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Adding to Disorder

Internal 
Energy

Kinetic 
Energy

Radiation 
Field

Gravitational 
Field

Electro-
MAGNETIC 

Field

TurbulenceMatter

Entropy Production



Full Cost Accounting
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Symbolic Conservation Laws
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Note the sign flip 
with the arrow flip!



The Radiation Field
1

𝑐
⋅
𝜕𝐼𝜈
𝜕𝑡

+ 𝐧 · 𝛁𝐼𝜈 = 𝜂𝜈 − χ𝜈𝐼𝜈

𝜕𝐸

𝜕𝑡
+ 𝛁 · 𝑭 = න

0

∞

𝑑𝜈න𝑑𝐧 [ 𝜂𝜈 − χ𝜈𝐼𝜈]

1

𝑐2
⋅
𝜕𝑭

𝜕𝑡
+ 𝛁 · ℙ =

1

𝑐
න
0

∞

𝑑𝜈න𝑑𝐧 𝐧[ 𝜂𝜈 − χ𝜈𝐼𝜈]

Radiation 
Energy

u/lc 1/l 1/λ

All Other 
Energy

?scalings:

Someone needs to 
tell us how to 
determine the 
radiation pressure 
tensor!

Coupling to matter



The Electromagnetic Field (Review)
𝛁 · 𝑬 = 4𝜋𝜌𝑒

𝛁 · 𝑩 = 0

c𝛁 ⤫ 𝑬 = −
𝜕𝑩

𝜕𝑡

c𝛁 ⤫ 𝑩 = 4𝜋𝑱 +
𝜕𝑬

𝜕𝑡

𝜕

𝜕𝑡

1

8𝜋
( 𝑬 2+ 𝑩 2) + 𝛁 ·

𝑐

4𝜋
𝑬 ⤫ 𝑩 = −𝑱 · 𝑬

1

𝑐2
⋅
𝜕𝑺

𝜕𝑡
+ 𝛁 · 𝕄 = −𝜌𝑒 𝑬 −

1

𝑐
𝑱 ⤫ 𝑩

All Other 
Energy

(Electro) 
Magnetic 

Energy

MHD 
scalings: u3/lc2 u/l u/l u/l

Someone needs to tell 
us how to determine 
the electric current and 
charge density! Coupling to matter



The Gravitational Field (Review)
𝛻2Φ = 4𝜋𝐺𝜌

𝜕

𝜕𝑡

1

2
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The Gravitational Field (Review)
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The Matter (Review)
𝜕

𝜕𝑡
𝜌 + 𝛁 · 𝜌𝒖 = 0

𝜕

𝜕𝑡
𝒖 + 𝒖 · 𝛁𝒖 = −

1

𝜌
𝛁𝑝 − 𝛁Φ +

1

𝜌
f

𝜕

𝜕𝑡
𝑒 + 𝒖 · 𝛁𝑒 +·

𝑝

𝜌
𝛁 · 𝒖 = 𝑇 ሶ𝑠

𝜕

𝜕𝑡

1

2
𝜌 𝒖 2 + 𝛁 ·

1

2
𝜌 𝒖 2 𝒖 = −𝒖 · 𝛁𝑝 − 𝜌𝒖 · 𝛁Φ − 𝒖 · 𝒇

𝜕

𝜕𝑡
𝜌𝑒 + 𝛁 · 𝜌𝑒 + 𝑝 𝒖 = +𝒖 · 𝛁𝑝 + 𝜌𝑇 ሶ𝑠

𝜕

𝜕𝑡
𝜌𝒖 +· 𝛁 · (𝑝 + 𝜌𝒖𝒖) = −𝜌 𝛁Φ + f

It remains to 
determine these 
terms through full 
cost accounting!

Someone needs to 
tell us how to 
determine the gas 
pressure!

Note: Thermal conduction 
and viscous stresses and 
dissipation can also be 
accommodated in these 
terms if desired. 



Momentum Bookkeeping

𝜕

𝜕𝑡
𝜌𝒖 +· 𝛁 · (𝑝 + 𝜌𝒖𝒖) = −𝜌 𝛁Φ + f

𝛁 · 𝔾 = 𝜌𝛁Φ
1

𝑐2
⋅
𝜕𝑺

𝜕𝑡
+ 𝛁 · 𝕄 = −𝜌𝑒 𝑬 −

1

𝑐
𝑱 ⤫ 𝑩

1

𝑐2
⋅
𝜕𝑭

𝜕𝑡
+ 𝛁 · ℙ =

1

𝑐
න
0

∞

𝑑𝜈න𝑑𝐧 𝐧[ 𝜂𝜈 − χ𝜈𝐼𝜈]

𝜕𝕻

𝜕𝑡
+ 𝛁 ⋅ ℿ = 0



Energy Bookkeeping
𝜕

𝜕𝑡

1

2
𝜌 𝒖 2 + 𝛁 ·

1

2
𝜌 𝒖 2 𝒖 = −𝒖 · 𝛁𝑝 − 𝜌𝒖 · 𝛁Φ + 𝒖 · 𝒇

𝜕

𝜕𝑡
𝜌𝑒 + 𝛁 · 𝜌𝑒 + 𝑝 𝒖 = +𝒖 · 𝛁𝑝 + 𝜌𝑇 ሶ𝑠

𝜕

𝜕𝑡

1

2
𝜌Φ + 𝛁 · (𝜌Φ𝒖 + 𝑮) = 𝜌𝒖 · 𝛁Φ

𝜕

𝜕𝑡

1

8𝜋
( 𝑬 2+ 𝑩 2) + 𝛁 ·

𝑐

4𝜋
𝑬 ⤫ 𝑩 = −𝑱 · 𝑬

𝜕𝐸

𝜕𝑡
+ 𝛁 · 𝑭 = න

0

∞
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Full Cost Accounting (Revisited)

𝒇 = 𝜌𝑒 𝑬 +
1

𝑐
𝑱 ⤫ 𝑩 −

1

𝑐
න
0

∞

𝑑𝜈න𝑑𝐧 𝐧[ 𝜂𝜈 − χ𝜈𝐼𝜈]

𝜌𝑇 ሶ𝑠 = 𝑱 · 𝑬 − 𝒖 · 𝒇 − න
0

∞

𝑑𝜈න𝑑𝐧 [ 𝜂𝜈 − χ𝜈𝐼𝜈]
It remains to 
determine these 
terms through the 
geometry of 
spacetime!

This slide is the essential objective of 
RMHD---we have now constructed a set of 
equations that not only conserve total 
energy and momentum, but also describe 
how energy and momentum are exchanged 
between matter and the radiation, 
gravitational and electromagnetic fields!



The “Golden Rule of RMHD”

“Always evaluate interactions between the matter 
and the classical fields in the co-moving, e.g., rest-
frame, of the material!!!”

but…

“Solve your equations in whatever is the most 
convenient frame of reference for your 
objectives.”

Can I get an AMEN!



Corollary to the “Golden Rule of RMHD”

“You better know how to transform 
coordinates, physical quantities, fields, 
differential and integral operators (and 
anything else you can think of) between any
two frames of reference, under all conditions.”

Abandon hope, all 
ye who fail to heed 
the Corollary!



Better Living Through Geometry
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Galileo & Newton
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|t1 – t2| = |t’1 – t’2| 

‖x1 – x2‖ = ‖x’1 – x’2‖ 
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Poincaré & Einstein
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Invent Your Own Space
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This is a 
Some Other
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dimensions.



Invariants
‖x1 – x2‖2 – c2 |t1 – t2|2 = 
‖x’1 – x’2‖2 – c2 |t’1 – t’2|2 

|t1 – t2| = |t’1 – t’2| 

‖x1 – x2‖ = ‖x’1 – x’2‖ 

Pick a different origin 
for marking off time.

Pick a different origin 
for marking off space.

Pick a different 
orientation for your 
coordinate axes.

Move through the 
space at a constant 
rectilinear velocity.

1

3

3

3

10 Parameters

Translations

Translations

Proper 
Rotations

BoostsThe Lorentz 
Group

The Galilean 
Group

The Special 
Orthogonal 
Group SO(3)

The Translation 
Group T(1)

The Translation 
Group T(3)

The Poincaré
Group

Minkowski Space Euclidean Space



Group Action

𝑐𝑡′′
𝒙′′

𝑐𝑡′
𝒙′

G

L
𝑐𝑡′
𝒙′

G-1

L-1

𝑐𝜌𝑒′

𝑱′
𝜈′
𝜈′𝐧′

Galilean Group

Lorentz Group

Bonus: These objects live in the 
tangent space to each point in the 
spacetime, and they transform in the 
same fashion as the spacetime itself!



Count Your Lucky Photons
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A “swarm” 
of photons

The observers in these two 
reference frames do not 
agree about much of 
anything regarding these 
photons, but, they do agree 
that there are five of them.



Lorentz Transformations of the Radiation

𝐼𝜈
𝜈3

=
𝐼′𝜈′

𝜈′3

χ𝜈
𝜈′

=
χ′𝜈′

𝜈
𝜂𝜈
𝜈2

=
𝜂′𝜈′

𝜈′2

𝜈 = Γv 𝜈′ (1 +
1

𝑐
n′ ·v )

𝜈′ = Γv 𝜈 (1 −
1

𝑐
n·v )

The corresponding equations for 
n and n’ are more complicated, 
but, fortunately, we don’t need 
them here. 

If you remember only 
one thing from this 
lecture, this would be it.



Gray Approximation in the Co-Moving Frame

𝜈 = Γv 𝜈′ (1 +
1

𝑐
n′ ·v )

𝜈′ = Γv 𝜈 (1 −
1

𝑐
n·v )

A constant, frequency-independent 
opacity, and the isotropic Planck Function 
(but frequency dependent) constitutes the 
“gray atmosphere” approximation in the 
co-moving frame.

χ𝜈
𝜈′

=
𝜅

𝜈
𝜂𝜈
𝜈2

=
𝜅𝐵𝜈′

𝜈′2

Notice that in the laboratory frame the 
emissivity and the opacity are not isotropic 
because of the Doppler shifted frequency!



Gray Approximation in the Laboratory Frame

χ𝜈 = 𝜅 (1 −
1

𝑐
n·v ) +  ···

𝜂𝜈 = 𝜅 [ (1 +
3

𝑐
n·v ) 𝐵𝜈 −

1

𝑐
n·v 

𝜕

𝜕𝜈
𝜈𝐵𝜈]+ ···

We can now carry out the two integrals 
we need to describe the exchange of 
energy and momentum between the 
material and the radiation field in the 
laboratory frame. 
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+ 𝛁 · 𝑭 = න

0

∞

𝑑𝜈න𝑑𝐧 [ 𝜂𝜈 − χ𝜈𝐼𝜈]



Gray Approximation in the Laboratory Frame
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𝜕
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energy and momentum between the 
material and the radiation field in the 
laboratory frame. 

𝜕𝐸

𝜕𝑡
+ 𝛁 · 𝑭 = 𝜅 [4𝜎𝑅𝑇

4 − 𝑐𝐸]+𝜅
1

𝑐
𝒖 ·F +  ···



Gray Approximation in the Laboratory Frame
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Gray Approximation in the Laboratory Frame

χ𝜈 = 𝜅 (1 −
1

𝑐
n·v ) +  ···

𝜂𝜈 = 𝜅 [ (1 +
3

𝑐
n·v ) 𝐵𝜈 −

1

𝑐
n·v 

𝜕

𝜕𝜈
𝜈𝐵𝜈]+ ···

We can now carry out the two integrals 
we need to describe the exchange of 
energy and momentum between the 
material and the radiation field in the 
laboratory frame. 

1

𝑐2
⋅
𝜕𝑭

𝜕𝑡
+ 𝛁 · ℙ = −

𝜅

𝑐
[ 𝑭 − 𝒖{

4𝜎
𝑅

𝑐
𝑇4+ ℙ}]+  ···



Thomson Scattering in the Co-Moving Frame

𝜈 = Γv 𝜈′ (1 +
1

𝑐
n′ ·v )

𝜈′ = Γv 𝜈 (1 −
1

𝑐
n·v )

A constant, frequency-independent 
opacity, and the mean intensity (but 
frequency dependent) as source function 
constitutes the limit of pure Thomson 
Scattering off electrons in the co-moving 
frame.

χ𝜈
𝜈′

=
𝜎

𝜈
𝜂𝜈
𝜈2

=
𝜎𝐽′𝜈′

𝜈′2

Notice that in the laboratory frame the 
emissivity and the opacity are not isotropic 
because of the Doppler shifted frequency!
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=
𝐼′𝜈′

𝜈′3



Thomson Scattering in the Co-Moving Frame

𝜈 = Γv 𝜈′ (1 +
1

𝑐
n′ ·v )

𝜈′ = Γv 𝜈 (1 −
1

𝑐
n·v )χ𝜈

𝜈′
=
𝜎

𝜈
𝜂𝜈
𝜈2

=
𝜎𝐽′𝜈′

𝜈′2

Your HOMEWORK Assignment for Thursday!

1

𝑐2
⋅
𝜕𝑭

𝜕𝑡
+ 𝛁 · ℙ =

1

𝑐
න
0

∞

𝑑𝜈න𝑑𝐧 𝐧[ 𝜂𝜈 − χ𝜈𝐼𝜈]
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𝜕𝑡
+ 𝛁 · 𝑭 = න

0

∞
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We worked really hard 
to get these two arrows 
correct to order u/c ---it 
is actually quite easy to 
get them wrong, as well 
as everything else that 
follows…



Next Lecture
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Spherically-symmetric 
winds and accretion 
flows! 



Merci! À Bientôt. Gosh, I sure hope 
I am in the rest 
frame of the 
fluid…


