
Chapter 10

Dynamo models of the solar cycle

We can add to our knowledge, but we cannot subtract from it.

Arthur Koestler
The Sleepwalkers (1959)

Was einmal gedacht wurde,

kann nicht mehr zurückgenommen werden.

Friedrich Dürrenmatt
Die Physiker (1962)

The time has now come to put everything (well... almost) we have learned so far to construct
dynamo models for solar and stellar magnetic fields. In this chapter we concentrate on the Sun,
for which the amount of observational data available constrains dynamo models to a degree
much greater than for other stars, to the extent that the latter will be considered in a separate,
subsequent chapter.

We restrict ourselves here to axisymmetric mean-field-like models, in the sense that we
will be setting and solving partial differential equations for poloidal and toroidal large-scale
magnetic components, and subsume the effects of small-scale fluid motions and magnetic fields
into coefficients of these PDEs:
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As you will hopefully recall (cf. §1.12.3), these two PDEs result from the separation of the
MHD induction equation upon substitution of axisymmetric flow and magnetic fields having
the general form:

u(r, θ) = up(r, θ) + $Ω(r, θ)êφ , (10.3)
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204 CHAPTER 10. DYNAMO MODELS OF THE SOLAR CYCLE

B(r, θ, t) = ∇× (A(r, θ, t)êφ) + B(r, θ, t)êφ . (10.4)

You will also recall that the presence of a “[Source]” term in eq. (10.1), usually taken to depend
on the toroidal field B, is essential for sustained dynamo action, in order to bypass Cowling’s
theorem (§7.4). With the poloidal source a function of B we recover a nice reciprocal symmetry
between eqs. (10.1) and (10.2); the toroidal field production is proportional to the poloidal field
strength via the differential rotation. The poloidal field production, in turn, is proportional to
the toroidal field strength via the as-yet unspecified poloidal source term; schematically,

∇Ω ⊗ A → B , (10.5)

[Source] ⊗ B → A , (10.6)

where the symbol “⊗” and “→” stand for “acting on” and “produces”. Evidently we have here
—at least conceptually— the ingredients needed for self-regeneration (and exponential growth)
of both A and B1. It will often prove useful to envision dynamo action as the two-step process
as outlined above; even though both mechanisms operate simultaneously and concurrently, it is
quite possible that they in fact do so in spatially distinct regions of the solar interior, in which
case a suitable transport mechanism must exist to link the two source regions.

Moreover, you will certainly also recall (if not goto Fig. 6.12 and return) that the sun’s
poloidal magnetic component, as measured on photospheric magnetograms, flips polarity near
sunspot cycle maximum, which —presumably— corresponds to the epoch of peak internal
toroidal field strength. The poloidal component (P ), in turn, peaks at time of sunspot minimum.
The cyclic regeneration of the sun’s full large-scale field can thus be thought of as a temporal
sequence of the form

A(+) → B(−) → A(−) → B(+) → A(+) → . . . , (10.7)

where the (+) and (−) refer to the signs of the poloidal and toroidal components, as established
observationally. The dynamo problem can thus be broken into two sub-problems: generating a
toroidal field from a pre-existing poloidal component, and a poloidal field from a pre-existing
toroidal component.

With shearing by differential rotation taking care of the A → B step, the whole game will
hinge on the specification of the poloidal source term in eq. (10.1). The mean-field electro-
dynamics approach of the preceding chapter is one, mathematically formal way to calculate
possible forms (the “α-effect”, where [Source]≡ αB), but there exist also some more empirical
approaches that we will look into in due time.

Indeed, the different types of dynamo models we will consider in what follows differ primarily
in the choice they make regarding the physical origin and mathematical form of this poloidal
source term. They all share the shearing of a poloidal field by differential rotation (§7.2.3) as a
source of toroidal field, and all invoke some sort of enhanced, “turbulent” magnetic diffusivity
in the solar convective envelope (the “β-effect” of the preceding chapter).

For the sake of convenience, we first (§10.1) collect and review these various common model
ingredients. We then consider (§10.2) solar cycle models based on simple formulations for the
α-effect of mean-field electrodynamics. We then look into what currently stands as their main
“competitors”, namely solar cycle models based on poloidal field regeneration by the surface
decay of active regions, more succinctly known as Babcock-Leighton models (§10.3). We then
consider (§10.4) cycle models relying on various MHD instabilities to provide a poloidal source
term. We then look into the nonlinear behavior and response to stochastic forcing of some
of these models (§10.5), with an eye on understanding some of the observed pattern of solar
cycle fluctuations reviewed in chap. 6. We close with a brief survey of the current state of
model-based solar cycle prediction schemes (§10.6).

1Can you see the similarity here with the mode of operation of the Roberts Cell dynamo, discussed two
chapter ago?
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10.1. BASIC MODEL DESIGN 205

10.1 Basic model design

10.1.1 The differential rotation

For the differential rotation Ω(r, θ) we retain our now familiar solar-like parametrization (see
also Figure 7.12), scaled in terms of the surface equatorial rotation rate:

Ω(r, θ) = ΩC +
ΩS(θ) − ΩC

2

[

1 + erf

(
r − rC

w

)]

, (10.8)

where

ΩS(θ) = (1 − a2 cos2 θ − a4 cos4 θ) (10.9)

with parameter values ΩC = 0.939, a2 = 0.1264, a4 = 0.1591, rc/R = 0.7, and w/R = 0.05, as
inferred helioseismologically. Figure 10.1 below shows the corresponding isocontours of angular
velocity, together with radial cuts at the pole, equator and mid-latitudes.

It should be noted once again that such a solar-like differential rotation profile is quite
complex from the point of view of dynamo modelling, in that it is characterized by three

partially overlapping shear regions: a strong positive radial shear in the equatorial regions
of the tachocline, an even stronger negative radial shear in its polar regions, and a significant
latitudinal shear throughout the convective envelope and extending partway into the tachocline.
As shown on panel B of Fig. 10.1, for a tachocline of half-thickness w/R¯ = 0.05, the mid-
latitude latitudinal shear at r/R¯ = 0.7 is comparable in magnitude to the equatorial radial
shear; its potential contribution to dynamo action should not be casually dismissed.

10.1.2 The total magnetic diffusivity

For the total magnetic diffusivity η(r) we use the same error-function radial profile as before,
normalized to the turbulent diffusivity in the convective envelope:
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)]

. (10.10)

The corresponding profile is plotted on Fig. 10.1 as a dash-dotted line. In practice, the core-to-
envelope diffusivity ratio ∆η ≡ ηc/ηe is treated as a model parameter, with of course ∆η ¿ 1,
since we associate ηc with the microscopic magnetic diffusivity, and ηe with the presumably
much larger mean-field turbulent diffusivity β 2. With the microscopic diffusivity ηc ∼ 1m2s−1

below the core-envelope interface, and taking the mean-field estimates of β at face value, one
obtains ∆η ∼ 10−9—10−6. The solutions discussed below have ∆η = 10−3—10−1, which is
much larger, but still small enough to nicely illustrate some important consequence of radial
gradients in diffusivity.

10.1.3 The meridional circulation

Meridional circulation is unavoidable in turbulent, compressible rotating convective shells. It
basically results from an imbalance between Reynolds stresses and buoyancy forces. The ∼
15m s−1 poleward flow observed at the surface has been detected helioseismically, down to
r/R¯ ' 0.85 without significant departure from the poleward direction (except locally and
very close to the surface, in the vicinity of active region belts). Mass conservation evidendly
requires an equatorward flow deeper down.

For all models discussed below including a meridional circulation up(r, θ), we use the fol-
lowing convenient parametric form:

ur(r, θ) = 2u0

(
R

r

)2 [

− 1

m + 1
+

c1

2m + 1
ξm − c2

2m + p + 1
ξm+p

]

2We should perhaps repeat that this assumption is a somewhat dubious one, that moreover has been called
into question by direct numerical simulation.
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206 CHAPTER 10. DYNAMO MODELS OF THE SOLAR CYCLE

Figure 10.1: Isocontours of angular velocity generated by eqs. (10.8)—(10.9), with parameter
values w/R = 0.05, ΩC = 0.8752, a2 = 0.1264, a4 = 0.1591 (panel A). The radial shear changes
sign at colatitude θ = 55◦. Panel B shows the corresponding angular velocity gradients, together
with the total magnetic diffusivity profile defined by eq. (10.10) (dash-dotted line, here with
∆η = 0.1 for illustrative purposes). The core-envelope interface is located at r/R¯ = 0.7
(dotted lines).
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10.2. MEAN-FIELD MODELS 207

×ξ[(q + 2) cos2 θ − sin2 θ] sinq θ , (10.11)

uθ(r, θ) = 2u0

(
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with

c1 =
(2m + 1)(m + p)
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ξ−m
b , (10.13)
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(m + 1)p
ξ
−(m+p)
b , (10.14)

ξ =
R

r
− 1 , (10.15)

ξb =
R

rb
− 1 . (10.16)

This meridional flow satisfies mass conservation (∇ · (ρup) = 0) for a polytropic density profile
of the form:

ρ(r)

ρb
=

(
R

r
− 1

)m

. (10.17)

Setting m = 0.5, p = 0.25 and q = 0, this defines a steady quadrupolar circulation pattern,
with a single flow cell per quadrant extending from the surface down to a depth rb. Circulation
streamlines are shown on Fig. 10.2, together with radial cuts of the latitudinal component at
mid-latitudes (θ = π/4). The flow is poleward in the outer convection zone, with an equa-
torward return flow peaking slightly above the core-envelope interface, and rapidly vanishing
below.

10.2 Mean-field models

In this section we consider a series of dynamo models where the poloidal source is the (scalar)
α-effect of mean-field electrodynamics: For the time being we also restrict the models to the
kinematic regime, i.e., all flow fields posed priori and deemed steady (∂/∂t = 0), as described
by the functional forms given in §10.1. Unless specifically stated otherwise, we assume the
parameter values:

ηT = 5 × 107 m2 s−1 , ∆η = 0.1 , (10.18)

Ωeq = 2.6 × 10−6 rad2 s−1 , (10.19)

which leads to

CΩ = 2.5 × 104 , (10.20)

τ =
R2

ηT
= 1010 s ' 300 yr . (10.21)
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208 CHAPTER 10. DYNAMO MODELS OF THE SOLAR CYCLE

Figure 10.2: Streamlines of meridional circulation (panel A), together with the total magnetic
diffusivity profile defined by eq. (10.10) (dash-dotted line, again with ∆η = 0.1) and a mid-
latitude radial cut of uθ (bottom panel). The dotted line is the core-envelope interface. This is
the analytic flow of van Ballegooijen and Choudhuri (see bibliography), with parameter values
m = 0.5, p = 0.25, q = 0 and rb = 0.675.
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10.2. MEAN-FIELD MODELS 209

10.2.1 The αΩ dynamo equations

In constructing mean-field dynamos for the sun, it has been a common procedure to neglect
meridional circulation, on the grounds that it is a very weak flow (but more on this further
below), and to adopt the αΩ model formulation, on the grounds that with R ' 7 × 108 m,
Ω0 ∼ 10−6 rad s−1, and α0 ∼ 1m s−1, one finds Cα/CΩ ∼ 103, independently of the assumed
(and poorly constrained) value for ηT . Using the non-dimensional scalings already introduced
in §9.4, equations (10.1)—(10.2) then reduce to the so-called αΩ dynamo equations:

∂A

∂t
=

(

∇2 − 1

$2

)

A + CαB , (10.22)

∂B

∂t
=

(

∇2 − 1

$2

)

B + CΩ$(∇× A) · (∇Ω) . (10.23)

In the spirit of producing a model that is solar-like we use a fixed value CΩ = 2.5×104, obtained
assuming Ω0 = ΩEqΩS(0) ∼ 10−6 rad s−1 and η0 = 5 × 107 m2s−1.

In the parameter regime characterizing the strongly turbulent solar convection zone, the
strength (or even sign) of the α-effect cannot be computed in any reliable manner from first
principles, so this will remain the major unknown of the model. In accordance with the αΩ
approximation of the dynamo equations, we restrict ourselves to cases where |Cα| ¿ CΩ. For
the dimensionless functional α(r, θ) we use an expression of the form

α(r, θ) = f(r)g(θ) , (10.24)

where

f(r) =
1

4

[

1 + erf

(
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w

)] [

1 − erf

(
r − 0.8

w

)]

. (10.25)

This combination of error functions concentrates the α-effect in the bottom half of the envelope,
and let it vanish smoothly below, just as the net magnetic diffusivity does (i.e., we again set
rc/R = 0.7 and w/R = 0.05). Various lines of argument point to an α-effect peaking at the
bottom of the convective envelope, since there the convective turnover time is commensurate
with the solar rotation period, a most favorable setup for the type of toroidal field twisting at
the root of the α-effect. Likewise, the hemispheric dependence of the Coriolis force suggests
that the α-effect should be positive in the Northern hemisphere, and change sign across the
equator (θ = π/2). The “minimal” latitudinal dependency is thus

g(θ) = cos θ . (10.26)

The Cα dimensionless number, measuring the strength of the α-effect, is treated as a free
parameter of the model. You may be shocked by the fact that we are, in a very very cavalier
manner, effectively treating the α-effect as a (almost) free-function; this sorry situation is
unfortunately the rule rather than the exception in mean-field dynamo modelling3.

10.2.2 Linear dynamo solutions

With α, β and the large-scale flow given, The αΩ dynamo equations (10.22)—(10.23) become
linear in the mean-field B. With none of the PDE coefficients depending explicitly on time, one
can seek eigensolutions of the form

[
A(r, θ, t)
B(r, θ, t)

]

=

[
a(r, θ)
b(r, θ)

]

eλt , (10.27)

3References to some of the more noteworthy exceptions are provided in the bibliography at the end of this
chapter.
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210 CHAPTER 10. DYNAMO MODELS OF THE SOLAR CYCLE

where the amplitudes a and b are in general complex quantities. Substituting eqs. (10.27) into
the dynamo equations yields a classical linear eigenvalue problem. The problem being linear,
such eigensolutions leave the absolute scale of the magnetic field strength undetermined. It will
prove convenient to write the eigenvalue explicitly as

λ = σ + iω , (10.28)

so that σ is the growth rate and ω the cyclic frequency, both expressed in terms of the inverse
diffusion time4 τ−1 = η/R2. In a model for the (oscillatory) solar dynamo, we are looking for
solutions where σ > 0 and ω 6= 0. You may think of a dynamo as a peculiar form of MHD
instability!

Armed (and dangerous) with the above model, we plow ahead and solve the αΩ as an
eigenvalue problem, using inverse iteration (see appendix F). We first produce a sequence of
solutions for increasing values of |Cα|, holding CΩ fixed at a its “solar” value 2.5 × 104, and
without meridional circulation (Rm = 0)5. Figure 10.3 shows the variation of the growth rate
σ and frequency ω as a function of Cα. Four sequences are shown, corresponding to modes
that are either antisymmetric or symmetric with respect to the equatorial plane (“A” and
“S” respectively), computed with either positive or negative Cα. For |Cα| smaller than some
threshold value, the induction terms make too small a contribution to the RHS of eq. (10.22),
leaving the dissipation terms dominant, so that solutions all have σ < 0, as per Cowling’s
theorem. As |Cα| increases, the growth rate eventually reaches σ = 0. At this point we also
have ω 6= 0, so that the corresponding solution oscillates with neither growth of decay of its
amplitude. Further increases of |Cα| lead to σ > 0. We are now finally in the dynamo regime,
where a weak initial field is amplified exponentially in time.

Computing similar sequences for the same same model but different values of CΩ soon
reveals than the onset of dynamo activity (σ > 0) is controlled by the product of Cα and CΩ:

D ≡ Cα × CΩ =
α0Ω0R

3

η2
0

. (10.29)

The value of D for which σ = 0 is called the critical dynamo number (denoted Dcrit)
6. This,

at least, is similar to what we found for the analytical solution of §9.37 Modes having σ < 0
are called subcritical, and those having σ > 0 supercritical. Note on Fig. 10.3 how little the
growth rate and dynamo frequency depend on the assumed solution parity.

Here the first mode to become supercritical is the negative Cα mode, for which Dcrit =
−0.9 × 105, followed shortly by the positive Cα mode (Dcrit = −1.1 × 105). The dynamo
frequency for these critical modes is ω ' 300, which corresponds to a full cycle period of ∼ 6 yr.
This is within a factor of three of the observed full solar cycle period. Once again we should
not be too impressed by this, since we have quite a bit of margin of manoeuver in specifying
numerical values for η0 and Cα, and there is no reason to believe that the Sun should be exactly
exactly at the critical threshold for dynamo action.

Figure 10.4 shows a half a cycle of the dynamo solution, in the form snapshot of the
toroidal (color scale) and poloidal eigenfunctions (fieldlines) in a meridional plane, with the
rotation/symmetry axis oriented vertically. The four frames are separated by a phase interval
ϕ = π/3, so that panel (D) is identical to (A) except for reversed magnetic polarities in both
magnetic components.

The toroidal field peaks in the vicinity of the core-envelope interface, which is not surprising
since in view of eqs. (10.8)—(10.9) the radial shear is maximal there and the magnetic diffusivity

4In view of our discussion in chapter 3, this then implies that all mean-field dynamo models produced by
solution of eq. (10.27) are by definition slow dynamos. Can you figure that one out?

5Obtaining such sequences by inverse iteration is easy if one uses the eigenvalue obtained for a given value
of Cα as a guess for the eigenvalue of the next solution incremented in Cα. The first eigenvalue of the sequence
must be hunted down by trial and error, or estimated using a different numerical technique.

6Can you find a way of scaling the αΩ dynamo equations so that the only nondimensional number appearing
in the scaled version of the equation is the dynamo number D defined above?

7...but does not hold for α2Ω dynamo solutions!
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10.2. MEAN-FIELD MODELS 211

Figure 10.3: Variations of the dynamo growth rate (A) and frequency (B) as a function of
increasing |Cα| in the minimal αΩ model. Sequences are shown for either positive or negative
dynamo number (as labeled), and symmetric (triangles) or antisymmetric (dots) parity. Modes
having σ < 0 are decaying, and modes with σ > 0 exponentially growing. Here modes with A or
S parity have very nearly identical eigenvalues. In this model the first mode to reach criticality
is the negative Cα mode, for which Dcrit = −0.9×105. The positive Cα mode reaches criticality
at Dcrit = 1.1×105. The diamonds on panel (B) correspond to the dynamo frequency measured
in a nonlinear version of the same minimal αΩ model, including algebraic α-quenching, to be
discussed in §10.2.4.
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212 CHAPTER 10. DYNAMO MODELS OF THE SOLAR CYCLE

Figure 10.4: Four snapshots in meridional planes of our minimal linear αΩ dynamo solution
with defining parameters CΩ = 25000, ηT /ηc = 10, ηT = 5 × 107 m2 s−1. With Cα = +5,
this is a mildly supercritical solution (cf. Fig. 10.3). The toroidal field is plotted as filled
contours (green to blue for negative B, yellow to red for positive B, normalized to the peak
strength and with increments ∆B = 0.2), on which poloidal fieldlines are superimposed (blue
for clockwise-oriented fieldlines, orange for counter-clockwise orientation). The dashed line is
the core-envelope interface at rc/R = 0.7. The four snapshots shown here cover a half magnetic
cycle, i.e., panel (D) is identical to (A) except for reversed magnetic polarities.
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10.2. MEAN-FIELD MODELS 213

and α-effect are undergoing their fastest variation with depth. But why is the amplitude of the
dynamo mode vanishing so rapidly below the core-envelope interface? After all, the poloidal
and toroidal diffusive eigenmodes investigated in §7.1 were truly global, and the diamagnetic
effect should favor stronger fields in the lower diffusivity core. The crucial difference lies with
the oscillatory nature of the solution: because the magnetic field produced in the vicinity of
the core-envelope interface is oscillating with alternating polarities, its penetration depth in
the core is limited by the electromagnetic skin depth ` =

√

2ηc/ω (§7.3), with ηc the core
diffusivity. Having assumed ηT = 5 × 107 m2s−1, we have ηc = ηT ∆η = 5 × 104 m2s−1. A
dimensionless dynamo frequency ω ' 300 corresponds to 3 × 10−8 s−1, so that `/R ' 0.026,
quite small indeed.

Careful examination of 10.4A→D also reveals that the toroidal/poloidal flux systems po-
larity present in the shear layer first show up at high-latitutes, and then migrate equatorward

to finally disappear at mid-latitudes in the course of the half-cycle8. If you haven’t already
guessed it, what we are seeing on Figure 10.4 is the spherical equivalent of the dynamo waves
investigated in §9.3 for the cartesian case with uniform α-effect and shear, if we identify r with
z and x with θ. In more general terms, the dynamo wave travel in a direction s given by

s = α∇Ω × êφ , (10.30)

i.e., along isocontours of angular velocity. This result is known as the “Parker-Yoshimura sign
rule”.

10.2.3 Nonlinearities and α-quenching

Obviously the exponential growth characterizing supercritical (σ > 0) linear solutions must
stop once the Lorentz force associated with the growing magnetic field becomes dynamically
significant for the inductive flow. This magnetic backreaction can show up here in two distinct
ways:

1. Reduction of the differential rotation,

2. Reduction of turbulent velocities, and therefore of the α-effect (and perhaps also of the
turbulent magnetic diffusivity).

Because the solar surface and internal differential rotation shows very little dependence on the
phase of the solar cycle, it has been costumary to assume that magnetic backreaction occurs
at the level of the α-effect. In the mean-field spirit of not solving dynamical equations for the
small-scales, it has been standard practice to assume a dependence of α on B that “does the
right thing”, namely reducing the α-effect once the magnetic field becomes “strong enough”, the
latter usually taken to mean when the growing dynamo-generated mean magnetic field reaches
a magnitude such that its energy per unit volume is comparable to the kinetic energy of the
underlying turbulent fluid motions. Denoting this equipartition field strength by Beq, one
often introduces an ad hoc nonlinear dependency of α (and sometimes ηT as well) directly on
the mean-toroidal field B by writing:

α → α(B) =
α0

1 + (B/Beq)2
. (10.31)

Needless to say, this remains an extreme oversimplification of the complex interaction between
flow and field that is known to characterize MHD turbulence, but its wide usage in solar dynamo
modeling makes it a nonlinearity of choice for the illustrative purpose of this section.

8An animation of this solution, as well as the one discussed next, can be viewed on the course Web Page.
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214 CHAPTER 10. DYNAMO MODELS OF THE SOLAR CYCLE

Figure 10.5: Time series of magnetic energy for a set of αΩ dynamo solutions using our minimal
αΩ model including algebraic α-quenching, and different values for Cα, as labeled. Magnetic
energy is expressed in arbitrary units. The dashed line indicates the exponential growth phase
characterizing the linear regime.

10.2.4 Kinematic αΩ models with α-quenching

With algebraic α-effect included in the poloidal source term, the mean-field αΩ equations are
now nonlinear, and are best solved as an initial-boundary-value problem. The initial condition
is an arbitrary seed field of very low amplitude, in the sense that B ¿ Beq everywhere in
the domain. Boundary conditions remain the same as for the linear analysis of the preceding
section.

Consider again the minimal αΩ model of §10.2.2, where the α-effect assumes its simplest
possible latitudinal dependency, ∝ cos θ. We use again CΩ = 2.5× 104, so that with Cα = +10
this places the corresponding linear solution in the supercritical regime (see Figure 10.3). With
a very weak B as initial condition, early on the model is essentially linear and exponential
growth is expected. This is indeed what is observed, as can be seen on Fig. 10.5A, showing
time series of the total magnetic energy in the simulation domain for increasing values of Cα, all
above criticality. Eventually however, B starts to become comparable to Beq in the region where
the α-effect operates, leading to a break in exponential growth, and eventual saturation at some
constant value of magnetic energy. Evidently, α-quenching is doing what it was designed to
do! Note how the saturation energy level increases with increasing Cα, an intuitively satisfying
behavior since solutions with larger Cα have a more powerful poloidal source term. The cycle
frequency for these solutions is plotted as diamonds on Fig. 10.3B and, unlike in the linear
solutions, now shows very little increase with increasing Cα. Moreover, the dynamo frequency
of these α-quenched solutions are found to be slightly smaller that the frequency of the linear
critical mode (here by some 10—15%), a behavior that is typical of mean-field dynamo models.
Yet the overall form of the dynamo solutions closely resembles that of the linear eigenfunctions

Paul Charbonneau, Université de Montréal phy6795v08.tex, December 4, 2008



10.2. MEAN-FIELD MODELS 215

plotted on Fig. 10.4. Indeed, the full cycle period is here P/τ ' 0.027, which translates into
9 yr for our adopted ηT = 5× 107 m2 s−1, i.e., a little over a factor of two shorter than the real
thing. Not bad!

As a solar cycle model, these dynamo solutions do suffer from one obvious problem: magnetic
activity is concentrated at too high latitudes (see Fig. 10.4). This is a direct consequence of
the assumed cos θ dependency for the α-effect. One obvious way to push the dynamo mode
towards the equator is to (artificially) concentrate the α-effect at low latitude. By choosing in
this manner an α-effect that “does the right thing”, we are throwing away a significant chunk
of whatever predictive capability our model might have had. The sad truth is that ad hoc

specification of the α-effect is a long accepted practice in mean-field dynamo modeling (which
of course does not make it any less ad hoc!). We therefore proceed nonetheless, using now a
latitudinal dependency in ∝ sin2 cos θ for the α-effect.

Figure 10.6 shows a selection of three αΩ dynamo solutions, in the form of time-latitude
diagrams of the toroidal field extracted at the core-envelope interface, here rc/R¯ = 0.7. If
sunspot-producing toroidal flux ropes form in regions of peak toroidal field strength, and if those
ropes rise radially to the surface, then such diagrams are directly comparable to the sunspot
butterfly diagram of Fig 6.7. As before all models have CΩ = 25000, |Cα| = 10, ∆η = 0.1,
and ηT = 5 × 107 m2 s−1. To facilitate comparison between solutions, antisymmetric parity
was imposed via the boundary condition at the equator9. On such diagrams, the latitudinal
propagation of dynamo waves shows up as a “tilt” of the flux contours away from the vertical
direction.

The first solution, on Figure 10.6A, is once again our basic solution of Fig. 10.4, with an
α-effect varying in cos θ. The other two use an α-effect varying in sin2 cos θ, and so manage to
produce dynamo action that materializes in two more or less distinct branches, one associated
with the negative radial shear in the high latitude part of the tachocline, the other with the
positive shear in the low-latitude tachocline. These two branches propagate in opposite direc-
tions, again in agreement with the Parker-Yoshimura sign rule, since the α-effect here does not
change sign within an hemisphere.

It is noteworthy that co-existing dynamo branches, as on Fig. 10.6B and C, can have dis-
tinct dynamo periods, which in nonlinearly saturated solutions leads to long-term amplitude
modulation. Such modulations are typically not expected in dynamo models where the only
nonlinearity present is a simple algebraic quenching formula such as eq. (10.31). Note that this
does not occur for the Cα < 0 solution, where both branches propagate away from each other,
but share a common latitude of origin and so are phased-locked at the onset (cf. Fig. 10.6B).
We are seeing here a first example of potentially distinct dynamo modes interfering with one
another, a direct consequence of the complex profile of solar internal differential rotation.

The solution of Fig. 10.6B is characterized by a low-latitude equatorially propagating branch,
and a full cycle period of 16 yr, which is getting pretty close to the “target” 22yr. But again the
strong high-latitude, poleward-propagating branch has no counterpart in the sunspot butterfly
diagram. Well, no-problemo, we just concentrate the α-effect even more towards the equator,
why not like ∝ sin4 θ cos θ, say? It works, but I hope you are starting to find this general
approach to the problem as silly as I do... let’s try something else instead.

10.2.5 αΩ models with meridional circulation

Meridional circulation can bodily transport the dynamo-generated magnetic field (terms la-
beled “advective transport” in eqs. (10.1)–(10.2)), and therefore, for a (presumably) solar-like
equatorward return flow that is vigorous enough —in the sense of Rm being large enough—
can presumably overpower the Parker-Yoshimura propagation rule embodied in eq. (10.30) and
produce equatorward propagation no matter what the sign of the α-effect is. This is readily
demonstrated in simple αΩ models using a purely radial shear at the core-envelope interface
(see references in bibliography), but with a solar-like differential rotation profile the situation
turns out to be far more complex.

9Animations of the evolving solutions in meridional quadrant can be viewed on the course Web Page.
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Figure 10.6: Northern hemisphere time-latitude (“butterfly”) diagrams for a selection of non-
linear αΩ dynamo solutions including α-quenching, constructed at the depth r/R¯ = 0.7 cor-
responding to the core-envelope interface. Isocontours of toroidal field are normalized to their
peak amplitudes, and plotted for increments ∆B/max(B) = 0.2, with yellow-to-red (green-
to-blue) contours corresponding to B > 0 (< 0). The assumed latitudinal dependence of the
α-effect is on given each panel. Other model ingredients as on Fig. 10.1. Note the co-existence
of two distinct cycles in the solution shown on panel C, with periods differing by about 25%,
which translates in a modulation of the magnetic energy timeseries.
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Figure 10.7: Time-latitude diagrams for the three αΩ solutions depicted on Fig. 10.6, with
meridional circulation now included; the solutions have Rm = 50 (left column), Rm = 200
(middle column), and Rm = 103 (left column). For the turbulent diffusivity value adopted
here, ηT = 5 × 107 m2 s−1, Rm = 200 corresponds to a solar-like circulation speed.

Starting from our three αΩ dynamo solutions of Fig. 10.6, new solutions are now recomputed,
this time including meridional circulation. Results are shown on Fig. 10.7, for three increasing
values of the circulation flow speed, as measured by Rm. At Rm = 50, little difference is seen
with the circulation-free solutions, except for the Cα = +10 solution with α ∝ sin2 θ cos θ,
(Fig. 10.7C), where the equatorial branch is now dominant and the polar branch has shifted to
mid-latitudes and is cyclic with twice the frequency of the equatorial branch. At Rm = 200,
correponding here to a solar-like circulation speed, drastic changes have materialized in all
solutions. The negative Cα solution has now transited to a steady dynamo mode, that in
fact persists to higher Rm values (panels E and H). The Cα = +10 solution with α ∝ cos θ is
decaying at Rm = 200, while the solution with equatorially-concentrated α-effect starts to show
a hint of equatorward propagation at mid-latitudes (panel F). At Rm = 103, the circulation has
overwhelmed the dynamo wave, and both positive Cα solutions show equatorially-propagating
toroidal fields (panels G and I).

Evidently, meridional circulation can have a profound influence on the overall character
of the solutions. The behavioral turnover from dynamo wave-like solutions to circulation-
dominated magnetic field transport sets in when the circulation speed becomes comparable to
the propagation speed of the dynamo wave. In the circulation-dominated regime, the cycle
period loses sensitivity to the assumed turbulent diffusivity value, and becomes determined
primarily by the circulation’s turnover time. This can be seen on Fig. 10.7: at Rm = 50
the solutions on panels (A) and (C) have markedly distinct (primary) cycle periods, while at
Rm = 103 (panels G and I) the cycle periods are nearly identical. Note however that significant
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218 CHAPTER 10. DYNAMO MODELS OF THE SOLAR CYCLE

Figure 10.8: Time-latitude diagrams of the surface radial magnetic field, for increasing values
of the circulation speed, as measured by the Reynolds number Rm. This is an αΩ solution with
the α-effect concentrated at low-latitude (see §10.2 and Fig. 10.6B). Recall that the Rm = 0
solution on panel A exhibits amplitude modulation (cf. Figs. 10.6C).

effects require a large Rm (∼> 103 for the circulation profile used here), which, u0 being fixed by
surface observations, translates into a magnetic diffusivity ηT ∼< 107m2s−1; by most orders-of-
magnitude estimates constructed in the framework of mean-field electrodynamics, this is rather
low.

Meridional circulation can also dominate the spatiotemporal evolution of the radial surface
magnetic field, as shown on Figure 10.8 for a sequence of solutions with Rm = 0, 50, and
200 (corresponding toroidal butterfly diagram at the core-envelope interface are plotted on
Figs. 10.6C and 10.7C, F). In the circulation-free solution (Rm = 0), the equatorward drift
of the surface radial field is a direct reflection of the equatorward drift of the deep-seated
toroidal field (see Fig. 10.6B). With circulation turned on, however, the surface magnetic field
is swept instead towards the pole (Fig. 10.8B), becoming strongly concentrated and amplified
there for solar-like circulation speeds (Rm = 200, Fig. 10.8C) as a consequence of magnetic flux
conservation in a converging flow. This concentrated poloidal field, when advected downwards
to the polar regions of the tachocline, is responsible for the strong polar branch often seen in
the butterfly diagram of dynamo solutions including a rapid meridional circulation (see, e.g.,
Fig. 10.7I).
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10.2.6 Interface dynamos

The α-quenching expression (eq. (10.31)) used in the two preceding sections amounts to saying
that dynamo action saturates once the mean, dynamo-generated field reaches an energy density
comparable to that of the driving turbulent fluid motions, i.e., Beq ∼ √

µ0ρv, where v is the
turbulent velocity amplitude. This appears eminently sensible, since from that point on a
toroidal fieldline would have sufficient tension to resist deformation by cyclonic turbulence,
and so could no longer feed the α-effect. At the base of the solar convective envelope, one
finds Beq ∼ 0.1T, for v ∼ 10m s−1, according to standard mixing length theory of convection.
However, various calculations and numerical simulations have indicated that long before the
mean toroidal field B reaches this strength, the helical turbulence reaches equipartition with
the small-scale, turbulent component of the magnetic field. Such calculations also indicate that

the ratio between the small-scale and mean magnetic components should itself scale as R
1/2
m ,

where Rm = v`/η is a magnetic Reynolds number based on the turbulent speed but microscopic

magnetic diffusivity. This then leads to the alternate quenching expression

α → α(B) =
α0

1 + Rm(B/Beq)2
. (10.32)

known in the literature as strong α-quenching or catastrophic quenching. Since Rm ∼ 108 in
the solar convection zone, this leads to quenching of the α-effect for very low amplitudes ofr
the mean magnetic field, of order 10−5 T. Even though significant field amplification is likely
in the formation of a toroidal flux rope from the dynamo-generated magnetic field, we are now
a very long way from the 1—10T demanded by simulations of buoyantly rising flux ropes and
sunspot formation (see §6.2.3).

A way out of this difficulty was proposed by E.N. Parker under in the form of interface

dynamos. The idea is beautifully simple: if the toroidal field quenches the α-effect, amplify
and store the toroidal field away from where the α-effect is operating! Parker showed that in
a situation where a radial shear and α-effect are segregated on either side of a discontinuity in
magnetic diffusivity taken to coincide with the core-envelope interface, the constant coefficient
αΩ dynamo equations considered already in §9.3 support solutions in the form of travelling
surface waves localized on the discontinuity in diffusivity. The key aspect of Parker’s (linear,
cartesian, analytical) solution is that for supercritical dynamo waves, the ratio of peak toroidal
field strength on either side of the discontinuity surface is found to scale with the diffusivity
ratio as

max(B2)

max(B1)
∼

(
η2

η1

)−1/2

, (10.33)

where the subscript “1” refers to the low-η region below the core-envelope interface, and “2” to
the high-η region above. If one assumes that the envelope diffusivity (η2) is of turbulent origin

then η2 ∼ `v, so that the toroidal field strength ratio then scales as ∼ (v`/η1)
1/2 ≡ R

1/2
m . This

is precisely the factor needed to bypass strong α-quenching.
As an example, Figure 10.9A shows a butterfly diagram for a numerical interface solution

with CΩ = 2.5 × 105, Cα = +10, and a core-to-envelope diffusivity contrast ∆η = 10−2. The
differential rotation and magnetic diffusivity profiles are the same as before, but here the α-
effect is now (even more artificially) concentrated towards the equator, by imposing a latitudinal
dependency α ∼ sin(4θ) for π/4 ≤ θ ≤ 3π/4, and zero otherwise. The poleward propagating
equatorial branch is precisely what one would expect from the combination of positive radial
shear and positive α-effect according to the Parker-Yoshimura sign rule10.

The model does achieve the kind of toroidal field amplification one would like to see in
interface dynamos. This can be seen on Figure 10.9B, which shows radial cuts of the toroidal
field taken at latitude π/8, and spanning half a cycle. Notice how the toroidal field peaks below

10Note however that for this particular choice of α, η and Ω profiles, solutions with negative Cα are non-
oscillatory in most of the [Cα, CΩ, ∆η] parameter space.
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Figure 10.9: A representative interface dynamo model in spherical geometry. This solution
has CΩ = 2.5 × 105, Cα = +10, and a core-to-envelope diffusivity contrast of 10−2. Panel
(A) shows a sunspot butterfly diagram, and panel B a series of radial cuts of the toroidal field
at latitude 15o. The (normalized) radial profiles of magnetic diffusivity, α-effect, and radial
shear are also shown, again at latitude 15o. The core-envelope interface is again at r/R¯ = 0.7
(dotted line), where the magnetic diffusivity varies near-discontinuously. Panels (C) and (D)
show the variations of the core-to-envelope peak toroidal field strength and dynamo period with
the diffusivity contrast, for a sequence of otherwise identical dynamo solutions.
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the core-envelope interface (vertical dotted line), well below the α-effect region and near the
peak in radial shear. Figure 10.9C shows how the ratio of peak toroidal field below and above
rc varies with the imposed diffusivity contrast ∆η. The dashed line is the dependency expected
from eq. (10.33). For relatively low diffusivity contrast, −1.5 ≤ log(∆η) ∼< 0, both the toroidal
field ratio and dynamo period increase as ∼ (∆η)−1/2. Below log(∆η) ∼ −1.5, the max(B)-
ratio increases more slowly, and the cycle period falls. This is basically an electromagnetic
skin-depth effect; unlike in the original picture proposed by Parker, here the poloidal field must
diffuse down a finite distance into the tachocline before shearing into a toroidal component can
commence. With this distance set by our adopted profile of Ω(r, θ), as ∆η becomes very small
there comes a point where the dynamo period is such that the poloidal field cannot diffuse as
deep as the peak in radial shear in the course of a half cycle. The dynamo then runs on a
weaker shear, thus yielding a smaller field strength ratio and weaker overall cycle.

10.3 Babcock-Leighton models

Solar cycle models based on what is now called the Babcock-Leighton mechanism were first
developed in the early 1960’s, yet they were temporarily eclipsed by the rise of mean-field elec-
trodynamics a few years later. Their revival was motivated in part by the fact that synoptic
magnetographic monitoring over solar cycles 21 and 22 has offered strong evidence that the
surface polar field reversals are indeed triggered by the decay of active regions (see Fig. 6.12).
The crucial question is whether this is a mere side-effect of dynamo action taking place inde-
pendently somewhere in the solar interior, or a dominant contribution to the dynamo process
itself.

Figure 10.10 illustrates the basic idea of the Babcock-Leighton mechanism. Consider the
two bipolar magnetic regions (BMR) sketched on part (A). Recall that each of these is the
photospheric manifestation of a toroidal flux rope emerging as an Ω-loop. The leading (trailing)
component of each BMR is that located ahead (behind) in the direction of the Sun’s rotation
(from E to W). Joy’s Law (§6.2.2) states that, on average, the leading component is located
at lower latitude than the trailing component, so that a line joining each component of the
pair makes an angle with respect to the E-W line. Hale’s polarity law also inform us that the
leading/trailing magnetic polarity pattern is opposite in each hemisphere, a reflection of the
equatorial antisymmetry of the underlying toroidal flux system.

Horace W. Babcock demonstrated empirically from his observation of the sun’s surface
solar magnetic field that as the BMRs decay (presumably under the influence of turbulent
convection), the trailing components drift to higher latitudes, leaving the leading components
at lower latitudes, as sketched on Fig. 10.10B. Babcock also argued that the trailing polarity
poloidal flux released to high latitude by the cumulative effects of the emergence and subsequent
decay of many BMRs was responsible for the reversal of the sun’s large-scale dipolar field.
More germane from the dynamo point of view, the Babcock-Leighton mechanism taps into
the (formerly) toroidal flux in the BMR to produce a poloidal magnetic component. To the
degree that a positive dipole moment is being produced from a toroidal field that is positive in
the N-hemisphere, this is a bit like a positive α-effect in mean-field theory. In both cases the
Coriolis force is the agent imparting a twist on a magnetic field; with the α-effect this process
occurs on the small spatial scales and operates on individual magnetic fieldlines. In contrast,
the Babcock-Leighton mechanism operates on the large scales, the twist being imparted via the
the Coriolis force acting on the flow generated along the axis of a buoyantly rising magnetic
flux tube.

10.3.1 Sunspot decay and the Babcock-Leighton mechanism

Evidently this mechanism can operate as sketched on Figure 10.10 provided the magnetic flux
in the leading and trailing components of each (decaying) BMR are separated in latitude faster
than they can diffusively cancel with one another. Moreover, the leading components must
end up at low enough latitudes for diffusive cancellation to take place across the equator. This
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Figure 10.10: Cartoon of the Babcock-Leighton mechanism. On the left, two bipolar magnetic
regions (BMR) have emerged, one in each hemisphere, with opposite leading/following polarity
patterns, as per Hale’s polarity Law. After some time the BMRs have decayed, the leading
components have reconnected across the equator, while the trailing components have moved to
higher latitudes. The net effect is the buildup of an hemispheric flux of opposite polarity in the
N and S hemisphere, i.e., a net dipole moment (see text).

is not trivial to achieve, and we now take a more quantitative looks at the Babcock-Leighton
mechanism, first with a simple 2D numerical model.

The starting point of the model is the grand sweeping assumption that, once the sunspots
making up the bipolar active region lose their cohesiveness, their subsequent evolution can
be approximated by the passive advection and resistive decay of the radial magnetic field
component. This drastic simplification does away with any dynamical effect associated with
magnetic tension and pressure within the spots, as well as any anchoring with the underlying
toroidal flux system. The model is further simplified by treating the evolution of Br as a two-
dimensional transport problem on a spherical surface corresponding to the solar photosphere.
Consequently, no subduction of the radial field can take place.

Even under these simplifying assumptions, the evolution is still governed by the MHD
induction equation, specifically its r-component. The imposed flow is made of an axisymmetric
“meridional circulation” and differential rotation:

u(θ) = 2u0 sin θ cos θêθ + ΩS(θ)R sin θêφ , (10.34)

where ΩS is the surface differential rotation profile used in the preceeding chapter (see eq. (10.9)).
Note that ∇ · u 6= 0, a direct consequence of working on a spherical surface without possibil-
ity of subduction. Introducing a new latitudinal variable µ = cos θ and neglecting all radial
derivatives, the r-component of the induction equation (evaluated at r = R) becomes:

∂Br

∂t
=

2u0

R
(1 − µ2)

[

Br + µ
∂Br

∂µ

]

− ΩS(1 − µ2)1/2 ∂Br

∂φ

+
∂

∂µ

[
η

R2

∂Br

∂µ

]

+
∂

∂φ

[
η

R2(1 − µ2)

∂Br

∂φ

]

, (10.35)

with η being the magnetic diffusivity. As usual, we work with the nondimensional form of
eq. (10.35), obtained by expressing time in units of τc = R/u0, i.e., the advection time associated
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with the meridional flow. This leads to the appearance of the following two nondimensional
numbers in the scaled version of eq. (10.35):

Rm =
u0R

η
, Ru =

u0

Ω0R
. (10.36)

Using Ω0 = 3×10−6 rad s−1, u0 = 15m s−1, and η = 6×108 m2s−1 yields τc ' 1.5 yr, Rm ' 20
and Ru ' 10−2. The former is really a measure of the (turbulent) magnetic diffusivity, and is the
only free parameter of the model, as Ru is well constrained by surface Doppler measurements.
The corresponding magnetic diffusion time is τη = R2/η ' 26 yr, so that τc/τη ¿ 1.

Figure 10.11 shows a representative solution. The initial condition (panel A, t = 0) mimics
a series of eight BMRs, four per hemisphere, equally spaced 90o apart at latitudes ±45◦. Each
BMR consists of two Gaussian profiles of opposite sign and adding up to zero net flux, with
angular separation d = 10◦ and with a line joining the center of the two Gaussians tilted with
respect to the E-W direction11 by an angle γ, itself related to the latitude θ0 of the BMR’s
midpoint according to the Joy’s Law-like relation:

sin γ = 0.5 cos θ0 . (10.37)

The symmetry of the initial condition means that the problem can be solved in a single hemi-
sphere with Br = 0 enforced in the equatorial plane, in a 90◦ wide longitudinal wedge with
periodic boundary conditions in φ.

The combined effect of circulation, diffusion and differential rotation is to concentrate the
magnetic polarity of the trailing “spot” to high latitude, while the polarity of the leading spot
remains near the original location of the active region. This is readily seen upon calculating the
longitudinally averaged latitudinal profiles of Br, as shown on Fig. 10.11F for the five successive
epochs shown on (A)—(E). The poleward displacement of the trailing polarity “bump” is the
equivalent to Babcock’s original cartoon (cf. 10.10). The time required to achieve this here is
t/τc ∼ 1, and scales12 as (Rm/Ru)1/3.

We can use these simulation results to estimate the “efficiency” of the Babcock-Leighton
mechanism. First we define the mean signed and unsigned magnetic flux:

Φ =| 〈Br〉 | , F = 〈| Br |〉 , (10.38)

where the averaging operator on the spherical surface is simply

〈Br〉 = −
∫ 2π

0

∫ +1

−1

Brdµdφ . (10.39)

Figure 10.12 shows the time-evolution of the signed (Φ, solid line) and unsigned (F , dashed)
fluxes for the solution of Fig. 10.11. The unsigned flux decreases rapidly at first, then settles into
a slower decay phase13. Meanwhile a small but significant hemispheric signed flux is building
up. This is a direct consequence of (negative) flux cancellation across the equator, mediated
by diffusion, and is the Babcock-Leighton mechanism in action. Note the dual, conflicting role
of diffusion here; it is needed for cross-hemispheric flux cancellation, yet must be small enough
to allow the survival of a significant trailing polarity flux on timescales of order τc.

The efficiency (Ξ) of the Babcock-Leighton mechanism, i.e., converting toroidal to poloidal
field, can be defined as the ratio of the signed flux at t = τc to the BMR’s initial unsigned
flux14:

Ξ = 2
Φ(t = τc)

F (t = 0)
. (10.40)

11Remember that this is meant to represent the result of a toroidal flux rope erupting through the surface, so
that in this case the underlying toroidal field is positive, which is the polarity the polarity of the trailing “spot”,
as measured with respect to the direction of rotation, from left to right here.

12Can you figure that one out?
13This should remind you of something encountered a few chapter ago...
14Can you figure out why a factor of two was inserted on the RHS of eq. (10.40)?
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Figure 10.11: Evolution of the surface radial magnetic field component of a BMR located at
15 degrees latitude, as described by the 2D advection-diffusion equation (10.35). Parameter
values are Ru = 10−2 and Rm = 50, with time given in units of τc = R/u0. The bottom right
panel shows the evolution of the longitudinally averaged radial magnetic field.
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Figure 10.12: Evolution of the signed (solid line) and unsigned (dashed line) magnetic flux for
BMRs emerging at latitudes 15 degrees.

Note that Ξ is independent of the assumed initial field strength of the BMRs since eq. (10.35)
is linear in Br. Looking back at Fig. 10.12, one would eyeball the efficiency at about 1% in
converting the BMR flux to polar cap signed flux. This conversion efficiency turns out to be a
rather complex function of BMR parameters; it is expected to increases with increasing tilt γ,
and therefore should increasing with latitudes as per Joy’s Law, yet proximity to the equator
favors transequatorial diffusive flux cancellation of the leading component; moreover, having
duθ/dθ < 0 favors the separation of the two BMR components, thus minimizing diffusive flux
cancellation between the leading and trailing components.

10.3.2 Axisymmetrization revisited

Take another look at Fig. 10.11; at t = 0 (panel A) the surface magnetic field distribution is
highly non-axisymmetric. By t/τc = 1 (panel E), however, the field distribution shows a far less
pronounced φ-dependency, especially at high latitudes where in fact Br is nearly axisymmetric.
This should remind you of something we encountered earlier: axisymmetrization of a non-
axisymmetric magnetic field by an axisymmetric differential rotation (§7.3.5), the spherical
analog of flux expulsion. In fact a closer look at the behavior of the unsigned flux on Fig. 10.12A
(dashed line) already shows a hint of the two-timescale behavior we have come to expect of
axisymmetrization: the rapid destruction of the non-axisymmetric flux component and slower
(∼ τη) diffusive decay of the remaining axisymmetric flux distribution.

Since the spherical harmonics represent a complete and nicely orthonormal functional basis
on the sphere, it follows that the initial condition for the simulation of Fig. 10.11 can be written
as

B0
r (θ, φ) =

∞∑

l=0

+l∑

m=−l

blmYlm(θ, φ) , (10.41)
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where the Ylm’s are the spherical harmonics:15

Ylm(θ, φ) =

√

2l + 1

4π

(l − m)!

(l + m)!
Pm

l (cosθ)eimφ , (10.42)

and with the coefficients blm given by

blm =

∫ 2π

0

∫ π

0

B0
r (r, θ)Y ∗

lm(θ, φ) , (10.43)

where the “∗” indicates complex conjugation16. Now, axisymmetrization will wipe all m 6= 0
modes, leaving only the m = 0 modes to decay away on the slower diffusive timescale17.
Therefore, at the end of the axisymmetrization process, the radial field distribution now has
the form:

Br(θ) =

∞∑

l=0

√

2l + 1

4π
bl0Pl(cos θ) , t/τc À Ru . (10.44)

which now describes an axisymmetric poloidal magnetic field18

10.3.3 Dynamo models based on the Babcock-Leighton mechanism

So now we understand how the Babcock-Leighton mechanism can provide a poloidal source
term in eq. (10.1). Now we need to construct a solar cycle model. One big difference with
the αΩ models considered in §10.2 is that the two source regions are now spatially segregated:
production of the toroidal field takes place in the tachocline, as before, but now production of
the poloidal field takes place in the surface layers.

The mode of operation of a generic solar cycle model based on the Babcock-Leighton mech-
anism is illustrated in cartoon form on Figure 10.13. Let Pn represent the amplitude of the
high-latitude, surface (“A”) poloidal magnetic field in the late phases of cycle n, i.e., after the
polar field has reversed. The poloidal field Pn is advected downward by meridional circula-
tion (A→B), where it then starts to be sheared by the differential rotation while being also
advected equatorward (B→C). This leads to the growth of a new low-latitude (C) toroidal flux
system, Tn+1, which becomes buoyantly unstable (C→D) and starts producing sunspots (D),
which subsequently decay and release the poloidal flux Pn+1 associated with the new cycle
n + 1. Poleward advection and accumulation of this new flux at high latitudes (D→A) then
obliterates the old poloidal flux Pn, and the above sequence of steps begins anew. Meridional
circulation clearly plays a key role in this “conveyor belt” model of the solar cycle, by providing
the needed link between the two spatially segregated source regions.

10.3.4 The Babcock-Leighton poloidal source term

The definition of the Babcock-Leighton source term S to be inserted in eq. (10.1) is evidently
the crux of the model. Consider the following:

S(r, θ, B(t)) = s0f(r) sin θ cos θ

[

1 −
(

B(rc, θ, t)

B0

)2
]−1

B(rc, θ, t) , (10.45)

with

f(r) =
1

2

[

1 + erf

(
r − r2

d2

)] [

1 − erf

(
r − r3

d3

)]

, (10.46)

15Better rewrite those factorials differently when trying a numerical implementation...
16What are the non-zero blm for the inclined dipole treated in §7.3.5?
17With u = 0, the decay rate of those remaining modes are given by the eigenvalues of the 2D pure resistive

decay problem, much like in §7.1.
18How would you go about computing the toroidal-to-poloidal efficiency factor Ξ within this modeling frame-

work?
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Figure 10.13: Operation of a solar cycle model based on the Babcock-Leighton mechanism. The
diagram is drawn in a meridional quadrant of the sun, with streamlines of meridional circulation
plotted in blue. Poloidal field having accumulated in the surface polar regions (“A”) at cycle
n must first be advected down to the core-envelope interface (dotted line) before production of
the toroidal field for cycle n+1 can take place (B→C). Buoyant rise of flux rope to the surface
(C→D) is a process taking place on a much shorter timescale.

where s0 is a numerical coefficient setting the strength of the source term (corresponding dy-
namo number being CS = s0R/η0), and with the various remaining numerical coefficient taking
the values r2/R = 0.95, r3/R = 1, d2 = d3 = 10−2R, and B0 = 10T. Note that the dependency
on B is non-local, i.e., it involves the toroidal field evaluated at the core-envelope interface rc,
(but at the same polar angle θ). The combination of error functions concentrate the source
term immediately beneath the surface, which is fine. The nonlocality in B represents the fact
that the strength of the source term is proportional to the field strength in the bipolar active re-
gion, itself presumably reflecting the strength of the diffuse toroidal field near the core-envelope
interface, where the magnetic flux ropes eventually giving rise to the bipolar active region origi-
nate. The nonlocal quenching nonlinearity reflects the fact that as the strength of the flux rope
reaches about 10T, the flux rope emerges without the tilt essential to the Babcock-Leighton
mechanism. The cos θ dependency is a first order description of Joy’s Law, i.e., the tilt of active
regions increases with latitude. Notably missing in eq. (10.45) is some sort of lower threshold
on S, to mimic the fact that flux ropes with field strengths lower than a few tens of teslas
either fail to be destabilized in a short enough timescale, rise to the surface at high latitudes
and without systematic tilt patterns, and/or fail altogether to survive their rise through the
convective envelope.

At any rate, inserting this source term into eq. (10.1) is what we need to bypass Cowling’s
theorem and produce a viable dynamo model. The nonlocality of S notwithstanding, at this
point the model equations are definitely mean-field like. Yet no averaging on small scales is
involved. What is implicit in eq. (10.45) is some sort of averaging process at least in longitude
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Figure 10.14: Time-latitude diagrams of the surface toroidal field at the core-envelope interface
(panel A), and radial component of the surface magnetic field (panel B) in a Babcock-Leighton
model of the solar cycle. This solution is computed for solar-like differential rotation and
meridional circulation, the latter here closing at the core-envelope interface. The core-to-
envelope contrast in magnetic diffusivity is ∆η = 1/300, the envelope diffusivity ηT = 2.5 ×
107 m2 s−1, and the (poleward) mid-latitude surface meridional flow speed is u0 = 16m s−1.

and time.

10.3.5 A sample solution

Figure 10.14 shows N-hemisphere time-latitude diagrams for the toroidal magnetic field at the
core-envelope interface (panel A), and the surface radial field (panel B), for a representative
Babcock-Leighton dynamo solutions computed following the model implementation described
above. The equatorward advection of the toroidal field by meridional circulation is here clearly
apparent, as well as the concentration of the surface radial field near the pole. Note how the
polar radial field changes from negative (blue) to positive (red) at just about the time of peak
positive toroidal field at the core-envelope interface; this is the phase relationship inferred from
synoptic magnetograms (e.g., Fig. 6.12 herein) as well as observations of polar faculae

Although it exhibits the desired equatorward propagation, the toroidal field butterfly dia-
gram on Fig. 10.14A peaks at much higher latitude (∼ 45◦) than the sunspot butterfly diagram
(∼ 15◦–20◦, cf. Fig. 6.7). This occurs because this is a solution with high magnetic diffusivity
contrast, where meridional circulation closes at the core-envelope interface, so that the latitudi-
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nal component of differential rotation dominates the production of the toroidal field. This dif-
ficulty can be alleviated by letting the meridional circulation penetrate below the core-envelope
interface, but this often leads to the production of a strong polar branches, again a consequence
of both the strong radial shear present in the high-latitude portion of the tachocline, and of the
concentration of the poloidal field taking place in the high latitude-surface layer prior to this
field being advected down into the tachocline by meridional circulation (viz. Figs. 10.13 and
10.14)

A noteworthy property of this class of model is the dependency of the cycle period on model
parameters; over a wide portion of parameter space, the meridional flow speed is found to be the
primary determinant of the cycle period (P ). This behavior arises because, in these models, the
two source regions are spatially segregated, and the time required for circulation to carry the
poloidal field generated at the surface down to the tachocline is what effectively sets the cycle
period. The corresponding time delay introduced in the dynamo process has rich dynamical
consequences, to be discussed in §10.5 below. On the other hand, P is found to depend very
weakly on the assumed values of the source term amplitude s0, and turbulent diffusivity ηT ;
the latter is is very much unlike the behavior typically found in mean-field models, where P
scales nearly as η−1

T in α-quenched αΩ mean-field models19.

10.4 Models based on HD and MHD instabilities

In the presence of stratification and rotation, a number of hydrodynamical (HD) and magneto-
hydrodynamical (MHD) instabilities associated with the presence of a strong toroidal field in
the stably stratified, radiative portion of the tachocline can lead to the growth of disturbances
with a net helicity, which under suitable circumstances can produce a toroidal electromotive
force, and therefore act as a source of poloidal field. Different types of solar cycle models
have been constructed in this manner, the two most promising ones being briefly reviewed in
this section. In both cases the resulting dynamo models end up being described by something
closely resembling our now well-known axisymmetric mean-field dynamo equations, the novel
poloidal field regeneration mechanisms being once again subsumed in an α-effect-like source
term appearing of the RHS of eq. (10.1).

10.4.1 Models based on shear instabilities

Hydrodynamical stability analyses of the latitudinal shear profile in the solar tachocline indi-
cate that the latter may be unstable to non-axisymmetric perturbations, with the instabilities
planforms characterized by a net kinetic helicity, which, loosely inspired by eq. (9.56), allows the
construction of an azimuthally-averaged α-effect-like source term that is directly proportional
to the large-scale toroidal component, just as in mean-field electrodynamics.

Figure 10.15 shows representative time-latitude diagrams of the toroidal field at the core-
envelope interface, and surface radial field. This is a solar-like solution with a mid-latitude
surface meridional (poleward) flow speed of 17 m s−1, envelope diffusivity ηT = 5 × 107 m2

s−1, a core-to-envelope magnetic diffusivity contrast ∆η = 10−3, and a simple α-quenching-like
amplitude nonlinearity20. Note the equatorward migration of the deep toroidal field, set here
by the meridional flow in the deep envelope, and the poleward migration and intensification of
the surface poloidal field, again a direct consequence of advection by meridional circulation, as
in the mean-field dynamo models discussed in §10.2.5) in the advection-dominated, high Rm

regime. The three-lobe structure of each spatiotemporal cycle in the butterfly diagram reflects
laittudinal structure in kinetic helicity profiles associated with the instability planforms.

The primary weakness of these models, in their present form, is their reliance on a linear
stability analysis that altogether ignores the destabilizing effect of magnetic fields, especially

19OK hold it, how do you reconcile this statement with the near independence of the cycle period on Cα for
the periods of α-quenched models plotted in Fig. 10.3B (dimonds)?

20See the Dikpati & Gilman (2001) paper cited in the bibliography for more details.
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Figure 10.15: Time-latitude “butterfly” diagrams of the toroidal field at the core-envelope
interface (left), and surface radial field (right) for a representative dynamo solution with the
tachocline α-effect of Dikpati & Gilman. This solution has a solar-like half-period of eleven
years. Note how the deep toroidal field peaks at very low latitudes, in good agreement with
the sunspot butterfly diagram. For this solution the equatorial deep toroidal field and polar
surface radial field lag each other by ∼ π, but other parameter settings can bring this lag closer
to the observed π/2. Diagrams kindly provided by M. Dikpati.

since MHD stability analyses have shown that the MHD version of the instability is easier to
excite for toroidal field strengths of the magnitude believe to characterize the solar tachocline,
Moreover, the planforms in the MHD version of the instability are highly dependent on the
assumed underlying toroidal field profile, so that the kinetic helicity can be expected to (1)
have a time-dependent latitudinal distribution, and (2) be intricately dependent on the mean
toroidal field in a manner that is unlikely to be reproduced by a simple amplitude-limiting
quenching formula.

10.4.2 Models based on flux tube instabilities

As briefly discussed in §6.2.3, modelling of the rise of thin toroidal flux tubes throughout the
solar convection zone has met with great success, in particular in reproducing the latitudes of
emergence and tilt angles of bipolar sunspot pairs. It is also possible to use the thin-flux tube
approximation to study the stability of toroidal flux ropes stored immediately below the base of
the convection zone, to investigate the conditions under which they can actually be destabilized
and give rise to sunspots. Once the tube destabilizes, calculations show that under the influence
of rotation, the correlation between the flow and field perturbations is such as to yield a mean
azimuthal electromotive force, equivalent to a positive α-effect in the N-hemisphere.
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III
I

II

Figure 10.16: Stability diagram for toroidal magnetic flux tubes located in the overshoot layer
immediately beneath the core-envelope interface. The plot shows contours of growth rates
in the latitude-field strength plane. The gray scale encodes the azimuthal wavenumber of the
mode with largest growth rate, and regions left in white are stable. Dynamo action is associated
with the regions with growth rates ∼ 1 yr, here labeled I and II. Diagram kindly provided by
A. Ferriz-Mas.

Figure 10.16 shows a stability diagram for this flux tube instability, in the form of growth
rate contours in a 2D parameter space comprised of flux tube strength and latitudinal position
at the core-envelope interface. The key is now to identify regions where weak instability arises
(growth rates ∼> 1 yr). In the case shown on Fig. 10.16, these regions are restricted to flux tube
strengths in the approximate range 6—15T.

Although it has not yet been comprehensively studied, this dynamo mechanism has a number
of very attractive properties. It operates without difficulty in the strong field regime (in fact
in requires strong fields to operate). It also naturally yields dynamo action concentrated at
low latitudes. Difficulties include the need of a relatively finely tuned magnetic diffusivity to
achieve a solar-like dynamo period, and a relatively finely-tuned level of subadiabaticity in the
overshoot layer for the instability to kick on and off at the appropriate toroidal field strengths.

The effects of meridional circulation in this class of dynamo models has yet to be investi-
gated; this should be particularly interesting, since both analytic calculations and numerical
simulations suggest a positive α-effect in the Northern-hemisphere, which should then produce
poleward propagation of the dynamo wave at low latitude. Meridional circulation could then
perhaps produce equatorward propagation of the dynamo magnetic field even with a positive
α-effect, as it does in true mean-field models (cf. §10.2.5).

As an interesting aside, note on Fig. 10.16 how flux tubes located at high latitudes are always
stable; this is due to the stabilizing effect of magnetic tension associated with high curvature
of the toroidal flux ropes. Even if flux ropes were to form there, they may not necessarily show
up at the surface as sunspots. This should be kept in mind when comparing time-latitudes
diagrams produced by this or that dynamo model to the sunspot butterfly diagram; the two
may not map onto one another as well as often implicitly assumed.
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10.5 Nonlinearities, fluctuations and intermittency

Given that the basic physical mechanism(s) underlying the operation of the solar cycle are not
yet agreed upon, attempting to understand the origin of the observed fluctuations of the solar
cycle may appear to be a futile undertaking. Nonetheless, work along these lines continues at
full steam in part because of the high odds involved: the frequencies of all eruptive phenomena
relevant to space weather are strongly modulated by the amplitude of the solar cycle; varying
levels of solar activity may contribute significantly to climate change; and certain aspects of
the observed fluctuations may actually hold important clues as to the physical nature of the
dynamo process.

10.5.1 Cycle modulation through stochastic forcing

An obvious means of producing amplitude fluctuations in dynamo models is to introduce
stochastic forcing in the governing equations. Sources of stochastic “noise” certainly abound
in the solar interior; large-scale flows in the convective envelope, such as differential rotation
and meridional circulation, are observed to fluctuate, an unavoidable consequence of dynamical
forcing by the surrounding, vigorous turbulent flow. This convection is known to produce its
own small-scale magnetic field (viz. Fig. 8.13), and amounts to a form of rapidly varying zero-
mean “noise” superimposed on the slowly-evolving mean magnetic field. This can be readily
incorporated into dynamo models by introducing, on the RHS of the governing equations, an
additional zero-mean source term that varies randomly from node-to-node and from one time
step to the next.

In addition, the azimuthal averaging implicit in all models of the solar cycle considered
above will yield dynamo coefficients showing significant deviations about their mean values,
as a consequence of the spatiotemporally discrete nature of the physical events (e.g., cyclonic
updrafts, sunspot emergences, flux rope destabilizations, etc.) whose collective effects add
up to produce a mean electromotive force. The impact of these statitical fluctuations about
the mean can be modeled in a number of ways. Perhaps the most straightforward is to let the
dynamo number fluctuate randomly in time about some pre-set mean value. By most statistical
estimates, the expected magnitude of these fluctuations is quite large, i.e., many times the mean
value, a conclusion is also supported by numerical simulations One typically also introduces
a coherence time during which the dynamo number retains a fixed value. At the end of this
time interval, this value is randomly readjusted. Depending on the dynamo model at hand,
the coherence time can be related to the lifetime of convective eddies (α-effect-based mean-field
models), to the decay time of sunspots (Babcock-Leighton models), or to the growth rate of
instabilities (hydrodynamical shear or buoyant MHD instability-based models).

Figure 10.17 shows some representative results for three αΩ dynamo solutions with fluc-
tuation in the dynamo number Cα ranging from ±50% (blue) to ±200% (red). While the
correlation time amounts here to only 5% of the half-cycle period, note on Fig. 10.17A how
modulations on much longer timescales appear in the magnetic energy time series. As can be
seen on Fig. 10.17B, the fluctuations also lead to a spread in the cycle period, although here
little (anti)correlation is seen with the cycle’s amplitude. Here both the mean cycle period and
amplitude increase with increasing fluctuation amplitude.

In linear αΩ near criticality, noise can introduce an anticorrelation between cycle ampli-
tude and duration that is reminiscent of the Waldmaier Rule (Fig. 6.6). Unfortunately, this
interesting result in general does not carry over to nonlinearly-saturated αΩ dynamo solu-
tions, although it has been noted in at least one Babcock-Leighton solar cycle model. See the
bibliography for entry points into this vast literature.

10.5.2 Cycle modulation through the Lorentz force

The dynamo-generated magnetic field will, in general, produce a Lorentz force that will tend to
oppose the driving fluid motions. This is a basic physical effect that should be included in any
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Figure 10.17: Stochastic fluctuations of the dynamo number in an αΩ mean-field dynamo
solution. The reference, unperturbed solution is the same as that plotted of Fig. 10.6D, except
that is uses a lower value for the dynamo number, Cα = −5. Panel (A) shows magnetic
energy time series for three solutions with increasing fluctuation amplitudes, while panel (B)
shows a correlation plot of cycle amplitude and duration, as extracted from a time series of the
toroidal field at the core-envelope interface (r/R = 0.7) in the model. Solutions are color-coded
according to the relative amplitude δCα/Cα of the fluctuations in the dynamo number. Line
segments on panel (B) indicate the mean cycle amplitudes and durations for the three solutions.
The correlation time of the noise amounts here to about 5% of the mean half-cycle period in
all cases.

phy6795v08.tex, December 4, 2008 Paul Charbonneau, Université de Montréal
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dynamo model. It is not all trivial to do so, however, since in a turbulent environment both
the fluctuating and mean components of the magnetic field can affect both the large-scale flow
components, as well as the small-scale turbulent flow providing the Reynolds stresses powering
the large-scale flows. One must thus distinguish between two (related) amplitude-limiting
mechanisms:

1. Lorentz force associated with the mean magnetic field directly affecting large-scale flow
(sometimes called the “Malkus-Proctor effect”);

2. Large-scale magnetic field indirectly affecting large-scale flow via effects on small-scale
turbulence and associated Reynolds stresses (sometimes called “Λ-quenching”)

Introducing magnetic backreaction on differential rotation and/or meridional circulation is
a tricky business, because one must then also, in principle, provide a model for the Reynolds
stresses powering the large-scale flows in the solar convective envelope as well as a procedure
for computing magnetic backreaction on these. This rapidly leads into the unyielding realm of
MHD turbulence, although algebraic “Λ-quenching” formulae akin to α-quenching have been
proposed based on specific turbulence models. Alternately, one can add an ad hoc source term
to the RHS of eq. (1.80), designed in such a way that in the absence of the magnetic field,
the desired solar-like large-scale flow is obtained. As a variation on this theme, one can simply
divide the large-scale flow into two components, the first (U) corresponding to some prescribed,
steady profile, and the second (U′) to a time-dependent flow field driven by the Lorentz force

u = U(x) + U′(x, t,B) , (10.47)

with the (non-dimensional) governing equation for U′ including only the Lorentz force and a
viscous dissipation term on its RHS. If u amounts only to differential rotation, then U′ must
obey a (nondimensional) differential equation of the form

∂U′

∂t
=

Λ

4πρ
(∇× B) × B + Pm∇2U′ (10.48)

where time has been scaled according to the magnetic diffusion time τ = R2
¯/ηT , as before.

Two dimensionless parameters appear in eq. (10.48). The first (Λ) is a numerical parameter
measuring the influence of the Lorentz force. The second, Pm = ν/η, is the magnetic Prandtl

number. It measures the relative importance of viscous and Ohmic dissipation. When Pm ¿ 1,
large velocity amplitudes in U′ can be produced by the dynamo-generated mean magnetic
field. This effectively introduces an additional, long timescale in the model, associated with the
evolution of the magnetically-driven flow; the smaller Pm, the longer that timescale.

The majority of studies published thus far and using this approach have only considered
the nonlinear magnetic backreaction on differential rotation. This has been shown to lead to a
variety of behaviors, including amplitude and parity modulation, periodic or aperiodic, as well
as intermittency (more on the latter in §10.5.4). It has been argued that amplitude modulation
in such models can be divided into two main classes:

1. Type-I modulation corresponds to a nonlinear interaction between modes of different
parity, with the Lorenz Force-mediated flow variations controlling the transition from one
mode to another;

2. Type-II modulation refers to an exchange of energy between a single dynamo mode (of
some fixed parity) with the flow field. This leads to quasiperiodic modulation of the basic
cycle, with the modulation period controlled by the magnetic Prandtl number.

Both types of modulation can co-exists in a given dynamo model, leading to a rich over-
all dynamical behavior. Figure 10.18 shows two butterfly diagrams produced by a nonlinear
mean-field interface model21. The model is defined on cartesian slab with a reference differential

21For details on this model see paper by Tobias (1997) cited in the bibliography.
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rotation varying only with depth, and includes backreaction on the differential rotation accord-
ing to the procedure described above. The model exhibits strong, quasi-periodic modulation
of the basic cycle, leading to epochs of strongly reduced amplitude. Note how the dynamo can
emerge from such epochs with strong hemispheric asymmetries (top panel), or with a different
parity (bottom panel). It is not clear, at this writing, to what degree these behaviors are truly
generic, as opposed to model-dependent.

The differential rotation can also be supressed indirectly by magnetic backreaction on the
small-scale turbulent flow that produce the Reynolds stresses driving the large-scale mean flow.
Inclusion of this so-called “Λ-quenching” in mean-field dynamo models, alone or in conjunction
with other amplitude-limiting nonlinearities, has also been shown to lead to a variery of periodic
and aperiodic amplitude modulations, provided the magnetic Prandtl number is small22. This
type of models stand or fall with the turbulence model they use to compute the various mean-
field coefficients, and it is not yet clear which aspects of the results are truly generic to Λ-
quenching.

The dynamical backreaction of the large-scale magnetic field on meridional circulation has
received comparatively little attention. The few calculations published so far23 suggest that
diffuse toroidal magnetic fields of strength up to 0.1T can probably be advected equatorward at
the core-envelope interface That it can indeed do so is crucial models relying on the meridional
flow to produce equatorward propagation of magnetic fields as the cycle unfolds.

10.5.3 Cycle modulation through time delays

It was already noted that in solar cycle models based on the Babcock-Leighton mechanism of
poloidal field generation, meridional circulation effectively sets —and even regulates— the cycle
period. In doing so, it also introduces a long time delay in the dynamo mechanism, “long” in
the sense of being comparable to the cycle period. This delay originates with the time required
for circulation to advect the surface poloidal field down to the core-envelope interface, where the
toroidal component is produced (A→C on Fig. 10.13). In contrast, the production of poloidal
field from the deep-seated toroidal field (C→D), is a “fast” process, growth rates and buoyant
rise times for sunspot-forming toroidal flux ropes being of the order of a few months. The first,
long time delay turns out to have important dynamical consequences.

The long time delay inherent in B-L models of the solar cycle allows a formulation of cycle-
to-cycle amplitude variations in terms of a simple one-dimensional iterative map. Working in
the kinematic regime, neglecting resistive dissipation, and in view of the conveyor belt argument
of §10.3, the toroidal field strength (Tn+1) at cycle n+1 is assumed to be linearly proportional
to the poloidal field strength (Pn) of cycle n, i.e.,

Tn+1 = aPn . (10.49)

Now, because flux eruption is a fast process, the strength of the poloidal field at cycle n + 1 is
(nonlinearly) proportional to the toroidal field strength of the current cycle:

Pn+1 = f(Tn+1)Tn+1 . (10.50)

Here the “Babcock-Leighton” function f(Tn+1) measures the efficiency of surface poloidal field
production from the deep-seated toroidal field. Substitution of eq. (10.49) into eq. (10.50) leads
immediately to a one-dimensional iterative map:

pn+1 = αf(pn)pn , (10.51)

where the pn’s are normalized amplitudes, and the normalization constants as well as the
constant a in eq. (10.49) have been absorbed into the definition of the map’s parameter α,

22See, e.g., the paper by Küker et al. (1999) cited in the bibliography.
23See papers by Rempel (2001, 2002) cited in the bibliography.
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Figure 10.18: Amplitude and parity modulation in a dynamo model including magnetic backre-
action on the differential rotation. These are the usual time-latitude diagrams for the toroidal
magnetic field, now covering both solar hemispheres, and exemplify type I (bottom) and type
II (top) modulation arising in nonlinear dynamo models with backreaction on the differential
rotation (see text). Figure kindly provided by S.M. Tobias.
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here operationally equivalent to a dynamo number. We consider here the following nonlinear
function

f(p) =
1

4

[

1 + erf

(
p − p1

w1

)] [

1 − erf

(
p − p2

w2

)]

, (10.52)

with p1 = 0.6, w1 = 0.2, p2 = 1.0, and w2 = 0.8. This catches an essential feature of the B-L
mechanism, namely the fact that it can only operate in a finite range of toroidal field strength.

A bifurcation diagram for the resulting iterative map is presented on Figure 10.19A. For a
given value of the map parameter α, the diagram gives the locus of the amplitude iterate pn

for successive n values. The “critical dynamo number” above which dynamo action becomes
possible, corresponds here to α = 0.851 (pn = 0 for smaller α values). For 0.851 ≤ α ≤
1.283, the iterate is stable at some finite value of pn, which increases gradually with α. This
corresponds to a constant amplitude cycle. As α reaches 1.283, period doubling occurs, with the
iterate pn alternating between high and low values (e.g., pn = 0.93 and pn = 1.41 at α = 1.4).
Further period doubling occurs at α = 1.488, then at α = 1.531, then again at α = 1.541, and
ever faster until a point is reached beyond which the amplitude iterate seems to vary without
any obvious pattern (although within a bounded range); this is in fact a chaotic regime.

As in any other dynamo model where the source regions for the poloidal and toroidal
magnetic field components are spatially segregated, the type of time delay considered here is
unavoidable. The B-L model is just a particularly clear-cut example of such a situation. One
is then led to anticipate that the map’s rich dynamical behavior should find its counterpart
in the original, arguably more realistic spatially-extended, diffusive axisymmetric model that
inspired the map formulation. Remarkably, this is indeed the case.

Fig. 10.19B shows a bifurcation diagram, conceptually equivalent to that shown on part A,
but now constructed from a sequence of numerical solutions of the Babcock-Leighton model
discussed earlier in §10.3, for increasing values of the dynamo number in a version of that model
where the source term includes uses the combination of error functions as in eq. (10.52) to set the
nonlinear (and still nonlocal) dependence of S on the toroidal field B. Time series of magnetic
energy were calculated from the numerical solutions, and successive peaks found and plotted
for each individual solution. The sequence of period doubling eventually leading to a chaotic
regime, is strikingly similar to the bifurcation diagram constructed from the corresponding
iterative map, down to the narrow multiperiodic windows interspersed in the chaotic domain.
This demonstrates that time delay effects are a robust feature, and represent a very powerful
source of cycle amplitude fluctuation in Babcock-Leighton models, even in the kinematic regime.

10.5.4 Intermittency

The term “intermittency” refers to systems undergoing apparently random, rapid switching
from quiescent to bursting behaviors, as measured by the magnitude of some suitable system
variable. In the context of solar cycle model, intermittency is invoked to explain the existence of
Maunder Minimum-like quiescent epochs of strongly suppressed activity randomly interspersed
within periods of “normal” cyclic activity24.

Intermittency has been shown to occur through stochastic fluctuations of the dynamo num-
ber in mean-field dynamo models operating at or near criticality25. This mechanism for “on-off
intermittency” works well, however there is no strong reason to believe that the solar dynamo
is running just at criticality, so that is not clear how good an explanation this is of Maunder-
type grand minima. Parity modulation driven by stochastic noise can also lead to a form of

24It should be noted, however, that dearth of sunspots does not necessarily means a halted cycle; as noted
earlier, flux ropes of strengths inferior to ∼ 1T will not survive their rise through the convective envelope, and
the process of flux rope formation from the dynamo-generated mean magnetic field may itself be subjected to a
threshold in field strength. The same basic magnetic cycle may well have continued unabated all the way through
the Maunder Minimum, but at an amplitude just below one of these thresholds. This idea finds support in the
10Be radioisotope record, which shows a clear and uninterrupted cyclic signal through the Maunder minimum
(see Fig. 6.8).

25see paper by Ossendrijver & Hoyng (1996) in the bibliography for a particularly lucid discussion.
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Figure 10.19: Two bifurcation diagrams for a kinematic Babcock-Leighton model, where am-
plitude fluctuations are produced by time-delay feedback. The top diagram is computed using
the one-dimensional iterative map given by eqs. (10.51)–(10.52), while the bottom diagram is
reconstructed from numerical solutions in spherical geometry, of the type discussed in §10.3.
The shaded area in panel (A) maps the attraction basin for the cyclic solutions, with initial
conditions located outside of this basin converging to the trivial solution pn = 0.
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intermittency, by exciting the higher-order modes that perturb the normal operation of the
otherwise dominant dynamo mode, producing strongly reduced cycle amplitudes26.

Another way to trigger intermittency in a dynamo model is to let nonlinear dynamical
effects, for example a reduction of the differential rotation amplitude, push the effective dynamo
number below its critical value; dynamo action then ceases during the subsequent time interval
needed to reestablish differential rotation following the diffusive decay of the magnetic field; in
the low Pm regime, this time interval can amount to many cycle periods, but Pm must not be
too small, otherwise grand minima become too rare Values Pm ∼ 10−2 seems to work best.
Such intermittency is most readily produced when the dynamo is operating close to criticality27.

Intermittency has also been observed in strongly supercritical model including α-quenching
as the sole amplitude-limiting nonlinearity. Such solutions can enter grand minima-like epochs
of reduced activity when the dynamo-generated magnetic field completely quenches the α-effect.
The dynamo cycle restarts when the magnetic field resistively decays back to the level where the
α-effect becomes operational once again. The physical origin of the “long” timescale governing
the length of the “typical” time interval between successive grand minima episodes is unclear,
and the physical underpinning of intermittency harder to identify28.

Intermittency can also arise naturally in dynamo models characterized by a lower operating
threshold on the magnetic field. These include models where the regeneration of the poloidal
field takes place via the MHD instability of toroidal flux tubes (§10.4.2). In such models, the
transition from quiescent to active phases requires an external mechanism to push the field
strength back above threshold. This can be stochastic noise29, or a secondary dynamo process
normally overpowered by the “primary” dynamo during active phases. Figures 10.20 show one
representative solution of the latter variety, where intermittency is driven by a weak α-effect-
based kinematic dynamo operating in the convective envelope, in conjunction with magnetic
flux injection into the underlying region of primary dynamo action by randomly positioned
downflows30. The top panel shows a sample trace of the toroidal field, and the bottom panel a
butterfly diagram constructed near the core-envelope interface in the model.

Dynamo models exhibiting amplitude modulation through time-delay effects are also liable
to show intermittency in the presence of stochastic noise. This intermittency mechanism hinges
on the fact that the map’s attractor has a finite basin of attraction (indicated by gray shading
on Fig. 10.19A). Stochastic noise acting simultaneously with the map’s dynamics can then
knock the solution out of this basin of attraction, which then leads to a collapse onto the trivial
solution pn = 0, even if the map parameter remains supercritical. Stochastic noise eventually
knocks the solution back into the attractor’s basin, which signals the onset of a new active
phase. This behavior was indeed found in a Babcock-Leighton model similar to that described
in §10.3 Figure 10.21 shows one such representative solution, in the same format as Fig. 10.20.
This is a dynamo solution which, in the absence of noise, operates in the singly-periodic regime.
Stochastic noise is added to the vector potential Aêφ in the surface layers, and the dynamo
number is also allowed to fluctuate randomly about a pre-set mean value. The resulting solution
exhibits both amplitude fluctuations and intermittency.

With its strong polar branch often characteristic of dynamo models with meridional circula-
tion, Fig. 10.21 is not a particularly good fit to the solar butterfly diagram. Yet its fluctuating
behavior is solar-like in a number of ways, including epochs of alternating higher-than-average
and lower-than-average cycle amplitudes (the Gnevyshev-Ohl rule, cf. Fig. 6.6), and residual
pseudo-cyclic variations during quiescent phases, as suggested by 10Be data. This later prop-
erty is due at least in part to meridional circulation, which continues to advect the (diffusively
decaying) magnetic field after the dynamo has fallen below threshold.

26For more on this version of noise-driven intermittency mechanism, see the paper by Mininni & Gomez (2004)
cited in the bibiography.

27See, e.g., the papers by Küker et al. (1999) and Brooke et al. (2002) cited in the bibliography.
28For representative models exhibiting intermittency of this type, see the paper by Tworkowski et al. (1998)

cited in the bibliography.
29See the paper by Schmitt et al. (1996) cited in the bibliography.
30for more details see paper by Ossendrijver (2000) in bibliography
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240 CHAPTER 10. DYNAMO MODELS OF THE SOLAR CYCLE

Figure 10.20: Intermittency in a dynamo model based on flux tube instabilities (cf. §10.4.2).
The top panel shows a trace of the toroidal field, and the bottom panel is a butterfly diagram
covering a shorter time span including a quiescent phase at 9.6 ∼< t ∼< 10.2, and a “failed
Minimum” at t ' 11. Figure produced from numerical data kindly provided by M. Ossendrijver.
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Figure 10.21: Intermittency in a dynamo model based on the Babcock-Leighton mechanism
(cf. §10.3). The top panel shows a trace of the toroidal field sampled at (r, θ) = (0.7, π/3). The
bottom panel is a time-latitude diagram for the toroidal field at the core-envelope interface.
Numerical data from the Charbonneau et al. (2004) paper cited in the bibliography.
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10.6 Predicting future cycles

Over the past decade, the prediction of solar eruptive events and their geomagnetic impacts,
known as space weather, has become a Very Big Business. Even then, the prediction of the
overall level of solar activity is also of interest, as it could be useful, among other things, to
the planning of space missions and interplanetary travel. The understanding and prediction
of activity levels on timescales decadal and longer is becoming known as space climate, and
its primary data are the time series of sunspot numbers, and proxies such as the radioisotopes
records.

One “hot” prediction problems, lying at the boundary of space weather and space climate,
is the forecasting of the characteristic of the next solar activity cycle, which usually means the
timing and amplitude of the cycle as measured in the sunspot number time series (see Fig. 6.5).

It is of course possible to treat this prediction problem as an exercice in time series analysis
and forecasting, without any physical input. The SSN time series is just a time series, and it can
be extended using a number of techniques coming from statistics (spectral analysis, wavelets,
etc) or dynamical system theory (such as attractor reconstruction). We will focus here instead
on prediction schemes based, in one form or another, on dynamo models.

In light of what we have learned in this chapter, we know we are facing a number of
difficulties in trying to use dynamo models to forecast the solar cycle. A basic list of questions
that need to be answered (excluding technical details for the time being) should include, at the
very least, the following:

1. What type of dynamo powers the solar cycle: αΩ, α2Ω, interface, Babcock-Leighton, etc.?

2. Which mechanism is driving duration and amplitude fluctuations: stochastic forcing,
nonlinear modulation due to the Lorentz force, or time delay, etc.?

3. How do we “predict” sunspot number from a dynamo solution which describes the spa-
tiotemporal evolution of just the diffuse, large-scale magnetic field?

These important questions notwithstanding, we have learned some important things that
are useful in the present context. To start with, the dynamo feeds on the existing magnetic
field, therefore trying to forecast the next cycle using characteristics of the current cycle (and
maybe recent past cycles as well) is definitely justified. Problem 10.4 below lets you explore
the performance of some very simple cycle forecasting schemes based on this notion.

Some recent solar cycle amplitude forecasts have used models of the type considered in this
chapter, more specifically those of the Babcock-Leighton variety, in conjunction with crude
formulations of data assimilation of surface magnetic field observations (see references cited in
the bibliography). The current state of things is that forecasting models that appear extremely
similar, except at the level of what one would usually consider modelling details, manage to
produce forecasts for cycle 24 that are at opposite ends of the spectrum of cycle 24 predictions.
In the context of Babcock-Leighton models, the overall approach is definitely viable in principle,
since the solar surface magnetic field is that which will serve as seed to produce the sunspot-
generating toroidal component of the next cycle. The one thing that the few recent model-based
forecasting attempts have demonstrated beyond any doubts is that modelling details matter.
Coming years will likely see progress on this front. To be continued!

Problems:

1. Suppose that the “u” in eq. (10.47) is just the differential rotation. Retaining the as-
sumption fo axisymmetry for the large-scale flows and field, find the conditions under
which eq. (10.48) does result from the substitution of eq. (10.47) into the φ-component
of the momentum equation.
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2. Consider the iterative map resulting from the use of a simple parabola for the “Babcock-
Leighton function” introduced in §10.5.3:

pn+1 = γp2
n(1 − pn) ,

where γ is the map parameter;

(a) Find the value of γ corresponding to the critical dynamo number for this map;

(b) Find the values of gamma at which the first two period-doubling bifurcations take
place.

(c) Reconstruct the bifurcation diagram equivalent to that plotted on Fig. 10.19A for
the “double-error-function” map. How similar are the two diagrams?

3. Sticking with the iterative map of the preceding problem, add now a low amplitude noise
to the RHS of the map equation; this could be a random number uniformly distributed
in the range [−ε, ε], with ε ¿ 1, chosen anew at each iteration of the map.

(a) Pick a few γ values covering the singly-periodic range of the map, and a small value
of ε (= 0.1, say); can you produce a Gnevyshev-Ohl-type effect in this way? Does
this work at all values of γ?

(b) Now introduce a random fluctuation in the map parameter γ, so that it covers the
range going from singly-periodic to chaotic. You now have two distinct sources of
fluctuations in the map. Do runs for increasing values of the additive noise magnitude
ε. Find the intermittency threshold, i.e., the value of ε above which the iterate
sequences varies irregularly between active and quiescent states.

4. This problem lets you explore some “brain-dead” prediction schemes for the solar cycle
amplitude; the scary thing is that they don’t do very much worse than much fancier
and complicated schemes... Your starting point is the time series of sunspot number,
either in the form of yearly mean values of smoothed monthly means (see Problem 6.2
for instructions on how to get a hold of these). Let’s define the amplitude An of cycle n
as the peak value.

(a) The simplest forecasting scheme is to predict that the cycle amplitude will be equal
to its average value over the past N cycles, where N is a relatively small number.
Compute the r.m.s. prediction error made with this scheme for N = 1, N = 2 and
N = 3.

(b) The Gnevyshev-Ohl rule would suggest that a better predictor could be An = An−2;
try this and see how it compares to the three predictors considered in (a).

(c) This one calls upon your originality of thinking; try to design a simple predictor,
similar in style to the ones considered in (a) and (b), that can do better.

(d) Use all the above predictors to forecast the amplitude of upcoming cycle 24.
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Küker, M., Rüdiger, G., and Schulz, M., Astron. Astrophys., 374, 301-308 (2001).

The meridional circulation profile described in §10.1 is the creation of

van Ballegooijen, A.A., & Choudhuri, A.R. 1988, Astrophys. J., 333, 965.

On α-quenching, standard versus catastrophic:

Blackman, E.G., and Field, G.B., Astrophys. J., 534, 984-988 (2000)
Cattaneo, F., and Hughes, D., Phys. Rev. E, 54, R4532-R4535 (1996)
Durney, B.R., De Young, D.S., and Roxburgh, I.W., Solar Phys., 145, 207-225 (1993)
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