
Part II

Magnetized stellar winds

phy6795v08.tex, September 17, 2008 53 Paul Charbonneau, Université de Montréal





Chapter 3

The solar wind

A fool sees not the same tree that a wise man sees

No bird soars too high if he soars with his own wings

If the fool would persist in his folly he would become wise

What is now proved was once only imagin’d

William Blake
The Marriage of Heaven and Hell (1793)

Like rotation and magnetic fields, mass loss is rather ubiquitous across the Herztsprung-
Russell diagram. Some stars lose mass in an episodic, often spectacular manner, but most do
so more calmly, via a wind emanating from their surface. Many different physical mechanisms
can power a wind, and guess what, magnetic fields often plays an important part in many
of them, as we will explore in the following two chapters. But first we need to establish our
baseline wind theory, pertaining to unmagnetized, thermally-driven winds, and towards this
goal the Sun is the best starting point, because its wind can be sampled and measured in situ

by Earth-orbiting satellites.

3.1 Solar and stellar coronae and winds

3.1.1 The solar corona

The story of the solar wind is intimately tied to that of the solar corona. The corona being
spectacularly visible at times of solar eclipses (see Figure 3.1), we can safely assume that it was
first observed a very long time ago by some hairy Neanderthal with smelly armpits and ques-
tionable table manners. Its first unambiguous description (of the corona, not the Neanderthal)
is due to the Byzantine chronicler Leo Diaconus (ca. 950-994) who, after witnessing the 22
December 968 solar eclipse, reports:

”...at the fourth hour of the day ... darkness covered the Earth and all the brightest
stars shone forth. And is was possible to see the disk of the Sun, dull and unlit,
and a dim and feeble glow like a narrow band shining in a circle around the edge of
the disk.”.

Only by the early decades of the eighteenth century had most astronomers finally convinced
themselves that the corona was part of the sun, rather than the moon. The actual name
“corona” was coined even later, in 1806, by the Spanish astronomer José Joachin de Ferrer. By
the nineteenth century it had become a rite of passage for solar physicists to travel to faraway
corners of the Earth to observe solar eclipses, a tradition still very much alive today.

Despite rapid advances in spectroscopic and photographic techniques in the second half of
the nineteenth century, the physical nature of the corona remained a mystery until the devel-
opment of the coronagraph by Bernard Lyot (1897-1952) in the early 1930’s allowed systematic
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56 CHAPTER 3. THE SOLAR WIND

Figure 3.1: Total solar eclipse of 16 February 1980, essentially at the maximum phase of the
solar activity cycle. Coronal brightness is due to Thompson scattering of sunlight by free
electrons, so that on such images brightness is proportional to plasma density. The elongated
spiky structures are called helmet streamers, and correspond to regions of closed magnetic fields
trapping plasma, eventually pulled open and stretched radially by the solar wind a solar radius
or so above the photosphere. Image courtesy of A. Stanger, High Altitude Observatory.

studies of the corona outside eclipses. By the late 1930’s, mostly through the laboratory work of
of Walter Grotrian (1890-1954) and Bengt Edlén (1906-1993), the solar corona was recognized
as being composed of very hot (1–2×106 K) ionized gas. The key in reaching that conclusion
was the realization that many of the hitherto unidentified lines seen in coronal spectra were not
due to chemical elements unknown on Earth, as believed for a while in the nineteenth century,
but rather belonged to high ionization stages of common elements, notably Iron and Nickel.
The mechanism(s) through which the corona can be heated to such high temperatures remains,
to this day, one of the grand unsolved problems of solar physics. Moreover, like if a few million
degrees K wasn’t hot enough already, the corona harbors even hotter plasma, at temperatures
sometimes reaching 10 million degrees during transient events called flares (see Fig. 2.5).

The peculiar flame-like structures so prominently visible on eclipse photographs such as
Fig. 3.1, called helmet streamers, are produced by large-scale loop-like magnetic structures
emanating from the solar photosphere and trapping the ionized coronal plasma (flux-freezing,
remember...). This leads to overdensities in magnetically closed regions of the corona, leading
to enhanced Thompson scattering of sunlight, and thus enhanced brightness. The shape of the
solar corona varies according to the distribution of photospheric magnetic fields (viz. Fig. 2.4).
This can eventually break the dynamical equilibrium of helmet streamers, and lead to coronal
mass ejections (see Fig. 2.6).

The take-home message, at this point, is that there is a hot corona out there, and that it is
structured at all spatial scales by the solar magnetic field.

3.1.2 The solar wind

The existence of an outflow of matter from the Sun was suggested at the end of the nineteenth
century by the Norwegian physicist Kristian Birkeland (1867-1917), as an explanation for geo-
magnetic storms (in particular auroral emission) and zodiacal light. Indeed, by 1899 Birkeland
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3.1. SOLAR AND STELLAR CORONAE AND WINDS 57

had convinced himself (but unfortunately not a great many others) that interplanetary space is
filled with electrically charged particles streaming away from the Sun. The idea did not catch
on at the time, but was brought back to the fore half a century later by Ludwig Biermann
(1907-1986), as an explanation for the different orientations of neutral and ionized components
of cometary tails.

The first quantitative, physical model of what we now call the solar wind was proposed
in 1958 by Eugene Parker, and led to the surprising prediction that the solar wind should
have a supersonic speed at the Earth’s orbit. This was spectacularly confirmed by the first
in situ measurements carried out by the Earth-orbiting satellites Lunik 2 (1960), Explorer 10
(1961), and Mariner 2 (1962). Later generations of space probes have now measured solar wind
properties out to the far reaches of the solar system (in particular Pioneer and Voyager), as
well as close to the Sun and away from the ecliptic plane (Ulysses).

The physical properties of the solar wind vary significantly on a broad range of timescales;
as one can verify from the data summarized in the first columns of Table 3.1 below, at 1
AU fluctuations about the mean are quite large. These large fluctuations are not due to
measurements errors. Examination of the distributions of deviations about the mean yields
not a Gaussian, but rather a bimodal distributions, indicating that the solar wind exists in two
distinct modes, dubbed “low-speed streams” and “high-speed streams”. Separating the data
in two groups then leads to much smaller deviations about the mean (rightmost columns on
Table 3.1). It is now understood that low-speed streams originate from regions of the corona
where the magnetic field is mostly closed (two footpoints on the photosphere), while high-speed
streams originate from coronal holes, where the magnetic field is “open”, i.e., fieldlines have
one footpoint on the photosphere and extend from the solar surface all the way out into the
solar system. This was spectacularly demonstrated by the measurements carried out by the
space probe Ulysses near solar activity minimum, when the solar corona assumes a dipolar
shape, with large coronal holes spanning the high heliospheric latitudes in both the Northern
and Southern solar hemispheres (see Figure 3.2).

Table 3.1
Observed properties of the solar wind in the ecliptic plane at 1 AU

Quantity Average Low-speed High-speed

N [106 m−3] 8.7±6.6 (76%) 11.9±4.5 (38%) 3.9±0.6 (15%)

u [km s−1] 468±116 (25%) 327±15 (5%) 702±32 (5%)
Nu [1012 m−2s−1] 3.8±2.4 (63%) 3.9±1.5 (38%) 2.7±0.4 (15%)
φv (degrees) −0.6±2.6 (430%) +1.6±1.5 (94%) −1.3±0.4 (31%)
Tp (105 K) 1.2±0.9 (75%) 0.34±0.15 (44%) 2.3±0.3 (13%)
Te (105 K) 1.4±0.4 (29%) 1.3±0.3 (20%) 1.0±0.1 (8%)
Tα (105 K) 5.8±5.0 (86%) 1.1±0.8 (68%) 14.2±3.0 (21%)

The last three lines of Table 3.1 list the (kinetic) temperatures inferred for protons, electrons
and He nucleii, the most abundant constituents in the solar wind plasma. These are kinetic
temperatures, obtained basically by measuring the randomly oriented component v of particle
speeds and setting

kT =
1

2
mv2 . (3.1)

The fact that kinetic temperatures turn out considerably different for protons and Helium
nucleii indicates that the plasma is no longer collision-dominated, meaning we are approaching
the limit of our fluid approximation.

On very short timescales (seconds to minutes), there exist a wide spectrum of fluctuations in
all wind variables (flow speed, magnetic field strength and orientation, density, etc.). Based on
the type of correlations determined between these various fluctuating variables, a good case can
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58 CHAPTER 3. THE SOLAR WIND

Figure 3.2: Image of the solar corona, on which is superposed a polar coordinate plot of the
solar wind speed as measured approximately at 1.5 AU by the space probe Ulysses. The colors
blue/red code the sign of the radial component of the magnetic field measured in the wind.
This coronal/wind configuration is typical of activity minimum conditions, with the large-scale
coronal magnetic field assuming a dipolar configuration, with a more or less axisymmetric
helmet streamer belt straddling the solar equator. The faster wind component emanates from
polar coronal holes, where magnetic fieldlines stretch directly out into interplanetary space.
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3.2. HYDROSTATIC CORONA MODEL 59

be made that they correspond to a superposition of various type of magnetic and magnetosonic
waves (briefly discussed in §1.5). The only type of waves for which a good case can be made
for a solar origin are Alfvén waves, and these in fact can have a significant influence on wind
dynamics, a topic to be revisited in due time. This is because numerous physical processes
could generate waves in the expanding wind itself, and in the low density environment of the
expanding solar wind, wave-particles interactions are guaranteed to alter the properties of any
outgoing wave superimposed on the background flow. On the other hand, the power-law form of
the fluctuation spectra is suggestive of turbulence, and an equally good case can be made that
MHD turbulence should develop in the solar wind, even if the wind outflow is purely laminar
at the coronal base.

3.2 Hydrostatic Corona Model

Since it is an observational fact that there is a hot corona out there, our task is now to construct
a model allowing us to interpret these observations in a quantitative and coherent way. We
start with a simple model, which is almost always a good idea. We assume that the corona
is static (u = 0), in a steady-state (∂/∂t = 0), spherically symmetric (∂/∂θ = 0, ∂/∂φ = 0,
∂/∂r → d/dr), and unmagnetized (B = 0). We construct a solution above a reference radius
r0, at which the density (ρ0) and temperature (T0) are assumed known. We also assume that
the corona is composed only of fully ionized hydrogen (m = mp = 1.67 × 10−27 kg, µ = 0.5)
obeying the equation of state for a perfect gas.

The r-component of the equations of motion becomes a simple statement of hydrostatic
balance:

dp

dr
= −ρ

GM

r2
, (3.2)

where we have assumed a spherically symmetric gravitational potential Φ = −GM/r. This
says nothing more that the (outward-directed) pressure gradient balances exactly the (inward-
directed) gravitational acceleration, a particularly simple form of force balance. Assume now
that a polytropic relationship1 exists between the pressure and density:

p

p0
=

(

ρ

ρ0

)α

. 1 ≤ α ≤ 5/3 (3.3)

Using for conciseness the definition of the base polytropic sound speed c2
s0 = αp0/ρ0 = αkT0/µm

for a perfect gas, eq. (3.2) now becomes

c2
s0

(

ρ

ρ0

)α−1

dρ = −ρ
GM

r2
dr , (3.4)

which is readily integrated to yield an expression for the density profile

ρ(r)

ρ0
=

[

1 −
(α − 1)GM

r0c2
s0

(

1 −
r0

r

)

]1/(α−1)

, (3.5)

from which the pressure profile is immediately obtained via eq. (3.3):

p(r)

p0
=

[

1 −
(α − 1)GM

r0c2
s0

(

1 −
r0

r

)

]α/(α−1)

, (3.6)

and the temperature profile from the equation of state:

T (r)

T0
=

[

1 −
(α − 1)GM

r0c2
s0

(

1 −
r0

r

)

]α

. (3.7)

1See Appendix E on the polytropic approximation; in a nutshell, in the present context it amounts to

assuming a specific solution of the energy equation, including an external source of heating.
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60 CHAPTER 3. THE SOLAR WIND

Figure 3.3: Density profiles for a few polytropic static coronal model with T0 = 1.5 × 106 K.
and r0 = 1.15 R. Note the asymptotically constant densities as r → ∞ for α < 1.1765.

Examination of these expressions reveals that there may be combinations of T0 and α values
that yield zero pressure and density at a finite value of r. Obviously, this occurs whenever

c2
s0 < (α − 1)GM/r0 , (3.8)

with

rtop

r0
=

(

1 −
r0c

2
s0

(α − 1)GM

)−1

(3.9)

then being the maximum radial extent of the polytropic atmosphere. Eqs. (3.5) through (3.7)
describe a static polytropic atmosphere occupying the volume r0 ≤ r ≤ rtop. For r > rtop there
is only mathematical vacuum, something Nature abhors, or so Aristotle used to claim. What
if T0 is too large for eq. (3.8) to be satisfied ? Figure 3.3 illustrates a series of polytropic solar
coronal models, for T0 = 1.5×106 K, r0 = 1.15 R, fully ionized hydrogen, and various values of α
(for this adopted value of T0 and for solar parameters, satisfying eq. (3.8) requires α > 1.1765).
It looks like the solutions that violate eq. (3.8) extend to infinity with non-vanishing pressures
and densities. From eq. (3.6) one immediately obtains

p∞ ≡ lim
r→∞

p

p0
=

[

1 −
(α − 1)GM

r0c2
s0

]α/(α−1)

, (3.10)

and similar expressions (with different exponents) for the asymptotic density and temperature.
For the parameter values used on Fig. 3.3 and N0 = ρ0/(µmp) = 1014 m−3, one obtains N∞ =
1010 m−3, p∞ ' 10−7 Pa, and T∞ = 6 × 105 K in the α = 1.1 case. These values are much
larger than anything the interstellar medium has to offer. In the solar galactic neighborhood,
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3.3. POLYTROPIC WINDS 61

typical densities and temperatures are believed to be Nism = 106 m−3 and Tism = 100 K, so
that p ∼ 10−15 Pa. All of these are insufficient by orders of magnitude2. Something is deeply
wrong. Given the assumptions made in constructing our simplistic model, four avenues are
open to “save” our model:

1. Abandon the hypothesis of a steady-state (∂/∂t = 0) corona,

2. Work on the energetics to produce a corona with a different asymptotic temperature
profile,

3. Abandon the hypothesis of a static (v = 0) corona,

4. Introduce a magnetic field to modify the force balance.

Possibility (1) flies in the face of observations, at least as far as the larger spatial scales are
concerned. Early efforts (and efforts to come, as per see problems 3.4 and 3.5...) were mostly
directed along avenue (2). Yet avenue (3) proved to be the right one. Avenue (4) produces
significant additional improvements to some aspects of the problem, but that will have to await
the next chapter. Let’s focus on (3) for now.

3.3 Polytropic winds

In this section we will construct a simple, yet reasonably realistic, solar wind model, which will
turn out to do a surprisingly good job at reproducing a lot of the large-scale flow properties of
the real solar wind. The same underlying physical mechanism turns out to be responsible for the
winds emanating from the atmospheres of the polar terrestrial ionosphere, of the atmosphere
of other late-type stars, and from the galactic halo. So pay attention to this one.

3.3.1 The Parker Solution

We follow the initial approach of E.N. Parker, in seeking steady state (∂/∂t = 0) solutions that
are spherically symmetric (∂/∂θ = 0, ∂/∂φ = 0). This also implies uθ = 0, uφ = 0 (think
about it a bit). We assume that the star is non-rotating, and surrounded by a hot corona
(temperature ∼ 106 K), as in §3.2 extending outward from a reference radius r = r0 where the
base temperature (T0) and density (ρ0) are assumed known. We seek a wind solution in the
domain r ∈ [r0,∞]. We consider an inviscid (ν = 0), unmagnetized (B = 0) plasma. We will
also limit ourselves to a single fluid model. That is, we consider a wind composed exclusively
of fully ionized Hydrogen where charge neutrality always holds down to the smallest spatial
scales considered3. This implies that the proton-electron mixture can be treated as a single
fluid, with each particle having a mass µmp, with µ = 0.5. Once again we make the further
simplifying assumption that the flow is polytropic, i.e., the pressure and density are assumed to
be related by a relation of the form

(

p

p0

)

=

(

ρ

ρ0

)α

, (3.11)

or, equivalently,

d

dr

(

p

ρα

)

= 0 , (3.12)

2Actually, a realistic estimate of the total pressure in the interstellar medium should take into consideration

the contribution of the interstellar magnetic field. Far from being negligible, magnetic pressure can provide

∼ 10−13 Pa for ‖B‖ism ∼ 1 nT. But this is still insufficient to equilibrate our hot hydrostatic corona.
3Does that also mean that protons and electrons must have identical bulk velocities? Think about that one

a bit.
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62 CHAPTER 3. THE SOLAR WIND

with α constant and specified a priori (cf. §1.3). This implies that the sound speed varies with
heliocentric radius as

c2
s(r) = c2

s0

(

ρ

ρ0

)α−1

, (3.13)

where c2
s0 = αp0/ρ0 is the sound speed at the reference radius. In view of the spherical symmetry

assumption, the mass conservation equation reduces to

1

r2

∂

∂r
(r2ρur) = 0 , (3.14)

which integrates directly to

ρr2ur = const . (3.15)

We only have to deal with the r-component of the equations of motion:

ρur
∂ur

∂r
= −ρ

GM

r2
−

∂p

∂r
, (3.16)

assuming again a spherically symmetric gravitational potential Φ = −GM/r. Upon making
use of eqs. (3.11) and (3.13), equation (3.16) can be manipulated into the form

∂ur

∂r
=

ur

r

[

2c2
s − GM/r

u2
r − c2

s

]

. (3.17)

Now, the denominator of eq. (3.17) vanishes when the flow speed becomes equal to the local

sound speed. This means that the numerator must simultaneoulsy vanish to avoid the appear-
ance of (unwanted) infinite accelerations. The radius rs at which this occurs is called the sonic

point, and is located at

rs =

(

1

c2
s0

)2/(5−3α) (

GM

2

)(α+1)/(5−3α) (

1

ur0r2
0

)2(α−1)/(5−3α)

, (3.18)

where ur0 is the base flow speed. At the sonic point we also have

urs = cs(rs) =

(

GM

2rs

)1/2

. (3.19)

Now, eq. (3.16) can be rewritten as

∂

∂r

[

u2
r

2
+

c2
s

α − 1
−

GM

r

]

= 0 , (3.20)

which immediately integrates to

u2
r

2
+

c2
s

α − 1
−

GM

r
= E . (3.21)

Equation (3.21) is the Bernoulli equation, and the integration constant E is the energy per
unit mass in the flow. The Bernoulli equation contains the essence of solar wind acceleration:
thermal energy of the gas (c2

s/(α−1)) gets converted to gravitational potential energy (GM/r)
and flow kinetic energy (u2

r/2), while the total energy is conserved (as it should!). Since the
sound speed cs can be expressed entirely as a function of r and ur via the mass conservation
equation, a solution ur(r) is then any functional ur(r) satisfying eq. (3.21), for any given value
of E. But how do we pick an appropriate value for this quantity?
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3.3.2 Computing a solution

The key in constructing a wind solution is to realize that any non-singular transsonic solution
must pass through the sonic point. Let us then begin by writing down expressions for E
evaluated at the base of the flow and at the sonic point:

E(r0, ur0) =
u2

r0

2
−

GM

r0
+

c2
s0

α − 1
, (3.22)

E(rs, urs) = −
3GM

4rs
+

c2
s0

α − 1

(

ur0r
2
0

√

GM/2rsr2
s

)α−1

, (3.23)

where we made good use of eq. (3.19). Equating The RHSs of these two expressions yields a
nonlinear rootfinding problem for ur0, which can be written schematically as

E(rs, urs) − E(r0, ur0) = 0 . (3.24)

This root finding problem is not particularly easy, in view of the fact that the sonic point rs

itself a nonlinear function of ur0 (as per eq. (3.18). The bisection method (see Appendix F)
is a simple, robust, and easy to code algorithm that works fine here. The solution of eq. (3.24)
yields the base flow speed ur0 for the transsonic solution, which then allows to compute rs

and Es. Once ur0 is known, computing ur(r) proceeds by solving a new nonlinear rootfinding
problem for ur defined by setting E(r, ur) − E(r0, ur0) = 0, with r (> r0) given and rs now
known via eq. (3.18). At this juncture note also that the location of the sonic point is entirely
determined by the assumed base sound speed cs0 i.e., by the coronal base temperature T0, and
polytropic index α; equally important, ur0 is not an input parameter of the solution.

With Es now a fixed quantity, what happens for solutions that start off with different values
of ur0 and cs0, subjected to the constraint E(r0, ur0) = Es? Figure 3.4 shows the family of
solutions obtained in this manner. There are in fact two transsonic solutions (thicker lines) that
cross at the sonic point. The accelerating solution is the one we are after for the solar wind.
The deccelerating solution has a lower base temperature (T0 = 8.7× 105 K), to compensate for
its much higher base flow speed (ur0 = 477.7 km s−1). The two transsonic solutions partition
the [r, ur] plane in four distinct regions. Region I correspond to solutions that are supersonic
everywhere including at the coronal base; in the solar context, such solutions, as well as the
deccelerating transonic solution, conflict with the lack of significant blueshift observed in coronal
spectral lines. Regions II and IV do not contain outflow solutions. This leaves the accelerating
transsonic solution and solutions in region III as possible valid outflow solutions for the solar
wind.

Once ur(r) is known, it is straightforward to obtain expressions for the density, pressure,
and temperature profiles:

ρ(r)

ρ0
=

[

1 −
(α − 1)GM

r0c2
s0

(

1 −
r0

r

)

−
(α − 1)

2c2
s0

(

u2
r − u2

r0

)

]1/(α−1)

, (3.25)

p(r)

p0
=

[

1 −
(α − 1)GM

r0c2
s0

(

1 −
r0

r

)

−
(α − 1)

2c2
s0

(

u2
r − u2

r0

)

]α/(α−1)

, (3.26)

T (r)

T0
=

[

1 −
(α − 1)GM

r0c2
s0

(

1 −
r0

r

)

−
(α − 1)

2c2
s0

(

u2
r − u2

r0

)

]α

. (3.27)

Note that these expressions are valid for either the transsonic or class-III solutions. The latter
evidently have limr→∞ ur → 0 (see Fig. 3.4), so that asymptotically, eq. (3.26) becomes identical
to eq. (3.10), obtained for a static corona! The class-III solutions thus suffer from the same
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Figure 3.4: Some solutions to equation (3.21). The thick lines are the two transsonic solution
satisfying eq. (3.24). The accelerating transsonic solution, to be identified with the solar wind,
has a base flow speed ur0 = 2.12km s−1, sound speed cs0 = 165.1 km s−1, with the sonic point
located at rs/r0 = 6.59. The thin lines are solutions for other values of E (6= Es).

shortcoming: an asymptotic pressure much too high to match that of the interstellar medium,
and so can be ruled out.

This leaves us with a single possible outflow solution, namely the accelerating transsonic so-
lutions, which we hereafter refer to as the “wind solution”4. Figure 3.5 illustrates the variations
with radial distance of the density, pressure and temperature for the transsonic wind solution
of Fig. 3.4, together with the corresponding profiles for a α = 1.1 polytropic static corona of
identical base temperature (dotted lines). Within the sonic point the structure of the solution
is very much like that of a static atmosphere, while for r > rs the solutions differ markedly,
reflecting the dynamical effect of the outflow.

3.3.3 Mass loss

One important consequence of the existence of a wind is that it carries away mass from the
star. Under the assumption of spherical symmetry used here, the mass loss rate is

Ṁ = 4πr2
0ρur0 , [kg s−1] . (3.28)

For the solar-type solution considered here, Ṁ = 10−14 M¯ yr−1, so that over its lifetime the
Sun would lose a mere 10−4 fraction of its total mass, assuming that this mass loss rate has
remained constant since the Sun’s arrival on the Zero-Age Main-Sequence (ZAMS); as we shall
see later, there are good reasons to believe that the ZAMS mass loss rate may have been
substantially higher.

4Traditionally, class-III solutions have been dubbed “solar breeze”, since the flow speed they predict at the

Earth’s orbit is much smaller than for the wind solution
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3.3. POLYTROPIC WINDS 65

Figure 3.5: The full wind solution corresponding to the accelerating transsonic solution of
Fig. ??. Dotted lines correspond to a polytropic static coronal model with identical α and T0.
The solid dot indicates the location of the sonic point.

3.3.4 Asymptotic behavior and existence of wind solutions

To analyze the asymptotic behavior of the wind solution we do something undoubtedly familiar
by now: we equate E(r, ur) evaluated at r0 and in the limit r → ∞:

u2
r0

2
−

GM

r0
+

c2
s0

α − 1
= lim

r→∞

[

u2
r

2
−

GM

r
+

c2
s0

α − 1

(

ur0r
2
0

urr2

)α−1
]

. (3.29)

Now, what the wind solution does is convert all thermal energy in excess of what is needed to
climb out of the Sun’s gravitational potential well into bulk flow kinetic energy. This implies
ur À cs asymptotically. Furthermore, we also have limr→∞ ur À ur0 and ur0 ¿ cs0, so that
eq. (3.29) readily yields

lim
r→∞

ur ≡ ur∞ =

(

2c2
s0

α − 1
−

2GM

r0

)1/2

. (3.30)

indicating that the flow speed becomes constant at large r.

Clearly all wind solutions must have ur∞ > 0 for finite r, so that we have the constraint5:

c2
s0

α − 1
−

GM

r0
≥ 0 . (3.31)

5Why is that so ? What’s wrong with a steady, spherically symmetric wind accelerating in the corona and

then, at some large distance, deccelerating again until everything grinds to a full stop ?
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For α = 1.1, this requires that T0 ∼
> 9× 105 K. An accelerating transsonic solution also requires

dur/dr > 0 near the base of the flow. Going back to eq. (3.17), this implies

2c2
s0 −

GM

r0
< 0 , (3.32)

requiring that T0 ∼< 5 × 106 K. So a transsonic wind can only exist for a base temperature in
the range

(

α − 1

α

)

GMµmp

kr0
≤ T0 <

(

1

2α

)

GMµmp

kr0
(3.33)

What do these two bounds on T0 correspond to physically? The lower bound is simply the
criterion for the existence of a gravitationally bound atmosphere, which we encountered already
in §3.2, in fact. The upper bound is trickier to interpret. It represents the temperature above
which steady, transsonic wind solutions no longer exist. If this criterion were to be violated
(e.g. by a sudden increase in base temperature), the whole atmosphere would “explode” outward
in a very time-dependent manner. You may think of this as a very simple-minded explanation
of flares, although in reality there is much more to it than that.

There is something else that is extremely important that can be extracted from eq. (3.33);
if there is to be a finite temperature interval over which it is to be satisfy, then we must have
α > 3/2. Otherwise both criteria cannot be satisfied simultaneously. We therefore have the
additional constraint 1 ≤ α ≤ 3/2, independently of the assumed base temperature T0.

Figure 3.6 illustrates, in the [T0, α] plane, the region in parameter space where steady,
transsonic solutions are allowed. The thermodynamically allowed bounds on α (≤ α ≤ 5/3
for a perfect monoatomic gas) restrict solutions to the region located below the dotted line.
Equation (3.31) (finite asymptotic flow velocity) restricts solution to the right of the dash-
dotted line. Equation (3.32) (subsonic, accelerating flow at r0) restricts solutions to the leff of
the dashed line. So our allowed region is that labeled “II”. Region I is that of steady hydrostatic
coronae of finite radial extent, discussed in §3.2. In region III no steady wind-type solution is
possible.

3.3.5 Energetics

As discussed in Appendix E, buried deep in the polytropic approximation (i.e., eq. [3.11] with
α a constant specified a priori) is a very specific energy source/sink functional form. We now
have pretty good solution, in terms of its asymptotic behavior, etc., but must now ask ourselves
whether or not this solution involves distributions of energy sources/sinks that are even mildly
reasonable.

Now our solutions, in general, will not satisfy the energy equation (which we didn’t solve for
anyway, having effectively replaced it by the polytropic approximation). But we can turn the
issue around and use our solution to determine what sources/sinks should appear on the RHS
of the energy equation in order for our solution to satisfy it. Neglecting thermal conduction and
limiting ourselved to steady-state (∂/∂t = 0) systems, the energy equation can be manipulated
into the form

∇ ·

[

ρu

(

1

2
‖u‖2 +

3

2

p

ρ

)]

+ ∇ · (pu) − ρu · ∇Φ = s(r), (3.34)

where s(r) is our extraneous volumetric source/sink term (which has units of J s−1 m−3),
artificially added on the RHS. Direct substitution of our polytropic solutions on the LHS of
this expressions allows to calculate directly the functional form of the heating term s(r) so that
the energy equation is now satisfied by construction. Figure 3.3.5 shows the resulting s(r), for
a sequence of solution having T0 = 1.5×106 K and different values of α. The total energy input
associated with our source is

S(α, T0) = 4π

∫ ∞

r0

s(α, T0; r)r
2dr. [J s−1] (3.35)
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Figure 3.6: Allowed region in the [T0, α] plane for the existence of steady, transsonic polytropic
wind solutions. The region α > 5/3 is thermodynamically excluded. Region II is the allowed
region, as defined by eq. (3.33) (see text). Note that the I—IV labeling of regions is unrelated
to the similar labeling on Fig. 3.4.

Carrying out this integral yields S = 1.1 × 1021, 2.3 × 1020, and 8.7 × 1019 J s−1 for α = 1.05,
1.1, and 1.15 respectively; in all cases, this is less than 10−5 of the solar luminosity, a fortunate
state of affairs. Likewise, it is reassuring that the heating term peaks at the coronal base and
decreases rapidly outward, since the heating ultimately originates near the solar surface.

3.3.6 Comparison with the Solar Wind

Time to compare our polytropic solutions to the real solar wind. Flow properties at 1 AU for the
solution of Fig. 3.5 are listed in Table 3.2 below. Compare this to Table 3.1, in particular to the
flow properties of low speed streams. Pretty amazing; our model values are within the observed
fluctuations for the flow speed, and particle number density. We are off by a whopping factor
of 10 on the temperature (the proton temperature should be the meaningful one to compare
to in the context of our single-fluid model), but the fact that the observed temperatures for
protons, electrons and Helium nucleii differ by large factors (cf. Table 2.1) is telling us (very
loudly) something about the breakdown of our single fluid approximation.

Table 3.2
Parker’s solar wind solution
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Figure 3.7: Energy input implicit in the polytropic wind solutions, for a few values of α. The
base temperature is T0 = 1.5 × 106 K in all cases.

r ur [km s−1] N [106 m−3] T [K]

r0 2.1 108 1.5 × 106

rs 113 4 × 104 6.8 × 105

r⊕ 315 16 3.1 × 105

10 r⊕ 377 0.12 1.9 × 105

This leaves unexplained the higher speeds and lower densities observed in high speed streams.
Within the framework of the thermally-driven models discussed here, a large increase in the
asymptotic flow velocity can only be generated by increasing the base temperature. This being
generally ruled out by observations, a number of authors have attempted to “speed up” the
solar wind at 1 AU. One way of doing so is by introducing additional sources of energy and/or
momentum at various distances from the base of the corona. An important and very robust
result in that context is that

• Adding momentum or energy in the subsonic (r < rs) region increases the overall mass
flux, but not the flow speed at 1 AU.

• Adding momentum or energy in the supersonic (r > rs) region increases the flow speed
at 1AU, but not the overall mass flux.

Nice and fine, but how do we achieve that? Guess what, magnetic fields can do the trick,
both in indirect and direct ways. This is the focus of the following two chapters.
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Problems:

1. Obtain eqs. (3.18)—(3.19)

2. Obtain eqs. (3.25)—(3.27)

3. Assuming that the Sun’s present mass loss rate has remained constant since its arrival on
the ZAMS, calculate by how much the Sun-Earth distance has varied over the past 4.5
Gyr.

4. The purpose of this problem is to get you to construct a coronal model that is more
realistic, energetically speaking, than the isothermal and polytropic models discussed in
§3.2. Your starting point is the assumption that thermal conduction dominates the energy
transport in the corona. For a static and steady-state corona, the energy equation then
reduces to

∇ · (χ∇T ) = 0.

where χ is the coefficient of thermal conductivity. In a low density, high temperature
plasma of fully ionized hydrogen, an approximate (yet fairly accurate) expression for κ is

χ(T ) = χ0T
5/2,

where χ0 ' 8 × 10−13 J m−1 s−1 K−7/2. So your task is the following:

(a) Obtain expressions for T (r), ρ(r), and p(r), and plot these as a function of r for a
few values of T0 in the range 106 ≤ T0 ≤ 5 × 106 K.

(b) Obtain asymptotic (r → ∞) expression for T (r), ρ(r) and p(r), and calculate these
asymptotic values for the solutions you obtained in (a)

(c) Compare and contrast your results in (b) with the corresponding results for the
polytropic coronae discussed at the end of this chapter.

(d) What is the energy input (J s−1) require to maintain the corona in its assumed steady
state, given the outward transport of energy? Can you think of other important
coronal energy “sinks”?

5. This problem further explores possible “fixes” for our static coronal models.

(a) Determine how fast the temperature profile would have to fall with distance for the
pressure to vanish at infinity in a static corona.

(b) What should be the coronal temperature for a static, isothermal corona to by dy-
namically balanced by the pressure in the interstellar medium?

(c) How strong a magnetic field in the interstellar medium would be needed to balance
the asymptotic pressure of our static coronae models? Can you think of one known
observations that rules this out?

6. Code in the pseudocode for the bisection method, as given in the text, to reconstruct
(and plot) a full polytropic wind solution (i.e. ur(r), ρ(r), p(r) and T (r)). Keeping
the polytropic index fixed at α = 1.1, examine how the sonic point location, base flow
speed, and wind properties at 1AU vary with base temperature, in the range 106 ≤ T0 ≤
2 × 106 K. And please do provide a listing of your code.

7. This problem lets you construct an isothermal solar wind solution. Upon examination of
the expressions we obtained for the polytropic model, one rapidly sees that simply setting
α = 1 leads to divergence, so you actually need to start from scratch;
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(a) Using the definition of the isothermal sound speed a2 = p/ρ, obtain the isothermal
equivalents of eqs. (3.17) and (3.21).

(b) Obtain an expression for the location of the sonic point in terms of a and other
model input quantities.

(c) Construct a transsonic wind solution for T0 = 1.5 × 106 K; compare its base flow
speed, sonic point location, and speed and densities at Earth’s orbit with the corre-
sponding quantities for the polytropic solution of §3.3.

(d) Obtain an expression for the asymptotic flow speed, i.e., the isothermal equivalent
of eq. (3.30). How can you explain your (presumably surprising) result?

8. Using the procedure outlined in the text, construct a numerical solution corresponding
to a class III polytropic solution (i.e., subsonic for all r, cf. Fig. 3.1; use also α = 1.1 and
T0 = 1.5 × 105 K). Provide plots of the flow speed, density, pressure and temperature as
a function of r. Examine the asymptotic (r → ∞) behavior of your solution, and discuss
its physical relevance.
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