
Chapter 11

Stellar dynamos

ELWOOD: It’s 106 miles to Chicago, we’ve got a full tank of gas, half a pack of

cigarettes, it’s dark and we’re wearing sunglasses.

JAKE: Hit it!

Dan Ackroyd and John Belushi
The Blues Brothers (1980)

The problem —and the beauty— with the Sun is that it overwhelms us with data. Many of
the intricacies we have busied ourselves with in the preceding chapter were directly motivated by
the detailed observations and magnetic measurements made possible by the sun’s astronomical
proximity. The sun remains for sure an exemplar, but with other stars observational contraints
are much more sparse, and theoretical considerations take on an enlarged role.

So, it’s back to basics. What have we learned in the preceding three chapters about dynamo
action in electrically conducting fluids? At the most fundamental level, a top-three list could
run as follows:

• We learned in chapter 7 that rotation, and especially differential rotation, is one very
powerful mechanism allowing to build a large-scale magnetic field;

• We learned in chapter 8 that flows with chaotic trajectories, such as arising from strongly
turbulent convection, can act as dynamos;

• We learned in chapter 9 that in turbulent flows, the presence of rotation and stratification
can break rotational symmetry and produce a self-amplifying large-scale magnetic field.

So, offhand we are not in too bad a shape with regards to stellar dynamos. Stars certainly
are stratified, and certainly rotate. Thermally-driven convection is also present across large-
part of the HR diagram, but here we start to encounter complications that restrict the use of
the “solar exemplar”. Figure 11.1 illustrates, in schematic form, the internal structure of main-
sequence stars, more specifically the presence or absence of convection zones. A G-star like the
Sun has a thick outer convection zone, spanning the outer 30% in radius in the solar case. As
one moves down to less massive stars, the relative thickness of the convective envelope increases
until, somewhere in the M spectral range, stars become fully convective. Exactly at what mass
the radiative core disappears depends on metallicity, opacities, and so on. Moving instead
from the Sun to higher masses, the convective envelope becomes ever thinner, until somewhere
around spectral-type A0 it essentially vanishes. However, at around the same spectral type
Hydrogen burning switches from the p-p chain to the CNO cycle, for which nuclear reaction rates
are much more sensitively dependent on temperature. Core energy release becomes strongly
depth-dependent, leading to a steep —and convectively unstable— temperature gradient. This
produces a small convective core, which grows in size as one moves up to larger masses. In a
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248 CHAPTER 11. STELLAR DYNAMOS

Figure 11.1: Schematic representation of the radiative/convective internal structure of main-
sequence stars. The thickness of the outer convection zone for the A-star is here greatly exag-
gerated; drawn to scale it would be thinner than the black circle delineating the stellar surface
on this drawing. Relative stellar sizes are also not to scale.
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11.1. LATE-TYPE STARS OTHER THAN THE SUN 249

“typical” B-star of solar metallicity, the convective core spans the inner 25% or so in radius of
the star.

From these simple considerations, A-stars immediately stand out as the least likely to sup-
port dynamo action, because they lack a convective region of substantial size. This squares
well with various lines of observations; in particular, main-sequence A-stars are amongst the
most “magnetically quiet” stars in the HR diagram, as far as things like X-Ray emission and
flaring is concerned. Indeed, the chemically peculiar Ap stars discussed in chapter 2 do show
strong magnetic fields, but even those show no sign of anything even mildly analogous to solar
activity. This is why to this day the fossil field hypothesis remains the favored explanatory
model for the magnetic field of Ap stars (but do see some of the references in the bibliography
for alternative explanations).

Until strong evidence to the contrary is brought to the fore, we are allowed to assume that
late-type stars with a thick convective envelopes overlying a radiative core host a solar-type
dynamo. This is buttressed by the observation of solar-like cyclic activity in many such stars
(as briefly discussed already many, many pages ago in §2.4). We will therefore begin (§11.1)
by looking into the way(s) the various types of solar-cycle models considered in the preceding
chapter can be “scaled” to other solar-type stars, of varying masses, rotation rates, etc.

With fully convective stars, we encounter potential deviations from a solar-type dynamo
mechanism; without a tachocline and radiative core to store and amplify toroidal flux ropes,
the Babcock-Leighton mechanism becomes problematic. Mean-field models based on the tur-
bulent α-effect remain viable, but the dynamo behavior becomes dependent on the presence
and strength of differential rotation, about which we really don’t know very much in stars other
than the sun.

Finally, at the other end of the main-sequence mass range, i.e. O and B stars, the presence
of a turbulent convective core combined with high rotation (viz. §5.3) makes dynamo action
more than likely. As we shall see in §11.2 below, the challenge is actually to bring the magnetic
field produced in the core to the surface.

11.1 Late-type stars other than the Sun

Interms of real observations as opposed to models, most of what we know regarding dynamo
activity in solar-type stars comes from the Mt Wilson CaH+K survey described already in
§2.4. Two important pieces of information can be extracted from these data, as constraints on
dynamo models. The first is the overall level of CaH+K emission, which is taken as a measure
of overall photospheric magnetic field strength, consistent with what one observes on the sun at
various phases of its activity cycle. The second is of course the cycle period, for stars in which
a cycle can be detected (see Fig. 2.8). Figures 11.2 and 11.3 illustrate observed trends in these
two quantities as a function of the cycle period. From the point of view of dynamo theory and
modelling, the following points are noteworthy:

1. Magnetic activity increases with increasing rotation rate (decreasing Prot).

2. Cycle period decreases with decreasing rotation rate.

At a given spectral type the relationship between cycle period and rotation rate is well
represented by a power-law of the form Pcyc ∝ Pn

rot, with n = 1.25 ± 0.5, but data for all
spectral type can be brought to a common power law index by using the ratio of the rotation
rate to the convective turnover time; recall from the discussion of the preceding chapter that
the latter ratio is supposed to measure the efficiency of the Coriolis force in breaking the mirror-
symmetry of convective turbulence, and thus producing a non-zero α-effect. You will recall also
that the larger the dynamo number, the more magnetic energy mean-field models can produce
(viz. Fig. 10.5). So, in a rough qualitative sense, it sort of fits our (naive) expectations.

In practice, we are facing a number of difficulties in extrapolating our solar dynamo models
to stars other than the sun, with convection zones of greater or lesser depths, and a range of
rotation rates. At the very least we need to be able to specify:
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250 CHAPTER 11. STELLAR DYNAMOS

Figure 11.2: Chromospheric activity, taken as an indicator of stellar magnetic field strength,
versus rotation period, in a sample of solar-type stars of various surface temperature (as in-
dividually labeled in terms of 100 × (B − V )). Figure taken from Noyes et al. (1984), The

Astrophysical Journal, 279, 763 [Fig. 6].

Figure 11.3: Relationship between Cycle period (Pcyc) and the ratio of convective turnover
time (τc) to the rotation period (Prot) for the subsample of the stars in the above Figure for
which cycle periods can be reliably determined. Figure taken from Noyes et al. (1984), The

Astrophysical Journal, 287, 769 [Fig. 2].
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11.2. EARLY-TYPE STARS 251

1. How the form and magnitude of differential rotation and meridional circulation change
with rotation rate and luminosity, the latter determining the magnitude of convective
velocities, and thus the magnitude of the turbulent Reynolds stresses powering the large-
scale flows important for dynamo action;

2. How the α-effect and turbulent diffusivities vary in stars with rotation rate and convection
zone properties;

3. How the process of sunspot formation (Babcock-Leighton models) vary with varying con-
vection zone depth, rotation, etc.

Even then, the discussion of the preceding chapter should have made it clear that even in
the sun, we don’t really know for sure what is the mechanism responsible for the regeneration
of the poloidal magnetic component. How then can we hope to go about modelling stellar
dynamos with anything resembling confidence?

The problem can be turned around, in that stellar cycle observations can perhaps be used to
distinguish between different classes of dynamo models! The possibility hinges on the distinct
dependency of the cycle period on model parameters in various models. For the α-quenched
mean-field solutions discussed in §10.2.3, the (dimensionless) cycle period is, to a first approx-
imation, independent on the dynamo numbers (see Fig. 10.3B), so that the physical period
scales primarily as

Pcyc ∝ η−1 , [α−quenched αΩ model] (11.1)

where η is the assumed turbulent diffusivity. On the other hand, in Babcock-Leighton dynamo
models the cycle period is found to be controlled primarily by the turnover time of the merid-
ional flow cell. For the specific “solar” model described in §10.3, the cycle period is found to
vary as:

Pcyc ∝ u−0.89
0 s−0.13

0 η−0.22 , [Babcock − Leighton] (11.2)

where u0 is the surface meridional flow speed (see Fig. 10.2), and s0 is the parameter measuring
the magnitude of the Babcock-Leighton source term in eq. (10.46)1. Unfortunately, using this
relationship in conjunction with observed stellar cycle data requires one to specify how the
meridional flow speed varies with rotation, which currently remains highly uncertain on the
theoretical and simulation fronts. But this is a very promising avenue.

What happens when main-sequence stars become cool enough to be fully convective is
yet another possible discriminant. Is it possible to produce sunspots —and thus a Babcock-
Leighton poloidal regeneration mechanism— if there is no stably stratified tachocline to form
and store toroidal flux ropes? We just don’t know at this point, but observationally no obvious
discontinuity is observed in X-Ray CaK emission as one moves into spectral types M where
stars become fully convective.

There is a lot of work to be done in this area... and perhaps some of you will contribute as
part of your end-o-semester project!

11.2 Early-type stars

In this final section, we turn to dynamo action in massive stars2, which will also be an excuse
to examine dynamo action in mean-field models of the α2 and α2Ω varieties. we consider a set
of representative mean-field dynamo calculations pertaining to the convective core of a 9M¯

ZAMS stellar model, with luminosity L = 3767L¯, effective temperature Teff = 23, 600K, and

1Note however that the above relation was calibrated in a relatively narrow range of parameters: 2 ≤ u0 ≤

30 m s−1, 0.03 ≤ s0 ≤ 1 m s−1, 2 × 106 ≤ η ≤ 5 × 107 m2s−1; see the paper by Dikpati & Charbonneau (1999)
cited in the bibliography for more details.

2The set of dynamo solutions presented here are all taken directly from the Charbonneau & MacGregor
(2001) paper cited in the bibliography.
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252 CHAPTER 11. STELLAR DYNAMOS

radius R = 3.678R¯ (spectral type B2). The radius of the convective core (rc) in this model
is at rc = 0.232R. Within the core, thermally-driven turbulent fluid motions are assumed
to give rise to an α-effect and turbulent diffusivity, which both vanish for r ∼> rc (under the
assumption that the radiative envelope is turbulence free). In the spirit of the other dynamo
models discussed in this chapter, we consider kinematic dynamos with parametric profiles for
α and η:

α(r, θ) =
1

2

[

1 + erf

(

r − rc

w

)]

erf

(

2r

w

)

cos(θ) , (11.3)

η(r) = ηe +
ηc − ηe

2

[

1 − erf

(

r − rc

w

)]

, (11.4)

where erf(x) is once again the error function. Equations (11.3) represent “minimal” assumptions
on the spatial dependency of the α-effect: it changes sign across the equator (θ = π/2), vanishes
at r = 0, rises to a maximum value within the convective core, and falls again to zero for r ∼> rc,
the transition occurring across a spherical layer of thickness ∼ 2w. we consider models with
both positive and negative α-effect.

Various lines of argument related to the rotational evolution of early-type stars suggest that
significant differential rotation may exist between the convective core and overlying radiative
envelope. In what follows we restrict ourselves to the (simple) case of a convective core and
radiative envelope both rotating rigidly but at different rates Ωc, Ωe, joined smoothly across a
thin spherical shear layer coinciding with the core-envelope interface at r = rc:

Ω(r, θ) = Ωc +
Ωe − Ωc

2

[

1 + erf

(

r − rc

w

)]

. (11.5)

The rotation increases inward, i.e., Ωc > Ωe, leading to a negative radial shear in the vicinity
of the core-envelope interface3. The parameter w used to specify the thickness of the shear
layer is the same as that used to specify the width of the transition region for the turbulent
diffusivity and α-effect. We are now solving the dynamo equations in their α2Ω incarcation,
as given by eqs. (9.73)–(9.74), with Rm = 0 but with all other terms present. All dynamo
solutions discussed below are obtained as eigenvalue problems, as in §10.2.2. Remember that
such linear solutions leave the absolute scale of the magnetic field unspecified.

An interesting physical quantity accessible from linear models is the ratio of the surface
field field strength to the field strength in the dynamo region, here the convective core. In what
follows we use towards this purpose the ratio (Σ) of the r.m.s. surface poloidal field to the
r.m.s. poloidal field at the core-envelope interface rc:

Σ =

(

R2
∫

|∇ × A|2r=R sin θdθ

r2
c

∫

|∇ × A|2r=rc

sin θdθ

)1/2

. (11.6)

In practice, the finite numerical accuracy at which the eigenfunctions are computed leads to a
lower bound on meaningful values of Σ, here at about 10−8. Another useful quantity produced
in linear solutions is the toroidal-to-poloidal field strength ratio (Θ), which can be defined as

Θ =

∫

B2dV
∫

(∇× (Aêφ))2dV .
(11.7)

11.2.1 α
2 dynamos

We first consider solutions where magnetic field generation occurs exclusively through the
agency of the α-effect, i.e., α2 dynamo models, in the terminology introduced in §9.4.3. Figure

3Negative radial shear profiles are the only ones considered here, since steep positive radial shears are in all
likelihood hydrodynamically unstable.
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11.4 shows a series of typical linear α2 solution with increasing diffusivity contrasts between
the core and envelope. The value of Cα for the solutions on panels B, C and D were adjusted
to yield solutions with growth rates similar to that of the constant-η solution in A, so that the
four eigenfunctions are in some sense comparable.

The constant-η solution transits from decaying (σ < 0) to growing (σ > 0) at Cα ' −32.8,
and the growth rate keeps increasing as |Cα| is further increased. The solution plotted on
Fig. 11.4A is computed for Cα = −34.5, and is supercritical (σ = 10.82τ−1). A solution with
Cα = +34.5 has an identical growth rate and eigenfunction, but shows an opposite relative
polarity between the poloidal and toroidal components. For ηe/ηc ∼

< 0.1, the symmetric modes
now have slightly larger growth rate (σ = 11.0, 11.8, and 12.5 τ−1 for ηe/ηc = 0.1, 0.01, and
0.001, respectively). Nonetheless, to facilitate comparison with the constant diffusivity solution
of part A, the antisymmetric modes are plotted on Figure 11.4B–D. Defining parameters for
all solutions plotted on Fig. 11.4 are listed in the top part of Table 11.1 below.

Linear mean-field dynamo of the α2 type with a time-independent scalar functional α(r)
always produce steady magnetic fields, i.e., the solution eigenvalue is purely real (ω = 0 in
eq. (10.28)). The solution plotted on Figure 11.4A is dipole-like (i.e., antisymmetric), and is
the fastest growing solution for our model with constant η, at the adopted value for Cα. The
next fastest growing mode is symmetric with respect to the equatorial plane, and has a growth
rate only slightly smaller, σ = 10.79 τ−1. This situation is typical of α2 dynamo solutions using
a scalar α-effect4. Note that σ = 10 in dimensionless units amounts to an e-folding time of
about 20 yr in dimensional units, leaving no doubt that ample time is available to amplify a
weak seed magnetic field in the core of a massive star.

Table 11.1
Parameters and eigenvalues for various α2 and α2Ω solutions

Type Parity Cα CΩ ηe/ηc w/R σ ω Σ Θ

α2 A −34.5 0 1 0.1 10.8 0 1.2 × 10−2 1.074

α2 A −23.0 0 0.1 0.1 8.96 0 2.7 × 10−4 1.276
α2 A −21.0 0 0.01 0.1 9.91 0 < 10−8 1.317
α2 A −21.0 0 0.001 0.1 10.58 0 < 10−8 1.318

α2Ω A −21.0 2000 0.01 0.1 14.6 175 < 10−8 3.21
α2Ω S −21.0 2000 0.01 0.1 21.8 186 < 10−8 3.21
α2Ω A +21.0 2000 0.01 0.1 21.2 184 < 10−8 4.27
α2Ω S +21.0 2000 0.01 0.1 14.0 172 < 10−8 5.32
α2Ω S −24.0 2000 0.01 0.05 19.9 287 < 10−8 3.10
α2Ω S −35.0 2000 0.01 0.025 17.7 494 < 10−8 2.52

The most significant consequence of a ηe/ηc being smaller than one is perhaps the “trapping”
of the magnetic field in the lower part of the radiative envelope, a direct consequence of the
difficulty experienced by an external magnetic field to diffusively penetrate a good electrical
conductor. This is clearly evident from Table 11.1, in the rapid decrease of the surface-to-core
field ratio Σ (see eq. (11.6)) with decreasing diffusivity ratio ηe/ηc. This is long-recognized
property of stellar core dynamos, and represents a rather formidable obstacle to be bypassed if
the magnetic fields generated by dynamo action in the convective core are to become observable
at the stellar surface. As discussed in Schüssler & Pähler, the situation is even worse than
Table 11.1 may suggest. In a time-dependent situation, the time needed for the magnetic field
to resistively diffuse to the surface can become larger than the star’s main-sequence lifetime,
for masses in excess of about 5 M¯.

4The α
2 form of the mean-field dynamo equations also admits growing solutions than are non-axisymmetric

even though the α-effect profile exhibits axisymmetry with respect to the rotation axis. Growth rates for non-
axisymmetric modes are often comparable to those of their axisymmetric counterparts For simplicity, we restrict
ourselves here to axisymmetric modes. We note nonetheless that, motivated largely by the challenge posed by
planetary magnetic fields, α

2 models can and have been constructed where non-axisymmetric modes are the
fastest growing, and dominate in the moderately supercritical nonlinear regime.

phy6795v08.tex, December 4, 2008 Paul Charbonneau, Université de Montréal



254 CHAPTER 11. STELLAR DYNAMOS

Figure 11.4: Four antisymmetric steady α2 dynamo solutions, computed using varying mag-
netic diffusivity ratios between the core and envelope. The solutions are plotted in a meridional
quadrant, with the symmetry axis coinciding with the left quadrant boundary. Poloidal field-
lines are plotted superimposed on a gray scale representation for the toroidal field (light to dark
is weaker to stronger field). The dashed line marks the core-envelope interface depth rc, and
the two dotted lines indicates the depths rc ± w corresponding to the width of the transition
layer between core and envelope. Note how the solutions with ηe/ηc ∼

< 10−2 have their toroidal
field peaking across the core-envelope interface. This behavior is generic and materializes for
smaller values of w and rc, and for symmetric (i.e., quadrupolar-like) solutions. Parameters for
these solutions are listed in Table 11.1.
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Less striking but equally important in what follows is the fact that in solutions with
ηe/ηc < 1, the locus of peak dynamo action —as measured by the peak in toroidal field
strength— moves out to the core-envelope boundary. Note on Fig. 11.4 how, for ηe/ηc ∼< 0.01,
toroidal fields are present out to r ' rc + w. This is a direct consequence of the α/η ratio re-
maining equal to unity over a significant radial distance outside of the core, as per eqs. (11.3)—
(11.4). As ηe/ηc decreases, the magnetic field is increasingly trapped in the interior, yet is
increasingly concentrated near the core-envelope interface. This behavior is robust, in that it
also materializes in solutions computed using different parameter values.

Mean-field dynamo models of the α2 variety typically generate magnetic fields that have
poloidal and toroidal components of comparable strengths. Indeed we find here that the
toroidal-to-poloidal ratio defined in eq. (11.7) are of order unity and vary very slightly with
ηe/ηc (see Table 11.1).

11.2.2 α
2
Ω and αΩ dynamos

Perhaps the most significant difference between α2Ω solutions and the α2 solutions considered
previously is the fact that while the latter are spatially steady (in the sense that ω = 0),
the former usually yield oscillatory solutions, with solution eigenvalues occurring in complex
conjugate pairs σ ± iω.

Figure 11.5 illustrates a half-cycle of a representative α2Ω solution. This symmetric solution
has Cα = −21, CΩ = 2000, w/R = 0.1, ηe/ηc = 10−2, and is characterized by a growth rate
σ = 21.8 τ−1 and frequency ω = 186 τ−1. For ηc = 1013 cm2 s−1, this corresponds to a dynamo
period of about 7 yr, quite short compared to any other relevant timescales. The magnetic field
distribution is shown at five distinct phases, at constant intervals of ∆ϕ = π/4, in a format
identical to that of Fig. 11.4 for each panel (note in particular that the eigenmodes are again
plotted only in the inner half of the star). At a given phase the solutions bear some resemblance
to the α2 solutions of Fig. 11.4C, in that the magnetic field is again trapped in the interior.
As before, the toroidal field is concentrated near the core-envelope interface, and in fact here
peaks slightly outside r = rc (dashed circular arc).

As with the α2 solutions considered previously, the growth rate of the α2Ω solution increases
with increasing values of either or both the dynamo numbers Cα and CΩ. The dynamo frequency
ω also increases with Cα and CΩ. In the αΩ limit, where the α-effect makes a vanishing
contribution to the RHS of eq. (9.74), the eigenvalue is completely determined by the value of
the product CαCΩ, but this property does not hold in general for α2Ω models.

Examination of Figure 11.5 soon reveals that the magnetic field distribution migrates
steadily poleward in the course of the half-cycle shown on Figure 3, with the solutions at
ϕ/π = 1 being a mirror image of that at ϕ/π = 0, i.e., the magnetic polarity has undergone a
polarity reversal after half an oscillation cycle. This is the “dynamo wave” we already encoun-
tered previously, and indeed the poleward propagation observed here is what one would expect
from a negative radial shear acting in conjunction with a negative α-effect (cf. §9.3). 5. Note
that the toroidal field gains in strength as the dynamo wave proceeds from low to mid-latitudes,
peaking at about 60◦ and falling thereafter as the wave experiences enhanced dissipation upon
converging toward the symmetry axis.

A solution with Cα = +21 but otherwise identical to that shown on Fig. 11.5 has growth
rate and frequency that are comparable to, but not identical to the Cα = −21 solution (see
Table 11.1). The difference is due to spherical geometry; a poleward-propagating dynamo wave
suffers greater diffusive decay as it converges towards the symmetry axis, than an equatorward
propagating wave does converging towards the equatorial plane, where the symmetry imposed
via the boundary condition also affects the dissipation. Solutions with thinner transition layers
require a larger value of |Cα| to maintain comparable growth rates, and are thus characterized

5Parker’s original dynamo wave solutions were obtained in Cartesian geometry, and in the so-called αΩ limit,
in which the α-effect is omitted on the RHS of the toroidal component of the dynamo equation. Similar dynamo
wave solutions are also readily found in the more general α

2Ω case; see for example the Choudhuri (1990) paper
cited in the bibliography.
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Figure 11.5: A representative α2Ω solution. As this is an oscillatory solution, the eigenfunction
is plotted at five equally spaced phase intervals (∆ϕ = π/4), covering half an oscillation cycle.
The format in each panel is similar to Fig. 11.4. White (black) lines indicate fieldlines oriented
in a clockwise (counterclockwise) direction. Note the wave-like propagation of the magnetic
field from low to high latitudes. Parameter values are listed in Table 11.1.

by higher oscillation frequencies. Table 11.1 lists solution parameters and characteristics for a
few representative such solutions.

Not surprisingly, in α2Ω models the availability of an additional energy source in the toroidal
component of the dynamo equations leads to solutions where the toroidal field strength in
general exceeds that of the poloidal field. For the solution plotted on Fig. 11.5, the toroidal-
to-poloidal field ratio (see eq. (11.7)) reaches a value Θ ' 3. Further increases of CΩ lead to
increasing Θ (e.g., Θ ' 3.4 and 4.3 at CΩ = 5000 and 104), until in the αΩ limit Θ scales
roughly as CΩ/Cα. For a given diffusivity ratio ηe/ηc, oscillatory α2Ω solutions have a smaller
surface-to-core field strength ratio Σ than α2 models, a direct consequence of the oscillatory
nature of the field, which restricts the radial extent of the eigenfunction above the core-envelope
interface to a distance comparable to the electromagnetic skin depth, which is very much smaller
than the stellar radius for ηe/ηc ¿ 1.

The markedly different spatial distributions and temporal behavior of α2 and α2Ω eigen-
modes naturally leads one to suspect that both dynamo modes should have some difficulty
operating simultaneously. That this is indeed the case can be seen in Figure 11.6, showing
isocontours of the linear growth rate σ in the [CΩ, Cα] plane, for antisymmetric negative-Cα

solutions. Dynamo solutions (σ > 0) are located below the thick contour, and the thick dashed
line delineates the regions where steady (ω = 0, α2-like) and oscillatory (ω 6= 0, α2Ω-like)
solutions are found. At a fixed value of Cα, introducing differential rotation first leads to a
decrease of the growth rate, reflecting the perturbative influence of differential rotation on the
basic α2 mode. Once CΩ exceeds a certain (Cα-dependent) threshold at about CΩ ' 300, the
dynamo becomes α2Ω-like (ω 6= 0). However, growth rates comparable to that of the pure α2

mode (CΩ = 0) materialize only for much larger values of CΩ. Much the same behavior is seen
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Figure 11.6: Isocontours of the α2Ω linear growth rate in the [CΩ, Cα] plane. The thicker
contours corresponds to σ = 0, and solid contours to σ > 0. All solutions are of antisymmetric
parity and have w/R = 0.1, ηe/ηc = 0.01, and Rm = 0. Solutions left of the thick-dashed
line are steady (ω = 0, α2-like), and oscillatory to its right. Qualitatively similar diagrams are
obtained for symmetric modes, other values of w/R, and/or solutions with positive Cα.

in symmetric solutions, and/or for positive-Cα solutions. Nonetheless, the transition from the
α2 to the α2Ω dynamo regime occurs smoothly as differential rotation is increased.

11.2.3 Getting the magnetic field to the surface

For our adopted value ηc = 1013 cm2 s−1, CΩ = 300 amounts to ∆Ω0/Ω∗ ' 10−3, i.e., very
weak differential rotation. Extant observations (and inferences) of magnetic fields in upper
main-sequence stars currently have little to say about the steady/oscillatory character of the
underlying field. Even if it were oscillating with a regular period of the order of a few years,
as do the α2Ω solutions discussed here, it is not at all clear that the mechanism(s) responsible
for bringing the field to the surface may not introduce additional temporal variabilities that
would mask the underlying cycle period. If on the other hand the magnetic fields are shown
to be strictly steady, one would then be forced to conclude that the same magnetic fields have
obliterated any angular velocity difference between the core and envelope, something which
they can in fact achieve quite efficiently in the absence of internal or external forcing.

The outstanding difficulty in explaining surface magnetism of massive stars by core dynamo
action remains bringing the dynamo-generated magnetic field from the convective core to the
surface, across the stably-stratified, low-diffusivity radiative envelope. For O and B main-
sequence stars, estimates for the diffusion time yield values largely in excess of the main-
sequence lifetime. Introducing thermally-driven meridional circulation in the radiative envelope,
expected to be a significant internal flow in rapidly rotating stars, does accelerate the transport
of the deep field to the surface, but also impedes dynamo action. Another possibility is that
the dynamo-generated magnetic field manages to produce toroidal flux ropes that then rise
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buoyantly to the surface. The analogy with the sun becomes even more compelling if a rotational
shear layer does exist at the boundary between the inner convective core and outer radiative
envelope. However, and unlike in the solar case, here the toroidal flux ropes are rising through
a stably stratified environment, and so lose their buoyant force as they rise, because they cool
faster as they rise than the surrounding stratification. Calculations performed in the thin flux
tube stratification suggest that such toroidal flux ropes, assuming they do form, could rise
perhaps halfway across the radiative envelope, but are unlikely to make it all the way to the
surface through buoyancy alone. References listed in the bibliography should provide helpful
entry points into the literature to those interested in further pursuing this aspect of massive
star magnetism.

Problems:

They are your class projects! In fact I am counting on you all so that in the next version of
these class notes, this final chapter will contains more illustrative material. Thanks in advance
to all future contributors!
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