Astrophysical Radiation Magnetohydrodynamics

Being an Opera in Four Acts

ACTS III \& IV

Lecture 2: Applications

SHOCKS \& Supernovae

With Words \& Music By
Tom Bogdan
(aka Rick Blaine)
Paul Charbonneau
(aka Captain Louis Renault)
25 September 2022

Rick: How can you close me up? On what grounds?
Renault: I'm shocked, shocked to find gambling going on!
Croupier: Your winnings, sir.
Renault : [sotto voce] Oh, thank you very much. [aloud] Everyone

SHOCKS \& Supernovae

```
"An essential difference
between the dynamics of
radiating and non-radiating
fluids is that because photons
typically have much longer
mean free paths than their
material counterparts, they
can introduce a fundamental
global coupling between
widely separated parts of the
flow, which must be treated by
a full transport theory."
--Dimitri Mihalas
```


SHOCKS \& Supernovae

"I've always enjoyed learning how things work. ... Simply endless puzzles and problems that come to light, some of them trivial, amusing, some of them very important and I take great pleasure in learning them."
--Eugene Parker

Matter

Radiation

 Field
SHOCKS \& Supernovae

"We do not argue with the critic who urges that the stars are not hot enough for this process; we tell him to go and find a hotter place."
--Arthur Eddington
Matter

Radiation

 Field
Astrophysical Radiation Magnetohydrodynamics

Being an Opera in Four Acts

ACT III

We at some times are minions of our theories, The fault, dear Brutus, is not in ourselves, But in our stars, that we are underlings.

SHOCK

You have seen this all before!
..but this part, maybe not!
(3) $\mathcal{L}=M\left(\frac{1}{2} u^{2}+\frac{\gamma}{v-1} \frac{1}{\gamma}\right)+\left(F-\frac{d}{v+1} \frac{d}{d}+(1)\right.$

$$
\begin{aligned}
& \boldsymbol{F}=\boldsymbol{F}^{\prime}+\boldsymbol{u}\left[E^{\prime}+\mathbb{P}^{\prime}\right]+\cdots \\
& \mathbb{P}=\mathbb{P}^{\prime}+\frac{1}{c^{2}}\left[\boldsymbol{u} \boldsymbol{F}^{\prime}+\boldsymbol{F}^{\prime} \boldsymbol{u}\right]+\cdots
\end{aligned}
$$

$$
\zeta=\frac{P_{1}}{p_{1}}
$$

Include \mathbb{M}.

$$
\begin{aligned}
& \frac{1}{\eta_{2}}=\frac{\rho_{2}}{\rho_{1}}=\frac{(\gamma+1) M^{2}}{2+(\gamma-1) M^{2}} \\
& \Pi_{2}=\frac{p_{2}}{p_{1}}=\frac{2 \gamma M^{2}-(\gamma-1)}{(\gamma+1)} \\
& s_{1}<s_{2}
\end{aligned}
$$

Les ondes de choc (1.82)

If the
upstream
gas is ice
cold...

$$
\begin{aligned}
& \gamma M^{2} p_{1}=\rho_{1} u_{1}^{2} \\
& \downarrow \downarrow \\
& \infty 0
\end{aligned}
$$

$$
\begin{array}{lrr}
\frac{1}{\eta_{2}}=\frac{\rho_{2}}{\rho_{1}}=\frac{(\gamma+1) M^{2}}{2+(\gamma-1) M^{2}} & M^{2}=\frac{\rho_{1} u_{1}^{2}}{\gamma p_{1}} & \text { Les ondes de choc (1.82) } \\
\Pi_{2}=\frac{p_{2}}{p_{1}}=\frac{2 \gamma M^{2}-(\gamma-1)}{(\gamma+1)} & & \text { Les ondes de choc (1.85) } \\
s_{1} & <s_{2} &
\end{array}
$$

$$
T_{2}=T_{1}
$$

If the
shock is
optically-
thin...

check the
factor of
gamma

$\gamma=1\left[\begin{array}{l}\frac{1}{\eta_{2}}=\frac{\rho_{2}}{\rho_{1}}=\frac{(\gamma+1) M^{2}}{2+(\gamma-1) M^{2}} \\ \Pi_{2}=\frac{p_{2}}{p_{1}}=\frac{2 \gamma M^{2}-(\gamma-1)}{(\gamma+1)} \\ s_{1}<s_{2}\end{array} \quad M^{2}=\frac{\rho_{1} u_{1}^{2}}{\gamma p_{1}}\right.$

Les ondes de choc (1.82)

Les ondes de choc (1.85)
12
(1) $\mathcal{M}=\rho u$
(3) (6) 4) $\frac{p}{\rho}=\frac{\Re}{\mu} T$
Les ondes de choc (1.79)
(2) $\mathcal{P}=\rho u^{2}+p+P-\tau$
Les ondes de choc (1.80)
(3) $\mathcal{L}=\mathcal{M}\left(\frac{1}{2} u^{2}+\frac{\gamma}{\gamma-1} \frac{p}{\rho}\right)+\left(F-\frac{\alpha}{v+1} \frac{\mathrm{~d}}{\mathrm{~d} z} T^{v+1}\right)$ Les ondes de choc (1.81)
$\boldsymbol{F}=\boldsymbol{F}^{\prime}+\boldsymbol{u}\left[E^{\prime}+\mathbb{P}^{\prime}\right]+\cdots$
$\mathbb{P}=\mathbb{P}^{\prime}+\frac{1}{c^{2}}\left[\boldsymbol{u} \boldsymbol{F}^{\prime}+\boldsymbol{F}^{\prime} \boldsymbol{u}\right]+\cdots$

$$
\zeta=\frac{P_{1}}{p_{1}}
$$

$$
M^{2}=\frac{\rho_{1} u_{1}^{2}}{\gamma p_{1}}
$$

Shocks, subshocks, subsubshocks...

$$
s_{1}<s_{2}
$$

- 12
(1) $\mathcal{M}=\rho u$

3
(2) $\mathcal{P}=\rho u^{2}+p+P$

- $\left(\begin{array}{lll}1 & \gamma & p\end{array} \mathbf{M}^{2}=\frac{\rho_{1} u_{1}^{2}}{\gamma p_{1}}\right.$

$$
\begin{gathered}
\zeta=\frac{P_{1}}{p_{1}} \\
M^{2}=\frac{\rho_{1} u_{1}^{2}}{\gamma p_{1}}
\end{gathered}
$$

$$
\mathrm{Bo}=\frac{\rho u c_{P} T}{\sigma_{R} T^{4}} \quad \approx 1 \text { for the solar surface } \quad\left\{10^{-4}\right. \text { for an O star surface }
$$

Unless we are in a very hot and tenuous environment, like the envelope of an O star, all the terms in yellow can be safely dropped.

Otherwise...
Figure 1.5: Onde de détonation produite par une supernova ayant pêté il y a plus de 400 ans
(SNR $0500-67.5$) Cette it
(SNR 0509-67.5). Cette imagine combine des données optiques (rouge) et en rayon-X (vert-
bleu). L'émission optique est associée au chauffage du milieu interstellaire par le passage de
l'onde de choc. Image de la NASA, en domaine public.
l'onde de choc. Image de la NASA, en domaine public.
(2) $\mathcal{P}=\rho u^{2}+p+P$

```
Otherwise...
```

(3) $\mathcal{L}=\mathcal{M}\left(\frac{1}{2} u^{2}+\frac{\gamma}{\gamma-1} \frac{p}{\rho}\right)+\stackrel{\text { © }}{F}$
(4) $\frac{p}{\rho}=\frac{\mathfrak{R}}{\mu} T$

(6) $\boldsymbol{F}=\mathbf{0}+\boldsymbol{u}\left[E^{\prime}+\mathbb{P}^{\prime}\right]+\cdots$

As $M \rightarrow \infty, \eta_{2} \longrightarrow 1 / 7$ if $\zeta \neq 0$
Π_{2} and T_{2} / T_{1} are depressed

Your HOMEWORK Assignment!	
$\eta_{2}=\frac{\rho_{1}}{\rho_{2}}=?$	$M^{2}=\frac{\rho_{1} u_{1}^{2}}{\gamma p_{1}} \quad \zeta=\frac{P_{1}}{p_{1}}$
$\Pi_{2}=\frac{p_{2}}{p_{1}}=?$	Hint: For given ζ and η, eliminate the u^{2} terms between 2 and 3 to find a 5 5
Then determine M^{2}. Set $\zeta=0$ to recover (1.82) and (1.85).	

$$
\mathcal{M}=\rho u \quad E=3 P
$$

$$
\mathcal{P}=\rho u^{2}+p
$$

$$
M^{2}=\frac{\rho_{1} u_{1}^{2}}{\gamma p_{1}}
$$

$$
\mathcal{L}=\mathcal{M}\left(\frac{1}{2} u^{2}+\frac{\gamma}{\gamma-1} \frac{p}{\rho}\right)+F
$$

$$
\boldsymbol{F}=\boldsymbol{F}^{\prime}
$$

$$
\mathbb{P}=\mathbb{P}^{\prime}
$$

SNR 0509-67. de détonation produite par une supernova ayant pêté il y a plus de 400 ans
(SNR 0509-67.5). Cette imagine combine des données optiques (rouge) et en rayon-X (vert-
bleu). L'émission optique est associée au chauffage du milieu interstellaire par le passage de
bleu). L'émission optique est associée au chauffage du milieu interstellaire par le passage de
'onde de choc. Image de la NASA, en domaine public

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \boldsymbol{F} & =\kappa\left[4 \sigma_{R} T^{4}-c E\right] \\
\boldsymbol{\nabla} \cdot \mathbb{P} & =-\frac{\kappa}{c} \boldsymbol{F}
\end{aligned}
$$

$$
\frac{p}{\rho}=\frac{\mathfrak{R}}{\mu} T
$$

Optically-thick, non-LTE,
radiation pressure neglected, limit.

We know F, T^{4}, κ as functions of the variable η. Now what?

$$
\begin{gathered}
\tau=\int_{0}^{z} \mathrm{~d} z^{\prime} \kappa\left(z^{\prime}\right) \\
\frac{\mathrm{d}^{2} F}{\mathrm{~d} \tau^{2}}=4 \sigma_{R} \frac{\mathrm{~d} T^{4}}{\mathrm{~d} \tau}+3 F
\end{gathered}
$$

We only know T^{4} as functions of the variable η. Now what?

$$
F=2 \sigma_{R} \int_{-\infty}^{\infty} \mathrm{d} t e^{-\sqrt{3}|\tau-t|} \frac{\mathrm{d} T^{4}}{\mathrm{~d} t}
$$

$$
\frac{\mathrm{d} F}{\mathrm{~d} z}=\kappa\left[4 \sigma_{R} T^{4}-c E\right]
$$

$$
\frac{1}{3} \frac{\mathrm{~d} E}{\mathrm{~d} z}=-\frac{\kappa}{c} F
$$

$$
\begin{aligned}
\frac{\mathrm{d} F}{\mathrm{~d} \tau} & =\left[4 \sigma_{R} T^{4}-c E\right] \\
\frac{1}{3} \frac{\mathrm{~d} E}{\mathrm{~d} \tau} & =-\frac{1}{c} F
\end{aligned}
$$

We know F, T^{4}, κ as functions of the variable η. Now what?

$$
\begin{aligned}
\tau & =\int_{0}^{z} \mathrm{~d} z^{\prime} \kappa\left(z^{\prime}\right) \\
\frac{\mathrm{d}^{2} F}{\mathrm{~d} \tau^{2}} & =4 \sigma_{R} \frac{\mathrm{~d} T^{4}}{\mathrm{~d} \tau}+3 F \\
F & =2 \sigma_{R} \int_{-\infty}^{\infty} \mathrm{d} t e^{-\sqrt{3}|\tau-t|} \frac{\mathrm{d} T^{4}}{\mathrm{~d} t}
\end{aligned}
$$

We only know T^{4} as functions of the variable η. Now what?

$$
\begin{aligned}
& \tau=\int_{0}^{z} \mathrm{~d} z^{\prime} \kappa\left(z^{\prime}\right) \\
& \omega(\eta)=\frac{\mathrm{d} \eta}{\mathrm{~d} \tau} \\
& \mathrm{~d} z=\frac{\mathrm{d} \eta}{\omega(\eta) \kappa(\eta)}
\end{aligned}
$$

Note: we need to watch out for the singularities where the coefficient in front of the highest derivative vanishes! They occur at the two end points far upstream and far downstream, and where $F^{\prime}(\eta)=0$. For the former, we can derive the leading order behavior of $\omega(\eta)$. The latter is to be avoided by inserting a discontinuity!

We solve one nonlinear first-order ODE on the interval $0<\eta_{2} \leq \eta \leq 1$ for $\omega(\eta)$. Problem solved!

$$
\mathcal{M}=\rho u \quad \mathrm{c} E=c P=F
$$

$$
\boldsymbol{\nabla} \cdot \boldsymbol{F}=\kappa\left[4 \sigma_{R} T^{4}\right]
$$

$$
\mathcal{P}=\rho u^{2}+p
$$

$$
M^{2}=\frac{\rho_{1} u_{1}^{2}}{\gamma p_{1}}=\infty \quad p_{1}=T_{1}=0
$$

$$
\mathcal{L}=\mathcal{M}\left(\frac{1}{2} u^{2}+\frac{\gamma}{\gamma-1} \frac{p}{\rho}\right)+F
$$

$$
\frac{p}{\rho}=\frac{\Re}{\mu} T
$$

Optically-thin, non-LTE, radiation pressure neglected, limit.

$\mathcal{M}=\rho u$
$\mathcal{P}=\rho u^{2}+p+P-\tau$
$\mathcal{L}=\mathcal{M}\left(\frac{1}{2} u^{2}+\frac{\gamma}{\gamma-1} \frac{p}{\rho}\right)+\left(F-\frac{\alpha}{v+1} \frac{\mathrm{~d}}{\mathrm{~d} z} T^{\nu+1}\right)$

$$
\begin{aligned}
& \boldsymbol{F}=\boldsymbol{F}^{\prime}+\boldsymbol{u}\left[E^{\prime}+\mathbb{P}^{\prime}\right]+\cdots \\
& \mathbb{P}=\mathbb{P}^{\prime}+\frac{1}{c^{2}}\left[\boldsymbol{u} \boldsymbol{F}^{\prime}+\boldsymbol{F}^{\prime} \boldsymbol{u}\right]+\cdots
\end{aligned}
$$

$$
\zeta=\frac{P_{1}}{p_{1}} \quad M^{2}=\frac{\rho_{1} u_{1}^{2}}{\gamma p_{1}}
$$

Give some other types of

SHOCKs

 a try!How could you include atomic ionization?
Molecular
dissociation?
Magnetic Fields?

Figure 1.5: Onde de detonation produite par une supernova ayant peté il y a plus de 400 ans
(SNR 0509-67.5). Cette imagine combine des données optiques (rouge) et en rayon-X (vert-

Astrophysical Radiation Magnetohydrodynamics

Being an Opera in Four Acts

ACT IV

That I should love a bright particular star And think to wed it, he is so far above me. In his bright radiance and collateral light Must I be comforted not in this sphere.

SN 1987a

radius

$$
\begin{aligned}
& \frac{\partial}{\partial t} \rho+\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}=0 \\
& \frac{\partial}{\partial t} \rho \boldsymbol{u}+\boldsymbol{\nabla} \cdot(p+\rho \boldsymbol{u} \boldsymbol{u})=-\rho \nabla \Phi+\boldsymbol{f} \\
& \frac{\partial}{\partial t} \rho e+\boldsymbol{\nabla} \cdot(\rho e+p) \boldsymbol{u}=+\boldsymbol{u} \cdot \nabla p+\rho T \dot{s}
\end{aligned}
$$

Did you notice how few actual numbers we needed to introduce? And then, only when we were determining transport coefficients!

$$
u \propto \frac{r}{t} \quad \frac{p}{\rho} \propto \frac{r^{2}}{t^{2}} \quad e \propto \frac{r^{2}}{t^{2}}
$$

$$
u=\frac{r}{t} \Rightarrow \rho=\frac{1}{t^{3}} \Omega(r / t) \quad p=\frac{1}{t^{3 \gamma}} \Pi_{0}
$$

radius

$$
\begin{aligned}
& \frac{\partial}{\partial t} \rho+\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}=0 \\
& \frac{\partial}{\partial t} \rho \boldsymbol{u}+\boldsymbol{\nabla} \cdot(p+\rho \boldsymbol{u} \boldsymbol{u})=-\rho \nabla \Phi+\boldsymbol{f} \\
& \frac{\partial}{\partial t} \rho e+\boldsymbol{\nabla} \cdot(\rho e+p) \boldsymbol{u}=+\boldsymbol{u} \cdot \boldsymbol{\nabla} p+\rho T \dot{s} \\
& \frac{d r}{d t} \\
& \qquad u=\varepsilon \frac{r}{t} \Rightarrow \frac{p}{\rho} \propto \frac{r^{2}}{t^{2}} \quad \varepsilon=\frac{2}{3 \gamma-1}
\end{aligned}
$$

radius

- It is cosmically unlikely that the density outside of a supernova cares about the ratio of specific heats--which has to be 4/3 at least early on--giving $r^{-17 / 7}$ (!!!)
- If the supernova were truly expanding adiabatically then we wouldn't see it at all---some photons are getting out
- Ergo, we need a more realistic energy equation which incorporates radiative transfer and a more complicated velocity profile

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \rho+\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}=0 \\
\frac{\partial}{\partial t} \rho \boldsymbol{u}+\boldsymbol{\nabla} \cdot(p+\rho \boldsymbol{u} \boldsymbol{u})=-\rho \nabla \Phi+\boldsymbol{f} \\
\frac{\partial}{\partial t} \rho e+\boldsymbol{\nabla} \cdot(\rho e+p) \boldsymbol{u}=+\boldsymbol{u} \cdot \boldsymbol{\nabla} p+\rho T \dot{s}
\end{array}\right.
$$

One can generalize the concept and push the idea just a little further. We call these intermediate asymptotics or similarity solutions. Can we also accommodate gravity, radiation and electromagnetism in this exercise?

Sometimes, yes---but usually not so much.

They provide three nonlinear coupled ODE's for U, Ω, and Π. Boundary conditions yield λ. They are called the blast-wave equations.
$u=\frac{r}{t} U(\zeta) \quad \rho=\frac{1}{r^{s}} \Omega(\zeta) \quad \frac{p}{\rho} \propto \frac{r^{2}}{t^{2}}$

$$
\zeta=\frac{r}{t^{1 / \lambda}}
$$

HN 1945a

- It is cosmically unlikely that the density outside of a supernova cares about the ratio of specific heats--which has to be 4/3 at least early on--giving $r^{-17 / 7}$ (!!!)
- If the supernova were truly expanding adiabatically then we wouldn't see it at all---some photons are getting out
- Ergo, we need a more realistic energy equation which incorporates radiative transfer and a more complicated velocity profile

The Radiation Field

$$
\frac{1}{c} \frac{\partial I_{v}}{\partial t}+\mathbf{n} \cdot \nabla I_{v}=\eta_{v}-\chi_{v} I_{v}
$$

$$
\frac{\partial E}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{F}=\int_{0}^{\infty} d v \int d \mathbf{n}\left[\eta_{v}-\chi_{\nu} I_{v}\right]
$$

Best evaluated in the comoving

$$
\frac{1}{c^{2}} \frac{\partial \boldsymbol{F}}{\partial t}+\nabla \cdot \mathbb{P}=\frac{1}{c} \int_{0}^{\infty} d v \int d \mathbf{n} \mathbf{n}\left[\eta_{v}-\chi_{v} I_{v}\right]
$$

The Radiation Field

$$
\frac{1}{c} \frac{\partial I_{v}}{\partial t}+\mathbf{n} \cdot \nabla I_{v}=\eta_{v}-\chi_{v} I_{v}
$$

$$
-G^{\alpha}=\frac{1}{c} \int_{0}^{\infty} d \nu \int d \mathbf{n} n^{\alpha}\left[\eta_{v}-\chi_{v} I_{v}\right]
$$

$$
\begin{aligned}
& \mathbf{L}^{-1} \\
& \{E, F, \mathbb{P}\} \rightarrow\left\{E^{\prime}, F^{\prime}, \mathbb{P}^{\prime}\right\} \longleftrightarrow\left\{E^{\prime}, F^{\prime}, \mathbb{P}^{\prime}\right\}
\end{aligned}
$$

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \rho+\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}=0 \\
\frac{\partial}{\partial t} \rho \boldsymbol{u}+\frac{1}{3} \boldsymbol{\nabla} \cdot\left(a_{R} T^{4}+3 \rho \boldsymbol{u} \boldsymbol{u}\right)=0 \\
{\left[\frac{\partial}{\partial t}+\frac{4}{3} \boldsymbol{\nabla} \cdot \boldsymbol{u}+\boldsymbol{u} \cdot \boldsymbol{\nabla}-\boldsymbol{\nabla} \cdot \frac{3 c}{\chi} \boldsymbol{\nabla}\right] a_{R} T^{4}=\rho T \dot{\boldsymbol{s}}} \\
\begin{array}{c}
u=\varepsilon \frac{r}{t} \\
u=\frac{r}{t} U(\zeta) \\
u=\frac{r}{\Phi} \frac{\mathrm{~d} \Phi}{\mathrm{~d} t} U(\zeta)
\end{array} \quad \zeta=\frac{r}{t^{1 / \lambda}} \\
\zeta=\frac{r}{\Phi}
\end{array}\right.
$$

- We have omitted gravity (needed only for Nanonovas---stay tuned).
- Neglected the internal energy density of the matter compared to the radiation energy density (should be OK for a while...).
- Omitted terms of order u / c (probably OK after the shock breaks through the stellar photosphere...)
- Assumed the photon mean-free-path is much smaller than any relevant hydrodynamic scale (OK almost everywhere except within 10 or so optical depths of the photosphere...)
- Frequency-integrated moments (not so OK...)
- Assumed LTE (not so OK...)
- Neglected neutrinos (---yes NEUTRINOS---OK after the shock breaks through the stellar photosphere...

$$
\begin{gathered}
u=\frac{r}{\Phi} \frac{\mathrm{~d} \Phi}{\mathrm{~d} t} U(\zeta) \\
\zeta=\frac{r}{\Phi} \\
\rho=\frac{1}{\Phi^{3}} \Omega(\zeta)
\end{gathered}
$$

They provide three nonlinear coupled
ODE's for U, Ω, and Π. Boundary conditions yield $\Phi(\mathrm{t}), \varphi(\mathrm{t})$.

$$
\Phi^{4} a_{R} T^{4}=\varphi(t) \Pi(\zeta)
$$

$$
\begin{gathered}
u=\frac{r}{\Phi} \frac{\mathrm{~d} \Phi}{\mathrm{~d} t} U(\zeta) \\
\zeta=\frac{r}{\Phi} \\
\rho=\frac{1}{\Phi^{3}} \Omega(\zeta)
\end{gathered}
$$

$$
\begin{array}{ll}
N_{1}=1 & v_{0}=0 \\
& \frac{\mathrm{~d} N_{i}}{\mathrm{~d} t}=-v_{i} N_{i}+v_{i-1} N_{i-1}
\end{array}
$$

$$
v(t) \equiv T \frac{\mathrm{~d} s}{\mathrm{~d} t}=\frac{\mathrm{d} Q}{\mathrm{~d} t}=\sum_{i} \varepsilon_{i} v_{i} N_{i}
$$

$$
\zeta=\frac{r}{\Phi} \quad \Phi^{4} a_{R} T^{4}=\varphi(t) \Pi(\zeta)
$$

Heating (which ends up as photons) due to radioactive decay.

This depends on both space and time, unfortunately.

1. Balance any two terms and see if the third term is generally negligible
2. Integrate $4 \pi r^{2} d r$ out to $R_{\text {shock }}(t)$ to remove the spatial dependence away
3. Give up on the similarity assumption--try $a_{R} T^{4}=\Psi(r, t) / \Phi^{4}$ or:

$$
\left[\frac{\partial}{\partial t}-\boldsymbol{\nabla} \cdot \frac{3 c}{\rho \mathcal{\varkappa}} \boldsymbol{\nabla}\right] \Phi^{4} a_{R} T^{4}=\Phi^{4} \rho v \quad \frac{1}{\Phi} \frac{\partial}{\partial t}=\frac{\partial}{\partial \tau}
$$

$$
\begin{aligned}
v(t) & =\sum_{i} \varepsilon_{i} v_{i} N_{i} \\
\zeta & =\frac{r}{\Phi}
\end{aligned}
$$

$$
\frac{\frac{1}{\zeta^{2}} \frac{\mathrm{~d}}{\mathrm{~d} \zeta}\left(\frac{\zeta^{2}}{\Omega} \frac{\mathrm{~d} \Pi}{\mathrm{~d} \zeta}\right)=-\beta^{2} \Pi-\Omega}{\frac{\varphi}{\varphi} \frac{1}{\Phi}-\frac{3 c}{\chi_{0}} \frac{1}{\Pi \zeta^{2}} \frac{\mathrm{~d}}{\mathrm{~d} \zeta}\left(\frac{\zeta^{2}}{\Omega K} \frac{\mathrm{~d} \Pi}{\mathrm{~d} \zeta}\right)=\frac{\Omega}{\Pi} \frac{v}{\varphi}} \quad \Omega=\zeta^{n}
$$

$$
\zeta^{\frac{n-1}{2}} J_{ \pm \mu}\left(\frac{2 \beta}{n+2} \zeta^{1+\frac{n}{2}}\right) \quad \mu=\left|\frac{n-1}{n+2}\right|
$$

$$
\frac{\frac{1}{\zeta^{2}} \frac{\mathrm{~d}}{\mathrm{~d} \zeta}\left(\frac{\zeta^{2}}{\Omega} \frac{\mathrm{~d} \Pi}{\mathrm{~d} \zeta}\right)=-\beta^{2} \Pi-\Omega \quad \Omega=\zeta^{n}}{\zeta^{2} \frac{\mathrm{~d}^{2} \Pi}{\mathrm{~d} \zeta^{2}}+(2-n) \zeta \frac{\mathrm{d} \Pi}{\mathrm{~d} \zeta}+\beta^{2} \zeta^{n+2} \Pi=-\zeta^{2+2 n}}
$$

Astrophysical Radiation Magnetohydrodynamics

Being an Opera in Four Acts

CURTAIN
 CALL

Problem 1

The Gravitational Field Problem

```
\nabla
    \partial
```

Note: None of the gravity is provided by the material we are keeping track of via the continuity equation.

$$
\frac{\partial}{\partial t} \frac{1}{2} \rho \Phi+\boldsymbol{\nabla} \cdot(\rho \Phi \boldsymbol{u}+\boldsymbol{\xi})=\rho \boldsymbol{u} \cdot \nabla \Phi
$$

$\nabla-G=\rho \nabla \Phi-$

The Gravitational Field Problem

```
Half the world
prefers + and the
other half - ...
```


This term has contributions from the matter, the electromagnetic fields, and the radiation field. Its divergence, set equal to zero, gives the relativistic generalization of our (summed) RMHD equations! The gravitational energy/momentum exchange and conservations are now described by the metric coefficients and the Christoffel symbols associated with the covariant derivatives!

The Closure (No Free Lunch) Problem

$$
\begin{aligned}
\frac{p}{\rho} & =(\gamma-1) e+\cdots \\
\mathbb{P} & =\frac{1}{c} \int_{0}^{\infty} d v \int d \mathbf{n} \mathbf{n n} I_{v} \\
\eta_{v} & =\chi_{v} B_{v}+\cdots
\end{aligned}
$$

(Ionization/Recombination ?) (Dissociation/Recombination ?)
(Pair Production/Annihilation ?) (Nuclear Reactions?)
$\Omega=-k_{B} T \log Z(V, T, \mu) \quad \begin{aligned} & \text { Equilibrium } \\ & \text { statistical } \\ & \text { mechanics }\end{aligned}$

$$
\begin{aligned}
& \boldsymbol{J}=\sigma \boldsymbol{E}+\cdots \\
& \rho_{e}=0+\cdots \\
& \chi_{v}=1 / \lambda
\end{aligned}
$$

(Thermal conductivity ?)
(Viscous stresses ?)
(Chemical diffusion ?)
(Anisotropy ?)
Non-equilibrium
transport

$$
\begin{aligned}
& \frac{\partial I_{v}}{\partial t}+c \boldsymbol{n} \cdot \frac{\partial I_{v}}{\partial \boldsymbol{x}}=c \eta_{v}-c \chi_{v} I_{v} \\
& \frac{\partial \psi}{\partial t}+\frac{1}{m} \boldsymbol{p} \cdot \frac{\partial \psi}{\partial \boldsymbol{x}}+\boldsymbol{f} \cdot \frac{\partial \psi}{\partial \boldsymbol{p}}=\frac{\delta \psi}{\delta t}
\end{aligned}
$$

The Ergodic Problem (Is N Big Enough)

> 4512390329884930266051459 7845623652117263599384782 0178956985440596822617015 5623401430995041377162560 2390178107662718044839237 4512390329884930266051459 4512390329884930266051459 3401289218773829155940348

1. A family has two children.
 2. One child is a girl.

a) $1 / 4$
b) $1 / 3$
c) $1 / 2$

1. One in a hundred people typically test positive for COVID in Casablanca.
2. Captain Renault uses a self-test that is 95% accurate.
3. He tests positive.
a) $95 / 100$
b) $16 / 100$
c) $1 / 100$

The Ergodic Problem (Is N Big Enough?)

A moment of tension in Vatican.

 If the bishop moves forward the queen can take him.

YOU'VE GOT TO ASK YOURSELF ONE QUESTION: 'DO I FEEL LUCRY?' WELL, DO YA PUNR?
-DIRTY HARRY-

