
Chapter 4

Magnetic confinement of winds

Science is experiment; science is trying things.

It is trying each possible alternative in turn,

intelligently and systematically;

and throwing away what won’t work, and accepting what will,

no matter how it goes against our prejudices.

Jacob Bronowski
A Sense of the Future (1948)

4.1 Magnetic fields in the solar corona

Up to now we have considered the dynamics of the coronal plasma independently of the coronal
magnetic field, which we had earlier argued (§3.1.1) is a dominant structural agent in the
corona. In this chapter we begin to flirt with the interaction of magnetic fields and plasma
flow, by considering its two limiting cases, when either the plasma or magnetic field entirely
dominates the force balance. Once again we stick mostly to the sun as our exemplar of magnetic
confinement of stellar winds in general.

The interaction between the coronal plasma and magnetic field owes a lot of its complexity
to the fact that the two are tightly coupled under typical coronal conditions. A central concept
is that of flux-freezing, already encountered in §1.10; in a highly conducting plasma in a
steady-state, plasma can only flow along magnetic fieldlines, i.e., u × B = 0. The induction
equation (in the η → 0 limit, as per the high electrical conductivity) then yields ∂B/∂t = 0,
which of course is precisely what is required for a steady-state to be maintained.

You may recall (chap. 1) that the magnetic Reynolds number (eq. (1.63) in the corona is
gigantic, i.e., ∼ 1012. This is not so much because the coronal plasma is such a good electrical
conductor (pure copper at room temperature is a hundred times better!), but because the
flow speeds in the corona are relatively high, and the dimensions involved, of order R, are so
large. Consequently, care must be exercised when applying the flux-freezing approximation in
modelling structures evolving on small spatial scales, but on the large scales it is usually a very
good approximation.

4.2 The plasma-β

We must first ask under which circumstances the coronal dynamics is dominated by either the
plasma or magnetic field. This is far from a trivial question. A useful quantity, called the
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72 CHAPTER 4. MAGNETIC CONFINEMENT OF WINDS

Figure 4.1: Variation of the plasma-β in the solar corona. The plasma energy is computed
from the polytropic wind solution of Fig. 3.5, and the magnetic energy assuming coronal base
magnetic field of 10−3 T, with either a monopolar (1/r2) or dipolar (1/r3) falloff. In either case
the corona is field-dominated (β ¿ 1) below the sonic point, and plasma-dominated (β À 1)
at the Earth’s orbit and beyond.

plasma-β, is defined as the ratio of gas pressure to magnetic pressure:

β =
2µ0p

B2
, (4.1)

which is basically equivalent to the ratio of thermal energy to magnetic energy. In a first
approximation, when β À 1 the flow drags along the magnetic fieldlines, while for β ¿ 1 the
magnetic field either traps the plasma, or constrains it to flow along magnetic fieldlines. In
which regime is the solar corona?

Computing β in the presence of a supersonic wind is complicated by the fact that the kinetic
energy of the flow must also be taken into consideration, i.e., we must replace p by p + ρu2

r/2
in eq. (4.1). Figure 4.1 plots the variations with heliocentric distance of the plasma-β, for the
polytropic wind solution of §3.3, and assuming either monopolar (dashed line) or dipolar (solid
line) magnetic field falloffs with heliocentric distance. As argued in the preceeding chapter, the
solar minimum corona lies somewhere in between these two limits.

Of course in juxtaposing in this way a radial outflow with a dipolar magnetic field, flow and
field are not parallel as required by the flux-freezing constraint, but for estimating the plasma-β
the procedure is justified1. The conclusion to be drawn from Figure 4.1 is clear: in the low
corona β ¿ 1, so that the magnetic field constrains plasma motions, while beyond the sonic
point the high-β plasma deforms the magnetic field until u and B are parallel. For a radial

1Note however than in the case of the monopolar field, this is in fact a valid solution, which moreover is
nowhere as silly as one might imagine (more on this shortly).
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4.3. THE β = 0 CASE: MAGNETOSTATIC SOLUTIONS 73

outflow, assuming a radial field is not so silly after all. At intermediate heliocentric distances
we have β ∼ 1, and the dynamics reflects the full complexity of the flow-field interaction...
which is the central topic of the next chapter.

We now turn to two interesting aspects of solar wind dynamics that materialize in the
extreme regimes β À 1 and β ¿ 1.

4.3 The β = 0 case: magnetostatic solutions

As a prelude to our study of magnetic confinement of stellar winds, we first consider a steady-
state (∂/∂t = 0) situation where the dynamics is completely controlled by the magnetic field,
i.e., β = 0. If this is the case, then the problem reduces to finding a force-free field under
prescribed boundary conditions at the base of the corona. We’ll make the task harder by
requiring that these force-free solutions look “solar-like”, in the sense that they are compatible
with what one would infer from coronal images such as on Fig. 3.2: an axisymmetric (∂/∂φ = 0)
dipole-like corona, with open fiedlines over the polar caps, and a streamer belt straddling the
equator, with closed fieldlines low down, stretched open more or less radially above a certain
height above the coronal base.

This may seem like a tall order, but it turns out that someone has already done the hard work
for us, that someone being Boon-Chye Low. He constructed a family of partially-open force-
free axisymmetric magnetotatic solutions, by judicious insertion of force-free current sheets
into otherwise potential (i.e., current-free) solutions. Working in spherical polar coordinates
(r, θ, φ), the starting point of the model is the specification of an axisymmetric magnetic field
B(r, θ) in terms of an axisymmetric stream function Z(r, θ) via:

B(r, θ) =
fBB0

r sin θ

[

1

r

∂Z

∂θ
êr −

∂Z

∂r
êθ

]

. (4.2)

Note that this expression will identically satisfy ∇ · B = 0, as Z can be interpreted as the
z-component of a vector potential such that B = ∇ × (Z êφ). This is really nothing fancier
than the poloidal part of the toroidal/poloidal decomposition of axisymmetric magnetic fields
already encountered in §1.12.3. Under this representation, Z is constant on each axisymmetric
flux surface, and the value of Z can be used to label distinct such surfaces2. The stream function
itself is constructed from two contributions:

Z(r, θ; a1, a2) = Z1(r, θ; a1) + Z1(r, θ; a2) (4.3)

where a1 and a2 are scale parameters, and

Z(r, θ; a) = r(1 − v2)

[

(1 + u2)atan

(

1

u

)

− u

]

− πa2

2

sin2 θ

r
+ 2aη , (4.4)

with

u2 = −1

2

(

1 − a2

r2

)

+
1

2

[

(

1 − a2

r2

)2

+
4a2

r2
cos2 θ

]1/2

, (4.5)

v2 = −1

2

(
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r2
− 1

)

+
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2

[

(

a2

r2
− 1
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+
4a2

r2
cos2 θ

]1/2

, (4.6)

η2 = −1

2

(

r2

a2
− 1

)

+
1

2

[

(

r2

a2
− 1

)2

+
4r2

a2
cos2 θ

]1/2

, (4.7)

2This means that plotting magnetic fieldline in a meridional plane amounts to plotting contours of constant
Z. Very useful property for plotting purposes!
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74 CHAPTER 4. MAGNETIC CONFINEMENT OF WINDS

A single parameter sequence of force-free solutions can be constructed by posing a fixed rela-
tionship between the scale parameters a1 and a2, e.g., a1 = a/2 and a2 = a. Figure 4.2 shows
a sequence of four such magnetostatic solutions, for increasing values of a. These are indeed
good qualitative representations of the inferred coronal magnetic at times of minimum activity
(cf. Fig. 3.2).

Although this is a somewhat sadistic exercise in differential calculus, you should be able to
verify that these solutions are current-free (∇ × B = 0) everywhere except beyond a certain
radius in the equatorial plane, with a measuring the radial equatorial extent of the closed region.
However, B = 0 there, so that the field configuration is indeed force-free (J × B = 0). While
this may all seem rather artificial, we’ll see in the following chapter that fully dynamically
consistent MHD axisymmetric wind solutions do look a lot like this.

How about the plasma? If we further specify that we are operating in the ideal MHD limit so
that flux-freezing is enforced, then any plasma “added” a posteriori to this solution will behave
very differently according to whether it is added in the magnetically closed or open region of
the solutions; with plasma constrained to flow along magnetic fieldlines, in a steady-state the
plasma within the closed region can only remain in hydrostatic equilibrium, while in the open
regions it can in principle flow out to infinity along the magnetic fieldlines (more on this very
shortly).

This duality in plasma behavior forms the basis of the minimal energy corona conjec-

ture put forth some years ago by Arthur J. Hundhausen. His reasoning runs as follows: In
the complete absence of plasma, the magnetic field should relax to the potential state (force-
free and current-free) compatible with the lower boundary conditions on B, as guaranteed by
Aly’s theorem (§1.12.4). Now, when you do problem 4.7 you will verify that the transsonic
Parker-type wind solution is a minimal energy state for all possible outflow solutions, chiefly
because of the large densities characterizing the fully subsonic “solar breeze” solutions (class
III solutions on Fig. 3.4), and from there it is but a small step to show that the corresponding
polytropic steady corona solution (§3.2) has even higher energy. So now, back to the sequence
of magnetostatic solutions depicted on Fig. 4.2. As far as the plasma is concerned, the en-
ergy minimizing solution should have a → 0, leading to radial fieldlines everywhere, and thus
Parker-type spherically-symmetric outflow. But as far as B goes, the minimal energy state
would here be a dipole, with a → ∞ (you also get to verify this rather sweeping statement
in Problem 4.7). In other words, plasma energy is a increasing function of the parameter a,
while magnetic energy is a decreasing function of a. This naturally leads to the idea that a
partially open configuration, with equatorial current sheet and all, represents the configuration
that minimizes the total energy, plasma plus magnetic. This is the essence of Hundhausen’s
minimal energy corona conjecture.

Of course a minimal energy state is what one would expect from any closed physical sys-
tem left to itself long enough to relax, but the the solar corona is anything but closed, and
a number of mechanisms force it on a variety of timescales. Yet the opening and closing of
magnetic arcades that accompany coronal mass ejection can indeed be interpreted as a forced
destabilization opening the arcade and releasing excess plasma trapped therein, with the sub-
sequent closing corresponding to the return to the (quasi-)steady minimal energy state. Those
interested in further exploring these intringuing ideas will find pointers to the relevant literature
in the bibliography at the end of this chapter.

4.4 The β ¿ 1 limit: magnetic flow tubes

We already alluded to the idea that plasma could flow as a wind directed along magnetic
fieldlines; the purpose of this section is to examine this channelling process in somewhat greater
quantitative detail. Figure 4.3 shows fieldlines corresponding to the a = 2.0 magnetostatic
solution discussed in §4.3, plotted in a single meridional quadrant. With plasma constrained
to flow along magnetic fieldlines and base conditions (temperature, density, etc.) independent
of latitude, the first thing to note is that in the region of the corona threaded by fieldlines
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4.4. THE β ¿ 1 LIMIT: MAGNETIC FLOW TUBES 75

Figure 4.2: Four magnetostatic solutions defined by eqs. (4.2)—(4.7), for increasing values of
the scale parameter a, as labeled. Shaded areas correspond to regions of the corona threaded
by closed fieldlines, i.e., with both footpoints anchored at the coronal base. The dotted line
indicates the location and extent of the equatorial current sheet.
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76 CHAPTER 4. MAGNETIC CONFINEMENT OF WINDS

Figure 4.3: Outflow confined by a magnetic flux tube. The coordinate s (dotted line) is oriented
along the central axis of the flow tube, the boundaries of which are indicated by thicker lines.

that have both footpoints anchored on the boundary, we must have u = 0 to satisfy mass
conservation. Indeed this has nothing to do with the field being force-free or not, it is a direct
consequence of flux-freezing in a steady-state. If the magnetic field is force-free in the closed
region, the force balance therein then reverts to the simple statement of hydrostatic balance
encountered earlier in §3.2; if not, eq. (3.14) must be modified to include the Lorentz force, but
the solution remains static.

The situation is quite different in the open region, threaded by fieldlines that extend to
infinity. A wind outflow along fieldlines is now possible, but the outflow is no longer radial.
Consider a narrow flow tube defined by two adjacent fieldlines in the open region of the
magnetostatic solution (thick lines on Figure 4.3). Define a coordinate s measuring distance
along the line s oriented along the central axis of the flow tube (dashed line on Figure 4.3).
The cross-section A(s) along the coordinate line is readily constructed from the known form of
the magnetostatic solution.

The s-component of the equations of motion is then

us
∂us

∂s
= −1

ρ

∂p

∂s
− GM

r2
(ês · êr) (4.8)

where ês is a unit vector along the coordinate line s. Since ês is everywhere perpendicular to
the tube cross section, we have A(r) = A(s)(êr · ês) and ∂s/∂r ≡ ês · êr, eq. (4.8) becomes

us
∂us

∂r
= −1

ρ

∂p

∂r
− GM

r2
, (4.9)

which means that us obeys an equation strictly equivalent to the r-component of the momentum
equation considered in §3.3.1; a very remarkable result indeed! The only difference with the
spherically symmetric solution obtained earlier is that the mass conservation statement now
takes the form

∂

∂r
[ρurA(r)] = 0 , (4.10)

where in general A(r) 6= r2.

4.5 Generalized polytropic wind solutions

The fact that in the low-β regime magnetic fields will “rigidly” channel wind-type outflows
means that the wind acceleration is akin to a nozzle flow, with magnetic flux surfaces playing
the role of the nozzle’s rigid boundaries, with the area expansion factor A(s) acting as the
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nozzle’s cross-section. Now, in a polytropic flow, we already saw that the Bernoulli constant,
corresponding to the total energy per unit mass, is given by:

E =
ur

2
+

c2
s

α − 1
− GM

r
. (4.11)

You’ll recall (hopefully) that the three terms on the RHS are, from left to right: the flow’s
kinetic energy, the plasma’s thermal energy, and gravitational potential energy, all per unit
mass. The most any nozzle can do, starting from a fluid at rest in the “combustion chamber”
(here the coronal base) is to convert all of the plasma’s original thermal energy into outflow
kinetic energy; here this limiting velocity is given by something like:

u∞ =
2c2

s0

α − 1
− GM

r0
, (4.12)

where as before cs0 is the sound speed at r0. But how does this work out in practice? Working
once again through the mathematical steps we encountered in the case of Parker’s spherically
symmetric polytropic wind solution, it can be shown that for an arbitrary expansion factor
A(r), the r-momentum equation can be written in the following general form:

M2 − 1

2M2

dM2

dr
=

[

1 +

(

α − 1

2

)

M2

] [

1

A

dA

dr
− 1

2

(

α + 1

α − 1

)

GM/r2

(E + GM/r)

]

=
1

2

(

α + 1

α − 1

) [

1 +

(

α − 1

2

)]

1

g

dg

dr
, (4.13)

where E is the Bernoulli constant of eq. (4.11), M is the Mach number

M(r) =
ur

cs
, (4.14)

and the function g is given by

g(r) = A2(α−1)/(α+1)

(

E +
GM

r

)

. (4.15)

The mathematics are more complex, but this is really the same general idea as with the
spherically-symmetric Parker polytropic wind solution of §3.3. In particular, solutions to
eq. (4.13) include sonic critical points that must be crossed by wind solution in order to avoid
infinite accelerations. What is novel here is that for expansion factors with fast divergence, more
than one critical points can exist in the flow. You get to explore this aspect of the problem in
Problem 4.5 below.

An integral form of eq. (4.13) can also be obtained:

M4/(α+1) +

(

2

α − 1

)

M−2(α−1)/(α+1)

=
g(r)

g0

[

M
4/(α+1)
0 +

(

2

α − 1

)]

M
−2(α−1)/(α+1)
0 , (4.16)

with g0 ≡ g(r0) and M0 ≡ M(r0). This is really nothing more than the Bernoulli equation
(4.11) written in terms of the Mach number. This form is useful for reconstructing full wind
solution, since it amounts to yet another root-finding problem for M (at fixed r).
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4.6 The β À 1 limit: The Parker spiral

Consider now the other opposite, extreme limit of β À 1, in which the magnetic field is passively
advected by the wind outflow. More specifically, assume a steady-state situation where

1. Flux-freezing is effectively enforced,

2. Magnetic stresses are neglected in the force balance,

3. The poloidal part of the magnetic field is purely radial in the equatorial plane, with the
field strength known at the reference radius.

In view of (3), the constraint ∇ · B = 0 is readily integrated to

Br(r) = Br0

(r0

r

)2

. (4.17)

For an average surface field B0 ∼ 10−3 T, eq. (4.17) yields Br ' 25 nT at the Earth’s orbit,
which is not that far from the observed average magnetic field at 1AU. In view of (1), the flow
streamlines coincide with magnetic fieldlines. In the absence of rotation, the Parker solution
is immediately applicable. Consider now the introduction of rotation, at a rate Ω such that
centrifugal effects do not affect significantly the force balance in the r-direction. In a frame
co-rotating with the Sun, the wind still flows along the magnetic fieldlines. But in a stationary
frame, the total velocity is now

u = u′ + Ω r êφ, (4.18)

where primed quantities refer to quantities evaluated in the co-rotating frame. In general, the
magnetic fieldlines are thus defined by the spiral

r = (ur/Ω¯)(φ − φ0) , (4.19)

with the r and φ-components of the magnetic field given by

Br(r, θ, φ) = Br(r0, θ, φ − rΩ¯/ur)
(r0

r

)2

, (4.20)

Bφ(r, θ, φ) = Br(r0, θ, φ − rΩ¯/ur)

(

r0Ω¯

ur

)

(r0

r

)

. (4.21)

Figure 4.4 shows, in the equatorial plane, the magnetic fieldlines defined by eqs. (4.20)–(4.21),
with the dashed circle corresponding to the Earth’s orbit3. The angle between a magnetic
fieldline and the Sun-Earth radial segment is:

φB = arctan

(

Bφ

Br

)

= arctan

(

rΩ¯

ur

)

, (4.22)

which at 1 AU gives the rather large value φB ' 55o, which in fact compares favorably with
observations. The net wind velocity at 1 AU, on the other hand, is essentially radial4.

Now, remember the equatorial current sheet that characterized the partially open magne-
tostatic solutions considered in §4.3? Well this has been detected also through situ solar wind
observations at 1AU. One of the most intriguing aspect of early space-borne solar wind mea-
surements was the semi-regular polarity flips of the magnetic field carried by the wind. It was
soon realized that this could be traced to the fact that the “neutral line” Br = 0 at the solar
surface does not coincide exactly with the equatorial circle, but is often deformed into a wavy

3On Fig. 4.4, is the Sun rotating clockwise or counterclockwise?
4Confusion on the horizon. Didn’t we argue that in the flux-freezing limit, the gas could only flow parallel

to the fieldlines? Shouldn’t we then have arctan(uφ/ur) ' 55o also? How do you explain this?
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Figure 4.4: The spiral drawn by the solar magnetic field, as it is advected outward by the solar
wind. Solid lines corresponds to magnetic fieldlines, and the circular dashed line to the Earth’s
orbit. The wind itself flows radially outward from the Sun (located at the center of the spiral,
of course).

line crossing back and forth across hemispheres. This warping is maintained in the corona
and solar wind, so that observations made in the ecliptic see alternately above and below the
equatorial current sheet leading to apparent polarity flip as solar rotation carries this pattern
along. The basic shape of this warped spiral is illustrated in cartoon form on Figure 4.5. The
wavy equatorial current sheet has even been compared to the tutu of a not-so-bashful ballerina!

Problems:

1. Obtain eq. (4.1) from an appropriate dimensional analysis of eq. (1.80).

2. Work out the nozzle cross-section variation with r that would produce the same flow
acceleration as in the solar wind.

3. Obtain eq. (4.12).

4. Verify that the introduction of a spherical expansion factor A = r2 in eqs. (4.13)—(4.15)
brings you back to eq. (3.17).

5. The aim of this (and the following) problem is to construct a polytropic wind solution
for non-radial expansion factors. Consider (and, while you’re at it, plot) the following
function

f(r;Re) =

(

1

r2
+

Re

r3

)−1
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Figure 4.5: Warped spiral caused by the radial dragging of the solar magnetic field by the solar
wind emanating from the rotating Sun. Any break of equatorial symmetry is imprinted on the
expanding magnetic field, leading to a warping of the equatorial current sheet beyond the point
where the magnetic arcades are opened up by the wind. For an observed in the equatorial
plane, this leads to apparent polarity flips of the magnetic field measured in the solar wind, as
one alternately “looks” above and below the current sheet.

for R = 1, 2 and 10. Clearly we have limr→0 f(r) ∝ r3, and limr→∞ f(r) ∝ r2, with
the “turning point” occurring at r ∼ Re. Qualitatively, this is the kind of behavior we
would get from constructing expansion factors in the polar regions of the configurations
shown on Fig. 4.2. Using this expansion factor, construct a few polytropic solutions with
T0 = 1.5 × 106 K (e.g., consider α = 1.05, 1.1, and 1.15) and compare the resulting flow
speed and densities at 1 AU with the solar wind data for high speed streams (cf. Table
3.1). Can you generate high speed stream in this way?

6. In the lower corona, the expansion factor associated with coronal hole scales much faster
than r2 at the base of the corona. This can be modeled with the following expansion
factor:

A(r)

A(r0)
=

(

r

r0

)2

f(r)

with the parametric function

f(r) =
fm exp((r − r0)/σ) + f1

exp((r − r0)/σ) + 1

where

f1 = 1 − (fm − 1) exp((r0 − r1)σ) .

The quantity r1 determines where the expansion is most pronounced, the width parameter
σ controls the width of the interval in r where rapid expansion takes place, and fm is the
asymptotic expansion factor. In what follow you may set r1/r0 = 1.5 and σ/r0 = 0.1.
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Use a polytropic index α = 1.1 and a base temperature T0 = 2× 106 K, somewhat higher
than the value used in the preceding chapter but in fact more appropriate for coronal
holes. As usual, assume a perfect gas composed of fully ionized Hydrogen.

(a) Set the Bernoulli constant at E = 1.8 × 10−11 J kg−1, and calculate the base sound
speed cs0, the base flow speed ur0 and the base Mach number M0.

(b) Equation (4.16) being a Bernoulli-type equation, a quantity E∗ defined as E∗ =
LHS−RHS is directly related to the Bernoulli constant, and therefore is a constant
of the flow; using your value of M0 calculated in (a), plot, in the [r,M ] plane, contours
of constant E∗(r,M), first for a solution with purely radial expansion factor. Verify
that the resulting “topology” is the same as that depicted on Fig. (3.4).

(c) Now construct outflow topologies for two rapidly diverging geometries, namely fm =
3 (slow divergence) and fm = 12 (fast divergence).

(d) How many critical point do you have in the “topologies” uncovered in (c)? Does the
wind solution cross all of them?

If you need inspiration, consult the Kopp & Holzer paper listed in the bibliography below.

7. This one let’s you explore a little bit Hundhausen’s minimal energy conjecture. The first
step is to verify that the Parker-like transsonic solution is the lowest-energy “coronal”
solution for fixed base parameters:

(a) Start with the wind solution you computed in problem 3.6; compute the total energy
associated with the wind outflow (including contributions from the plasma’s internal
energy, bulk kinetic energy, and gravitational potential energy);

(b) Now, keeping the Bernoulli constant E fixed at the value corresponding to the above
transsonic solutions, calculate a “solar breeze” solutions (see problem 3.8), and com-
pute its total energy content;

(c) Go back now to §3.2 and compute the total energy of the hydrostatic corona with
the same polytropic index and base density as for your transsonic wind solution;

(d) Now onto the magnetic field. Using the Low (1986) force-free solutions described in
this chapter, compute a one-parameter sequence of solutions (such as on Fig. 4.2)
and demonstrate that the magnetic energy content increases as the magnetically
closed region shrinks in size;

(e) Using all of the above results, formulate in a logically coherent manner your own
version of Hundhausen’s minimum energy conjecture.

If you need inspiration, consult the Charbonneau & Hundhausen paper listed in the
bibliography below.

Bibliography:

The magnetostatic solutions described in §4.3 are taken from

Low, B.C. 1986, Astrophys. J., 310, 953-965,

but there is a huge literature on analytic magnetostatic coronal solutions, with or without
plasma contribution to the force balance. The mathematicaly courageous wishing to look into
the matter should start with

Tsinganos, K., & Low, B.C. 1989, Astrophys. J., 342, 1028.

On the minimal energy corona conjecture, see
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82 CHAPTER 4. MAGNETIC CONFINEMENT OF WINDS

Charbonneau, P., & Hundhausen, A.J. 1996, Sol. Phys., 165, 237-256,

and references therein. The behavior of polytropic wind solutions with rapidly diverging ex-
pansion factors is discussed in detail by

Kopp, R.A., & Holzer, T.A. 1976, Sol. Phys., 49, 43-56,

from which §4.5 is largely inspired. The spiralling extension of the Sun’s magnetic field into
interplanetary space by the solar wind is clearly described in

Parker, E.N. 1963, Interplanetary Dynamical Processes (New York: John Wiley), chap. 10.
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Chapter 5

Magnetic driving of winds

We now seek to obtain wind solutions incorporating in a dynamically consistent manner the
dynamical interaction between flows and magnetic fields. To do so in a mathematically tractable
manner, we first compromise at the level of geometrical realism in §5.1, to obtain the justly
famous Weber-Davis wind solution. Despites its geometrical restrictions, this will prove very
useful in looking at the interesting problem of stellar angular momentum loss and spin-down
(§5.3). We then close the chapter —and this part of the course— by looking at the possible
contribution of Alfvén waves in accelerating stellar winds beyond what purely thermal driving
can achieve (§5.4).

5.1 The Weber-Davis MHD wind solution

The general geometrical setup is the same as that used in obtaining non-rotating, unmagnetized
polytropic wind solutions in §3.3. We consider steady (∂/∂t = 0) spherically symmetric (∂/∂θ =
∂/∂φ = 0) outflow from a star rotating at angular velocity Ω and characterized by a known
surface radial component of the magnetic field Br0. We’ll stick to the ideal MHD approximation,
i.e., we set η = 0 in eq. (1.60). As before we consider the coronal base temperature T (r0) ≡ T0

as known, and do away with the energy equation by assuming a polytropic relationship between
pressure and density. But here it gets a tad fishy; we will seek ouflow solutions restricted to
the equatorial plane, where we impose Bθ = 0. This may smell of monopolar magnetic fields,
but this is really what we also did before when constructing the Parker spiral in §4.6, and
the discussion of §4.3, (see in particular Fig. 4.2) indicates that a solar radius or so above
the photosphere, this is a fair representation of the interplanetary magnetic field during solar
minimum conditions.

A bit of reflection should convince you that we now need five input quantities to define a
Weber-Davis wind model (as opposed to three for the Parker wind solution of §3.3.1):

1. the polytropic index α;

2. something measuring coronal temperature, for which we’ll use the base sound speed cs0 =
√

αp0/ρ0 at the reference radius r0;

3. something measuring the strength of gravity; it will prove convenient to use the dimen-
sionless ratio (γ) of the gravitational escape speed uG (=

√

2GM/r0) to the base sound
speed;

4. something measuring the rotation rate, for which we can use the dimensionless parameter
ζ = Ωr0/cs0;

5. something measuring the strength of the radial magnetic field component at r0, for which
we can use the dimensionless parameter β = Ar0/cs0, where Ar0 is the radial component
of the Alfvén speed at r0.
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84 CHAPTER 5. MAGNETIC DRIVING OF WINDS

We group these into a solution input vector:

z = (α, cs0, γ, ζ, β) . (5.1)

Let’s get going. As usual, the symmetry properties imposed a priori on our wind solution
lead to significant simplification of the governing fluid equations. Mass continuity remains what
is was for the Parker wind solution of §3.3:

1

r2

∂

∂r
(r2ρur) = 0 , (5.2)

while the r and φ-components of the momentum equation become

ρ

(

ur
∂ur

∂r
−

u2
φ

r

)

= −ρ
∂Φ

∂r
− ∂p

∂r
− Bφ

µ0r

∂

∂r
(rBφ) , (5.3)

ρ

(

ur
∂uφ

∂r
− uruφ

r

)

=
Br

µ0r

∂

∂r
(rBφ) . (5.4)

The φ-component of the induction equation reduces to

1

r

∂

∂r
(rurBφ − ruφBr) = 0 , (5.5)

while the equation for the r-component is trivially satisfied (i.e., 0 = 0!). An equation for Br

is obtained instead via the magnetic flux conservation constraint ∇·B = 0, which here reduces
to:

1

r2

∂

∂r
(r2Br) = 0 . (5.6)

Equations (5.2), (5.6), and (5.5) integrate directly to

r2ρur = C1 , (5.7)

r2Br = C2 , (5.8)

r(urBφ − uφBr) = C3 , (5.9)

where C1, C2 and C3 are integration constants. The first two correspond respectively to the
mass and magnetic flux associated with the wind. To evaluate C3 we transform to a reference
frame co-rotating with the Sun:

uφ → u′

φ + Ωr , (5.10)

where the prime indicates evaluation in the co-rotating frame. Note that this (non-relativistic)
transformation leaves the radial components of u and B unaffected. In that frame B is sta-
tionary, and since we are working under the flux-freezing approximation u and B must be
parallel:

u′
r

u′

φ

=
B′

r

B′

φ

. (5.11)

Since Br = B′
r, eq. (5.9) yields

C3 = −Ωr2Br , (5.12)
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so that

Bφ =
Br

ur
(uφ − Ωr) . (5.13)

Now, eq. (5.4) can obviously be rewritten as

∂

∂r
(ruφ) =

Br

µ0ρur

∂

∂r
(rBφ) ; (5.14)

but in view of eqs. (5.7) and (5.8), we have Br/µ0ρur = C2/µ0C1, i.e., a constant! Which
means that eq. (5.14) integrates immediately to

ruφ − rBφBr

µ0ρur
= L , (5.15)

where L is yet another integration constant. It has a well-defined physical meaning, as it
corresponds to the total angular momentum carried away by the wind, which is made up of
two contributions: the specific angular momentum of the expanding fluid (first term on LHS),
and the torque density associated with magnetic tension (remember that the magnetic field is
being dragged away by the wind outflow!)

The results of all this algebraic juggling, without giving us a full wind solution, still allow
us to draw some interesting conclusions regarding the behavior of the outflow. First we rewrite
eqs. (5.13) and eqs. (5.15) in terms of the components of the Alfvén velocity1 (§1.8):

Ar =
Br√
µ0ρ

, Aφ =
Bφ√
µ0ρ

, (5.16)

leading to

Aφ =
Ar

ur
(uφ − Ωr) , (5.17)

uφ =
L

r
+

ArAφ

ur
. (5.18)

Substituting now for Aφ in eq. (5.18) and making good use of eqs. (5.16) and eqs. (5.17) yield,
after some straightforward algebra:

uφ = Ωr
(u2

rL/Ωr2) − A2
r

u2
r − A2

r

. (5.19)

Look at the denominator of this expression; clearly, if the radial flow velocity ever becomes
equal to the radial Alfvén speed, we are in trouble... unless the numerator also happens to
vanish. We can save the day in this way provided we set

L = Ωr2
A , (5.20)

where rA is the Alfvén radius, defining the spherical shell where ur = Ar. Now, remember
that L is the total angular momentum carried away by the wind, including the torque density
provided by magnetic tension. Equation (5.20) states that this is equal to the angular mo-
mentum that would be carried away by an unmagnetized wind flowing strictly radially, and
co-rotating with the solar/stellar surface out to radius rA. We are going to get a lot of mileage
from this remarkable result later on. But let’s first try to get a full wind solution. Go back
to the r-component of the equation of motion (eq. (5.3)); use eq. (5.13) to eliminate Bφ in the

1Please do not confuse the “A” here with components of the magnetic vector potential...
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86 CHAPTER 5. MAGNETIC DRIVING OF WINDS

last term on the RHS; then use eq. (5.13) to eliminate the Bφ derivative multiplying uφ (but
leave the one multiplying Ω alone!). Somewhat tedious algebra eventually leads to

∂

∂r

[

1

2
(u2

r + u2
φ) − GM

r2
+

c2
s0

α − 1

(

ρ

ρ0

)α−1

− rΩArAφ

ur

]

= 0 , (5.21)

where the magnetic field components are again expressed in terms of their corresponding Alfvén
speed components, and the polytropic approximation was used to deal with the pressure gra-
dient term. This indicates that the quantity within the square brackets must be a constant2.
This is again a Bernoulli-type statement for the flow, expressing conservation of energy, and as
before we will denote the quantity in square brackets by E.

Obtaining a full solution (i.e., ur, uφ(r), etc.) is now a much more complicated procedure.
The starting point is the manipulation of eq. (5.3) into the form:

∂ur

∂r
=

(ur

r

) (u2
r − A2

r)(2c
2
s + u2

φ − GM/r) + 2uruφArAφ

(u2
r − A2

r)(ur − c2
s) − u2

rA
2
φ

, (5.22)

which involves some straightforward but tedious algebraic juggling. Now, that denominator
looks like trouble once again. It actually vanishes whenever the radial flow speed ur becomes
equal to the phase speed of either the slow or fast magnetosonic wave modes3, which in general
occurs at distinct radial distances denoted rs and rf in what follows. Denote now by N and D
the numerator and denominator on the RHS of eq. (5.22); to avoid divergence at rs or rf we
require that

N(rf , uf ) = 0 , (5.23)

D(rf , uf ) = 0 , (5.24)

N(rs, us) = 0 , (5.25)

D(rs, us) = 0 , (5.26)

complemented by the requirement that solutions running through the two critical points should
also be characterized by the same value of the Bernoulli constant4:

E(rf , uf ) = E(r0, ur0) , (5.27)

E(rs, us) = E(r0, ur0) . (5.28)

These expressions represent a set of six coupled nonlinear algebraic equations that must be
solved simultaneously for a “solution vector”

w = (ur0, uφ0, rs, us, rf , uf ) . (5.29)

Well, we can find reassurance in the fact that we have as many equations as we have unknowns,
but the fact remains that solving this nonlinear algebraic system is A BEAR of a root finding
problem. It can be turned into a (somewhat easier) optimization problem, by seeking solutions
that minimize the sum of the squared N ’s, D’s and E’s, but even then you better have a pretty
good initial guess for the solution vector to start a conjugate gradient or whatever, because the

2If eq. (5.21) doesn’t look at least a bit familiar, go back and read chapter 3, before proceeding, because
you’re already in trouble enough.

3Remember that these correspond to sound-like longitudinal waves for which the sum of gas and magnetic
pressures act as a restoring force; if both are in (out of) phase, the magnetosonic wave is fast (slow). If you
don’t remember, goto §1.8, do not pass GO, do not collect $200

4Hold on now, didn’t we say a little while back that the wind also had to go through the Alfvén point, to
avoid a blowup of the azimuthal velocity, as per eq. (5.19)? Well it turns out that in the Weber-Davis-type wind
models, any solution going through the slow and fast magnetosonic points (rs, us), (rf , uf ) automatically goes
through the Alfvén point (rA, urA). Skeptics should either get a life, or consult Goldreich & Julian 1970, ApJ,
160, 971.
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6-dimensional search space is very multimodal. But it can be done; and if you do it for the
“solar” input vector

z¯ = (1.1, 165., 0.01415, 3.495, 3.688) , (5.30)

you find a “solar” solution vector

w¯ = (0.0123, 0.0140, 6.60, 0.676, 29.5, 1.378) , (5.31)

where the flow speeds are expressed in fractions of the base sound speed cs0, and the critical
point radii in units of the reference radius r0. Reconstructing a full solution is a lengthy but
straightforward process which involves the following sequential steps:

1. Construct Ar(r, ur); this is a function of Br and ρ, Br is only a function of r as per
eq. (5.8), and ρ of ur and r via eq. (5.2).

2. With Ar known, construct uφ(r, ur) via eq. (5.19), evaluating the constant L at r0:

L = r0uφ0

[

1 −
(

Ar0

ur0

)2
]

+ Ωr2
0

(

Ar0

ur0

)2

. (5.32)

3. Bφ (and thus Aφ) can now be constructed using eq. (5.17).

This gives us all the needed pieces to express the Bernoulli constant E (cf. eq. (5.21)) in terms
of r and ur only. Setting then

E(r0, ur0) = E(r, ur) (5.33)

brings us back to a one-dimensional root finding problem, which we’ve handled before. Once
we have ur, ρ(r) follows immediately from eq. (5.2). Knowing Br/Br0 from eq. (5.8), uφ is
evaluated using eq. (5.19), and finally Aφ via eq. (5.17), AND THAT’S FINALLY IT!

The resulting solar solution is plotted on Figure 5.1, with some strategic numbers listed
in Table 5.3. The purely hydrodynamical components of the solution having a counterpart
in the unmagnetized, non-rotating solar wind solution obtained in §3.3, i.e. ur, ρ, and T (r),
look an awful lot similar to Parker’s solution. The notable difference is that the flow is no
longer purely radial but now has a non-vanishing φ-component (as measured by the flow’s pitch
angle φv ≡ atan(uφ/ur)), quite important near r0 but falling off rapidly with increasing radial
distance. Yet the value computed at Earth’s orbit is in agreement with in situ mesurements.
That’s certainly something worth celebrating.

Table 5.3
Weber-Davis solar wind solution

r ur [km s−1] N [106 m−3] T [K] φv [deg] φB [deg]

r0 2.0 108 1.5 × 106 48.7 -0.59

rs 115 37400 6.8 × 105 4.01 -3.95
rf 231 891 4.7 × 105 2.00 -15.7
r⊕ 319 17 3.1 × 105 0.53 -54.5
10 r⊕ 380 0.14 1.9 × 105 0.06 -81.0

Nonetheless, after all this work, it is almost disappointing how little our solar WD wind
solution differs from its non-rotating, unmagnetized counterpart of §3.3. This is due, to a large
extent, to the relatively low rotation rate of the Sun, and to its relatively low magnetic field
strength (refering here to the global-scale, diffuse coronal magnetic field, not that immediately
overlying sunspots and active regions). But in other parameter regimes the differences become
striking indeed. Consider for example the WD solution depicted on Figure 5.2; this corresponds
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88 CHAPTER 5. MAGNETIC DRIVING OF WINDS

Figure 5.1: The full solution for the WD wind model with solar-like input parameters. The top
panels shows the wind properties, with the slow magnetosonic point indicated by a triangle,
the Alfvén point by a solid dot, and the fast magnetosonic point by a diamond (here almost
coincident with the Alfvénic critical point). The bottom panel shows details of the force balance
in the wind.
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5.2. NUMERICAL MODELS OF ROTATING MHD WINDS 89

to a Sun-like star, still with a T0 = 1.5× 106 K corona and polytropic index α = 1.1 as before,
but now rotating at 25 times the solar angular velocity, and with a surface field strenth also
increased by a factor 25. The flow speed at large distances now exceeds the local sound speed
by nearly two orders of magnitude, meaning a Mach 100 flow! The azimuthal velocity uφ now
exceeds the radial flow speed inside the slow magnetosonic point, and remains comparable to
it out to the Alfvén point. These dramatic difference can be traced to the centrifugal and
magnetic contributions to the force balance (bottom panel). While the flow remains mostly
thermally-driven near the base of the corona, within a few r0 the centrifugal and magnetic
accelerations become comparable to the pressure gradient term, and completely dominate the
dynamics thereafter. You may verify that the asymptotic flow speed is now given by

lim
r→∞

≡ ur∞ '
(

Ω2r4
0B

2
r0

Ṁ

)1/3

, (5.34)

with Ṁ = 4πρ0r
2
0ur0 as in §3.3.

Figure 5.3 shows the variations with distance of the two contributions to angular momentum
loss in the WD wind solutions of Figs. 5.1 and 5.2. Note how the rapidly rotating, strongly
magnetized wind carries away a lot more angular momentum than in the solar solution. In
view of eq. (5.15) one may have expected a factor of 25 coming from the Ω dependency, but
the Alfvén point also moves outwards by a factor of nearly four (cf. Figs. 5.1 and 5.2, solid dots
on top panels). In fact, it is (relatively) easy to show that in the limit of weak centrifugal and
magnetic driving,

rA ' r2
0Br0

√

Ṁur∞

, (5.35)

as opposed to

rA '
√

3

2

ur∞

Ω
(5.36)

for the rapidly rotating, strongly magnetized wind solution of Fig. 5.2.

5.2 Numerical models of rotating MHD winds

The Weber-Davis solution of §5.1 is applicable only in the equatorial plane; but could we not
“project” it on conical surface of decreasing opening angle to reconstruct an axisymmetric
solution in a full meridional [r, θ] plane? As you get to verify in Problem 5.3 below, this leads
to an unbalanced latitudinal gradient of magnetic pressure. Moreover, the monopolar magnetic
configuration of the Weber-Davis solution should cerainly be improved upon.

In obtaining fully two-dimensional Weber-Davis-like wind solutions there is no recourse
but a approach that is numerical from the onset. We will now look in to such numerical
solutions, computed a few years ago by R. Keppens and H. Goedbloed (see bibliography).
These solutions are particularly interesting because they are Weber-Davis-like in a number
of ways: steady (∂/∂t = 0), axisymmetric (∂/∂φ) and polytropic (α = 1.13), and computed
in the ideal MHD limit. The magnetic configuration they simulate is qualitatively similar to
the magnetostatic solution depicted on Fig. 4.2, in that in contains a closed-fieldline region
symetrically straddling the equator, and open fieldline regions over the poles. In addition to
the magnetic field strength and rotation parameter, a third parameter is now introduced to set
the latitudinal extent of the closed field region (often called “dead zone” because u must vanish
therein, due to the flux-freeezing constraint imposed by ideal MHD). The solutions are obtained
as a time-dependent relaxation problem, starting with a purely hydrodynamical rotating wind
solution, and a magnetic field patched up as a combination of a dipole for the closed region,
and split monopole for the open regions. The solution is then integrated forward in time until
a steady-state is attained.
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Figure 5.2: Similar to Fig. 5.1, but now for a solar-like star that is rapidly rotating (Ω = 25Ω¯)
and strongly magnetized (Br0 = 25Br0,¯), representative of a young solar-type star. Note how
the magnetic tension force is now the primary contributor to the wind’s acceleration at large
distances.
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Figure 5.3: Contributions to the total angular momentum carried away by the wind for the
two WD solutions depicted on Figs. 5.1 (left) and 5.2 (right). The solid line is the angular
momentum per unit mass, and the dashed line the torque density produced by magnetic tension
in the deformed magnetic field. The sum of these two contributions (dotted line), the total
specific angular momentum, is a constant of motion, as per eq. (5.15).

The top panel on Figure 5.4 shows a solar-like solution, with a 2G polar field strength and
a closed region extending ±30◦ on either side of the equator. Note first how the wind outflow
is directed along the magnetic fieldlines, as it must in a steady state as per the flux-freezing
constraint characterizing ideal MHD. At mid-latitude, the solution shows many similarities to
the Weber-Davis solution of Fig. 5.1. The slow magnetosonic surface is well within the Alfvén
critical surface, and the latter very nearly coincide with the fast magnetosonic surface (these
were all critical points in the 1D WD solution of §5.1, cf. the triangle, diamond and solid dot on
Fig. 5.1). At low latitudes, the effect of the closed field region alters the flow quite significantly,
although beyond 10 R¯ or so the wind speed is comparable to that at high latitudes. The wind
density, however, is larger by about a factor of three. Close examination of the Figure will
reveal that the outflow speed has a poleward-directed latitudinal component, which turns out
to be very well fitted by a sin(2θ) dependency at heights much larger than the radial extent of
the closed field region.

As can be seen on the bottom panel of Figure 5.4, doubling the field strength and latitudinal
extent of the magnetically closed region leaves these basic solution characteristics unaltered.
Not surprisingly, away from the closed region the solution is characterized by a greater degree of
spherical symmetry, which is what is to be expected in a split-monopole configuration where the
field is better able to channel the flow without being distorted. Indeed, the shape of poloidal
fieldlines (solid lines) show a striking resemblance to those characterizing the magnetostatic
solutions considered in §4.3 (cf. Fig. 4.2).

Figure 5.5 depicts yet another wind solution, this time for a sun rotating at 20 times
its present rate, but maintaining the same surface magnetic field configuration and strength
as on Fig. 5.4A. The impact of this high rotation rate on the wind is substantial in many
ways. As on the Weber-Davis solution of Fig. 5.2, the fast magnetosonic surface is now well-
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Figure 5.4: Axisymmetric 2D MHD model of the solar wind. The flow field is indicated as
vector, the poloidal magnetic fieldlines by solid lines, and the gray scale encodes the strength of
the toroidal magnetic component. The dotted, dashed and thick solid lines are respectively the
slow and fast magnetosonic surfaces, and the Alfvén surface. The top solution is for present-day
solar parameters, while the bottom solution pertains to a strongly magnetized sun (see text).
Graphics courtesy of Rony Keppens (U. Leuven).
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Figure 5.5: Similar to Fig. 5.4A, but for a sun rotating at 20 times its present rotation rate.
The grayscale on the left now encodes the density, rather then the toroidal field strength. Note
the poleward collimation of the wind into a polar jet, and the density excess in the equatorial
plane. Graphics courtesy of Rony Keppens (U. Leuven).

separated from the Alfvén surface. Rotation leading to tighter winding of the magnetic field,
the latitudinal magnetic pressure gradient associated with the strong toroidal field component
leads to a collimation of the wind towards the poles. In addition, efficient magnetocentrifugal
driving at low latitudes leads to enhanced densities in and near the equatorial plane.

5.3 Stellar spin-down

Even though it is primarily thermally-driven, the solar-like WD solution of Fig. 5.1 is losing
far more angular momentum than in the absence of magnetic fields, as per eq. (5.20). This,
it turns out, goes a long way in explaining the very peculiar distribution of observed stellar
rotational velocities on the main-sequence.

5.3.1 Stellar rotation: the observational picture

The rotation of a star other than the Sun as first measured serendipitously at the beginning
of this century by F. Schlesinger, in the brighter component of the eclipsing binary δLibrae at
occultation. Subsequent determinations of rotation rates for single stars relied on the Doppler
broadening of spectral lines, as originally suggested by W.W. Abney in 1877, but first succesfully
executed much later, in 1929, by C.T. Elvey. For a single star, this projected rotational velocity
(v sin i) yields only a lower limit on the true equatorial rotation rate, as the angle i between
the line of sight and the star’s rotation axis is generally unknown.
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As increasingly sensitive spectroscopic determinations of v sin i for a growing sample of
single stars accumulated, the existence of systematic differences between the average rotation
rates for late-type versus early-type stars was soon noted. Figure 5.6 below is a reproduction
of a diagram put together by R. Kraft in 1967, showing the distribution in a HR diagram
of v sin i’s measured in a sample of field stars. As one runs down the main sequence, there
occurs a sharp drop in v sin i starting around spectral type F5. Slow rotation is the rule on
the cool side of this so-called rotational dividing line, while on the hot side rapid rotation is
common. Kraft went on to show that under the assumption of solid-body rotation, in the
interval 1.5 ∼< M/M¯ ∼< 20 observed rotation rates are consistent with a power-law dependence
betwen stellar angular momentum (J) and mass (M) of the form

J ∝ M1.57 . (5.37)

It was already understood then that the decrease in the moment of inertia of stars associated
with their contraction towards the main-sequence could easily account for ZAMS equatorial
rotational velocities of a few hundreds of kilometers per second, so that the anomaly in Kraft’s
diagram was in fact with the slowly-rotating low-mass stars. Rather than some strongly mass-
dependent process (such as proto-early-type-stars diverting a substantial fraction of their spin
angular momentum into planetary orbital angular momentum, for example), the favored inter-
pretation back then was already that late-type stars somehow lose angular momentum on the
main-sequence, i.e., they undergo spin-down.

Spectacular evidence for such main-sequence spin-down was provided in a short, now clas-
sical 1972 paper by Andy Skumanich5. Figure 5.7, reproduced from this paper, illustrate the
gradual decrease of average rotation rates for late-type stars in a few (young) open clusters
of known ages. Skumanich also noted a similar decrease of emission in the core of the Ca H
and K lines, which as you CERTAINLY remember from chapter 2 is a good proxy of magnetic
activity. This established a first empirical, quantitative link between rotation and magnetic
activity, to which we shall return in due time.

Later observations focusing on young open clusters such as αPersei and the Pleiades have
revealed that main-sequence spin-down for late-type stars is very swift, with the bulk of it
completed in the first few 100Myr after arrival on the ZAMS.

5.3.2 The Skumanich square-root law

In case you haven’t seen it coming yet, our WD wind models provide us with some of the key
physical pieces required to understand main-sequence spin-down. Towards this goal, the most
important result obtained in §5.1 is eq. (5.20), stating that the total angular momentum per
unit mass (L) carried away by the wind is equal to that which would be carried away by an
unmagnetized wind remaining in a state of strict co-rotation out to the Alfvén radius rA:

L = Ωr2
A . (5.38)

To obtain the net angular momentum loss, we just need to multiply L by the wind’s mass flux.
However, eq. (5.38) holds only in the equatorial plane, where the WD solution is computed. We
need to construct an equivalent expression for the whole sphere, which is not simply 4πΩr2

A.
Remember that what matters for angular momentum extraction is the component of the flow
moving away perpendicularly to the rotation axis. The WD model can be “stretched” to the
whole sphere by assuming that a whole spherical shell is co-rotating out to rA; this means
replacing eq. (5.38) by:

Lsph =
2

3
Ωr2

A , (5.39)

5Still today affectionately know to his HAO colleagues as Doctor Slamdunk
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Figure 5.6: Distribution of projected rotational velocities (v sin i) for main-sequence stars,
plotted in an observational HR diagram. Luminosity increases vertically upwards, and effective
temperature horizontally leftward. Astronomical spectral types are listed along the upper axis.
Solid lines are stellar evolutionay tracks, labeled according to mass in solar units. These tracks,
particularly for M/M¯ ∼> 1.2, are now somewhat obsolete. Diagram reproduced from Kraft, R.
1967, ApJ, 150, 551 (Figure 1, p. 558).
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Figure 5.7: Main-sequence temporal evolution of rotation rates, Calcium emission and Lithium
abundance in solar-type stars. Diagram reproduced from Skumanich, A. 1972, ApJ, 171, 565
(Figure 1, p. 566).

where the factor 2/3 simply arises from the moment of inertia. The angular momentum loss
rate then follows directly:

dJ

dt
= Ṁ × Lsph = −4πρAr2

AurA

(

2

3
Ωr2

A

)

. (5.40)

Now, at the Alfvén radius we have urA = ArA, with B2
rA = 4πρAA2

rA. Moreover, conservation
of magnetic flux implies r2

0Br0 = r2
ABrA. Putting all this into eq. (5.40) leads to

dJ

dt
= Ṁ × Lsph = −2

3
B2

r0r
4
0ΩA−1

rA . (5.41)

Now, for rotating magnetized winds that are mostly thermally driven (as on Fig. 5.1), we
have ArA ∼ cs to within a factor of two or so. If the coronal temperature is held fixed, this
means that the angular momentum loss rate is only a function of the rotation rate and surface
magnetic field strength. Both are known for the Sun, but how about the “young Sun” of 4.5Gyr
ago? If stars of one solar mass in αPersei or the Pleiades are representative of the ZAMS Sun,
then its rotation could have been anywhere between 5 and 100 times its present value. How
about its surface field strength? In later chapters of these notes we will encounter various
lines of arguments, both observational and theoretical, indicating that it should increase with
increasing rotation rate. Some of the dynamo models we will construct in chapter 10 would
“predict” Br0 ∝ Ω. If this is the case, and for a fixed moment of inertia on the main-sequence
(a very good approximation, for a change...), then eq. (5.40) would lead to

dΩ

dt
∝ Ω3 , (5.42)
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which readily integrates to

1

Ω2(t)
− 1

Ω2(t0)
∝ t − t0 , (5.43)

where t0 is the time of arrival on the ZAMS (or shortly thereabouts). In the asymptotic limit
t À t0, Ω ¿ Ω(t0), this becomes

Ω(t) ∝ t−1/2 , (5.44)

which, how about that, is precisely the power-law relationship inferred observationally by Sku-
manich (cf. Fig. 5.7). Looks like we’re in business!

5.3.3 The spindown of late-type stars

The missing proportionality constant in eq. (5.44) is of course readily computed from our
Weber-Davis solution; in fact we did nearly all the work already in arriving at eq. (5.41), the
missing element being the expression of stellar angular momentum in terms of a star’s angular
velocity distribution. If, for the time being, we assume that stars rotate as rigid bodies, then
we have

J = I∗Ω∗ , (5.45)

and dimensional analysis yields the following expression for the spin-down timescale:

τsp =
1

I∗Ω∗

(

dJ

dt

)−1

. (5.46)

All we are missing are the stellar moments of inertia, which are readily computed if we have
stellar structural models on hand. The third column of Table 5.4 list the resulting spin-down
timecales, for ZAMS stellar models between 0.8 and 1.2 M¯. In all cases it as assumed that
the ZAMS rotation period is one day, and the radial surface magnetic field strength is 50G,
reasonable numbers to the extent we can tell from observations and models of stellar formation
and pre-main-sequence evolution.

Table 5.4
ZAMS spindown timescales for late-type stars6

M/M¯ R/R¯ I∗[10
53 ] τJ,∗ [Myr] IE [1053 ] τJ,E [Myr]

0.8 0.703 4.41 810 1.025 188

0.9 0.784 5.50 604 0.979 107
1.0 0.882 6.75 396 0.833 48.9
1.2 1.131 9.02 133 0.139 2.05

The spin-down timescales are of order 108 and 109 yr, which is nicely smaller than the solar
age, but a factor of ten longer than the spin-down timecales inferred from v sin i determinations
in young stellar clusters. Observations do offer an interesting hint, in that after arriving on
the main-sequence, more massive stars seem to spin down faster than less massive stars, even
though their moment of inertia is larger (second column of Table 5.4).

The favored escape from this quandary is to assume that the torque applied by the wind
to the photospheric layers is not transmitted throughout the whole star, but (at first anyway)
only to its convective envelope, where the vigorous turbulent thermally-driven convective fluid
motions are expected to redistribute momentum on the convective turnover time, of the order
of a month for convection in solar-type stars. Now, the thickness of the convection decreases

6Stellar structural models courtesy of S. Vanderberg, U. Victoria.
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rapidly as mass increases, leading to a decrease of the moment of inertia of main-sequence
convective envelope with increasing mass (see fifth column in 5.4. This then leads to spin-dowm
times (last column in Table 5.4) that (1) are in much better agreement with observationally-
inferred values (2) decrease with increasing mass. It all fits together!

In late type stars spun down by a wind-mediated surface torque, many physical processes can
exchange angular momentum between the convective envelope and underlying radiative core.
Indeed, helioseismology has shown that the angular velocity of the solar core is comparable
to that of its convective envelope, implying that whatever dynamical coupling is taking place
between the core and envelope acts on a timescale much smaller than the solar age (but still
significantly longer that the ZAMS spindown timescales, otherwise we’re in trouble again). It
turns out that internal magnetic fields can do the trick, and remain at this writing the most
physically viable explanation for the rotation rate of the solar radiative core. To substantiate
this claim would take us too deep inside the sun, but references listed in the bibliography to
this chapter provide good entry points into this area of research. Time to get back up into the
wind and see what we can do about those famous high-speed streams...

5.4 Wind driving by Alfvén waves

In the solar photosphere, the plasma-β is high enough that magnetic fieldlines get continu-
ously displaced by convective fluid motions. Vertical displacements will generate magnetosonic
waves, which are expected to shock and dissipate before they reach the corona. Horizontal
displacements of magnetic fieldlines, on the other hand, will propagate upwards into the corona
in the form of Alfvén waves. These, it turns out, can have a significant dynamical impact on
wind-like outflows, and this is what we’ll look into in this section.

The physical/geometrical setup we consider here closely resembles that of the Weber-Davis
solution of §5.1, i.e., working in spherical polar coordinates we solve the steady (∂/∂t = 0)
axisymmetric (∂/∂φ = 0) wind equations in the equatorial plane of the star, assuming a radial
reference magnetic field. The two important differences are: (1) rotation is neglected, and (2)
we consider an isothermal, rather than polytropic wind, otherwise the mathematics really get
too messy.

The key in formulating the wave-wind model is to assume that the total flow and magnetic
field can be written as

u(r, t) = ur(r)êr + δu(r, t)êφ , (5.47)

B(r, t) = Br(r)êr + δB(r, t)êφ , (5.48)

where ur, Br define the large-scale wind outflow, and the two leftmost terms correspond to a
transverse wave travelling in the r-direction and “oscillating” in the φ-direction; that latter
choice is entirely arbitrary, but will facilitate the mathematical developments to follow. As
with any wave, the time averages of the local wave contribution to the flow and field vanish:

〈δu〉 = 0 , 〈δB〉 = 0 . (5.49)

5.4.1 The magnetic force exerted by Alfvén waves

Looking at the momentum equation, you should be able to convince yourself that the contri-
bution to the r-component of the force per unit volume (fw) associated with the wave is given
by:

fw =

(

ρ(δu · ∇)δu +
1

µ0
(∇× δB) × δB

)

r

. (5.50)
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For the assumptions embodied in eqs. (5.47)–(5.49), time averaging of this expression over a
wave period yields

〈fw〉 =
ρ

〈

δu2
〉

r
−

〈

δB2
〉

µ0r
− d

dr

(

〈

δB2
〉

2µ0

)

. (5.51)

There are thus two contribution to the wave-induced force: a centrifugal force associated with
the wave displacement in the φ-direction (first term on RHS of eq. (5.51), and a Lorentz force
that can be broken into tension and magnetic pressure gradient contributions7.

But how to we compute δu and δB? Simply by solving the φ-components of the momentum
and induction equations, which here reduce to

∂

∂t
δur +

u

r

∂

∂r
(rδu) =

Br

µ0ρr

∂

∂r
(rδB) , (5.52)

∂

∂t
δB =

1

r

∂

∂r
(r(Brδu − urδB)) , (5.53)

with Br and ur given by the “wind” part of the governing equation; these take on the usual
form for a steady, spherically-symmetric outflow (cf. §3.3), except that now the isothermality
assumption leads to

ur
dur

dr
= −a2

r
− GM

r2
+

〈fw〉
ρ

, (5.54)

where a =
√

kT/m is the isothermal sound speed for a perfect gas. As in the Weber-Davis
case, the constraints of mass and magnetic flux conservation lead to

ρ(r)

ρ0
=

(r0

r

)2
(

ur0

ur

)

, (5.55)

Br(r)

Br0
=

(r0

r

)2

. (5.56)

So, in principle all is well: with Br(r) known from (5.56) and provided all needed physical
quantities are specified at the coronal base r0, we have here a set of four coupled equations
(namely (5.52), (5.53), (5.54), and (5.55)) for the four unknown functionals ur, ρ, δu and δB.
However, the strong nonlinear coupling mediated by eq. (5.51) is not easy to deal with in
general, so we need to introduce an additional approximation into the model.

5.4.2 The Wave force in the WKB approximation

The heart of the so-called WKB approximation is to assume that the wavelength λ of the
propagating Alfvén wave is much smaller than the length scale ` over which the background
flow is varying. In such cases one can expand the wave amplitudes δu and δB as

δu(r, t) =
[

δu1(r) + εδu2(r) + ε2δu3(r) + ...
]

exp(i[ψ(r) − ωt]) (5.57)

with a similar expression characterizing δB, ε = λ/` = 2π/k` is a small parameter, and
k(r) = dψ/dr is the radius-dependent wavenumber. Inserting these expression into eqs. (5.52)—
(5.53), one then equates all terms of similar power in ε. To lowest order this yields

ω = k(ur + Ar) , (5.58)

7As you get to verify in problem 5.1 below, the spherical geometry is essential here in producing a non-zero
time-averaged wave force.

phy6795v08.tex, September 24, 2008 Paul Charbonneau, Université de Montréal
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δu1 = ± δB√
4πρ

, (5.59)

with the minus sign retained in what follows, since it corresponds to the outward propagating
waves. Substituting these expression in the first order equations leads to a differential equation
for δB1, which (it can be shown...) integrates to

δB(r) = δB0

(

MA0

MA

)1/2 (

1 + MA0

1 + MA

)1/2

, (5.60)

where

MA ≡ ur

Ar
= MA0

(

ρ0

ρ

)1/2

(5.61)

is the Alfvénic Mach Number, the Alfvén speed Ar here being the component associated
with the radial magnetic field component, and the subscript “1” has been dropped for clarity.
The corresponding expression for δu(r) follows directly from eq. (5.59). Substituting all this
back into eq. (5.51) for the time-averaged wave force, one eventually arrives at

〈fw〉 = − d

dr

(

〈

δB2
〉

8π

)

=
〈εw〉
4

(

1 + 3MA

1 + MA

) (

2

r
+

1

ur

dur

dr

)

(5.62)

where

〈εw〉 =

〈

δB2
〉

4π
=

〈

δB2
0

〉

4π

(

MA0

MA

)(

1 + MA0

1 + MA

)2

(5.63)

is the wave energy density. The RHS of eqs. (5.62)—(5.63) now involve only properties of the
large-scale outflow, so in principle we can proceed with confidence.

5.4.3 Obtaining wind solutions

Getting a complete wind solution once again is done numerically. Substituting the expression
for the wave force obtained above into the r-component of the momentum equation (5.54) leads,
after a fair bit of algebraic juggling, to

[

u2
r − a2 − 〈εw〉

4ρ

(

1 + 3MA

1 + MA

)]

r

ur

dur

dr
=

[

a2 − GM

r
+

〈εw〉
2ρ

(

1 + 3MA

1 + MA

)]

. (5.64)

This imposing equation is best treated as a initial value problem for ur, of the general form:

dur

dr
= g(r) . (5.65)

Assuming a starting guess for the base flow speed ur0 (for example that of the pure isothermal
solution), eq. (5.64) is integrated forward in r using some suitable ODE integration scheme
(see Appendix ??). The problem is that the solution must go through a sonic critical point. If
the starting guess is wrong, as one integrates forward in r there will come a point where the
solution will diverge (infinite acceleration). The starting guess must then be adjusted upwards
or downwards depending on how divergence occurs, and the process repeated until one finds a
solution that shoots smoothly through the critical point and sails away ever on and on until you
reach a value of r that is a good enough approximation of infinity for practical purpose (we’ll
settle for 100 r0 in what follows). Then it is a simple matter to reconstruct ρ via eq. (5.55),
then δB via (5.60), and finally δu via (5.59).
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5.4.4 Some representative solar solutions

We first consider the effect of Alfvén wave driving on solar-type outflows. Accordingly, the
reference parameters for our reference isothermal solution (without waves) are chosen to produce
wind characteristics at 1AU commensurate with low-speed streams; we thus set T0 = 106 K
leading to an isothermal sound speed a = 129 km s−1 and N = 2 × 1013 cm−3. This flow has a
base speed ur0 = 1.19 km s−1 becomes supersonic at rs/r0 = 4.6, and reaches ' 450 km s−1 at
1AU. We set the base radial magnetic field at Br0 = 10−4 T, and set the size of the magnetic
pertubation at the base via the parameter

α =

(

δB0

B0

)2

, (5.66)

measuring the base ratio of magnetic energy density in the wave to that in the background
magnetic field.

Wind profiles are shown on Fig. 5.8 for three values of the parameter α, with the correspond-
ing profiles of wave amplitudes plotted on Fig. 5.9. Several features of these wind solutions
are noteworthy. The wind speed is an increasing function of Alfvén wave amplitude (not sur-
prisingly), but the increase is proportionaly greater at the base of the wind (from 4.85km s−1

at α = 0.01 up to 37.35km s−1 at α = 0.1) as compared to the wind speeds at large distances
(from 888km s−1 to 1005km s−1 at 100 r0). As mentioned in the preceding chapter, this behav-
ior is characteristic of situations where additional momentum occurs primarily within the sonic
point, located at rA/r0 = 13.53, 8.54 and 4.85 for α = 0.01, 0.03 and 0.1, respectively. The
wave amplitude decrease rapidly with distance, reflecting the 1/r2 behavior of Br but also the
fact that wave energy is being transfered to the wind. The increase of

〈

δu2
〉

in the first ten r0

or so is a direct reflection of the rapid decrease of the density with r. This causes the inertia
of the fluid to decrease faster than the wave’s restoring force, leading to an increase in

〈

δu2
〉

even though
〈

δB2
〉

falls off rapidly (cf. eq. 5.59). Indeed it can be easily shown that in the sub-

Alfvénic portion of the wind the wave amplitude scale as
〈

δu2
〉1/2 ∼ ρ1/4 and

〈

δB2
〉1/2 ∼ ρ−1/4

while in the superAlfvénic portion of the wind, where the Alfv’én speed is nearly constant, the

amplitudes scale as
〈

δu2
〉1/2 ∼ r−1/2 and

〈

δB2
〉1/2 ∼ r−3/2.

Figure 5.10 depicts details of the force balance in the α = 0.01 and 0.1 solutions. As
with the Parker wind solution considered in §3.3, near the base the flow is in near-hydrostatic
equilibrium, with the Alfvén wave force contributing little even at α = 0.1. However the
wave force rapidly starts to dominate the dynamics at larger distances, exceeding the thermal
pressure force beyond the Alfvén point.

You shouldn’t be too impressed by the ∼ 1000 km s−1 asymptotic speeds of our wave-
enhanced wind solutions. Even though this is largely sufficient to account for high-speed
streams, in fact the isothermality assumptions guarantees that the asymptotic flow speed tends
to... infinity! (Haven’t you done Problem 3.7 already?). What is noteworthy is that beyond the
sonic point, the wind solution with WKB Alfvén waves has a flow speed a factor of about two
larger than the reference wave-free isothermal solution, which is the speedup factor suggested
by Table 3.1. And this results, it turns out, does carry over to polytropic version of the model.

5.4.5 Wave-driven winds

There many classes of non-solar late-type stars that show evidence for wind-like outflows,
most notably giants and supergiants of spectral type K and later, yet their inferred coronal
temperatures are too low for sustaining a (mostly) thermally-driven wind. Wind acceleration
via collisional coupling to dust grains propelled by radiative pressure is a possibility, but the
efficiency of this mechanism depends a lot on the details of grain formation and coupling to
the gas; at the present time this appears a viable mechanism only for the coolest supergiants.
With all but the coolest of these stars showing evidence for magnetic activity, wind driving
through energy deposition by MHD waves is certainly another option. Dissipation of acoustic
and magnetoacoustic waves has been shown able to produce chromospheric-type heating, but
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Figure 5.8: Radial profiles of the flow and Alfvén speed (here denoted uA) for wave-driven
isothermal wind models in the WKB approximation. The three solutions depicted here are
obtained for three distinct values of the forcing amplitude parameter α = (δB0/B0)

2, as labeled.
The dashed curve is the flow profile for an equivalent isothermal solution without any wave
driving. Reproduced from the MacGregor & Charbonneau 1994 book chapter cited in the
bibliography.

in itself most probably cannot drive substantial winds. This pretty much leaves Alfvén wave
driving as the most promising candidate. The references given the bibliography should provide
good entry points in this vast literature.

All the results discussed so far are predicated on the use of the WKD approximation in
computing the force exterted by the Alfvén waves on the flow. This is expected to be a good
approximation provided the wave period is much shorter than the advective transit time on
the wind over a distance over which background properties of the flow (in particular the Alfvén
speed) vary significantly. For the solar-type solutions considered in §5.4.4, it can be verified
that waves with periods larger than about 10 minutes will violate the WKB constraints near
the base of the flow, where the gradient in Alfvén speed is substantial (cf. Fig. 5.8). Now, ten
minutes is about the turnover time for solar photospheric granules, so wave power in this period
range may well be significant. It turns out that relaxing the WKB approximation has little
impact on solar-type solutions, but large differences do materialize in wind models where the
wave force is the primarily driver. If you wish to look deeper into this aspect of the problem,
see the references listed in the bibliography to this section.

Paul Charbonneau, Université de Montréal phy6795v08.tex, September 24, 2008



5.4. WIND DRIVING BY ALFVÉN WAVES 103

Figure 5.9: Time averaged wave velocity and magnetic amplitudes as a function of r/r0, for
the solutions of Fig. 5.8. In all cases amplitudes are normalized to their value at the reference
radius r0 On each panel the solid curve is the sum of the wave and thermal pressure gradient
accelerations. Reproduced from the MacGregor & Charbonneau 1994 book chapter cited in the
bibliography.

Problems:

1. Repeat the derivation of 〈fw〉 for a homogeneous cartesian flow, i.e., set

u(x, t) = u0êx + δu(x, t)êz ,

B(x, t) = B0êx + δB(x, t)êz .

2. Work out the missing mathematical steps leading to eq. (5.19).

3. Make the (bold) assumption that the Weber-Davis solution obtained in §5.1 remains
valid outside of the equatorial plane. Demonstrate that if this is the case, there exists
an unbalanced force term in the θ-component of the momentum equation. Discuss in
qualitative terms (not actual calculations, unless you’re really an eager beaver...) how
the wind solution would be altered.

4. Assuming that stars arrive on the zero-age main-sequence in state of solid-body rotation,
calculate their subsequent rotational evolution on the main-sequence. Plot Ω as a func-
tion of time, for stars of 0.8 and 1.2 M¯, and ZAMS rotation rates of 200, 100, 50 and
10 km s−1, under the following two assumptions regarding internal angular momentum
disrtibution:
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Figure 5.10: Force balance in the (A) α = 0.01 and (B) α = 0.1 solutions of Figs. 5.8–5.9. On
each panel the solid curve is the sum of the wave and thermal pressure gradient accelerations.
Reproduced from the MacGregor & Charbonneau 1994 book chapter cited in the bibliography.
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(a) The stars rotate as rigid bodies throughout main-sequence evolution

(b) Only the outer convective envelope is spun-down by the wind-mediated torque.

Your starting point is eq. (5.41), with the additional “dynamo” assumption Br0 ∝ Ω
already encountered in deriving Skumanich’s square root law, and the moment of inertia
data listed in Table 5.4. How does the assumption made regarding internal angular
momentum redistribution affect the spreads in rotation rates at age 100Myr? 1Gyr?

5. Work out the missing mathematical steps leading to eq. (5.64).
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