Astrophysical Radiation Magnetohydrodynamics

Being an Opera in Four Acts

ACTS I \& II

Lecture 1: Basic Theory

With Words \& Music By
Tom Bogdan
(aka Rick Blaine)
Paul Charbonneau
(aka Captain Louis Renault)
25 September 2022

Renault: And what in Heaven's name brought you to Montréal?

Rick: My health. I came to Montréal for the Astrophysical Fluids.
Renault: Fluids? What Fluids? We are frozen in winter!

Astrophysical Radiation Magnetohydrodynamics

Being an Opera in Four Acts

ACT I

All the universe is a stage,
And all matter and fields are merely players;
They have their exits and entrances,
And each, in their time, plays several parts.

Nanoscopic

$$
i \hbar \frac{\partial}{\partial t}|\psi\rangle=\mathcal{H}|\psi\rangle
$$

quantum mechanics
Microscopic $\quad \dot{q}_{i}=\frac{\partial \mathcal{H}}{\partial p_{i}} \quad \dot{p}_{i}=-\frac{\partial \mathcal{H}}{\partial q_{i}} \quad \begin{aligned} & \text { dynamical systems/ } \\ & \text { classical mechanics }\end{aligned}$

Radiation as a Relativistic Fluid

$$
\text { Mesoscopic } \quad \frac{\partial \psi}{\partial t}+\frac{1}{m} \boldsymbol{p} \cdot \frac{\partial \psi}{\partial \boldsymbol{x}}+\boldsymbol{f} \cdot \frac{\partial \psi}{\partial \boldsymbol{p}}=\frac{\delta \psi}{\delta t}
$$

plasma/kinetic theory radiative transfer

Macroscopic

$$
\frac{\partial}{\partial t} \rho+\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}=0
$$

fluid/continuum mechanics

Mondoscopic $\frac{1}{2} \frac{\mathrm{~d}^{2} I}{\mathrm{~d} t^{2}}=2 K E+3 P+E M+R+W \quad \begin{gathered}\text { thermodynamics/ } \\ \text { virial theory }\end{gathered}$

Angular Momentum Conservation

Relaxation Toward Equilibria

 same for gravitational mass---and by assumption, inertial mass as well.

The "Philosophy of RMHD"

"If you conserve all the things that need to be conserved and you ensure that left to its own devices, entropy always increases, then things will often work out far better than one might have any right to expect. (...sometimes)"

Corollary to the "Philosophy of RMHD"

"Always be certain that N is huge, and the physical system has both the time and ability to sample lots and lots of its available microstates consistent with a specified macrostate."

The Classical Fields: Statistical vs Deterministic

Radiation Field

Special Relativity

Electro-

Magnetic Field

Impacts \& Influence
Adiabatic (Reversible) Entropy is constant

Gravitational
Field

Entropy Production

Field

Construction vs Deconstruction

Grâce à Dieu pour Oncle Albert--।

Grâce à Dieu pour Oncle Albert--II

$$
\begin{array}{r}
R^{\alpha \beta}-\frac{1}{2} R g^{\alpha \beta}=\frac{8 \pi G}{c^{4}}\left[T_{m}^{\alpha \beta}+T_{E+M}^{\alpha \beta}+T_{r a d}^{\alpha \beta}\right] \\
T_{m}^{\alpha \beta}=\left(\rho+\frac{p+\rho e}{c^{2}}\right) U^{\alpha} U^{\beta}+p g^{\alpha \beta} \\
T_{E+M}^{\alpha \beta}=\frac{1}{\mu_{0}}\left[F^{\alpha \gamma} F_{\gamma}^{\beta}+\frac{1}{2} g^{\alpha \beta}\left(\frac{\|\boldsymbol{E}\|^{2}}{c^{2}}-\|\boldsymbol{B}\|^{2}\right)\right] \quad U^{\alpha}=\gamma[c, \boldsymbol{u}]^{T} \\
(v n)^{\alpha}=[v, v \mathbf{n}]^{T} \\
T_{r a d}^{\alpha \beta}=\frac{1}{c} \int_{0}^{\infty} d v \int d \mathbf{n} n^{\alpha} n^{\beta} I_{v}
\end{array}
$$

Full Cost Accounting

$$
\begin{aligned}
& -L^{\alpha}=\left[-\boldsymbol{J} \cdot \boldsymbol{E} / c,-\rho_{e} \boldsymbol{E}-\boldsymbol{J} \times \boldsymbol{B}\right]^{T} \\
& -G^{\alpha}=\frac{1}{c} \int_{0}^{\infty} d v \int d \mathbf{n} n^{\alpha}\left[\eta_{v}-\chi_{v} I_{v}\right]
\end{aligned}
$$

...thank you very much! Any questions?

Construction vs Deconstruction

Matter

Conservation Laws

Full Cost Accounting

Conservation Laws

Conservation Laws

The Matter

$$
\frac{\partial}{\partial t} \rho+\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}=0
$$

$\frac{\partial}{\partial t} \boldsymbol{u}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\frac{1}{\rho} \boldsymbol{\nabla} p=-\nabla \Phi+\frac{1}{\rho} \boldsymbol{f} \xrightarrow{\text { L'équation de Navier-Stokes (1.23) }}$
$\frac{\partial}{\partial t} e+\boldsymbol{u} \cdot \nabla e+\frac{p}{\rho} \boldsymbol{\nabla} \cdot \boldsymbol{u}=T \dot{s}$

$$
\begin{aligned}
& \text { The Matter } \\
& \frac{\partial}{\partial t} \rho+\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}=0 \\
& \frac{\partial}{\partial t} \boldsymbol{u}+\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}+\frac{1}{\rho} \boldsymbol{\nabla} p=-\nabla \Phi+\frac{1}{\rho} \boldsymbol{f} \\
& \frac{\partial}{\partial t} e+\boldsymbol{u} \cdot \boldsymbol{\nabla} e+\frac{p}{\rho} \boldsymbol{\nabla} \cdot \boldsymbol{u}=T \dot{s} \\
& \text { We will need to } \\
& \text { determine these } \\
& \text { two exchange } \\
& \text { terms. }
\end{aligned}
$$

Trace

The Matter

$$
\begin{aligned}
& \frac{\partial}{\partial t} \rho+\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}=0 \\
& \frac{\partial}{\partial t} \boldsymbol{u}+\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}=-\frac{1}{\rho} \boldsymbol{\nabla} p-\nabla \Phi+\frac{1}{\rho} \boldsymbol{f} \\
& \frac{\partial}{\partial t} e+\boldsymbol{u} \cdot \boldsymbol{\nabla} e+\frac{p}{\rho} \boldsymbol{\nabla} \cdot \boldsymbol{u}=T \dot{s}
\end{aligned}
$$

Note: Thermal conduction and viscous stresses can also be accommodated in f and $T \dot{s}$ if necessary.

$$
\left\{\begin{aligned}
\frac{\partial}{\partial t} \frac{1}{2} \rho\|\boldsymbol{u}\|^{2}+\boldsymbol{\nabla} \cdot \frac{1}{2} \rho\|\boldsymbol{u}\|^{2} \boldsymbol{u} & =-\boldsymbol{u} \cdot \boldsymbol{\nabla} p-\boldsymbol{u} \cdot \rho \nabla \Phi+\boldsymbol{u} \cdot \boldsymbol{f} \\
\frac{\partial}{\partial t} \rho e+\boldsymbol{\nabla} \cdot(\rho e+p) \boldsymbol{u} & =+\boldsymbol{u} \cdot \nabla p+\rho T \dot{s} \\
\frac{\partial}{\partial t} \rho \boldsymbol{u}+\boldsymbol{\nabla} \cdot(p+\rho \boldsymbol{u} \boldsymbol{u}) & =-\rho \nabla \Phi+\boldsymbol{f}
\end{aligned}\right.
$$

The Matter

$$
\begin{aligned}
& \frac{\partial}{\partial t} \rho+\boldsymbol{\nabla} \cdot \rho \boldsymbol{u}=0 \\
& \frac{\partial}{\partial t} \boldsymbol{u}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}=-\frac{1}{\rho} \nabla p-\nabla \Phi+\frac{1}{\rho} \boldsymbol{f} \\
& \frac{\partial}{\partial t} e+\boldsymbol{u} \cdot \nabla e+\frac{p}{\rho} \boldsymbol{\nabla} \cdot \boldsymbol{u}=T \dot{s}
\end{aligned}
$$

Note: Thermal conduction
and viscous stresses can also be accommodated in these terms if desired.

Someone needs to tell us how to determine the gas pressure!

$$
\begin{aligned}
& \left.\frac{\partial}{\partial t} \frac{1}{2} \rho\|\boldsymbol{u}\|^{2}+\boldsymbol{\nabla} \cdot \frac{1}{2} \rho\|\boldsymbol{u}\|^{2} \boldsymbol{u}=-\boldsymbol{u} \cdot \nabla \boldsymbol{\nabla}\right)-\boldsymbol{u} \cdot \rho \boldsymbol{\nabla} \Phi+\boldsymbol{u}\{\boldsymbol{f}\rangle \\
& \left.\frac{\partial}{\partial t} \rho e+\boldsymbol{\nabla} \cdot(\rho e+p) \boldsymbol{u}=+\boldsymbol{u} \cdot \boldsymbol{\nabla} p+\alpha T \dot{s}\right) \\
& \frac{\partial}{\partial t} \rho \boldsymbol{u}+\boldsymbol{\nabla} \cdot(p+\rho \boldsymbol{u} \boldsymbol{u})=-\rho \boldsymbol{\nabla} \Phi+f \\
& \text { It remains to } \\
& \text { determine these } \\
& \text { terms through full } \\
& \text { cost accounting! }
\end{aligned}
$$

Full Cost Accounting

The Gravitational Field

$\nabla^{2} \Phi=4 \pi G \rho$

$\nabla^{2} \Psi=-4 \pi G \rho$

The Gravitational Field

$$
\nabla^{2} \Phi=4 \pi G \rho
$$

Note: All the gravity is
provided by the material we are keeping track of via the continuity equation.

The Gravitational Field

$$
\begin{aligned}
& \nabla^{2} \Phi=4 \pi G \rho \\
& \frac{\partial}{\partial t} \rho+\nabla \cdot \rho \boldsymbol{u}=0
\end{aligned}
$$

Note: All the gravity is provided by the material we are keeping track of via the continuity equation.

Coupling to matter

The Gravitational Field

```
\nabla
    \partial
```

Note: None of the gravity is provided by the material we are keeping track of via the continuity equation.

Someone needs to tell us how to determine the

$$
\begin{aligned}
\frac{\partial}{\partial t} \frac{1}{2} \rho \Phi+\nabla \cdot(\rho \Phi u+\boldsymbol{G}) & =\rho \boldsymbol{u} \cdot \boldsymbol{\nabla} \Phi \\
\boldsymbol{\nabla} \cdot \mathbb{G} & =\rho \boldsymbol{\nabla}-
\end{aligned}
$$

Full Cost Accounting

The Electromagnetic Field

$$
\boldsymbol{\nabla} \cdot \boldsymbol{E}=\rho_{e} / \varepsilon_{0}
$$

$\boldsymbol{\nabla} \cdot \boldsymbol{B}=0$

$$
\boldsymbol{\nabla} \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t}
$$

$$
\boldsymbol{\nabla} \times \boldsymbol{B}=\mu_{0} \boldsymbol{J}+\mu_{0} \varepsilon_{0} \frac{\partial \boldsymbol{E}}{\partial t}
$$

The Electromagnetic Field

$$
\begin{aligned}
& \nabla \cdot \boldsymbol{E}=\rho_{e} / \varepsilon_{0} \quad \boldsymbol{\nabla} \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t} \\
& \nabla \cdot \boldsymbol{B}=0 \quad \boldsymbol{\nabla} \times \boldsymbol{B}=\mu_{0} \boldsymbol{J}+\mu_{0} \varepsilon_{0} \frac{\partial \boldsymbol{E}}{\partial t}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial t} \frac{1}{2 \mu_{0}}\left(\mu_{0} \varepsilon_{0}\|\boldsymbol{E}\|^{2}+\|\boldsymbol{B}\|^{2}\right)+\boldsymbol{\nabla} \cdot \frac{1}{\mu_{0}} \boldsymbol{E} \times \boldsymbol{B}=\boldsymbol{-} \boldsymbol{J} \cdot \boldsymbol{E} \\
& \underline{n} \cdot \underline{\boldsymbol{S}}+\boldsymbol{\nabla} \cdot \mathbb{M}=-\Omega \boldsymbol{E}-\boldsymbol{I} \times \boldsymbol{B}
\end{aligned}
$$

Someone needs to tell us how to determine the electric current \boldsymbol{J} and charge density ρ_{e} !

$$
\frac{1}{c^{2}} \cdot \frac{\partial \boldsymbol{S}}{\partial t}+\boldsymbol{\nabla} \cdot \mathbb{M}=-\rho_{e} \boldsymbol{E}-\boldsymbol{J} \times \boldsymbol{B}
$$

The Electromagnetic Field
$\boldsymbol{\nabla} \cdot \boldsymbol{E}=\rho_{e} / \varepsilon_{0} \quad \nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t}$
$\boldsymbol{\nabla} \cdot \boldsymbol{B}=0 \quad \boldsymbol{\nabla} \times \boldsymbol{B}=\mu_{0} \boldsymbol{J}+\mu_{0} \varepsilon_{0} \frac{\partial \boldsymbol{E}}{\partial t}$
MHD
scalings: $\quad u^{3} B^{2} / / c^{2} \quad u B^{2} / l \quad u B^{2} / l \quad u B^{2} / l$

$$
\begin{aligned}
& \frac{\partial}{\partial t} \frac{1}{2 \mu_{0}}\left(\mu_{0} \varepsilon_{0}\|\boldsymbol{E}\|^{2}+\|\boldsymbol{B}\|^{2}\right)+\boldsymbol{\nabla} \cdot \frac{1}{\mu_{0}} \boldsymbol{E} \times \boldsymbol{B}=-\boldsymbol{J} \cdot \boldsymbol{E} \\
& \frac{1}{e^{2}} \frac{\partial \boldsymbol{S}}{\partial t}+\boldsymbol{\nabla} \cdot \mathbb{M}=-\mathrm{D}_{\mathrm{e}} \boldsymbol{E}-\boldsymbol{J} \times \boldsymbol{B}
\end{aligned}
$$

Compute \mathbb{M}.

Full Cost Accounting

The Radiation Field

$$
\begin{aligned}
\frac{\partial}{\partial t} e+\boldsymbol{u} \cdot \boldsymbol{\nabla} e+\frac{p}{\rho} \boldsymbol{\nabla} \cdot \boldsymbol{u} & =\frac{1}{\rho} \boldsymbol{\nabla} \cdot\left[\left(\chi+\chi_{r}\right) \boldsymbol{\nabla} T\right] \\
\frac{\partial}{\partial t} S+\boldsymbol{u} \cdot \boldsymbol{\nabla} S & =\frac{\frac{1}{\rho T} \boldsymbol{\nabla} \cdot\left[\left(\chi+\chi_{r}\right) \boldsymbol{\nabla} T\right]}{}
\end{aligned}
$$

The Radiation Field

$$
\frac{1}{c} \cdot \frac{\partial I_{v}}{\partial t}+\mathbf{n} \cdot \nabla I_{v}=\eta_{v}-\chi_{v} I_{v}
$$

Note: Extension to polarized radiative transfer is possible.

Optically thick to thin

uE/l (u to c)E/e
? $\quad c E / \lambda$
scalings: $\quad \frac{\partial E}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{F}=\int_{0}^{\infty} d v \int d \mathbf{n}\left[\eta_{v}-\chi_{\nu} I_{\nu}\right]$

$$
\begin{aligned}
& \begin{array}{l}
\text { It is the rare occasion } \\
\text { when one actually } \\
\text { needs to retain this } \\
\text { term! }
\end{array}
\end{aligned}
$$

> light tlinks it traveds faster than anỵling hut it is wrong. Io matter low fast light trivels, it finds the darkkness has ilvwiys got there first, and is waiting for it.

Momentum Conservation

Momentum Conservation

Momentum Conservation

$$
\begin{aligned}
\frac{\partial}{\partial t} \rho \boldsymbol{u}+\boldsymbol{\nabla} \cdot(p+\rho \boldsymbol{u} \boldsymbol{u}) & =-\rho \boldsymbol{\nabla} \Phi+f \\
\boldsymbol{\nabla} \cdot \mathbb{G} & =\rho \boldsymbol{\nabla} \Phi \\
\frac{1}{c^{2}} \cdot \frac{\partial \boldsymbol{S}}{\partial t}+\boldsymbol{\nabla} \cdot \mathbb{M} & =-\rho_{e} \boldsymbol{E}-\boldsymbol{J} \times \boldsymbol{B} \\
\frac{1}{c^{2}} \cdot \frac{\partial \boldsymbol{F}}{\partial t}+\boldsymbol{\nabla} \cdot \mathbb{P} & =\frac{1}{c} \int_{0}^{\infty} d v \int d \mathbf{n} \mathbf{n}\left[\eta_{v}-\chi_{\nu} I_{v}\right] \\
\frac{\partial \mathfrak{P}}{\partial t}+\boldsymbol{\nabla} \cdot \mathbb{I} & =0
\end{aligned}
$$

Energy Conservation

$$
\begin{aligned}
\frac{\partial}{\partial t} \frac{1}{2} \rho\|\boldsymbol{u}\|^{2}+\boldsymbol{\nabla} \cdot \frac{1}{2} \rho\|\boldsymbol{u}\|^{2} \boldsymbol{u} & =-\boldsymbol{u} \cdot \boldsymbol{\nabla} p-\rho \boldsymbol{u} \cdot \boldsymbol{\nabla} \Phi+\boldsymbol{u} \cdot \boldsymbol{f} \\
\frac{\partial}{\partial t} \rho e+\boldsymbol{\nabla} \cdot(\rho e+p) \boldsymbol{u} & =+\boldsymbol{u} \cdot \boldsymbol{\nabla} p+\rho T \dot{s} \\
\frac{\partial}{\partial t} \frac{1}{2} \rho \Phi+\boldsymbol{\nabla} \cdot(\rho \Phi \boldsymbol{u}+\boldsymbol{G}) & =\rho \boldsymbol{u} \cdot \boldsymbol{\nabla} \Phi \hookleftarrow \\
\frac{\partial}{\partial t} \frac{1}{2 \mu_{0}}\left(\mu_{0} \varepsilon_{0}\|\boldsymbol{E}\|^{2}+\|\boldsymbol{B}\|^{2}\right)+\boldsymbol{\nabla} \cdot \frac{1}{\mu_{0}} \boldsymbol{E} \times \boldsymbol{B} & =-\boldsymbol{J} \cdot \boldsymbol{E} \\
\frac{\partial E}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{F} & =\int_{0}^{\infty} d v \int d \mathbf{n}\left[\eta_{v}-\chi_{\nu} I_{\nu}\right] \\
\frac{\partial \mathfrak{E}}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{F} & =0
\end{aligned}
$$

Energy Conservation

$$
\begin{aligned}
\frac{\partial}{\partial t} \frac{1}{2} \rho\|\boldsymbol{u}\|^{2}+\boldsymbol{\nabla} \cdot \frac{1}{2} \rho\|\boldsymbol{u}\|^{2} \boldsymbol{u} & =-\boldsymbol{u} \cdot \boldsymbol{\nabla} p-\rho \boldsymbol{u} \cdot \boldsymbol{\nabla} \Phi+\boldsymbol{u} \cdot \boldsymbol{f} \\
\frac{\partial}{\partial t} \rho e+\boldsymbol{\nabla} \cdot(\rho e+p) \boldsymbol{u} & =+\boldsymbol{u} \cdot \boldsymbol{\nabla} p+\rho T \dot{s} \\
\frac{\partial}{\partial t} \frac{1}{4} \rho \Phi+\boldsymbol{\nabla} \cdot(\rho \Phi \boldsymbol{u}+\boldsymbol{\varphi}) & =\rho \boldsymbol{u} \cdot \boldsymbol{\nabla} \Phi \hookleftarrow \\
\frac{\partial}{\partial t} \frac{1}{2 \mu_{0}}\left(\mu_{0} \varepsilon_{0}\|\boldsymbol{E}\|^{2}+\|\boldsymbol{B}\|^{2}\right)+\boldsymbol{\nabla} \cdot \frac{1}{\mu_{0}} \boldsymbol{E} \times \boldsymbol{B} & =-\boldsymbol{J} \cdot \boldsymbol{E} \\
\frac{\partial E}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{F} & =\int_{0}^{\infty} d v \int d \mathbf{n}\left[\eta_{v}-\chi_{\nu} I_{v}\right] \\
\frac{\partial \mathfrak{E}}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{F} & =0
\end{aligned}
$$

Energy Conservation

$$
\begin{aligned}
& \frac{\partial}{\partial t} \frac{1}{2} \rho\|\boldsymbol{u}\|^{2}+\boldsymbol{\nabla} \cdot \frac{1}{2} \rho\|\boldsymbol{u}\|^{2} \boldsymbol{u}=-\boldsymbol{u} \cdot \boldsymbol{\nabla} p-\rho \boldsymbol{u} \cdot \nabla \Phi+\boldsymbol{u} \cdot \boldsymbol{f} \\
& \frac{\partial}{\partial t} \rho e+\boldsymbol{\nabla} \cdot(\rho e+p) \boldsymbol{u}=+\boldsymbol{u} \cdot \boldsymbol{\nabla} p+\rho T \dot{s}) \\
& \frac{\partial}{\partial t} \frac{1}{2} \rho \Phi+\boldsymbol{\nabla} \cdot(\rho \Phi \boldsymbol{u}+\boldsymbol{G})=\rho \boldsymbol{u} \cdot \boldsymbol{\nabla} \Phi \\
& \frac{\partial}{\partial t} \frac{1}{2 \mu_{0}}\left(\mu_{0} \varepsilon_{0}\|\boldsymbol{E}\|^{2}+\|\boldsymbol{B}\|^{2}\right)+\boldsymbol{\nabla} \cdot \frac{1}{\mu_{0}} \boldsymbol{E} \times \boldsymbol{B}=-\boldsymbol{J} \cdot \boldsymbol{E} \\
& \frac{\partial E}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{F}=\int_{0}^{\infty} d v \int d \mathbf{n}\left[\eta_{v}-\chi_{\nu} I_{v}\right] \\
& \begin{array}{l}
\text { Now we can } \\
\text { determine the heat } \\
\text { addition to the } \\
\text { materia!! }
\end{array} \\
& \frac{\partial \mathfrak{E}}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{F}=0
\end{aligned}
$$

Summary

Full Cost Accounting---Done!

This slide is the essential objective of RMHD---we have now constructed a set of equations that not only conserve total energy and momentum, but also describe how energy and momentum are exchanged between matter and the radiation, gravitational and electromagnetic fields!

The "Golden Rule of RMHD"

> "Always evaluate interactions between the matter and the classical fields in the comoving, e.g., restframe, of the materia!!!!"

but...
"Solve your equations in whatever is the most convenient frame of reference for your objectives."

Corollary to the "Golden Rule of RMHD"

> "You had better know how to transform coordinates, physical quantities, fields, differential and integral operators (and anything else you can think of) between any two frames of reference, under all conditions."

Abandon hope, all ye who fail to heed the Corollary!

Astrophysical Radiation Magnetohydrodynamics

Being an Opera in Four Acts

ACT II

Now is the geometry of our discontent, Made gloriously invariant by this Sun of France; And all the aether that lowered upon our house, In the deep bosom of obscurity is buried.

Galileo \& Newton

One Observer

Poincaré, Lorentz \& Einstein

One Observer

Count the Invariants

Minkowski Space-Time
Galilean Space-Time

$$
\begin{array}{|l}
\left\|x_{1}-x_{2}\right\|^{2}-c^{2}\left|t_{1}-t_{2}\right|^{2}= \\
\left\|x_{1}^{\prime}-x_{2}^{\prime}\right\|^{2}-c^{2}\left|t_{1}^{\prime}-t_{2}^{\prime}\right|^{2}
\end{array}
$$

$$
\begin{aligned}
& \left|t_{1}-t_{2}\right|=\left|t^{\prime}{ }_{1}-t^{\prime}{ }_{2}\right| \\
& \left\|x_{1}-x_{2}\right\|=\left\|x_{1}^{\prime}-x_{2}^{\prime}\right\|
\end{aligned}
$$

1 Pick a different origin for marking off time.

3 Pick a different origin for marking off space.

10 Parameters

Boosts

Group Action on 4-Vectors

Lorents Grouk

Galilean Grouk
$\left[\begin{array}{c}c \rho_{e}{ }^{\prime} \\ \boldsymbol{J}^{\prime}\end{array}\right]\left[\begin{array}{c}v^{\prime} \\ \gamma^{\prime} \mathbf{n}^{\prime}\end{array}\right]$
Bonus: These 4-vectors live in the tangent space to each point in the space-time, and they transform in the same fashion as the space-time itself!

The electric and magnetic fields are components of a 4tensor and therefore transform appropriately!

However, the specific intensity, the opacity and the emissivity are entirely different 4-animals...

Better Living Through Geometry

Meet the（6－parameter）

Lorentz Group

$\left[\begin{array}{c}c t \\ \boldsymbol{x}\end{array}\right]=\mathscr{L}^{-1}\left[\begin{array}{c}c t^{\prime} \\ \boldsymbol{x}^{\prime}\end{array}\right]$

$$
\begin{aligned}
& \mathcal{L}^{-1}(\mathbf{u}, \boldsymbol{\vartheta})=\boldsymbol{\mathcal { L }}(-\mathbf{u},-\boldsymbol{\vartheta}) \\
& \begin{array}{l}
\mathcal{L}(\mathbf{u}, \boldsymbol{\vartheta})=\left[\begin{array}{c}
\gamma \\
-\boldsymbol{u} / c \\
\mathcal{L}^{-1}(\mathbf{u}, \boldsymbol{\vartheta})+(\gamma)
\end{array}\right)=\boldsymbol{L}(-\mathbf{u},-\boldsymbol{\vartheta})
\end{array} \\
& \text { ク }=\mathscr{L}^{-1} \circ \mathfrak{L}=\mathfrak{L} \circ \mathfrak{L}^{-1} \\
& \text { の }=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \boldsymbol{L}_{1} \circ \boldsymbol{L}_{2} \neq \boldsymbol{\iota}_{2} \circ \boldsymbol{\iota}_{1}
\end{aligned}
$$

There are other representations available．

Please do not confuse the 4×4 matrix with a 4－ tensor．

Better Living Through Geometry

These 4-vectors are represented by a 1-column, 4-row matrix!
$\left[\begin{array}{c}\boldsymbol{C}^{\prime} \\ \boldsymbol{x}^{\prime}\end{array}\right]=\left[\begin{array}{cccc}\gamma & 0 & 0 & -\gamma u / c \\ 0 & \left.\left.\begin{array}{ccc}\cos \vartheta & -\sin \vartheta & 0 \\ 0 & \sin \vartheta & \cos \vartheta \\ -\gamma u / c & 0 & 0 \\ 0 & \gamma\end{array}\right]\left[\begin{array}{c}\boldsymbol{C} \boldsymbol{t} \\ \boldsymbol{x}\end{array}\right], ~\right] ~\end{array}\right.$

Note: Generally speaking--

Boost $_{1}{ }^{\circ}$ Boost $_{2}=$ Boost $_{3}+$ Rotation unless the Boosts are parallel!

Comoving vs Inertial Frames

$$
\left[\begin{array}{c}
v^{\prime} \\
v^{\prime} \mathbf{n}^{\prime}
\end{array}\right]=\mathbb{L}\left[\begin{array}{c}
v \\
v \mathbf{n}
\end{array}\right]
$$

$$
\begin{aligned}
{\left[\begin{array}{cc}
E^{\prime} & \mathbf{F}^{\prime} / c \\
\mathbf{F}^{\prime} / c & \mathbb{P}^{\prime}
\end{array}\right] } & =\mathfrak{L}\left[\begin{array}{cc}
E & \mathrm{~F} / c \\
\mathbf{F} / c & \mathbb{P}
\end{array}\right] \mathfrak{L}^{T} \\
\left(\boldsymbol{L}_{1} \circ \mathfrak{L}_{2}\right)^{T} & =\mathfrak{L}_{2}^{T} \circ \mathfrak{L}_{1}^{T}
\end{aligned}
$$

Note: 4-tensors and 4×4 matrices, 4 -vectors and 4×1 or 1×4 matrices, all look
deceptively similar to one another, but it is important to recognize their differences!

The transpose " T " of a 4×4 matrix exchanges rows with columns.

The transpose " T " of a 1column, 4-row matrix is a 4column, 1-row matrix.

$$
\begin{aligned}
& -L^{\alpha}=\left[-\boldsymbol{J} \cdot \boldsymbol{E} / c,-\rho_{e} \boldsymbol{E}-\boldsymbol{J} \times \boldsymbol{B}\right]^{T} \\
& -G^{\alpha}=\frac{1}{c} \int_{0}^{\infty} d v \int d \mathbf{n} n^{\alpha}\left[\eta_{v}-\chi_{v} I_{v}\right]
\end{aligned}
$$

Count Your Lucky Photons

One Observer

Summary

Lorentz Transformation of the Radiation Field

$$
\begin{aligned}
\frac{I_{v}}{v^{3}} & =\frac{I_{v^{\prime}}^{\prime}}{v^{\prime 3}} \\
v \chi_{v} & =v^{\prime} \chi^{\prime} v^{\prime} \\
\frac{\eta_{v}}{v^{2}} & =\frac{\eta^{\prime} v^{\prime}}{v^{\prime 2}}
\end{aligned}
$$

This part is tricky. Remember each frame has its own independent variables: $\mathbf{x}, \mathrm{ct}, \mathrm{vn}, v$ that transform like components of a 4 -vector.

These exact equations expresses the Doppler shift and aberration of the photons.

The comoving frame (primed quantities) has a velocity \mathbf{u} measured in the inertial laboratory frame (unprimed quantities).

$$
\gamma=\frac{c}{\sqrt{c^{2}-\|\mathbf{u}\|^{2}}} \approx 1
$$

Summary

Lorentz Transformation of the Electromagnetic Fields

$$
\begin{aligned}
\boldsymbol{E}^{\prime} & =\gamma[\boldsymbol{E}+\boldsymbol{u} \times \boldsymbol{B}]-(\gamma-1)(\boldsymbol{E} \cdot \boldsymbol{u}) \boldsymbol{u} /\|\boldsymbol{u}\|^{2} \\
\boldsymbol{B}^{\prime} & =\gamma\left[\boldsymbol{B}-\boldsymbol{u} \times \boldsymbol{E} / c^{2}\right]-(\gamma-1)(\boldsymbol{B} \cdot \boldsymbol{u}) \boldsymbol{u} /\|\boldsymbol{u}\|^{2} \\
\boldsymbol{J}^{\prime} & =\boldsymbol{J}-\gamma \boldsymbol{u} \rho_{e}+(\gamma-1)(\boldsymbol{J} \cdot \boldsymbol{u}) \boldsymbol{u} /\|\boldsymbol{u}\|^{2} \\
\rho_{e}^{\prime} & =\gamma\left[\rho_{e}-\boldsymbol{u} \cdot \boldsymbol{J} / c^{2}\right]
\end{aligned}
$$

> "You had better know how to transform coordinates, physical quantities, fields, differential and integral operators (and anything else you can think of) between any two frames of reference, under all conditions."

These exact equations express the transformations of the electromagnetic fields

The comoving frame (primed quantities) has a velocity u measured in the inertial laboratory frame (unprimed quantities).
$\gamma=\frac{c}{\sqrt{c^{2}-\|\mathbf{u}\|^{2}}} \approx 1$

The Interaction Between Radiation \& Matter

The Interaction Between Radiation \& Matter

$$
\frac{1}{c} \frac{\partial I_{v}}{\partial t}+\mathbf{n} \cdot \nabla I_{v}=\eta_{v}-\chi_{v} I_{v}
$$

Let's assume we are in the comoving frame at rest in the laboratory frame.

The Interaction Between Radiation \& Matter

$$
\frac{1}{c} \frac{\partial I_{v}}{\partial t}+\mathbf{n} \cdot \nabla I_{v}=\eta_{v}-\chi_{v} I_{v}
$$

The true absorption.

In LTE we must have:

$-\int_{0}^{\infty} \mathrm{d} v_{1} \oint \mathrm{~d} \mathbf{n}_{1} \sigma\left(v, \mathbf{n} \rightarrow v_{1}, \mathbf{n}_{1}\right) I_{v}(\mathbf{n})\left(1+\frac{c^{2}}{2 h v_{1}{ }^{3}} I_{v_{1}}\left(\mathbf{n}_{1}\right)\right)$
$I_{v}=B_{v}=\frac{2 h v^{3}}{c^{2}} \frac{1}{\exp \left(h v / k_{B} T\right)-1}$
$S_{v}=\kappa_{v} B_{v}$
The absorption corrected for stimulated emission.

In the

Moment(s)

$$
\begin{aligned}
E_{v} & =\frac{1}{c} \oint \mathrm{~d} \mathbf{n} I_{v} \\
\boldsymbol{F}_{v} & =\oint \mathrm{d} \mathbf{n} \mathbf{n} I_{v} \\
\mathbb{P}_{v} & =\frac{1}{c} \oint \mathrm{~d} \mathbf{n} \mathbf{n n} I_{v} \\
\mathfrak{Q}_{v} & =\oint \mathrm{d} \mathbf{n} \mathbf{n n n} I_{v}
\end{aligned}
$$

Example 1

Gray/LTE Approximation in the Comoving Frame

$$
\begin{aligned}
& \frac{I_{v}}{v^{3}}=\frac{I^{\prime} v^{\prime}}{v^{\prime 3}} \\
& \nu X_{v}=v^{\prime} \kappa \\
& \frac{\eta_{v}}{v^{2}}=\frac{2 h v^{3}}{c^{2}} \frac{1}{\exp \left(h v / k_{B} T\right)-1} \\
& \begin{array}{l}
\text { A constant, frequency-independent } \\
\text { opacity } \kappa \text {, and the isotropic Planck } \\
v^{\prime 2}
\end{array} \begin{array}{l}
\text { Function (but frequency dependent) } \\
\text { constitutes the "gray atmosphere" LTE } \\
\text { approximation in the comoving frame. }
\end{array}
\end{aligned}
$$

Notice that in the laboratory frame the emissivity and the opacity are not isotropic because of the Doppler-shifted frequency!

Example 1

Gray/LTE Approximation in the Laboratory Frame

$$
\begin{aligned}
\eta_{\nu} & =\kappa\left[\left(1+\frac{3}{c} \mathbf{n} \cdot \mathbf{u}\right) B_{v}-\frac{1}{c} \mathbf{n} \cdot \mathbf{u} \frac{\partial}{\partial v} v B_{v}\right]+\cdots \\
\chi_{v} & =\kappa\left(1-\frac{1}{c} \mathbf{n} \cdot \mathbf{u}\right)+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \text { We can now carry out the two integrals } \\
& \text { we need to describe the exchange of } \\
& \text { energy and momentum between the } \\
& \text { material and the radiation field in the } \\
& \text { laboratory frame. }
\end{aligned}
$$

This part is subtle. We want the Planck Function evaluated at the laboratory frequency not the comoving frame frequency.

$$
\frac{\partial E}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{F}=\int_{0}^{\infty} d v \int d \mathbf{n}\left[\eta_{v}-\chi_{v} I_{v}\right]
$$

Gray/LTE Approximation in the Laboratory Frame

$$
\begin{aligned}
& \eta_{v}=\kappa\left[\left(1+\frac{3}{c} \mathbf{n} \cdot \mathbf{u}\right) B_{v}-\frac{1}{c} \mathbf{n} \cdot \mathbf{u} \frac{\partial}{\partial v} v B_{v}\right]+\cdots \\
& \chi_{v}=\kappa\left(1-\frac{1}{c} \mathbf{n} \cdot \mathbf{u}\right)+\cdots
\end{aligned}
$$

Gray/LTE Approximation in the Laboratory Frame

$$
\begin{aligned}
\eta_{v} & =\kappa\left[\left(1+\frac{3}{c} \mathbf{n} \cdot \mathbf{u}\right) B_{v}-\frac{1}{c} \mathbf{n} \cdot \mathbf{u} \frac{\partial}{\partial v} v B_{v}\right]+\cdots \\
\chi_{\nu} & =\kappa\left(1-\frac{1}{c} \mathbf{n} \cdot \mathbf{u}\right)+\cdots
\end{aligned}
$$

```
We can now carry out the two integrals
we need to describe the exchange of
energy and momentum between the
material and the radiation field in the
laboratory frame.
```

$\frac{1}{c^{2}} \cdot \frac{\partial \boldsymbol{F}}{\partial t}+\boldsymbol{\nabla} \cdot \mathbb{P}=\frac{1}{c} \int_{0}^{\infty} d v \int d \mathbf{n} \mathbf{n}\left[\eta_{v}-\chi_{v} I_{v}\right]$

Gray/LTE Approximation in the Laboratory Frame
$\eta_{\nu}=\kappa\left[\left(1+\frac{3}{c} \mathbf{n} \cdot \mathbf{u}\right) B_{v}-\frac{1}{c} \mathbf{n} \cdot \mathbf{u} \frac{\partial}{\partial v} v B_{v}\right]+\cdots$
$\chi_{\nu}=\kappa\left(1-\frac{1}{c} \mathbf{n} \cdot \mathbf{u}\right)+\cdots$

$$
\frac{1}{c^{2}} \cdot \frac{\partial \boldsymbol{F}}{\partial t}+\boldsymbol{\nabla} \cdot \mathbb{P}=-\frac{\kappa}{c}\left[\boldsymbol{F}-\boldsymbol{u}\left\{\frac{4 \sigma_{R}}{c} T^{4}+\mathbb{P}\right\}\right]+\cdots
$$

Example 1

Gray/LTE Approximation in the Laboratory Frame

$$
\begin{aligned}
& \eta_{v}=\kappa\left[\left(1+\frac{3}{c} \mathbf{n} \cdot \mathbf{u}\right) B_{v}-\frac{1}{c} \mathbf{n} \cdot \mathbf{u} \frac{\partial}{\partial v} v B_{v}\right]+\cdots \\
& \chi_{\nu}=\kappa\left(1-\frac{1}{c} \mathbf{n} \cdot \mathbf{u}\right)+\cdots
\end{aligned}
$$

```
How else could we
have done this?
Hint: do you know
any other 4-vectors?
```

Higher-order terms in the ratio of u / c live here.

$$
\frac{1}{c^{2}} \cdot \frac{\partial \boldsymbol{F}}{\partial t}+\boldsymbol{\nabla} \cdot \mathbb{P}=-\frac{\kappa}{c}\left[\boldsymbol{F}-\boldsymbol{u}\left\{\frac{4 \sigma_{R}}{c} T^{4}+\mathbb{P}\right\}\right]+\cdots
$$

Dynamic vs Static Diffusion

$$
\begin{aligned}
& \frac{\partial E}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{F}=\kappa\left[4 \sigma_{R} T^{4}-c E\right]+\kappa \frac{1}{c} \boldsymbol{u} \cdot \boldsymbol{F}+\cdots \\
& \frac{1}{c^{2}} \cdot \frac{\partial \boldsymbol{F}}{\partial t}+\boldsymbol{\nabla} \cdot \mathbb{P}=-\frac{\kappa}{c}\left[\boldsymbol{F}-\boldsymbol{u}\left\{\frac{4 \sigma_{\boldsymbol{R}}}{c} T^{4}+\mathbb{P}\right\}\right]+\cdots \\
& \text { Assume: sufficiently small mean } \\
& \text { free path so the radiation pressure } \\
& \text { tensor is isotropic to leading order. } \\
& \frac{\partial E}{\partial t}+\boldsymbol{\nabla} \cdot\left[\boldsymbol{u}\left(\frac{4 \sigma_{R}}{c} T^{4}+\frac{1}{3} E\right)-\frac{c}{3 \kappa} \boldsymbol{\nabla} E\right] \approx \kappa\left[4 \sigma_{R} T^{4}-c E\right]-\frac{1}{3} \boldsymbol{u} \cdot \boldsymbol{\nabla} E
\end{aligned}
$$

Dynamic vs Static Diffusion

$$
\begin{aligned}
& \frac{\partial E}{\partial t}+\boldsymbol{\nabla} \cdot\left[\boldsymbol{u}\left(\frac{4 \sigma_{R}}{c} T^{4}+\frac{1}{3} E\right)-\frac{c}{3 \kappa} \boldsymbol{\nabla} E\right]=\kappa\left[4 \sigma_{R} T^{4}-c E\right] \\
& \text { Assume: sufficiently small mean } \\
& \text { free path so this term is the }
\end{aligned}
$$

$$
\begin{aligned}
& P \approx \frac{1}{3} E \\
& u / c \\
& \lambda / \ell \\
& \boldsymbol{F} \approx \boldsymbol{u}\left(\frac{4 \sigma_{R}}{c} T^{4}+\frac{1}{3} E\right)-\frac{c}{3 \kappa} \boldsymbol{\nabla} E
\end{aligned}
$$

Dynamic vs Static Diffusion

$$
\begin{array}{ccc}
\boldsymbol{F} \approx \frac{4 \sigma_{R}}{c}\left[\left(\frac{4}{3} \boldsymbol{u} T^{4}-\frac{4 c T^{3}}{3 \kappa} \nabla T\right)\right] \\
u & c \lambda / \ell \\
u / c & \lambda / l
\end{array}
$$

Dynamic vs Static Diffusion

$$
\begin{gathered}
\boldsymbol{F} \approx \frac{4 \sigma_{R}}{c}\left[\left(\frac{4}{3} \boldsymbol{u} T^{4}-\frac{4 c T^{3}}{3 \kappa} \boldsymbol{\nabla} T\right)\right] \\
u \\
u \lambda / \ell \\
\frac{c}{\partial} \mathrm{c} \\
\frac{\lambda / \ell}{\partial t}+\boldsymbol{u} \cdot \boldsymbol{\nabla} e+\frac{p}{\rho} \boldsymbol{\nabla} \cdot \boldsymbol{u}=\frac{1}{\rho} \boldsymbol{\nabla} \cdot\left[\chi \boldsymbol{\nabla} T-\frac{16 \sigma_{R}}{3 c} \boldsymbol{u} T^{4}\right]
\end{gathered}
$$

Example 3

Scattering

Monopole Scattering (Thomson/Compton)

$$
\sigma\left(v_{1}, \mathbf{n}_{1} \rightarrow v_{2}, \mathbf{n}_{2}\right)
$$

Dipole Scattering
(Rayleigh/Mie)

Example 3

Isotropic Scattering (Thomson)

$$
\begin{aligned}
& J_{v}=\frac{1}{4 \pi} \oint d \mathbf{n} I_{v} \\
& \gamma=\frac{8 \pi}{3 m_{H}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0} m c^{2}}\right)^{2} \approx 0.04 \mathrm{~m}^{2} / \mathrm{kg} \\
& \frac{\partial E}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{F}=0 \quad \square F=\frac{\mathcal{L}_{\mathrm{rad}}}{4 \pi r^{2}} \\
& \frac{1}{c} \cdot \frac{\partial \boldsymbol{F}}{\partial t}+c \boldsymbol{\nabla} \cdot \mathbb{P}=-\gamma \rho \boldsymbol{F} \\
& \begin{cases}\boldsymbol{\nabla} \cdot \mathbb{P}=\frac{\mathrm{d} P_{r r}}{\mathrm{~d} r}+\frac{2 P_{r r}-P_{\theta \theta}-P_{\phi \phi}}{r} & \begin{array}{l}
\text { B.2.24 on page } 200 \\
\operatorname{Tr} \mathbb{P}=E \quad E=P_{r r}+P_{\theta \theta}+P_{\phi \phi} \\
\begin{array}{l}
\text { We can assume } \\
P_{\theta \theta}=P_{\phi \phi} \text { but we } \\
\text { are still one } \\
\text { equation short. }
\end{array} \\
\hline
\end{array}\end{cases}
\end{aligned}
$$

Example 3

Isotropic Scattering (Thomson)

$$
\mathbf{n} \cdot \nabla I_{v}=\gamma \rho\left[J_{v}-I_{v}\right]
$$

$$
\begin{aligned}
& J_{v}=\frac{1}{4 \pi} \oint d \mathbf{n} I_{\nu} \\
& \gamma=\frac{8 \pi}{3 m_{H}}\left(\frac{e^{2}}{4 \pi \varepsilon_{0} m c^{2}}\right)^{2} \approx 0.04 \mathrm{~m}^{2} / \mathrm{kg}
\end{aligned}
$$

$$
\boldsymbol{\nabla} \cdot \boldsymbol{F}=0 \quad \Longrightarrow \quad F=F_{\mathrm{rad}}
$$

$$
\left\{\begin{array}{l}
\boldsymbol{\nabla} \cdot \mathbb{P}=\frac{\mathrm{d} P_{z z}}{\mathrm{~d} z} \\
\operatorname{Tr} \mathbb{P}=E \quad E=P_{z z}+P_{x x}+P_{y y}
\end{array}\right.
$$

Example 3

Isotropic Scattering (Planar Geometry)

$$
\mathbf{n} \cdot \boldsymbol{\nabla} I_{v}=\underset{F=F_{\mathrm{rad}}}{\gamma \rho\left[J_{v}-I_{v}\right] \quad J_{v}=\frac{1}{4 \pi} \oint d \mathbf{n} I_{v} .}
$$

$$
f_{\text {Edd }} \frac{c P_{z z}=F_{\text {rad }}[\tau+q(\infty)]}{c E=3 F_{\text {rad }}[\tau+q(\tau)]}
$$

$$
q(0)=0.5773 \ldots
$$

$$
q(1)=0.6985 \ldots
$$

$$
q(\infty)=0.7104 \ldots
$$

Spherical Geometry

Rayleigh \& Thomson Scattering

$$
\frac{1}{c} \cdot \frac{\partial I_{v}}{\partial t}+\mathbf{n} \cdot \nabla I_{v}=\varpi_{v} \rho \frac{3}{4}\left[J_{v}+\mathbf{n n}: \mathbb{K}_{v}-\frac{4}{3} I_{v}\right]
$$

$$
\begin{gathered}
\mathbb{K}_{v}=\frac{1}{4 \pi} \oint d \mathbf{n} \mathbf{n n} I_{v} \\
J_{v}=\frac{1}{4 \pi} \oint d \mathbf{n} I_{v}
\end{gathered}
$$

Example 5

Isotropic Scattering in the Comoving Frame

$$
\begin{array}{lc}
\frac{I_{v}}{v^{3}}=\frac{I^{\prime} v^{\prime}}{v^{\prime 3}} & \sigma\left(v_{1}, \mathbf{n}_{1} \rightarrow v_{2}, \mathbf{n}_{2}\right) \\
v \chi_{v}=v^{\prime} \sigma & J_{v}=\frac{1}{4 \pi} \oint d \mathbf{n} I_{v} \\
\frac{\eta_{v}}{v^{2}}=\frac{\sigma J^{\prime} v^{\prime}}{v^{\prime 2}} & \begin{array}{l}
\text { A constant, frequency-independent } \\
\text { opacity, and the mean intensity (but } \\
\text { frequency dependent) as source function } \\
\text { constitutes the isotropic approximation of } \\
\text { Thomson scattering. }
\end{array}
\end{array}
$$

Notice that in the laboratory frame the emissivity and the opacity are not isotropic because of the Doppler shifted frequency!

Example 5

Isotropic Scattering in the Comoving Frame

$$
\begin{gathered}
\frac{I_{v}}{v^{3}}=\frac{I^{\prime} v^{\prime}}{v^{\prime 3}} \\
v \chi_{v}=v^{\prime} \sigma \\
\frac{\eta_{v}}{v^{2}}=\frac{\sigma J^{\prime} v^{\prime}}{v^{\prime 2}} ?
\end{gathered}
$$

$$
\begin{aligned}
& \sigma\left(v_{1}, \mathbf{n}_{1} \rightarrow v_{2}, \mathbf{n}_{2}\right) \\
& J_{v}=\frac{1}{4 \pi} \oint d \mathbf{n} I_{v}
\end{aligned}
$$

Notice that in the laboratory frame the emissivity and the opacity are not isotropic because of the Doppler shifted frequency!

$$
\begin{gathered}
\text { Your HOMEWORK Assignment! } \\
\frac{\partial E}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{F}=\int_{0}^{\infty} d v \int d \mathbf{n}\left[\eta_{v}-\chi_{v} I_{v}\right] \\
\frac{1}{c^{2}} \frac{\partial \boldsymbol{F}}{\partial t}+\boldsymbol{\nabla} \cdot \mathbb{P}=\frac{1}{c} \int_{0}^{\infty} d v \int d \mathbf{n} \mathbf{n}\left[\eta_{v}-\chi_{v} I_{v}\right]
\end{gathered}
$$

Astrophysical Radiation Magnetohydrodynamics

Being an Opera in Four Acts

CURTAIN
 CALL

Construction vs
 Deconstruction

