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Renault: And what
in Heaven’s name
brought you to
Montréal?

Rick: My health. I
came to Montreal
for the

Astrophysical
Fluids.

Renault: Fluids?
What Fluids? We
are frozen in
winter!
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Astrophysical Radiation Magnetohydrodynamics

Being an Opera in Four Acts

ACT |

All the universe 1s a stage,
And all matter and fields are merely players;
They have their exits and entrances,
And each, 1n their time, plays several parts.



Nanoscopic

Microscopic
Mesoscopic
Macroscopic

Mondoscopic
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= Summary

Energy Conservation
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\ Entropy Conservation

Momentum Conservation

/ Parity Conservation
x—-Xx +Rx

AN

Angular Momentum Conservation
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Mass Conservation
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Relaxation Toward

Equilibria .. a tale of two constants: ¢ and h
1
GM (1)§
cz \V
cN”
Special Relativity
JMkgT
1

h N°5\&
Quantum Mechanics

JMkpT

Note: kz merely serves to define the ,
temperature scale, and G does the 102 - " 102
same for gravitational mass---and by

assumption, inertial mass as well.




The “Philosophy of RMHD”

Corollary to the “Philosophy of RMHD”




The Classical
Fields:
Statistical vs
Deterministic

Matter

Quantum
Mechanics

Radiation
Field

Quantum Mechanics

Special

Gravitational
Field

ativity

Special
Relativity

ilence

Mechanics

Electro-
Magnetic
Field

Relativity




Impacts & Influence

Adiabatic (Reversible)
Entropy is constant

Matter
: Radiation | Electro:
! Field | Magnetic
| ’: Field

o e e o o o o o o o e o = P



Adding to Disorder

Entropy Production — ey

Matter

om Em mm = o s Em = = — -

: Radiation | Electro:
! Field | Magnetic
| ’: Field

o e e o o o o o o o e o = P



Construction vs
Deconstruction




Grace a Dieu pour Oncle Albert--|
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PHY 3700: ATMOSPHERE

PHY 3070: RELATIVITE 2 PHY 6756: FLUIDES ET ENVIRONNEMENT

ASTROPHYSIQUE
STELLAIRES
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Full Cost Accounting

|
1
...thank you very !
much! Any |
questions? ' ¢

-
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Construction vs
Deconstruction

Matter




Conservation Laws

d

3t +V

Radiation
Energy

Kinetic
Energy

Electro-
Magnetic
Energy

Kinetic
Energy




Full Cost Accounting

Matter




Conservation Laws

7,
ot

+ |/

Radiation
Energy

Internal
Energy

Electro-
Magnetic
Energy

4

Internal
Energy

Note the sign flip!



Conservation Laws

7,
ot

Note the sign flip!

+ |/

Radiation
Energy

Internal
Energy

Electro-
Magnetic
Energy
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You have seen

The Matter this all before!

0

Ep _I_ V . pu — O L'équation de continuité (1.21)

0

—u+u-Vu+%Vp

1
S VCI) + —f L'équation de Navier-Stokes (1.23)
ot p

0

—e _I_ u - Ve _I_ BV U = TS Conservation de I'énergie interne (1.56)
dt p



The Matter

d
o4+ V-pu=0
geP TV PY

0 1
—u+u-Vu+-Vp =
3 + + 5 14,
race a p We will need to
e I u - Ve _I_ _V U = determine these

two exchange

at p terms.



The Matter

Note: Thermal conduction
and viscous stresses can also
" be accommodated in f and
Ts if necessary.

O L ol + V- S pllul? u = —u -V
T L g P U=~ VD

0
ape+V-(pe+p)u=+u-Vp+st’

%pu+V-(p+puu)=‘+f




The Matter

Someone needs to
tell us how to
determine the gas
pressure!

| Note: Thermal conduction
and viscous stresses can also
- be accommodated in these
terms if desired.

dt 2

0
ape+V-(pe+p)u=+u-Vp+@

%pu+V-(p+puu)=—chI>@

01 , 1 ,
—5pllull +V-§pIIuII u=-uVp—-—u-pvd +utf

It remains to
determine these
terms through full
cost accounting!



Full Cost Accounting




You have seen
this all before!

The Gravitational Field

V 2 CI) — 4‘77:Gp L'équation de Poisson (1.35)

Beware!!! Half the
world prefers this
way...

VW = —4nGp



The Gravitational Field

Note: All the gravity is

VZ cI) — 4‘7TGp provided by the material we

are keeping track of via the
continuity equation.

V- pu =0
geP TV P



The Gravitational Field

Note: All the gravity is

_ provided by the material we
are keeping track of via the
continuity equation.

Coupling to matter

Your HOMEWORK Assignment!

01
Compute G and G. ——pCI) + V . (p(l)u + — pu . V(I)

dt 2



The Gravitational Field

Someone needs to
tell us how to
determine the
gravitational
potential ®!

ot

Note: None of the gravity is
provided by the material we
are keeping track of via the

continuity equation.

0
}pCI>+V-(pCI>u+

- VO



Full Cost Accounting

Matter

Electro-
Magnetic
Field



The Electromagnetic Field

V-E=p,./e

V-B=0

OB
VXE=——

ot
OE
V XB =) Hosoa

You have seen
this all before!

Loi de Gauss (2.1)

Loi anonyme (2.2)

Loi de Faraday (2.3)

Loi d’Ampere/Maxwell (2.4)




All Other
Energy

g

The Electromagnetic Field

0B
V-E= pe/EO V XE = —E Electro-
OE Magnetic
VB=0 V XB:uO]-i_IJOSOE Energy
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E|I*+|BlI*) + V.. —E X B)= ] - E
T (HogollENI*+]IBI[?) " J
1 oS
Someone needs to tell us . -I— V . M — —pe E _] A B

) 2
how to determine the C at

electric current J and
charge density p,, | . . Coupling to matter




All Other

The Electromagnetic Field Energy
T 3
V= il v xE= ot Electro-

O Magnetic
V-B=0 VXB=uol+uosoE Energy

MHD
scalings:  u?B%/ic?  uB’/¢ uB2/¢ uB*/¢

0 1 1
(uoeoIPEilzﬂlBllz) +V-—EXB)=—]-E
at 2y,

Ho
Your HOMEWORK Assignment! %‘I‘ V . M =><—] A B

Compute M.




Full Cost Accounting

Matter

——————————

o = mm mm mm = oy

o e e o o o o o o o e o = P



You have seen
this all before!

The Radiation Field

Conservation de I'énergie interne (1.56)

0 p 1
Ee+u-Ve+;V-u=;V°[(X‘l'Xr)VT]

0 1
—S4+u-VSs =p—TV- [(x + x,)VT]

ot

Deuxiéme principe de la thermodynamique (1.58)




The Radiation Field Y

C-l
n al, al,

1 dlI,
c Ot

—_— _+n VI _nv IV

All Other
— —+cn-—=c¢ c
c { ot ox v T Xl ) Energy
nn
Note: Extension e l
to pol.anzed Radiation
radiative

Someone needs to
tell us how to
determine the
radiation pressure
tensor P, emissivity

1, , and opacity x,, !

Energy

transfer is
possible.

Coupling to matter

aa—l§+V-F f dvfdn‘ ‘Iv]

1 OF

CZat-|—V[P)—Cf0 dv fdnn[rlv XVIV]



The Radiation Field

Note: Extension
1 a I VI I todpola rized
N _|_ n-: — ra iative'
c ot D e
Optically
uk/t (uto c)E/t ?
thick to /

ot

It is the rare occasion

when one actually —_—

needs to retain this + V ]:P dv dn n
term!

thin 0E 0
scalings: —+V-F = j dv f dn |7,

All Other
Energy

4

Radiation
Energy

cE/A

o lev]

o lev]



Light thinks 1t travels faster
than anything but 1t 1s wrong.
\o matter how [ast light travels,

I [inds the darkness has always got
there [irst, and 1s waiting for It.




Momentum Conservation

%pu+V-(p+puu) = —pIVcI>+f
V-G=pVd
24V -M=—p.E—]%XB

1 OF 1
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1
2

9
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Momentum Conservation

%pu+V-(p+puu):
== —
24V -M=—p,E—]XB
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. Now we can
Momentum Conservation determine the

force density!

%pu+V-(p+puu) = —chD@
V-G=pVd

24V -M=—p.E—]%XB

1 OF 1
oz E-I_V P = f dvjdnn — xv1y]

1
c2

9
a—q3+v I = 0



Energy Conservation

1 1 v
sollul® +v-opllul®u=—u-Vp—pu Vo +u-f
ot 2 3 P
ape+V-(pe+p)u:: +u - Vp + pTs

1
5 2pCI>+V (pPu+G) = pu-Vo &

1 1
7o (ool EIP+IBI?) +V - E X B =~ - E
O

ot 2
0E
—+4+ V- -F = f dvfdn[nv—xvlv]
ot 0
o€
—+V-F=0

dt



Energy Conservation

1 1 v
sollul® +v-opllul®u=—u-Vp—pu Vo +u-f
ot 2 3 P
ape+V-(pe+p)u:: +u - Vp + pTs

0
a—}p(b+V-(pCDu++) =pu-VoP &

1 1
7o (ool EIP+IBI?) +V - E X B =~ - E
O

ot 2
0E
—+4+ V- -F = f dvfdn[nv—xvlv]
ot 0
o€
—+V-F=0

dt



at

2

Energy Conservation
U

ot 1
i, v
ape+V-(pe+p)u:: +u-Vp+@
1
62pCI>+V (pPu+G) = pu-Vo &

1 1
7o (ool EIP+IBI?) +V - E X B =~ - E
O

oF *
E-l_VF ::j;)dvfdn[nv—
0¢

dt

1 1
S Plull® +V-oplul®us —u-Vp —pu-Vo +u-f

Now we can
determine the heat
addition to the
material!



Full Cost Accounting---Done!

@:
p@=

p.E+ J X B

1 (00
—f dvfdn a7y — xol]
CJo

J-E

dv f dn [y — xoly]
0

It remains to
determine these
terms through the
geometry of
space-time!

This slide is the essential objective of RMHD---we have now constructed a set of equations that
not only conserve total energy and momentum, but also describe how energy and momentum

are exchanged between matter and the radiation, and fields!



The “Golden Rule of RMHD”

but...

Can | get an AMEN,
people!!!



Corollary to the “Golden Rule of RMHD”

Abandon hope, all
ye who fail to heed
the Corollary!



Astrophysical Radiation Magnetohydrodynamics

Being an Opera in Four Acts

ACT |l

Now 1is the geometry of our discontent,
Made gloriously invariant by this Sun of France;
And all the aether that lowered upon our house,

In the deep bosom of obscurity is buried.



Better Living Through Geometry

y X
Event 1

...and some
stuff going on.



Galileo & Newton

Z
Y
One Observer 7 &
y a
Event 1
X

This is a
Galilean

It —t,] = [t';—t'5]

o=l = x . — X Space-Time of
" 1 2" " 1 2" 4 dimensions.

\

VI




Poincare, Lorentz & Einstein

z
3
L

V’

‘«»
Event 1

||X1_X2||2—C2 |t1_t2|2=
||X'1_X'2||2— c? |t'1_t’2|2

Thisis a
Minkowski
Space-Time of
4 dimensions.

\



Invent Your Own Space-Time

y X
Event 1

blah blah blah.....

This is a Some
Other Space-
Time of 4
dimensions.

\



Count the
Invariants

1 Pick a different origin
for marking off time.

3 Pick a different origin
for marking off space.

—

Pick a different
3 orientation for your
coordinate axes.

Move through the
3 space at a constant
rectilinear velocity.

10 Parameters

Minkowski Space-Time

Galilean Space-Time

||X1_X2||2— c? |131_tz|2 =

|t1_t2| = |t'1_t'2|

||X'1_X'2||2— c? |t'— t'2|2

X1 =20l = [Ix"1 = x5l

The Translation
J Group T(1)

The Translation
Group T(3)

The Special
Orthogonal
Group SO(3)

The Lorentz
“Group”

The Poincaré
Group

The Galilean
Group

Translations

Translations

Proper
Rotations

Boosts



Group Action on 4—Vectors
[ct’] < lct"] ct’ Loncuty Grous
Galilean Grouts

X

/ Bonus: These 4-vectors live in the The electric and However, the
‘V tangent space to each point in the magnetic fields are specific intensity, the
space-time, and they transform in components of a 4- opacity and the
V / n’ the same fashion as the space-time tensor and therefore emissivity are entirely

itself! transform appropriately! different 4-animals...



Better Living Through Geometry

Boosts

XI

y Rotations




Lorentz Group

Meet the (6-parameter) /y

Fl=<[%

el

14 —y/c
.4(11, ‘9) — l—yu/c RM@®) + (y— Duu/u?

Z1(u,9) =4£(—u,—9)

I=dLlold =L0L]

1 00 0
010 0
9 = 1o o1 o0
00 0 1

Liod, #L, 0oL

c

ve2 = [lulf?

|

Note: This is
the 4x4 matrix
representation
of the group
elements.

There are other
representations
available.

Please do not
confuse the 4x4
matrix with a 4-
tensor.



Better Living Through Geometry

These 4-vectors are represented

u )
by a 1-column, 4-row matrix! @ t

z
!/ y 0 0 —yu/
[Ct ] _ 0 cosd —sind 0 [Ct] 9
/ _ 0 sin9 cosd 0 ,
X e Lo 0y 1LX O

0 0 u/c !/
[Ct] g)/ cos9 sin? yO/‘ [Ct ] z ‘T t
0 —sin9d cos9 0
X yujc| 0 0 y x, @

Note: Generally speaking-- y
Boost o Boost, = Boost; + Rotation X
unless the Boosts are parallel!




Note: 4-tensors and 4x4

COmOVIHg VS |nert|a| Frames matrices, 4-vectors and 4x1 or

1x4 matrices, all look

deceptively similar to one
another, but it is important to
/ recognize their differences!
ror| T
v'n v
!
3 / ‘| =«
F’ /C F/C The transpose “T” of a 1-
column, 4-row matrix is a 4-
T __ T column, 1-row matrix.
(410‘42) —‘42 041

—L* =[] - E/c,—p.E — JxB|"

1 oo
—G% = Ef dvfdﬂn“[nv — Xv 1y ]
0

The transpose “T” of a 4x4
matrix exchanges rows with
columns.

F/C].ZT



Count Your Lucky Photons

A “swarm”
of photons

These observers do not agree
about much of anything
, regarding these photons, but,
v they do agree that there are
five of them. Five is a Lorentz
invariant.




Lorentz Transformation of the

Radiation Field

2 1 These exact

!/ /
IV i v E'=y? [E - Zu Pt uwP equations expresses
—_— — the Doppler shift and
1/3 V 3 F'=F —ulE +P]+ - aberration of the
" photons.
_ I/ IP”=IP’—C—2[uF+Fu]+-~
VXV =V X V' The comoving frame
(primed quantities)
/ / 1 has a velocity u
/ —_— — — .
TIV _ 77 1% v )/V (1 c n u) measured in the
2 12 inertial laboratory
V v n |= cn —yu [1 1 n-uj] frame (unprimed
- o tities).
This part is tricky. Remember each c—n-uLy ) 4 +1 c quantities)
frame has its own independent _ C N
variables: x, ct, vn, v that transform like ‘ V= \/Cz — [l > L

components of a 4-vector.



Lorentz Transformation of the
Electromagnetic Fields

El
BI
]I

!/

Pe

=y[E4+ux B]— (y—1)(E-wu/ |lull
=y[B—uxE/c*] - (y—1)(B-wu/||lull*

=] —vyup, + (y—D(J -wu/ ||lull?

— y[pe _u,]/CZ]

These exact equations
express the

transformations of the
electromagnetic fields

The comoving frame
(primed quantities
as a velocity u
measured in the
inertial laboratory
frame (unprimed
quantities).

~

C

= ~ 1

NEEITE




The Interaction Between Radiation & Matter



The Interaction Between Radiation & Matter

~—Y 4+ n-vi,
c Ot n — v

— lev

Let’s assume we are in the comoving
frame at rest in the laboratory frame.

* Destruction via absorption

1, (n)

TIV" * Creation via emission
* Spontaneous
e Stimulated by I,

Sy(n)

This is a purely quantum
mechanical effect with no
real classical counterpart.




The Interaction Between Radiation & Matter

Z;'};};“F‘ll ‘71' = 1y -')(mplv

The true absorption.

c? ﬂ' ‘ v c?
[Sv (1 + TRV Iv> — lelv] +j dv, 7€ dnlv—la(vl,n1 - v,n)l, (n;) (1 hu3 —1 (n))
0

o0

2
In LTE we must have: —j dV1j€ dn; o(v,n - vy,n,) [,(n) (1 T Vl(n1)>
2hv3 1 °

c? exp(hv/kgT)—1

I, =B, =

Sy, = K,B,
1

The absorption corrected for stimulated emission.




! | ' ' U I ' ' 107 K

| Radio Waves Visible Light §
10 A B
'.l_— . Stimulated N
o i — Emission is )
2 i Important i
N 105 .
D) i 7 -
S 5 / i
0 - Stimulated | |

: R Emission is

— oy Negligible
- 10-10 — —
~= B ) o

m
L g 2hv3 1 / : i
VooV c? exp(hv/kpT)—1 |
10-15 / —
| A : | \ | : | )
108 1010 1012 1014 1016 1018

Frequency [Hz]

1 020



In the

Moment(s)
1
E, = —%dnlv
C
F, = fdnnlv
1
P, = —fdnnnlv
C

Q, = fdn nnn /[,




Eddington Factor

1
EV = E % dn IV Diffusion Limit

Ouch!

L, ~—E, +

—n - F
AT ATr v




Gray/LTE Approximation in the Comoving Frame

I I,
_1;:_’1/3 2hv3 1
V V B, =
V' ¢ exp(hv/kgT)—1

VXy = VK
A constant, frequency-independent
KB ; opacity k, and the isotropic Planck
nV 14 Function (but frequency dependent)
constitutes the “gray atmosphere” LTE
approximation in the comoving frame.

1/2 vrz

Notice that in the laboratory frame the
emissivity and the opacity are not isotropic
because of the Doppler-shifted frequency!



Example 1

Gray/LTE Approximation in the Laboratory Frame

0

7“=K[CL+%DM)B ——nu——vB

V=K(1—%nu)+-~

We can now carry out the two integrals
we need to describe the exchange of
energy and momentum between the
material and the radiation field in the
laboratory frame.

dt

OF >
—+ V- -F = f dvjdn[nv
0

v ]

— Xvly]

This part is subtle. We want the
Planck Function evaluated at
the laboratory frequency not
the comoving frame frequency.



Gray/LTE Approximation in the Laboratory Frame

ny=k[(1+-= nu)B ——nu——vB]

av
vzk(l—znu)+

27.[5kg Higher-order
Op = terms in the ratio

15h3C2 of u/c live here.




Gray/LTE Approximation in the Laboratory Frame

ny,=k|(1 +%n'u)B ——nuivB ME:

) av
Xv=K(1—;n‘u)+ -

We can now carry out the two integrals
we need to describe the exchange of
energy and momentum between the
material and the radiation field in the
laboratory frame.

1 OF 1~
- +V-IP>=EJ dvfdnn[nv—xvlv]
0

c? Ot



Gray/LTE Approximation in the Laboratory Frame

ny=k[(1+-= nu)B ——nu——vB]

ov
vzk(l—znu)+

Higher-order
terms in the ratio
of u/c live here.




Gray/LTE Approximation in the Laboratory Frame

ny=k[(1+-= nu)B ——nu——vB]

ov
vzk(l—znu)+

How else could we

have done this? Higher-order
Hint: do you know terms in the ratio
any other 4-vectors? of u/c live here.

1 OF




BEEZISTE Dynomic vs Static Diffusion

T4V F =k [40gT* — cEl+k-u -F+ -

1 OF K 40
4 V-P=—5[F —u{—%£T*+ P}+ -
> at c [ { c }]
Assume: sufficiently small mean
1 free path so the radiation pressure
P~-—-F tensor is isotropic to leading order.
4o ., 1 C
qu<—T +—E)——VE
C 3 3K
0E

9E . 20Rma 4 1o\ _ € ~ 4 _ _ 1.
AV [u(* BT+ 2E) - SVE ] ~ k [40,T* — cE] - Ju-VE



BEEZISTE Dynomic vs Static Diffusion

O Ty (2°R74 L 1p) _ € _ 4 _
4V [u(PBT*+2E) - SVE | =k [40,T* — CcE]

Assume: sufficiently small mean
free path so this term is the

dominant balance in the radiation
4 :’1114 4 UA/CZ 4 AZ/éZ energy equation.
~ 2R GR[ ——u V+V- ( u——V)]T4
c dt 3

u/c AJ¢



0
ot

—e+u-Ve+BV-u=

Static Diffusion
160, T3
/Xr — 35
P |G- )
u cA/¢
u/c V{4

1
—V - [+ x:)VT]
p p

Conservation de I’énergie interne (1.56)




Dynamic

vs Static Diffusion

u- Ve

ot

p
p

dop (4, AT
Pt |(3ur =50V T)
u cA/¢
u/c V{4
1 160y
V-u=-V-[}VT uT*]
o, 3c

La nouvelle conservation de I'énergie interne (1.56)’




| Bample3
Scattering

Monopole Scattering Dipole Scattering
ﬁ
(Thomson/Compton) O-(Vl’ n; V2, n2)

(Rayleigh/Mie)

o e o o v e
-- -
Sl | | [ x=10 \\\\\\\\\\\\%“_
| i J
L\




| Bemple3
Isotropic Scattering (Thomson)

1 9L

1
e +n - VI yva_Iv] Jv = an dnl,

2

o e’ 0.04 m?/k
y_BmH 4megmc?) T m*/ke

0FE
— +V-F =0 = F:Lrad

ot 4mrr?
— — V- P= .2.24 on page 200
- 3t +cV-P=—ypF o -

We can assume

TrTP=E E =P, +Pgg+ Ppy Pgg = Pyg but we
are still one

equation short.




Isotropic Scattering (Thomson)

n-Vi, :yva_

V-F =0 =% F=Fy

cV-P=—ypF

V-P=

dpP,,
dz

TriP=E

Jv =

41

dnl,

2
eZ

8m
V= 3my \4meymce?

E=PF,;+Py+Ph,

) ~ 0.04 m?/kg

We can assume
Pex = By, butwe
are still one
equation short.




| Eample3
Isotropic Scattering (Planar Geometry)

1
n°VIv:yva_Iv] ]V=Efdn1v

F = Frad
Frag CPy; = Frag [T+ q()] g(0) = 0.5773 ...
¢cE = 3F., [t+q(r)] 91 =06985..
q() = 0.7104 ...

3 3
0.333..  0.410..




Rayleigh & Thomson Scattering




| Eamples
Isotropic Scattering in the Comoving Frame

IV I’vl O-(Vll nl — VZI nz)
V3 D y'3 1
dnl,
, Jv = 41 n
VX, 3 Vo

A constant, frequency-independent
opacity, and the mean intensity (but
I/
771/ O-] 1% frequency dependent) as source function

2 12 constitutes the isotropic approximation of
1% V Thomson scattering.

Notice that in the laboratory frame the
emissivity and the opacity are not isotropic
because of the Doppler shifted frequency!



| Eamples
Isotropic Scattering in the Comoving Frame

]v ['v, o(vy, Ny > vy, 1y)
v3 3 1
I, = dnl,
p A7
VXy S VO
/ ? Your HOMEWORK Assignment!
I/ [
v |0y N 5
VY v F =
1 0F

Notice that in the laboratory frame the T +V J dvj dn n|
emissivity and the opacity are not isotropic ¢
because of the Doppler shifted frequency!




Astrophysical Radiation Magnetohydrodynamics

Being an Opera in Four Acts
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Construction vs
Deconstruction
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