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Astrophysical Radiation Magnetohydrodynamics
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Renault: And what 
in Heaven’s name 
brought you to 
Montréal?
Rick: My health. I 
came to Montréal 
for the 
Astrophysical 
Fluids.
Renault: Fluids? 
What Fluids? We 
are frozen in 
winter!
Rick: I guess I was 



ACT	I	

Astrophysical Radiation Magnetohydrodynamics

Being an Opera in Four Acts

All the universe is a stage,
And all matter and fields are merely players;

They have their exits and entrances,
And each, in their time, plays several parts.



Summary

Nanoscopic
Microscopic
Mesoscopic
Macroscopic
Mondoscopic

𝑞̇# =
𝜕ℋ
𝜕𝑝#

								 	𝑝̇# = −
𝜕ℋ
𝜕𝑞#

𝜕𝜓
𝜕𝑡

+
1
𝑚
𝒑 ⋅

𝜕𝜓
𝜕𝒙

+ 𝒇 ⋅
𝜕𝜓
𝜕𝒑

=
𝛿𝜓
𝛿𝑡

𝜕
𝜕𝑡
𝜌 + 𝛁 · 𝜌𝒖 = 0

1
2
d;𝐼
d𝑡;

= 2𝐾𝐸 + 3𝑃 + 𝐸𝑀 + 𝑅 + 𝑊

𝑖ℏ
𝜕
𝜕𝑡
|𝜓⟩ = ℋ|𝜓⟩ quantum	mechanics

dynamical	systems/	
classical	mechanics

plasma/kinetic	theory	
radiative	transfer

fluid/continuum	
mechanics

thermodynamics/	
virial	theory

Radiation	as	a	
Relativistic	Fluid

Transport	
Coefficients



Summary

𝑡 → 𝑡I ± 𝑡

𝒙 → 𝒙I + ℝ𝒙

𝑖 → 𝑗 𝑗 → 𝑖

Energy Conservation

Entropy Conservation

Momentum Conservation

Angular	Momentum	Conservation

Parity Conservation

Mass Conservation



A	System	of	
Systems V,	N,	ε,	{M,	E,	P,	L},	⋯, 𝑝,	T,	μ

V’,	N’,	ε’,	{M’,	E’,	P’,	L’},	⋯, 𝑝’,	T’,	μ’

V”,	N”,	ε”,	{M”,	E”,	P”,	L”},	⋯, 𝑝”,	T”,	μ”

⋯

Dynamic	Equilibrium

Thermal	Equilibrium

Chemical	Equilibrium

𝑝 =	𝑝’	=	𝑝”	=	⋯
P =	P’	=	P”	=	⋯
L =	L’	=	L”	=	⋯

T	=	T’	=	T”	=	⋯

µ =	µ’	=	µ”	=	⋯

S”

S

S’

S is	maximal

𝜌 𝒙, 𝑡 	𝒖 𝒙, 𝑡
𝑝 𝒙, 𝑡

S	 𝒙, 𝑡
µ 𝒙, 𝑡

𝑒 𝒙, 𝑡

𝑇 𝒙, 𝑡

𝜌 𝒙, 𝑡

𝑇 𝒙, 𝑡
𝑒 𝒙, 𝑡

S	 𝒙, 𝑡
µ 𝒙, 𝑡

𝑒 𝒙, 𝑡
µ 𝒙, 𝑡
S	 𝒙, 𝑡

Thermodynamic	
Equilibrium



Relaxation	Toward	
Equilibria
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General	Relativity

Special	Relativity

Classical	Mechanics Quantum	Mechanics

Classical	Mechanics

Classical	Mechanics

…	a	tale	of	two constants:	𝑐 and	ℎ	

Note: 𝑘X	merely	serves	to	define	the	
temperature	scale,	and	𝐺 does	the	
same	for	gravitationalmass---and	by	
assumption,	inertialmass	as	well.

102



The	“Philosophy	of	RMHD”
“If you	conserve	all	the	things	that	need	to	be	conserved	and you	ensure	
that	left	to	its	own	devices,	entropy	always	increases,	then things	will	often	
work	out	far	better	than	one	might	have	any	right	to	expect.	(…sometimes)”

Corollary	to	the	“Philosophy	of	RMHD”
“Always	be	certain	that	N	is	huge,	and the	physical	system	has	both	the	time	
and	ability	to	sample	lots	and	lots	of	its	available	microstates	consistent	with	
a	specified	macrostate.”



The	Classical	
Fields:	
Statistical vs	
Deterministic

Internal	
Energy

Kinetic	
Energy

Momentum

Radiation	
Field

Electro-
Magnetic	
Field

Turbulence

Gravitational	
Field

Gravitational
Wave
Field

Matter

General	Relativity

Special	Relativity

Quantum	Mechanics

Quantum	
Mechanics

Classical	
Mechanics

Special	
Relativity



Impacts	&	Influence	

Internal	
Energy

Kinetic	
Energy

Radiation	
Field

Gravitational	
Field

Electro-
Magnetic	
Field

TurbulenceMatter

Adiabatic	(Reversible)	
Entropy	is	constant



Adding	to	Disorder

Internal	
Energy

Kinetic	
Energy

Radiation	
Field

Gravitational	
Field

Electro-
Magnetic	
Field

TurbulenceMatter

Entropy	Production



Construction	vs	
Deconstruction

𝑅
c
d
−
1 2
𝑅
𝑔c

d
=
8𝜋
𝐺

𝑐h
𝑇 i
c
d
+
𝑇 j

k
l

c
d
+
𝑇 m
noc
d

𝜕𝜕𝑡 𝜌
+
𝛁
·𝜌𝒖

=
0

𝜕 𝜕𝑡
𝜌
+
𝛁
·𝜌
𝒖
=
0



Grâce	à	Dieu	pour	Oncle Albert--I

𝑅cd −
1
2𝑅𝑔

cd =
8𝜋𝐺
𝑐h 𝑇i

cd + 𝑇jkl
cd + 𝑇mno

cd

PHY	3070:	RELATIVITÉ 2 PHY	6756:	FLUIDES
ASTROPHYSIQUE

PHY	3700:	ATMOSPHÈRE
ET	ENVIRONNEMENT

STELLAIRES



𝑅cd −
1
2𝑅𝑔

cd =
8𝜋𝐺
𝑐h 𝑇i

cd + 𝑇jkl
cd + 𝑇mno

cd

𝑇mno
cd =

1
𝑐
p 𝑑𝜈
s

t
p𝑑𝐧
�

�
𝑛c𝑛d𝐼w

𝑇i
cd = 𝜌 +

𝑝 + 𝜌𝑒
𝑐;

𝑈c𝑈d + 𝑝𝑔cd

𝑇jkl
cd =

1
𝜇t

𝐹c{𝐹{
	d +

1
2
𝑔cd

𝑬 ;

𝑐;
− 𝑩 ;

Grâce	à	Dieu	pour	Oncle Albert--II

(ν𝑛)c= ν, ν𝐧 T

𝑈c = γ 𝑐, 𝒖 T



𝑅cd −
1
2𝑅𝑔

cd =
8𝜋𝐺
𝑐h 𝑇i

cd + 𝑇jkl
cd + 𝑇mno

cd

−𝐿c = −𝑱 ⋅ 𝑬/𝑐, −𝜌�𝑬 − 𝑱×𝑩 T

−𝐺c =
1
𝑐
p 𝑑𝜈
s

t
p𝑑𝐧
�

�
𝑛c 𝜂w − 	𝜒w 𝐼w

	[0, 𝟎]
𝐿c + 𝐺c

Full	Cost	Accounting

(ν𝑛)c= ν, ν𝐧 T

…thank you very 
much! Any 
questions?



Kinetic	
Energy

Construction vs	
Deconstruction

Matter



Conservation	Laws

𝝏
𝝏𝒕 𝛻Kinetic	

Energy	
Density

Kinetic	
Energy	
Flux

+ =

+ + +
Internal	
Energy

Gravitational	
Energy

Radiation	
Energy

Electro-
Magnetic	
Energy

Kinetic	
Energy

Kinetic	
Energy

Kinetic	
Energy

Kinetic	
Energy



Full	Cost	Accounting

Internal	
EnergyMatter



𝝏
𝝏𝒕 𝛻Internal	

Energy	
Density

Internal	
Energy	
Flux

+ =

+ +
Internal	
Energy

Radiation	
Energy

Electro-
Magnetic	
Energy

Internal	
Energy

Internal	
Energy

Kinetic	
Energy

−
Note	the	sign	flip!

Conservation	Laws



𝝏
𝝏𝒕 𝛻Internal	

Energy	
Density

Internal	
Energy	
Flux

+ =

+ +
Internal	
Energy

Radiation	
Energy

Electro-
Magnetic	
Energy

Internal	
Energy

Internal	
Energy

Kinetic	
Energy

Note	the	sign	flip!

Conservation	Laws

+



�
��
𝒖 + 𝒖 · 𝛁𝒖 + ]

�
𝛁𝑝 = 	−	𝛁Φ + ]

�
f

𝜕
𝜕𝑡 𝑒 + 𝒖 · 𝛁𝑒 +

𝑝
𝜌 𝛁 · 𝒖 = 𝑇𝑠̇

The	Matter	

𝜕
𝜕𝑡 𝜌 + 𝛁 · 𝜌𝒖 = 0 L’équation de	continuité (1.21)

L’équation de	Navier-Stokes	(1.23)

Conservation	de	l’énergie interne	(1.56)

You	have	seen	
this	all	before!



�
��
𝒖 + 𝒖 · 𝛁𝒖 + ]

�
𝛁𝑝 = 	−	𝛁Φ + ]

�
f

𝜕
𝜕𝑡 𝑒 + 𝒖 · 𝛁𝑒 +

𝑝
𝜌 𝛁 · 𝒖 = 𝑇𝑠̇

The	Matter	

𝜕
𝜕𝑡 𝜌 + 𝛁 · 𝜌𝒖 = 0

We	will	need	to	
determine	these	
two	exchange	
terms.

𝜕𝜓
𝜕𝑡

+
1
𝑚
𝒑 ⋅

𝜕𝜓
𝜕𝒙

+ 𝒇 ⋅
𝜕𝜓
𝜕𝒑

=
𝛿𝜓
𝛿𝑡

pd𝒑
�

�
				⋯																																																												𝒑
𝑚
𝒑
𝑚
𝒑
𝑚

1

Trace



The	Matter	
𝜕
𝜕𝑡 𝜌 + 𝛁 · 𝜌𝒖 = 0

�
��
𝒖 + 𝒖 · 𝛁𝒖 = − ]

�
𝛁𝑝 −	𝛁Φ + ]

�
f

𝜕
𝜕𝑡 𝑒 + 𝒖 · 𝛁𝑒 +

𝑝
𝜌𝛁 · 𝒖 = 𝑇𝑠̇

𝜕
𝜕𝑡
1
2
𝜌 𝒖 ; + 𝛁 ·

1
2
𝜌 𝒖 ;	𝒖 = −𝒖 · 𝛁𝑝 − 𝒖 · 𝜌𝛁Φ + 𝒖 · 𝒇	

𝜕
𝜕𝑡
𝜌𝑒 + 𝛁 · 𝜌𝑒 + 𝑝 	𝒖 = +𝒖 · 𝛁𝑝 + 𝜌𝑇𝑠̇

�
��
𝜌𝒖 + 𝛁 · (𝑝 + 𝜌𝒖𝒖) = −𝜌	𝛁Φ + f

Note:	Thermal	conduction	
and	viscous	stresses	can	also	
be	accommodated	in	f		and	
𝑇𝑠̇	if	necessary.	



The	Matter	
𝜕
𝜕𝑡 𝜌 + 𝛁 · 𝜌𝒖 = 0

�
��
𝒖 + 𝒖 · 𝛁𝒖 = − ]

�
𝛁𝑝 −	𝛁Φ + ]

�
f

𝜕
𝜕𝑡 𝑒 + 𝒖 · 𝛁𝑒 +

𝑝
𝜌𝛁 · 𝒖 = 𝑇𝑠̇

𝜕
𝜕𝑡
1
2
𝜌 𝒖 ; + 𝛁 ·

1
2
𝜌 𝒖 ;	𝒖 = −𝒖 · 𝛁𝑝 − 𝒖 · 𝜌𝛁Φ + 𝒖 · 𝒇	

𝜕
𝜕𝑡
𝜌𝑒 + 𝛁 · 𝜌𝑒 + 𝑝 	𝒖 = +𝒖 · 𝛁𝑝 + 𝜌𝑇𝑠̇

�
��
𝜌𝒖 + 𝛁 · (𝑝 + 𝜌𝒖𝒖) = −𝜌	𝛁Φ + f

It	remains	to	
determine	these	
terms	through	full	
cost	accounting!

Someone	needs	to	
tell	us	how	to	
determine	the	gas	
pressure!

Note:	Thermal	conduction	
and	viscous	stresses	can	also	
be	accommodated	in	these	
terms	if	desired.	



Full	Cost	Accounting

Kinetic	
Energy

Gravitational	
Field



The	Gravitational	Field

𝛻;Φ = 4𝜋𝐺𝜌

𝛻;Ψ = −4𝜋𝐺𝜌

Beware!!!	Half	the	
world	prefers	this	
way…

L’équation de	Poisson	(1.35)

You	have	seen	
this	all	before!



The	Gravitational	Field

𝛻;Φ = 4𝜋𝐺𝜌
Gravitational	

Energy

All	Other	
Energy

𝜕
𝜕𝑡 𝜌 + 𝛁 · 𝜌𝒖 = 0

Note:	All the	gravity	is	
provided	by	the	material	we	
are	keeping	track	of	via	the	
continuity	equation.	



The	Gravitational	Field
𝛻;Φ = 4𝜋𝐺𝜌

𝜕
𝜕𝑡
1
2 𝜌Φ + 𝛁 · (𝜌Φ𝒖 + 𝑮) = 𝜌𝒖 · 𝛁Φ

Gravitational	
Energy

All	Other	
Energy

𝜕
𝜕𝑡
𝜌 + 𝛁 · 𝜌𝒖 = 0

𝛁 · 𝔾 = 𝜌𝛁Φ	

Coupling	to	matter

Note:	All the	gravity	is	
provided	by	the	material	we	
are	keeping	track	of	via	the	
continuity	equation.	

Your	HOMEWORK	Assignment!

Compute	𝑮 and	𝔾.



The	Gravitational	Field
𝛻;Φ = 4𝜋𝐺𝜌

𝜕
𝜕𝑡
1
2 𝜌Φ + 𝛁 · (𝜌Φ𝒖 + 𝑮) = 𝜌𝒖 · 𝛁Φ

Gravitational	
Energy

All	Other	
Energy

𝜕
𝜕𝑡
𝜌 + 𝛁 · 𝜌𝒖 = 0

𝛁 · 𝔾 = 𝜌𝛁Φ	

Note:	None of	the	gravity	is	
provided	by	the	material	we	
are	keeping	track	of	via	the	
continuity	equation.	

Someone	needs	to	
tell	us	how	to	
determine	the	
gravitational	
potential	Φ!



Full	Cost	Accounting

Internal	
Energy

Kinetic	
Energy

Electro-
Magnetic	
Field

Matter



The	Electromagnetic	Field

𝛁 · 𝑬 = 𝜌�/ε0

𝛁 · 𝑩 = 0

𝛁	 ⤫ 𝑬 = −
𝜕𝑩
𝜕𝑡

𝛁	 ⤫ 𝑩 = µ0	𝑱 + µ0ε0
𝜕𝑬
𝜕𝑡

Loi de	Gauss	(2.1)

Loi anonyme	(2.2)

Loi de	Faraday	(2.3)

Loi d’Ampère/Maxwell	(2.4)

You	have	seen	
this	all	before!



The	Electromagnetic	Field

𝛁 · 𝑩 = 0

𝛁	 ⤫ 𝑬 = −
𝜕𝑩
𝜕𝑡

𝜕
𝜕𝑡

1
2µ0

(µ0ε0 𝑬 ;+ 𝑩 ;) + 𝛁 ·
1
µ0
𝑬 ⤫ 𝑩 = −𝑱 · 𝑬

1
𝑐2 ⋅

𝜕𝑺
𝜕𝑡 + 𝛁 · 𝕄 = −𝜌�	𝑬 − 𝑱 ⤫ 𝑩

All	Other	
Energy

Electro-
Magnetic	
Energy

Coupling	to	matter

𝛁	 ⤫ 𝑩 = µ0	𝑱 + µ0ε0
𝜕𝑬
𝜕𝑡

𝛁 · 𝑬 = 𝜌�/ε0

Someone	needs	to	tell	us	
how	to	determine	the	
electric	current	𝑱	and	
charge	density	𝜌�	!



The	Electromagnetic	Field

𝛁 · 𝑩 = 0

𝛁	 ⤫ 𝑬 = −
𝜕𝑩
𝜕𝑡

𝜕
𝜕𝑡

1
2µ0

(µ0ε0 𝑬 ;+ 𝑩 ;) + 𝛁 ·
1
µ0
𝑬 ⤫ 𝑩 = −𝑱 · 𝑬

1
𝑐2 ⋅

𝜕𝑺
𝜕𝑡 + 𝛁 · 𝕄 = −𝜌�	𝑬 − 𝑱 ⤫ 𝑩

All	Other	
Energy

Electro-
Magnetic	
Energy𝛁	 ⤫ 𝑩 = µ0	𝑱 + µ0ε0

𝜕𝑬
𝜕𝑡

𝛁 · 𝑬 = 𝜌�/ε0

MHD	
scalings: u3B2/lc2 uB2/l uB2/l uB2/l

Your	HOMEWORK	Assignment!

Compute	𝕄.



Full	Cost	Accounting

Internal	
Energy

Kinetic	
Energy

Radiation	
Field

Matter



The	Radiation	Field

𝑠̇

Conservation	de	l’énergie interne	(1.56)

𝜕
𝜕𝑡 𝑆 + 𝒖 · 𝛁𝑆 =

1
𝜌𝑇 𝛁 · [ χ + χm 𝛁𝑇]

Deuxième principe de	la	thermodynamique (1.58)

𝜕
𝜕𝑡 𝑒 + 𝒖 · 𝛁𝑒 +

𝑝
𝜌 𝛁 · 𝒖 =

1
𝜌 𝛁 · [ χ + χm 𝛁𝑇]

You	have	seen	
this	all	before!



The	Radiation	Field
1
𝑐
⋅
𝜕𝐼w
𝜕𝑡

+ 𝐧 · 𝛁𝐼w = 𝜂w − χw𝐼w

𝜕𝐸
𝜕𝑡 + 𝛁 · 𝑭	 = 	p 𝑑𝜈

s

t
p𝑑𝐧	[
�

�

𝜂w − χw𝐼w]

1
𝑐2 ⋅

𝜕𝑭
𝜕𝑡 + 𝛁 · ℙ =

1
𝑐 p 𝑑𝜈

s

t
p𝑑𝐧	𝐧[
�

�

𝜂w − χw𝐼w]

Radiation	
Energy

All	Other	
Energy

Someone	needs	to	
tell	us	how	to	
determine	the	
radiation	pressure	
tensor	ℙ,	emissivity	
𝜂w ,	and	opacity	χw!

Coupling	to	matter

Note:	Extension	
to	polarized	
radiative	
transfer	is	
possible.

𝜕𝐼w
𝜕𝑡

+ 𝑐𝐧 ·
𝜕𝐼w
𝜕𝒙

= 𝑐𝜂w − 𝑐χw𝐼w d𝒏
�

�
pd𝜈
�

�
										 																																																				 	𝐧
𝑐

c	-1

𝐧
𝑐
𝐧
𝑐



The	Radiation	Field

𝜕𝐸
𝜕𝑡 + 𝛁 · 𝑭	 = 	p 𝑑𝜈

s

t
p𝑑𝐧	[
�

�

𝜂w − χw𝐼w]

1
𝑐2 ⋅

𝜕𝑭
𝜕𝑡 + 𝛁 · ℙ =

1
𝑐 p 𝑑𝜈

s

t
p𝑑𝐧	𝐧[
�

�

𝜂w − χw𝐼w]

Radiation	
Energy

uE/l (u to	c)E/l cE/λ

All	Other	
Energy

?Optically	
thick to	
thin
scalings:

1
𝑐 ⋅
𝜕𝐼w
𝜕𝑡 + 𝐧 · 𝛁𝐼w = 𝜂w − χw𝐼w

Note:	Extension	
to	polarized	
radiative	
transfer	is	
possible.

It	is	the	rare	occasion	
when	one	actually	
needs	to	retain	this	
term!





Momentum	Conservation
�
��
𝜌𝒖 + 𝛁 · (𝑝 + 𝜌𝒖𝒖) = −𝜌	𝛁Φ + f

𝛁 · 𝔾 = 𝜌𝛁Φ	
]
£;
⋅ �𝑺
��
+ 𝛁 · 𝕄 = −𝜌�	𝑬 − 𝑱 ⤫ 𝑩

1
𝑐2
⋅
𝜕𝑭
𝜕𝑡

+ 𝛁 · ℙ =
1
𝑐
p 𝑑𝜈
s

t
p 𝑑𝐧	𝐧[
�

�

𝜂w − χw𝐼w]

𝜕𝕻
𝜕𝑡

+ 𝛁 ⋅ ℿ = 0

Summary



Momentum	Conservation
�
��
𝜌𝒖 + 𝛁 · (𝑝 + 𝜌𝒖𝒖) = −𝜌	𝛁Φ + f

𝛁 · 𝔾 = 𝜌𝛁Φ	
]
£;
⋅ �𝑺
��
+ 𝛁 · 𝕄 = −𝜌�	𝑬 − 𝑱 ⤫ 𝑩

1
𝑐2
⋅
𝜕𝑭
𝜕𝑡

+ 𝛁 · ℙ =
1
𝑐
p 𝑑𝜈
s

t
p 𝑑𝐧	𝐧[
�

�

𝜂w − χw𝐼w]

𝜕𝕻
𝜕𝑡

+ 𝛁 ⋅ ℿ = 0

Summary



Momentum	Conservation
�
��
𝜌𝒖 + 𝛁 · (𝑝 + 𝜌𝒖𝒖) = −𝜌	𝛁Φ + f

𝛁 · 𝔾 = 𝜌𝛁Φ	
]
£;
⋅ �𝑺
��
+ 𝛁 · 𝕄 = −𝜌�	𝑬 − 𝑱 ⤫ 𝑩

1
𝑐2
⋅
𝜕𝑭
𝜕𝑡

+ 𝛁 · ℙ =
1
𝑐
p 𝑑𝜈
s

t
p 𝑑𝐧	𝐧[
�

�

𝜂w − χw𝐼w]

𝜕𝕻
𝜕𝑡

+ 𝛁 ⋅ ℿ = 0

Now	we	can	
determine	the	
force	density!

Summary



Energy	Conservation
𝜕
𝜕𝑡
1
2
𝜌 𝒖 ; + 𝛁 ·

1
2
𝜌 𝒖 ;	𝒖 = −𝒖 · 𝛁𝑝 − 𝜌𝒖 · 𝛁Φ + 𝒖 · 𝒇	

𝜕
𝜕𝑡
𝜌𝑒 + 𝛁 · 𝜌𝑒 + 𝑝 𝒖 = +𝒖 · 𝛁𝑝 + 𝜌𝑇𝑠̇

𝜕
𝜕𝑡
1
2
𝜌Φ + 𝛁 · (𝜌Φ𝒖 + 𝑮) = 𝜌𝒖 · 𝛁Φ

𝜕𝐸
𝜕𝑡

+ 𝛁 · 𝑭	 = 	p 𝑑𝜈
s

t
p 𝑑𝐧	[
�

�

𝜂w − χw𝐼w]

𝜕𝔈
𝜕𝑡

+ 𝛁 ⋅ 𝕱 = 0

Summary

𝜕
𝜕𝑡

1
2µ0

(µ0ε0 𝑬 ;+ 𝑩 ;) + 𝛁 ·
1
µ0
𝑬 ⤫ 𝑩 = −𝑱 · 𝑬



Energy	Conservation
𝜕
𝜕𝑡
1
2
𝜌 𝒖 ; + 𝛁 ·

1
2
𝜌 𝒖 ;	𝒖 = −𝒖 · 𝛁𝑝 − 𝜌𝒖 · 𝛁Φ + 𝒖 · 𝒇	

𝜕
𝜕𝑡
𝜌𝑒 + 𝛁 · 𝜌𝑒 + 𝑝 𝒖 = +𝒖 · 𝛁𝑝 + 𝜌𝑇𝑠̇

𝜕
𝜕𝑡
1
2
𝜌Φ + 𝛁 · (𝜌Φ𝒖 + 𝑮) = 𝜌𝒖 · 𝛁Φ

𝜕𝐸
𝜕𝑡

+ 𝛁 · 𝑭	 = 	p 𝑑𝜈
s

t
p 𝑑𝐧	[
�

�

𝜂w − χw𝐼w]

𝜕𝔈
𝜕𝑡

+ 𝛁 ⋅ 𝕱 = 0

Summary

𝜕
𝜕𝑡

1
2µ0

(µ0ε0 𝑬 ;+ 𝑩 ;) + 𝛁 ·
1
µ0
𝑬 ⤫ 𝑩 = −𝑱 · 𝑬



Energy	Conservation
𝜕
𝜕𝑡
1
2
𝜌 𝒖 ; + 𝛁 ·

1
2
𝜌 𝒖 ;	𝒖 = −𝒖 · 𝛁𝑝 − 𝜌𝒖 · 𝛁Φ + 𝒖 · 𝒇	

𝜕
𝜕𝑡
𝜌𝑒 + 𝛁 · 𝜌𝑒 + 𝑝 𝒖 = +𝒖 · 𝛁𝑝 + 𝜌𝑇𝑠̇

𝜕
𝜕𝑡
1
2
𝜌Φ + 𝛁 · (𝜌Φ𝒖 + 𝑮) = 𝜌𝒖 · 𝛁Φ

𝜕𝐸
𝜕𝑡

+ 𝛁 · 𝑭	 = 	p 𝑑𝜈
s

t
p 𝑑𝐧	[
�

�

𝜂w − χw𝐼w]

𝜕𝔈
𝜕𝑡

+ 𝛁 ⋅ 𝕱 = 0

Summary

𝜕
𝜕𝑡

1
2µ0

(µ0ε0 𝑬 ;+ 𝑩 ;) + 𝛁 ·
1
µ0
𝑬 ⤫ 𝑩 = −𝑱 · 𝑬

Now	we	can	
determine	the	heat	
addition	to	the	
material!



Full	Cost	Accounting---Done!

It	remains	to	
determine	these	
terms	through	the	
geometry	of	
space-time!

This	slide	is	the	essential objective	of	RMHD---we	have	now	constructed	a	set	of	equations	that	
not	only conserve	total	energy	and	momentum,	but	also describe	how	energy	and	momentum	
are	exchanged	between	matter and	the	radiation,	gravitational and	electromagnetic fields!

Summary

𝒇 = 𝜌�	𝑬 + 	𝑱 ⤫ 𝑩 −
1
𝑐 p 𝑑𝜈

s

t
p𝑑𝐧	𝐧[
�

�

𝜂w − χw𝐼w]

𝜌𝑇𝑠̇ 	= 𝑱 · 𝑬 − 𝒖 · 𝒇 − p 𝑑𝜈
s

t
p𝑑𝐧	[
�

�

𝜂w − χw𝐼w]



The	“Golden	Rule	of	RMHD”
“Always evaluate	interactions	between	the	matter	
and	the	classical	fields	in	the	comoving,	e.g.,	rest-
frame,	of	the	material!!!”

but…

“Solve your	equations	in	whatever	is	the	most	
convenient frame	of	reference	for	your	
objectives.”

Can	I	get	an	AMEN,	
people!!!



Corollary	to	the	“Golden	Rule	of	RMHD”

“You	had	better	know	how	to	transform	
coordinates,	physical	quantities,	fields,	
differential	and	integral	operators	(and	
anything	else	you	can	think	of)	between	any
two	frames	of	reference,	under	all conditions.”

Abandon	hope,	all	
ye	who	fail	to	heed	
the	Corollary!



ACT	II	

Astrophysical Radiation Magnetohydrodynamics

Being an Opera in Four Acts

Now is the geometry of our discontent,
Made gloriously invariant by this Sun of France;
And all the aether that lowered upon our house,

In the deep bosom of obscurity is buried.



Better	Living	Through	Geometry

z

z’

t

t'

x

x'

y
y'

V

V’

Event	2

Event	1

One	Observer

Another	
Observer

…and	some	
stuff	going	on.



Galileo	&	Newton

z

z’

t

t'

x

x'

y
y'

V

V’

Event	2

Event	1

|t1	– t2|	=	|t’1	– t’2|	
‖x1	– x2‖	=	‖x’1	– x’2‖	

This	is	a	
Galilean
Space-Time of	
4	dimensions.

One	Observer

Another	
Observer



Poincaré,	Lorentz	&	Einstein

z

z’

t

t'

x

x'

y
y'

V

V’

Event	2

Event	1

‖x1	– x2‖2 – c2 |t1	– t2|2 =	
‖x’1	– x’2‖2	– c2 |t’1	– t’2|2	

This	is	a	
Minkowski
Space-Time of	
4	dimensions.

Another	
Observer

One	Observer



Invent	Your	Own	Space-Time

z

z’

t

t'

x

x'

y
y'

V

V’

Event	2

Event	1

……blah	blah	blah…..
This	is	a	Some	
Other Space-
Time of	4	
dimensions.

Another	
Observer

One	Observer



Count		the	
Invariants

‖x1	– x2‖2 – c2 |t1	– t2|2 =	
‖x’1	– x’2‖2	– c2 |t’1	– t’2|2	

|t1	– t2|	=	|t’1	– t’2|	

‖x1	– x2‖	=	‖x’1	– x’2‖	

Pick	a	different	origin	
for	marking	off	time.

Pick	a	different	origin	
for	marking	off	space.

Pick	a	different	
orientation for	your	
coordinate	axes.

Move through	the	
space	at	a	constant	
rectilinear	velocity.

1

3

3

3

10	Parameters

Translations

Translations

Proper	
Rotations

BoostsThe	Lorentz	
“Group”

The	Galilean	
Group

The	Special	
Orthogonal	
Group	SO(3)

The	Translation	
Group	T(1)

The	Translation	
Group	T(3)

The	Poincaré
Group

Minkowski Space-Time Galilean	Space-Time



Group	Action	on	4-Vectors

𝑐𝑡′′
𝒙′′

𝑐𝑡′
𝒙′ G

L 𝑐𝑡′
𝒙′G-1

L-1

𝑐𝜌𝑒′
𝑱′

𝜈′
𝜈I𝐧′

Galilean Group

Lorentz Group

Bonus:	These	4-vectors	live	in	the	
tangent	space to	each	point	in	the	
space-time,	and	they	transform	in	
the	same	fashion	as	the	space-time	
itself!

The	electric	and	
magnetic	fields	are	
components	of	a	4-
tensor	and	therefore	
transform	appropriately!

H	o	w	e	v	e	r,	the	
specific	intensity,	the	
opacity	and	the	
emissivity	are	entirely	
different	4-animals…



Better	Living	Through	Geometry

z

z’

t

t'

x

x'

y
y'

u

Inertial	
Laboratory	
Frame

Comoving	
Frame

ϑ

Boosts

Rotations



𝑐𝑡
𝒙

𝑐𝑡′
𝒙′ = L

𝑐𝑡′
𝒙′= L-1

γ −γu/𝑐
−γu/𝑐 ℝ(𝛝) + (γ − 1)uu/𝑢2

𝑐𝑡
𝒙

L(u, 𝛝) =

𝛾 =
𝑐

𝑐; − u ;�

L-1	(u, 𝛝) = L(−u,−𝛝)

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

I =

I = L-1 ∘	L =	L ∘ L-1	

Meet	the	(6-parameter)	
Lorentz	Group

L1 ∘	L2 ≠	L2 ∘ L1

Note:	This	is	
the	4x4 matrix
representation
of	the	group	
elements.

There	are	other	
representations	
available.

Please	do	not	
confuse	the	4x4
matrix with	a	4-
tensor.



γ 0 0 −γu/c
0 cos ϑ −sin ϑ 0
0 sin ϑ cos ϑ 0

−γ𝑢/𝑐 0 0 γ

Better	Living	Through	Geometry

z

z’

t

t'

x

x'

y

y'

u

Inertial	
Laboratory	
Frame

Comoving	
Frame

ϑ𝑐𝑡′
𝒙′

𝑐𝑡
𝒙

𝑐𝑡
𝒙

𝑐𝑡′
𝒙′

γ 0 0 γu/c
0 cos ϑ sin ϑ 0
0 −sin ϑ cos ϑ 0

γ𝑢/𝑐 0 0 γ

=

=

Note:	Generally	speaking--
Boost1∘ Boost2 =	Boost3 +	Rotation
unless	the	Boosts	are	parallel!

These	4-vectors	are	represented	
by	a	1-column,	4-row	matrix!



= L

E	′ F′/𝑐
FI/𝑐 ℙ′

= L
E	 F/𝑐
F/𝑐 ℙ L T

𝜈′
𝜈I𝐧′

𝜈
𝜈𝐧

Comoving	vs	Inertial	Frames

−𝐺c =
1
𝑐
p 𝑑𝜈
s

t
p𝑑𝐧
�

�
𝑛c 𝜂w − 	𝜒w 𝐼w

−𝐿c = −𝑱 ⋅ 𝑬/𝑐, −𝜌�𝑬 − 𝑱×𝑩 T	

The	transpose	“T	”	of	a	1-
column,	4-row	matrix	is	a	4-
column,	1-row	matrix.

The	transpose	“T	”	of	a	4x4
matrix	exchanges	rows	with	
columns.

(L1 ∘	L2 )T =	L2T ∘ L1T

Note:	4-tensors	and	4x4
matrices,	4-vectors	and	4x1 or	
1x4 matrices,	all	look	
deceptively	similar	to	one	
another,	but it	is	important	to	
recognize	their	differences!



Count	Your	Lucky	Photons

z

z’

t

t'

x

x'

y
y'

V

V’

A	“swarm”	
of	photons

These	observers	do	not	agree	
about	much	of	anything	
regarding	these	photons,	but,	
they	do agree	that	there	are	
five of	them.	Five is	a	Lorentz	
invariant.

Another	
Observer

One	Observer



..

Lorentz	Transformation	of	the	
Radiation	Field

𝐼w
𝜈3 =

𝐼′wI
𝜈′3

𝜈χw = 𝜈′χ′wI

𝜂w
𝜈2 =

𝜂′wI
𝜈I2

𝜈′ =	γ	𝜈	(1 − ]
£
n·u	)

These	exact
equations	expresses	
the	Doppler	shift	and	
aberration	of	the	
photons.	

The	comoving	frame	
(primed	quantities)	
has	a	velocity u
measured	in	the	
inertial	laboratory	
frame	(unprimed	
quantities).

This	part	is	tricky.	Remember	each	
frame	has	its	own	independent	
variables:	x,	ct,	νn,	ν that	transform	like	
components	of	a	4-vector.

n′ =
𝑐n − 𝛾u
𝑐 − n ⋅ u

1
𝛾
−

1
𝛾 + 1

n ⋅ u
𝑐

𝛾 =
𝑐

𝑐; − u ;�
	 ≈ 1

Summary

𝐸I = 𝛾; 𝐸 −
2
𝑐;
𝒖 ⋅ 𝑭 +

1
𝑐;
𝒖𝒖: ℙ

𝑭I = 𝑭 − 𝒖 𝐸 + ℙ +⋯

ℙI = ℙ − ]
£¹

𝒖𝑭 + 𝑭𝒖 +⋯



Lorentz	Transformation	of	the	
Electromagnetic	Fields

These	exact equations	
express	the	
transformations	of	the	
electromagnetic	fields

The	comoving	frame	
(primed	quantities)	
has	a	velocity u
measured	in	the	
inertial	laboratory	
frame	(unprimed	
quantities).

𝛾 =
𝑐

𝑐; − u ;�
	 ≈ 1

Summary

𝑬I = 𝛾 𝑬 + 𝒖 ⤫ 𝑩 − (γ −	1)(𝑬 ⋅ 𝒖)𝒖	/ 𝒖 ;

𝜌𝑒I = 𝛾 𝜌�	 − 𝒖 ⋅ 𝑱/𝑐2

𝑩I = 𝛾 𝑩 − 𝒖 ⤫ 𝑬/𝑐2 − (γ −	1)(𝑩 ⋅ 𝒖)𝒖	/ 𝒖 ;

𝑱I = 𝑱 − 𝛾𝒖𝜌�	 +	(γ −	1)(𝑱 ⋅ 𝒖)𝒖	/ 𝒖 ;

“You	had	better	know	how	to	transform	
coordinates,	physical	quantities,	fields,	
differential	and	integral	operators	(and	
anything	else	you	can	think	of)	between	any
two	frames	of	reference,	under	all conditions.”



The	Interaction	Between	Radiation	&	Matter



• Destruction via	absorption
• Redirection via	scattering
• Frequency	Shift via	scattering
• Creation via	emission

• Spontaneous
• Stimulated	by	𝐼w

The	Interaction	Between	Radiation	&	Matter
1
𝑐
𝜕𝐼w
𝜕𝑡 + 𝐧 · 𝛁𝐼w = 𝜂w − χw𝐼w

𝜎 𝜈], 𝐧] → 𝜈;, 𝐧;

	𝑆w 𝐧

лw 𝐧

𝜂w
χw

Let’s	assume	we	are	in	the	comoving	
frame	at	rest	in	the	laboratory	frame.

This	is	a	purely	quantum	
mechanical	effect	with	no	
real	classical	counterpart.



The	Interaction	Between	Radiation	&	Matter
1
𝑐
𝜕𝐼w
𝜕𝑡 + 𝐧 · 𝛁𝐼w = 𝜂w − χw𝐼w

In	LTE	we	must	have:

𝑆w 1 +
𝑐;

2ℎ𝜈b
𝐼w − лw𝐼w ++p d𝜈]

s

t

 	d𝐧]
�

�

𝜈
𝜈]
𝜎 𝜈], 𝐧] → 𝜈, 𝐧	 𝐼w¼ 𝐧] 1 +

𝑐;

2ℎ𝜈b
𝐼w(𝐧)

−p d𝜈]

s

t

 	d𝐧]
�

�
𝜎 𝜈, 𝐧 → 𝜈], 𝐧] 	𝐼w(𝐧) 	 1 +

𝑐;

2ℎ𝜈]b
𝐼w¼ 𝐧]

𝐼w = 𝐵w =
2ℎ𝜈b

𝑐;
1

exp ℎ 𝜈 𝑘X⁄ 𝑇 − 1
𝑆w = 𝜅w𝐵w

The	absorption	corrected for	stimulated	emission.

The	true	absorption.



Visible	Light

Stimulated	
Emission	is	
Important

Radio	Waves

Stimulated	
Emission	is	
Negligible

𝐼w = 𝐵w =
2ℎ𝜈b

𝑐;
1

exp ℎ 𝜈 𝑘X⁄ 𝑇 − 1



𝐸w =
1
𝑐
 d𝐧
�

�
𝐼w

ℙw =
1
𝑐
 d𝐧
�

�
𝐧𝐧	𝐼w

𝑭w =  d𝐧
�

�
𝐧	𝐼w

𝕼w =  d𝐧
�

�
𝐧𝐧𝐧	𝐼w

n

𝜇 = cos 𝜃

Axisymmetry

𝐸w

𝐹w

𝑃w

𝑄w

𝐸w

𝐹w

In	the	
Moment(s)



𝐸w =
1
𝑐
 d𝐧
�

�
𝐼w

𝑭w =  d𝐧
�

�
𝐧	𝐼w

0 𝑢 𝑐

ℙw =
1
𝑐
 d𝐧
�

�
𝐧𝐧	𝐼w

𝐸w =
1
𝑐
 d𝐧
�

�
𝐼w

0 1/3 1
Eddington	Factor

Diffusion	Limit Free	Streaming

𝐼w ≈
𝑐
4𝜋

𝐸w +
3
4𝜋

𝐧 ⋅ 𝑭w 𝐼w ≈ 𝑐𝐸w𝛿 𝜇 − 1
Ouch!



..

Gray/LTE	Approximation	in	the	Comoving Frame

A	constant,	frequency-independent	
opacity	𝜅,	and	the	isotropic Planck	
Function	(but	frequency	dependent)	
constitutes	the	“gray	atmosphere”	LTE	
approximation in	the	comoving	frame.

𝜂w
𝜈2 =

𝜅𝐵wI
𝜈I2

Notice	that	in	the	laboratory	frame	the	
emissivity	and	the	opacity	are	not isotropic	
because	of	the	Doppler-shifted	frequency!

𝐵w =
2ℎ𝜈b

𝑐;
1

exp ℎ 𝜈 𝑘X⁄ 𝑇 − 1

𝐼w
𝜈3 =

𝐼′wI
𝜈′3

𝜈χw = 𝜈′𝜅

Example	1



Gray/LTE	Approximation	in	the	Laboratory Frame

χw =	𝜅	(1 −
]
£
n·u	)	+		···

𝜂w = 𝜅 [	(1 +
b
£
n·u	) 𝐵w −

]
£
n·u	 �

	�w
𝜈𝐵w]+ ···

We	can	now	carry	out	the	two	integrals	
we	need	to	describe	the	exchange	of	
energy and	momentum	between	the	
material	and	the	radiation	field	in	the	
laboratory	frame.	

𝜕𝐸
𝜕𝑡 + 𝛁 · 𝑭	 = 	p 𝑑𝜈

s

t
p𝑑𝐧	[
�

�

𝜂w − χw𝐼w]

This	part	is	subtle.	We	want	the	
Planck	Function	evaluated	at	
the	laboratory	frequency	not	
the	comoving	frame	frequency.

Example	1



χw =	𝜅	(1 −
]
£
n·u	)	+		···

𝜂w = 𝜅 [	(1 +
b
£
n·u	) 𝐵w −

]
£
n·u	 �

	�w
𝜈𝐵w]+ ···

�j
��
+ 𝛁 · 𝑭	 = 𝜅	[4𝜎𝑅𝑇4	 − 𝑐𝐸]+𝜅

]
£
𝒖 ·F +		···

Higher-order	
terms	in	the	ratio
of	u/c	live	here.

Example	1

𝜎Æ =
2𝜋Ç𝑘Xh

15ℎb𝑐;

Gray/LTE	Approximation	in	the	Laboratory Frame



χw =	𝜅	(1 −
]
£
n·u	)	+		···

𝜂w = 𝜅 [	(1 +
b
£
n·u	) 𝐵w −

]
£
n·u	 �

	�w
𝜈𝐵w]+ ···

1
𝑐2 ⋅

𝜕𝑭
𝜕𝑡 + 𝛁 · ℙ =

1
𝑐 p 𝑑𝜈

s

t
p𝑑𝐧	𝐧[
�

�

𝜂w − χw𝐼w]

Example	1

We	can	now	carry	out	the	two	integrals	
we	need	to	describe	the	exchange	of	
energy	and	momentum between	the	
material	and	the	radiation	field	in	the	
laboratory	frame.	

Gray/LTE	Approximation	in	the	Laboratory Frame



χw =	𝜅	(1 −
]
£
n·u	)	+		···

𝜂w = 𝜅 [	(1 +
b
£
n·u	) 𝐵w −

]
£
n·u	 �

	�w
𝜈𝐵w]+ ···

]
£;
⋅ �𝑭
��
+ 𝛁 · ℙ = − È

£
[	𝑭	 − 𝒖{hÊÆ

£
𝑇4 + ℙ}]+		···

Higher-order	
terms	in	the	ratio
of	u/c	live	here.

Example	1

Gray/LTE	Approximation	in	the	Laboratory Frame



χw =	𝜅	(1 −
]
£
n·u	)	+		···

𝜂w = 𝜅 [	(1 +
b
£
n·u	) 𝐵w −

]
£
n·u	 �

	�w
𝜈𝐵w]+ ···

]
£;
⋅ �𝑭
��
+ 𝛁 · ℙ = − È

£
[	𝑭	 − 𝒖{hÊÆ

£
𝑇4 + ℙ}]+		···

Higher-order	
terms	in	the	ratio
of	u/c	live	here.

Example	1

Gray/LTE	Approximation	in	the	Laboratory Frame

How	else	could	we	
have	done	this?	
Hint:	do	you	know	
any	other	4-vectors?



]
£;
⋅ �𝑭
��
+ 𝛁 · ℙ = − È

£
[	𝑭	 − 𝒖{hÊÆ

£
𝑇4 + ℙ}]+		···

�j
��
+ 𝛁 · 𝑭	 = 𝜅	[4𝜎𝑅𝑇4	 − 𝑐𝐸]+𝜅

]
£
𝒖 ·F +		···

𝑃 ≈
1
3
𝐸

𝑭 ≈ 𝒖
4𝜎Æ
𝑐
𝑇h +

1
3
𝐸 −

𝑐
3𝜅

𝛁𝐸

�j
��
+ 𝛁 · [𝒖 hÊÌ

£
𝑇h + ]

b
𝐸 − £

bÈ
𝛁𝐸	] ≈ 𝜅	[4𝜎𝑅𝑇4	 − 𝑐𝐸]	− ]

b
𝒖 · 𝛁 𝐸

Example	2

Assume:	sufficiently	small	mean	
free	path	so	the	radiation	pressure	
tensor	is	isotropic	to	leading	order.

Dynamic vs	Static Diffusion



�j
��
+ 𝛁 · [𝒖 hÊÌ

£
𝑇h + ]

b
𝐸 − £

bÈ
𝛁𝐸	] = 𝜅	[4𝜎𝑅𝑇4	 − 𝑐𝐸]

𝐸 ≈
4𝜎Æ𝑇h

𝑐
−
4𝜎Æ
𝑐2𝜅

𝜕
𝜕𝑡
−
1
3
𝒖 ⋅ ∇ + ∇ ⋅

4
3
𝒖 −

𝑐
3𝜅
𝛁 𝑇h

uλ/cl1 λ2/l2
Assume:	sufficiently	small	mean	
free	path	so	this	term	is	the	
dominant	balance	in	the	radiation	
energy	equation.

𝑃 ≈
1
3
𝐸

𝑭 ≈ 𝒖
4𝜎Æ
𝑐
𝑇h +

1
3
𝐸 −

𝑐
3𝜅
𝛁𝐸

u/c λ/l

Example	2 Dynamic vs	Static Diffusion



χm =
16𝜎Æ𝑇b

3𝜅

𝑭 ≈
4𝜎Æ
𝑐

4
3
𝒖𝑇4 −

4𝑐𝑇3

3𝜅
𝛁	𝑇

cλ/lu
u/c λ/l

Conservation	de	l’énergie interne	(1.56)

Example	2

𝜕
𝜕𝑡 𝑒 + 𝒖 · 𝛁𝑒 +

𝑝
𝜌 𝛁 · 𝒖 =

1
𝜌 𝛁 · [ χ + χm 𝛁𝑇]

Dynamic vs	Static Diffusion



𝑭 ≈
4𝜎Æ
𝑐

4
3
𝒖𝑇4 −

4𝑐𝑇3

3𝜅
𝛁	𝑇

cλ/lu
u/c λ/l

La	nouvelle	conservation	de	l’énergie interne	(1.56)’

Example	2

𝜕
𝜕𝑡 𝑒 + 𝒖 · 𝛁𝑒 +

𝑝
𝜌 𝛁 · 𝒖 =

1
𝜌 𝛁 · [χ𝛁𝑇 −

16𝜎Æ
3𝑐 𝒖𝑇4]

Dynamic vs	Static Diffusion



Example	3

Scattering
Monopole	Scattering
(Thomson/Compton)

Dipole	Scattering
(Rayleigh/Mie)

𝜎 𝜈], 𝐧] → 𝜈;, 𝐧;



Isotropic	Scattering	(Thomson)
Example	3

𝐽w =
1
4𝜋 𝑑

n
�

�
𝐼w]

£
⋅ �ÐÑ
��
+ 𝐧 · 𝛁𝐼w = γ𝜌[𝐽w − 𝐼w]

𝛾 =
8𝜋
3𝑚𝐻	

𝑒;

4𝜋𝜀t𝑚𝑐;

;

≈ 0.04	m2/kg

𝜕𝐸
𝜕𝑡

+ 𝛁 · 𝑭	 = 0

1
𝑐
⋅
𝜕𝑭
𝜕𝑡

+ 𝑐	𝛁 · ℙ = −γ𝜌𝑭 𝛁 · ℙ =
d𝑃mm
d𝑟 +

2𝑃mm − 𝑃ÕÕ − 𝑃ÖÖ
𝑟

B.2.24 on	page	200

Trℙ = 𝐸 𝐸 = 𝑃mm + 𝑃ÕÕ + 𝑃ÖÖ

𝐹 =
ℒÙÚÛ
4𝜋𝑟;

We	can	assume	
𝑃ÕÕ = 𝑃ÖÖ	but	we	
are	still	one	
equation	short.



Example	3

𝐽w =
1
4𝜋 𝑑

n
�

�
𝐼w]

£
⋅ �ÐÑ
��
+ 𝐧 · 𝛁𝐼w = γ𝜌[𝐽w − 𝐼w]

𝛾 =
8𝜋
3𝑚𝐻	

𝑒;

4𝜋𝜀t𝑚𝑐;

;

≈ 0.04	m2/kg

𝜕𝐸
𝜕𝑡

+ 𝛁 · 𝑭	 = 0

1
𝑐
⋅
𝜕𝑭
𝜕𝑡

+ 𝑐	𝛁 · ℙ = −γ𝜌𝑭 𝛁 · ℙ =
d𝑃ÜÜ
d𝑧

Trℙ = 𝐸 𝐸 = 𝑃ÜÜ + 𝑃ÞÞ + 𝑃ßß

𝐹 = 𝐹rad

We	can	assume	
𝑃ÞÞ = 𝑃ßß	but	we	
are	still	one	
equation	short.

Isotropic	Scattering	(Thomson)



Isotropic	Scattering	(Planar	Geometry)
Example	3

𝐽w =
1
4𝜋 𝑑

n
�

�
𝐼w

]
£
⋅ �ÐÑ
��
+ 𝐧 · 𝛁𝐼w = γ𝜌[𝐽w − 𝐼w]

𝐹 = 𝐹rad

𝑐𝐸 = 3𝐹rad			[τ + 𝑞 τ ]

𝑐𝑃zz = 𝐹rad			[τ + 𝑞 ∞ ]
𝑞 0 = 0.5773…

𝑞 1 = 0.6985…

𝑞 ∞ = 0.7104…

fEdd

0.333… 0.410… 0.999…

Spherical	
Geometry



Rayleigh	&	Thomson	Scattering
Example	4

𝐽w =
1
4𝜋 𝑑

n
�

�
𝐼w

]
£
⋅ �ÐÑ
��
+ 𝐧 · 𝛁𝐼w = ϖν𝜌

b
h
[𝐽w + 𝐧𝐧:𝕂w −

h
b
𝐼w]

𝜕𝐸
𝜕𝑡

+ 𝛁 · 𝑭	 =		?

1
𝑐
⋅
𝜕𝑭
𝜕𝑡

+ 𝑐	𝛁 · ℙ =		?

𝕂w =
1
4𝜋 𝑑

n
�

�
nn	𝐼w



Isotropic	Scattering	in	the	Comoving Frame

A	constant,	frequency-independent	
opacity,	and	the	mean	intensity (but	
frequency	dependent)	as	source	function	
constitutes	the	isotropic	approximation of	
Thomson	scattering.

𝜂w
𝜈2 =

𝜎𝐽′wI
𝜈I2

Notice	that	in	the	laboratory	frame	the	
emissivity	and	the	opacity	are	not isotropic	
because	of	the	Doppler	shifted	frequency!

𝐼w
𝜈3 =

𝐼′wI
𝜈′3

Example	5

𝜈χw = 𝜈′𝜎
𝐽w =

1
4𝜋 𝑑

n
�

�
𝐼w

𝜎 𝜈], 𝐧] → 𝜈;, 𝐧;



Isotropic	Scattering	in	the	Comoving Frame

𝜂w
𝜈2 =

𝜎𝐽′wI
𝜈I2

Notice	that	in	the	laboratory	frame	the	
emissivity	and	the	opacity	are	not isotropic	
because	of	the	Doppler	shifted	frequency!

𝐼w
𝜈3 =

𝐼′wI
𝜈′3

Example	5

𝜈χw = 𝜈′𝜎
𝐽w =

1
4𝜋 𝑑

n
�

�
𝐼w

Your	HOMEWORK	Assignment!

1
𝑐2
𝜕𝑭
𝜕𝑡

+ 𝛁 · ℙ =
1
𝑐
p 𝑑𝜈
s

t
p 𝑑𝐧	𝐧[
�

�

𝜂w − χw𝐼w]

𝜕𝐸
𝜕𝑡 + 𝛁 · 𝑭	 = 	

p 𝑑𝜈
s

t
p𝑑𝐧	[
�

�

𝜂w − χw𝐼w]

𝜎 𝜈], 𝐧] → 𝜈;, 𝐧;

?



CURTAIN
CALL	

Astrophysical Radiation Magnetohydrodynamics

Being an Opera in Four Acts



Construction	vs	
Deconstruction

𝑅
c
d
−
1 2
𝑅
𝑔c

d
=
8𝜋
𝐺

𝑐h
𝑇 i
c
d
+
𝑇 j

k
l

c
d
+
𝑇 m
noc
d

𝜕𝜕𝑡 𝜌
+
𝛁
·𝜌𝒖

=
0

𝜕 𝜕𝑡
𝜌
+
𝛁
·𝜌
𝒖
=
0



A	Final	
Thought…!

Internal	
Energy

Kinetic	
Energy

[Electromagnetic]	
Radiation	Field

Gravitational	
Field

Electro-
Magnetic	
Field

Turbulence Matter

[Gravitational]	
Radiation	
Field

Next	
Lecture…



To be 
continued…


