
PHY 3700 meets PHY 6756
Lecture 1: Radiation Magnetohydrodynamics

Lecture 2: Spherically-Symmetric Applications

NOTES & COMMENTS

Tom Bogdan
Paul Charbonneau

Patrick Dufour

It always pays to 
read the fine print.



Preface
Here is the so-called “fine print” that supports (to some degree) the material presented in 
the slides.  It provides an opportunity for you to gain some deeper insights about what has 
been presented, understand some of the essential features of the derivations that were 
not presented, and head off in different directions to explore on your own. 

I have tried throughout to refer to equations or material in your possession from the 
lecture notes which accompany PHY3700 and PHY6756. For example, the expression 
“(3700:1.25)” refers to equation (1.25) in the lecture notes which accompany PHY3700. I 
have tried, as much as humanly possible (for me, at least) to leave the notation as you 
discovered it in PHY3700 and PHY6756. However, notation is more than just notation. 
Poor notation obfuscates and excellent notation promotes quick comprehension. In 
several cases I could not help myself and I apologize for my stubbornness in advance. 
Where it is not entirely obvious I have tried to indicate how my notation differs from what 
you are used to. 

On this point it is worth stating here that we have an insufficient number of symbols for 
the physical quantities we wish to talk about. This is especially true when radiative 
transfer and MHD are mixed---J’s and H’s and B’s and E’s end up being used for different 
things in each discipline. One faces the daunting problem of creating an even greater 
proliferation of symbols and fonts and superscripts or just going with the flow and hoping 
that context serves to disambiguate confusion. 

SI versus cgs/esu for the description of the electromagnetic field is a sore point with 
almost every practicing physicist on the planet. Like cats and dogs, we shall be living with 
this conflict through out the rest of our lives. My advice is to be aware of how to convert 
between the two systems (useful formulae are provided below) as needed. Do your 
theory in cgs/esu and build your experiments in SI. In the former know that the ubiquitous 
presence of 3.14159… has to do with solid angles hidden all over the place, and in the 
latter rejoice that free space (vacuum) has a nonzero permittivity and permeability, 
however that might be possible even without virtual pair production. 

The items in the Bibliography are cited by bolding the first three letters of the lead 
author’s last name and appending the publication date, as in Arn1996, for example. I do 
not cite every one of the references presented to you in the Bibliography. The reason is 
simple. I have found over the years that there is a set of references that I continually find 
myself returning to over and over again. To me, each is particularly useful for something 
that I can’t seem to find nowhere else. Often it is merely a matter of taste. I recommend 
that you assemble a similar set as you progress with your careers. For this reason the 
Bibliography is in no way complete, nor is it exhaustive. The material is also very uneven---
some is quite elementary, and some is incredibly complex.  

In some of the comments, I make some suggestions for calculations you might want to try 
out, or issues you could profitably explore based on the material presented in these two 
lectures. As my Dad once said, you now know enough to really get into trouble. But, with 
enough effort, you can always get yourself out of trouble, with the knowledge from a 
great experience to add to your arsenal of capabilities.

Finally, I apologize for errors and typos that have drifted into this material and my 
understanding of the physics. Trust but verify is a good motto to follow. Please do let me 
know if you find anything egregiously wrong or point out misprints. 

Cheers,

Tom
tomjbogdan@gmail.com



The Radiation Field
The full radiative transfer equation (which is Lorentz invariant) 
that we require, has an additional term which is absent from 
equation (3700:2.5.2), and is proportional to the time derivative 
of the specific intensity.  This term is necessary to track radiation 
fronts, or bursts of photons that free-stream (in vacuo) away 
from some source, for example.  Often, but not always, the time 
scale for these phenomena is so short compared to typical fluid 
time scales that his term can be safely neglected even in time-
dependent situations.  It is for these practical reasons that this 
term is absent in (3700:2.5.2) and the subject matter that follows 
therein.  

However, from a purely pedagogical and bookkeeping 
perspective of accounting for the flow of energy and momentum 
within the radiation field and between the radiation field and the 
material, it is essential that we retain this term for the present.  It 
is also the necessary addition to the transfer equation to ensure 
that photons do travel at the speed of light.  The second 
amendment we make to (3700:2.5.2) is to write d/ds out 
explicitly as n∙∇.  In (3700:2.5.2) it is implicitly understood that 
the coordinate, s, is in the direction of propagation of the stream 
of photons.  Accordingly, (3700:2.5.2) must be solved along all 
possible directions to build up the full specific intensity from the 
sources and sinks of photons on the right side of this equation. 

As noted in PHY 3700, physical units are particularly helpful to 
eliminate mistakes in copying and writing down equations.  We’ll 
denote the physical units of a quantity by placing square brackets  
“[  ]”  around the quantity.  For example [see (3700:2.1.2), 
(3700:2.4.2)]:
[ Iν ]  =  erg cm-2 sec-1 Hz-1 ster-1 [ χν ]  =  cm-1

[ ην ]  =  erg cm-3 sec-1 Hz-1 ster-1 [ ν ]  =  Hz
To complete the picture, it is necessary to supply the opacity, χν, 
and the emissivity, ην.  A substantial portion of PHY 3700 is 
devoted to the microphysics of atoms and molecules necessary 
to determine these quantities.  In RMHD, the essential concept is 
that these quantities should be determined in the co-moving 
(rest) frame of the fluid.  In this frame, we expect that the 
general findings of Chapters 1 and 4 of PHY 3700 ought to apply 
to aid in the determination of the source function and the 
opacities. 

Each successive equation in this sequence of moments 
equates the time derivative of a given moment to the 
divergence of the next higher-order moment, as well as the 
contributions of the emission and absorption at each moment 
level.  

To be actionable (i.e., useful) this system of equations must be 
truncated at some moment level.  Typically, one might try to 
express the radiation pressure tensor ℙ in terms of the energy 
density (the so-called Eddington approximation is ℙ = ⅓ E 𝕀, 
where 𝕀 is the unit tensor).  Such a closure is not automatic, 
and its success generally requires some careful thought and a 
priori knowledge about the anticipated behavior of the 
radiation field.  The material fluid equations, of course, require 
the very same closure that is embodied in the so-called 
equation of state, which relates the gas pressure to the mass 
and internal energy densities.  In some sense, the distinction 
between these two closure schemes is that usually ions, 
electrons, atoms and molecules that make up the material 
collide frequently with one another on macroscopic time 
scales leading to a statistically steady situation that can be 
described by a simple equation of state.  Photons do not 
collide with one another (at least, not to any great extent), but 
rather are forced to move toward a statistical equilibrium 
through their frequent encounters with the material through 
emission and absorption.  If the photon mean free path λ
(essentially the reciprocal of the opacity) is large compared to 
a typical fluid length scale l, then there will generally be an 
insufficient number of emissions and absorptions to force a 
(local) statistical equilibrium.  Hence, one does not expect any 
simple (i.e., universal and local) closure relationship between 
the radiation pressure tensor and the radiation energy density 
in such cases.

Many of the books on radiation/radiation hydrodynamics are 
ultimately concerned with the closure issue.  Variable 
Eddington Factors offer one avenue.  Especially in situations 
where the radiation field goes from being optically thick to 
optically thin, it may be necessary to solve the original transfer 
equation directly. 

In any event, the full Iν, usually contains way more 
information than we want (or actually require) for our 
program.  We are interested in frequency-integrated 
quantities like (e.g., [3700:2.1.22]):

𝐼(𝒙, 𝑡; 𝐧) ≡ න

0

∞

𝑑𝜈 𝐼𝜈(𝒙, 𝑡; 𝐧)

𝜂(𝒙, 𝑡; 𝐧) ≡ න

0

∞

𝑑𝜈 𝜂𝜈(𝒙, 𝑡; 𝐧)

as well as angular moments, like (compare with equations 
[3700:2.1.23], [3700:2.1.24])):

𝐽𝜈(𝒙, 𝑡) ≡
1

4𝜋
න𝑑𝐧 𝐼𝜈(𝒙, 𝑡; 𝐧)

𝑯𝜈(𝒙, 𝑡) ≡
1

4𝜋
න𝑑𝐧 𝐧 𝐼𝜈(𝒙, 𝑡; 𝐧)

𝕂𝜈(𝒙, 𝑡) ≡
1

4𝜋
න𝑑𝐧𝐧𝐧 𝐼𝜈(𝒙, 𝑡; 𝐧)

Notice that Jν, is a scalar, Hν, is a vector, and 𝕂𝜈is a tensor.  If 
we multiply these equations by 4𝜋 steradians (ster), and 
divide by the speed of light c, as necessary, we obtain (cf. 
[3700:2.1.20]) the radiation energy density, radiation energy 
flux, and the radiation pressure tensor (see also 
[3700:2.1.20], [3700:2.1.25]):

𝐸 =
4𝜋

𝑐
𝐽 𝑭 = 4𝜋𝑯 ℙ =

4𝜋

𝑐
𝕂

[ E ]  =  erg cm-3 [ F ]  =  erg cm-2 sec-1 [ ℙ ]  =  erg cm-3

By integrating the transfer equation over frequency and 
subsequently taking successive angular moments with 
respect to powers of n, we arrive at a continuum, or “fluid” 
description of the radiation field, or equivalently, photon 
gas.  In fact, this sequence of equations already has the 
desired property of being in the “conservation” form our 
program calls for.  The zeroth and first angular moments 
are the two equations at the very bottom of this slide. 

The relative size and therefore importance of the terms 
in the transfer equation, and its moments, can be 
estimated in terms of two dimensionless parameters, 
u/c, the ratio of the typical material velocity to the speed 
of light, and l /λ, the ratio of typical length scale l of the 
material to the photon mean free path λ./1/

l /λ <<u/c<<1: Free Streaming:  The photons are virtually 
decoupled from the material.  It is pointless to carry the 
radiation field along in the problem, and a direct 
solution of the transfer equation along characteristics is 
preferred to a continuum fluid description.  There is no 
sensible closure relation for the tensor ℙ.  Basically, the 
entire right side of the equations are negligible. 
u/c<<l /λ<<1: Streaming:  The u-independent terms on 
the right side of the equations are now more important 
than the time derivatives on the left side.  The flux 
divergence terms are dominant.  The u-dependent terms 
on the right sides are entirely negligible. 
1<<l /λ<<c/u: Static Diffusion:  The time derivatives on 
the left are entirely negligible.  The u-independent terms 
on the right side of both equations are now dominant.  
Away from boundaries, the Eddington Approximation is 
a good closure option.
1<<c/u<<l /λ: Dynamic Diffusion:  The u-dependent 
terms on the right sides are now more important than 
the flux divergence terms on the left.  The time 
derivative on the left of the momentum equation (but 
not necessarily the energy equation) remains entirely 
negligible.  The Eddington Approximation is an even 
better closure scheme.  The photons are so closely 
coupled to the material that they essentially behave like 
an additional (massless) ideal gas with a γ of 4/3.

/1/Any of the books on radiation hydrodynamics cited 
above walk through these scalings in their own 
particular fashion.  I like the discussion in Mih1984.  I 
was fortunate to attend Dimitri Mihalas’s lectures at the 
University of Colorado in 1983 as he was preparing the 
book cited above.  I have a copy of his hand-written 
lecture notes that are in some places, like this topic of 
relative importance of terms, a lot clearer than the final 
published monograph.  If you’d like a copy of these 
notes, we can supply it to you.  Another very impressive 
teacher and a brilliant and gentle man.



The Electromagnetic Field
Turning to the electromagnetic field, in SI physical units, the 
Maxwell Equations are provided in Chapter 2 of PHY 6756 (cf. 
[6756:2.1-4]):

𝜵 ⋅ ෩𝑬 =
1

𝜀0
𝜌𝑒 𝜵× ෩𝑬 = −

𝜕෩𝑩

𝜕𝑡

𝜵 ⋅ ෩𝑩 = 0 𝜵 × ෩𝑩 = 𝜇0 ෨𝑱 + 𝜇0𝜀0
𝜕෩𝑬

𝜕𝑡
where c2 = 1/𝜇0𝜀0.  We write them here adorned with tildes 
(which are absent in PHY 6756) to distinguish them from the 
cgs/esu quantities, which shall be unadorned.  The conversion 
to cgs/esu units is best accomplished simply by defining new 
cgs/esu fields, charge densities and electric current densities 
(distinguished here from their SI counterparts with tildes) using 
the following prescription:

෩𝑬 =
1

4𝜋𝜀0
𝑬 ෩𝑩 =

𝜇0
4𝜋

𝑩

𝜌𝑒 = 4𝜋𝜀0 𝜌𝑒 ෨𝑱 = 4𝜋𝜀0 𝑱

Substituting these formulae directly into the SI Maxwell 
Equations above immediately yields their cgs/esu counterparts:

𝜵 ⋅ 𝑬 = 4𝜋𝜌𝑒 𝑐𝜵 × 𝑬 = −
𝜕𝑩

𝜕𝑡

𝜵 ⋅ 𝑩 = 0 𝑐𝜵× 𝑩 = 4𝜋𝑱 +
𝜕𝑬

𝜕𝑡
The physical units of these quantities are as follows:  
[ E ] = [ B ]  =  gm1/2 cm-1/2 sec-1 =  Gauss  = Statvolts cm-1

[ ρe ]  =  gm1/2 cm-3/2 sec-1 =  esu cm-3

[ J ]  =  gm1/2 cm-1/2 sec-2 =  esu cm-2 sec-1

Starting from Maxwell’s Equations, we can construct three 
conservation laws as follows./2/  First, take the divergence of 
Ampère’s Law and use Gauss’s Law to arrive at the 
conservation of electric charge:

𝜕𝜌𝑒
𝜕𝑡

+ 𝜵 ⋅ 𝑱 = 0

Second, take the dot product of Ampère’s Law with the 
electric field and subtract the dot product of Faraday’s Law 
with the magnetic field, to provide the conservation of 
energy (as seen from the perspective of the electromagnetic 
fields).

The energy density in the electromagnetic fields is proportional to the 
sum of the squares of the electric and magnetic field vectors./3/  The 
energy flux, S is commonly referred to as the Poynting Vector.  The dot 
product of the electric current density and the electric field can then be 
interpreted as the rate at which energy is exchanged between the 
electromagnetic field and the fluid (which after all supports the electric 
current density).  Finally, to obtain the third conservation law (for the 
momentum carried by the electromagnetic field), start with the Lorentz 
force (in cgs/esu units)/4/, which we will denote by L, and use Gauss’s 
Law to eliminate the charge density and Ampère’s Law to eliminate the 
electric current density.  Making use of Faraday’s Law and Gauss’s Law 
for the magnetic field we arrive, after some vector identities at the 
desired result.

Notice that the momentum density carried by the electromagnetic field 
is simply the Poynting Flux (divided by c2), the momentum flux density 
is the Maxwell Stress Tensor 𝕄, and the Lorentz force L describes the 
exchange of momentum with the fluid (which, again, carries the electric 
current density and supports the net build-up of electric charge).  To 
this point, we have made no approximations, thus our equations are 
Lorentz invariant./5/

𝕄 ≡
1

8𝜋
𝑬 2 + 𝑩 2 𝕀 −

1

4𝜋
𝑬𝑬 + 𝑩𝑩

To close these equations and render them actionable, it is necessary to relate (in some fashion) the electric charge 
density ρe and the electric current density J to the electromagnetic fields.  Like RMHD, the essential concept is 
again that this closure should be determined in the co-moving (rest) frame of the fluid.  One again has the option 
of working in these (generally non-inertial) co-moving frames (so-called Langrangean formulation of the 
equations) or, of transforming the results back to a fixed inertial Eulerian (i.e., laboratory) frame of reference.  As 
with the radiation field, there are clear advantages and disadvantages to each approach./6/

The two dimensionless parameters that sort out the behavior of the electromagnetic fields are u/c, and u/l σ’.  And 
our limiting regimes of behavior are (throughout we drop all terms of order u2/c2):
u/l σ’<<u/c<<1: Ideal MHD: The limit of infinite conductivity E’ is negligible, so E = - u x B/c, and the displacement 
current in Ampère’s Law can be dropped.  This provides J in terms of the curl of B.  Faraday’s Law becomes the 
magnetic induction equation (without the magnetic diffusion term [6756:2.51]).  The Lorentz force takes its familiar 
form [6756:2.26].  The electric charge density is negligible.
u/c<<u/l σ’<<1: Resistive MHD:  E’ is no longer negligible but is essentially solenoidal in character, so we must retain 
both terms in E = - u x B/c + J/σ.  Faraday’s Law is now the full magnetic induction equation provided by [6756:2.9].  
The Lorentz force is unchanged. 
1<<u/l σ’<<c/u: Resistive EHD:  The electric charge density ρe’ is no longer negligible, and E’ is now irrotational in 
character.  The magnetic field in the commoving frame B’ has become so small (because the solenoidal component 
of J has declined at the expense of the irrotational component) that we can approximate B = + u x E/c.  The time 
derivative in Faraday’s Law can be dropped, but the displacement current must now be retained in Ampère’s Law.  
Instead of solving the magnetic induction equation, we now solve the charge conservation equation [6756:2.19] but
with the current density given by J = σE + ρeu (equivalent to J’ = σ’E’)---and not the expression used in this equation.  
The electric field E = E’, is then recovered directly from Gauss’s Law, and the Lorentz force is now ρeE. 
1<<c/u<<u/l σ’: Ideal EHD:  The conductivity is now so miniscule that the advection of charge dominates the internal 
currents leading to J = ρeu in the laboratory frame (J’ = 0).

In MHD,  or Magnetohydrodynamics, the magnetic field dominates over the electric field.  The electric current 
density is solenoidal so there is no electric charge density ρe, and therefore the electric field is also solenoidal.  
Faraday’s Law provides the time evolution of the magnetic field.  The electric field and the electric current density 
then follow directly from B.  The Lorentz force is dominated by the J x B term.

In EHD, or Electrohydrodynamics, the electric field dominates over the magnetic field.  The electric current density in 
the commoving frame is irrotational, so there is almost no magnetic field generated by this current.  Instead, 
through its divergence, it creates an electric charge density.  The conservation of electric charge provides the 
evolution of the electric charge density.  The electric field is then obtained from Gauss’s Law, and then the electric 
current density and the magnetic field follow from ρe, E and u.  The Lorentz force is dominated by the ρeE term.

/2/Many authors describe this construction, e.g.., Ogi2016, Rob1967, 
Kul2005, take your pick.  Here, I am following Par1979.  Again, this can 
also be accomplished beginning directly with the MHD approximation, 
resulting in the absence of several terms (usually proportional to ‖E‖2 

and ρe ) that appear in our equations, and the explicit appearance of 
the fluid velocity u.

/3/I am using the awkward notation of ‖E‖2 for the magnitude of the 
electric field vector, rather than simply E2 to distinguish it from the 
square of the energy density of the radiation field, which, would also 
be E2.  Ditto for J versus J (MHD electric current density versus mean 
intensity of the radiation field).  The unfortunate lack of distinct 
symbols for key quantities reflects the fact that radiation 
hydrodynamics and MHD have grown up without much contact to 
date.  To be consistent, I should put all vector lengths in such a 
format, but, I will be lazy with things like the fluid velocity u, and just 
write u2 say, because there is no danger in confusing it with 
something else.

/4/To get the cgs/esu expression given here, begin with the SI result [6756:2.18] and use the equations that 
relate the tilded and nontilded quantities.

/5/Some authors cited above use the negative of our 𝕄 as their definition of the Maxwell Stress Tensor.  The 
Lorentz invariance of these equations follow from the Lorentz invariance of the Maxwell Equations.  Proving the 
Lorentz Invariance of the latter can be accomplished in several ways.

/6/Both Mih1984, Pom2005, Cas2006 and Hub2015 all have authoritative discussions on this point for radiating 
fluids.  Rob1967, Par1979 and Dav2001 do the same for magnetized fluids.  The earlier works by Pai1963 and 
Pai1966 are also worth consulting.  The Lagrangean description is the point of departure for formulating 
variational approaches for (ideal) MHD and gravity.  Kul2005 and Ogi2016 both cover the essential aspects of this 
approach.  It is not used much in radiation hydrodynamics because it works best with isentropic (reversible) 
processes. 



The Gravitational Field
It is not straightforward to derive a pair of energy and momentum 
conservation equations for the gravitational field.  The origin of these 
difficulties traces directly to the fact that there is no time derivative in the 
Newton/Poisson Equation---the gravitational potential Φ changes 
immediately everywhere in the universe in response to changes in the 
matter density.  We would have encountered these same issues had we 
not included the additional time derivative term in the radiation transfer 
equation.  Effecting the same sort of resolution for the gravitational field 
is possible, but proves to be much more complicated since we must 
ultimately embed the scalar Φ, into a tensor.  The procedure is called the 
post-Newtonian approximation to general relativity, and it is widely used 
in many astrophysical applications when a causal treatment of gravity is 
essential.  This approach takes us too far afield.  Instead, we will instead 
finesse our way through some of the ambiguities that arise in leaving the 
Newton/Poisson Equation as it is.

With these caveats in mind, the starting point is to use our “intuition” to 
guess that the energy density attributable to (notice, we are careful here 
not to say of ) the gravitational field is the product of the gravitational 
potential Φ and the matter density ρ, and we set about computing its 
time derivative as follows:

A comparison of the expressions for 𝔾 and 𝕄 suggests that we might 
instead regard the first term of 𝔾 as the energy density of the 
gravitational field.  This too will generate another satisfactory 
expression if we put a negative sign in front of it and take the energy 
density of the gravitational field as negative definite. The 
corresponding flux is then just one of the two terms in our previous 
expression for G . 

Clearly the difference between this alternative and our previous 
expression of the conservation of gravitational energy is an equation 
of the form 

𝜕

𝜕𝑡
𝜌Φ =

𝜕𝜌

𝜕𝑡
Φ+ 𝜌

𝜕Φ

𝜕𝑡
In the second term we replace ρ by the Laplacian of Φ using the 
Newton/Gauss Equation. Next integrate by parts twice to move the Laplacian 
from Φ to its time derivative. This generates twice the divergence of the 
vector G . Next exchange the time derivative and the Laplacian and use the 
Newton/Gauss equation in the other direction to bring back ρ in the time 
derivative. This creates an additional copy of the first term.  Leading to

𝜕

𝜕𝑡
𝜌Φ = 2

𝜕𝜌

𝜕𝑡
Φ − 2 𝜵 ⋅ 𝑮

The gravitational energy flux G  is quadratic in the gravitational potential and 
contains the antisymmetric product of the gradient of Φ and its time 
derivative. The gravitational stress tensor 𝔾 is:

𝔾 ≡
1

8𝜋𝐺
𝜵Φ 2 𝕀 −

1

4𝜋𝐺
𝜵Φ𝜵Φ

𝜕

𝜕𝑡
Γ + 𝜵 ⋅ 𝓕 = 0

Again, it is worth pointing out that the noncausal formulation of 
gravity is at the heart of many of these issues. The article by Dam1989
describes the attendant issues of trying to create a causal theory of 
gravity very clearly without recourse to general relativity.  It is an 
absolutely superb article, and it is well worth your careful study.  
Har2001 is also a good place to look.  After making your way through 
this material, you will understand why we didn’t try to go there in 
these two lectures. And also, why, as tempting as it might be to simply 
turn the Laplacian into the D’Alembertian in the Newton/Poisson 
Equation, such an approach really does not work. 

The Matter
We have appended a force density f on the right side of the equation to account for the 
exchange of momentum between the material and the (electro)magnetic and radiation 
fields.  One of the contributions to f is the Lorentz force L you already know, and can 
immediately write down, from PHY 6756 in the MHD approximation.  The contribution 
from the radiation field will be new, and is determined in the next several slides.

The equation for the internal energy density e is (6756:1.59), but we have recast the 
right side of that equation in a more general form to account for entropy generation 
associated with the irreversible transfer of energy between the material and the 
radiation and (electro)magnetic fields (gravity does not enter here).  In any event, the 
heat conduction by radiation must be omitted here because we shall handle that 
explicitly in what follows.  The thermal conduction by the material can be retained if 
desired./7/

We remark in passing that the internal energy density for the material contains not 
only the thermal energy due to the random motions of the atoms, electrons, 
molecules, etc, but also any internal energy reservoirs such as ionization 
/recombination, excited level populations, population inversions (masers), nuclear 
reactions, and so forth.  Several of these processes were described in Chapter 1 of 
PHY 3700.  Radiation of course plays a very prominent role in mediating many of 
these atomic and molecular processes, and so it is essential that these processes be 
treated accurately here on the material side of the ledger as well as on the radiation 
field side of the ledger.  Failure to do so will result in serious errors.  Thus, the 
equation of state ([6756:1.60]), p = (γ-1)ρe, γ=cp/cV = 5/3 for a monoatomic gas with 
no internal degrees of freedom, which omits all of these interesting radiative 
processes, should be used with great care, if at all in most RMHD applications.
With these caveats in mind, we leave the equation of state open for the moment and 
use the standard manipulations of the three fluid equations (continuity, Euler and 
internal energy) to arrive at the conservation laws for the kinetic energy density and 
the internal energy density of the material.

/7/I take a lot of liberties with equation (6756:1.59) to arrive at this result.  First, the 
original equation traces its heritage to the thermodynamic relation de = T ds + pρ-2 dρ
where (again, sorry for the multiple use of symbols), s is the specific entropy (entropy per 
unit mass).  Lan1966 indicates how one goes from thermodynamics to internal energy 
conservation.  In particular, the coefficient of div u, is p/ρ---it is (γ-1)e, only if it is an ideal 
gas.  The right side internal energy equation is then derived from the T ds-term.  Thermal 
conduction, if it is present in any appreciable amount certainly contributes to this term 
(which deals with irreversible conversion of ordered energy to disordered energy) and so 
will the radiation field.  In some limiting cases, the coupling of the radiation field to the 
internal energy can be adequately described by a temperature gradient, but we will 
derive a result that is more widely applicable later.  So I dispense with both terms on the 
right side of [6756:1.59] and replace it with a generic placeholder that will be determined 
later.

Ambartsumian & Sobolev



Full Cost Accounting
So, we have succeeded in constructing our set of nine (9) conservation laws.  
And, in so doing, we have identified the combinations of that describe how 
energy and momentum are exchanged between the material and the three 
classical fields.  As a bonus, we also can determine which aspects of these 
changes are irreversible in that they lead to the increase of entropy.

Therefore, it remains only to execute the following tasks, which are required 
to render this a closed and actionable system of equations.

• [Not Optional] We must calculate the integrals that appear on the right 
sides of the two radiation equations and subsequently determine what 
contributions they make to the force density and the entropy generation 
terms in the material equations. 

• [Not Optional] We must determine two closure relationships to express 
the radiation pressure tensor ℙ and the material pressure p in terms of 
the remaining dynamic quantities.

• [Optional] We may wish to reduce the full Maxwell Equations to the 
magnetohydrodynamic (MHD) or electrohydrodynamic (EHD) limits 
under the assumption that the electric conductivity σ’ in the co-moving 
rest frame of the material is either immensely large (MHD) or incredibly 
small (EHD). 

• [Optional] We may wish to reduce the radiation hydro equations to the 
diffusion or streaming limits under the assumption that the typical 
photon mean free path λ is much smaller, or much larger, than any other 
length scale, l, in the system.

It would take us too far afield, but suffice it to say that energy and linear 
momentum are not the only useful conservation laws.  Angular momentum is 
quite important, particularly for rotating systems, to treat in parallel with 
energy and linear momentum.  You might like to try to derive an analogous 
set of conservation of angular momentum equations for the material, 
radiation, electromagnetic and gravitational fields.  Do they tell you anything 
new?  The moments of inertia of a distribution of matter in motion can also 
yield important relations, the so-called tensor virial equations, that are very 
helpful in sorting out the behavior of self-gravitating systems.  A good place to 
start with some of these concepts is Col1978 and references therein.

There is no fundamental reason why isolated magnetic charges (or monopoles, 
North and South, say) could not exist.  No one has found one to date.  But they 
could be accommodated in Maxwell’s Equations with a magnetic monopole density 
ρm and corresponding magnetic current density, say Jm.  On monopoles per se, see 
Raj2016 and Gia1984.  For interesting speculations on how Maxwell’s Equations 
and our universe might operate with an ample supply of monopoles see Par2007

Symbolically, these equations equate the sum of the time derivative of a 
momentum(energy) density plus the divergence of a momentum(energy) flux, with 
the total (net) exchange of momentum(energy) with all the other distinct 
constituents.  When the energy conservation equations for all constituents---fluid 
kinetic, fluid internal, gravitational, magnetic, and radiation---are added together for 
an isolated astrophysical system, the exchange terms cancel exactly, leaving a 
balance between the time derivative of the total energy density and the divergence
of the total energy flux.  A similar statement applies for the momentum.  Mass, 
energy, (linear) momentum, angular momentum and certain virial quantities are also 
conserved for isolated astrophysical systems.

In attempting to arrive at this desired outcome, we shall be forced to grapple with 
frames of reference and the overarching requirement that our predictions should not 
depend upon the spacetime coordinate system we employ to carry out our solution 
of the conservation equations.  That this seemingly ancillary complication should 
arise and play a rather prominent role in our deliberations can be attributed to two 
essential points.  

First, once the material is permitted to move about unfettered in a complicated 
(perhaps even turbulent!) fashion, one is hard pressed to identify any particular 
reference frame Σ that stands out above all others as the obvious place in which to 
formulate the problem.  Consequently, we are forced to accept the fact that any 
inertial frame of reference ought to be as good as any other to work in.  In other 
words, we would like the underlying astrophysics to be “invariant” between inertial 
frames of reference.  The transformations of space and time which leave some 
quantity (or aspect) invariant define the geometry of that space-time.

Second, in order to be successful with defining the proper geometry it is necessary 
that the laboratory (inertial reference) frame equations that we used in PHY 3700 and 
PHY 6756 to define our fields---the fluid equations, Maxwell’s Equations, the radiative 
transfer equation, the magnetic induction equations, the Newton/Poisson Equation---
must all be invariant under the same set of transformations.  In fact, they are not.  
The fluid equations, the Newton/Poisson Equation, and the magnetic induction 
equation are invariant under Galilean transformations between inertial frames.  The 
full Maxwell Equations and the radiative transfer equation are invariant under 
Lorentz transformations between inertial frames.

There are several strategies for circumventing this inconsistency.  We 
can accept the fact that all experiments to date suggest that the Lorentz 
transformations (and not the Galilean transformations) are a correct 
description of the geometry of the spacetime we live in locally (i.e. on 
scales small compared to the spatial curvature).  This means Maxwell 
and the radiative transfer equation are fine, but we must come up with 
a Lorentz invariant description of the material fluid equations.  And 
then, the only way to incorporate gravity is through general relativity 
and the curvature of the space-time.  This approach has the advantage 
that it leaves nothing to the imagination, but the disadvantage that it is 
very complex and poorly suited to situations in which the typical fluid 
speeds are much smaller than the speed of light. Lic1967 and Syn1957, 
are good places to start.

Alternatively, we can work the other direction and try to make suitable 
modifications of the Maxwell and the transfer equations so that they are 
Galilean invariant.  Indeed, magnetohydrodynamics (MHD) as set out 
Chapter 2 of PHY 6756 is Galilean invariant.  In MHD the electric field 
tends to be solenoidal, and smaller in magnitude than the magnetic 
field.  There exists a second limiting case, called electrohydrodynamics
(EHD), where Maxwell’s Equations can again be made Galilean invariant.  
In this case the electrical conductivity is assumed to be nearly zero (as 
opposed to incredibly large, as in MHD), so that there is no electric 
current in the rest frame of the fluid.  In EHD, the magnetic field tends to 
be smaller in magnitude than the electric field. 

But our good fortune ends there.  Any efforts to render the radiative 
transfer equation Galilean invariant does substantial damage to the 
usefulness of the equation if the radiation is not effectively in the static 
diffusion regime (i.e., the photon mean free path λ is much smaller than 
a typical fluid length scale l, and the typical fluid speed u is nowhere 
near the speed of light c).  This is because the speed of light is not a 
Galilean invariant, and so we make errors in assessing aberration and 
Doppler shift between moving frames.  This in turn leads to spurious 
energy and momentum losses/gains. 



Better Living Through Geometry
An event in the spacetime in which our lives and the laws of physics 
play out consists of a spatial address provided by three coordinates and 
a time at which the event takes place at that spatial address.  Four 
numbers---four dimensions to our spacetime.  Conversely, spacetime is 
the collection of all possible spacetime events.  Of course, although 
everyone has their own address systems and watches tailored to suit 
their needs, for our own sanity, we require that everyone end up with 
the same physics relating a given sequence of events.  Equivalently, we 
say that they laws of physics should be invariant under mappings or 
transformations between all acceptable address systems and time 
keeping mechanisms.  We emphasize the word acceptable here 
because we can envision unacceptable systems, for example, a non-
inertial reference frames where we must supply additional terms like 
the Coriolis “force” to obtain invariance (see, for example PHY 6756, 
Section 1.4).

The so-called geometry of our 4-dimensional spacetime is determined 
(a) by those quantities that we require to be invariant, and (b) the 
collection---or more precisely, the group---of transformations that 
leave those quantities invariant.  In classical, Newtonian physics, this 
requirement is that the time difference between two distinct 
spacetime events |t1 – t2| , and, the spatial (Euclidean) distance 
between them ‖x1 – x2‖ should both be invariants.  The 10-parameter 
(Lie) group of linear transformations that guarantee these invariants is 
called the Galilean Group.  It consists of an arbitrary shift of the origin 
in space and time (4 parameters), a boost to a frame moving at a 
constant velocity in some arbitrary direction (3 parameters) and a 3-
dimensional rotation of the axes of the spatial coordinate system about 
the origin (3 parameters).  Thus, a unique element (transformation of 
spacetime) of the Galilean Group connects the spacetime coordinates 
of any two inertial frames of reference.  We call this a group because 
the composition of any two transformations yields a third 
transformation that is also a member of the group.  There is an obvious 
identity transformation within the group (no rotation, no velocity, no 
origin translation), and to each transformation there is an inverse that 
maps the new spacetime coordinates back to the ones you started 
with./8/

To be concrete, let Σ’, be a frame of reference whose x-y-z coordinate axes are rotated 
by the three familiar Euler angles with respect to a fixed inertial laboratory frame Σ.  
Further, suppose that Σ’ travels at a uniform velocity v with respect to the lab frame Σ, 
and that the origins in space and time of Σ’ and Σ are offset by a constant spatial vector 
b and time τ.  Then the elements of the Galilean group that connect these two frames 
G and G-1 are:
G (O, v, b, τ) [ct,x]T = [c(t+τ), Ox-vt+b]T = [ct’,x’]T

G-1(OT, v’, b’, -τ) [ct’, x’]T = [ct,x]T

v’ = - OTv
b’ = - OT(b+vτ)

Here, O, is a real 3x3 matrix that accounts for the (proper) rotation and depends upon 
the three Euler angles.  It is an element of the Special Orthogonal Group, SO(3):  the 
transpose OT is also O’s inverse, and both of their determinant are +1./9/

An astrophysicist, typically arranges matters to dispense with the translation of the spacetime
origin (set b = 0, and τ = 0) and uses the proper rotation, O, to conveniently align the boost v 
with the x-axis and x’-axis, say, leading to the familiar Galilean transformations:
x = x’ + vt’ x’ = x – vt y=y’ z=z’ t=t’
Conversely, a mathematician would generalize in quite the opposite direction and notice that 
the spacetime event can be conveniently described by a 4-vector 

x = [ct, x]T = [x0, x1, x2, x3]T = xα

and that the elements of the Galilean Group can then be represented as 4x4 real matrices Λα
β

which act upon the 4-vectors according to:/10/
x’β = Λα

β xα [β = 0, 1, 2, 3 and summed over all α’s].
Instead, if we decide to construct our geometry by demanding that the proper time interval
between our two space time events, - c2 |t1 – t2|2 + ‖x1 – x2‖2, is invariant, then our spacetime is 
a Minkowski spacetime.  This simple, but conceptually far reaching, change in perspective 
replaces the 10-parameter Galilean Group, with the 10-parameter Poincaré Group.  The 
Poincaré Group differs from the Galilean Group only in the manner in which the (3 parameter) 
boosts are treated---the 3-dimensional rotations (encoded in O ) and the 4-parameter 
spacetime origin offset remain unaltered.  The mathematician sees no essential difference in 
structure with the previous situation, the transformation matrix Λα

β simply contains different 
entries, that’s all.  The astrophysicist, of course sees the universe in an entirely different light 
(pun intended):

x = Γv (x’ + vt’) x’ = Γv (x – vt)
y=y’ z=z’
t = Γv (t’ + vx’/c2) t’ = Γv (t – vx/c2)
Γv = (1 – v2/c2)-1/2

In the commoving rest frame of the material, a constitutive relation, Ohm’s Law, is 
employed to relate the electric current density to the electric field

J’ = σ’E’
[ σ’ ]  =  sec-1

In more realistic and complicated situations σ’ might be a tensor and the right side of 
Ohm’s Law may also contain the magnetic field B’, and pressure gradients.  Again, to 
illustrate how the program works we will take σ’ to be a constant scalar.  MHD obtains in 
the limit that the characteristic timescale 1/σ’ is much shorter than any other relevant 
timescales (like l /u) in the problem under consideration.  In other words, there is ample 
current density to be had for even a modest amount of E’.  EHD pertains to the opposite 
case that 1/σ’ is much longer than most relevant time scales of interest in the problem.  
Put another way, it is very difficult to generate much J’ even for whopping electric fields.
To determine the Lorentz force back in the Eulerian laboratory frame of reference Σ, we 
need the transformation properties of the electromagnetic fields.  Although the charge 
density ρe and J combine to form a 4-vector, [cρe, J], which we know how to transform 
under the Poincaré Group, E and B on the other hand combine to form a 4-tensor, Fαβ.  
Mathematically, tensors transform like 

Fαβ’ = Λμ
α Λν

β Fμν.
Astrophysically, (using the same simplifications discussed above in §VIII) we obtain:

Ex’ = Ex Bx’ = Bx

Jy’ = Jy Jz’ = Jz

Jx’ = Γu (Jx – ρeu) Jx = Γu (Jx’ + ρe’ u)
ρe’ = Γu (ρe – uJx/c2) ρe = Γu (ρe’ + uJx’/c2)
Ez’ = Γu (Ez – uBy/c) Ez = Γu (Ez’ + uBy’/c)
Ey’ = Γu (Ey + uBz/c) Ey = Γu (Ey’– uBz’/c)
Bz’ = Γu (Bz + uEy/c) Bz = Γu (Bz’ – uEy’/c)
By’ = Γu (By – uEz/c) By = Γu (By’ + uEz’/c)

(Sigh, the mathematicians have it all over the astrophysicists when it comes to compact 
notation.)

/8/Those who could care less about transformation groups on spacetimes can skip most of 
this.  If you are happy with a look-up table of transformations between reference frames Σ
and Σ’, then none of this is necessary.  For the rest, there is a lot of useful mathematical 
material on the internet.  If you Google subjects like “classical groups”, “Galilean Group”, 
“Poincaré Group”, “Minkowski Space”, “Euclidean Space”, “Orthogonal Group” and 
“Lorentz Group” you have the option of selecting a link that is at the right level.  Pen2005
covers these concepts and provides additional reference material.  At times, his approach 
can be very tough going.  The idea that the invariants, and the transformations which 
preserve these invariants, define the geometry of the space is a profound concept.

/9/The elements of orthogonal group O(3) that have determinant -1 still preserve the 
invariants, but contain reflections which transform right-handed coordinate triads into 
left-handed triads.  So they are discarded in the subgroup SO(3).  A subgroup of a group is 
essentially a self-contained group embedded within the larger group.  The representation 
of the 3x3 orthogonal matrices in terms of the Euler angles is straightforward, but quite 
cumbersome.  Lan2004 covers this very nicely.  SO(3) and the larger Galilean and Poincaré
groups are not commutative, so that the order of application of transformations matters.  
Here, the superscript “T” means transpose.

/10/Setting the SO(3) subgroup aside, the Λ’s are very easy to write down for Galilean boosts.  So easy in fact that one may well wonder why bother with all this machinery.  I think it helps to reduce some of the mystery and discomfort around the tensor notation 
that is employed in relativity.  Finally, we are also neglecting the translations in focusing on the matrix representation of the group elements.  Both the translations and the proper (determinant = + 1) rotations, while subgroups of the full 10-parameter Lie groups 
don’t add a lot to our knowledge.  The boosts are also a subgroup of the Galilean Group but they are not a subgroup of Poincaré Group: the composition of two nonparallel boosts induces a rotation related to the (Lllewellyn) Thomas Precession.



Lorentz Transformations of the Radiation
In the commoving frame of the fluid, Σ’, one can, of course, based on your work 
in PHY 3700, devise all sorts of fascinating and complicated behaviors for the 
opacity χ’ν’ and the emissivity η’ν’ and their dependences upon n’.  To illustrate 
how RMHD works, we’ll take the simplest illustrative example, and leave the 
remainder for you to explore.  We’ll treat the atmosphere as grey, and omit any 
scattering (χ’ν’ = κ, κ a constant).   The source function is just the Planck Function 
based on the temperature of the material./11/  As you discovered in your work 
on stellar atmospheres, these are in fact not bad approximations to reality in a 
number of astrophysical circumstances.  In the inertial, laboratory frame, Σ, 
however, the emission and the opacity are not isotropic due to the Doppler shift 
and aberration of the photons between these two frames.

The energy and momentum of a photon of frequency ν and propagation 
direction n can be combined into a (Galilean or Lorentz, take your pick if you are 
of the mathematician persuasion) 4-vector, hνc-1 [1, n] and transform the same 
way as the spacetime event [ct, x] depending upon which spacetime geometry 
you prefer.  We’ll leave the easy (Galilean) one to you.  For the astrophysicist, 
(with the boost V aligned with the x-axis and x’-axis as before),/12/ 

ν = ΓV ν’ ( 1 + V n’x/c) ν’ = ΓV ν ( 1 - V nx/c)
ny = (ν’/ν) n’y nz = (ν’/ν) n’z

nx = (ν’/ν){n’x + ΓV (V/c)[1 + (ΓV Vn’x/c)/( ΓV + 1)]}
n’x = (ν/ν’){nx - ΓV (V/c)[1 - (ΓV Vnx/c)/( ΓV + 1)]}

Setting the Lorentz factor ΓV = 1, and retaining only the first-order terms in V/c 
provides the usual formulae for the Doppler shift and aberration between 
moving frames of reference.  Of course, you found the Galilean version of these 
to be remarkably simple---so simple in fact that it does not even provide the 
frequency Doppler shift!  And so, it seems rather pointless to press on hoping for 
a Galilean invariant formulation for the radiation field.  

/11/The definition of the Planck Function, Bν(T), is provided by equation (3700:2.4.8).

/12/I am using a capital “V” here because the nu “ν” is so hard to distinguish from the 
lower case vee “v”.  Sorry about this font silliness.  At any rate, it is easy enough to 
derive these equations for yourself noting that nu “ν” transforms like ct, and that νn
transforms like x.  Or, you can look them up in Mih1984.

Now, if we transform the differential operator on the left side of the transfer 
equation using the transformation properties of {t, x, n} to {t’, x’, n’} we find 
after some algebra that we end up with exactly the same differential operator 
in the commoving frame except that it is multiplied by an overall factor of 
(ν’/ν). /13/ Since both sides of the transfer equation must transform the 
same way to be invariant, we immediately know that the opacity has to 
transform in the same fashion as the differential operator! So this gives us one 
of the transformation properties presented on this slide.

To figure out how the emissivity transforms we ultimately have to figure out 
how the specific intensity transforms.  This is a much more complicated 
endeavor.  First, observe that we actually know how the photon phase space 
volume element dνdn transforms to dν’dn’ because we know how the 
frequency and direction of propagation transform. Next, we note that the 
number density of photons is the specific intensity divided by hνc.  This is the 
number per unit volume, per Hz, per steradian. Because we know how the 
spacetime volume element dtdx transforms we can now put all of this 
together and arrive at an expression for how many photons each observer 
counts. In order that they agree on this number we can then determine how 
the specific intensity must transform to assure this outcome. Mih1984 gives a 
very thorough discussion on this point as does Syn1957. The essential 
argument is due to Llewellyn Thomas in 1930. Once we know how the specific 
intensity transforms, the invariance of the transfer equation yields the 
emissivity transformation properties. 

/13/The Appendix of Pom2005 takes you through the steps.

It is worth mentioning here that the radiation field can also be polarized. In many 
cases this polarization, be it circular, linear or some combination of the two, 
represents a small percentage of the overall intensity. However, as detectors and 
telescopes improve it has become possible to measure very small levels of 
polarization from a variety of astrophysical objects. The monograph Lan2004 is 
the reference for the transfer of polarized radiation. The essential approach is to 
replace the specific intensity, which is a scalar function, with a vector containing 
four quantities (including the specific intensity as one entry) that take into 
account the state of polarization of the radiation. This vector is called the Stokes 
Vector. The transfer equation becomes a matrix equation for the four 
components of the Stokes vector, taking into account the possibility that the four 
components are mixed in passing through matter.  In particular, the presence of 
magnetic and electric fields in the material are effective agents from inducing 
polarization. Therefore the measurement of polarized radiation from 
astrophysical objects offers the tantalizing prospect of deducing critical 
information about the nature of the magnetic, and possibly electric, fields. 

Bondi Mihalas

Parker Thomas



Spherically-Symmetric Winds & Accretion
Mathematically, the 9 conservation laws take the form of nonlinear partial 
differential equations in four independent variables (3 space + 1 time). And 
generally speaking, with the exception of the tools and methods provided by the 
Lie Theory of symmetry transformations, as described for example by Ste1989 or 
Can2002, they must be solved by numerical methods and approximation 
schemes.  The one exception to this prevailing situation involves the use of special 
coordinate systems that are in some sense tailored to the geometry of the 
problem, be it a star (spherical, oblate or prolate coordinates), a double star 
system (bispherical coordinates), or a gaseous disk of some sort (toroidal, flat-ring 
cyclide coordinates). Moo1988 is a treasure trove of everything you could want to 
know about the available options and their essential properties.

This zoo of coordinate systems can be particularly useful because it sometimes is 
possible to separate the PDEs into some number of ODEs and remaining PDEs of 
lower dimensionality.  The monographs by Cam1997 and Bes2010 do this to great 
advantage for double stars and disks. As a rule, ODEs are much easier to solve 
numerically or analytically than PDEs. In the best of all possible situations, 
embodied by the cylindrical and spherical coordinate systems, the metric scale 
factors that enter into the definitions of div, grad and curl depend only upon the 
single (radial) coordinate. Thus a class of solutions exist that depend upon only a 
single spatial coordinate.  And further, if we seek steady solutions, we drop the 
time derivatives and our PDEs are truly just ODEs. In this lecture we restrict our 
attention to spherical systems to reap the benefits of these simplifications. 

The integration constants provided by the conservation of mass and energy, 
while very helpful in facilitating and interpreting a solution of the steady 
spherical accretion and wind problems, do not actually yield the complete 
solution to the problem. This unfortunate outcome is related to the fact that 
while the total energy of the flow is conserved, the flow does in general find it 
expeditious to transfer energy between kinetic, internal, gravitational, and 
radiation fields during the course of its sojourn from the stellar surface to the 
interstellar medium or vice versa. The net conservation statement cannot tell us 
why, how and where these transformations take place. The exchange terms 
that were derived in Lecture 1, of course, are what is required to describe these 
conversions. It follows that we need to keep one, or maybe two, of the 
individual conservation laws in play. Because we have the overall conserved 
integration constant, one of these equations follows directly from the solution 
of the others. In rotating (e.g. axisymmetric) systems, the conservation of 
angular momentum will yield an additional integration constant, but at the cost 
of an additional dependent variable (i.e., the azimuthal fluid velocity, say) and 
an additional PDE. Chapter 3 of PHY6756 provides a nice illustration of this 
point.

It is a very nice fact that the steady Euler Equation (and its Navier Stokes 
counterpart) are invariant under changing the sign (e.g., direction) of the radial 
velocity. So we get one equation that can describe both stellar winds and 
accretion onto compact objects! In this lecture you should always think about 
both applications in parallel. 

Here, we shall also assume that the flow resides around a massive condensed 
central object whose properties do not vary over the times scales of interest. This 
will be a reasonable approximation if the mass loss or gain is sufficiently small. 
This is realized in many, but not all, astrophysical situations. Now you can do 
something really fun. Try to put the time dependence back into the problem, and 
use the isothermal wind solution, say, to determine how the mass of the central 
object decays with time. In so doing, you will want to ensure that the 
gravitational potential weakens appropriately as the mass loss shrinks the central 
object. How long until our sun, for example, disappears? [Hint: use some of the 
typical solar values provided in Chapter 3 of PHY6756.]

Likewise, we shall assume that the gravitational field is produced entirely by the 
central compact object, and that the surrounding flow is sufficiently tenuous that 
its self-gravity can be neglected. Again, this is not unreasonable in many cases. 
Mathematically, however, it poses no essential difficulty to include the self-
gravity of wind, although it does certainly complicate the exposition. You might 
wish to take the isothermal wind solution and compute the self-gravity of the 
material in the wind a posteriori and see how large it is compared to the gravity 
of the central object. If you do so, you will find a puzzling result. What does that 
result suggest? For fun, you might try to write down, and see if you can solve the 
isothermal wind with self-gravity taken into account. What assumptions will you 
need to make to ensure that the problem is well-posed? Does self-gravity 
increase or decrease mass loss, terminal wind speed?

The Bondi-Parker Equations, labelled I and II, date back to the 1950’s. It is 
curious that the accretion aspect emerged first and the wind aspect 
almost a decade later. Perhaps thermodynamics has something to do with 
it. The accretion flow takes a very organized radial flow and converts it 
into disorganized thermal energy which, from an entropy perspective 
seems to go in the right direction. The wind, on the other hand, takes 
disorganized thermal energy and converts it into an organized radial 
outflow. Thinking about this rather blithely, it would seem to violate the 
second law of thermodynamics. Of course, it does not actually do so. Your 
refrigerator would also violate the second law of thermodynamics if you 
used this same reasoning---you can of course decrease the entropy if you 
compensate by doing pdV work on the system! This is what Parker’s wind, 
and your refrigerator, both manage to do. 

Yet, even prominent astrophysicists sometimes get confused by in the 
second law of thermodynamics. Joseph Chamberlain asserted that only 
the Class I solutions were consistent with the physics and the Parker 
solution was unphysical. Indeed, Parker was denied tenure at the 
University of Chicago largely because of the accumulating criticism around 
his singular solution. Parker told me that John Simpson, a cosmic ray 
physicist on the Chicago faculty, stood up to the physics department and 
insisted that he and his team would leave if Parker was denied tenure.  
Simpson was sufficiently persuasive to cause the faculty to reverse their 
decision. Parker stayed. And the supersonic solar wind as Parker predicted 
was confirmed a few years later by spacecraft measurements. 

Nowadays one can find a number of papers where various individuals 
claim that the supersonic wind solution was actually “discovered” much 
earlier by people like Sydney Chapman, Ludwig Biermann. Paul Ahnert and 
Cuno Hoffmeister.  History always looks quite different from the 
perspective of the future. 

From an accretion perspective, the Class I solutions are also physically 
admissible. The conversion of gravitational energy to thermal energy 
keeps ahead of the conversion to kinetic energy throughout the flow, 
setting up a pressure gradient that decelerates the inflow.

If you perturb the steady Parker and Bondi solutiions, you find that the 
former is stable while the latter is unstable to the formation of a shock 
front that precipitously takes the flow from supersonic to subsonic. 

The isothermal solution is mathematically singular in the sense that you 
lose equation II of the Bondi/Parker Equations, and therefore to 
compensate for that, you also lose the energy flux integral! Were this not 
the case, the problem would become ill-posed. In a certain limiting sense 
this corresponds to the idea that thermal conduction becomes so efficient 
in the wind that no temperature gradient is allowed to exist anywhere. 
You might like to see how this limit comes about by using equation 
(6756:1.59) and keeping only the thermal conduction term on the right 
side of this equation and modifying equation II to incorporate thermal 
conduction. How far can you push the analysis? If you run into a wall take 
a peak at Lam1999.



Radiatively Driven Winds
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In spherical geometry, the transfer equation takes the following 
form, where μ is the cosine of the angle between the unit vector in 
the r-direction and the photon propagation direction n.

The purpose of the additional term on the left side of this equation 
can be understood by a simple geometrical construction. On a piece 
of paper place a dot to represent the origin of the spherical 
coordinate system and then draw any straight line that does not 
pass through the origin to represent the trajectory of a photon. 
Where the photon makes its closest approach to the origin, the 
value of μ is zero, and as the photon is located farther and farther 
from the origin μ approaches plus or minus one.  In fact, with a little 
effort it should be possible to write down a simple equation that 
determines the value of μ in terms of the radial distance of the 
photon from the origin and the impact parameter at closest 
approach. Indeed, the left side of the transfer equation, should be 
such that it leaves this relationship unaltered for a free-streaming 
photon.

Mathematically, this suggests that we look for a new set of 
coordinates say (ξ, ϖ) to replace (r, μ),  where one of the 
coordinates, say ϖ, accounts for the conserved relationship 
between r and μ that you discovered from your geometrical 
drawing.  The combination

ϖ = 𝑟 1 −𝜇2 𝜉 =
𝑟

1− 𝜇2

does the trick. If you now use the chain rule to work out the left 
side of the transfer equation in these new coordinates you will 
find that there is no derivative with respect to ϖ.  So the transfer 
equation contains only the single derivative with respect to ξ and 
can be treated by the same methods you used in PHY3700 to solve 
the one-dimensional slab problems! This approach is called the 
method of characteristics, and is discussed in Can2002, for 
example. Several of the references on radiative transfer cited in 
the bibliography handle the spherical geometry explicitly. 
Ambartsumian is credited with developing this transformation.

Using the (ξ, ϖ) coordinates, you might find it amusing to go back 
to Chapitre 2 of PHY3700 and carry out some of the calculations 
presented in one-dimensional slab geometry now in one-
dimensional spherical geometry!

For pure Thomson Scattering, for example, all terms on the right side of the energy 
conservation equation for the radiation field are of order u2/c2. This remarkable fact, 
for a steady radiating flow, asserts that the radiation flux F truly falls off exactly as one 
over r2. Such is not the case in the gray atmosphere approximation where differences 
between the specific intensity of the radiation field and the Planck Function result in 
the transfer of energy from the radiation to the material or vice versa. 

This state of affairs for pure scattering may, at first sight, seem somewhat bizarre.  
After all, if the radiation field is acting to drive the material outward by scattering off 
the free electrons (or decelerate it for material falling inward), shouldn’t it be 
transferring energy to the material as these electrons pull the protons and other 
positive ions along with them? Indeed, such would be the case in a time-dependent 
problem. But steady state calculations have provided the radiation field, and all the 
other components of the problem, an infinite amount of time to settle down. The 
photons scattered isotropically by the electrons in their rest frame have had all the 
time necessary to go rattling around throughout the flow and communicate upstream 
and downstream conditions throughout the entire flow. 

You may find it instructive to carry through the same calculations for the gray 
atmosphere approximation omitting any scattering effects to understand where some 
of these distinctions arise. 

Line-driven winds are treated by Lam1999, and also by Mih1984, and Hub2015. 
Sob1960 is also worth a look. A careful treatment of the theory requires much more 
time and effort than we can possibly devote to it here. The essential idea is that hot 
stars of early spectral type emit a lot of ultra-violet radiation and abundant ions of 
carbon, nitrogen and oxygen, have a plethora of UV transitions that can be very 
effective in absorbing the UV continuum radiation from the star. So effective, indeed, 
that if the atmosphere was static these lines would be optically thick. However, as the 
wind begins to move away from the star, the ions in the rest frame of the material see 
radiation from the surface of the star Doppler shifted to the red from line center. 
Hence there are fresh photons available to absorb and deposit momentum in the flow. 
This causes the wind to accelerate and access continuum photons further to the red of 
line center.  This continues to accelerate the wind until the material encounters the 
“shadow” of a neighboring UV line. 

The phenomenological form of the line factor can then be understood as an expression 
of the acceleration of the material as reckoned in the co-moving frame! The greater 
the acceleration, the more effectively the C, N, O ions can access continuum photons 
to the red of the absorption below them. For an ensemble of lines that overlap we get 
a reduction in the efficiency of the process by the power of 𝛼 determined by Castor, 
Abbott and Klein in their seminal paper on the subject. The P Cygni line profile is the 
characteristic spectral signature of such a process in operation. 

Blast Waves
The fact that the material equations do not contain any conspicuous length 
scales or time scales, suggests that homologous expansions and contractions 
ought to preserve the structure of the equations. In other words, power law 
scalings may leave the equations invariant. As we learned earlier from our 
discussion of spacetime geometry, invariants preserved by transformations are 
incredibly powerful in unravelling the behavior of systems and providing clues 
on how to derive solutions of the equations. This, in fact, is the essential idea 
behind the Lie Theory of continuous groups and their applications to nonlinear 
ODEs and PDEs. Here again, Ste1989, and Can2002 are your first stop to learn 
more about these powerful methods.  We arrived at these self-similar solutions 
by noodling around, but the true power of the Lie Theory is that there is no 
noodling around---it tells you precisely how to find the symmetries (although, it 
may be exceedingly difficult to follow its directions). 

As the little image on the slide suggests, the Sedov/Taylor/von Neumann 
problem was motivated, to some extent, by trying to understand what was to be 
expected when a nuclear bomb was set off in the atmosphere.  Hence 
gravitational effects are unimportant to leading order, as is the density and 
pressure stratification of the atmosphere. They can be accounted for a 
posteriori by a perturbation analysis if so desired. 

Sedov and his school, were fond of calling these symmetry solutions 
‘intermediate asymptotics’.  By this they meant that nature settles into the self-
similar solution some time after the initial release of a huge amount of energy, 
but before the blast wave has overrun so much material that it is beginning to 
exhaust that initial supply of energy in plowing up the surrounding material. 
Their contention is that in this intermediate phase, the flow has forgotten 
almost everything about the initial conditions except how much energy it was 
given, and could care less about what it is overrunning. It therefore settles into a 
universal state that is independent of the specific details of the problem. 

The essential point is that the jump conditions in density, velocity and pressure 
at the shock front must have the same time scaling as the interior post shock 
flow.  This in turn requires that the inflow Mach number of the material must be 
very small. After a sufficient amount of time, when this is no longer the case, the 
solution must depart from the self-similar form. 

Two interesting books that serve as a jumping-off point for these sorts of 
investigations, and their applications to supernovae for example, are Arn1996
and Kor1991.
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