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Chapter 1

Magnetohydrodynamics

From a long view of history —seen from, say, ten thousand years from now—

there can be little doubt that the most significant event of the 19th century

will be judged as Maxwell’s discovery of the laws of electrodynamics.

Richard Feynman
The Feynmann Lectures on Physics (1964)

To sum it all up in a single sentence, magnetohydrodynamics (hereafter MHD) is con-
cerned with the behavior of electrically conducting but globally neutral fluids flowing at non-
relativistic speeds and obeying Ohm’s Law. Before we dive into MHD proper, it would be wise
to clarify what we mean by “fluid” (§1.1), and review the fundamental physical laws governing
the flow of unmagnetized fluid, i.e., classical hydrodynamics (§1.2). We then introduce magnetic
fields into the fluid picture (§§1.3—1.11), and close with useful mathematico-physical tidbits.

1.1 The fluid approximation

1.1.1 Matter as a continuum

It did take some two thousand years to figure it out, but we now know that Democritus was
right after all: matter is composed of small, microscopic “atomic” constituents. Yet on our
daily macroscopic scale, things sure look smooth and continuous. Under what circumstances
can an assemblage of microscopic elements be treated as a continuum? The key constraint is
that there be a good separation for scales between the “microscopic” and “macroscopic”.

Consider the situation depicted on Figure 1.1, corresponding to an amorphous substance
(spatially random distribution of microscopic constituents). Denote by λ the mean interparticle
distance, and by L the macroscopic scale of the system; we now seek to construct macroscopic
variables defining fluid characteristics at the macroscopic scale. For example, if we are dealing
with an assemblage of particles of mass m, then the density (ρ) associated with a cartesian
volume element of linear dimensions l centered at position x would be given by something like:

ρ(x) =
1

l3

∑

k

mk , [kg m−3] , (1.1)

where the sum runs over all particles contained within the volume element. One often hears
or reads that for a continuum representation to hold, it is only necessary that the density be
“large”. But large with respect to what? For the above expression to yield a well-defined
quantity, in the sense that the numerical value of ρ so computed does not depend sensitively
on the size and location of the volume element, or on time if the particles are moving, it is
essential that a great many particles be contained within the element. Moreover, if we want
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10 CHAPTER 1. MAGNETOHYDRODYNAMICS

Figure 1.1: Microscopic view of a fluid. In general the velocity of microscopic constituents is
comprised of two parts: a randomly-oriented thermal velocity, and a systematic drift velocity,
which, on the macroscopic scale amounts to what we call a flow u. A fluid representation is
possible if the mean inter-particle distance λ is much smaller than the global length scale L.

to be writing differential equations describing the evolution of ρ, the volume element better be
infinitesimal, in the sense that it is much smaller that the macroscopic length scale over which
global variables such as ρ may vary. These two requirements translate in the double inequality:

λ ¿ l ¿ L . (1.2)

Because the astrophysical systems and flows that will be the focus of our attention span a
very wide range of macroscopic sizes, the continuum/fluid representation will turn out to hold
in circumstances where the density is in fact minuscule, as you can verify for yourself upon
perusing the collection of astrophysical systems listed in Table 1.1 below1. In all cases, a very
good separation of scales does exist between the microscopic (λ) and macroscopic (L).

Table 1.1
Spatial scales of some astrophysical objects and flows

System/flow ρ [kg/m3] N [m−3] λ [m] L [km]

Solar interior 100 1029 10−10 105

Solar atmosphere 10−4 1023 10−8 103

Solar corona 10−11 1017 10−6 105

Solar wind (1 AU) 10−21 107 0.006 105

Molecular cloud 10−20 107 0.001 1014

Interstellar medium 10−21 106 0.01 1016

1All density-related estimate assume a gas of fully ionized Hydrogen (µ = 0.5) for the Sun, of neutral
Hydrogen for the interstellar medium (µ = 1), and molecular Hydrogen (µ = 2) for molecular clouds. Solar
densities are for the base of the convection zone (solar interior), optical depth unity (atmosphere), and typical
coronal loop (corona). N is the number density of microscopic constituents. The length scale listed for the solar
atmosphere is the granulation dimension, for the corona it is the length of a coronal loop, for the solar wind
the size of Earth’s magnetosphere, and that for the interstellar medium is the thickness of the galactic (stellar)
disk; All rounded to the nearest factor of ten.
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1.2. ESSENTIALS OF HYDRODYNAMICS 11

Figure 1.2: Deformation of a mass element in response to a stress pattern producing an horizon-
tal shear (black arrows). A solid will rapidly reach an equilibrium where internal stresses (white
arrows) produced by the deformation will equilibrate the applied shear. A fluid at rest cannot
generate internal stresses, and so will be increasingly deformed for as long as the external shear
is applied.

1.1.2 Solid versus fluid

Most continuous media can be divided into two broad categories, namely solids and fluids. The
latter does not just include the usual “liquids” of the vernacular, but also gases and plasmas.
Physically, the distinction is made on the basis of a medium’s response to an applied stress,
as illustrated on Figure 1.2. A volume element of some continuous substance is subjected to a
shear stress, i.e., two force acting tangentially and in opposite directions on two of its parallel
bounding surface (black arrows). A solid will immediately generate a restoring force (white
arrows), ultimately due to electrostatic interactions between its microscopic constituents, and
vigorously resist deformation (try shearing a brick held between the palms of your hands!).
The solid will rapidly reach a new equilibrium state characterized by a finite deformation, and
will relax equally rapidly to its initial state once the external stress vanishes. A fluid, on the
other hand, can offer no resistance to the applied stress, at least in the initial stages of the
deformation2.

1.2 Essentials of hydrodynamics

The governing principles of classical hydrodynamics are the same as those of classical mechanics,
transposed to continuous media: conservation of mass, linear momentum, angular momentum
and energy. The fact that these principles must now be applied not to point-particles, but to
spatially extended volume elements (which may well be infinitesimal, but they are still finite!)
introduces some significant complications, mostly with regards to the manner in which forces
act. Let’s start with the easiest of our conservation statements, that for mass, as it exemplifies
very well the manner in which conservation laws are formulated in moving fluids.

2We will return in due time to what happens once contiguous fluid elements have attained different, finite
velocities. In short, the restoring force is often proportional to the velocity gradient produced by the action of
the shear.
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12 CHAPTER 1. MAGNETOHYDRODYNAMICS

Figure 1.3: An arbitrarily shaped volume element V bounded by a closed surface S, both fixed
in space, and traversed by a flow u.

1.2.1 Mass: the continuity equation

Consider the situation depicted on Figure 1.3, namely that of an arbitrarily shaped surface
S fixed in space and enclosing a volume V embedded in a fluid of density ρ(x) moving with
velocity u(x). The mass flux associated with the flow across the (closed) surface is

Φ =

∮

S

ρu · n̂dS , [kg s−1] (1.3)

where n̂ is a unit vector everywhere perpendicular to the surface, and by convention oriented
towards the exterior. The mass of fluid contained within V is simply

M =

∫

V

ρdV . [kg] (1.4)

This quantity will evidently vary if the mass flux given by eq. (1.3) is non-zero:

∂M

∂t
= −Φ . (1.5)

Here the minus sign is a direct consequence of the exterior orientation of n̂. Inserting eq. (1.3)
and eq. (1.4) into (1.5) and applying the divergence theorem to the RHS of the resulting
expression yields:

∂

∂t

∫

V

ρdV = −
∫

V

∇ · (ρu)dV . (1.6)

Because V is fixed in space, the ∂/∂t et
∫

V
operators commute, so that

∫

V

[
∂ρ

∂t
+ ∇ · (ρu)

]

dV = 0 . (1.7)
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1.2. ESSENTIALS OF HYDRODYNAMICS 13

Because V is completely arbitrary, in general this can only be satisfied provided that

∂ρ

∂t
+ ∇ · (ρu) = 0 . (1.8)

This expresses mass conservation in differential form, and is known in hydrodynamics as the
continuity equation.

Incompressible fluids have constant densities, so that in this limiting case the continuity
equation reduces to

∇ · u = 0 , [incompressible]. (1.9)

Water is perhaps the most common example of an effectively incompressible fluid (under the vast
majority of naturally occuring conditions anyway). The gaseous nature of most astrophysical
fluids may lead you to think that incompressibility is likely to be a pretty lousy approximation
in cases of interest in this course. It turns out that the incompressible approximation can lead
to a pretty good approximation of the behavior of compressible fluids provided that the flow’s
Mach number (ratio of flow speed to sound speed) is much smaller than unity.

1.2.2 The D/Dt operator

Suppose we want to compute the time variation of some physical quantity (Z, say) at some
fixed location x0 in a flow u(x). In doing so we must take into account the fact that Z is in
general both an explicit and implicit function of time, because the volume element “containing”
Z is moving with the fluid, i.e., Z → Z(t,x(t)). We therefore need to use the chain rule and
write:

dZ

dt
=

∂Z

∂t
+

∂Z

∂x

∂x

∂t
+

∂Z

∂y

∂y

∂t
+

∂Z

∂z

∂z

∂t
. (1.10)

Noting that u = dx/dt, this becomes

dZ

dt
=

∂Z

∂t
=

∂Z

∂t
+

∂Z

∂x
ux +

∂Z

∂y
uy +

∂Z

∂z
uz =

∂Z

∂t
+ (u · ∇)Z . (1.11)

This corresponds to the time variation of Z following the fluid element as it is carried by the

flow. It is a very special kind of derivative in hydrodynamics, known as the Lagrangian

derivative, which will be represented by the operator:

D

Dt
≡ ∂

∂t
+ (u · ∇) . (1.12)

Note in particular that the Lagrangian derivative of u yields the acceleration of a fluid element:

a =
Du

Dt
, (1.13)

a notion that will soon come very handy when we’ll write F = ma for a fluid.

A material surface is defined as an ensemble of points that define a surface, all moving
along with the flow. Therefore, in a local frame of reference S ′ co-moving with any infinitesimal
element of a material surface, u′ = 0. The distinction between material surfaces, as opposed
to surfaces fixed in space such as in eq. (1.3), has crucial consequences with respect to the
commuting properties of temporal and spatial differential operators. In the latter case

∫

V
com-

mutes with ∂/∂t, whereas for material surfaces and volume elements it is D/Dt that commutes
with

∫

V
(and

∮

S
, etc.).
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14 CHAPTER 1. MAGNETOHYDRODYNAMICS

1.2.3 Linear momentum: the Navier-Stokes equations

A force F acting on a point-object of mass m is easy to deal with; it simply procuces an
acceleration a = F/m in the same direction as the force (sounds simple but it still took the
genius of Newton to figure it out...). In the presence of a force acting on the surface of a spatially
extended fluid element, the resulting fluid acceleration will depend on both the orientation of
the force and the surface. We therefore define the net force t in terms of a stress tensor:

tx = êxsxx + êysxy + êzsxz , (1.14)

ty = êxsyx + êysyy + êzsyz , (1.15)

tz = êxszx + êyszy + êzszz , (1.16)

where “sxy” denotes the force per unit area acting in the y-direction on a surface perpendicular
to the x-direction, tx is the net force acting on the surfaces perpendicular to the x-direction,
and similarly for the other components. Consider now a unit vector perpendicular to a surface
arbitrarily oriented in space:

n̂ = êxnx + êyny + êznz , n2
x + n2

y + n2
z = 1 . (1.17)

The net force along this direction is simply

tn̂ = (n̂ · êx)tx + (n̂ · êy)ty + (n̂ · êz)tz = n̂ · s . (1.18)

We can now use the Lagrangian acceleration to write the equivalent of “F = ma” or more
accurately “∂p/∂t = F”, for the fluid element:

D

Dt

∫

V

ρudV =

∮

S

s · n̂dS . (1.19)

We now pull the same tricks as in §1.2.1: use the divergence theorem to turn the surface
integral into a volume integral, commute the temporal derivative and volume integral on the
RHS, expand carefully the vector operator u · ∇ acting on ρu, invoke the arbitrariness of the
actual integration volume V , and finally make good use of the continuity equation (1.8), to
obtain the differential equation for u:

ρ
Du

Dt
= ∇ · s . (1.20)

We now define the pressure (units: pascal; 1 Pa≡ 1N m−2) as the isotropic part of the
force acting perpendicularly on the volume’s surfaces, and separate it explicitly from the stress
tensor:

s = −pI + ττττ , (1.21)

where I is the identity tensor, and the minus sign arises from the convention that pressures
acts on the bounding surface towards the interior of the volume element, and ττττ will presently
become the viscous stress tensor. Since ∇ · (pI) = ∇p, eq. (1.20) becomes

Du

Dt
= −1

ρ
∇p +

1

ρ
∇ · ττττ . (1.22)

The next step is to obtained expressions for the components of the tensor ττττ . The viscous force,
which is what ττττ stands for, can be viewed as a form of friction acting between contiguous
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1.2. ESSENTIALS OF HYDRODYNAMICS 15

laminae of fluid moving with different velocities, so that we expect it to be proportional to
velocity derivatives. Consider now the following decomposition of a velocity gradient:

∂uk

∂xl

=
1

2

(
∂uk

∂xl

+
∂ul

∂xk

)

︸ ︷︷ ︸

Dkl

+
1

2

(
∂uk

∂xl

− ∂ul

∂xk

)

︸ ︷︷ ︸

Ωkl

. (1.23)

The first term on the RHS is a pure shear, and is described by the (symmetric) deformation

tensor Dkl; the second is a pure rotation , and is described by the antisymmetric vorticity

tensor Ωkl. It can be shown that the latter causes no deformation of the fluid element, therefore

the viscous force can only involve Dkl. A Newtonian fluid is one for which the (tensorial)
relation between ττττ and Dkl is linear:

τij = fij(Dkl) , i, j, k, l = (1, 2, 3) ≡ (x, y, z) (1.24)

The next step is to invoke the invariance of the physical laws embodied in eq. (1.24) under
rotation of the coordinate axes. The mathematics is rather tedious, but at the end of the day
you end up with:

τxx = 2µDxx + (µϑ − 2
3
µ)(Dxx + Dyy + Dzz) (1.25)

τyy = 2µDyy + (µϑ − 2
3
µ)(Dxx + Dyy + Dzz) (1.26)

τzz = 2µDzz + (µϑ − 2
3
µ)(Dxx + Dyy + Dzz) (1.27)

τxy = 2µDxy (1.28)

τyz = 2µDyz (1.29)

τzx = 2µDzx (1.30)

where µ and µϑ are the coefficients dynamical viscosity and bulk viscosity, respectively.
Is is often convenient to define a coefficent of kinematic viscosity as

ν =
µ

ρ
, [m2 s−1] . (1.31)

In an incompressible flow, the terms multiplying µϑ vanish and it is possible to rewrite the
Navier-Stokes equation in the simpler form:

Du

Dt
= −1

ρ
∇p + ν∇2u . [incompressible] (1.32)

Note here the presence of a Laplacian operator acting on a vector quantity (here u); this is
only equivalent to the Laplacian acting on the scalar components of u in the special case of
cartesian coordinates.

Incompressible or not, the behavior of viscous flows will often hinge on the relative impor-
tance of the advective and dissipative terms in the Navier-Stokes equation:

ρ(u · ∇)u ↔ ∇ · ττττ . (1.33)

Introducing characteristic length scales u0, L, ρ0 and ν0, dimensional analysis yields:

ρ0

u2
0

L
↔ 1

L
ρ0ν0

u0

L
, (1.34)

where we made use of the fact that the viscous stress tensor has dimensions µ × Dik, with
µ = ρν and the deformation tensor Dik has dimension of velocity per unit length (cf. eq. 1.23).
The ratio of these two terms is a dimensionless quantity called the Reynolds Number:

Re =
u0L

ν0

. (1.35)
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16 CHAPTER 1. MAGNETOHYDRODYNAMICS

This measures the importance of viscous forces versus fluid inertia. It is a key dimension-
less parameter in hydrodynamics, as it effectively controls fundamental processes such as the
transition to turbulence, as well as more mundane matters such as boundary layer thicknesses.

A few words on boundary conditions; in the presence of viscosity, the flow speed must vanish
wherever the fluid is in contact with a rigid surface S:

u(x) = 0 , x ∈ S . (1.36)

This remains true even in the limit where the viscosity is vanishingly small. For a free surface

(e.g., the surface of a fluid sphere floating in a vacuum), the normal components of both the
flow speed and viscous stress must vanish instead:

u · n̂(x) = 0 , ττττ · n̂ = 0 , x ∈ S . (1.37)

1.2.4 Angular momentum: the vorticity equation

The “rotation” and “angular momentum” of a fluid system cannot simply be reduced to simple
scalars such as angular velocity and moment of inertia, because the application of a torque to
a fluid element can alter not just its rotation rate, but also its shape and mass distribution. A
more useful measure of “rotation” is the circulation Γ about some closed contour γ embedded
in and moving with the fluid:

Γ(t) =

∮

γ

u(x, t) · d`̀̀̀ =

∫

S

(∇× u) · n̂dS =

∫

S

ωωωω · n̂ dS , (1.38)

where the second equality follows from Stokes’ theorem, and the third from the definition of
vorticity:

ωωωω = ∇× u . (1.39)

Thinking about flows in terms of vorticity ωωωω rather than speed u can be useful because of
Kelvin’s theorem, which states that the circulation Γ along any closed loop γ advected by
the moving fluid is a conserved quantity:

DΓ

Dt
= 0 . (1.40)

Applying again Stokes’ theorem yields the equivalent expression

D

Dt

∫

S

ωωωω · n̂ dS = 0 , (1.41)

stating that the flux of vorticity across any material surface S bounded by γ is also a conserved
quantity, both in fact being integral expressions of angular momentum conservation.

An evolution equation for ωωωω can be obtained via the Navier-Stokes equation, in a particularly
illuminating manner in the case of an incompressible fluid (∇ · u = 0) with constant kinematic
viscosity ν, in which case eq. (1.32) can be rewritten as

Du

Dt
== −∇

(
p

ρ
+ Φ

)

− ν∇× (∇× u) , [incompressible] (1.42)

where it was assumed that gravity can be expressed as the gradient of a (gravitational) potential.
Taking the curl on each side of this expression then yields:

∇×
(

∂u

∂t

)

+ ∇× (u · ∇u) = ∇×
[

∇
(

p

ρ
+ Φ

)]

︸ ︷︷ ︸

=0

−ν∇×∇× (∇× u) , (1.43)
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then, commuting the time derivative with ∇× and making judicious of some vector identities
to develop the second term on the LHS, remembering also that ∇ · ωωωω = 0, eventually leads to:

Dωωωω

Dt
− ωωωω · ∇u = ν∇2ωωωω , [incompressible] . (1.44)

This is the vorticity equation, expressing in differential form the conservation of the fluid’s
angular momentum.

A useful vorticity-related quantity is the kinetic helicity, defined as

h = u · ωωωω , (1.45)

which measures the amount of twisting in a flow. This will prove an important concept when
investigating magnetic field amplification by fluid flows.

1.2.5 Energy: the entropy equation

Omitting to begin with the energy dissipated in heat by viscous friction, the usual accounting of
energy flow into and out of a volume element V fixed in space leads to the following differential
equation expressing the conservation of the plasma’s internal energy per unit mass (e, in
units J/kg):

De

Dt
+ (γ − 1)e∇ · u =

1

ρ
∇ ·

[

(χ + χr)∇T
]

, (1.46)

where for a perfect gas we have

e =
1

γ − 1

p

ρ
=

1

γ − 1

kT

µm
, (1.47)

with γ = cp/cv the ratio of specific heats, and (χ + χr)∇T the heat flux in or out of the
fluid element, with χ and χr the coefficients of thermal and radiative conductivity, respectively
(units: J K−1m−1s−1). Equation (1.46) expresses that any variation of the specific energy in a
plasma volume moving with the flow (LHS) is due to heat flowing in or out of the volume by
conduction or radiation (here in the diffusion approximation). The “extra” term ∝ ∇ · u on
the LHS of eq (1.46) embodies the work done against (or by) the pressure force in compressing
(or letting expand) the volume element.

It is often convenient to rewrite the energy conservation equation in terms of the plasma’s
entropy S = ρ−γp, which allows to rewrite eq. (1.46) in the more compact form:

ρT
DS

Dt
= ∇ ·

[

(χ + χr)∇T
]

, (1.48)

which states, now unambiguously, that any change in the entropy S as one follows a fluid
element (LHS) can only be due to heat flowing out of or into the domain by conduction (RHS).
For incompressible fluids eq. (1.48) can be written

ρcp

DT

Dt
= ∇ ·

[

(χ + χr)∇T
]

, [incompressible] (1.49)

where

cp = T

(
∂S

∂T

)

p

, (1.50)

is the heat capacity at constant pressure.

phy6795v08.tex, September 9, 2008 Paul Charbonneau, Université de Montréal



18 CHAPTER 1. MAGNETOHYDRODYNAMICS

While this is seldom an important factor in astrophysical flows, in general we must add to
the RHS of eq. (1.48) the heat produced by viscous dissipation (and, as we shall see later, by
Ohmic dissipation). This is given by the so-called (volumetric) viscous dissipation function:

φν =
µ

2

(
∂ui

∂xk

+
∂uk

∂xi

− 2

3
δik

∂us

∂xs

)2

+ µϑ

(
∂us

∂xs

)2

, [J m−3s−1] , (1.51)

where summation over repeated indices is implied here. Note that since φν is positive definite,
its presence on the RHS of eq. (1.48) can only increase the fluid element’s entropy, which makes
perfect sense since friction, which is what viscosity is for fluids, is an irreversible process.

For more on classical hydrodynamics, see the references listed in the bibliography at the
end of this chapter.

1.3 The magnetohydrodynamical induction equation

Our task is now to generalize the governing equations of hydrodynamics to include the effects
of the electric and magnetic fields, and to obtain evolution equations for these two physical
quantities. Keep in mind that electrical charge neutrality, as required by MHD, does not imply
that the fluid’s microscopic constituents are themselves neutral, but rather that positive and
negative electrical charges are present in equal numbers in any fluid element.

The starting point, you guess it I hope, is Maxwell’s celebrated equations:

∇ · E =
ρe

ε0

, [Gauss′ Law] (1.52)

∇ · B = 0 , [Anonymous] (1.53)

∇× E = −∂B

∂t
, [Faraday′s Law] (1.54)

∇× B = µ0J + µ0ε0

∂E

∂t
, [Ampere/Maxwell′s Law] (1.55)

where, in the SI system of units, the electric field is measured in N C−1 (≡ V m−1), the magnetic
field3 B in tesla (T). The quantity ρe is the electrical charge density (C m−3), and J is the
electrical current density (A m−2). The permittivity ε0 (= 8.85×10−12C2 N−1m−2 in vacuum)
and magnetic permeability µ0 (= 4π × 10−7 N A−2 in vacuum) can be considered as constants
in what follows, since we will not be dealing with polarisable or ferromagnetic substances.

The first step is (with all due respect to the man) to do away altogether with Maxwell’s
displacement current in eq. (1.55). This can be justified if the fluid flow is non-relativistic and
there are no batteries around being turned on or off, two rather sweeping statement that will
be substantiated in §1.5. For the time being we just revert to the original form of Ampère’s
Law:

∇× B = µ0J . (1.56)

In general, the application of an electrical field E across an electrically conducting substance will
generate an electrical current density J. Ohm’s Law postulates that the relationship between
J and E is linear:

J′ = σE′ , (1.57)

3strictly speaking, B should be called and the magnetic flux density or somesuch, but on this one we’ll stick
to common astrophysical usage.
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where σ is the electrical conductivity (units: C2s−1m−3kg−1 ≡ Ω−1m−1, Ω ≡Ohm). Here
the primes (“′”) are added to emphasize that Ohm’s Law is expected to hold in a conducting
substance at rest. In the context of a fluid moving with velocity u (relativistic or not), eq. (1.57)
can only be expected to hold in a reference frame comoving with the fluid. So we need to
transform eq. (1.57) to the laboratory (rest) frame. In the non-relativitic limit (u/c ¿ 1,
implying γ → 1), the usual Lorentz transformation for the electrical current density simplifies
to J′ = J, and that for the electric field to E′ = E + u × B, so that Ohm’s Law takes on the
form

J = σ(E + u × B) , (1.58)

or, making use of the pre-Maxwellian form of Ampère’s Law and reorganizing the terms:

E = −u × B +
1

µ0σ
(∇× B) . (1.59)

We now insert this expression for the electric field into Faraday’s Law (1.54) to obtain the very
famous magnetohydrodynamical induction equation:

∂B

∂t
= ∇× (u × B − η∇× B) . (1.60)

where

η =
1

µ0σ
[m2s−1] (1.61)

is the magnetic diffusivity4. The first term on the RHS of eq. (1.60) represents the inductive
action of fluid flowing across a magnetic field, while the second term represents dissipation of
the electrical currents sustaining the field.

Keep in mind that any solution of eq. (1.60) must also satisfy eq. (1.53) at all times. It can
be easily shown (try it!) that if ∇·B = 0 at some initial time, the form of eq. (1.60) guarantees
that zero divergence will be maintained at all subsequent times5

1.4 Scaling analysis

The evolution of a magnetic field under the action of a prescribed flow u will depend greatly on
whether or not the inductive term on the RHS of eq. (1.60) dominates the diffusive term. Under
what conditions will this be the case? We seek a first (tentative) answer to this question by
performing a dimensional analysis of eq. (1.60); this involves replacing the temporal derivative
by 1/τ and the spatial derivatives by 1/`, where τ and ` are time and length scales that suitably
characterizes the variations of both u and B:

B

τ
=

u0B

`
+

ηB

`2
, (1.62)

where B and u0 are a “typical” values for the flow velocity and magnetic field strength over
the domain of interest. The ratio of the first to second term on the RHS of eq. (1.62) is a
dimensionless quantity known as the magnetic Reynolds number6:

Rm =
u0`

η
, (1.63)

4A note of warning: some MHD textbooks, included the Goedbloed & Poedts tome cited in the bibliography,
use the symbol “η” for the inverse conductivity (units Ωm), so that the dissipative term on the RHS of the
induction equation retains a µ−1

0
prefactor. The Davidson book uses the same definition as here... but the

symbol λ! Be careful.
5This is true under exact arithmetic; if numerical solutions to eq. (1.60) are sought, care must be taken to

ensure ∇ · B = 0 as the solution is advanced in time.
6Not the structural similarity with the usual viscous Reynolds number defined in §1.2.3, with the magnetic

diffusivity η replacing the kinematic viscosity ν in the denominator. Had we not absorbed µ0 in our definition
of η, the magnetic permeability µ0 would appear in the numerator of the magnetic Reynolds number, which I
personally find objectionable.
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which measures the relative importance of induction versus dissipation over length scales of

order `. Note that Rm does not depend on the magnetic field strength, a direct consequence of
the linearity (in B) of the MHD induction equation. Our scaling analysis simply says that in
the limit Rm À 1, induction by the flow dominates the evolution of B, while in the opposite
limit of Rm ¿ 1, induction makes a negligible contribution and B simply decays away under
the influence of Ohmic dissipation.

One may anticipate great simplifications of magnetohydrodynamics if we operate in either
of these limits. If Rm ¿ 1, only the second term is retained on the RHS of eq. (1.62), which
leads immediately to

τ =
`2

η
, (1.64)

a quantity known as the magnetic diffusion time. It measures the time taken for a magnetic
field contained in a volume of typical linear dimension ` to dissipate and/or diffusively leak
out of the volume. Now, for most astrophysical objects, this timescale turns out to be quite
large, indeed often larger than the age of the universe! (see Table 1.2). This is not so much
because astrophysical plasmas are such incredibly good electrical conductors, but rather because
astrophysical objects tend to be very, very large.

The opposite limit Rm À 1, defines the ideal MHD limit. Then it is the first term that is
retained on the RHS of eq. (1.62), so that

τ = `/u0 , (1.65)

corresponding to the turnover time associated with the flow u. Note already that under ideal
MHD, the only non-trivial (i.e., u 6= 0 and B 6= 0) steady-state (∂/∂t = 0) solutions of the
MHD equation are only possible for field-aligned flows.

Table 1.2 below lists estimates of the magnetic Reynolds number (and related physical
quantities) for the various astrophysical systems considered earlier in Table 1.17:

Table 1.2
Properties of some astrophysical objects and flows

System/flow L [km] σ [Ω−1m−1] η [m2s−1] τ [yr] u [km/s] Rm

Solar interior 106 104 100 109 0.1 109

Solar atmosphere 103 103 1000 102 1 106

Solar corona 105 106 1 108 10 1012

Solar wind (1 AU) 105 104 100 108 300 1011

Molecular cloud 1014 102 104 1017 100 1018

Interstellar medium 1016 103 1000 1022 100 1021

Sphere of copper 10−3 108 10−1 10−7 — —

The magnetic Reynolds number is clearly huge in all cases, which would suggest that the
ideal MHD limit is the one most applicable to all these astrophysical systems. But things are
not so simple. From a purely mathematical point of view, taking the limit Rm → ∞ of the MHD
induction equation is problematic, because the order of the highest spatial derivatives decreases
by one. This situation is similar to the behavior of viscous flows at very high Reynolds number:

7Choices for length scale ` (≡ L) as in Table 1.1. Velocity estimates correspond to large convective cells
(solar interior), granulation (photosphere), solar wind speed (corona and solar wind), and turbulence (molecular
clouds and interstellar medium). All these numbers (especially the turbulent velocity estimates) are again very
rough, and rounded to the nearest factor of ten. The magnetic diffusivity estimates given for molecular clouds
and interstellar medium depend critically on the assumed degree of ionization, and so are also very rough.
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solutions to eq. (1.60) with η → 0 in general do not smoothly tend towards solutions obtained
for η = 0. Moreover, the distinction between the two physical regimes Rm ¿ 1 and Rm À 1
is meaningful as long as one can define a suitable Rm for the flow as a whole, which, in turn,
requires one to estimate, a priori, a length scale ` that adequately characterizes the evolving
magnetic field at all time and throughout the spatial domain of interest. As we proceed it
will become clear that this is not always straightforward, or even possible. Finally, the scaling
analysis does away entirely with the geometrical aspects of the problem, by substituting u0B
for u × B; yet there are situations (e.g. a field-aligned flow) where even a very large u has no
inductive effect whatsoever, in which case the induction equation assumes the mathematical
form

∂B

∂t
= −∇× (η∇× B) , (1.66)

even though Rm may be very large, and B evolves on the (long) magnetic diffusion timescale
(1.64) rather than on the (short) turnover time.

1.5 The Lorentz force

Getting to eq. (1.60) was pretty easy (because we summarily swept the displacement current
under the rug), but it represents only half (in fact the easy half) of our task; we must now
investigate the effect of the magnetic field on the flow u; and this, it turns out, is the tricky
part of the MHD approximation.

You will certainly recall that the Lorentz force acting on an electrically charge particle
moving at velocity u in a region of space permeated by electric and magnetic fields is given by

f = q(E + u × B) , [N] . (1.67)

where q is the electrical charge. Consider now a volume element ∆V containing many such
particles; in the continuum limit, the total force per unit volume (F) acting on the volume
element will be the sum of the forces acting on each individual charged constituents divided by
the volume element:

F =
1

∆V

∑

k

fk =
1

∆V

∑

k

qk(E + uk × B)

=

(

1

∆V

∑

k

qk

)

E +

(

1

∆V

∑

k

qkuk

)

× B

= ρeE + J × B , [Nm−3] . (1.68)

where the last equality follows from the usual definition of charge density and electrical current
density. At this point you might be tempted to eliminate the term proportional to E, on the
grounds that in MHD we are dealing with a globally neutral plasma, meaning ρe = 0, therefore
ρeE ≡ 0 and that’s the end of it. That would be way too easy...

Let’s begin by taking the divergence on both side of the generalized form of Ohm’s Law
(eq. (1.58)). We then make use of Gauss’s Law (eq. (1.53)) to get rid of the ∇ ·E term, and of
the charge conservation Law

∂ρe

∂t
+ ∇ · J = 0 (1.69)

to get rid of the ∇·J term. The end result of all this physico-algebraical juggling is the following
expression:

∂ρe

∂t
+

ρe

(ε0/σ)
+ σ∇ · (u × B) = 0 . (1.70)
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The combination ε0/σ has units of time, and is called the charge relaxation time, henceforth
denoted τe. It is the timescale on which charge separation takes place in a conductor if an electric
field is suddenly turned on. For most conductors, this a very small number, of order 10−18 s !!
This is because the electrical field reacts to the motion of electric charges at the speed of light
(in the substance under consideration, which is slower than in a vacuum but still mighty fast).
Indeed, in a conducting fluid at rest (u = 0) the above expression integrates readily to

ρe(t) = ρe(0) exp(−t/τe) , (1.71)

thus the name “relaxation time” for τe.
Now let us consider the case of a slowly moving fluid, in the sense that it is moving on a

timescale much larger than τe; this means that the induced electrical field will vary on a similar
timescale (at best), and therefore the time derivative of ρe can be neglected in comparison to
the ρe/τe term in eq. (1.70), leading to

ρe = ε0∇ · (u × B) . (1.72)

This indicates that a finite charge density can be sustained inside a moving conducting fluid.
The associated electrostatic force per unit volume, ρeE, is definitely non-zero but turns out
to much smaller than the magnetic force. Indeed, a dimensional analysis of eq. (1.68), using
eq. (1.72) to estimate ρe, gives:

ρeE ∼
(

ε0uB

`

)(
J

σ

)

∼
(uτe

`

)

JB , (1.73)

J × B ∼ JB , (1.74)

where Ohm’s Law was used to express E in terms of J, and once again ` is a typical length
scale characterizing the variations of the flow and magnetic field. The ratio of electrostatic to
magnetic force is thus of order uτe/`. Now τe ¿ 1 to start with, and for non-relativistic fluid
motion we can expect that the flow’s turnover time `/u is much larger than the crossing time
for an electromagnetic disturbance ∼ `/c ∼ τe; both effects conspire to render the electrostatic
force absolutely minuscule compared to the magnetic force, so that eq. (1.68) becomes

F = J × B , [MHD approximation] . (1.75)

and this must be added to the RHS of the Navier-Stokes equation (1.22)... with a 1/ρ prefactor
so we get a force per unit mass, rather than per unit volume.

Now, getting back to this business of having dropped the displacement current in the full
Maxwellian form of Ampère’s Law (eq. (1.55)); it can now be all justified on the grounds that
the time derivative of the charge density can be neglected in the non-relativistic limit. Indeed,
to be consistent the charge conservation equation (1.69) now reduces to

∇ · J = 0 ; (1.76)

taking the divergence on both sides of eq. (1.55) then leads to

∇ · J = −ε0∇ ·
(

∂E

∂t

)

= ε0

∂

∂t
(∇ · E) =

∂ρe

∂t
; (1.77)

this demonstrates that dropping the time derivative of the charge density is equivalent to
neglecting Maxwell’s displacement current in eq. (1.55). To sum up, provided we exclude very
rapid transient events (such as turning a battery on or off, or any such process which would
generate a large ∂ρe/∂t), under the MHD approximation the following statements all hold true:

• The fluid motions are non-relativistic;

• The electrostatic force can be neglected as compared to the magnetic force;

• Maxwell’s displacement current can be neglected.
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1.6 Joule heating

In the presence of finite electrical conductivity, the volumetric heating associated with the
dissipation of electric currents must be included on the RHS of the energy equation, in the
form of the so-called Joule heating function:

φB =
η

µ0

(∇× B)2 , [J m−3s−1] . (1.78)

Note however that in very nearly all astrophysical circumstances, Joule heating makes an in-
significant contribution to the energy budget. When it occurs, heating by magnetic energy
dissipation, such as in flares, involves dynamical mechanisms that lead to effective dissipation
far more rapid and efficient than Joule heating.

1.7 The full set of MHD equations

For the record, we now collect the set of partial differential equations governing the behavior
of magnetized fluids in the MHD limit:

∂ρ

∂t
+ ∇ · (ρu) = 0 , (1.79)

Du

Dt
= −1

ρ
∇p + g +

1

µ0ρ
(∇× B) × B +

1

ρ
∇ · ττττ , (1.80)

De

Dt
+ (γ − 1)e∇ · u =

1

ρ

[

∇ ·
(

(χ + χr)∇T
)

+ φν + φB

]

, (1.81)

∂B

∂t
= ∇× (u × B − η∇× B) . (1.82)

Equations (1.79)—(1.82) are further complemented by the two constraint equations:

∇ · B = 0 , (1.83)

p = f(ρ, T, ...) , (1.84)

and suitable expressions for the viscous stress tensor and for the physical coefficient ν, χ, η, etc.
Note that gravity g is explicitly included on the RHS of (1.80), that e is the specific energy of
the plasma (magnetic energy will be dealt with separately shortly), and that eq. (1.84) is just
some generic form for an equation of state linking the pressure to the properties of the plasma
such as density, temperature, chemical composition, etc.

This is it in principle, but in what follows we shall seldom solve these equations in this com-
plete form. In the parameter regime characterizing most astrophysical fluids, we usually have
Re À 1, which means that the (u ·∇u) term in eq. (1.80) will play important role; this, in turn,
means turbulence, already in itself an unsolved problem even for unmagnetized fluids. There
is also a strong nonlinear coupling between eqs. (1.80) and eqs. (1.82), so that the turbulent
cascade involves both the flow and magnetic field. Finally, with both Re À 1 and Rm À 1,
astrophysical flows will in general develop structures on length scales very much smaller than
that characterizing the system under study, so that even fully numerical solutions of the above
set of MHD equations will tax the power of the largest extant massively parallel computers,
and will continue to do so in the foreseeable future; which is why judicious geometrical and/or
physical simplification remains a key issue in the art of astrophysical magnetohydrodynamics...
and will also continue to remain so in the same foreseeable future!
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Figure 1.4: The two fundamental MHD wave modes in a uniform background magnetic field:
(A) magnetosonic mode, and (B) Alfvén mode. The wave vector k is indicated as a thick
arrow, and highlights the fact that the magnetosonic mode is a longitudinal wave, while the
Alfvén mode is a transverse wave. In the presence of plasma, the magnetosonic mode breaks
into two submodes, according to the phasing between the magnetic pressure and gas pressure
perturbations (see text).

1.8 MHD waves

Although it looks innocuous enough, the magnetic force in the MHD approximation has some
rather complex consequences for fluid flows, as we will have ample occasions to verify throughout
this course. One particularly intricate aspects relates to the types of waves that can be
supported in a magnetized fluid; in a classical unmagnetized fluid, one deals primarily with
sound waves (pressure acting as a restoring force), gravity waves (gravity acting as restoring
force), or Rossby waves (Coriolis as a restoring force). It turns out that the Lorentz force
introduces not one, but really two additional restoring forces.

Making judicious use of eqs. (1.53) and (1.56), together with some classical vector identities,
eq. (1.75) can be rewritten as

F =
1

µ0

[

(B · ∇)B − 1

2
∇(B2)

]

, (1.85)

where B2 ≡ B · B. The first term on the RHS is the magnetic pressure, and the second the
magnetic tension. The general idea is illustrated on Figure 1.4. Fluctuations in magnetic
pressure can propagate as a longitudinal wave, much as a sound wave, as depicted on Fig. 1.4A.
In fact, two such magnetosonic waves modes actually exist, according to whether the magnetic
pressure fluctuation is in phase with the gas pressure fluctuation (the so-called fast mode), or
in antiphase (the slow mode). In addition, magnetic tension can produce a restoring force that
allows the propagation of wave-on-a-string-like transverse waves, known as Alfvén waves, as
illustrated on Fig. 1.4B.

Problem 1.7 gets you to calculate some basic characteristics of Alfvén waves propagating in
a homogeneous medium threaded by a uniform magnetic field. If all goes well, you should find
that small-amplitude Alfvén waves travel with a speed

uA =
B0√
µ0ρ

, (1.86)
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where B0 is the magnitude of the (uniform) magnetic field along which the wave is propagating,
and ρ is the (constant) fluid density. We will not be dealing much with magnetosonic waves in
this course, but we will return to Alfvén waves in part II, when we examine their dynamical
impact on the acceleration of wind-like outflows from the sun and stars.

1.9 Magnetic energy

Consider the expression resulting from dotting B into the induction equation (1.60), integrating
over the spatial domain (V ) under consideration, and making judicious use of various well-
known vector identities and of Gauss’ theorem:

d

dt

∫

V

B2

2µ0

dV = −
∫

S

(S · n̂) dS −
∫

V

(u · F) dV −
∫

V

σ−1J2 dV , (1.87)

where E is the electric field, and n̂ is a outward-directed unit vector normal to the boundary
surface S. The vector quantities S, L and J are the Poynting flux, Lorentz force and current
density, respectively. Recall that in the MHD limit these take the form:

S =
1

µ0

E × B , (1.88)

F =
1

µ0

(∇× B) × B , (1.89)

µ0J = ∇× B . (1.90)

We also made use of the fact that in the MHD approximation, the net current J is expressed
via the generalized form of Ohm’s law as the sum of the conduction and induction currents:

J = σ(E + u × B) . (1.91)

Examine now the three terms on the RHS of eq. (1.87); the first is the Poynting flux component
into the domain, integrated over the domain boundaries, i.e., the flux of electromagnetic energy
in (integrand < 0) or out (integrand > 0) of the domain. This term evidently vanishes in the
absence of applied magnetic or electric fields on the boundaries. The second is the work done
by the Lorentz force (F) on the flow. In general this term can be either positive or negative; in
the context of magnetic driving of stellar winds (part II of the course) we are concerned with
the u ·F > 0 situation8, while in the dynamo context (part III of the course) we are interested
in the u ·F < 0 situation, where the flow transfers energy to the magnetic field. The third term
is evidently always negative, and represents the rate of energy loss due to Ohmic dissipation.
Equations (1.87) then naturally leads to interpret the quantity B2/2µ0 as the magnetic energy
density, since the LHS of eq. (1.87) is clearly the rate of change of the total magnetic energy

(EB) within the domain:

EB =
1

2µ0

∫

V

B2dV . (1.92)

1.10 Magnetic flux freezing and Alfvén’s theorem

Let us return to the differential form of Faraday’s Law:

∇× E = −∂B

∂t
. (1.93)

8which is also quite relevant to the design of magnetic pumps for electrically conducting fluids. This has
received quite a bit of attention in light of the use of liquid sodium to cool the core of nuclear reactors.
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Project now each side of this expression onto a unit vector normal to some surface S fixed in
space and bounded by a closed countour γ, integrate over S, and apply Stokes’ theorem to the
LHS:

∫

S

(∇× E) · n̂dS =

∮

γ

E · d`̀̀̀ = −
∫

S

(
∂B

∂t

)

· n̂dS . (1.94)

So far the surface S remains completely arbitrary. If it is fixed in space, then we get the usual
integral form of Faraday’s Law:

∮

γ

E · d`̀̀̀ = − ∂

∂t

∫

S

B · n̂dS , (1.95)

with the LHS corresponding to the electromotive force, and the RHS to the time variation
of the magnetic flux (ΦB). If we now assume instead that the surface S is a material surface
moving with the fluid, then (1) we must substitute the Lagrangian operator D/Dt for the partial
derivative on the RHS of eq. (1.95); and (2) we are allowed to invoke Ohm’s Law to substitute
J for E on the RHS since any point of the (material) contour is by definition co-moving with
the fluid:

1

σ

∮

γ

J · d` = − D

Dt

∫

S

B · n̂dS . (1.96)

Now, obviously, in the limit of infinite conductivity we have

D

Dt

∫

S

B · n̂dS = 0 . (1.97)

This states that in the ideal MHD limit σ → ∞, the magnetic flux threading any (open) surface
is a conserved quantity as the surface is advected (and possibly deformed) by the flow. This
results is known as Alfvén’s theorem. Note in particular that in the limit of an infinitisemal
surface pierced by “only one” fieldline, Alfvén’s theorem is equivalent to saying that magnetic
fieldline must move in the same way as fluid elements; it is customary to stay that the magnetic
field is “frozen” into the fluid. In this manner it behaves just like vorticity in the inviscid limit
ν → 0. And like in the case of vorticity, sheared flows can amplify magnetic fields by stretching,
a subject we will investigate in all great details in Part III of these class notes.

1.11 Magnetic helicity

In anology with fluid helicity, one can define the magnetic helicity as

hB = A · B . (1.98)

Note that the magnetic vector potential A is playing here the role of the flow field u in eq. (1.45).
A substantial amount of vector algebra can show that the total magnetic helicity in any volume
V of magnetized fluid

HB =

∫

V

A · BdV , (1.99)

is a conserved quantity under ideal MHD (σ → ∞). In direct analogy to fluid helicity, this is
a measure of twist of magnetic fieldlines, and/or of topological linkage between distinct flux
systems. A closely related quantity is the current helicity:

HJ =

∫

V

J · BdV , (1.100)

which, in the astrophysical context, is often an easier quantity to determine observationally.
Note that since J ∝ ∇×B and B ∝ ∇×A, a proportionality between HB and HJ is expected,
and the two quantities should certainly have the same sign for a given physical system.
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1.12 Mathematical representations of magnetic fields

We close this heavy-duty chapter with a somewhat disorganized collection of mathematical and
physical properties of the vector magnetic field, which will be of great use in chapters to follow.

1.12.1 Pseudo-vectors and solenoidal vectors

It is worth distinguishing between real vectors (also called axial vectors) and pseudo-vectors,
the latter class including the magnetic field vector. Real vectors remain invariant upon inver-
sion of the (3D) coordinates about the origin, i.e., x → −x, hereafter thinking in cartesian
coordinates to ease the discussion. This will leave the “physical” direction in space of a true
vector (like a velocity u) unchanged, since both the coordinate unit vectors and the components
of the velocity will change sign:

u′ = (−ux)(−êx) + (−uy)(−êy) + (−uz)(−êz) = u . (1.101)

However, in terms of vector products, curl operators, orientation of surfaces and so on, the
coordinate inversion will take us from a right-handed coordinate system to a left-handed system.
This implies that a vector like the magnetic field must remain invariant under coordinate
inversion. This can be appreciated by considering the expression for the magnetic force acting
on a charge q moving at velocity u in a magnetic field B:

f = q u × B ; (1.102)

we just argued that the components of f and u will change sign under coordinate inversion;
therefore the magnetic field components must not change sign under coordinate inversion, for
eq. (1.102) to remain valid (physical laws do not care about our coordinate conventions!).
One must conclude that upon coordinate inversion, the direction of a vector field such as B

immediately flips! So the Earth’s north magnetic pole instantly becomes the south magnetic
pole9. Weird behavior for a vector, which is why such vectors inherit the prefix “pseudo”.

Pseudo or not, there are numerous vectors fields of physical interest out there that have the
property that their divergence vanishes; the magnetic field is evidently such a vector field, as
per our second Maxwell equation (1.53). The fluid vorticity (§1.2.4) is clearly another. Any
vector field (G, say) satisfying ∇ · G = 0 is called a solenoidal vector.

Soleinodal vectors have a very interesting property related to the conservation of their flux
across material surfaces transported and deformed by a flow field u. They can be shown to
satisfy the following kinematic theorem:

D

Dt

∫

Sm

G · n̂dS =

∫

Sm

[
∂G

∂t
−∇× (u × G)

]

· n̂dS . (1.103)

This is simply saying that the net variation of the flux (LHS) can be due either to intrinsic time-
variation of the vector field (first term in the square brackets on the RHS) or to deformation
of the material surface Sm by the flow u (second term).

Note that we could have arrived at Alfvén’s theorem (§1.10) starting from this kinematic
theorem for solenoidal vector fields, as applied to B:

D

Dt

∫

Sm

B · n̂dS =

∫

Sm

[
∂B

∂t
−∇× (u × B)

]

· n̂dS (1.104)

Obviously, the quantity within square brackets on the RHS will vanish as per our MHD induc-
tion equation (1.60) written in the ideal limit η → 0, which gets us directly to eq. (1.97). You
will recall, of course, that Ohm’s Law is indeed already embodied in the MHD induction equa-
tion, so this is really getting to the same result by two mathematically distinct but physically
equivalent paths.

9Does this mean that your compass needle will instantly rotate by 180 degrees? Think about that one a bit...
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1.12.2 The vector potential

It will often prove useful to work with the MHD induction equation written in terms of a vector
potential A (units T m) such that B = ∇× A. Equation (1.60) is then readily integrated to

∂A

∂t
= u × (∇× A) − η∇× (∇× A) + ∇Φ , (1.105)

where, in “uncurling” the induction equation we may elect to append the gradient of a scalar
function to the RHS, with no effect on B. This additional term may contribute to the electric
field E, however, and so Φ is conveniently regarded as the electrostatic potential10. Clearly,
any solution of eq. (1.105) identically satisfies the solenoidal constraint ∇ · B = 0.

1.12.3 Axisymmetric magnetic fields

In many astrophysical situations to be encountered in subsequent chapters we will facing astro-
physical magnetofluid systems that show symmetry about an axis, in fact usually a rotational
axis. For example, the sun’s differential rotation and meridional circulation, as inferred from
surface measurements and helioseismology, are very closely axisymmetric on the largest spa-
tial scales. In spherical polar coordinates (r, θ, φ), the most general axisymmetric (∂/∂φ = 0)
magnetic field and flow can be written as

u(r, θ, t) =
1

ρ
∇× (Ψ(r, θ, t)êφ) + $Ω(r, θ, t)êφ (1.106)

B(r, θ, t) = ∇× (A(r, θ, t)êφ) + B(r, θ, t)êφ (1.107)

where $ = r sin θ. Here the vector potential component A and stream function Ψ define the
poloidal components of the field and flow, i.e., the component contained in meridional (r, θ)
planes. The azimuthal component B is often called the toroidal field, and Ω is the angular
velocity (units rad s−1). Evidently eqs. (1.106)—(1.107) satisfies the constraints ∇ · (ρu) = 0
(mass conservation in a steady flow) and ∇ · B = 0 by construction.

A practical advantage of this so-called mixed representation is that it allows the separation
of the (vector) MHD induction equation into two components for the 2D scalar fields A and B:

∂

∂t
($A) + up · ∇($A) = $η

(

∇2 − 1

$2

)

A , (1.108)

∂

∂t

(
B

$

)

+ up · ∇
(

B

$

)

=
η

$

(

∇2 − 1

$2

)

B +
1

$
(∇η) × (Bêφ)

−
(

B

$

)

∇ · up + Bp · ∇Ω , (1.109)

where Bp and up are notational shortcuts for the poloidal field and meridional flow. Notice
that the vector potential A evolves in a manner entirely independent of the toroidal field B,
the latter being conspicuously absent on the RHS of eq. (1.108). This is not true of the toroidal
field B, which is well aware of the poloidal field’s presence via the ∇Ω shearing term.

On numerous occasions in this and subsequent chapters we will seek solutions to eqs. (1.108)—
(1.109) inside a sphere (radius R) of magnetized fluid; in the “exterior” r > R there is only
vacuum, which implies vanishing electric currents. In practice we will need to match whatever
solution we compute in r < R to a current-free solution in r > R; such a solution must satisfy

µ0J = ∇× B = 0 . (1.110)
10In most (but not all!) situations dealt with in the following pages, Φ can (and will) be set to zero without

objectionable consequences.
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For an axisymmetric system eq. (1.110) then translates into

(

∇2 − 1

$2

)

A(r, θ, t) = 0 , (1.111)

B(r, θ, t) = 0 . (1.112)

Solutions to eq. (1.111) have the general form

A(r, θ, t) =

∞∑

l=1

al

(
R

r

)l+1

P 1
l (cos θ) r > R , (1.113)

where the P 1
l are the associated Legendre functions of order 1 and l is a positive integer.

Solutions to eqs. (1.108)–(1.109) computed within the sphere must then be smoothly matched
to eqs. (1.112)—(1.113) in the exterior. In particular, the vector potential A must be continuous
up to its first derivative normal to the surface, so that the magnetic field component tangential
to the surface remains continuous across r = R. Regularity of the magnetic field on the
symmetry axis (θ = 0) requires that we set B = 0 there. Without any loss of generality, we
can also set A = 0 on the axis.

1.12.4 Force-free magnetic fields

In many astrophysical systems, the magnetic field dominates the dynamics and energetics of
the system. Left to itself, such a system would tend to evolve to a force-free state described by

F = J × B = 0 . (1.114)

Broadly speaking, this can be achieved in two physically distinct ways (excluding the trivial
solution B = 0). The first is J = 0 throughout the system. Then Ampère’s Law becomes
∇×B = 0, which means that, as with the electric field in electrostatic, B can be expressed as
the gradient of a potential. Such a magnetic field is called a potential field. Substitution into
Gauss’ Law then yields a Laplace-type problem:

B = ∇Φ , ∇2Φ = 0 , [Potential field] , (1.115)

with Ampère’s Law being trivially satisfied (0 = 0!). Alternately, a system including a non-zero
current density can still be force free, provided the currents flow everywhere parallel to the
magnetic field, i.e.,

∇× B = αB , (1.116)

where α need not necessarily be a constant, i.e., it can vary from one fieldline to another, vary
in space, and even depend on the (local) value of B. Imagine now a situation where, in some
domain (for example, the exterior of a star), we are provided with a boundary condition on B

and the task is to construct a force-free field. Adopting the potential field anzatz can lead to
very different reconstructions that if we adopt instead eq. (1.116), given that in the latter case
one is free to specify any electric current distribution within the domain, as long as J remains
parallel to B.

A very important result in this context is known as Aly’s Theorem; it states that in a
semi-infinite domain with B⊥ imposed at the boundary and B → 0 as x → ∞, the (unique)
potential field solution satisfying the boundary conditions has a magnetic energy that is lower

than any of the (multiple) solutions of eq. (1.116) that satisfy the same boundary conditions,
even with complete freedom to specify α(x) within the domain. This poses a strict limit to
the amount of magnetic energy stored into a system that can actually be tapped into to power
astrophysically interesting phenomena.
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Problems:

1. Obtain the charge conservation equation (1.69) by following the general logic used in
§1.2.1 to obtain the continuity equation (1.8).

2. Fill in the missing mathematical steps leading to eq. (1.70)

3. Fill in the missing mathematical steps leading to eq. (1.85)

4. Obtain equations (1.108) and (1.109) by substitution of eqs. (1.106) and (1.107) into the
MHD induction equation (1.60). Hint: the induction equation is a vector equation; terms
“oriented” in the φ-direction must cancel one another independently of terms oriented
perpendicular to the φ-direction.

5. This one is a challenge to your vector algebraic skills. The idea is to mathematically prove
the statement made in §1.11, namely that the magnetic helicity in a volume of plasma
is a conserved quantity in the idea MHD limit (σ → ∞). Remembering that the volume
itself is carried (and possibly deformed) by the flow, you must show that

D

Dt

∫

V

A · BdV = 0 . (1.117)

If you get stuck, take a look at the Goedbloed & Poedts textbook cited below for helpful
hints...

6. This problem lets you dig a bit deeper in the concept of magnetic energy (§1.9).

(a) Starting from the induction equation, fill in the missing mathematical steps leading
to eq. (1.87).

(b) Show that in the absence of induction (meaning u = 0), a force-free magnetic con-
tained in a domain V will always decay.

(c) Making use of eq. (1.91), obtain an expression involving B and u but not E, for
the Poynting flux component normal to the boundary S enclosing an electrically
conducting fluid. Give a physical interpretation for each term in the resulting math-
ematical expression.

7. In this one you get to calculate the propagation speed of a pure Alfvén wave in an ho-
mogeneous, incompressible medium (constant density ρ). Sounds imposing, but a careful
choice of geometry will make it easier than you may think. Working in cartesian geometry,
consider a uniform x-directed magnetic field subjected to a velocity perturbation uy(x, t)
oriented in the y direction (the problem is invariant with respect to z).

(a) As warmup, begin by showing that eqs. (1.79) and eq. (1.83) are automatically
satisfied;

(b) then show that the ideal form of the (incompressible) MHD equations reduces to two
non-trivial coupled equations, for the y-components of the flow and magnetic field;

(c) now manipulate these two equations into a single partial second-order partial differ-
ential equation;

(d) Show that this equation admits wave-type solutions, with phase speed given by
eq. (1.86).
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Bibliography:

There are a great many textbooks available on classical hydrodynamics. The following are my
own top-three personal favorites:

Tritton, D.J., Physical Fluid Dynamics, 2nd ed., Oxford University Press (1988),
Acheson, D.J., Elementary Fluid Dynamics, Clarendon Press (1990)
Landau, L., et Lifschitz, E. 1959, Fluid Mechanics, Oxford: Pergamon Press.

If you are looking for an introduction to the topic targeted at physics-trained readers, you may
want to work through the first six chapters of my class notes for PHY-3140, the 2007 version
of which being still available on the Web:

http://www.astro.umontreal.ca/∼paulchar/phy3140/notes07.pdf
(I’m working on a revised version for the winter of 2009). If you need a refresher on undergrad-
uate electromagnetism, you should go back to

Griffith, D.J., Introduction to Electrodynamics, 3rd ed., Prentice Hall (1999).

At the graduate level, the standard reference remains

Jackson, J.D., Classical Electrodynamics, 2nd ed., John Wiley & Sons (1975),

who does devote a chapter to magnetohydrodynamics, including a discussion of magnetic wave
modes. My personal favorite on magnetohydrodynamics is:

Davidson, P.A., An Introduction to Magnetohydrodynamics, Cambridge University Press
(2001).

Sections 1.5 and 1.10 are strongly inspired by Davidson’s own presentation of the subject. He
also presents an illuminating proof of the kinematic theorem embodied in eq. (1.103). The
following textbook is also well worth consulting:

Goedbloed, H., & Poedts, S., Principles of Magnetohydrodynamics, Cambridge University
Press (2004).

These authors put greater emphasis on MHD waves, shocks, and on the intersection of MHD
and plasma physics. For those seeking even more focus on plasma physics aspects, I would
recommend:

Kulsrud, R.M., Plasma Physics for Astrophysics, Princeton University Press (2005).

Also noteworthy in the general astrophysical context:

Choudhuri, A.R., The Physics of Fluids and Plasmas, Cambridge University Press (1998).

On Aly’s theorem, see

Aly, J.-J. 1984, Astrophys. J., 283, 349,
Aly, J.-J. 1991, Astrophys. J., 375, L61,
Smith, D.F., & Low, B.C. 1993, Astrophys. J., 410, 412,

but brace yourself for some serious math.
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Chapter 2

Magnetic fields in astrophysics

By now you may think you have landed in some sort of deranged combined crash course on fluid
mechanics, electromagnetism... and vector algebra! To dispel this idea we now return closer
to our subject matter, by briefly documenting the omnipresence of magnetic fields throughout
the universe (§§2.1—2.8), pondering as to the conspicuous absence of electric fields (§2.9), and
to the ultimate origin of magnetic fields (§2.10).

2.1 Earth’s magnetic field

Natural magnetism (in technical parlance, ferromagnetism) is known at least since Antiquity,
but it took the monumental treatise De Magnete, published in 1600 by William Gilbert (1544-
1603), to really drive home the point that the Earth is one huge spherically-shaped bar magnet.
Gilbert arrived at this conclusion from comparing the known behavior of compass needless to
what he observed around a bar magnet carved into a sphere (see Figure 2.1). A medical doctor
by training, in his book Gilbert also debunked many semi-occult beliefs about the behavior of
magnetic objects and their influence on the human body and psyche.

To a good first approximation, the Earth’s magnetic field has the form of a dipole approxi-
mately aligned with the Earth’s rotation axis, with an average surface field strength of ∼ 50µT.
Geologic evidence has shown that the Earth’s magnetic field is not steady, but flips polarities
between the N and S hemisphere, these reversals being rapid (on geological timescales; they
last some 10,000yr), are irregularly spaced, and punctuating much longer epochs of more or
less stable field configuration, lasting a few 105 yr on average. At the present Earth’s dipole
moment is M⊕ = 8.1× 1022 A m2. Paleomagnetic studies indicate that M⊕ has been declining
rather rapidly over the past few 1000 yr, suggesting that we may be heading for a polarity
reversal sometimes in the next few 1000 yr if the current trend persists.

Because the Earth’s crust and troposphere are such lousy electrical conductors, the presence
of the geomagnetic field is seldom felt in our daily life (and is ever more fading from popular
consciousness with the replacement of magnetic compasses by GPS). In the Earth’s ionosphere,
however, the geomagnetic field is quite significant, and it interaction with the solar wind (to be
encountered in part II of these notes) is what defines the magnetosphere, which happens to
shield us from a lot of high energy particles often accelerated as a side effect of solar eruptive
events (more on those shortly!). The impact of solar ejecta on the magnetosphere triggers
geomagnetic storms. Their most spectacular manifestation being auroral emission, but the
induced electric fields can pose threats to technological infrastructures such as power lines and
pipelines.
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Figure 2.1: ). Drawing in William Gilbert De Magnete, written in 1600. Gilbert polished a
magnet in the form of a sphere, and could show that the pattern of inclination of the magnetic
needle of as compass placed at various locations around the sphere was identical to what had
already been observed by long-distance navigators and travellers of the sixteenth century.

2.2 Other solar system planets

Magnetic fields have been measured on most solar system planets (and many of the larger
moons) by various space probes and landers. Table 2.1 lists some of the salient characteristics
of planetary magnetic fields. Venus is the only planet in which no sign of a large-scale magnetic
field has ever been detected (Pluto remains terra incognita as far as magnetic fields go). Given
what is known of planetary internal structure, only in a few cases (Mercury, Mars) can the
magnetic field be assumed to arise from ferromagnetism, in other words a “frozen-in” relic of
the formation of the solar system. For all other planets, a dynamo mechanism (part III of this
course) must be invoked.

Table 2.1
Planetary magnetic fields and related data

Planet Radius [km] Spin period [hr] Dipole M/M⊕ Incl.[deg.]

Mercury 2400 1406 5 × 10−4 +14.0
Venus 6100 5832 < 10−5 N/A
Earth 6378 24.0 1 +11.3
Mars 3400 24.7 3 × 10−4 N/A
Jupiter 71400 9.9 20000 -9.6
Saturn 60300 10.7 600 0
Uranus 25600 17.2 50 -59
Neptune 24800 16. 25 -47
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The symmetry axis of the dipolar component of most planetary magnetic fields is usually
inclined significantly with respect to the rotation axis, Saturn being an interesting exception
to which we shall return in due time. Table 2.1 also illustrates a noteworthy trend, namely the
tendency for magnetic fields to become stronger with increasing rotation rate, Mars being here
the outstanding exception.

Because they have magnetic fields, solar system planets (again Venus excepted) also have
magnetospheres, whose presence is beautifully confirmed by observations of auroral emission
in the ultraviolet (see Figure 2.2). Jupiter’s magnetosphere is particularly interesting. Besides
being the biggest “object” in the solar system (Sun included), it can interact with ionized
plasma ejected by volcanic eruptions on Jupiter’s moon Io to drive intense electrical current
systems by a dynamo process not at all unlike those we will investigate in part III of this course.

2.3 The Sun

The Sun is the first astronomical object (Earth excluded) in which a magnetic field was detected,
through the epoch-making work of George Ellery Hale (1868-1938) and collaborators, in the
opening decades of the twentieth century. In 1907-1908, by measuring the Zeeman splitting in
magnetically sensitive lines in the spectra of sunspots and detecting the polarization of the
split spectral components (see Fig. 2.3), Hale provided the first unambiguous and quantitative
demonstration that sunspots are the seat of strong magnetic fields. Not only was this the
first detection of a magnetic field outside the Earth, but the inferred magnetic field strength,
0.3T, turned out a few thousand times greater than the Earth’s own magnetic field. It was
subsequently realized that the Lorentz force associated with such strong magnetic fields would
also impede convective energy transport from below, and therefore lead naturally to the lower
temperatures observed within the sunspots, as compared to the surrounding photosphere.

The solar surface magnetic field outside of sunspots, although of much weaker strength, is
accessible to direct observations, usually by measuring Zeeman broadening of spectral lines, or
the degree of linear or circular polarisation of light emitted from the solar photosphere. The
first magnetic maps (magnetograms) of the solar disk were obtained in the late 1950’s by the
father-and-son team of Harold D. Babcock (1882-1986) and Horace W. Babcock (1912-2003),
and were little more than photographs of stacks of a few dozen horizontal scans of the solar disk
displayed on an oscilloscope. Figure 2.4 (top) is a modern equivalent in pixel form, with the
gray scale coding the strength of the normal component of the magnetic field (mid-level gray,
|B| ∼< 1mT; going to white for positive normal field, and to black for negative, peaking around
0.4T in both cases). Comparison with a continuum image (bottom) reveals that the stronger
magnetic fields coincide with sunspots, but hefty fields of a few 10−2 tesla can be found within
and around groups of sunspots, as well as in the form of small clumps anywhere else in the
photosphere. Far from taking the form of a large-scale, smooth diffuse field as on the Earth,
the solar photospheric magnetic field is very fragmented and topologically complex, and shows
up concentrated in small magnetized regions separated by field-free plasma. This dichotomy
persists down to the smallest spatial scales than can be resolved with current observational
techniques. It owes much to the fact that the outer 30% in radius of the Sun is a fluid in a
strongly turbulent state.

Because a fraction the solar magnetic field extends into the corona, and because it is dy-
namically significant there, the equilibrium structure of the corona ends up being defined by
a balance between three forces: gravity, plasma pressure, and the Lorentz force. As the pho-
tospheric magnetic field inexorably evolves as a result of advection by flows and magnetic flux
emergence, this equilibrium is eventually lost, leading to rapid and often spectacular disrup-
tions of coronal structures. The associated phenomena are grouped under the general name of
solar activity, and include phenomena as diverse as flares (Fig. 2.5) and coronal mass ejections
(Fig. 2.6). The sun’s magnetic field is in fact the primary energy source for the majority of
such coronal transients. Saturated as we have become with spectacular images and movies from
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Figure 2.2: Auroral emission observed on Jupiter and Saturn by the ultraviolet camera on the
Hubble Space Telescope. Public domain images courtesy of NASA.
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Figure 2.3: The magnetically-induced Zeeman splitting in the spectrum of a sunspot. The
vertical dark line on the left image is the slit having produced the vertical stack of spectra on
the right image (with wavelength running horizontally). Reproduced from the 1919 paper by
G.E. Hale, F. Ellerman, S.B. Nicholson, and A.H. Joy (in The Astrophysical Journal, vol. 49,
pps. 153-178).

space-borne solar observing instruments, it is perhaps worth recalling that it took the best part
of the twentieth century to establish the causal link between these phenomena and the solar
magnetic field, and that it is really only in the mid-1970’s, with the X-Ray imager and coron-
agraph onboard NASA’s Skylab , that the coronal terra incognita began to be systematically
explored.

There is much, much more to be said about the solar magnetic field, its spatiotemporal
evolution, and its dynamical impact on the sun’s photosphere and extended outer atmosphere.
The most prominent temporal variations are certainly those associated with the solar mag-

netic activity cycle, which modulates, on an approximately 11-yr timescale, nearly every
solar observable: coronal structures, sunspot coverage, polar field strength, radio emission, ir-
radiance, UV and X-Ray emission, and so on, as well as the frequency of solar eruptive events
(flares, coronal mass ejections, eruptive prominences, etc.). We will come back to all of this in
chapter 6, but for now we leave the solar system to continue our grand tour of astrophysical
magnetic fields.

2.4 Sun-like stars

The disk of solar-type stars other than the sun cannot be spatially resolved, and so direct obser-
vation of starspots is not possible, although rotational modulations of the luminosity associated
with starspot darkening most certainly is. Direct measurements of magnetic polarisation of
starlight is difficult as well, unless the field has a strong large-scale component, otherwise the
polarisation associated with regions of opposite polarities —e.g., starspot pairs— cancel out
when integrated over the solar disk. Most evidence for the presence of magnetic fields on such
stars is thus indirect, yet extremely compelling, as it covers a wide range of phenomena visible
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38 CHAPTER 2. MAGNETIC FIELDS IN ASTROPHYSICS

Figure 2.4: A full-disk solar magnetogram of the sun (top), with corresponding continuum
image showing sunspots near disk center (bottom). Tilt the page by 90 degrees to get solar
North on top, where it belongs. While the strongest magnetic fields coincide with sunspots,
the magnetoram also demonstrates that the solar photosphere is filled with magnetic fields of
lesser intensity, all the way up to polar latitudes. Images courtesy oif SOHO/MDI consortium.
SOHO is a project of international cooperation between ESA and NASA.
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Figure 2.5: A solar flare, as seen in soft X-rays by the satellite YOHKOH. A large flare such
as this one can liberate up to 1026 J of thermal energy in the corona over a few minutes. The
bulk of that energy goes into local plasma heating and copious emission of short-wavelength
radiation. Non-flaring emission of soft X-ray usually coincides with sunspots and active regions.
Note also the diffuse, low level coronal X-Ray emission.

Figure 2.6: A coronal mass ejection (CME), as seen in polarized white light by the coronagraph
onboard the Solar Maximum Mission satellite. Large CMEs such as this one can eject up to
a few 109 tons of ionized plasma at speeds exceeding 103 km s−1. The occulting disk of the
coronograph, on the lower left, has a projected radius of 1.25 R¯.

on the sun, such as spectral line variability, rotational modulation of luminosity due to the
passage of large starspots, flares, radio bursts, and variability in magnetically-sensitive spectral
lines on a wide range of timescales.

Figure 2.7 shows a time series of X-Ray emission obtained by the ROSAT satellite, that
looks very much like time series of disk-integrated flux observed by the the Earth-orbiting
GOES satellites when a solar flare is taking place. The most likely interpretation of Fig. 2.7 is
that ROSAT had the good fortune to catch a solar-type star just as it was producing a large
flare.

Another magnetic field-related stellar observable that is particularly noteworthy is the emis-
sion in the cores of the H and K lines of CaII (396.8nm and 393.4nm, respectively). On the Sun,
this emission is known to be associated with non-radiative heating of the upper atmosphere,
and is known to scale well with the local photospheric magnetic flux. Starting back in 1968
at Mt Wilson Observatory, Olin C. Wilson (1909-94) began measuring the CaII H+K flux in
a sample of solar-type stars, a laborious task that was later picked up by a brave group of un-
deterrable associates and followers, whose collective labor has produced a 40 year long archive
of CaII emission time series for no less than 111 stars in the spectral type range F2-M2, on or
near the main-sequence.

Figure 2.8 shows a few sample time series of the so-called Calcium index S, mesuring the
ratio of core emission intensity in the H and K lines to that of the neighbouring continuum.
Some stars show solar-like cycles, others have irregular CaII emission, some show long term
trends and others can only be dubbed “flatliners”. Note that the mere presence of detectable
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Figure 2.7: X-Ray emission from a stellar source, as observed from the ROSAT satellite. The
rapid rise (minutes) and slower decay (many hours) is similar to what is observed in disk-
integrated X-Ray detections of solar flares. Figure reproduced from Fuhrmeister & Schmitt
2003, A&A 403, 247-260 [Figure 4].

CaH+K emission indicates magnetic activity; the absence of detectable temporal variations
in flatliner stars simply means that they stars lack a solar-like well-organized magnetic cycle.
Among cyclic stars, it was shown that a relatively tight parametric relationship exists between
the cycle period (Pcyc) and rotation period (Prot):

Pcyc ∝
(

Prot

τc

)1.25

, (2.1)

with τc being the convective turnover time estimated from mixing length theory of convection.
The quantity within parenthesis is related to the so-called Rossby Number, measuring the
influence of the Coriolis force on a flow. As we shall see in due time, such a link between
rotation, convection and cycle period is indeed expected from dynamo theory. Later studies
have shown that eq. (2.1) is probably an oversimplification, and will return to these remarkable
data in part III of the course, when we construct dynamo models for the sun and stars.

The important conclusion here is that the Sun is not some weird oddball: indirect obser-
vational evidence for magnetic fields has been found on every late-type main-sequence star
observed with sufficient sensitivity. Moreover, evidence for solar-like magnetic activity in late-
type stars stops rather abruptly around spectral type F0-F2 on the main-sequence, which,
according to current stellar structural models, coincides with the disappearance of significant
surface convection zones.

2.5 Early-type stars

Although most main-sequence stars seem to have gone “magnetically quiet” on the hot side
of the dividing line at F0-F2, extant observations suggest a true dichotomy with regards to
stellar magnetism in intermediate-mass stars: most A and B stars (around 95%) on or near
the main-sequence have no measurable magnetic field, but nearly all those who do combine
strong, large-scale magnetic fields, steady on decadal timescales at least, with slow rotation
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Figure 2.8: Calcium emission index in a small subsample of the Mt Wilson dataset, showing
the variety of CaII emission patterns: cycles, non-cyclic irregular emission, long term trend,
and constant emission. On such plots, the sun would have a mean emission level 〈S¯〉 = 0.179,
with a min/max range of about 0.04. Figure cropped from a much larger Figure in Baliunas et

al. 1995, ApJ,438, 269 [Figure 1g].
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and pronounced photospheric abundance anomalies. As we will see later in this course, the
presence of a strong, large-scale photospheric magnetic field (ot whatever origin) favors angular
momentum loss, and therefore slow rotation; and a strong magnetic field and low rotation
favor atmospheric stability, giving full leeway for chemical separation to operate and alter
photospheric abundances.

In the most slowly rotating, strongly magnetized Ap stars, the mean surface magnetic field
stength (“mean” in the sense of being averaged over the stellar surface) can be detected by
Zeeman splitting, as in sunspot. Figure 2.9 below shows a striking example of such splitting.
In more rapidly rotating stars magnetic Doppler imaging become a possibility; this relies on the
varying shapes of spectral lines formed as magnetic structures cross the visible part of the stellar
disk. “Imaging” remains indirect, in the sense that the stellar surface is of course not resolved
spatially, but the availbility of many spectral lines, with some appropriate regularization scheme,
allows this inverse problem to be solved. Figure 2.10 shows a particularly well-studied exemplar,
namely the chemically peculiar star 49Cam. The field strength is high, the magnetic topology
quite complex, with the idea of a strongly inclined dipole, historically the common interpretation
for Ap stars magnetic fields, being a rather rough approximation here.

It is an intriguing fact that the few chemically-normal, (relatively) rapidly rotating early-
type stars on which magnetic fields have been detected all sit in the early-B range of spectral
types and belong to the βCep sub-class (and include the prototype star βCep itself). However,
indirect evidence for photospheric magnetism in O and B star has been accumulating steadily,
be it as emission of hard radiation above and beyond what shock dissipation can provide,
channelling of stellar winds, and spectral variability. Ongoing spectropolarimetric campains
targeting massive stars will hopefully provide more data for theoreticians/modellers to chew on
in upcoming years.

2.6 Pre- and post-main-sequence stars

As with main-squence late-type stars, abundant evidence for magnetic fields in pre- and post-
main sequence stars of spectral types later than F has now been accumulating, mostly again in
the form of stellar analogs to well-observed solar phenomena: X-Ray and EUV emission, flaring,
spectral variability, rotational modulation by starspots, and so on. More recently magnetic
Doppler imaging has been used to reconstruct the surface magnetic field of some pre-main-
sequence stars in the TTauri evolutionary phase. Whether TTauri or giants, all these stars
have low surface temperature and thick convection zones, so observations of magnetic activity
indicators similar to what is observed in late-type main-sequence stars points once again to
the importance of convection zones of significant radial extent below the photosphere. Indeed,
there seems to exist a rather clear-cut, slightly inclined dividing line bisecting the upper part
of the HR diagram (main-sequence and up in luminosity), on the right side (low Teff) of which
evidence of magnetic activity is ubiquitous. Things get messy again with very cool supergiants,
with signs of magnetic activity disppearing across various not quite coincident dividing lines,
depending on the indicator chosen (X-Ray emission, non-thermal emission lines, etc).

With classical TTauri stars, additional complications also come from the presence of an
accretion disk, itself most likely magnetized, perhaps the site of magnetic field generation by
dynamo action, and perhaps even magnetically coupled to its central star. Such a coupling has
been invoked to explain the (relatively) low rotation rates of TTauri stars, which after all are
contracting and accreting large amounts of mass —and angular momentum— from their disk,
and should therefore spin up far more than is observed. Indeed, without angular momentum
loss mediated by magnetic fields in the early stages of star formation, it is quite likely that
stars could simply not eliminate enough angular momentum to form at all!

In hot post-main sequence stars, the observational situation is not well documented or
understood. It is a remarkable fact that magnetic fields have been detected in all sdO and
sdB hot subdwarfs for which a serious attempt has been made. The evolutionary status of
these objects is not well-understood, but they most likely represent what used to be the inner
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Figure 2.9: Zeeman splitting of magnetically-sensitive absorption line in the spectrum of the
Ap star HD94660. The inferred mean field strength for this star is 0.62T. The top trace is that
of a typical unmagnetized star of similar spectral type. The horizontal axis is the wavelength,
measured in Å. Figure reproduced from the Mathys et al. paper cited in the bibliography, with
a few labels added.

Figure 2.10: The surface magnetic field on the Ap star 49Cam, as reconstructed for various
rotational phases (ϕ) by magnetic Doppler imaging. The top row shows the net field strength,
and the bottom row the orientation of the surface magnetic field vector. Plot courtesy of
J. Silvester and G. Wade, RMC/Kingston.
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core of giants prior to the episode of strong mass loss that accompanies the transition to the
horizontal branch. Detection of kG-strength magnetic fields in such stars is strong evidence for
the existence of magnetic fields in the deep interior of their main-sequence progenitors.

2.7 Compact objects

Magnetic fields in isolated white dwarfs have been detected through circular polarisation mea-
surements in the wings of strong spectral lines, usually Balmer lines in the so-called “DA” white
dwarfs showing Hydrogen lines in their photospheres. Actual Zeeman splitting is only detected
in the most strongly magnetized objects (∼> a few 102 T). Inferred field strengths range from
a few T up to a whopping 105 T, with the overall incidence of magnetism standing at a few
percent. However, these techniques are only sensitive to large-scale magnetic fields, still pro-
ducing a net polarisation signal when integrated over the stellar disk, and so the true incidence
of magnetism in white dwarfs may actually be significantly higher.

Inferred magnetic field strengths in neutron stars range from 104 to 1011 T. Neutron stars
magnetic fields are of course most readily detected via the pulsar phenomenon, most likely
arising from slight misalignement of the magnetic axis with respect to the rotation axis of the
(very rapidly rotating) neutron star. It is quite striking that the highest strengths of large-scale
magnetic fields in main-sequence stars (a few T in Ap stars), in white dwarfs (∼ 105 T) and in
the most strongly magnetized neutron stars (∼ 1011 T) all amount to similar surface magnetic
fluxes, lending support to the idea that these high field strengths can be understood from simple
flux-freezing arguments (§1.10... and Problem 2.1!). There is also observational evidence that
actual magnetic field evolution is taking place as pulsars age, but this remains very slippery
territory, both from the modelling and observational points of view.

Observationally, very little is known about black holes except that there is quite possibly
one at the center of our galaxy, so you won’t be surprised to hear that even less is known
about black hole magnetic fields. One should perhaps just point out that solutions to the
field equations of general relativity for rotating, electrically charged black holes do exist, which
is a good start towards magnetic fields production. Evidence to date is limited to energetic
phenomena interpreted in terms of magnetic channelling of material onto the black hole. But
beyond that, at the present time there is only religious fervor.

2.8 Galaxies and beyond

Magnetic fields in the diffuse, low-density interstellar gas is most readily detected through syn-
chrotron radiation emitted by relativistic charged particles spiralling along magnetic fieldlines.
This technique is succesfull not only within the Milky Way, but also for other galaxies. Other
means of detection, for the time being limited to the Milky Way, include the polarisation of
optical starlight by elongated (i.e., non-spherical) dust grains aligning themselves perpendicu-
larly to magnetic fieldlines; these aligned dust grains also sometimes emit detectable polarized
infrared radiation. Finally, for relatively strong fields Zeeman splitting of spectral lines in the
radio domain has also been measured. As with stars, magnetic fields seem to be ubiquitous
features in pretty much all galaxies.

The galactic magnetic field in the solar neighbourhood has a strength of about 0.6nT, up to a
few nT near galactic center. This is indeed typical of spiral galaxies, which show field strengths
in the range 0.5–1.5nT, up to some 3nT in high density regions of spiral arms. The strongest
large-scale galactic magnetic fields so far measured have strength reaching 1nT, and have been
found in starburst galaxies. While this may seem quite low values, such field strengths have
important consequences for star formation, the distribution of cosmic rays, and equilibrating
the interstellar medium against gravity.

Given that most stars appear to be magnetized to some degrees, and that many stars tend
lose mass (some by blowing up!), it is perhaps not surprising to detect magnetic field in the
galactic interstellar medium. What is surprising is that this magnetic field tends to be organized
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on large spatial scales, commensurate in fact with galactic dimensions. An example is shown on
Figure 2.11, showing radio intensity isocontours and polarisation vectors superimposed on an
optical image of the spiral galaxy M51. Such large-scale, spatially well-organized magnetic fields
are most likely produced by a dynamo mechanism, not at all dissimilar to that responsible for
the presence of magnetic fields in many stars, including the Sun. Additional, indirect evidence
for well-organized large-scale magnetic fields in galaxies include the collimation of jets, and
energetic phenomena often encountered in quasars and AGN; at the present time, the most
convincing physical models for such phenomena all involve magnetic fields at some level.

Indirect evidence for the existence of extragalactic magnetic fields exists, with an upper
limit of ∼ 10−3 nT on the mean field strength over length scales of order 100MPc and larger.
These fields could be primordial in origin, or could have been ejected in intergalactic space by
galactic winds.

2.9 Why B and not E?

Even the very brief survey of astrophysical magnetic fields of the preceding section should have
made it clear that there are magnetic fields of all strengths and shapes pretty much everywhere
we look in the known universe. Yet electric fields are conspicuously absents. Why is that?
You might think, looking at Maxwell’s equations (1.52)–(1.55) that E and B appear therein on
apparently equal footing, leaving nothing to allow us to anticipate the observed astrophysical
preponderance of magnetic fields over electrical fields. Moreover, one observer’s magnetic field
can be turned into another’s electric field by judicious change of reference frame. So what’s the
deal here?

Well, for one thing if you use any sort of sensible “rest frame” for astronomical observation
(Earth at rest; solar system at rest; Milky Way at rest; local group at rest; etc ad infinitum)
there is a lot of B around and precious little E. The crucial difference between E and B

in Maxwell’s equations is not the fields themselves, or the reference frame in which they are
measured, but in their sources. The Universe may be largely empty, but the fact is that is
contains a whopping number of electrically charged particles of various sorts (free electrons,
ionized atoms or molecules, photoelectrically charged dust grains, etc). If a large-scale electric
field were suddenly to be turned on, all these charges will do the honorable thing, which is to
separate along the electric field direction until the secondary electric field so produced cancels
the externally applied electric field, at which point charge separation ceases. Moreover, the
low densities of most astrophysical plasmas lead to very large mean-free paths for microscopic
constituents, leading in turn to fairly good electrical conductivities and very short electrostatic
relaxation times τe (see eq. (1.71)), even when the ionisation fraction is quite low (such as in
molecular clouds). In other words, astrophysical electric fields, if and whenever they appear,
get shortcircuited mighty fast.

Not so with magnetic fields. For starters, as far as anyone can tell there are no magnetic
monopoles out there (well, maybe just one, of primordial origin... more on this shortly), so
shortcircuiting the magnetic field by monopole separation is out of the question. Magnetic fields,
left to themselves, will simply decay as the electrical currents that support them (remember
Ampère’s Law) suffer good ol’Ohmic dissipation. We already obtained a timescale for this
process given by eq. (1.64), and we already noted, on the basis of the compilation presented in
Table 1.2, that this timescale is extremely large, often exceeding the age of the universe. Once
magnetic fields are produced, by whatever means, they stick around for a long, long time.

2.10 The ultimate origin of astrophysical magnetic fields

So, there are magnetic fields all over the place in the Universe. How did they originate? If we
stick to MHD, then we immediately hit a Big Problem, arising from the linearity of the MHD
induction equation (1.60): if B = 0 at some time t0 then B = 0 at all subsequent times t > t0,
a problem that persists unabated as t0 is pushed all the way back to the Big Bang.
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Figure 2.11: Optical image (Hubble) with overlaid isocontours of radio emission intensity at
λ = 6 cm (in white) and polarisation orientation (orange line segments, both from VLA obser-
vations). Note the large-scale organization of the magnetic field, following the optical spiral
structure. Image downloaded from the Scholarpedia article by Rainer Beck cited in the bibli-
ography at the end if this chapter.
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In part III of this course we will see that astrophysical flows are actually quite apt at
amplifying magnetic fields, so what we are after here is a very small “seed field” to start up the
process. Cheap and easy explanations along the line of an original seed magnetic field being a
primordial relic of the Big Bang need not concern us here. Nor is early-universe ferromagnetism
a viable option, since permanent magnets require an externally-applied magnetic field to become
magnetized in the first place. Interestingly, the two options that are currently deemed viable
stand at the opposite ends of the physical exotism scale: magnetic monopoles... and batteries.
Let’s briefly discuss these in turn1.

2.10.1 Magnetic monopoles

On the theoretical front, already back in 1931 Paul Dirac (1902-1984) pointed out that there
is nothing to prevent there being magnetic monopoles so long as the magnetic charge on a
particle is some integer multiple of g ≡ hc/(4πe) ≈ 69e, where h is Planck’s constant, and e is
the fundamental electric charge. With just one magnetic monopole in the universe we have our
basic seed field. In the early 1970’s, G. t’Hooft and A.M. Polyakov argued that the spontaneous
symmetry-breaking of the Grand Unified (field) Theory Lagrangian, which occurs very early in
the formation of the universe at kBT ≈ 1015 GeV, would produce a lot of mg ≈ 1016 GeV/c2

magnetic monopoles.2 So many in fact that inflationary cosmology was invented in part to deal
with this embarrassment of riches and to leave about one monopole within each subdomain of
the inflated universe(s). But again, we only need one monopole to produce our seed field, so
the realist stops there.

2.10.2 Batteries

Leaving magnetic monopoles aside, we should inquire about more pedestrian means to create
seed magnetic fields. Since it could be that t’Hooft and Polyakov got the wrong Lagrangian,
GUT’s will be superseded by something else, etc. So it would be nice to have a fall back
mechanism to generate a seed magnetic field that relies on basic physics that we know functions
sensibly at least in our part of the universe. To this end, we return to our derivation of the
induction equation (§1.3). Recall that one essential next step toward MHD from Maxwell
required stipulating Ohm’s law, in the form of eq. (1.58) for the laboratory frame of reference.
Consider now the possibility of a “mechanically-driven” process of charge separation (i.e., not
related to the presence of an electric field in any reference frame); Ohm’s law then picks up an
extra term:

J = σ
[

E + U × B
]

+ Jmech . (2.2)

If we keep only the very first term on the RHS of equation (2.2), and drop the displacement
current in equation (1.55), then we get back to the induction equation (1.60). If we avail
ourselves of neither of these opportunities then we obtain instead:

{

1 +
η

c2

∂

∂t

}∂B

∂t
= ∇×

(

U × B − η∇× B + µ0Jmech

)

. (2.3)

Notice that our only hope for creating B out of nothing (so to speak) is the Jmech term; retaining
the displacement current gives us no advantage.

The Jmech term represents our ability to mechanically grab a hold of electric charges and
force currents to flow; in other words, an electromotive force. In the dense interior of a con-
ducting star, plasma kinetic theory permits one to write down a prescription for this “battery”
contribution to the total electric current density as:

Jmech =
σ

ene

[

∇pe −
1

c
J × B

]

, (2.4)

1Most of the remainder of this section was written by T.J. Bogdan as part of an earlier version of these class
notes, with only some slight rewording, notational homogeneization, and minor additions on my part.

2You might find it amusing to figure out how many kilograms that works out to be!
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where pe is the contribution of the electrons alone to the thermal pressure (see references in
bibliography). For a completely ionized pure hydrogen plasma, pe is just half of the total gas
pressure, and ne = ρ/mp, and so,

Jmech =
σmp

2eρ

[

∇p − 2

c
J × B

]

. (2.5)

Now, the second term on the RHS of equation (2.5) does not do us any good since it carries a
factor of B, so the whole plan rests upon the first term generating a seed magnetic field. For a
spherically symmetric star, we know from hydrostatic equilibrium that ∇Φ = (∇p)/ρ, and so
the product ηJmech ∝ ∇Φ. Which does not do us any good because of the presence of the curl
operator on the RHS of equation (2.3), which yields zero upon acting on Jmech since (∇p) is a
gradient of a scalar function. How can we get around this constraint? A viable possibility is
rotation. If a star is rotating, then there is a centrifugal force per unit density of $Ω2ê$ which
adds to ∇Φ and which leads to the generation of a seed magnetic field. This process of the
centrifugal force driving a flow of electrons relative to the ions was first pointed out by Ludwig
Biermann (1950) and is now called the Biermann battery.

In fact any process that can produce a relative motion between the ions and electrons is a
potential battery mechanism, and a possible candidate for creating seed magnetic fields. For
example, consider a rotating proto-galaxy, where the outer portions of the proto-galaxy move
at a speed U = RΩ relative to the frame in which the microwave background is isotropic. The
Thomson scattering of the microwave photons by the electrons results in the so-called Compton

drag effect, which causes the electrons to counter-rotate with respect to the ions The net result
is an azimuthal current which generates a poloidal magnetic field.

Of course, if you bother to put typical numbers in these various examples you will find that
you don’t really generate very much magnetic field. But generating a lot of field is not the
point, that can be one via magnetic flux conservation in a collapsing protostellar cloud, or, as
we shall see in part III of this course, via the u × B term in our MHD induction equation. The
basic idea to take away from this section is that invoking weird, unproven physics to get away
from B = 0 is not necessary.

Time to move on to part II of this course; for the time being, we just consider that most
stars are magnetized to some degree, and investigate in the following 3 chapters the impact
such magnetic fields may have on mass loss via wind-like outflows.

Problems:

1. This problem lets you explore some astrophysical implications of the flux freezing con-
straints encountered in the previous chapter.

(a) Assume that the Sun has formed from the spherically symmetric collapse of an
initially spherical gas cloud of radius 10 light-years and threaded by a large-scale
galactic magnetic field of strength 10−10 T. Under the assumption of flux freezing,
what should then be the strength of the internal solar magnetic field? Is this a
reasonable number?

(b) The large-scale surface poloidal field of the Sun is actually of order 10−3 T. Under
the same assumptions as in (a), compute the strength of the magnetic field expected
in a White Dwarf (RWD/R¯ = 0.01). Is this a reasonable number?

(c) What would you think are the primary problem with these two estimates?

2. Let’s consider a constant-density “sun” made of purely ionized Hydrogen. Suppose now
that its exterior magnetic field can be approximated by a dipole, with a surface field
strength of 10−3 T. Assume now that this magnetic field is produced by an azimuthal
(i.e., φ-directed) current density within the interior (r/R¯ < 1); then,
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(a) Estimate the magnitude of the current density required to produce such a dipolar
field;

(b) Estimate the drift velocity between protons and electrons required to produce such
a current density. How does it compare to the average thermal velocity?

(c) How can such a small velocity difference not be erased by collisions between micro-
scopic constituents? To answer this one will have to think back to some fundamental
aspects of the induction process, as covered in your first course on electromagnetism.

3. Suppose that a large flare, liberating some 1026 J , is power by the complete dissipation
of a uniform magnetic field of strength 0.1 tesla contained within a volume V . How large
does V has to be to add up to 1026 J? Does this make sense, given typical dimensions for
a large active region (which you can eyeball, e.g., from Fig. 2.4).

4. With this one you get to play with some of the timescales introduced in the preceding
pages. We’ll consider a solar-like star, with uniform electrical conductivity throughout
(feel free to use the value in Table 1.2.

(a) Estimate the diffusion time for a magnetic field contained in the solar interior.
How large would the magnetic diffusivity have to be to produce a typical diffu-
sive timescale of the order of the observed solar cycle period of ∼ 10 yr? Do you
think this is a reasonable number?

(b) Estimate now a flow speed that would lead to a turnover time of order 10 yr. Is this
a reasonable number in the solar/stellar context?

5. At long last, a problem that asks you to surf the Web!! Use your surfing skills to locate
what is (in your opinion) a very cool image of some astrophysical magnetic field(s).
But careful now, you must be able to explain what is actually on the image! And please
provide a full working URL.
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