∼ 22 yr timescale.
But we are getting ahead of ourselves here. Back to simple resistive decay.

7.1.1 Reformulation as an eigenvalue problem

Let us now seek specific solutions for a few situations of solar interest, and (hopefully) verify
our estimate of 1011 yr for the decay time of a fossil solar magnetic field. We are free to work
directly with the magnetic induction equation for B (eq. (6.24)), or the “uncurled” equation for
the vector potential A (eq. (1.105)). Choosing here the latter route, the magnetic and electric
fields are obtained from the relations

B = ∇× A , E = −1

c

∂A

∂t
. (7.3)

The first point to notice is that the coefficients that appear in eq. (1.3) are independent of
time, and so it is profitable to seek a separable solution of the form,

A = eλtAλ(r) , Φ = eλtΦλ(r) . (7.4)

The decay rate, λ, is then determined by the eigenvalue problem,

λAλ + η∇× (∇× Aλ) = c∇Φλ , (7.5)

along with some appropriate boundary conditions that we shall presently get to. We are still
carrying the electrostatic potential Φ along just to keep matters as general as possible, but
we shall make every effort to rid ourselves of this encumberance as soon as the opportunity
presents itself.

The LHS of eq. (7.5) is the vector-Helmholtz equation which arises routinely in the descrip-
tion of electromagnetic wave propagation problems.2 Therefore we should take advantage of
the hard work others have done in order to make our present task easy. The elegant way to
proceed is to define three vector operators which act upon scalar functions of r according to
the prescriptions,

T = −êr ×∇ , P = −∇× (r ×∇) , L = ∇ , (7.6)

and generate toroidal, poloidal, and longitudinal vector fields, respectively.3 We now construct
A from these operators and three scalar functions according to,

Aλ = rT[αλ] + P[βλ] + L[γλ] . (7.7)

The benefit of all this is that the three vector operators have very nice transformation properties
under the action of the curl operator,

∇× rT = P , ∇× P = −rT∇2 , ∇× L = 0 , (7.8)

2Verify that Maxwell’s equations in vacuum reduce to eq. (7.5) with η = 1 and λ = −ω2/c2.
3The prescription presented here is for spherical coordinates. For other coordinate systems one replaces r

and êr by the relevant vectors.
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7.1. RESISTIVE DECAYS OF MAGNETIC FIELDS 133

where ∇ · L = ∇2 is the Laplacian, and ∇ · T = ∇ · P = 0.
It is now straightforward bookkeeping to substitute this representation for Aλ into eq. (7.5),

collect similar looking terms, and arrive at the following set of uncoupled equations,

λαλ = ∇2αλ , (7.9)

λβλ = ∇2βλ , (7.10)

λγλ = cΦλ , (7.11)

provided η is at worst only function of the radius r. The first two of these expressions are
identical to the scalar Helmholtz equation encountered in the study of stellar oscillations. We
recall that the spherical harmonics are the canonical angular functions that span the surface of
a sphere. And so we may write either αλ or βλ as the product,

fλ(r)Ylm(Ω) , (7.12)

for any non-negative integer l. The remaining unknown function and the much-anticipated
eigenvalue λ are determined by the resulting ODE,

[ 1

r2

d

dr
r2 d

dr
− l(l + 1)

r2
+

λ

η(r)

]

fλ(r) = 0 . (7.13)

By virtue of the second term on the LHS of this equation, r = 0 is a singular point of this
ODE and accordingly the non-analytic of the two linearly-independent solutions about this
point must be discarded to maintain a sensible physical solution. The freedom to choose λ is
necessary to force the remaining analytic solution to satisfy a prescribed boundary condition
at the surface of the star (r = R). The nature of this boundary condition depends sensitively
on the vector character of the decaying magnetic field.

7.1.2 Poloidal field decay

A poloidal magnetic field is generated by the αλ(r) function. Hence, if we set βλ = 0 we obtain,

Bλ = P[αλ] ,Eλ = −λ

c

{

rT[αλ] + L[γλ]
}

, (7.14)

valid for r 6= R. In the vaccuum surrounding the star η = ∞ since no material currents are
allowed to be present, and Maxwell’s displacement current has also been neglected. In this
region we have the familiar potential field with αλ ∝ (R/r)l+1Ylm(Ω). Inside the star, η 6= ∞,
and the radial dependence of αλ follows from the eigenvalue ODE, eq. (7.13).

Examination of the components of the P operator indicates that αλ must be continuous
across the stellar surface, r = R, else B will not be defined there. This can be accommodated
through the freedom to multiply the exterior potential field solution by an arbitrary constant.
So λ is still undetermined.

The current density (and hence the electric field) are given by the curl of the magnetic
field. For E to be well-defined on the surface r = R as the appropriate limit of the interior and
exterior solutions, B must be continuous across the stellar surface. Since both the interior and
exterior solutions carry the common factor of Ylm(Ω), this is achieved merely by having ∂αλ/∂r
continuous across r = R. As λ is the only thing left at our disposal to make this happen, the
eigenvalue, and the decay-rate, are thus so-determined.

To see how this plays out, assume η = η0 is constant throughout the interior of the star.
The appropriate radial dependence within the star is describes by a spherical Bessel function,
i.e.,

αλ = Ylm(Ω)jl(kr) r < R (7.15)

αλ = Ylm(Ω)jl(kR)
(R

r

)l+1

r > R (7.16)
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134 CHAPTER 7. DECAY AND AMPLIFICATION OF MAGNETIC FIELDS

where k2 ≡ λ/η0. The continuity of the radial derivative is assured if

kRj′l(kR) + (l + 1)jl(kR) = kRjl−1(kR) = 0 , (7.17)

and so one need only hunt for the zeros of a spherical Bessel function in order to determine
the decay rate of a poloidal magnetic field! An l = 1 dipole calls for the positive zeros of
j0(x) = sin x/x. These are simply integer multiples of π, thus

λn =
η0π

2n2

R2
, for l = 1 , n = 1, 2, 3, ... (7.18)

Notice the many possible overtones associated with n ≥ 2. These decay more rapidly than the
fundamental (n = 1), since the radial eigenfunctions possess n − 1 field reversals. For such
overtones, the effective length scale to be used in the decay-time estimate is roughly the radial
distance between the field reversals, or ≈ R/n.

Figure 7.1 (top row) shows the first three fundamental (n = 1) modes of angular degrees
l = 1, 2, 3, corresponding to dipolar, quadrupolar, an hexapolar magnetic fields, as well as a
few higher overtones for l = 1, 2 (bottom row). It is worth noting that the azimuthal quantum
number, m, has no impact on computed decay rate. And last, but not least, the fossil field
lifetime estimate provided by eq. (7.2) is just a little on the large side, by a factor of π2 ≈ 10,
for a sun with constant diffusivity.

And what about γλ? Since everyone is continuous and well-defined there is no need for it,
i.e., γλ = Φλ = 0!4

7.1.3 Toroidal field decay

How about the decay rate of a purely toroidal magnetic field? The general approach remains
the same, but now we can zero-out αλ, giving

Bλ = −rT[∇2βλ] ,Eλ = −λ

c

{

P[βλ] + L[γλ]
}

, (7.19)

again, valid for r 6= R. Everywhere except on the stellar surface, we can make good use of the
fact that,

∇2βλ =
λ

η(r)
βλ . (7.20)

In the surrounding vacuum, η = ∞, and so as before, βλ ∝ (R/r)l+1Ylm(Ω), for r > R.
However, in this case, the consequence is that B = 0 for r > R. Continuity of B at the stellar
surface now demands that both βλ and its radial derivative be continuous on r = R. The
additional requirement that B be first-order differentiable (to avoid infiinite current densities
at r = R) is what ends up determining the eigenvalue λ.

The decay rate λ−1 is again related to the zero of a spherical Bessel function—only of index
l rather than l − 1 as was found for the decay of the poloidal field. Hence, a dipole (l = 1)
toroidal magnetic field decays at precisely the same rate as a quadrupole (l = 2) poloidal
magnetic field (at least for constant diffusivity)! As before, the azimuthal quantum number
m remains a non-issue. Looking up the expression for j1(x) in your favorite tome on special
functions, the decay rate of a dipole toroidal field follows from the transcendental equation,

tan kR = kR . (7.21)

The smallest non-zero solution of this equation gives,

λ1 =
η0(4.493409...)2

R2
, l = 1 toroidal and l = 2 poloidal. (7.22)

4In fact, eq. (7.13) is readily obtained by adopting the mixed poloidal/toroidal axisymmetric (m = 0)
formulation of §1.12.3, and setting B = 0 and A(r, θ, t) = fλ(r)Yl0(cos θ)eλt. But the formulation developed in
this section remains of far greater applicability since it is not restricted to axisymmetric magnetic fields.
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7.1. RESISTIVE DECAYS OF MAGNETIC FIELDS 135

Figure 7.1: Six diffusive eigenmodes for a purely poloidal field pervading a sphere of constant
magnetic diffusivity embedded in vacuum. The top row shows the three fundamental (n = 1)
diffusive eigenmodes with smallest eigenvalues, i.e., largest decay times. They correspond to
the well-known dipolar, quadrupolar, and hexapolar modes (l = 1, 2 and 3). The bottom row
shows a few eigenmodes of higher radial overtones. Poloidal fieldlines are shown in a meridional
plane, and the eigenvalues are given in units of the inverse diffusion time (τ−1 ∼ η/R2).
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136 CHAPTER 7. DECAY AND AMPLIFICATION OF MAGNETIC FIELDS

It is worth a final remark to point out that the correct decay rate for a toroidal field would
have been obtained merely from solving eq. (7.1) in the mixed representation by setting A = 0
and forcing B to vanish at r ∼> R. But then, think of all the subtleties and fun that would have
been missed!

7.1.4 Results for a magnetic diffusivity varying with depth

We end this section by a brief examination of the diffusive decay of large-scale poloidal magnetic
fields in the solar interior. The primary complication centers on the magnetic diffusivity, which
is no longer constant throughout the domain, and turns out to be rather difficult to compute
from first principles5. To begin with, the depth variations of the temperature and density in
a solar model causes the magnetic diffusivity to increase from about 10−2 m2s−1 in the central
core to ∼ 1m2s−1 at the core-envelope interface. This already substantial variation is however
dwarfed by the much larger increase in the net magnetic diffusivity expected in the turbulent
environment of the convective envelope. We will look into this in some detail in chapter 9, but
for the time being let us simply take for granted that η is much larger in the envelope than in
the core.

In order to examine the consequences of a strongly depth-dependent magnetic diffusivity on
the diffusive eigenmodes, we consider a simplified situation whereby η assumes a constant value
ηc in the core, a constant value ηe (À ηc) in the envelope, the transition occurring smoothly
across a thin spherical layer coinciding with the core-envelope interface. Mathematically, such
a variation can be expressed as

η(r) = ηc +
ηe − ηc

2

[

1 + erf

(

r − rc

w

)]

, (7.23)

where erf(x) is the error function, rc is the radius of the core-envelope interface, and w is the
half-width of the transition layer.

We are still facing the 1D eigenvalue problem presented by eq. (7.13)! Expressing time in
units of the diffusion time R2/ηe based on the envelope diffusivity, we seek numerical solutions,
subjected to the boundary conditions fλ(0) = 0 and smooth matching to a potential field
solution in r/R > 1, with the diffusivity ratio ∆η = ηc/ηe as a parameter of the model. Since
we can make a reasonable guess at the eigenvalue on the basis of the diffusion time and adopted
values of l and ηc (∼ π2ln∆η, for l and n not too large), inverse iteration (see Appendix F) is
the technique of choice.

Figure 7.2 shows the radial eigenfunctions for the slowest decaying poloidal eigenmodes
(l = 1, n = 1), with rc/R = 0.7, w/R = 0.05 in eq. (7.23) and diffusivity contrasts ∆η = 1
(constant diffusivity), 10−1 and 10−3. The corresponding eigenvalues, in units of R2/ηe, are
λ = −9.87, −2.14 and −0.028. Clearly, the (global) decay time is regulated by the region of
smallest diffusivity, since λ scales approximately as (∆η)−1. Notice also how the eigenmodes
are increasingly concentrated in the core region (r/R ∼< 0.7) as ∆η decreases, i.e., they are
“expelled” from the convective envelope. This is sometimes called the diamagnetic effect in
the astrophysical literature. It has interesting consequences for models of the solar dynamo,
and will be encountered again in later chapters.

The marked decrease of the diffusive decay time with increasing angular and radial degrees of
the eigenmodes is a noteworthy result. It means that left to decay long enough, any arbitrarily
complex magnetic field in the Sun or stars will eventually end up looking dipolar6. Conversely,
a fluid flow acting as a dynamo in a sphere and trying to “beat” Ohmic dissipation can be
expected to prefentially produce a magnetic field approximating diffusive eigenmodes of low
angular and radial degrees (or some combination thereof), since these are the least sensitive to
Ohmic dissipation.

5See the bibliography at the end of this chapter for some references.
6Is this always true? Can you think of circumstances where this would not be the case?
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7.2. MAGNETIC FIELD AMPLIFICATION BY STRETCHING AND SHEARING 137

Figure 7.2: Radial eigenfunctions for the slowest decaying (` = 1) poloidal eigenmodes (l = 1,
n = 1) in a sphere embedded in a vacuum. The diffusivity computed using eq. (7.23) with
rc/R = 0.7, w/R = 0.05, and for three values of the core-to-envelope diffusivity ratio (∆η).
The eigenvalues, in units of ηe/R

2, are λ = −9.87, −2.14 and −0.028 for ∆η = 1, 0.1, and
10−3, respectively. The diffusivity profile for ∆η = 10−3 is also plotted (dash-dotted line). The
dashed line indicates the location of the core-envelope interface.

There exists classes of early-type main-sequence stars, i.e. stars hotter and more luminous
than the Sun and without deep convective envelope, that are believed to contain strong, large-
scale fossil magnetic fields left over from their contraction toward the main-sequence. The
chemically peculiar Ap stars are the best studied class of such objects. Reconstruction of
their surface magnetic field distribution suggests almost invariably that the fields are largely
dominated by the dipole component, as one would have expected from the preceding discussion
if the observed magnetic fields have been diffusively decaying for tens or hundreds of millions
of years7.

7.2 Magnetic field amplification by stretching and shear-

ing

Having now investigated in some the details the resistive decay of magnetic field, we turn to
the other physical mechanism embodied in eq. (6.24): growth of the magnetic field in response
to the inductive action of a flow u. We first take a quick look at field amplification in a few
idealized model, and in the next section move on to a specific example using a “real” flow.

7Care is warranted in making such conclusions on the basis of stellar observations, as the current techniques
used to infer the presence and structure of the surface fields, based on Zeeman splitting and/or polarization
of starlight, are significant biased towards the lower multipoles because the stellar surface remains spatially
unresolved.

phy6795v08.tex, October 20, 2008 Paul Charbonneau, Université de Montréal



138 CHAPTER 7. DECAY AND AMPLIFICATION OF MAGNETIC FIELDS

Figure 7.3: Stretching of a magnetized cylindrical fluid element by a diverging flow. The
magnetic field is horizontal within the tube, has a strength B1 originally, and B2 after stretching.
In the flux-freezing limit mass conservation within the tube requires its radius to decrease, which
in turn leads to field amplification (see text).

7.2.1 Hydrodynamical stretching and field amplification

Let’s revert for a moment to the ideal MHD case (η = 0). The induction equation can then
expressed as

∂B

∂t
+ (u · ∇)B = B · ∇u , (7.24)

where it was further assumed that the flow is incompressible (∇·u = 0). The LHS of eq. (7.24)
is the Lagrangian derivative of B, expressing the time rate of change of B in a fluid element
moving with the flow. The RHS expresses the fact that this rate of change is proportional to
the local shear in the flow field. Shearing has the effect of stretching magnetic fieldlines,
which is what leads to magnetic field amplification.

As a simple example, consider on Figure 7.3 a cylindrical fluid element of length L1, threaded
by a magnetic field parallel to the axis of the cylinder, imbedded in a perfectly conducting
incompressible fluid and subjected to a stretching motion (∂ux/∂x > 0) along its central axis
such that its length increases to L2. Mass conservation demands that R2/R1 =

√

L1/L2.
Conservation of the magnetic flux (= πR2B) in turn leads to

B2

B1

=
L2

L1

, (7.25)

i.e., the field strength is amplified in direct proportion to the level of stretching. This almost
trivial result is in fact at the very heart of any magnetic field amplification in the magnetohydro-
dynamical context, and illustrates two crucial aspects of the mechanism: first, this works only

Paul Charbonneau, Université de Montréal phy6795v08.tex, October 20, 2008



7.2. MAGNETIC FIELD AMPLIFICATION BY STRETCHING AND SHEARING 139

Figure 7.4: Cartoon of the Strech-Twist-Fold flux rope dynamo of Vainshtein & Zeldovich.
A circular flux rope (a) is (b) stretched, (c) twisted, and (d) folded. Diagram (e) shows the
resulting structure after another such step. Diagram digitized straight out of A.D. Gilbert’s
excellent dynamo review listed in the bibliography.

if the fieldlines are frozen into the fluid, i.e., in the high-Rm regime. Second, mass conservation
plays an essential role here; the stretching motion along the tube axis must be accompanied
by a compressing fluid motion perpendicular to the axis if mass conservation is to be satisfied.
It is this latter compressive motion, occurring perpendicular to the magnetic fieldlines forming
the flux tube, that is ultimately responsible for field amplification; the horizontal motion oc-
curs parallel to the magnetic fieldline, and so cannot in itself have any inductive effect as per
eq. (6.24)8. The challenge, of course, is to realize this idealized scenario in practice, i.e., to find
a flow which achieves the effect illustrated on Figure 7.3.

7.2.2 The Vainshtein & Zeldovich flux rope dynamo

As trivial as the above example may appear, it can form the basis of a dynamo. S. Vainshtein
and Ya. B. Zeldovich have proposed one of the first and justly celebrated “cartoon” model for
this idea, as illustrated on Figure 7.4. The steps are the following:

1. A circular rope of magnetic field is stretched to twice its length (a → b). As we just
learned, this doubles the magnetic field strength;

2. The rope is twisted by half a turn (b → c);

3. One half of the rope is folded over the other half in such a way as to align the magnetic
field of each half (c → d).

Clearly, this so-called stretch-twist-fold sequence (hereafter STF) doubles the field strength
while conserving the total cross-section of the original rope, so that the magnetic flux is also

8Hold it now, how do you reconcile this statement with eq. (7.24), which indicates rather unambiguously
that one can have ∂B/∂t > 0 with B = Bxêx and u = ux(x)êx?
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140 CHAPTER 7. DECAY AND AMPLIFICATION OF MAGNETIC FIELDS

doubled. If the sequence is repeated n times, the magnetic field strength (and flux) is then
amplified by a factor

Bn

B0

∝ 2n = exp(n ln 2) , (7.26)

with n playing the role of a (discrete) time-like variable, eq. (7.26) indicates an exponential
growth of the magnetic field, with a growth rate σ = ln 2. Rejoyce! This is our first dynamo!

A concept central to the STF dynamo —and other dynamos to be encountered later— is
that of constructive folding. Note how essential the twisting step is to the STF dynamo:
without it (or with an even number of twists), the magnetic field in each half of the folded
rope would end up pointing in opposite direction, and would then add up to zero net flux, a
case of destructive folding. We’ll have a more to say on the STF dynamo in the following
chapter; for now we switch gears to consider a mechanism of field amplification of more obvious
astrophysical relevance.

7.2.3 Toroidal field production by differential rotation

A situation of great (astro)physical interest is the induction of a toroidal magnetic field via the
shearing of a poloidal magnetic field threading a differentially rotating sphere of electrically
conducting fluid. Assuming axisymmetry (i.e., the poloidal field and differential rotation share
the same symmetry axis) and neglecting once again magnetic dissipation, the induction equation
take on the reduced form9

∂A

∂t
= 0 , (7.27)

∂B

∂t
= $[∇× (Aêφ)] · ∇Ω . (7.28)

where we took advantage of the poloidal/toroidal separation discussed in §1.12.3. For a steady
rotation profile, equation (7.28) integrates immediately to

B(r, θ, t) = B(r, θ, 0) +
(

$[∇× (Aêφ)] · ∇Ω
)

t . (7.29)

Anywhere in the domain, the toroidal component of the magnetic field grows linearly in time,
at a rate proportional to the net local shear and local poloidal field strength10. A toroidal
magnetic component is being generated by stretching the initially purely poloidal fieldlines in
the φ-direction; the magnitude of the poloidal magnetic component remains unaffected, as per
eq. (7.27)!

Evidently computing B via eq. (7.29) requires a knowledge of the solar internal (differential)
rotation profile Ω(r, θ). Consider the following parametrization:

Ω(r, θ) = ΩC +
ΩS(θ) − ΩC

2

[

1 + erf

(

r − rC

w

)]

, (7.30)

where

ΩS(θ) = ΩEq(1 − a2 cos2 θ − a4 cos4 θ) (7.31)

is the surface latitudinal differential rotation. We will make repeated use of this parametrization
in this and following and chapters, so let’s look into it in some detail. Figure 7.5 shows a 2D
helioseismic inversion of the solar internal rotation, together with the profile Ω(r, θ) generated
using the above expressions with parameter values ΩC/2π = 432.8 nHz, ΩEq/2π = 460.7 nHz,
a2 = 0.1264, a4 = 0.1591, rc = 0.713R, and w = 0.05R. The degree of similarity with the
“real” Sun is quite reasonable. Note in particular that both profiles are characterized by:

9Work it out!
10How long would it take for the solar differential rotation to shear a 1G poloidal field into a 105 G toroidal

field?
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7.2. MAGNETIC FIELD AMPLIFICATION BY STRETCHING AND SHEARING 141

Figure 7.5: Regularized least-square inversion for the internal solar angular velocity, obtained
with the LOWL 2-year frequency splitting dataset (left), and parametric representation ob-
tained from eqs. (7.30) —(7.31) (right). The angular velocity is shown in a meridional quad-
rant, in the form of of angular frequency, in the range 340 ≤ Ω/2π ≤ 460 nHz with 10 nHz
spacing.

1. A convective envelope (r ∼> rc) where the shear is purely latitudinal, with the equatorial
region rotating faster than the poles;

2. A core (r ∼< rc) that rotates rigidly, at a rate equal to that of the surface mid-latitudes;

3. A smooth matching of the core and envelope rotation profiles occurring across a thin
spherical layer coinciding with the core-envelope interface (r = rc), so that strong radial
shears of opposite signs exist in the polar and equatorial regions.

Figure 7.6 shows the distribution of toroidal magnetic field (part B) resulting from the
shearing of pure dipole with field strength 10−4 T at r/R = 0.7 (part A, dotted lines) by
the above solar-like differential rotation profile (part A, solid lines). This is nothing more
that eq. (7.29) evaluated for t = 10 yr, with B(r, θ, 0) = 0. Not surprisingly, the toroidal
field is concentrated in the regions of large radial shear, at the core-envelope interface (dashed
line). Note how the toroidal field distribution is antisymmetric about the equatorial plane, in
agreement with Hale’s polarity rules, and precisely what one would expect from the inductive
action of a shear flow that is equatorially symmetric on a poloidal magnetic field that is itself
antisymmetric about the equator.

Knowing the distributions of toroidal and poloidal fields on Figure 7.6 allows us to flirt a
bit with dynamics, by computing the φ-component of the Lorentz force:

[FL]φ =
1

µ0$
Bp · ∇($B) , (7.32)

The resulting spatial distribution of [FL]φ is plotted on Figure 7.6C. Examine Fig. 7.6 carefully
to convince yourself that the Lorentz force is such as to oppose the driving shear. This is an
important and totally general property of interacting flows and magnetic fields: the Lorentz
force tends to resist the hydrodynamical stretching responsible for field induction. The ultimate
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142 CHAPTER 7. DECAY AND AMPLIFICATION OF MAGNETIC FIELDS

Figure 7.6: Shearing of a poloidal field into a toroidal component by a solar-like differential
rotation profile. Part A shows isocontours of the rotation rate Ω(r, θ)/2π (solid lines, contour
spacing 10 nHz as on Fig. 7.5). The dotted lines are fieldlines for a pure dipole. The dashed
line is the core-envelope interface at r/R = 0.7. Part B shows isocontours of the toroidal field,
with solid (dotted) contours corresponding to positive (negative) B. The maximum toroidal
field strength is about 0.2T, and contour spacing is 0.02T. Part C shows logarithmically spaced
isocontours of the φ-component of the Lorentz force associated with the poloidal/toroidal fields
of panels A and B.

fate of the system depends on whether the Lorentz force become dynamically significant before
the growth of the toroidal field is mitigated by resistive dissipation; in the solar interior the
former situation is far more likely11.

Clearly, the growing magnetic energy of the toroidal field is supplied by the kinetic energy
of the rotational shearing motion (this is hidden the second term on the RHS of eq. (1.87)). In
the solar case, this is an attractive field amplification mechanism, because the available supply
of rotational kinetic energy is immense. But don’t make the mistake of thinking that this is
a dynamo! In obtaining eq. (7.29) we have completely neglected magnetic dissipation, and
remember, the dynamo we are seeking are flows that can amplify and sustain a magnetic field
against Ohmic dissipation. Nonetheless, shearing of a poloidal field by differential rotation will
turn out to be a central component of all solar/stellar dynamo models constructed in later
chapters. It is also largely responsible for the strong alignement of galactic magnetic fields with
the direction of galactic rotation, as evidence e.g. on Fig. 2.11.

7.3 Magnetic field evolution in a cellular flow

Having examined separately the resistive decay and hydrodynamical induction of magnetic
field, we now turn to a situation where both processes operate simultaneously.

11How would you go about seeking a theoretical justification for this rather sweeping statement?
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7.3.1 A cellular flow solution

In Cartesian geometry, we consider the action of a steady, incompressible (∇ · u = 0) two-
dimensional flow

u(x, y) = ux(x, y)êx + uy(x, y)êy (7.33)

on a two-dimensional magnetic field

B(x, y, t) = Bx(x, y, t)êx + By(x, y, t)êy . (7.34)

Note that neither the flow nor the magnetic field have a z-component, and that their x and
y-components are both independent of the z-coordinate. The flow is said to be planar because
uz = 0, and has an ignorable coordinate (i.e., translational symmetry) since ∂/∂z ≡ 0 for all
field and flow components. Such a magnetic field can be represented by the vector potential

A = A(x, y, t)êz , (7.35)

where, as usual, B = ∇× A. Under this representation, lines of constant A in the [x, y] plane
coincide with magnetic fieldlines. The only non-trivial component of the induction equation
(1.105) is its z-components, which takes the form

∂A

∂t
+ u · ∇A = η∇2A . (7.36)

This is a linear advection-diffusion equation, describing the transport of a passive scalar quantity
A by a flow u, and subject to diffusion, the magnitude of which being measured by η. In view
of the symmetry and planar nature of the flow, it is convenient to write the 2-D flow field in
terms of a stream function Ψ(x, y):

u(x, y) = u0

(

∂Ψ

∂y
êx − ∂Ψ

∂x
êy

)

. (7.37)

It is easily verified that any flow so defined will identically satisfy the condition ∇ · u = 0.
As with eq. (7.35), a given numerical value of Ψ uniquely labels one streamline of the flow.
Consider now the stream function

Ψ(x, y) =
L

4π

(

1 − cos

(

2πx

L

))(

1 − cos

(

2πy

L

))

, x, y ∈ [0, L] (7.38)

This describes a counterclockwise cellular flow centered on (x, y) = (L/2, L/2), as shown on
Figure 7.7. The maximal velocity amplitude max‖u‖ = u0 is found along the streamline
Ψ = u0L/(2π), plotted as a thicker line on Figure 7.7. This streamline is well approximated
by a circle of radius L/4, and its streamwise circulation period turns out to be 1.065πL/2u0,
quite close to what one would expect in the case of a perfectly circular streamline. In what
follow this timescale is denoted τc and referred to as the turnover time of the flow. Note
that both the normal and tangential components of the flow vanish on the boundaries x = 0, L
and y = 0, L. This implies that the domain boundary is itself a streamline (Ψ = 0, in fact),
and that every streamline interior to the boundary closes upon itself within the spatial domain.
These (simple) topological properties of the flow defined by eqs. (7.37) and (7.38) may seem
largely irrelevant at this stage of our inquiries, but later chapters will reveal that they are in
fact crucial to the dynamo problem.

We now investigate the inductive action of this flow by solving a nondimensional version of
eq. (7.36), by expressing all lengths in units of L, and time in units of the advection time

L/u0, so that

∂A

∂t
= −∂Ψ

∂y

∂A

∂x
+

∂Ψ

∂x

∂A

∂y
+

1

Rm

(

∂2A

∂x2
+

∂2A

∂y2

)

, x, y ∈ [0, L] , (7.39)
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Figure 7.7: Counterclockwise cellular flow generated by the streamfunction given by eq. (7.38).
Part (A) shows streamlines of the flow, with the thicker streamline corresponding to Ψ =
u0L/(2π), on which the flow attains its maximum speed u0. Part (B) shows the profile of uy(x)
along an horizontal cut at y = 1/2. A “typical” length scale for the flow is then ∼ L.

where Rm = u0L/η is the magnetic Reynolds number for this problem, and the corresponding
diffusion time is then τη = Rm in dimensionless units. Equation (7.39) is solved as an initial-
boundary value problem in two spatial dimensions, with spatial and temporal derivatives both
evaluated using second-order centered finite differences (see Appendix F). All calculations
described below start at t = 0 with an initially uniform, constant magnetic field B = B0êx,
equivalent to:

A(x, y, 0) = B0 y . (7.40)

We consider a situation where the magnetic field normal to the boundaries is held fixed, which
amounts to holding the vector potential fixed on the boundary12. Figure 7.8 shows the variation
with time of the magnetic energy (eq. (1.92)), for four solutions having Rm = 10, 102, 103 and
104. Figure 7.9 shows the evolving shape of the magnetic fieldlines in the Rm = 103 solution
at 9 successive epochs13. The solid dots are “floaters”, namely Lagrangian markers moving
along with the flow. At t = 0 all floaters are equidistant and located on the fieldline initially
coinciding with the coordinate line y/L = 0.5, that (evolving) fieldline being plotted in the
same color as the floaters on all panels. Figure 7.9 covers two turnover times.

At first, the magnetic energy increases quadratically in time. This is precisely what one
would expect from the shearing action of the flow on the initial Bx-directed magnetic field,
which leads to a growth of the By-component that is linear in time. However, for t/τc ∼> 2
the magnetic energy starts to decrease again and eventually (t/τc À 1) levels off to a constant
value. To understand the origin of this behavior we need to turn to Figure 7.9 and examine
the solutions in some detail.

The counterclockwise shearing action of the flow is quite obvious on Fig. 7.9 in the early
phases of the evolution, leading to a rather pretty spiral pattern as magnetic fieldlines get
wrapped around one another. Note that the distortion of magnetic fieldlines by the flow implies
a great deal of stretching in the streamwise direction. This is most obvious upon noting that
the distance between adjacent floaters increases monotonically in time. It is no accident that
the floaters end up in the regions of maximum field amplification on frames 2—5; they are

12Can you figure that one out?
13An animation of this evolving solution can be viewed on the course Web Page.
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Figure 7.8: Evolution of the magnetic energy for solutions with increasing Rm. The solutions
have been computed over 10 turnover times, at which point they are getting reasonably close
to steady-state, at least as far as magnetic energy is concerned. One turnover time corresponds
to t/π = 0.532.

initially positioned on the fieldline coinciding with the line y = L/2, everywhere perpendicular
to the shearing flow (see Fig. 7.7), which pretty much ensures maximal inductive effect, as per
eq. (7.36). The fact that all floaters remain at first “attached” onto their original fieldline is
what one would have expected from the fact that this is a relatively high-Rm solution, so that
flux-freezing is effectively enforced. As the evolution proceeds, the magnetic field keeps building
up in strength (as indicated by the color scale), but is increasingly confined to spiral “sheets”
of decreasing thickness.

By the time we hit one turnover time (corresponding approximately to frame 5 on Fig. 7.9),
it seems that we are making progress towards our goal of producing a dynamo; we have a flow
field which, upon acting on a preexisting magnetic field, has intensified the strength of that
field, at least in some localized regions of the spatial domain. However, beyond t ∼ τc the sheets
of magnetic fields are gradually disappearing, first near the center of the flow cell (frames 5—7),
and later everywhere except close to the domain boundaries (frames 7—9). Notice also how,
from frame 5 onward, the floaters are seen to “slip” off their original fieldlines. This means
that flux-freezing no longer holds; in other words, diffusion is taking place. Yet, we evidently
still have t ¿ τη (≡ Rm = 103 here), which indicates that diffusion should not yet have had
enough time to significantly affect the solution. What is going on here?

7.3.2 Flux expulsion

The solution to this apparent dilemma lies with the realization that we have defined Rm in
terms of the global length scale L characterizing the flow. This was a perfectly sensible thing to
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Figure 7.9: Solution to equation (7.39) starting from an initially horizontal magnetic field. The
panels show the shape of the magnetic fieldlines at successive times. The color scale encodes

the absolute strength of the magnetic field, i.e.,
√

B2
x + B2

y . The x- and y-axes are horizontal

and vertical, respectively, and span the range x, y ∈ [0, L]. Time t is in units of L/u0. The
solid dots are “floaters”, i.e., Lagrangian marker passively advected by the flow. The magnetic
Reynolds number is Rm = 103.
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Figure 7.10: Cuts of a Rm = 104 solution along the coordinate line y = 0.5, at successive times.
Note how the “typical” length scale ` for the solution decreases with time, from `/L ∼ 0.25 at
t/π = 0.269, down to `/L ∼ 0.05 after two turnover times (t/π = 1.065).

do on the basis of the flow configuration and initial condition on the magnetic field. However, as
the evolution proceeds beyond ∼ τc the decreasing thickness of the magnetic field sheets means
that the global length scale L is no longer an adequate measure of the “typical” length scale
of the magnetic field, which is what is needed to estimate the diffusion time τη (see eq. (7.2)).
Figure 7.10 shows a series of cuts of the vector potential A in a Rm = 104 solution, plotted along
the coordinate line y = L/2, at equally spaced successive time intervals covering two turnover
times. Clearly the inexorable winding of the fieldline leads to a general decrease of the length
scale characterizing the evolving solution. In fact, each turnover time adds two new “layers”
of alternating magnetic polarity to the spiraling sheet configuration, so that the average length
scale ` decreases as t−1:

`(t)

L
∝ L

u0t
, (7.41)

which in turn implies that the local dissipation time is also decreasing as t−1. On the other
hand, examination of Fig. 7.9 soon reveals that the (decreasing) length scale characterizes the
thickness of elongated magnetic structures that are themselves more or less aligned with the
streamlines, so that the turnover time τc remains the proper timescale measuring field induction.
With τc fixed and τη inexorably decreasing, the solution is bound to reach a point where τη ' τc,
no matter how small dissipation actually is. To reach that stage just takes longer in the higher
Rm solutions, since more winding of the fieldlines is needed. Larger magnetic energy can build
up in the transient phase, but the growth of the magnetic field is always arrested. Equating τc

(∼ L/u0) to the local dissipation time `2/η, one readily finds that the length scale ` at which
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both process become comparable can be expressed in terms of the global Rm as

`

L
= (Rm)−1/2 , Rm =

u0L

η
. (7.42)

That such a balance between induction and dissipation materializes means that a steady-state
can be attained. Figure 7.11 shows four such steady states solutions for increasing values of the
(global) magnetic Reynolds number Rm. The higher Rm solutions clearly show flux expulsion

from the central regions of the domain. This is a general feature of steady, high-Rm magnetized
flows with closed streamlines: magnetic flux is expelled from the regions of closed streamlines
towards the edges of the flow cells, where it ends up concentrated in boundary layers which

indeed have a thickness of order R
−1/2
m , as suggested by eq. (7.42). It is important to understand

how and why this happens.
To first get an intuitive feel for how flux expulsion operates, go back to Figure 7.9. As the

flow wraps the fieldlines around one another, it does so in a manner that folds fieldlines of
opposite polarity closer and closer to each other. When two such fieldlines are squeezed closer
together than the dissipative length scale (eq. [7.42]), resistive decay takes over and destroys
the field faster than it is being stretched. This is another instance of destructive folding, and
can only be avoided along the boundaries, where the normal component of the field is held
fixed. For flux expulsion to operate, flux-freezing must be effectively enforced on the spatial
scale of the flow. Otherwise the field is largely insensitive to the flow, and fieldlines are hardly
deformed with respect to their initial configuration (as on panel [A] of Fig. 7.11).

Consider now the implication for the total magnetic flux across the domain; flux conservation
requires that the normal flux B0L imposed at the right and left boundaries must somehow cross
the interior, otherwise Maxwell’s equation ∇ · B = 0 would not be satisfied; because of flux
expulsion, it can only do so in the thin layers along the bottom and top boundaries. Since

the thickness of these layers scales as R
−1/2
m , it follows that the field strength therein scales as√

Rm, which in turn implies that the total magnetic energy in the domain also scales as
√

Rm

in the t À τc limit 14.

7.3.3 Digression: the electromagnetic skin depth

You may recall that a sinusoidally oscillating magnetic field imposed at the boundary of a
conductor will penetrate the conductor with an amplitude decreasing exponentionally away
from the boundary and into the conductor, with a length scale called the electromagnetic

skin depth:

` =

√

2η

ω
. (7.43)

Now, go back to the cellular flow and imagine that you are an observer located in the center
of the flow cell, looking at the domain boundaries while rotating with angular velocity u0/L;
what you “see” in front of you is an “oscillating” magnetic field, in the sense that it flips sign
with “angular frequency” u0/L. The corresponding electromagnetic skin depth would then be

`

L
=

√

2η

u0L
=≡

√

2

Rm
. (7.44)

which basically corresponds to the thickness of the boundary layer where significant magnetic
field is present in the steady-states shown on Figure 7.11. How about that for a mind flip...

7.3.4 Timescales for field amplification and decay

Back to our cellular flow. Flux expulsion or not, it is clear from Figure 7.8 (solid lines) that
some level of field amplification has occurred in the high Rm solutions, in the sense that EB(t →

14Hold it, EB ∝ B
2 as per eq. (1.92); how can the magnetic field strength and magnetic energy both scale as√

Rm?
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Figure 7.11: Steady-state solutions to the cellular flow problem, for increasing values of the
magnetic Reynolds number Rm. The Rm = 104 solution is at the resolution limit of the
Nx × Ny = 128 × 128 mesh used to obtain these solutions, as evidenced on part (D) by the
presence of small scale irregularities where magnetic fieldlines are sharply bent. The color scale
encodes the local magnitude of the magnetic field. Note how, in the higher Rm solutions,
magnetic flux is expelled from the center of the flow cell. With EB(0) denoting the energy of
a purely horizontal field with same normal boundary flux distribution, the magnetic energy
for these steady states is EB/EB(0) = 1.37, 2.80, 5.81 and 11.75, respectively, for panels (A)
through (D).

phy6795v08.tex, October 20, 2008 Paul Charbonneau, Université de Montréal
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∞) > EB(0). But is this a dynamo? The solutions of Fig. 7.11 have strong electric currents
in the direction perpendicular to the plane of the paper, and these currents are subjected to
resistive dissipation. Have we then reached the goal stated at the beginning of the chapter,
namely, to amplify and maintain a weak, preexisting magnetic field against Ohmic dissipation?

In a narrow sense yes, but a bit of reflection will show that the boundary conditions are
playing a crucial role. The only reason that the magnetic energy does not asymptotically
go to zero is that the normal field component is held fixed at the boundaries, which, in the
steady-state, implies a non-zero Poynting flux into the domain across the left and right vertical
boundaries. The magnetic field is not avoiding resistive decay because of field induction within
the domain, but rather because external energy (and magnetic flux) is being pumped in through
the boundaries. This is precisely what is embodied in the second and third terms on the RHS
of eq. (1.87).

What if this were not the case? One way to work around the boundary problem is to replace
the fixed flux boundary conditions by periodic boundary conditions:

A(x, 0) = A(x, L) , A(0, y) = A(L, y) . (7.45)

There is still a net flux across the vertical boundary at t = 0, but the boundary flux is now
free to decay away along with the solution. You get to compute such a solution in Problem 7.5
It is time to reveal that the hitherto unexplained dotted lines on Fig. 7.8 correspond in fact
to solutions computed with such boundary conditions, for the same cellular flow and initial
condition as before.

Evidently the magnetic energy now decays to zero, confirming that the boundaries indeed
played a crucial role in the sustenance of the magnetic field in our previous solutions. What is
noteworthy is the rate at which it does so. In the absence of the flow and with freely decaying
boundary flux, the initial field would diffuse away on a timescale τη ∼ L2/η, which is equal
to Rm if we retain the scaling of τ in terms of L/u0. With the flow turned on, the decay
proceeds at an accelerated rate because of the inexorable decrease of the typical length scale
associated with the evolving solution, which we argued earlier varied as t−1. What then is the
typical timescale for this enhanced dissipation? The decay phase of the field (for t À L/u0) is
approximately described by

∂A

∂t
= η∇2A . (7.46)

An estimate for the dissipation timescale can be obtained once again via dimensional analysis,
by replacing ∇2 by 1/`2, as in §7.1 but now with the important difference that ` is now a
function of time:

` → `(t) =

(

L

t

)(

L

u0

)

, (7.47)

in view of our previous discussion (cf. Fig. 7.10 and accompanying text). This leads to

∂A

∂t
' −ηu2

0t
2

L4
A , (7.48)

where the minus sign is introduced in view of the fact that ∇2A < 0 in the decay phase.
Equation (7.48) integrates to

A(t)

A0

= exp

[

− ηu2
0

3L4
t3

]

= exp

[

− 1

3Rm

(

u3
0t

3

L3

)]

. (7.49)

This last expression indicates that with t measured in units of L/u0, the decay time scales as

R
1/3
m . This is indeed a remarkable situation: in the low magnetic diffusivity regime (i.e., high

Rm), the flow has in fact accelerated the decay of the magnetic field, even though large field
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intensification can occur in the early, transient phases of the evolution. This is not at all what
a dynamo should be doing!

As it turns out, flux expulsion is even trickier than the foregoing discussion may have led you
to believe! Flux expulsion destroys the mean magnetic field component directed perpendicular to
the flow streamlines. It cannot do a thing to a mean component oriented parallel to streamlines.
For completely general flow patterns and initial conditions, the dissipative phase with timescale

∝ R
1/3
m actually characterizes the approach to a state where the advected trace quantity —here

the vector potential A— becomes constant along each streamline, at a value Ā equal to the
initial value of A averaged on each of those streamlines. For the cellular flow and initial
conditions used above, this average turns out to be Ā = 0.5 for every streamline, so that the

R
1/3
m decay phase corresponds to the true decay of the magnetic field to zero amplitude. If Ā

varies from one fieldline to the next, however, the R
1/3
m phase is followed by a third decay phase,

which proceeds on a timescale ∼ Rm, since induction no longer operates (u · ∇A = 0) and the
typical length scale for A is once again L. You get to explore this phenomenon in problem
7.6 15. At any rate, even with a more favorable initial condition we have further delayed field
dissipation, but we still don’t have a dynamo since dissipation will proceed inexorably, on the
“long” timescale Rm(L/u0).

7.3.5 Global flux expulsion in spherical geometry: axisymmetrization

You may think that the flux expulsion problem considered in the preceding section has nothing
to do with any astronomical objects you are likely to encounter in your future astrophysical
carreers. Wroooong!

Consider the evolution of a magnetic field pervading a sphere of electrically conducting fluid,
with the solar-like differential rotation profile already encountered previously (§7.2.3, Fig. 7.5
and eqs. (7.30)—(7.31)), and with the field having initially the form of an dipole whose axis is
inclined by an angle Θ with respect to the rotation axis (θ = 0). Such a magnetic field can be
expressed in terms of a vector potential having components:

Ar(r, θ, φ) = 0 (7.50)

Aθ(r, θ, φ) = (R/r)2 sinΘ(sin β cos φ − cos β sin φ) (7.51)

Aφ(r, θ, φ) = (R/r)2[cos Θ sin θ − sinΘ cos θ(cos β cos φ + sinβ sin φ)] (7.52)

where β is the angle between the φ = 0 plane, and the plane defined by the dipole and coordinate
axes.

Now, the vector potential for an inclined dipole can be written as the sum of two contribu-
tions, the first corresponding to an aligned dipole (Θ = 0), the second to a perpendicular dipole
(Θ = π/2), their relative magnitude being equal to tan Θ16. Since the governing equation is
linear, the solution for an inclined dipole can be broken into two independent solutions for the
aligned and perpendicular dipoles. The former is precisely what we investigated already in
§7.2.3, where we concluded there that the shearing of an aligned dipole by an axisymmetric
differential rotation would lead to the buildup of a toroidal component, whose magnitude would
grow linearly in time at a rate set by the magnitude of the shear.

The solution for a perpendicular dipole is in many way similar to the cellular flow problem
of §7.3. You can see how this may be the case by imagining looking from above onto the
equatorial plane of the sphere; the fieldlines contained in that plane will have a curvature and
will be contained within a circular boundary, yet topologically the situation is similar to the
cellular flow studied in the preceding section: the (sheared) flow in the equatorial plane is made

15In case you’re too lazy to do the problem, you can view an animation of this solution on the Course Home
Page. But please do the problem anyway.

16Can you work out the corresponding vector potential components ?
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of closed, circular streamlines contained within that plane, so that we can expect flux expulsion
to occur. The equivalent of the turnover time here is the differential rotation timescale, namely
the time for a point located on the equator to perform a full 2π revolution with respect the
poles:

τDR = (ΩEqu − ΩPole)
−1 = Ω¯(a2 + a4) , (7.53)

where the second equality follows directly from eq. (7.31). For a freely decaying dipole, the
perpendicular component of the initial dipole will then be subjected to flux expulsion, and
dissipated away, at a rate far exceeding purely diffusive decay in the high Rm limit, as argued
earlier.

But here is the amusing thing; for an observer looking at the magnetic field at the surface
of the sphere, the enhanced decay of the perpendicular component of the dipole will translate
into a gradual decrease in the inferred tilt axis of the dipole. Figure 7.12 shows this effect, for
the differential rotation profile given by eq. (7.30) and a magnetic Reynolds number Rm = 103.
Contours of constant Br are plotted on the surface r/R = 1, with the neutral line (Br = 0)
plotted as a thicker line. At t = 0 the field has the form of a pure dipole tilted by π/3
with respect to the coordinate axis, and the sphere is oriented so that the observer (you!) is
initially looking straight down the magnetic axis of the dipole. Advection by the flow leads to
a distorsion of the initial field, with the subsequent buildup of small spatial scales in the r- and
θ−directions (only the latter can be seen here)17. After two turnover times (last frame), the
surface field looks highly axisymmetric.

So, in a differentially rotating fluid system with high Rm, flux expulsion leads to the sym-

metrization of any non-axisymmetric magnetic field component initially present —or contem-
poraneously generated. The efficiency of the symmetrization process should make us a little
cautious in assuming that the large-scale magnetic field of the Sun, which one would deem
roughly axisymmetric upon consideration of surface things like the sunspot butterfly diagram,
is characterized by the same level of axisymmetry in the deep-seated generating layers, where
the dynamo is presumed to operate. After all, standing in between is a thick, axisymmetrically
differentially rotating convective envelope that must be reckoned with. In fact, observations of
coronal density structures in the descending phase of the solar cycle can be interpreted in terms
of a large-scale, tilted dipole component, with the tilt angle steadily decreasing over 3—4 years
towards solar minimum. Interestingly, the differential rotation timescale for the Sun is ∼ 6
months. Are we seeing the axisymmetrization process in operation ? Maybe. Axisymmetry is
certainly a very convenient modeling assumption when working on the large scales of the solar
magnetic field, but it may be totally wrong.

You may recall from §2.2 that the magnetic field of Saturn stands out among other solar
system planets as having a symmetry axis aligned exactly with its rotation axis. Saturn also has
the strongest large-scale surface differential rotation, with a broad equatorial “jet” peaking at ∼
5 times the polar angular velocity. Structural models of Saturn also indicate that this differential
rotation may well extend in the interior, with the angular velocity being constant along cylinders
concentric with the rotation axis. Saturn’s magnetic field is most likely generated by a dynamo
mechanism operating in its metallic Hydrogen core, extending to a fractional radius of about
0.55. So imagine now that the dynamo-generated field is indeed inclined with respect to the
rotation axis, like in most other planets. In between this field and the surface, where we
make measurement, there stands a strongly differentially rotating partly conducting envelope,
where axisymmetrization can take place. The key here is that the electrical conductivity in the
molecular Hydrogen envelope must be sufficiently large for a coupling between the flow and field
(in other words, we need Rm ∼> 1, not Rm ¿ 1. See the references listed in the bibliography
for more on this interesting Saturnian problem.

17An animation of this solution, as well as a few others for different Rm and/or tilt angle, can be viewed on
the course Web Page.
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Figure 7.12: Symmetrization of an inclined dipole in a electrically conducting sphere in a state
of solar-like axisymmetric differential rotation. Each panel shows contours of constant Br at
the surface of the sphere, and the solution is matched to a potential in the exterior (r/R > 1).
The differential rotation is given by eq. (7.30). Time is given in units of τDR, in which the
turnover period (or differential rotation period) is equal to 2π.
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7.4 Two anti-dynamo theorems

The cellular flow studied in §7.3, although it initially looked encouraging (cf. Fig. 7.8), proved
not to be a dynamo after all. Is this peculiar to the flow defined by eqs. (7.37)–(7.38), or is this
something more general? Exhaustively testing for dynamo action in all possible kinds of flow
geometries is clearly impractical. However, it turns out that one can rule out a priori dynamo
action in many classes of flows. These demonstrations are known as anti-dynamo theorems.

A powerful anti-dynamo theorem due to Ya. B. Zeldovich (1914-87), has a lot to teach us
about our cellular flow results. The theorem rules out dynamo action in steady planar flows in
cartesian geometry, i.e., flows of the form

u2(x, y, z) = ux(x, y, z)êx + uy(x, y, z)êy (7.54)

in a bounded volume V at the boundaries (∂V ) of which the magnetic field vanishes. Note that
no other restrictions are placed on the magnetic field, which can depend on all three spatial
coordinate as well as time. Nonetheless, in view of eq. (7.54) is will prove useful to consider
separately the z-component of the magnetic field Bz(x, y, z, t) from the (2D) field component
in the [x, y] plane (hereafter denoted B2). It is readily shown that the z-component of the
induction equation then reduces to

∂Bz

∂t
+ u · ∇Bz = η∇2Bz (7.55)

for spatially constant magnetic diffusivity. Now, the LHS is just a Lagrangian derivative,
yielding the time variation of Bz as one moves along with the fluid. Multiplying this equation
by Bz and integrating over V yields, after judicious use of a suitable vector identity and of the
divergence theorem18:

1

2

∫

V

DB2
z

Dt
dV =

∫

∂V

Bz(∇Bz) · ndS − η

∫

V

(∇Bz)
2dV . (7.56)

Now, the first integral on the RHS vanishes since B = 0 on ∂V by assumption. The second
integral is positive definite, therefore Bz always decays on the diffusive timescale (cf. §7.1 ).

Consider now the magnetic field B2 in [x, y] planes. The most general such 2D field can be
written as the sum of a solenoidal and potential component:

B2(x, y, z, t) = ∇× (Aêz) + ∇Φ , (7.57)

where the vector potential A and scalar potential Φ both depend on all three spatial coordinates
and time. Evidently, the constraint ∇ · B = 0 implies

∇2
2Φ = −∂Bz

∂z
, (7.58)

where ∇2
2 ≡ ∂2/∂x2 +∂2/∂y2 is the 2D Laplacian operator in the [x, y] plane. Clearly, once Bz

has resistively dissipated, i.e., for times much larger than the global resistive decay time τ , Φ
is simply a solution of the 2D Laplace equation ∇2

2Φ = 0.
Here comes the sneaky part. We take the curl of the induction equation. Upon substituting

eq. (7.57), the z-component of the resulting expression yields

∇×∇×
[

∂A

∂t
+ u2 · ∇A − η∇2

2A − u2 ×∇Φ

]

= 0 , (7.59)

with ∇· (Aêz) = 0 as a choice of gauge. Note that only one term involving Φ survives, because
∇ × ∇Φ = 0 identically. In general, the above expression is only satisfied if the quantity in
square brackets itself vanishes, i.e.,

DA

Dt
= η∇2

2A + u2 ×∇Φ . (7.60)

18Try it!
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This expression is identical to that obtained above for Bz, except for the presence of the source
term u2 × ∇Φ. However, we just argued that for t À τ , ∇2

2Φ = 0. In addition, B vanishes
on ∂V by assumption, so that the only possible asymptotic interior solutions are of the form
Φ =const, which means that the source term vanishes in the limit t À τ . From this point on
eq. (7.60) is indeed identical to eq. (7.55), for which we already demonstrated the inevitability of
resistive decay. Therefore, dynamo action, i.e., maintenance of a magnetic field against resistive
dissipation, is impossible in a planar flow for any 3D magnetic field.

Another powerful anti-dynamo theorem, predating in fact Zeldovich’s, is due to T.G. Cowl-
ing (1906-90). This anti-dynamo theorem is particularly important historically, since it rules
out dynamo action for 3D but axisymmetric flows and magnetic fields, which happen to be the
types of flows and fields one sees in the Sun, at least on the larger spatial scales. Rather than
going over one of the many very mathematical proofs of Cowling’s theorem found in the litera-
ture, let’s just follow the underlying logic of our proof of Zeldovich’s theorem. Assuming once
again that there are no sources of magnetic field exterior to the domain boundaries, we consider
the inductive action of a 3D, steady axisymmetric flow on a 3D axisymmetric magnetic field.
Recall from §1.12.3 that under these circumstances the induction equation can be separated
into the two components given by eqs. (1.108)–(1.109). The LHS of these expressions is again a
Lagrangian derivative for the quantities in parentheses, and the first terms on each RHS are of
course diffusion. The next term on the RHS of eq. (1.109) vanishes for incompressible flows, and
remains negligible for very subsonic compressible flows. The last term on the RHS, however, is
a source term, in that it can lead to the growth of B as long as A does not decay away. This is
the very situation we have considered in §7.2.3, by holding A fixed as per eq. (7.27). However,
there is no similar source-like term on the RHS of eq. (1.108), which governs the evolution of
A.

This should now start to remind you of Zeldovich’s theorem. In fact, eq. (1.108) is struc-
turally identical to eq. (7.55), for which we demonstrated the inevitability of resistive decay
in the absence of sources exterior to the domain. This means that A will inexorably decay,
implying in turn that B will then also decay once A has vanished. Since axisymmetric flows
cannot maintain A against Ohmic dissipation, a 3D axisymmetric flow cannot act as a dynamo

for a 3D axisymmetric magnetic field. 19. Cowling’s theorem is not restricted to spherical
geometry, and is readily generalized to any situation where both flow and field showing trans-
lational symmetry in one and the same spatial coordinate. Such physical systems are said to
have an ignorable coordinate.

It is worth pausing and reflecting on what these two antidynamo theorems imply for the
cellular flow of §7.3. It was indeed a planar flow (uz = 0), and moreover the magnetic field
had an ignorable coordinate (∂B/∂z ≡ 0)! We thus fell under the purview of both Zeldovich’s
and Cowling’s theorems, so in retrospect our failure to find dynamo action is now understood.
Clearly, the way to evade both theorems is to consider flows and fields that are fully three-
dimensional, and lack translational symmetry at least in the magnetic field. This is precisely
what we do in the following chapter.

Problems:

1. In this problem you get to do analytically the diffusion of toroidal field, which was only
outlined in §7.1.3. Consider a constant-diffusivity sphere of radius R, and use our mixed
“A + B” representation for an axisymmetric magnetic field (§1.12.3),

(a) Starting from the MHD induction equation with u = 0, obtain a diffusion-like equa-
tion for the toroidal component B.

19A fact often unappreciated is that Cowling’s theorem does not rule out the dynamo generation of a non-

axisymmetric 3D magnetic field by a 3D axisymmetric flow.
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156 CHAPTER 7. DECAY AND AMPLIFICATION OF MAGNETIC FIELDS

(b) Assuming now that B can be expressed as

B(r, θ, t) =
∑

blfl(r)P
0
l (cos θ) exp(iωt) ,

obtain an eigenvalue equation for fl(r).

(c) Setting B = 0 at r = R, pull out out your handbook of special functions and verify
that the eigenvalues given in §7.1.3 are indeed the correct ones.

2. This problems gets you to further explore the diffusive decay problem of §7.1.4 as a
numerical 1-D eigenvalue problem. Use the same magnetic diffusivity profile (with ∆η =
10−2), but to avoid having to deal with the matching of your solutions to a potential
field in r/R > 1, focus instead on the decay of purely toroidal axisymmetric magnetic
fields. You may use the computing language of your choice, but please do include listings
of all your codes with your solutions. Some useful Fortran-77 routines for the solution of
tridiagonal systems of linear algebraic equations, together with instructions for use, can
be obtained from the course Web Page:

http://www.astro.umontreal.ca/∼paulchar/phy6795/phy6795.html
From the top of the main page, click on Problems: Software and hints, locate the appro-
priate subsection, and follow the instructions given there.

(a) By assuming a spatial dependence of the form given by eq. (7.12), show that eq. (7.1)
reduces to eq. (7.13).

(b) Use centered finite differences to discretize eq. (7.13), and solve the resulting system
of algebraic equations using inverse iteration. As a test of your numerical implemen-
tation, do first a problem for constant η, and compare your numerical results to the
analytic solutions found in §7.1.3.

(c) Using now the error function profile for the magnetic diffusivity, obtain solutions
for the first three angular degrees l and radial harmonics degrees n (for a total of 9
modes). Labels your solutions in terms of (l, n) values, and rank them according to
decay time.

(d) Compare the decay times of your toroidal eigenmodes to those of poloidal eigenmodes
of corresponding angular and radial degrees, as shown on Fig. 7.1. Can you pick out
a trend ? If so, try to come up with a sensible explanation for it.

3. Go back to the case of shearing of a pure dipole by a parametrized solar-like differential
rotation (§7.2.3);

(a) Starting from a poloidal field strength of 10−4 T at the core-envelope interface, cal-
culate/estimate the time taken for the toroidal field strength to reach a strength of
1T;

(b) By judicious dimensional analysis of the φ-component of the inviscid form of of the
momentum equation, evaluate the timescale over which the rotational shear at the
core-envelope interface would be altered by the Lorentz force, once the toroidal field
strength has reached 1T;

(c) Is your result in (b) much longer or shorter than the solar cycle period? What does
this suggest?

4. Fill in the missing mathematical steps leading to eq. (7.56).

5. Recompute the cellular flow solution of §7.3 using periodic boundary conditions. Use
second order centered finite differences to discretize the RHS of eq. (7.39), and the leapfrog
scheme for time stepping. Make use of the ghost cell formalism to enforce your periodic
boundary conditions. Compute a Rm = 103 solution using the initial condition given by
eq. (7.40) compute the time evolution of the total magnetic energy, and verify that it
matches that plotted on Fig. 7.8.
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6. Repeat the calculation of the preceding problem (again with periodic boundary condi-
tions), but now use this time as an initial condition a vector potential A(y) that is gaussian
in y and peaks at y/L = 0.5:

A(x, y, 0) = 2B0 exp

(

− (y − L/2)2

(L/4)2

)

.

Compare the resulting magnetic energy evolution to that you obtained in problem 7.5,
and search your second solution for evidence of three more or less distinct amplification
and decay phases:

(a) Growth of the field, on timescale ∼ L/u0;

(b) Enhanced resistive decay, on a timescale ∼ R
1/3
m ≡ 10(L/u0);

(c) A final decay phase, with timescale ∼ Rm ≡ 103(L/u0);

7. There exist another, dynamical way to produce inexorably decreasing lengths scales in a
MHD system, known as phase mixing. Consider an imcompressible, inviscid, perfectly
conducting fluid contained between two infinite parallel plates located at z = ±L, across
which a magnetic field is imposed. This magnetic field is oriented vertically, but its
strength increases with the y-direction, i.e., B = (0, 0, Bz(y)). At t = 0, a shear in the
x-direction is imposed on this reference state, i.e., u = (ux(z), 0, 0), with ux(±L) = 0 to
satisfy the no-slip boundary conditions.

(a) Show that the x-components of the momentum and induction equations can be
combined into a single wave-type equation for either Bx or ux.

(b) Show that, in view of the boundary conditions on u, this wave equation admits
general solutions of the form

Bx(y, z, t) =
∞
∑

n=1

Bn0 cos
(nπz

2L

)

exp(−iωt) ,

where ω = uA(y)/L, with uA the Alfvén speed along the vertical fieldline originally
located at y, and with the numerical coefficients Bn0 set by the initial condition.

(c) Assume now that Bz ∝ (1 + y)2, y ∈ [0.1], and that only the fundamental (n = 1)
mode is excited at t = 0; plot Bx(y, z = 0) for constant time increments (use the
inverse Alfvén frequency as a unit of time).

(d) Now Fourier transform the profiles you plotted, and verify that the power spectrum
peaks at increasingly small wavelengths as time proceeds. Plot the wavenumber km

corresponding to the peak in the power spectrum as a function of time, and estimate
the time required for km → ∞. Is the singularity reached in a finite time?
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Rädler, K.-H. 1986, On the effect of differential rotation on axisymmetric and non-axisymmetric
magnetic fields in cosmic bodies, in Proceedings of the Joint Varenna-Abastumani
International School and Workshop, ESA Spec. Pub. SP-251, 569-574.

As for planetary magnetic field observations, a good recent overview is
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Chapter 8

Fast and slow dynamos

It is nice to know that the computer understands the problem,
but I would like to understand it too.

Attributed to E.P. Wigner

In light of the anti-dynamo theorems considered in §7.4, our next move should be obvious:
we need to consider three-dimensional flows and magnetic fields. In addition, another relevant
class of flow not excluded by the theorems is that of time-dependent flows. In this chapter we
focus on one example of each of these two potentially promising flow classes. These will in fact
provide us with our first working dynamos.

The cell flow solution of the preceding chapter also illustrated the potentially dangerous role
of boundary conditions in mimicking dynamo action. To bypass this difficulty, the flows (and
magnetic fields) we consider in this chapter are chosen to be spatially periodic. Dynamo
action, if and when it occurs, is then evidently a property of the flows themselves, rather than a
boundary effect. Although this takes us somewhat farther away from the astrophysical context,
much is to be learned about magnetic field amplification in electrically conducting fluids using
such simplified models.

8.1 The Roberts cell dynamo

8.1.1 The Roberts cell

The Roberts cell is a spatially periodic, incompressible flow defined over a 2D domain (x, y) ∈
[0, 2π] in terms of a stream function

Ψ(x, y) = cos x + sin y. (8.1)

so that

u(x, y) =
∂Ψ(x, y)

∂y
êx − ∂Ψ(x, y)

∂x
êy + Ψ(x, y)êz (8.2)

Note that the flow velocity is independent of the z-coordinate, even though the flow has a
non-zero z-component. Equations (8.2)–(8.1) describes a periodic array of counterrotating flow
cells in the [x, y] plane, with a z-component that changes sign from one cell to the next; the
total flow is then a series of helices, which have the same kinetic helicity h = u · ∇ × u in each
cell. The Roberts cell flow represents one example of a Beltrami flows, i.e., it satisfies the
relation ∇× u = αu, where α is a numerical constant. Such flows are maximally helical, in
the sense that their vorticity (ωωωω ≡ ∇× u) is everywhere parallel to the flow, which maximizes
helicity for a given flow speed.
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Figure 8.1: The Roberts cell flow. The flow is periodic in the [x, y] plane, and independent
of the z-coordinate (but uz 6= 0!). Flow streamlines are shown projected in the [x, y] plane,
and the +/− signs indicate the direction of the z-component of the flow. The thicker contour
defines the network of separatrix surfaces in the flow, corresponding to cell boundaries. The
uz isocontours coincide with the projected streamlines.

Figure 8.1 shows one periodic “unit” of the the Roberts cell flow pattern. Note the presence
of two stagnation points in the periodic cell, where four flow cells meet at (x, y) = (0, 3π/2)
and (π, π/2). Let’s first pause and consider why one should expect the Roberts cell to evade
Cowling’s and Zeldovich’s theorems. First, note that this is not a planar flow in the sense
demanded by Zeldovich’s theorem, since we do have three non-vanishing flow components.
However, the z-coordinate is ignorable in the sense of Cowling’s theorem, since all flow compo-
nents are independent of z. If this flow is to evade Cowling’s theorem and act as a dynamo, it

must act on a magnetic field that is dependent on all three spatial coordinates.

Consequently, we consider the inductive effects of this flow acting on a fully three dimen-
sional magnetic field B(x, y, z, t). Since the flow speed is independent of z, we can expect
solutions of the linear induction equation to be separable in z, i.e.:

B(x, y, z, t) = b(x, y, t)eikz (8.3)

where k is a (specified) wavevector in the z-direction, and the 2D magnetic amplitude b is now a
complex quantity. We are still dealing with a fully 3D magnetic field, but the problem has been
effectively reduced to two spatial dimensions (x, y), which represents a great computational
advantage.

8.1.2 Dynamo action at last

From the dynamo point of view, the idea is again to look for solutions of the induction equations
where the magnetic energy does not fall to zero as t → ∞. In practice this means specifying k,
as well as some weak field as an initial condition, and solve the 2D linear initial value problem
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for b(x, y, t) resulting from the substitution of eq. (8.3) into the induction equation:

∂b

∂t
= (b · ∇xy)u − (u · ∇xy)b − ikuzb + R−1

m (∇2
xyb − k2b) (8.4)

subjected to periodic boundary conditions on b. Here ∇xy and ∇2
xy are the 2D gradient and

Laplacian operators in the [x, y] plane. As before we use as a time unit the turnover time τc,
which is of order 2π here. All solutions described below were obtained numerically using second
order finite difference in both space and time.

The time evolution of the can be divided into three more or less distinct phases, the first
two being similar to the case of the 2D cellular flow considered in the preceding chapter: (1)
quadratic growth of the magnetic energy for t ∼< τc; (2) flux expulsion for the subsequent few
τc. However, and unlike the case considered in §7.3, for some values of k the third phase is one
of exponential growth in the magnetic field (and energy).

Figure 8.2 shows a typical Roberts cell dynamo solution, here for Rm = 102 and k = 2.
What is plotted is the real part of the z-component of b(x, y, t), at time t À τc. The thick
dashed lines are again the separatrices of the flow. One immediately recognizes the workings
of flux expulsion, in that very little magnetic flux is present near the center of the flow cells.
Instead the field is concentrated in thin sheets parallel to the separatrix surfaces. Given our
extensive discussion of flux expulsion in the preceding chapter, it should come as no surprise

that the thickness of those sheets scales as R
−1/2
m . For t À τc, the field grows exponentially, but

the shape of the “planform” remains fixed. In other words, even though we solved the induction
equation as an initial value problem, the solution can be thought of as an eigensolution of the
form B(x, y, z, t) = b(x, y)eikz+st, with Re(s) > 0 and Im(s) = 0.

In terms of the magnetic energy evolution, the growth rate s of b(x, y, t) is readily obtained
by a linear least-squares fit to the log EB vs t curves in the t À τc regime, or more formally
defined as

s = lim
t→∞

[

1

2t
log(EB)

]

. (8.5)

It turns out that the Roberts cell flows yields dynamo action (i.e., s > 0) over wide ranges
of wavenumbers k and magnetic Reynolds number Rm. Figure 8.3 shows the variations in
growth rates with k, for various values of Rm. The curves peak at a growth rate value kmax

that gradually shifts to higher k as Rm increases. The largest growth rate is kmax ' 0.17,
and occurs at Rm ' 10. It can be shown (see bibliography) that in the high Rm regimes the
following scalings hold:

kmax ∝ R1/2
m , Rm À 1 , (8.6)

s(kmax) ∝
log(log Rm)

log Rm
, Rm À 1 . (8.7)

To understand the origin of these peculiar scaling relations, we need to take a closer look at
the mechanism through which the magnetic field is amplified by the Roberts cell.

8.1.3 Exponential stretching and stagnation points

Even cursory examination of Figure 8.2 suggests that magnetic field amplification in the Roberts
cell is somehow associated with the network of separatrices and stagnation points. It will prove
convenient in the foregoing analysis and discussion to first introduce new coordinates

x′ = x − y , y′ = x + y +
3π

2
, (8.8)

corresponding to a 3π/2 translation in the y-direction, followed by 45◦ rotation about the origin
in the [x, y] plane. The separatrices are now parallel to the coordinate lines x′ = nπ, y′ = nπ
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Figure 8.2: Isocontours for the z-component of the magnetic field in the [x, y] plane, for a
solutions with Rm = 100 and k = 2, in the asymptotic regime t À τc. The dashed straight
lines indicate the separatrix surfaces of the underlying Roberts cell flow (see Fig. 8.1). Note the
flux expulsion from the cell centers, and the concentration of the magnetic flux in thin sheets
pressed against the separatrices. In the t À τc regime, the field grows exponentially but the
shape of the planform is otherwise steady.
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Figure 8.3: Growth rates of the magnetic energy in the Roberts cell, for sequences of solutions
with increasing k and various values of Rm, as labeled near the maxima of the various curves.
Growth typically occurs for a restricted range in k, and peaks at a value kmax that increases
slowly with increasing Rm. Note however how the corresponding maximum growth rate de-
creases with increasing Rm. The small “dip” left of the main peaks for the high-Rm solutions
is a real feature, although here it is not very well resolved in k.

(n = 0, 1, ...), and the stream function has become

Ψ(x′, y′) = 2 sin(x′) sin(y′) . (8.9)

Close to the stagnation points, a good approximation to eq. (8.9) is

Ψ(x′, y′) ' 2x′y′ , x′, y′ ¿ 1 (8.10)

which, if anything else, should now clarify why this is called a hyperbolic stagnation point...
Consider now a fluid element flowing in the vicinity of this stagnation point. From a Lagrangian
point of view its equations of motion are:

∂x′

∂t
= ux′ = 2x′ , (8.11)

∂y′

∂t
= uy′ = −2y′ , (8.12)

which immediately integrates to

x′(t) = x′

0e
2t, y′(t) = y′

0e
−2t , (8.13)

where (x′
0, y

′
0) is the location of the fluid element at t = 0. Evidently, the fluid element

experiences exponential stretching in the x′-direction, and corresponding contraction in
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the y′-direction (since ∇ · u = 0!). Now, recall that in ideal MHD (Rm = ∞) a magnetic
fieldline obeys an equation identical to that of a line element, and that stretching leads to field
amplification as per the mass conservation constraint (§7.2.1). Evidently stagnation point have
quite a bit of potential, when it comes to amplifying exponentially a pre-existing magnetic
field... providing that diffusion and destructive folding can be held at bay.

8.1.4 Mechanism of field amplification in the Roberts cell

We have shown that the Roberts cell can act as a dynamo, and that the field amplification
mechanism is intimately tied to the presence of hyperbolic stagnation points at the cell corners.
What we still need to do is figure out how the magnetic field generated by the Roberts cell
manages to evade destructive folding.

We stick to the rotated Roberts cell used above, restrict ourselves to the Rm À 1 regime,
and pick up the field evolution after flux expulsion is completed and the magnetic field is

concentrated in thin boundary layers (thickness ∝ R
−1/2
m ) pressed against the separatrices (as

on Fig. 8.2).

Consider a x′-directed magnetic fieldline crossing a vertical separatrix, as shown on Figure
8.4A (gray line labeled “a”). the y′ component of the flow is positive on either side of the
separatrix, and peaks on the separatrix. Consequently, the fieldline experiences stretching in
the y′-direction (a → b → c → d on Fig. 8.4A). However, the induced y′ component of the
magnetic field changes sign across the separatrix, so that we seem to be heading towards our
dreaded destructive folding. This is where the crucial role of the vertical (z) dimension becomes
apparent. Figure 8.4B is a view of the same configuration in the [x′, z] plane, looking down onto
the y′ axis on part A. At t = 0 the fieldlines have no component in the z-direction, but in view
of the assumed eikz spatial dependency the x′ component changes sign every half-wavelength
k/π. Consider now the inductive action of the z-component of the velocity, which changes sign
across the separatrix. After some time interval of order k/(πuz) the configuration of Fig. 8.4B
will have evolved to that shown on part C. Observe what has happened: the fieldlines have
been sheared in such a way that y′-components of the magnetic field of like signs have been
brought in close proximity. Contrast this to the situation on part B, where magnetic footpoints
in closest proximity have oppositely directed y′-components.

The end result of this process is that a y′-directed magnetic field is produced by shearing of
the initial x′-directed field, with a phase shift in the z-direction such that destructive folding
is avoided. Clearly, this requires both a z-component of velocity, and a z-dependency in the
magnetic field. Either alone won’t do the trick.

Now, the same reasoning evidently applies to a y′-directed magnetic fieldline crossing a
horizontal separatrix: a x′-directed magnetic field will be induced. That magnetic field will
be swept along the horizontal separatrix, get further amplified by exponential stretching as it
zooms by the stagnation point, and continue along the vertical separatrix, where it can now
serve as a seed field for the production of a y′-directed field. The dynamo “loop” is closed, at
any time the rate of field production is proportional to the local field strength, and exponential
growth of the field follows. The process works best if the half wavelength k/π is of order of the
boundary layer thickness, which in fact is what leads to the scaling law given by eq. (8.6). The
scaling for the growth rate (eq. (8.7)), in turn, is related to the time spent by a fluid element
in the vicinity of the stagnation point.

8.2 Fast versus slow dynamos

One noteworthy aspect of the Roberts cell dynamo is the general decrease of the growth rates
with increasing Rm (see Fig. 8.3). This is worrisome, because the Rm → ∞ limit is the one
relevant to most astrophysically interesting circumstances. A dynamo exhibiting this property
is called a slow dynamo, in contrast to a fast dynamo, which (by definition) retains a finite
growth rate as Rm → ∞. In view of eq. (8.7), the Roberts cell is thus formally a slow dynamo.
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Figure 8.4: Mechanism of magnetic field amplification in the Roberts cell flow. The diagram is
plotted in terms of the rotated [x′, y′] Roberts cell. The thick vertical line is a separatrix surface,
and the gray lines are magnetic fieldlines. Part (A) is a view in the horizontal plane [x′, y′],
and shows the production of a y′-directed magnetic component from an initially x′-directed
magnetic field (line labeled “a”). Parts (B) and (C) are views in the [x′, z] plane looking
down along the y′ axis, and illustrate the phase shift in the z-direction of the y′ magnetic
component caused by the z-component of the velocity. The symbol ¯ (⊗) indicates a magnetic
field coming out (into) the plane of the page. Note on part (C) how footpoints of identical
polarity are brought in close proximity, thus avoiding the destructive folding that would have
otherwise characterized the situation depicted on part B in the uz = 0 2D case.
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However the RHS of eq. (8.7) is such a slowly decreasing function of Rm that the Roberts cell
is arguably the closest thing it could be to a fast dynamo... without formally being one. The
distinction hinges on the profound differences between the strict mathematical case of Rm = ∞
(ideal MHD), and the more physically relevant limit Rm → ∞.

8.2.1 The singular limit Rm → ∞

From the physical point of view, the distinction between strict ideal MHD (η = 0) and the
η → 0 limit (or, equivalently, Rm → ∞) is a crucial one. One example will suffice. Recall
that in the absence of dissipation magnetic helicity is a conserved quantity in any evolving
magnetized fluid:

dHB

dt
=

d

dt

∫

V

A · B dV = 0, (8.14)

where B = ∇ × A. Dynamo action, (in the sense of amplifying a weak initial field) is then
clearly impossible except for the subset of initial fields having HB = 0. This is a very stringent
constraint on dynamo action! Go back now to the Roberts cell dynamo in the high-Rm regime.

We saw that magnetic structures builp up on a horizontal length scale ∝ R
−1/2
m , and that

the vertical wavelength of the fastest growing mode also decreases as R
−1/2
m . The inexorable

shrinking of the length scales ensures that dissipation always continue to operate in the Rm → ∞
limit.. This is why the Roberts cell dynamo can evade the constraint of helicity conservation.
This is also why it is a slow dynamo. On the other hand, the Vainshtein & Zeldovich Stretch-
Twist-Fold dynamo of §7.2, with its growth rate σ = ln 2, is a fast dynamo since nothing
prevents it from operating in the Rm → ∞ limit.

But is this really the case? In the flows we have considered up to now, the existence of
dynamo action hinges on stretching winning over destructive folding; in the 2D cellular flow
of §7.3, destructive folding won over stretching everywhere away from boundaries. In the
Roberts cell, destructive folding is avoided only for vertical wavenumbers such that magnetic
fields of like signs are brought together, minimizing dissipation. The STF dynamo actually
combines stretching and constructive folding, such that folding reinforces stretching. The fact
that destructive folding is avoided entirely is why the growth rate does not depend on Rm.

Well, upon further consideration it turns out that magnetic diffusivity must play a role in
the STF rope dynamo after all. Diffusion comes in at two levels; the first and most obvious
one is at the “knot” formed by the STF sequence. The second and less obvious arises from the
fact that as one applies the STF operation n times, the resulting “flux rope” is in fact made
up of n closely packed flux ropes, each of cross-section ∝ 2−n times smaller than the original
circular flux rope, so that the total cross-section looks more like a handful of spaghettis that
it does a single monolithic flux rope of strength ∝ 2n. If one waits long enough, the magnetic
length scale perpendicular to the loop axis shrinks to zero, so that even in the Rm → ∞ limit
dissipation is bound to come into to play.

8.3 Fast dynamo action: the CP flow

Knotty pasta notwithstanding, and despites its cartoon nature, the STF dynamo exemplifies
the importance of constructive folding for fast dynamo action. However, it turns out to be
exceedingly difficult (though possible, see bibliography) to find a smooth, continuous flow than
achieves the requires stretch-twist-fold action. Fortunately, there exists wide classes of relatively
simple (and analytically expressible) flows that, at least in the kinematic regime, achieves
something essentially similar. In this section, we concentrate on one such flow, the so-called
CP flow (for “Circularly Polarized”), as a prototypical flow yielding fast dynamo action.
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8.3.1 The CP flow

The CP flow is nothing more than our familiar Roberts cell flow, with one important twist: an
explicit time dependency is introduced in the flow:

ux(x, y, t) = A cos(y + ε sin ωt) , (8.15)

uy(x, y, t) = C sin(x + ε cos ωt) , (8.16)

uz(x, y, t) = A sin(y + ε sin ωt) + C cos(x + ε cos ωt) . (8.17)

What we have now is a periodic array of maximally helical counterotating flow cells, as on
Fig. 8.1, with all cells “precessing” in unison in the [x, y] plane along circular paths of radius
ε, undergoing a full revolution in a time interval 2π/ω 1. In what follows we set ω = 1, ε = 1,
A = C =

√

3/2, without any loss of generality.

The time-dependence of the flow turns out to have profound consequences for particle tra-
jectories. Figure 8.5 shows the distances between two particles whose trajectories are being
followed in the CP flow and in the the Roberts cell flow of §8.1, for the same starting positions
and over the same time interval. The differences are striking. The short line element initially
joining the two particles is stretched exponentially in the CP flow, but lengthens more or less
linearly with time in the Roberts cell, as shown by the two fits on Figure 8.5.

Now, exponential streching, or, equivalently, exponential divergence of initially neighbour-
ing trajectories, is the hallmark of chaos. Chaos has generated much hype (and occasional
nonsense) in the literature, but the mathematical concept of chaos turns out to be extremely
useful in analyzing flows for (potential) fast dynamo action.

8.3.2 Measures of chaos

The usefulness of chaos lies here with the fact that it can offer “measures” of fast dynamo
action, without actually having to solve the induction equation! We now briefly consider two
graphical measures of chaos: Poincaré sections and Lyapunov exponents.

A Poincaré section of the CP flow is shown on Figure 8.6. It is constructed by launching
tracer particles at z = 0 (and t = 0), and following their trajectories as they are carried by
the flow. At every 2π time interval, the position of the particle is plotted in the [x, y] plane
(modulo 2π in x and y, since most particles leave the original 2π-domain within which they were
released). Some particles never venture too far away from their starting position in the [x, y]
plane. They end up tracing close curves (the so-called KAM tori, after Kolmogorov, Arnold,
and Moser). Those curves, however distorted they may end up looking, identify regions of
space where trajectories are integrable. Other particles, on the other hand, never return to their
starting position. If one waited long enough, one such particle would eventually come arbitrarily
close to all points in the [x, y] plane outside of the integrable regions. The corresponding particle
trajectory is said to be space filling, and the associated particle motion chaotic. The region
of the [x, y] plane defined by the starting positions of all particles with space filling trajectories
is called the chaotic region of the flow. 2.

Poincaré sections are useful to quickly eyeball the size of chaotic regions for a given set
of flow parameters, but have little quantitative predictive values as to the potential efficiency
of the flow as a dynamo. For this the Lyapunov exponent turns out to be a more useful
quantity. The Lyapunov exponent is another fancy name for a rather simple concept; one,
moreover that we encountered already on Fig. 8.5: the rate of exponential divergence of two

1It is left as an (easy) exercise to verify that this is yet another Beltrami flow, and to figure out the form of
the time-dependent stream function that describes it.

2Try sketching (or computing) a Poincaré section for the time-independent Roberts cell flow of §8.1. Does it
differ much from Fig. 8.6?
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Figure 8.5: Stretching of a short line element initially located in the z = 0 plane, and “released”
at t = 0 in the CP flow or Roberts cell. The two dashed lines are: (1) a linear least-squares fit of
log ||x2 −x1|| vs t to the CP flow curve, indicating exponential stretching; a linear least-squares
of ||x2 − x1|| vs t for the Roberts cell trajectory, indicating linear stretching.

neighbouring fluid element located at x1, x2 at t = 0 somewhere in the flow. The Lyapunov
exponent λL can be (somewhat loosely) defined via

`(t) = `(0) exp(λLt) , (8.18)

where ` ≡ ‖x2 − x1‖ is the length of the tangent vector between the two fluid elements.
Conceptually, ΛL is nothing more than the slope of the dotted line on Fig. 8.5! Note however
that, in general, ΛL is likely to be a function of the position and relative orientations of x1 and
x2. Strictly speaking ΛL is mathematically defined in terms of stretching of an infinitesimal

line element, located at a and oriented in direction e:

λL = lim
t→∞

(

1

2t
log(Λijeiej)

)

(8.19)

where

Λij =
∂xk

∂ai

∂xk

∂aj
(8.20)

is the rate of strain tensor, so that Λijeiej is the square of the stretching factor at time t.
Because there are three independent possible directions in 3D space, one can compute three

distinct Lyapunov exponents at any given point in the flow, and it can be shown that for an
incompressible flow their sum is zero3. Now, the important thing about Lyapunov exponents
is that λL > 0 somewhere in the flow indicates that this flow has chaotic regions.

3Demonstrate this result. Hint: start by thinking about what happens in the vicinity of a simple stagnation
point, such as in §8.1.3
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Figure 8.6: Poincaré section for the CP flow, for ε = 1, ω = 1, and A = C =
√

3/2. The plot is
constructed by repeatedly “launching” particles at z = 0, t = 0, following their trajectories in
time, and plotting their (projected) position (modulo 2π) in the [x, y] plane at interval ∆t = 2π.
The flow is chaotic within the featureless “salt-and-pepper” regions, and integrable in regions
threaded by close curves.
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Numerically, Lyapunov exponents are most often computed by repeatedly launching a set of
particles defining a short line segment, advecting them over a finite time t, and measuring the
rate of exponential stretching of that line segment by summing the (exponentially increasing)
distances between successive particles. The procedure is repeated for particle pairs with varying
starting positions and relative orientations. Figure 8.7 shows a map ΛL(x, y) of the largest

Lyapunov exponent for the CP flow as a function of position in the [x, y] plane. The dark
regions correspong to ΛL(x, y) ≤ 0, and the bright salt-and-pepper regions to ΛL(x, y) > 0.
The absolute largest Lyapunox exponent is Λmax

L = 1.45 here. Comparing Figure 8.7 to the
Poincaré section on Fig. 8.6, one observes some definite similarities. For example, the integrable
KAM regions on the Poincaré section correspond roughly to dark regions on the Lyapunov map.
Yet the correspondence is far from perfect, illustrating the fact that trajectories and stretching
of line elements are two related, but nonetheless distinct beasts.

8.3.3 Necessary conditions for fast dynamo action

Figures 8.6 and 8.7 might be aesthetically pleasing, but do they teach us anything quantitative

about fast dynamo action? The Lyapunov exponent certainly does. There exists two important
theorems stating that

1. A smooth flow cannot be a fast dynamo if λL = 0, so that λL > 0, or, equivalently, the
existence of chaotic regions in the flow, is a necessary (although not sufficient) condition
for fast dynamo action;

2. In the limit Rm → ∞, the largest Lyaponuv exponent of the flow is an upper bound on
the dynamo growth rate.

Proofs of these theorems need not concern us here (but see bibliography). The theorems are
indeed very useful information, in that they allows us to rule out fast dynamo action in many
classes of flows. However, if one wants to prove fast dynamo action in a flow, at this writing
there is no option but to integrate the induction equation. Time to return to the CP flow and
do just that.

8.3.4 Fast dynamo action

Our search for dynamo action in the CP flow closely parallels what we did in the context
of the Roberts cell. The time-dependency of the CP flow does not preclude the existence
of solutions separable in z, so we again express the magnetic field via eq. (8.3), and solve
the 2D induction equation (8.4) as an initial-boundary value problem, for specified vertical
wavenumbers k. Periodic boundary conditions are again imposed on b(x, y, t). The time
variation of the magnetic energy is again used as a test of dynamo action, and a growth rate is
computed using eq. (8.5) for solutions exhibiting exponential growth in the t À τc regime.

As with the Roberts cell, dynamo action (i.e., positive growth rates s(k,Rm)) occur in a
finite range of vertical wavenumber k. Once again the phase of exponential growth sets in after
a time of order of the turnover time. Figure 8.8 is similar in format to Fig. 8.2, and shows
isocontours of the vertical magnetic field bz(x, y, t) in the phase of exponential growth, for a
Rm = 2000 solutions with k = 0.57. The solution is fully time-dependent, and its behavior
is best appreciated by viewing it as an animation4. The solution is characterized by multiple

sheets on intense magnetic field, of thickness once again ∝ R
−1/2
m .

The CP flow solution of Fig. 8.8 exhibits spatial intermittency. If one were to randomly
choose a location somewhere in the [x, y] plane, chances are good that only a weakish magnetic
field would be found. In high-Rm solutions, strong fields are concentrated in small regions of
the domain; in other words, their filling factor is small. This can be quantified by computing
the probability density function (hereafter PDF) of the magnetic field strength, f(|Bz|).

4which you can do, of course, on the course’s Web Page, and for a few Rm values, moreover...
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Figure 8.7: Finite time Lyaponuv exponent map for the CP flow with ε = 1, ω = 1, and
A = C =

√

3/2. The dark part of the color scale correspond to negative ΛL, and the brighter
regions to ΛL > 0. Compare this map to the Poincaré section of Figure 8.6.
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Figure 8.8: Snapshot of the z-component of the magnetic field in the [x, y] plane, for a CP
Flow solution with Rm = 2000 and k = 0.57, in the asymptotic regime t À τc. The color scale
codes the field strength (gray-to-blue is negative, gray-to-red positive). The green straight
lines indicate the separatrix surfaces of the underlying Roberts cell flow (see Fig. 8.1). Unlike
the Roberts cell solution of Fig. 8.2, this is a strongly time-dependent solution, although still
exhibiting overall exponential growth of the magnetic field.
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Figure 8.9: Probability density function for the (unsigned) strength of the z-component of the
magnetic field, for a Rm = 103, k = 0.57 CP flow dynamo. The peak field strength has been
normalized to a value of unity. Note the power-law tail at large field strength (straight line in
this log-log plot, with slope ∼ −0.75).

This involves measuring Bz at every (x, y) mesh point in the solution domain, and simply
counting how many mesh points have |Bz| between values B and B + dB. The result of such a
procedure is shown in histogram form on Figure 8.9. The PDF shows a power-law tail at high
field strengths,

f(|Bz|) ∝ |Bz|−γ , |Bz| ∼> 10−5 , (8.21)

spanning over four orders of magnitude in field strength, and with γ ∼ 1 here. This indicates
that strong field are still far more likely to be detected than if the magnetic field was simply
a normally-distributed random variable (for example)5. The fact that the PDF’s logarithmic
slope is flatter than −2 indicates that the largest local field strength found in the domain will
always dominate the computation of the spatially-averaged field strength6.

The CP flow dynamo solutions also exhibit temporal intermittency; if one sits at one
specific point (x, y) point in the domain and measures Bz at subsequent time steps, a weak Bz

is measured most of the time, and only occasionally are large values detected. Once again the
PDF shows a power-law tail with slope flatter than −2 indicating that a temporal average of
Bz at one location will always be dominated by the largest Bz measured to date7.

Unlike in the Roberts cell, the range of k yielding dynamo action does not shift significantly
to higher k as Rm is increased, and in the high Rm regime the corresponding maximum growth

5What would be the shape of a Gaussian PDF on a log-log plot such as Fig. 8.9?
6Prove this; it begins with writing down an certain integral involving the PDF that yields the average value

the variable of interest.
7Could you make an educated guess at the value of the logarithmic slope of this temporal PDF?
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Figure 8.10: Growth rate of k = 0.57 CP flow dynamo solutions, plotted as a function of
the magnetic Reynolds number (solid line). The constancy of the growth rate in the high-Rm

regime suggests (but does not strictly prove) that this dynamo is fast.

rate kmax does not decrease with increasing Rm (see Fig. 8.3). In the CP flow considered here
(A = C =

√

3/2, ω = 1, ε = 1), kmax ' 0.57, with s(kmax) ' 0.3 for Rm ∼> 102, as shown on
Figure 8.10 (solid line). Figure 8.10 suggests (but does not rigorously prove!) that the CP flow
acts as a fast dynamo, since by all appearances

lim
Rm→∞

s(kmax) > 0 . (8.22)

8.3.5 Magnetic flux versus magnetic energy

With the CP flow, we definitely have a pretty good dynamo on our hands. But how are those
dynamo solutions to be related to the Sun (or other astrophysical bodies)? So far we have
concentrated on the magnetic energy as a measure of dynamo action, but in the astrophysical
context magnetic flux is also important. Consider the following two (related) measures of
magnetic flux:

Φ =| 〈B〉 | , F = 〈| B |〉 , (8.23)

where the angular brackets indicate some sort of suitable spatial average over the whole com-
putational domain. The quantity Φ is nothing but the average magnetic flux, while F is the
average unsigned flux. Under this notation the magnetic energy can evidently be written
as EB =

〈

| B |2
〉

. Consider now the scaling of the two following ratios as a function of the
magnetic Reynolds number:

R1 =
EB

Φ2
∝ Rn

m , (8.24)

Paul Charbonneau, Université de Montréal phy6795v08.tex, October 20, 2008



8.3. FAST DYNAMO ACTION: THE CP FLOW 177

Figure 8.11: Variations with Rm of the two ratios defined in eqs. (8.24)–(8.25). Least squares
fits (solid lines) yield power law exponents n = 0.35 and κ = 0.13.

R2 =
F 2

Φ2
∝ Rκ

m . (8.25)

A little reflection will reveal that a large value of R1 indicates that the magnetic field is
concentrated in a small total fractional area of the domain, i.e., the filling factor is much
smaller than unity8. The ratio R2, on the other hand, is indicative of the dynamo’s ability to
generate a net signed flux. The exponent κ measures the level of folding in the solution; large
values of κ indicate that while the dynamo may be vigorously producing magnetic flux on small
spatial scales, it does so in a manner such that very little net flux is being generated on the
spatial scale of the computational domain. Figure 8.11 shows the variations with Rm of the
two ratios defined above. Least squares fits to the curves yields n = 0.35 and κ = 0.13. Positive
values for the exponents κ and n indicate that the CP flow dynamo is relatively inefficient at
producing magnetic flux in the high Rm regime, and even less efficient at producing net signed
flux. While other flows yielding fast dynamo actions lead to different values for these exponents,
in general they seem to always turn out positive, with κ < n, so that the (relative) inability to
produce net signed flux seems to be a generic property of fast dynamos in the high-Rm regime.

8.3.6 Fast dynamo action in the nonlinear regime

We conclude this section by a brief discussion of fast dynamo action in the nonlinear regime.
Evidently the exponential growth of the magnetic field will be arrested once the Lorentz force
becomes large enough to alter the original CP flow. What might the nature of the backreaction
on u look like?

8If you can’t figure it out try this: take a magnetic field of strength B1 crossing a surface area A1; now
consider a more intense magnetic field, of strength B2 = 4B1, concentrated in one quarter of the area A1;
calculate EB, Φ, and R1... get it?
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Naively, one might think that the Lorentz force will simply reduce the amplitude of the flow
components, leaving the overall geometry of the flow more or less unaffected, i.e., u1 ' u0.
That this cannot be the case becomes obvious upon recalling that in the high Rm regimes the

eigenfunction is characterized by magnetic structures of typical thickness ∝ R
−1/2
m , while the

flow has a typical length scale ∼ 2π in our dimensionless units. The extreme disparity between
these two length scales in the high-Rm regime suggests that the saturation of the dynamo-
generated magnetic field will involve alterations of the flow field on small spatial scales, so that
a flow very much different from the original CP flow is likely to develop in the nonlinear regime.

That this is indeed what happens was was nicely demonstrated some years ago by F. Cat-
taneo and collaborators (see references in bibliography), who computed simplified nonlinear
solutions of dynamo action in a suitably forced CP flow. They could show that

1. the r.m.s. flow velocity in nonlinear regime is comparable to that in the original CP flow;

2. magnetic dissipation actually decreases in the nonlinear regime;

3. dynamo action is suppressed by the disappearance of chaotic trajectories in the nonlinear
flow.

8.4 The solar small-scale magnetic field

Of course, the problem with small-scale solar magnetic fields is precisely that—they are small-
scale. And being small-scale makes them very difficult to resolve. Being unresolved, in truth
there is not a lot one can discover about them, even with current state-of-the-art high precision
spectropolarimetry.

All flows yielding dynamo actions that have been considered up to now are very artificial,
and are arguably more akin to malfunctioning washing machines than any sensible astrophys-
ical object. Nonetheless some of the things we have learned do carry over to more realistic
circumstances. Most importantly, fast dynamos

1. produce flux concentrations on scales ∝ R
−1/2
m ;

2. produce little or no mean-field, i.e., signed magnetic flux on a spatial scale comparable to
the size of the system;

3. require chaotic flow trajectories to operate.

As a kind of proof of these sweeping statements, consider Figure 8.12 herein. It is a snapshot
of a numerical simulation of dynamo action in a stratified, thermally-driven turbulent fluid
being heated from below, and spatially periodic in the horizontal directions. This flow acts as a
vigorous nonlinear fast dynamo, with a ratio of magnetic to kinetic energy of about 20%. The
Figure shows a snapshot of the vertical magnetic field component Bz(x, y) essentially at the
top of the simulation box9.

Thermally convecting flows in a stratified background have long been known to be character-
ized by cells of broad upwellings of warm fluid. These cells have a horizontal size set by, among
other things, the density scale height within the box; On the other hand, the downwelling of
cold fluid needed to satisfy mass conservation end up being concentrated in a network of narrow
lanes at the boundaries between adjacent upwelling cells. This asymmetry is due to the vertical
pressure and density gradient in the box: rising fluid expands laterally into the lower density
layers above, and descending fluid is compressed laterally in the higher density layers below.
Near the top of the simulation box, this leads to the concentration of magnetic structures in
the downwelling lanes, as they are continuously being swept horizontally away from the centers
of upwelling cells. This is the origin of the cellular pattern so striking on Fig. 8.12.

9...and, as usual, you can view an animation of this simulation on the course Web Page.
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Figure 8.12: Snapshot of the top “horizontal” [x, y] plane of a MHD numerical simulation of
thermally-driven stratified turbulent convection in a box of aspect ratio x : y : z = 10 : 10 : 1,
at a Viscous Reynolds number of 245 and Rm = 1225. The simulation uses a pseudo-spectral
spatial discretrization scheme, with 1024 collocation points in the x and y directions, and 97
in z. The color scale encodes the vertical (z) component of the magnetic field (orange-to-
yellow is positive Bz, orange-to-blue negative). Numerical simulation results kindly provided
by F. Cattaneo, University of Chicago.
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Figure 8.13: High resolution magnetogram (0.6 arcsec/pixel) of a small piece of “quiet sun”,
obtained my the MDI instrument onboard SOHO. The color scale encodes the line-of-sight
component of the magnetic field, with red/green corresponding to positive/negative magnetic
polarities

While this flow is far more complex (spatially and temporally) than the Roberts cell or CP
flow, is exhibits some of the characteristics we have already encountered in the context of these
simpler flows:

1. The magnetic field is highly intermittent, both spatially and temporally.

2. Magnetic flux concentrations are found on scales ∝ R
−1/2
m ;

3. little or no mean magnetic field is produced on the scale of the computational box.

The fundamental physical link between this MHD simulation and the CP flow is the presence
of chaotic trajectories in the flow, which in both cases is the culprit behind fast dynamo action.

Now consider figure 8.13 which shows a high-resolution magnetogram of a small piece of
the solar photosphere, far away from sunspots or active regions. Note how the magnetic field
is spatially very intermittent, and seems to have no marked preference for negative (black) or
positive (white), except perhaps for the plage-like structure in the upper left corner. Here also
the magnetic field is very intermittent, both spatially and temporally10. This is all qualitatively

similar to the field distribution characterizing Fig. 8.12.
Fast dynamo action therefore offers an attractive explanation for the small-scale solar mag-

netic fields. Nice and fine, but the Sun also has a fairly well-defined large-scale component,
for which something else than fast dynamo action must then be invoked. It turns out that

10A magnetogram animation can be viewed on the course web page, and illustrates quite well the temporally
intermittent nature of the solar small-scale magnetic field.
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the turbulent nature of the flow in the solar convective envelope can still do the trick, but to
examine this we will need to adopt as statistical approach to turbulence and to the associated
flow-field interactions. This is the focus of the following chapter.

Problems:

1. Calculate ∇ · u and ∇× u for the Roberts Cell flow. Confirm that it is a Beltrami flow,
in the sense discussed in §8.1.

2. This problem aims at getting you to investigate in more detail what can happen to a mag-
netic field in the vicinity of a stagnation point. Consider the 2D cartesian incompressible
flow defined by the stream function

Ψ(x, y) = u0xy (8.26)

so that ux(x) = u0x and uy(y) = −u0y (note that the quantity u0 has then units of s−1!).
We now want to consider the inductive action of this flow on a purely horizontal magnetic
field, held fixed at values of +B0 and −B0, at y = +L and −L respectively. Evidently,
this flow will tend to push the magnetic field towards the x-axis, where dissipation will
occur since the field is oppositely directed on either side of the x-axis.

(a) Show that the above flow has a stagnation point at the origin, and that its divergence
is zero.

(b) Show that in view of the imposed boundary condition, Bx can only be a function of
the y coordinate everywhere in the domain −L ≤ y ≤ +L, −∞ ≤ x ≤ ∞.

(c) Show that under these circumstances the x-component of the induction equation
reduces to

1

u0

∂Bx

∂t
= Bx + y

∂Bx

∂y
+

η

u0L

∂2Bx

∂y2
,

where lengths are expressed in units of L.

(d) Show now that this equation accepts steady-state solutions of the form

Bx(y) = C exp
(

−αy2
)

+ D exp
(

−αy2
)

∫ y

0

exp
(

α(y′)2
)

dy′

where the parameter α = u0L
2/2η ≡ Rm/2 controls the relative importance of

magnetic dissipation, as measured by the usual magnetic Reynolds number Rm =
u0L/η, and C and D are integration constants.

(e) Show that the assumed boundary conditions imply that C = 0 here;

(f) Now show that the thickness of the current sheet forming in the vicinity of y = 0
scales as 1/

√
α;

(g) Evaluate numerically the integral on the above solution for Bx(y) and plot the vari-
ation of Bx as a function of y, for values of α = 10, 100 and 103.

(h) Finally, compute the magnitude of the electric current in the z-direction, and show
that the rate of energy dissipation is independent of the assumed value of η. Explain
this physically.

3. The so-called ABC flow is another long-time candidate for fast dynamo action. It is a
steady periodic flow in cartesian geometry, defined as

u(x, y, z) = (A sin z + C cos y,B sinx + A cos z, C sin y + B cos x)
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(a) Verify whether or not this is a Beltrami flow;

(b) Find the position(s) of the stagnation point(s) in the flow, for the specific case
A = B = C = 1.

(c) Calculate a Poincaré section for this flow, using now parameter values A = 1+(your
birth month/12), B = 1+(your birth day/30), C = 1. This involves repeatedly
launching a particle somewhere on the z = 0 plane, and plotting its position at
every crossing of 2πn planes in the z-direction (n = 1, 2, ...). Is this flow chaotic?

4. The flow near the 3D stagnation points in the ABC flow can be approximated in cylindrical
polar coordinates (r, θ, z) by

u = (αr/2, 0,−αz) ,

with α = ±
√

2.

(a) Calculate the the three Lyapunov exponents for α = +
√

2 and α = −
√

2, and show
that in both cases their sum is zero.

(b) Obtain a solution to the steady (∂/∂t = 0) form of the induction equation, with u

given by the above expression.

(c) On the basis of your solution, where would you expect to find magnetic fields in the
flow?

(d) Again on the basis of your solution, estimate a length scale characterizing the thick-
ness of the magnetic structures present in the solutions. How does this characteristic
length scale with the magnetic Reynolds number?

5. This problem gets you to compute and compare the PDFs associated with the CP flow
solution discussed in detail in this chapter, and the numerical simulation of Cattaneo
et al. discussed in §8.4. First go to the Course Web Page, and grab the two data files
containing snapshots of Bz(x, y) for a CP flow solution, and for the turbulent dynamo
solution plotted on Fig. 8.12.

(a) Compute the mean signed and unsigned fluxes for the two solutions; how do the
corresponding ratii Φ/F compare?

(b) Compute the PDFs of |Bz| in both cases, and compare/contrast their shape. How
similar are they? Is this surprising? Why?
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Paul Charbonneau, Université de Montréal phy6795v08.tex, October 20, 2008



8.4. THE SOLAR SMALL-SCALE MAGNETIC FIELD 183

Roberts, G.O. 1972, Phil. Trans. R. Soc. London, A271, 411,
Soward, A.M. 1983, J. Fluid Mech., 180, 267.

The scaling relations given by eqs. (8.6)–(8.7) are derived in the Soward paper.

On dynamo action in the CP flow see

Galloway, D.J., & Proctor, M.R.E. 1992, Nature, 356, 691,
Ponty, Y., Pouquet, A., & Sulem, P.L. 1995, Geophys. Astrophys. Fluid Dyn., 79, 239,
Cattaneo, F., Kim, E.-J., Proctor, M.R.E., & Tao, L. 1995, Phys. Rev. Lett., 75, 1522.

For all you would ever want to know about PDFs with power law tails, their statistical prop-
erties, and the mechanisms producing them, see the first few chapters in

Sornette, D. 2000, Critical phenomena in natural sciences, Springer.

The discussion in §8.3.5 follows closely that in the Cattaneo et al. (1995) paper cited above,
with the results shown on Fig. 8.11 taken directly from that paper. On dynamo action in the
ABC flow (problem 3.3), see

Galloway, D.J., & Frisch, U. 1984, Geophys. Astrophys. Fluid Dyn., 29, 13,
Galloway, D.J., & Frisch, U. 1986, Geophys. Astrophys. Fluid Dyn., 36, 53.

The mathematically inclined reader wishing to delve deeper into the theorems for fast dynamo
action mentioned in §8.3 will get a solid and character building workout out of

Vishik, M.M. 1989, Geophys. Astrophys. Fluid Dyn., 48, 151,
Klapper, I., & Young, L.S. 1995, Comm. Math. Phys., 173, 623.

Our discussion of nonlinear effects in the CP flow is taken directly from

Cattaneo, F., Hughes, D.W., & Kim, E.-J. 1996, Phys. Rev. Lett., 76, 2057.

On dynamo action in three-dimensional thermally-driven convective turbulence, see

Cattaneo, F. 1999, Astrophys. J., 515, L39,
Cattaneo, F., Emonet, T., & Weiss, N.O. 2003, Astrophys. J., 588, 1183-1198.

The numerical simulation results shown on Fig. 8.12 are taken from the second of these papers.
The detection and statistics of small-scale magnetic flux concentrations has garnered much

attention over the years. As the both resolution and sophistication of the detection methods
improve, the picture continues to evolve and ideas must be discarded or recycled. The following
chronological list of papers illustrates this process,

Spruit, H.C., & Zwaan, C. 1981, Solar Phys., 70, 207,
Zwaan, C. 1987, Ann. Rev. Astron. Ap., 25, 83,
Topka, K.P., et al. 1992, Astrophys. J., 396, 351,
Keller, C.U. 1992, Nature, 359, 307,
Berger, T.E., et al. 1995, Astrophys. J., 454, 531,
Lin, H. 1995, Astrophys. J., 446, 421,
Berger, T.E., & Title, A.M. 1996, Astrophys. J., 463, 365,
Grossman-Doerth, U., et al. 1996, Astron. Ap., 315, 610,
Schrijver, C.J., et al. 1997, Astrophys. J., 487, 424.
Simon, G.W., Title, A.M., & Weiss, N.O. 2001, Astrophys. J., 561, 427.
Tsuneta, S., Ichimoto, K., Katsukawa, Y., and 11 co-authors 2008, Astrophys. J., , in press.

phy6795v08.tex, October 20, 2008 Paul Charbonneau, Université de Montréal
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