
Chapter 6

The solar cycle as a dynamo

If the sun did not have a magnetic field, it would be as boring a star as most

astronomers believe it to be.

Attributed variously to E.N. Parker or R.B. Leighton

The aim of this chapter is to introduce observational aspects of the solar magnetic activity
cycle that have most direct relevance as constraints to the dynamo mechanism and models that
will occupy us in this third and final part of the course. Once again we turn to the sun as an
exemplar of astrophysical magnetohydrodynamics, this time with regards to dynamo action.
As with the wind models discussed in part II, this is not because the solar dynamo is more
simple or complicated or interesting than other astrophysical dynamos, but simply because it
is the dynamo for which we have the most observational information. Even more so than the
geodynamo in the Earth’s core, in fact, because as we shall see, the dynamo-powered solar
magnetic cycle operates on a timescale commensurate with the human lifespan, rather than
glacial or geological. By the time we’re done, you will hopefully begin to appreciate the fact
that the statement cited above is definitely not an understatement!

6.1 The sunspot cycle

6.1.1 Sunspots

Until the beginning of the twentieth century, the story of the solar activity cycle is coincident
with the story of sunspots. As their name suggest, sunspots look like dark blemishes on
the solar disk, but the vast majority are too small to be readily visible without a telescope.
Only the largest sunspots can be visible to the naked-eye under suitable viewing conditions, for
example when the sun is partially obscured by clouds or mist, particularly at sunrise or sunset.
Numerous such sighting exist in the historical records, starting with Theophrastus (374-287
B.C.) in the fourth century B.C. However, by far the most extensive pre-telescopic records are
found in the far east, especially in the official records of the Chinese imperial courts, starting
in 165 B.C.

Figure 6.1 represents, to the best of our knowledge, the first surviving sunspot drawing,
from a sighting on Saturday, 8 December 1128. The drawing is found in the Chronicles of
John of Worcester, one of the many monks who contributed to the Worcester Chronicles. The
accompanying text translates to something like:

“...from morning to evening, appeared something like two black circles within the
disk of the Sun, the one in the upper part being bigger, the other in the lower part
smaller. As shown on the drawing.” (trans. A. Van Helden)
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110 CHAPTER 6. THE SOLAR CYCLE AS A DYNAMO

Figure 6.1: Sunspot drawing in the Chronicles of John of Worcester, twelfth century. Notice
the depiction of the penumbra around each spot. Reproduced from R.W. Southern, Medieval

Humanism, Harper & Row 1970, [Plate VII].

The fact that the Worcester monks could apparently distinguish the umbrae and penumbrae
of the sunspots they observed suggests that these spots must have been exceptionally large.

A fascinating pre-telescopic sunspot sighting is certainly that of 28 May 1607 by none other
than Johannes Kepler (1571-1630). Kepler had been observing the sun for over a month using
his camera obscura projection technique, basically a pinhole camera. He was hoping to detect
a transit of Mercury across the solar disk, as predicted by extant planetary ephemerides, and
was well aware of the latter’s deficiencies. But on May 28 he did noticed a small black spot on
the solar disk, and concluded that he was indeed seeing Mercury in transit (see Fig. 6.2). It
did not take long before he came to realize his mistake.

At the end of the first decade of the seventeenth century, four astronomers more or less
simultaneously turned the newly invented telescope toward the Sun, and noted the existence
of sunspots. They were Johann Goldsmid (1587-1616, a.k.a. Fabricius) in Holland, Thomas
Harriot (1560-1621) in England, Galileo Galilei (1564-1642) in Italy, and the Jesuit Christoph
Scheiner (1575-1650) in Germany. Fabricius was the first to publish his results in 1611, and
to correctly interpret the apparent motion of sunspots in terms of axial rotation of the Sun.
Like Harriot, Fabricius and his father (the then-well-known astronomer David Fabricius) first
observed sunspots directly through their telescope shortly after sunrise or before sunset. The
harrowing account of their observations is worth quoting: (excerpt from the translation in the
paper by W.M. Mitchell cited below):

“... Having adjusted the telescope, we allowed the sun’s rays to enter it, at first from
the edge only, gradually approaching the center, until our eyes were accustomed to
the force of the rays and we could observe the whole body of the sun. We then
saw more distinctly and surely the things I have described [sunspots]. Meanwhile
clouds interfered, and also the sun hastening to the meridian destroyed our hopes
of longer observations; for indeed it was to be feared that an indiscreet examination
of a lower sun would cause great injury to the eyes, for even the weaker rays of the
setting or rising sun often inflame the eye with a strange redness, which may last
for two days, not without affecting the appearance of objects.”
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6.1. THE SUNSPOT CYCLE 111

Figure 6.2: Naked-eye observation of a sunspot on 18 May 1607 by Johannes Kepler. Observ-
ing the sun intermittently on a cloudy day, Kepler could only make a few observations, and
concluded he had had the good fortune of catching the planet Mercury in transit across the
solar disk. Diagram reproduced from Vaquero, J.M. 2007, Adv. Sp. Res., 40, 929 [Fig. 2].
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112 CHAPTER 6. THE SOLAR CYCLE AS A DYNAMO

Figure 6.3: Reproduction of one of Galileo’s sunspot drawings for 23 June, 1612. The um-
brae/penumbrae structure is clearly visible here.

Galileo and Scheiner, however, were the most active in using sunspots to attempt to infer
physical properties of the Sun (Figs. 6.3, 6.4). To Galileo belongs the credit of making a
convincing case that sunspots are indeed features of the solar surface, as opposed to intra-
Mercurial planets (Scheiner’s original position).

6.1.2 The eleven-year cycle

Early sunspots observers noted the curious fact that sunspots rarely appear outside of a latitu-
dinal band of about ±30◦ centered about the solar equator, but otherwise failed to discover any
clear pattern in the appearance and disappearance of sunspots. In 1826, the German amateur
astronomer Samuel Heinrich Schwabe (1789-1875) set himself about the task of discovering
intra-mercurial planets, whose existence had been conjectured for centuries. Like many before
him, Schwabe realized that his best chances of detecting such planets lay with the observa-
tion of the apparent shadows that they would cast upon crossing the visible solar disk during
conjunction; the primary difficulty with this research program was the ever-present danger of
confusing such planets with small sunspots. Accordingly, Schwabe began recording very metic-
ulously the position of any sunspot visible on the solar disk on any day that weather would
permit solar observation. In 1843, after 17 years of observations, Schwabe had not found a
single intra-mercurial planet, but had discovered something else of great importance: the cyclic
increase and decrease with time of the average number of sunspot visible on the Sun, with a
period that Schwabe originally estimated to be 10 years.

As Schwabe’s discovery of the sunspot cycle gained recognition, the question immediately
arose as to whether the cycle could be traced farther in the past on the basis of extant sunspot
observations. In this endeavour the most active researcher was without doubt the Swiss as-
tronomer Rudolf Wolf (1816-1893). Faced with the daunting task of comparing sunspot ob-
servations carried out by many different astronomers using various instruments and observing
techniques, Wolf defined a relative sunspot number (r) as follows:

r = k(f + 10g) , (6.1)

Paul Charbonneau, Université de Montréal phy6795v08.tex, September 30, 2008



6.1. THE SUNSPOT CYCLE 113

Figure 6.4: Solar rotation as inferred from the drift of sunspots. Diagram from Scheiner’s Rosa

Ursina, actually meant to illustrate the variations of the Sun’s apparent rotation axis (as seen
from Earth) in the course of the year.

where g is the number of sunspots groups visible on the solar disk, f is the number of individual
sunspots (including those distinguishable within groups), and k is a correction factor that
varies from one observer to another (with k = 1 for Wolf’s own observations, by definition).
This definition is still in used today, but r is now usually called the Wolf (or Zürich) sunspot
number. Wolf succeeded in reliably reconstructing the variations in sunspot number as far as
the the 1755–1766 cycle, which has has since been known conventionally as “Cycle 1”, with all
subsequent cycles numbered consecutively thereafter; at this writing (August 2008), we are in
the minimal activity phase delineating cycle 23 from the upcoming cycle 24.

Figure 6.5 shows two time series of the relative sunspot number. The first (thin black line)
is the monthly-averaged value of r as a function of time, and the thick red line is a 13-month
running mean of the same. Note how the amplitude, duration and even shape of sunspots
cycles can vary substantially from one cycle to the next. The period, in particular, ranges from
9 (cycle 2) to 14 years (cycle 4), although it remains costumary to speak of the “11-year cycle”.

6.1.3 The Waldmaier and Gnevyshev-Ohl Rules

Starting with Wolf himself, the sunspot number time series (monthly, monthly smoothed, yearly,
etc) has been analyzed to death in every possible manner known to statistics, nonlinear dy-
namics, and numerology1. Many otherwise serious and respectable people engaged in this type

1Two colleagues of mine, both world-renowed experts in the analysis of time series, have independently

remarked to me that the sunspot number time series are quite possibly the “natural” time series having produced
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114 CHAPTER 6. THE SOLAR CYCLE AS A DYNAMO

Figure 6.5: Two time series of the celebrated Wolf Sunspot Number. The thin black line is the
monthly-averaged sunspot number, and the thick red line a 13-month running mean thereof.
These and other related data are publicly available at the Solar Influences Data Analysis Center
in Brussels, Belgium (http://sidc.oma.be).

of work seem to forget that the definition of the sunspot number is largely arbitrary, and its
link to the real dynamical quantity, the sun’s magnetic internal field, uncertain at best.

Of the various patterns uncovered in the sunspot number time series, some actually appear
to be robust, in that they do not depend too much on the manner the analysis is being carried
out, and are also found in other indicators of solar activity; to the point in fact that they
have been upgraded to the status of empirical “Rule”. We’ll consider here only the two most
convincing ones.

The Waldmaier rule refers to the fact that an anticorrelation seems to exist between cycle
amplitude and rise time (or duration). Starting for example from the time series of smoothed
monthly sunspot number (red line on Figure 6.5, it is straightforward to assign to each cycle
n a peak amplitude An and a duration Tn, the latter being simply the time interval between
the two minima bracketing a given cycle. Similarly, the rise time is the time interval between
a minimum and the subsequent maximum. Figure 6.6A shows a correlation plot of cycle rise
tiem and amplitude, which is characterized by a linear correlation coefficient of r = −0.7, which
is definitely large enough to merit attention. A similar, through weaker anticorrelation exists
between cycle amplitude and duration. These anticorrelations are intriguing, because one might
have (naively) expected that high amplitude cycles should take longer to build up and also last
longer, but in fact the opposite seems to hold.

Another intriguing sunspot cycle amplitude pattern is known as the Gnevyshev-Ohl rule,
and is illustrated on Fig. 6.6B. Cycle peak amplitude An are plotted as solid dots, versus
cycle number n. For reasons that will become clear shortly, odd-numbered cycles (according to

the largest number of research journal pages per byte of actual data!
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Figure 6.6: (A) The anticorrelation between cycle rise time and amplitude, known as the Wald-
maier Rule. A similar correlation, although weaker, characterizes cycle amplitudes and dura-
tions; (B) The Gnevyshev-Ohl Rule. Under Wolf’s numbering convention, the odd-numbered
cycles (orange dots) are more often found above the running mean (blue line) than even-
numbered cycles (red dots), a pattern that held true uninterrupted from cycle 9 to 21 inclu-
sively.
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116 CHAPTER 6. THE SOLAR CYCLE AS A DYNAMO

Figure 6.7: A sunspot butterfly diagram, showing the equatorward migration of sunspot lat-
itudes in the course of each cycle. The sunspot number peaks about midway though the
equatorward migration Data and graphics courtesy of David Hathaway, NASA/MSFC.

Wolf’s numbering convention) have been plotted in orange, and even-numbered cycles in red.
Compute now a 1-2-1 running mean of cycle amplitude, i.e.,

〈An〉 =
1

4
(An−1 + 2An + An+1) , n = 2, 3, ... (6.2)

The resulting time series for < An > is plotted as a thick blue line on Fig. 6.6B; notice now
how most odd-numbered cycles (orange) lie above the running mean curve, while even-numbered
cycles (red) usually lie below. In fact, from cycle 9 to 21 inclusive, the pattern has held true
without interruption. As we will see in due time, both the Waldmaier and Gnevyshev-Ohl
Rules pose quite a challenge to most current solar dynamo models.

6.1.4 The butterfly diagram

To the striking cyclic pattern uncovered by Schwabe was soon added an equally striking spatial

regularity. In 1858, Gustav Spörer (1822-1895) and Richard Carrington (1826-1875) indepen-
dently pointed out that sunspots are observed at relatively high (∼ 40◦) heliocentric latitudes
at the beginning of a sunspot cycle, but are seen at lower and lower latitudes as the cycle
proceeds, until at the end of the cycle they are seen mostly near the equator, at which time
spots announcing the onset of the next cycle begin to appear again at ∼ 40◦ latitude. This is
illustrated on Figure 6.7, in the form of a butterfly diagram for the time period 1875—2003.
The construction of sunspot butterfly diagrams was first carried out by the husband-and-wife
team of Annie and E. Walter Maunder in 1904, and proceeds as follows: one begins by laying
a coordinate grid on, for example, a solar white light or calcium image, with, as in the case of
geographic coordinates on Earth, the rotation axis defining the North—South direction. The
visible solar disk is then divided in latitudinal strips of constant projected area, and for each
such strip the percentage of the area covered by sunspots and/or active regions is calculated
and color coded. This defines a one-dimensional (vertical) array describing the average sunspot
coverage at one time. By repeating this procedure at constant time intervals and stacking the
arrays one besides the other, one obtains a two-dimensional image of average sunspot coverage
as a function of heliospheric latitude (vertical axis) and time (horizontal axis).

The absence of sunspots at high latitudes (∼
> 40◦) at any time during the cycle, and the

equatorward drift of the sunspot distribution as the cycle proceeds from maximum to minimum,
are both particularly striking on such a diagram. Note how the latitudinal distribution of
sunspots is never exactly the same, and how for certain cycles (for example the 1965—1976
cycle) there exists a pronounced North–South asymmetry in the hemispheric distributions.
Note also how, at solar minima, spots from each new cycle begin to appear at mid-latitudes
while spots from the preceding cycle can still be seen near the equator, and how sunspots are
almost never observed within a few degrees in latitude of the equator. Sunspot maximum (1991,
1980, 1969,...) occurs about midway along each butterfly, when sunspot coverage is maximal
at about 15 degrees latitude.
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6.1. THE SUNSPOT CYCLE 117

Figure 6.8: The Maunder minimum, as seen through cosmogenic radioisotopes (top panel) and
sunspot and auroral counts (bottom panel). The thick red line is the so-called Group Sunspot
Number, a reconstruction similar to Wolf’s (thin orange line) but deemed more reliable in the
eighteenth century because it relies exclusively on the more easily observable sunspot groups.
Beryllium 10 data courtesy of J. Beer, EAWAG/Zürich.

6.1.5 The Maunder Minimum

One final, peculiar feature associated with the sunspot cycle needs to be discussed, because of
its implications for dynamo modelling. The historical reconstructions began by Wolf have been
pushed as far back as the invention of the telescope in the opening decade of the seventeenth
century, which marks the beginning of regular sunspot monitoring by astronomers. One such
full reconstruction, starting in 1610, is shown on Figure 6.8 (bottom panel). While observations
are a tad patchy from 1610 to 1640, coverage is actually quite good beyond this date. The lack
of sunspots in the period 1645-1715 is therefore not due to lack of data, but represents a
phase of strongly suppressed solar activity now known as the Maunder Minimum, after
the solar astronomer E.W. Maunder, who, following the pioneering historical investigations of
Gustav Spörer, was most active and steadfast in investigating the dearth of sunspot sightings by
astronomers active in the second half of the seventeenth century. The documented occurrence
of exceptionally cold winters throughout Europe during those years may be causally related to
reduced solar activity, although this remains a topic of controversy.

That this is not just a matter of failing to form sunspots is confirmed by historical recon-
structions of auroral counts, which are also strongly reduced during the Maunder Minimum
(cf. Fig. 6.8). On the other hand, cosmogenic radioisotopes such as 10Be, whose production
frequency is known to be modulated by the frequency of solar eruptive phenomena, continue to
show a cyclic pattern throughout the Maunder minimum (Fig. 6.8, top panel), indicating that
the cycle had actually not come to a complete standstill.

The cosmogenic isotope record also indicates that episodes of markedly reduced solar activ-
ity occurred in 1282-1342 (Wolf minimum) and 1416-1534 (Spörer minimum), and that solar
activity was significantly above its modern average in the time period 1100-1250 (dubbed Me-
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118 CHAPTER 6. THE SOLAR CYCLE AS A DYNAMO

Figure 6.9: A diagram taken from the 1919 paper by G.E. Hale, F. Ellerman, S.B. Nicholson,
and A.H. Joy (in The Astrophysical Journal, vol. 49, pps. 153-178), illustrating Hale’s polarity
laws “V ” and “R” refer to the circular polarization components, which allow to determine
magnetic polarity. This presented solid evidence for the existence of a well-organized large-
scale magnetic field in the solar interior, oriented predominantly in the East-West direction,
which cyclically changes polarity approximately every 11 years.

dieval Maximum by Min/Max aficionados). Some recent such reconstructions (see bibliography)
have in fact identified some XXX grand minima in the past 11,000 years.

6.2 The (magnetic) solar cycle

6.2.1 Hale’s polarity laws

The study of sunspots and their 11-year cycle was finally put on a firm physical footing by
George Ellery Hale (1868-1938). In the decade following their groundbreaking discovery of
sunspot magnetic fields in 1907-1908, Hale and collaborators went on to establish what are now
known as Hale’s polarity laws:

1. At any given time, the polarities of the leading spots of sunspot pairs are the same in a
given solar hemisphere;

2. At any given time, the polarities of the leading spots of sunspot pairs are opposite in the
N and S hemispheres;

3. Sunspot polarities reverse in each hemisphere from one 11-yr sunspot cycle to the next;

(see Fig. 6.9). The most straightforward interpretation of this common opposite polarity group-
ing is that we are seeing the surface manifestation of a large-scale toroidal field residing some-
where below the photosphere, having risen upwards and pierced the photosphere in the form
of a so-called “Ω–loop” (see Figure 6.10).

Because the flux rope can be expected to expand as it rises buoyantly through the convective
envelope, neither the size or magnetic field strength of sunspots can be assumed to be identical
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6.2. THE (MAGNETIC) SOLAR CYCLE 119

Figure 6.10: Schematic representation of a sunspot pair as the manifestation of an underlying
toroidal flux rope having risen through the photosphere. The magnetic fields impedes convective
energy transport, so that cooling leads to a collapse of the magnetic field into two sunspots
of opposite polarities. Reproduced from the 1955 paper by E.N. Parker’s in The Astrophysical

Journal, vol. 121, pps. 491-507 [Figure 2, p. 496].

to that of the underlying toroidal flux ropes. However, if the rope maintains its cohesion
throughout the rise and emergence processes then its magnetic flux

ΦB =

∫

(Bφêφ) · n̂dS (6.3)

is a conserved quantity, as per flux-freezing in the ideal MHD limit. Observations indicate that
for sunspots ΦB ∼ 1013—1015 Wb (Wb≡T m2), with 1014 Wb a representative value for a
“typical” sunspot.

Hale’s polarity rules, interpreted in terms of this “model” of sunspots, imply that the toroidal
component of the solar internal magnetic field is antisymmetric about the equator2, and evolves
cyclically on a ' 22 year timescale. So, from a physical —rather than botanical— standpoint,
the true length of the solar cycle is not 11 years, but rather 22 years. Yet astronomers are
creatures of tradition, and solar astronomers are no exception; a century after Hale’s discovery
of the sunspot polarity law, it remains customary to speak of the “11 year solar cycle”.

6.2.2 Joy’s law

Hale and collaborators also showed that the line segment joining two members of a sunspot pair
shows a systematic tilt angle (θ̃) with respect to the East-West direction, the sunspot farther
ahead (in the direction of solar rotation) being closer to the equator. Although there exists
considerable variations in observed tilt angles, statistically the magnitude of the tilt increases
with increasing heliocentric latitude (see Fig. 6.11). This is known as Joy’s Law, after the poor
bastard who was told by his boss G.E. Hale to go back and measure the tilts of all sunspot
pairs to be found on the sunspot drawings of Carrington and Spörer.

Least-squares fits to observations yield a parametric representation of the form:

sin θ̃ = 0.48 cos(θ) + 0.03 (6.4)

where θ is the usual polar angle (sometimes called “colatitude”). This pattern plays an impor-
tant role in some of the solar cycle models to be considered in later chapters. This is because
the existence of a finite, systematic tilt implies a net dipole moment, which can contribute to
the net solar poloidal field.

All these regularities carry a very important message; no matter how vigorous convective
fluid motions may be in the convective envelope, they are not vigorous enough to completely
disrupt the solar internal toroidal magnetic field.

2which, as we shall see in chapter 7 below, is what one would expect from the kinematic shearing of a dipolar

magnetic field by axisymmetric differential rotation.
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120 CHAPTER 6. THE SOLAR CYCLE AS A DYNAMO

Figure 6.11: Variation of the average tilt angle θ̃ (ordinate) with respect to heliocentric lat-
itude (abcissa, both in degrees). Reproduced from Hale, Ellerman, Nicholson & Joy 1919,
Astrophys. J., 49, 153 [Figure 5, p. 168].

6.2.3 Modeling the buoyant rise of magnetic flux ropes

In translating the cartoon of Figure 6.10 into a quantitative physical model, we have a number
of issues that need to be clarified. Perhaps the most pressing are: (1) to identify the region(s) of
the solar interior from which the flux ropes originate, and (2) to estimate the time required for
a magnetic flux tube to rise through the convective envelope3. It turns out that both questions
are very much related.

Consider a toroidal flux tube of diameter a and mean field strength B, embedded in a
convective envelope with pressure and density profiles p(r), ρ(r) and scale height h = kT/µmpg,
where g is the gravitational acceleration and a ¿ h. Lateral pressure equilibrium demands that

p(r) = pi(r) +
B2

2µ0

, (6.5)

where pi is the gas pressure within the tube, and the second term on the RHS is the magnetic

pressure. Clearly eq. (6.5) can only be satisfied provided that pi < p(r), i.e., the flux tube
is evacuated. Given the high thermal diffusivity provided by radiation under solar interior
conditions, it is reasonable to assume that the temperature is the same inside and outside the
tube; this implies ρ/ρi = pi/p, so that

ρ(r) − ρi(r) =
ρ(r)B2(r)

2µ0p(r)
. (6.6)

The (radial) buoyancy force per unit length along the tube is then

F = πa2g(ρ − ρi) . (6.7)

As a consequence of this buoyancy, the tube is accelerated upwards and begins to rise towards
the surface. If thermal equilibrium is maintained between the tube and its surroundings, the
only force left to equilibrate the buoyancy force is the aerodynamic drag:

FD =
CD

2
ρu2a , (6.8)

where u is the rise velocity of the tube, and the coefficient of aerodynamic drag CD is a number
of order unity for low viscosity subsonic flows. Equating eqs. (6.7) and (6.8) yields, after making
use of the definition for the scale height h, the following expression for the terminal rise velocity:

u2 =
B2

µ0ρ

(

πa

CDh

)

. (6.9)

3What follows is largely inspired from the 1975 paper by E.N. Parker cited in the bibliography at the end of

this chapter
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The rise time τ for a magnetic flux tube starting at a depth r0 within the envelope is then
approximately

τ '
R¯ − r0

u
. (6.10)

If you start plugging in numbers in the above expressions (you get to do just that in problem 6.3
below!), you soon come to the conclusion that for flux ropes of strengths ∼

> 0.1T and magnetic
fluxes ∼

> 1013 Wb released at r/R¯ = 0.8, the rise time is well under one year. More elaborate
calculations, taking into account heat exchange between the tube and its surroundings as well
as the slightly superadiabatic stratification of the envelope yield even shorter rise times. As
we shall see in later chapter, amplification of the solar magnetic field by the dynamo process
requires that the field remains in its generating region for a few years before sufficiently high
field strengths are produced. This has led to the conclusion that the solar magnetic field is
stored —maybe even produced— not in the convective envelope proper, but rather immediately
below it.

The issue of storage of the magnetic flux ropes below the core-envelope interface is far from
trivial. Basically, the flux ropes are subject to non-axisymmetric instabilities that take the
form of growing waves of low azimuthal wavenumbers. The growth time for the instability
turns out to depend rather sensitively on the thermodynamic structure (namely, the degree of
subadiabaticity) of the storage layers. The bibliography at the end of this chapter lists a few
good papers concerned with such stability analyses. Such calculations indicate that magnetic
flux tubes of strength 6—16 T can be stored immediately beneath the core-envelope interface
for time periods of a few years, with the growth time for the instability decreasing rapidly with
increasing field strength.

Considerable efforts have also gone into making more realistic models of the rise of thin
magnetic flux tubes through the solar convective envelope. Such models include all kinds
of reasonable things like rotation, non-axisymmetric perturbations, storage below the core-
envelope interface, etc. While this represents a considerable improvement, mathematically
flux tubes are still treated as structureless, flux-carrying material lines and so these kinds of
calculations cannot properly take into account the interaction of the tube with the surrounding
turbulent fluid motions. With this caveat in mind, thin flux tube modeling has produced the
following two important results:

1. The flux ropes rise essentially radially if they have a field strength B ∼> 6—10T; otherwise
the Coriolis force deflects the rising flux tubes to high latitudes.

2. The flux ropes emerge without any tilt for B ∼> 102 T, and with tilts compatible with
Joy’s Law for fields strengths in the range 6—16T.

Now, this is great stuff: the observed emergence of sunspots at low heliocentric latitudes puts
a lower limit on the strength of the participating flux ropes; Joy’s Law, on the other hand,
translate into an upper limit on the field strength. One concludes that the sunspot-forming
toroidal flux ropes must have magnetic field strengths in the rather narrow range

6 ∼
< B ∼

< 16T . (6.11)

The basic physical mechanism underlying these two remarkable results is the same: if the rise
time of the flux ropes is much smaller than the solar rotation period, the Coriolis force has a
strong influence. It is the Coriolis force that deflects the rising flux ropes to high latitudes, and
gives rise to the twist that, upon emergence, manifests itself as Joy’s Law. If the field is strong
enough for the rise time to be much shorter than the rotation period, then the rising flux rope
does not “feel” the rotation, rises radially, and emerges without a tilt.
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122 CHAPTER 6. THE SOLAR CYCLE AS A DYNAMO

Figure 6.12: A synoptic magnetogram covering the last three sunspot cycles. The radial com-
ponent is azimuthally averaged over a solar rotation, and the resulting latitudinal strips stacked
one against the other for successive rotations. Data and graphics courtesy of David Hathaway,
NASA/MSFC.

6.2.4 Poloidal field reversals

While the surface magnetic field on Fig. 2.4 may look like a total mess, on long timescales a
well-defined spatiotemporal pattern once again emerges. Figure 6.12 is once again a synoptic
(time-latitude) diagram of the radial magnetic field component (averaged in longitude on the
visible disk) covering three sunspot cycles. New poloidal field first shows up at mid-latitudes
(e.g., 1977), a year or two after the new cycle sunspots have begun to appear at high latitudes,
and then migrates to higher and possibly lower latitudes in the course of the cycle. The situation
is greatly complicated by the active region fields, which make a very strong contribution to the
line-of-sight magnetograms at low heliocentric latitudes. Furthermore, the tilt of active regions
amounts to a net dipole moment, which is carried to higher latitudes by the poleward surface
meridional flow (more on this later) following the decay of the active regions. This poleward
transport is clearly visible on Fig. 6.12, in the form of elongated, inclined stripes extending
from mid to high latitudes. Whether this transport of poloidal field contributes to —or even
dominates— the evolution of the high latitude poloidal field remains an open question.

At high heliocentric latitude (∼> 50◦) there exist a cleaner pattern of polarity changes occur-
ring on the solar cycle period. For example, polarity reversal occurs in 1980, at solar maximum.
During the 1976—1986 cycle the toroidal field was negative in the N-hemisphere; taken at face
value, Figure 6.12 then indicates that the high latitude poloidal field lags the toroidal field by
a phase interval ∆ϕ ' π/2.

A different observational tracer that yields similar results is the count of polar faculae,
concentrated regions of relatively strong magnetic field often seen at high latitudes. Under the
assumption that the structure of the faculae themselves is independent of the phase in the solar
cycle, their number at any given time gives a measure of the overall poloidal field strength, once
calibrated against magnetograms. Reliable polar faculae records exists for nearly one hundred
years, allowing to reconstruct the solar cycle evolution of the large-scale solar poloidal field
back to the beginning of the twentieth century.
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Figure 6.13: Current helicity of active regions versus heliospheric latitude, as determined from
3D vector magnetogram. There is a weak but statistically significant trend whereby current
helicity is negative in the Northern solar hemisphere, and positive in the Southern. The solid
line is the mean twist expected from the interaction of an initially untwisted flux rope inter-
acting with helical convection, with the dashed dashed lines corresponding to ± one standard
deviation. Diagram taken from Canfield & Pevtsov 2000, J. Astrophys. Astr.. 21, 213 [Fig. 2,
p. 216].

6.2.5 Current helicity in active regions

Vector magnetographic observations of sunspots and active regions allow to reconstruct the
vertical component of the electrical current density, which then allows a calculation of the
current helicity (HJ ; see §1.11) of the magnetic flux rope having formed the sunspots. Since this
is expected to be closely related to the true magnetic helicity, and that the latter is a conserved
quantity in ideal MHD, one is allowed to suppose that current helicity patterns characterizing
sunspots and active regions are representative of the current helicity of the underlying, large-
scale sunspot-forming toroidal magnetic field. An important caveat is the possibility that the
helicity of the buoyantly rising flux ropes is altered during its crossing of the convection zone,
due to interaction with turbulent fluid motions, themselves imbued with kineric helicity by the
Coriolis force. Simple models of this interaction suggest that the bulk of the inferred helicity
may be due to this interaction, as shown on Figure 6.13. What is plotted there is in fact the
parameter α for a force-free magnetic field with non-zero currents (cf. eq. (1.116), defined via
the relation

[∇× B]z = αBz = µ0Jz , (6.12)

the second equality arising from Ampère’s Law in its MHD-usual pre-Maxwellian form.

It turns out that inferred current helicities for active regions show a fairly well-defined
hemispheric pattern: HJ is negative in the Northern solar hemisphere, and positive in the
Southern (see again Figure 6.13). And since the cycle-to-cycle magnetic polarity reversals flip
both B and J, this sign pattern remains fixed from one cycle to the next. A similar result
is obtained by inferring the sign of active region twists from X-Ray observations of magnetic
loops linking the two components of classical bipolar sunspot pairs. So the helicity trend is
likely real, the question remaining is whether it truly reflects the state of the magnetic field in
the deep-seated flux-rope forming region.
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124 CHAPTER 6. THE SOLAR CYCLE AS A DYNAMO

6.2.6 Cyclic modulation of solar activity

The solar magnetic cycle also modulates the solar luminosity, the sun being about 0.1% brighter
at sunspot maximum than at minimum (see Fig. 6.14, top panel). The emission of short-
wavelength, non-thermal emission also varies in phase with the solar cycle; in the far-ultraviolet
regions of the solar spectrum (λ ∼< 120 nm), variations by ∼ 100% are observed between solar
minimum and maximum, with corresponding variations by over a factor of ten in the X-Ray
domain. The sun’s radio emission, indicative non-thermal acceleration of electrons in the lower
corona, also follows the sunspot cycle quite closely (see Fig. 6.14, third panel). Finally, the
frequency of all solar eruptive events (flares, coronal mass ejections, eruptive filaments, etc.)
are all strongly modulated by the solar cycle, although the distribution of event sizes appears
to be invariant with respect to the phase of the cycle; put differently, it’s not that large flares
cannot happen near activity miminum, they are just a lot less frequent. Indeed, the Fall of
2007, far into the descending phase of cycle 23, witnessed some of the largest X-Ray flares on
record since the beginning of continuous solar X-Ray monitoring by the GOES patrol satellites.

6.3 Summary of solar cycle characteristics

For convenience, let’s now collect a short list of fundamental observational features that a phys-
ical model of the solar magnetic cycle should reproduce (omitting for the time being anything
related to amplitude fluctuation):

1. A large-scale magnetic field, axisymmetric to a good approximation and antisymmetric
about the solar equator;

2. A cyclic variation of this large-scale magnetic field, characterized by polarity reversals
with a ∼ 20 yr oscillation period;

3. An internal toroidal field of strength ∼ 1—10T, concentrated at low solar latitudes (∼
< 45◦,

say), and migrating equatorward in the course of the cycle with minimal spatiotemporal
overlap between successive cycles;

4. A large-scale surface poloidal field of a few 10−3 T, migrating poleward in the course of
the cycle, and reversing polarity at sunspot maximum.

5. Negative current helicity in the N-hemisphere, and positive helicity in the S-hemisphere,
across all cycles.

This last constraint remains subject to the caveat described in §6.2.5, and for that reason,
although legitimate, it is not considered a particularly strong constraint on dynamo models of
the solar cycle.

6.4 A simple dynamo

Before moving on with astrophysical dynamos, we will first consider the following simple ex-
ample, which illustrates nicely how the idea of amplyfying magnetic field by bodily moving
electrical charges across a magnetic field is not so mysterious as one may initially think.

One of the many practical invention of Michael Faraday was a DC electric current generator
based on the rotation of a conducting metallic disk threaded by an external magnetic field.
Figure 6.15(A) illustrates the basic design: a circular disk of radius a mounted on an axle,
rotating at angular velocity ω through the agency of some external mechanical force (like
Faraday turning a crank). A vertical magnetic field is imposed across the disk. Electrical
charges in the disk will feel the usual Lorentz force F = qu × B where, (initially) u is just the
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Figure 6.14: Variation of various solar activity indicators with the solar cycle. The NSO/Kitt
Peak magnetic flux includes the contribution of magnetic fields outside of sunspots. The 10.7cm
radio flux is a measure of non-thermal processes in the lower corona. Data and graphics courtesy
of Giuliana DeToma, HAO/NCAR.
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Figure 6.15: A homopolar generator (A) versus a homopolar dynamo (B). An external magnetic
field B is applied across a rotating conducting disk, producing an electromotive force that drives
a radial current, a wire connecting the edge of the disk to the axle, forming a circuit of resistance
R. The only difference between the two electro-mechanical devices illustrated here is that in
the latter case, the wire completing the circuit by connecting on the axle is wrapped into a
loop in a plane parallel to the disk, so that a secondary vertical magnetic field is produced (see
text).

motion imposed by the rotation of the disk. Working in cylindrical coordinates (s, φ, z) one can
write

u = (ωs)êφ , (6.13)

B = B0êz . (6.14)

so that

F = (qωsB0)ês . (6.15)

Now consider the circuit formed by connecting the edge of the disk to the base of the axle via
frictionless sliding contacts. With the lower part of the circuit away from the imposed magnetic
field, the only portion of the circuit where the magnetic force acts on the charges is within the
disk, amounting to an electromotive force

E =

∮

circuit

(

F

q

)

· d`̀̀̀ =

∫ a

0

ωB0sds =
ωB0a

2

2
. (6.16)

Neglecting for the time being the self-inductance of the circuit, the current flowing through the
resistor is simply given by I = E/R. This device is called a homopolar generator.

There is a subtle modification to this setup that can turn this generator into a homopolar

dynamo, namely a device that converts mechanical energy into self-amplifying electrical cur-
rents and magnetic fields. Instead of simply connecting the resistor straight to the axle as on
6.15(A), the wire is wrapped around the axle in a loop lying in a plane parallel to the disk, and
then connected to the axle, as shown on 6.15(B). Use your right-hand rule to convince yourself
that this current loop will now produce a secondary magnetic field B∗ that will superpose itself
on the external field B0. The magnetic flux through the disk associated with this secondary
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field will be proportional to the current flowing in the wire loop, the proportionality constant
being defined as the inductance (M):

MI = Φ = πa2B∗ , (6.17)

where the second equality comes from assuming that the secondary field is vertical and constant
across the disk; but what really matters here is that B∗ ∝ I since the geometry is fixed. We
now write an equation for the electrical current, this time taking into consideration the counter-
electromotive force associated with self-inductance of the circuit:

E − L
dI

dt
= RI (6.18)

where L is the coefficient of self-inductance, and the current I is now a function of time.
Substituting eqs. (6.16) and (6.17) into this expression, leads to

L
dI

dt
=

ωa2

2

(

B0 +
MI

πa2

)

− RI (6.19)

indicating that the current –and thus the magnetic field– will grow provided that initially,

ωa2B0

2
> RI . (6.20)

which it certainly will at first since I = 0 at t = 0. There will eventually come a time (t∗) when
the secondary magnetic field will be comparable in strength to the externally applied field B0,
at which point we may as well “disconnect” B0; eq. (6.19) then becomes

L
dI

dt
=

(

ωM

2π
− R

)

I , (6.21)

which integrates to

I(t) = I(t∗) exp

[

1

L

(

ωM

2π
− R

)

t

]

. (6.22)

indicating that the current —and magnetic field— will grow provided the externally-imposed
angular velocity exceeds a critical value:

ω > ωc =
2πR

M
. (6.23)

This is not a (dreaded) case of perpetual motion, or creating energy out of nothing, or anything
like that. The energy content of the growing magnetic field ultimately comes from the biceps
of the poor bastard working ever harder and harder to turn the crank and keep the angular
velocity ω at a constant value, as you’ll get to verify in one of the problem at the end of this
chapter in the simpler context of the homopolar generator.

There are many features of this dynamo system worth noting, and which all find their
equivalent in the MHD dynamos to be studied in chapters to follow:

1. There exist a critical angular velocity that must be reached for the self-inductance to beat
Ohmic dissipation in the resistor, leading to an exponential growth of the magnetic field;
below this critical value, the field decays away exponentially once the initial field B0 is
removed.

2. Not all circuits connecting the edge of the disk to the axle will operate in this way; if we
suddenly reverse the rotation of the disk, or wrap the wire the other way around the axle,
the magnetic field produced by the loop will oppose the applied field;

3. The externally applied magnetic field B0 is only needed as a seed field to initiate the
amplification process.

4. The homopolar dynamo is really nothing more than a device turning mechanical energy
into electromagnetic energy, more specifically magnetic energy.
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6.5 The astrophysical dynamo problem(s)

Copper wires and sliding contacts being a rather sparse commodity in the universe, we must
now figure out to apply the general idea of a dynamo to astrophysical fluids. In the MHD limit,
our hope lies evidently with the induction term ∇× (u × B) in the induction equation

∂B

∂t
= ∇× (u × B) −∇× (η∇× B) . (6.24)

Remember that there are no true source term in eq. (6.24); if B = 0 at some t0, then B = 0
for all subsequent t > t0. We must therefore assume that some seed field exists to start up the
dynamo process, just as in the homopolar dynamo we just looked into. As we saw in §2.10, there
exist viable candidates to produce this seed field, most notably battery mechanism associated
with mechanical separation of electric charges.

In its simplest form, the dynamo problem consists in finding a flow field u that can
sustain a magnetic field against Ohmic dissipation. We must distinguish kinematic dynamo,
where the flow field u is considered given a priori and constructed without any regards for
its underlying dynamics, from what can only be called (for lack of a generally agreed-upon
terminology) the full dynamo problem, in which the flow u results from a solution of the
full set of MHD equations (§1.7), including the backreaction of the magnetic field on the flow
via the Lorentz force term J × B on the RHS of the Navier-Stokes equation.

The kinematic regime carries the immense practical advantage that the induction equation
then becomes truly linear in B, and the dynamo problem reduces to finding a (smooth) flow field
u that has the requisite topological properties to lead to field amplification. In the following
chapters we will concentrate mostly on this kinematic regime, but will occasionally touch upon
the much more difficult dynamical problem, mostly via direct numerical simulation of the full
set of MHD equations.

As we’ll see in the following chapter, there are flows that can amplify a magnetic field
during a transient time interval, after which B decays again. So we tighten our definition of
the dynamo problem by demanding that a flow be a dynamo if it can lead to EB > 0 for times
much larger than all relevant advective and diffusive timescales of the problem. To make things
even harder, we’ll add the additional condition that no electromagnetic energy be supplied
across the domain boundaries S, i.e., S · n = 0 in eq. (1.87). It is readily shown that this latter
condition is satisfied if either (1) B = 0 on the boundary, or (2) the components normal to the
boundaries of U, B, and L all vanish on S (do problem XXX!).

The solar dynamo problem can be tackled either in kinematic or fully dynamical form.
The aim there is to reproduce observed spatiotemporal patterns of magnetic field evolution, a
minimum list of features having already been listed at the end of §6.1. As will become obvious in
the following chapter, even this basic short list is a pretty tall order. Yet, from solar irradiance
variations and their possible influence on Earth’s climate to space weather prediction, it all
begins with the solar cycle. Keep this in mind as we now start to dig into the mathematical
and physical intricacies of magnetic field generation in electrically conducting fluids. We’ll seem
to venture pretty far away from the sun and stars at times, but stick to it and you’ll see it all
fitting together at the end. And now, into the abyss...

Problems:

1. Estimate the solar rotation period from the apparent motion on the sunspots drawing
reproduced on Fig. 6.4. What are the primary difficulties in carrying out this kind of
analysis?

2. The sunspot number time series reproduced on Fig. 6.5 are almost certainly the most
intensively studied time series in All Of Astrophysics, as measured by the number of
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published research papers per data point. So you need to try your hand at crunching it
a little bit. First, go to the SIDC’s Web Page:

http://sidc.oma.be

click on “Sunspot archive & graphics”, and grab the dataset for the 13-month running
mean of the monthly sunspot number (red line on Fig. 6.5 herein). Then,

(a) Measure the duration of each cycle, and compute the mean sunspot cycle period;

(b) Measure the peak and integrated (i.e., area-under-the-curve) cycle amplitude; do
these two measures of cycle amplitude correlate well?

(c) Measure the rise time, i.e., the time elapsed from start of a cycle to its peak. Does
this correlate to anything you have extracted so far (cycle duration, amplitude, etc.)?

(d) Do a lag analysis by looking for correlation between the amplitude of one cycle, and
that of the preceeding cycle; that of two cycles ago; three cycles ago, etc. Do you
find any significant correlation for some lag?

(e) Finally, calculate a power spectrum of the time series. Do you find significant peaks
at periods other than ∼ 11 yr?

3. This problem has you quantify and reflect upon some of the statements made in §6.2.3.

(a) Fill in all missing mathematical steps leading to eq. (6.10).

(b) Compute and plot curves showing the variations of the rise time with assumed mag-
netic field strength, for four fixed values of the magnetic flux: log ΦB = 12, 13, 14
and 15 (in weber). In all cases you may assume that the participating flux tube are
released at a depth r0/R¯ = 0.80 within the convective envelope, where the density
and temperature assume values ρ = 4000 kg m−3 and T = 5 × 106 K. Remember
that fixing the magnetic flux implies a relationship between a and B.

(c) Make a list of all the assumptions having entered this little derivation; which are the
most/least reasonable ones?

4. homopolar generator: compute work done against magnetic force by externally applied
torque; verify that it is equal to the energy dissipated in the resistor.
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