
Appendix A

Useful identities and theorems

from vector calculus

A.1 Vector identities

A · (B × C) = C · (A × B) = B · (C × A)

A × (B × C) = B(A · C) − C(A · B)

(A × B) × C = B(A · C) − A(B · C)

∇×∇f = 0

∇ · (∇× A) = 0

∇ · (fA) = (∇f) · A + f(∇ · A)

∇× (fA) = (∇f) × A + f(∇× A)

∇ · (A × B) = B · (∇× A) − A · (∇× B)

∇(A · B) = (B · ∇)A + (A · ∇)B + B × (∇× A) + A × (∇× B)

∇ · (AB) = (A · ∇)B + (B · ∇)A

∇× (A × B) = (B · ∇)A − (A · ∇)B − B(∇ · A) + A(∇ · B)

∇× (∇× A) = ∇(∇ · A) −∇2A
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238 APPENDIX A. USEFUL IDENTITIES AND THEOREMS FROM VECTOR CALCULUS

A.2 The gradient theorem

For two points a, b in a space where a scalar function f with spatial derivatives everywhere
well-defined up to first order,

∫

b

a

(∇f) · d`̀̀̀ = f(b) − f(a) ,

independently of the integration path between a and b.

A.3 The divergence theorem

For any vector field A with spatial derivatives of all, its scalar components everywhere well-
defined up to first order,

∫

V

(∇ · A)dV =

∮

S

A · n̂ dS ,

where the surface S encloses the volume V .

A.4 Stokes’ theorem

For any vector field A with spatial derivatives of all, its scalar components everywhere well-
defined up to first order,

∫

S

(∇× A) · n̂ dS =

∮

γ

A · d`̀̀̀ ,

where the contour γ delimits the surface S, and the orientation of the unit normal vector n̂
and direction of contour integration are mutually linked by the right-hand rule.
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Appendix B

Coordinate systems and the fluid

equations

This Appendix is adapted in part from Appendix B of the book by Jean-Louis Tassoul entitled
Theory of Rotating Stars (Princeton University Press, 1978), with a number of additions,
including the MHD induction equation, expressions for the operators u · ∇, ∇×∇×, and ∇2

acting on a vector field. Also, the Note that in sections B.1.4 and B.2.4, the quantities in square
brackets correspond to the components of the deformation tensor Djk = (1/2)(∂juk + ∂kuj).

B.1 Cylindrical coordinates (s, φ, z)

B.1.1 Conversion to cartesian coordinates

x = s cos φ , y = s sin φ , s =
√

x2 + y2 , φ = atan(y/x) , z = z .

êx = cos φês − sinφêφ , êy = sin φês + cos φêφ ,

ês = cos φêx + sinφêy , êφ = − sin φêx + cos φêy , êz = êz .

B.1.2 Infinitesimals

d`̀̀̀ = dsês + sdφêφ + dzêz

dV = sdsdφdz

B.1.3 Vector operators

D

Dt
=

∂

∂t
+ us

∂

∂s
+

uφ

s

∂

∂φ
+ uz

∂

∂z

∇f =
∂f

∂s
ês +

1

s

∂f

∂φ
êφ +

∂f

∂z
êz

(u · ∇)A =

(

u · ∇As −
uφAφ

s

)

ês +

(

u · ∇Aφ +
uφAs

s

)

êφ + (u · ∇Az) êz
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240 APPENDIX B. COORDINATE SYSTEMS AND THE FLUID EQUATIONS

Figure B.1: Geometric definition of cylindrical coordinates. The transformation to Cartesian
coordinates is given by (x, y, z) = (s cos φ, s sin φ, z).

∇ · A =
1

s

∂

∂s
(sAs) +

1

s

∂Aφ

∂φ
+

∂Az

∂z

∇× A =

(

1

s

∂Az

∂φ
−

∂Aφ

∂z

)

ês +

(

∂As

∂z
−

∂Az

∂s

)

êφ +
1

s

(

∂(sAφ)

∂s
−

∂As

∂φ

)

êz

∇2 =
1

s

∂

∂s

(

s
∂

∂s

)

+
1

s2

∂2

∂φ2
+

∂2

∂z2

∇2A =

(

∇2As −
As

s2
−

2

s2

∂Aφ

∂φ

)

ês +

(

∇2Aφ −
Aφ

s2
+

2

s2

∂As

∂φ

)

êφ +
(

∇2Az

)

êz

B.1.4 Components of the viscous stress tensor

τss = 2µ

[

∂us

∂s

]

+ (µϑ −
2

3
µ)∇ · u

τφφ = 2µ

[

1

s

∂uφ

∂φ
+

us

s

]

+ (µϑ −
2

3
µ)∇ · u
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B.2. SPHERICAL COORDINATES (R, θ, φ) 241

τzz = 2µ

[

∂uz

∂z

]

+ (µϑ −
2

3
µ)∇ · u

τsφ = τφs = 2µ

[

1

2

(

1

s

∂us

∂φ
+ s

∂

∂s

uφ

s

)]

τφz = τzφ = 2µ

[

1

2

(

∂uφ

∂z
+

1

s

∂uz

∂φ

)]

τzs = τsz = 2µ

[

1

2

(

∂uz

∂s
+

∂us

∂z

)]

B.1.5 Equations of motion

ρ

(

Dus

Dt
−

u2
φ

s

)

= −ρ
∂Φ

∂s
−

∂p

∂s
+

1

s

∂

∂s
(sτss) +

1

s

∂τsφ

∂φ
+

∂τsz

∂z
−

τφφ

s

ρ

(

Duφ

Dt
−

uφus

s

)

= −
ρ

s

∂Φ

∂φ
−

1

s

∂p

∂φ
+

1

s

∂

∂s
(sτφs) +

1

s

∂τφφ

∂φ
+

∂τφz

∂z
+

τsφ

s

ρ
Duz

Dt
= −ρ

∂Φ

∂z
−

∂p

∂z
+

1

s

∂

∂s
(sτzs) +

1

s

∂τzφ

∂φ
+

∂τzz

∂z

B.1.6 The energy equation

ρT
Ds

Dt
= Φu +

1

s

∂

∂s

[

χs
∂T

∂s

]

+
1

s2

∂

∂φ

[

χ
∂T

∂φ

]

+
∂

∂z

[

χ
∂T

∂z

]

Φu = 2µ(D2
ss + D2

φφ + D2
zz + 2D2

sφ + 2D2
φz + 2D2

zs) + (µϑ −
2

3
µ)(∇ · u)2

B.2 Spherical coordinates (r, θ, φ)

B.2.1 Conversion to cartesian coordinates

x = r sin θ cos φ , y = r sin θ sin φ , z = r cos θ .

r =
√

x2 + y2 + z2 , θ = atan(
√

x2 + y2/z) , φ = atan(y/x) .

êx = sin θ cos φêr + cos θ cos φêθ − sin φêφ ,

êy = sin θ sin φêr + cos θ sinφêθ + cos φêφ ,

êz = cos θêr − sin θêθ .

êr = sin θ cos φêx + sin θ sin φêy + cos θêz ,

êθ = cos θ cos φêx + cos θ sinφêy − sin θêz ,

êφ = − sin φêx + cos φêy .
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242 APPENDIX B. COORDINATE SYSTEMS AND THE FLUID EQUATIONS

Figure B.2: Geometric definition of polar spherical copoprdinates. Transformation to Carte-
sian coordinates is given by (x, y, z) = (r sin θ cos φ, r sin θ sinφ, r cos θ). Note that in so-called
geographical coordinates, longitude ≡ φ, but latitude ≡ π/2 − θ.

B.2.2 Infinitesimals

d`̀̀̀ = drêr + rdθêθ + r sin θdφêφ

dV = r2 sin θ dr dθ dφ

B.2.3 Operators

D

Dt
=

∂

∂t
+ ur

∂

∂r
+

uθ

r

∂

∂θ
+

uφ

r sin θ

∂

∂φ

∇f =
∂f

∂r
êr +

1

r

∂f

∂θ
êθ +

1

r sin θ

∂f

∂φ
êφ

(u · ∇)A =

(

u · ∇Ar −
uθAθ

r
−

uφAφ

r

)

êr

+

(

u · ∇Aθ −
uφAφ

r
cot θ +

uθAr

r

)

êθ +

(

u · ∇Aφ +
uφAr

r
+

uφAθ

r
cot θ

)

êφ
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∇ · A =
1

r2

∂

∂r
(r2Ar) +

1

r sin θ

∂(Aθ sin θ)

∂θ
+

1

r sin θ

∂Aφ

∂φ

∇× A =
1

r sin θ

(

∂(Aφ sin θ)

∂θ
−

∂Aθ

∂φ

)

êr

+
1

r sin θ

(

∂Ar

∂φ
−

∂(Aφr sin θ)

∂r

)

êθ +
1

r

(

∂(rAθ)

∂r
−

∂Ar

∂θ

)

êφ

∇2 =
1

r2

∂

∂r

(

r2 ∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

∇2A =

(

∇2Ar −
2Ar

r2
−

2

r2 sin θ

∂Aθ sin θ

∂θ
−

2

r2 sin θ

∂Aφ

∂φ

)

êr

+

(

∇2Aθ +
2

r2

∂Ar

∂θ
−

Aθ

r2 sin2 θ
−

2 cos θ

r2 sin2 θ

∂Aφ

∂φ

)

êθ

+

(

∇2Aφ +
2

r2 sin θ

∂Ar

∂φ
+

2 cos θ

r2 sin2 θ

∂Aθ

∂φ
−

Aφ

r2 sin2 θ

)

êφ

B.2.4 Components of the viscous stress tensor

τrr = 2µ

[

∂ur

∂r

]

+ (µϑ −
2

3
µ)∇ · u

τθθ = 2µ

[

1

r

∂uθ

∂θ
+

ur

r

]

+ (µϑ −
2

3
µ)∇ · u

τφφ = 2µ

[

1

r sin θ

∂uφ

∂φ
+

ur

r
+

uθ cot θ

r

]

+ (µϑ −
2

3
µ)∇ · u

τrθ = τθr = 2µ

[

1

2

(

1

r

∂ur

∂θ
+ r

∂

∂r

uθ

r

)]

τθφ = τφθ = 2µ

[

1

2

(

1

r sin θ

∂uθ

∂φ
+

sin θ

r

∂

∂θ

uφ

sin θ

)]

τφr = τrφ = 2µ

[

1

2

(

r
∂

∂r

uφ

r
+

1

r sin θ

∂ur

∂φ

)]
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244 APPENDIX B. COORDINATE SYSTEMS AND THE FLUID EQUATIONS

B.2.5 Equations of motion

ρ

(

Dur

Dt
−

u2
θ + u2

φ

r

)

= −ρ
∂Φ

∂r
−

∂p

∂r

+
1

r sin θ

[

sin θ

r

∂

∂r
(r2τrr) +

∂

∂θ
(τrθ sin θ) +

∂τrφ

∂φ

]

−
τθθ + τφφ

r

ρ

(

Duθ

Dt
+

uruθ

r
−

u2
φ cot θ

r

)

= −
ρ

r

∂Φ

∂θ
−

1

r

∂p

∂θ

+
1

r sin θ

[

sin θ

r

∂

∂r
(r2τθr) +

∂

∂θ
(τθθ sin θ) +

∂τθφ

∂φ

]

+
τrθ

r
−

τφφ cot θ

r

ρ

(

Duφ

Dt
+

uruφ

r
+

uθuφ cot θ

r

)

= −
ρ

r sin θ

∂Φ

∂φ
−

1

r sin θ

∂p

∂φ

+
1

r sin θ

[

sin θ

r

∂

∂r
(r2τφr) +

∂

∂θ
(τφθ sin θ) +

∂τφφ

∂φ

]

+
τrφ

r
+

τθφ cot θ

r

B.2.6 The energy equation

ρT
Ds

Dt
= Φu +

1

r2

∂

∂r

[

χr2 ∂T

∂r

]

+
1

r2 sin θ

∂

∂θ

[

χ sin θ
∂T

∂θ

]

+
1

r2 sin2 θ

∂

∂φ

[

χ
∂T

∂φ

]

Φu = 2µ(D2
rr + D2

θθ + D2
φφ + 2D2

rθ + 2D2
θφ + 2D2

φr) + (µϑ −
2

3
µ)(∇ · u)2

Bibliography:

For more on all this stuff, see

P.M. Morse et H. Feshbach, Methods of Theoretical Physics, McGraw-Hill (1953): Chap. 1
G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press (1967):

Appendice 2
Arfken, G., Mathematical Methods for Physicists, 2e éd., Academic Press (1970): chap. 2.

or, for a concise introduction, Appendix A.2 of the Goedbloed & Poedts tome cited in the
bibliography to chapter 1.
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Appendix C

Physical and astronomical

constants

C.1 Physical constants

Table C.1

Physical Quantity Symbol Value Units (SI)

Charge of electron e 1.602 × 10−19 C
Mass of electron me 9.109 × 10−31 kg
Mass of proton mp 1.673 × 10−27 kg
Permittivity of vacuum ε0 8.854 × 10−12

Permeability of vacuum µ0 4π × 10−7

Speed of light c 2.998 × 108 m s−1

Planck constant h 6.626 × 10−34 J s
Boltzmann constant h 1.381 × 10−23 J K−1

Stefan-Boltzmann constant σ 5.670 × 10−Y Y J K−4m−2s−1

Gravitational constant G 6.671 × 10−11 m3kg−1s−2

C.2 Astronomical constants

Table C.2

Astronomical Quantity Symbol Value Units (SI)

Earth mass M⊕ 5.977 × 1024 kg
Earth radius R⊕ 6.378 × 106 m
Astronomical Unit AU 1.496 × 1011 m
Solar mass M¯ 1.989 × 1030 kg
Solar radius R¯ 6.960 × 108 m
Solar luminosity L¯ 3.83 × 1026 J s−1

Parsec pc 3.086 × 1016 m
Light-year ly 9.461 × 1015 m
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Appendix D

Maxwell’s equations and physical

units

Electromagnetism is, unfortunately, a subfield of physics where the choice of units does not
only influence the numerical values assigned to measurements, but also the mathematical form
of the fundamental laws, i.e., Maxwell’s equations.

D.1 Maxwell’s equations

The whole mess in converting SI units to the astrophysically ubiquitous CGS units all harks
back to the definition for the unit of charge, as embodied in Coulomb’s Law. Under the SI
system we write the electrostatic force between two charges q1 and q2 located at positions x1

and x2 as

F =
1

4πε0

q1q2

r2
r̂ , [SI] , (D.1)

with electrical charge measured in coulomb, and with r ≡ x1−x2 for notational brevity. whereas
under the CGS system the constant 1/4πε0 is absorbed into the definition of the unit of charge:

F =
q1q2

(x1 − x2)2
[CGS] , (D.2)

with electrical charge now measured in “electrostatic units”, abbreviated “esu” and sometimes
also called “statcoulomb”. It electrostatics it is relatively easy to switch from CGS to SI with
the simple substitution ε0 → 1/(4π). With electrical currents now measured in esu s−1 in the
CGS system, and remembering that c2 = (ε0µ0)

−1, the µ0/4π prefactor in the Biot-Savart Law
now becomes 1/c:

B =
1

c

∫

d`̀̀̀ × r

r2
, [CGS] , [Biot − Savart] (D.3)

If you then now go through the process of re-constructing Maxwell’s equations under these two
new forms for the fundamental relations (electric and magnetic forces), you eventually get to

∇ · E = 4πρe , [Gauss′ Law] (D.4)

∇ · B = 0 , [Anonymous] (D.5)

∇× E = −
1

c

∂B

∂t
, [Faraday′s Law] (D.6)
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∇× B =
4π

c
J +

1

c

∂E

∂t
, [Ampere/Maxwell′s Law)] (D.7)

In some sense, the CGS system is perhaps more “natural”, as it omits the introduction of new,
apparently fundamental physical constants ε0 and µ0, to simply stick with the speed of light
c, the only price to pay being an extraneous factor 4π in Gauss’ Law. The Lorentz force and
Poynting vector become, in CGS units:

F = q(E +
1

c
u × B) [Lorentz Force] (D.8)

S =
c

4π
(E × B) [Poynting] (D.9)

and the electrostatoic and magnetic energies:

Ee =
1

8π

∫

E2dV , (D.10)

EB =
1

8π

∫

B2dV . (D.11)

D.2 Conversion of units

The Table that follows gives you the conversion factor (f) required to go from SI to cgs units,
i.e., SI Unit = f × cgs units. Any “3” appearing in a given value for f is a notational shortcut
for 2.99792458.

Table D.1
Conversion between SI ands CGS units

Quantity SI name SI symbol conversion factor f CGS name CGS symbol

Length meter m 102 centimeter cm
Mass kilogram kg 103 gram g
Force newton N 105 dyne dyne
Energy joule J 107 erg erg
Charge coulomb C 3 × 109 electrostatic units esu
Current ampere A 3 × 109 statampere esu s−1

Potential volt V 1/300 statvolt statvolt
Electric field — V m−1 (1/3)×10−4 — statvolt cm−1

Magnetic field tesla T 104 gauss G
Magnetic flux weber Wb 108 maxwell Mx

For a somewhat humourous close to this rather dry Appendix, here are five different ways,
actually to be found in various textbooks or research monographs, to express teslas in terms of
other fundamental SI units:

1T = 1
V s

m2
= 1

N

Am
= 1

kg

A s2
= 1

Wb

m2
= 1

kg

C s
. (D.12)

Bibliography:

The content of this Appendix is taken primarily from Appendix C in

Griffith, D.J., Introduction to Electrodynamics, 3rd ed., Prentice Hall (1999).
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Appendix E

The polytropic approximation

In practical terms, the polytropic approximation is used to replace the energy equation by a
simple algebraic expression relating pressure and density (we do need as many equations as
unknown functionals...).

The starting point is the assumption that at every point in the gas there exist a linear
relationship between fractional variations between pressure and density:

dp

p
=

dρ

ρ
, (E.1)

or, equivalently

d log p

d log ρ
= α , (E.2)

which integrates directly to

p

p0
=

(

ρ

ρ0

)α

, (E.3)

which does achieve or stated goal, which is to express p as some function of ρ, but what does
it mean physically? From the equation of state for a perfect gas, one can easily obtain

d log p

d log ρ
=

(

1 −
cp − cv

p

dT

dV

)

, (E.4)

where the second equality results from use Carnot’s Law R = cp − cv, remembering that the
specific volume V is equivalent to ρ−1. Comparing the RHS of this expression to that of
eq. (E.2), it is clear that α is related ot the thermodynamical properties of the substance under
consideration.

Now recall that the second law of thermodynamics states that any local heat input dQ goes
either into increasing the specific energy dU of a gas, or into work against the ambient pressure
(pdV ):

dQ = dU + pdV . (E.5)

From a macroscopic point of view, the specific heat C is defined via the relation

dQ = CdT , (E.6)

and gives a measure of the amount of heating/cooling required to achieve a temperature change
of magnitude dT . We also have

dU = cvdT , (E.7)
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Using these two expression, the Second Law can be manipulated into

dV

dT
=

C − cv

p
, (E.8)

so that eq. (E.4) becomes

d log p

d log ρ
=

C − cp

C − cv

, (E.9)

implying

α =
C − cp

C − cv

. (E.10)

You may recall from statistical thermodynamics that cp and cv are related to the number of
degrees of freedom available in interacting with other particles. The quantity C, on the other
hand, is a resolutely macroscopic beast measuring the thermodynamic behavior of the system
as a whole. In adiabatic systems, no heat flow in or out of the system is allowed, i.e., dQ = 0.
The only way temperature actually change without violating eq. (E.6) is to have C = 0. The
opposite bound is the isothermal limit, in which even a dQ tending to infinity cannot change the
temperature. This can only be accomodated within eq. (E.6) if we can let C → ∞. Equation
(E.10) can be used to translate these bounds on C into bounds on α:

[isothermal] 1 ≤ α ≤ cp/cv [adiabatic] (E.11)

The ratio of specific heats cp/cv is equal to 5/3 for a non-relativistic perfect gas; the allowed
range of α is quite restricted!

Except for assuming a perfect gas equation of state, we have made no approximation until
now, all we have done is manipulate thermodynamic relationships. Our starting point, eq. (E.1)
holds formally true for any perfect gas with constant mean molecular weight. The actual value
of α is a function of local heat input and drain, which may well be a function of space and time
(and constrained by eq. (E.11)). So we haven’t accomplished anything really, we just replaced
one unknown functional, p(x, t), by another, α(x, t).

The polytropic approximation consists in assuming not only that α is a constant in space
and time, but moreover that the value of this constant can be set a priori within the bounds set
by eq. (E.11). Evidently, this amounts to assuming the presence of some very specific profile of
heat source/drain in the system. This is normally something we would get out of the energy
equation, so in that sense the polytropic approximation is indeed replacing the energy equation.

It often proves convenient to rewrite eq. (E.3) in terms of a polytropic sound speed cs,
defined via

αp = c2
sρ , (E.12)

or, alternately,

c2
s = c2

s0

(

ρ

ρ0

)α−1

, (E.13)

with c2
s0 = αp/ρ0. In the isothermal limit we have

p = a2ρ , (E.14)

where a =
√

kT/µm is the isothermal sound speed, and a constant for fixed mean molecular
weight. It is left as an exercise to show that under the polytropic approximation the pressure
gradient term in the momentum equation can be written as

1

ρ
∇p = c2

s∇

(

ρ

ρ0

)

. (E.15)

Note finally that in doing so, we haven’t just eliminated the energy equation, but also absorbed
the equation of state; the pressure is now to be computed directly from ρ, without explicit need
for temperature.
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Appendix F

Essential numerics

This chapter collects various numerical algorithms that may prove useful in working through
some of the problems scattered throughout the class notes. The emphasis is on robust, easy-to-
code algorithms, rather than on algorithms that are very efficient (in terms of operation count)
of very accurate (in terms of theoretical convergence rates). In most instances the algorithms
are stated with very little formal justification, but pointers are given to various numerical
analysis books that should satisfy the eager beaver.

F.1 Derivatives: finite differences

The task is to evaluate derivatives of a continuous function f(x) of one variable x. We begin
by discretizing f(x), by sampling it on a discrete (1-D) spatial mesh

x → {x1, x2, ..., xN}, [xj+1 > xj ] , (F.1)

with constant mesh increment h ≡ xj+1 − xj . Consider now the two following Taylor series
expansions for f(xj ± h) about f(xj):

f(xj + h) ≡ f(xj+1) = f(xj) + h
df

dx

∣

∣

∣

∣

xj

+
h2

2!

d2f

dx2

∣

∣

∣

∣

xj

+
h3

3!

d3f

dx3

∣

∣

∣

∣

xj

+ ... (F.2)

f(xj − h) ≡ f(xj−1) = f(xj) − h
df

dx

∣

∣

∣

∣

xj

+
h2

2!

d2f

dx2

∣

∣

∣

∣

xj

−
h3

3!

d3f

dx3

∣

∣

∣

∣

xj

+ ... (F.3)

These two expressions can be rerranged in the form

df

dx

∣

∣

∣

∣

∣

xj

=
f(xj+1) − f(xj)

h
−

h

2!

d2f

dx2

∣

∣

∣

∣

xj

−
h2

3!

d3f

dx3

∣

∣

∣

∣

xj

− ... (F.4)

df

dx

∣

∣

∣

∣

∣

xj

=
f(xj) − f(xj−1)

h
+

h

2!

d2f

dx2

∣

∣

∣

∣

xj

−
h2

3!

d3f

dx3

∣

∣

∣

∣

xj

+ ... (F.5)

Mathematical approximations of derivatives, known as finite differences, are obtained by
algebraic manipulations of eqs. (F.4)—(F.5); for example, adding the two, neglecting all terms
proportional to powers in h of two and higher, and solving for ∂f/∂x readily yields

df

dx

∣

∣

∣

∣

xj

=
fj+1 − fj−1

2h
+ O(h2) , (F.6)
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while subtracting (F.5) from (F.4) and solving for d2f/dx2 leads to

d2f

dx2

∣

∣

∣

∣

xj

=
fj+1 − 2fj + fj−1

h2
+ O(h2) , (F.7)

where, in both cases, fj ≡ f(xj) for brevity of notation. Likewise, one can show that

d3f

dx3

∣

∣

∣

∣

∣

xj

=
fj+2 − 2fj+1 + 2fj−1 − fj−2

2h3
+ O(h2) , (F.8)

d4f

dx4

∣

∣

∣

∣

∣

xj

=
fj+2 − 4fj+1 + 6fj − 4fj−1 + fj−2

h4
+ O(h2) . (F.9)

The term O(h2) on the RHS of eqs. (F.6)–(F.7) means that the discretization error associated
with the finite difference expression decreases as h2 in the limit h → 0, as per our neglect of all
terms proportional to h2, h3, ... in eqs. (F.4)–(F.5). The finite difference formulae given above
are centered on node xj . They evidently cannot be used at the first and last node of the mesh.
However, manipulations of eqs. (F.4)–(F.4) can also yield forward difference formulae, e.g.:

df

dx

∣

∣

∣

∣

xj

=
fj+1 − fj

h
+ O(h) , (F.10)

df

dx

∣

∣

∣

∣

xj

=
−fj+2 + 4fj+1 − 3fj

2h
+ O(h2) , (F.11)

d2f

dx2

∣

∣

∣

∣

xj

=
fj+2 − 2fj+1 + fj

h2
+ O(h) , (F.12)

d2f

dx2

∣

∣

∣

∣

xj

=
−fj+3 + 4fj+2 − 5fj+1 + 2fj

h2
+ O(h2) , (F.13)

d3f

dx3

∣

∣

∣

∣

∣

xj

=
fj+3 − 3fj+2 + 3fj+1 − fj

h3
+ O(h) , (F.14)

d4f

dx4

∣

∣

∣

∣

∣

xj

=
fj+4 − 4fj+3 + 6fj+2 − 4fj+1 + fj

h4
+ O(h) , (F.15)

and similar backward difference formulae, which can be used at the endpoints of the mesh.
Further manipulations of eqs. (F.4)–(F.5) and recurrent use of the O(h) and O(h2) difference
formulae leads to higher order expressions

∂f

∂x

∣

∣

∣

∣

xj

=
−fj+1 + 8fj+1 − 8fj−1 + fj−1

12h
+ O(h4) , (F.16)

d2f

dx2

∣

∣

∣

∣

xj

=
−fj+2 + 16fj+1 − 30fj + 16fj−1 − fj−2

12h2
+ O(h4) . (F.17)
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These basic ideas carry over to the computation of partial derivatives in more than one spatial
dimension. For the lower order formulae the corresponding expressions are direct extensions of
the formulae listed above, with other variables held constant. For example, on a 2D mesh

∂f

∂x

∣

∣

∣

∣

xj ,yk

=
fj+1,k − fj−1,k

2h
+ O(h2) , (F.18)

where fj,k ≡ f(xj , yk). For higher order formulae, however, diagonal nodes (e.g. fj+1,k+1)
enter the expressions. For more details see §2.1 of the Lapidus & Pinder book cited in the
bibliography.

In setting up finite differences for a given problem it is usually a good idea to use for-
mulae having similar order of truncation error. It must be kept in mind that the theoretical
truncation errors (O(h2), etc) hold only in the limit of small mesh size; if your spatial mesh
underresolves the function being discretized, eqs. (F.16)–(F.17) will give results most likely as
bad as eqs. (F.6)–(F.7) would.

F.2 Integrals: Numerical integration

In a nutshell, numerical integration proceeds by approximating the integrand by polynomials
that can be integrated analytically. This is in fact mathematically equivalent to exact integra-
tion of a truncated Taylors series expansion of the integrand.

The trapezoidal rule is a simple and robust method that allows the numerical integration
of a function f(x) sampled over its integration domain on a mesh with intervals that may or
may not be equidistant:

(x1, x2, x3, ..., xN ) , xk+1 − xk 6= xk − xk−1 . (F.19)

The underlying idea is simply to approximate the variations of the function f(x) from one mesh
point to the next by a linear function, amounting to a piecewise=continuous linear interpolation
of f(x):

∫ xN

x1

f(x) dx '
N−1
∑

k=1

(fk+1 + fk)

2
(xk+1 − xk) , (F.20)

with fk ≡ f(xk). The tighter the mesh, the better the discrete sum on the RHS of this
expression approximates the integral on the LHS. For an equidistant mesh, the discretization
error of the trapezoidal method is formally O(h2).

The idea of interpolating between mesh points is readily generalized to higher-order interpo-
lation. For an equidistant mesh (xk+1 − xk = h∀k), the resulting integration formulae (known
as Newton-Cotes formulae) are relatively simple: [N-1 even]:

∫ xN

x1

f(x) dx =
h

3
(f1 + 4f2 + 2f3 + 4f4 + 2f5 + ... + 4fN−1 + fN ) + O(h4) , (F.21)

[N-1 multiple of 3]:

∫ xN

x1

f(x) dx =
3h

8
(f1 + 3f2 + 3f3 + 2f4 + 3f5 + 3f6... + 3fN−1 + fN ) + O(h4) , (F.22)

The first of these relations is known as the Simpson 1/3 Rule, while the second is the
Simpson 3/8 Rule. The mathematical developments leading to these formulae are detailed
in chapter 4 of the book by Gerald cited in the bibliography.

Romberg integration is a really neat trick that produces great improvement on the
accuracy of numerical integration, with very little extra work. Consider for example the use
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of the trapezoidal rule on an equidistant mesh h = h1. For a sufficiently tight mesh, the
computed integral (I(1), say) will differ from the exact solution (I∗) by a factor proportional
to h2

1 to leading order; one can therefore write something like:

I(1) = I∗ + Ch2
1 , (F.23)

where C is a constant that is a property of the chosen integration algorithm, but not of the
mesh. Consider now a second numerical evaluation of the integral, obtained on a mesh h2 6= h1.
Once again we have

I(2) = I∗ + Ch2
2 , (F.24)

with the same C. Equations (F.23) and (F.24) define a system of two algebraic equations for
the two unknowns I∗ et C; this system is readily solved for I∗:

I∗ =
h2

2I
(1) − h2

1I
(2)

h2
1 − h2

2

, O(h2) methods . (F.25)

This is in fact a form of extrapolation, so that it is a good idea to use a second mesh that is
significantly different from the first, e.g., h2 = h1/2. For the higher-order Simpson rules, you
can easily show that Romberg extrapolation now takes the form:

I∗ =
h4

2I
(1) − h4

1I
(2)

h4
1 − h4

2

. O(h4) methods (F.26)

F.3 Root finding: The bisection method

Finding zeros of a one-dimensional function is another common numerical task, one if fact that
you will have encountered under many guises in part II of these class notes.

Given a nonlinear function of one variable f(x) and a range [x1, x2] in which we seek a
root xr such that f(xr) = 0, within within a (predetermined) absolute accuracy ε of the true
root. Among the many numerical techniques that can achieve this, the bisection method is
probably the most robust and easy to code:

while δ ≥ ε do
xm = (x1 + x2)/2
if f(x2) × f(xm) ≥ 0 then

x2 = xm

else
x1 = xm

endif
δ = x2 − x1

enddo

The underlying logic behind this algorithm is simplicity itself: if there is a root at xr, then
f(x) must have different sign on either side of xr. The nice thing about the bisection method
is that it is guaranteed to find the root if a root indeed exists in the (user-specified) interval
[x1, x2]. Its chief drawback is that it converges linearly to the root, which, if high accuracy is
required, can take a lot of iterations.

Chapter 9 of the book Numerical Recipes (see bibliography) contains a very accessible
introduction to the numerical solution of nonlinear rootfinding problems, including the bisection
method. You will also learn therein about a neat trick called bracketing that ensures that the
initial bisection interval [x1, x2] always contains at least one root (if any root at all exists in
x ∈ [−∞,∞]).
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F.4 Maximization of functions: hill climbing

Maximization and minimization are two faces of the same coin, namely optimization, since
maximizing f(x) is the same as minimizing −f(x), or 1/f(x), etc. Minimization/maximization
is one of the most common numerical task encountered in the physical sciences, for example
when you are trying to fit a parametric mathematical relation to data.

In your first calculus class you have learned how to do this: find the x such that df/dx = 0
and ∂2f/∂x2 < 0 (for maximization). But in practice this is almost never a practical approach,
because even for a one-dimension search space the resulting (usually nonlinear) rootfinding
problem turns out very, very hard. The dimension N of the search space is usually the key issue,
with optimization problems in high-dimensional search spaces being usually much, much harder
than in low-dimensional search spaces. In one dimension, the technique known as Golden
search, an analog of bisection, is the method of choice as far as simplicity and robustness go.
However, things get a lot trickier as soon as we hit two-dimensional search spaces.

Strictly speaking, maximization means finding the point x∗ in some N -dimensional space
so that f(x∗) > f(x) ∀x 6= x∗. Here x could be a set of N parameters defining a model you are
trying to fit to some data. The vast majority of multi-dimensional optimization techniques to be
found in textbooks on numerical analysis or scientific computing all proceed by hill climbing.
As the name implies, this method just follows the slope of f(x) all the way to the “summit”.
A generic hill climbing scheme for maximization would look as follows:

Initialization: x = x0

for k = 1, 2, ... do
Construct: ∆x
x∗ = x + ∆x
δ = |f(x∗) − f(x)|
if δ ≥ε then

x = x∗

else
Maximum found: x∗

exit
endif

enddo

Note that three things are needed here: (1) a starting guess x0; (2) a “recipe” for construct-
ing a displacement ∆x in parameter space; and (3) a stopping criterion. Here the latter is
defined in terms of the absolute accuracy ε in evaluating f(x∗), but other termination criteria
involving instead x∗ − x are possible. Of course the crux here is to construct a ∆x that will
make f(x∗) > f(x. Indeed, all these fancy optimization schemes you will find in the literature
mostly differ in how they go about constructing ∆x (i.e., choosing a direction in parameter
space and a step length), and whether and how, in doing so, they make use of information
accumulated from previous steps. These days most programming languages come equipped
with with a library of canned optimization routines that usually perform well... on problems
that are not too hard.

Hill climbing methods can be divided in two broad classes, namely those making use of
gradient information, and those who do not. Generally speaking, the former tend to be more
efficient, the latter more robust. One particularly simple way to pick ∆x, known as stochastic
hill climbing, is to pick a random direction in the N -dimensional search space, and take a step
with a length extracted from some suitable statistical distribution (usually peaked at zero, but
with a significant tail). Do this ten times (say), each time evaluating f(x) at these points, and
move to the one producing the largest f(x) (unless all have f(x)∗ < f(xn), in which case don’t
move!). A fancier variation on this idea would let the mean of the statistical distribution of step
lengths vary in response to the previous step length having produced the best-of-ten solution.

Whichever technique you end up selecting, in all cases the performance will be affected by
the choice of the starting guess x0. That may seem like just a minor nuisance, but there are
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situations where secondary extrema exist in the search space, and the choice of a “bad” starting
guess may quickly and efficiently land you... on a secondary extremum. Global optimization
is the art and black magic of locating the tallest of all maxima in all of the search space,
independently of how the search algorithm is initialized. There is no fast-and-easy way to
achieve this. One straightforward avenue is known as iterated hill climbing, which looks like
this:

Initialization: x∗∗ = 0
for j = 1, 2, ... do

Initialization: x = xj

for k = 1, 2, ... do
Construct: ∆x
x∗ = x + ∆x
δ = |f(x∗) − f(x)|
if δ ≥ε then

x = x∗

else
Local maximum found: x∗

exit
endif

enddo
if x∗ > x∗∗ then x∗∗ = x∗

enddo
Global maximum found: x∗∗

Obviously this is just the same as plain hill climbing, except that an outer loop has been
added, which allows multiple hill climbing runs from a set of distinct starting guesses, and
the global maximum is just the largest x∗ value found for the ensemble of hill climbing trials.
The crux is now to decide when the outer iteration is to be stopped. Again, there is no
universal termination criterion that can ensure that the global optimum has been located.
Global optimization is just plain hard.

Chapter 10 in Press et al.’s Numerical Recipes provides one of the most illuminating discus-
sion I have ever read on classical maximization/minimization algorithms. For an introduction
to global optimization, focusing on genetic algorithms, see my NCAR Technical Note cited
in the bibliography at the end of this Appendix. Press et al. covers very well simulated
annealing, another powerful global optimization method.

F.5 Ordinary differential equations: initial-value prob-

lems

We focus here on a prototypical inital-value problem, described by an ordinary differential
equation (ODE) assuming the general form:

df

dt
= g(t, f) (F.27)

with a known initial condition. The first step towards a numerical solution is to discretize the
independent variable t on a mesh, here assumed equidistant:

tk+1 = tk + h , k = 0, 1, 2, ... (F.28)

where the initial condition is specified at t0, so that f(x0) ≡ f0. Note that the RHS of eq. (F.27)
can in general be a nonlinear function, i.e., it depends explicitly on f(t) as well as on t.
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Euler’s method is based in a Taylors series expansion truncated to first order, which is
equivalent to using a forward finite difference to discretize the LHS of eq. (F.27). If the RHS
is evaluated at tk, then we have the algorithm known as Euler-explicit:

fk+1 = fk + h g(tk, fk) + O(h) , k = 0, 1, 2, ... (F.29)

This is an extremely simple algorithm, often sufficient for many applications, and easy to
generalize to systems of coupled ODEs. On the downside, its discretization error is of order
O(h), which forces the use of a very tight mesh, and the resulting numerical solution often
becomes polluted by the accumulation of roundoff errors.

If you understood the logic behind the derivation of finite difference formulae of high order,
you likely anticipated that algorithms more accurate than Euler-explicit can be obtained by
retaining more terms in the Taylor series development for f(t), and, if the ODE is nonlinear, by
also developing the RHS of eq. (F.27) as a series. A wide variery of such higher-order algorithms
can be produced in this manner, but in most circumstances either one of the following two should
suffice:

(1) Heun’s method:

fk+1 = fk +
h

2
[g(tk, fk) + g(tk+1, fk + h g(tk, fk))] + O(h2) . (F.30)

Note that this is similar to Euler-explicit, with the important difference that the RHS of
eq. (F.30) is now calculated as an average of g(t, f) evaluated at (tk, fk) and à tk+1 by lin-
ear extrapolation of f . This variation on a theme already brings the discretization error down
to O(h2).

(2) Fourth-order Runge Kutta method (often just called Runge-Kutta); The idea here
is to divide the time step h in substeps through which the solution is sequentially advanced,
re-evaluating g(t, f) at each sub-step:

fk+1 = fk +
h

6
(G1 + 2G2 + 2G3 + G4) + O(h4) , (F.31)

where

G1 = g(tk, fk) , (F.32)

G2 = g (tk + h/2, fk + (h/2)G1) , (F.33)

G3 = g (tk + h/2, fk + (h/2)G2) , (F.34)

G4 = g (tk+1, fk + hG3) . (F.35)

For all details regarding the design of these algorithms, see chapter 2 of the excellent book by
Golub & Ortega, and/or chapter 16 of Press et al., both cited in the bibliography at the end of
this appendix. The monograph by Wood, also cited below, is a also a good, more specialized
reference.

F.6 Eigenvalues and eigenvectors: inverse iteration

We consider here a generalized, discrete linear eigenvalue problem of the form:

λ[B]a = [A]a , (F.36)

where the matrices [A] and [B] result from the application of finite difference formulae (for
example), and λ and a are the sought-after eigenvalue and eigenvector. The matrices [A]
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and [B] are square, and of dimension equal to the number of nodes making up the mesh on
which the (continuous) problem is being spatially discretized. In general λ and a are complex
quantities. However, in some cases such as the diffusive decay problem of §7.1, the form of the
differential operator and the use of centered finite differences, would lead [B] = [I] and ensure
that [A] is real, tridiagonal and symmetric, which implies that the sought after eigenvalue λ
and eigenvector a are real quantities (as one might have expected intuitively in the case of
a purely diffusive problem). Note that since we have discretized the problem on a finite-size
mesh, the infinite set of eigenvalues associated with the differential operator has effectively been
truncated to a finite set of N eigenvalues/vectors, where N is the size of the matrices [A] and
[B].

The technique known as inverse iteration provides an efficient and simple algorithm to
solve eq. (F.36). The method requires as input a trial eigenvalue σ and trial eigenvector a(0).
The algorithm is as follows:

Initialize: σ, a(0)

Construct: [C] = ([A] − σ[B])
for k=1,2,...

Solve: [C]z(k) = [B]a(k−1)

Normalize: a(k) = z(k)/‖z(k)‖2

λ(k) = (a(k))H [A]a(k)/(a(k))H [B]a(k)

endfor

where (k) is the iteration count, and (a)H is the Hermitian of a (i.e., the transpose of the
complex conjugate). Note that since we are dealing with real matrices, eigenvalues and eigen-
vectors, we have aH ≡ aT , and and ‖z‖2 ≡ z · z. The iteration is stopped once the change in
the eigenvalue from one step to the next becomes smaller than some pre-established tolerance
criterion, for example when

∣

∣

∣

∣

λ(k) − λ(k−1)

λ(k)

∣

∣

∣

∣

≤ 10−6 . (F.37)

At this point, both a solution eigenvector a and a improved eigenvalue λ 6= σ have been
produced. The algorithm does require a reasonable guess for the trial eigenvalue σ, but is
largely insensitive to the initial guess a(0) for the eigenvector, as long as it satisfies the boundary
conditions. Operationally, an attractive feature of inverse iteration is the fact that the matrix
[C] needs only be constructed once and for all using only the trial eigenvalue; it can then
be triangularized once (a N3 operation), with each iteration then requiring only a matrix-
vector multiplication and a RHS reduction (both being N 2 operations) on a RHS vector that is
recomputed from one iteration to the next. See §7.6 of the Golub & Van Loan textbook cited
below for further details.

Inverse iteration is a very useful technique, and you should make an effort to code it up
and become familiar with it. By now most scientific programmation languages include canned
packages and/or libraries for the solution of linear systems of equations in matrix form, so your
coding effort will actually be minimal. You may reflect upon the fact that the the diffusive
decay problem of §7.1, The Roberts Cell dynamo solution of §8.1, as well as the linear mean-field
dynamo models of 10.2.2, were all computed by inverse iteration.

In general, the system can be expected to have many distinct eigenvalues; inverse itera-
tion will almost always converge to the eigenvalue closest (in the complex plane) to the trial
eigenvalue σ. The only way that inverse iteration, used as described above, can produce all
eigenvalues and eigenvectors that satisfy eq. (F.36) is by trial and error search, namely by
starting the iteration with different values of σ. This is not a very efficient way to proceed, but
then again in practice one is not always interested in finding all eigenvalues and eigenmodes
of the system. If all eigenvalues/vectors are required, or if no suitable guesses at the eigen-
values can be formulated, then the procedure to follow would be to use an algorithm such as
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QR decomposition to obtain moderately accurate eigenvalues, and then use inverse iteration to
produce more accurate eigenvalues and their corresponding eigenvectors. Those of you already
familiar with the numerical treatment of eigenvalue problems may want to try to approach
eigenproblems in this more satisfactory manner.
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Wood, W. L., Practical time-stepping schemes, Clarendon Press (1990).

phy6795v08.tex, September 30, 2008 Paul Charbonneau, Université de Montréal


