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Lemerle and Caroline Dubé, who have gone well beyond the call of duty in
verifying and/or rederiving mathematical expressions, uncovering a number
of significant mistakes (usually minus signs) in the process. Naturally, I retain
full responsibility for any remaining errors.

It remains for me to thank once again the organizers of the 39th Saas Fee
Advanced Course for giving me the opportunity to lecture in front of a very
engaging crowd of graduate students and researchers, and, overall, for an
extremely pleasant winter week in Les Diablerets.
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Chapter 1

Magnetohydrodynamics

From a long view of history—seen from, say, ten
thousand years from now—there can be little doubt
that the most significant event of the 19th century
will be judged as Maxwell’s discovery of the laws of
electrodynamics.

Richard Feynman
The Feynman Lectures on Physics, vol. II (1964)

To sum it all up in a single sentence,magnetohydrodynamics (hereafter MHD)
is concerned with the behavior of electrically conducting but globally neutral
fluids flowing at non-relativistic speeds and obeying Ohm’s Law. Remarkably,
most astrophysical fluids meet these apparently stringent requirements, the
most glaring exception being the relativistic inflows and outflows powered by
compact objects such as black holes or neutron stars.

The focus of these lectures is on the amplification of solar and stellar mag-
netic fields through the inductive action of fluid flows, a process believed to
be well-described by MHD for physical conditions characterizing the interior
of the sun and (most) stars. Before we dive into MHD proper, we will first
clarify what we mean by “fluid” (§1.1), and review the fundamental physical
laws governing the flow of unmagnetized fluid, i.e., classical hydrodynamics
(§1.2). We then introduce magnetic fields into the fluid picture (§§1.3–1.13),
and close by reflecting upon the ultimate origin of astrophysical magnetic
fields (§1.14), and establishing the various incarnations of the so-called dy-
namo problem (§1.15) which will occupy our attention in the subsequent
chapters.

1.1 The Fluid Approximation

1.1.1 Matter as a Continuum

It did take some two thousand years to figure it out, but we now know that
Democritus was right after all: matter is composed of small, microscopic
“atomic” constituents. Yet on our daily macroscopic scale, things sure look
smooth and continuous. Under what circumstances can an assemblage of mi-
croscopic elements be treated as a continuum? The key constraint is that

1



2 1 Magnetohydrodynamics

there be a good separation of scales between the “microscopic” and “macro-
scopic”.

Consider the situation depicted on Figure 1.1, corresponding to an amor-
phous substance (spatially random distribution of microscopic constituents).
Denote by λ the mean interparticle distance, and by L the macroscopic scale
of the system; we now seek to construct macroscopic variables defining fluid
characteristics at the macroscopic scale. For example, if we are dealing with
an assemblage of particles of mass m, then the density (̺) associated with a
cartesian volume element of linear dimensions l centered at position x would
be given by something like:

Fig. 1.1 Microscopic view of a fluid. In general the velocity of microscopic con-
stituents is comprised of two parts: a randomly-oriented thermal velocity, and a sys-
tematic drift velocity, which, on the macroscopic scale amounts to what we call a
flow u. A fluid representation is possible if the mean inter-particle distance λ is much
smaller than the global length scale L.

̺(x) =
1

l3

∑

k

mk [kgm−3] , (1.1)

where the sum runs over all particles contained within the volume element.
One often hears or reads that for a continuum representation to hold, it is only
necessary that the particle density be “large”. But how large, and large with
respect to what? For the above expression to yield a well-defined quantity,
in the sense that the numerical value of ̺ so computed does not depend
sensitively on the size and location of the volume element, or on time if the
particles are moving, it is essential that a great many particles be contained
within the element. Moreover, if we want to be writing differential equations
describing the evolution of ̺, the volume element better be infinitesimal, in
the sense that it is much smaller that the macroscopic length scale over which
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global variables such as ̺ may vary. These two requirements translate in the
double inequality:

λ ≪ l ≪ L . (1.2)

Because the astrophysical systems and flows that will be the focus of our
attention span a very wide range of macroscopic sizes, the continuum/fluid
representation will turn out to hold in circumstances where the density is in
fact minuscule, as you can verify for yourself upon perusing the collection
of astrophysical systems listed in Table 1.1 below1. In all cases, a very good
separation of scales does exist between the microscopic (λ) and macroscopic
(L).

Table 1.1 Spatial scales of some astrophysical objects and flows

System/flow ̺ [kg/m3] N [m−3] λ [m] L [km]

Solar interior 100 1029 10−10 105

Solar atmosphere 10−4 1023 10−8 103

Solar corona 10−11 1017 10−6 105

Solar wind (1 AU) 10−21 107 0.006 105

Molecular cloud 10−20 107 0.001 1014

Interstellar medium 10−21 106 0.01 1016

1.1.2 Solid Versus Fluid

Most continuous media can be divided into two broad categories, namely
solids and fluids. The latter does not just include the usual “liquids” of the
vernacular, but also gases and plasmas. Physically, the distinction is made on
the basis of a medium’s response to an applied stress, as illustrated on Figure
1.2. A volume element of some continuous substance is subjected to a shear
stress, i.e., two force acting tangentially and in opposite directions on two of
its parallel bounding surface (black arrows). A solid will immediately generate
a restoring force (white arrows), ultimately due to electrostatic interactions
between its microscopic constituents, and vigorously resist deformation (try

1 All density-related estimate assume a gas of fully ionized Hydrogen (µ = 0.5) for
the Sun, of neutral Hydrogen for the interstellar medium (µ = 1), and molecular
Hydrogen (µ = 2) for molecular clouds. Solar densities are for the base of the convec-
tion zone (solar interior), optical depth unity (atmosphere), and typical coronal loop
(corona). N is the number density of microscopic constituents. The length scale listed
for the solar atmosphere is the granulation dimension, for the corona it is the length
of a coronal loop, for the solar wind the size of Earth’s magnetosphere, and that for
the interstellar medium is the thickness of the galactic (stellar) disk; all rounded to
the nearest factor of ten.
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shearing a brick held between the palms of your hands!). The solid will rapidly
reach a new equilibrium state characterized by a finite deformation, and will
relax equally rapidly to its initial state once the external stress vanishes. A
fluid, on the other hand, can offer no resistance to the applied stress, at least
in the initial stages of the deformation.

Fig. 1.2 Deformation of a mass element in response to a stress pattern producing an
horizontal shear (black arrows). A solid will rapidly reach an equilibrium where inter-
nal stresses (white arrows) produced by the deformation will equilibrate the applied
shear. A fluid at rest cannot generate internal stresses, and so will be increasingly
deformed for as long as the external shear is applied.

1.2 Essentials of Hydrodynamics

The governing principles of classical hydrodynamics are the same as those of
classical mechanics, transposed to continuous media: conservation of mass,
linear momentum, angular momentum and energy. The fact that these prin-
ciples must now be applied not to point-particles, but to spatially extended
and deformable volume elements (which may well be infinitesimal, but they
are still finite!) introduces some significant complications, mostly with re-
gards to the manner in which forces act. Let’s start with the easiest of our
conservation statements, that for mass, as it exemplifies very well the manner
in which conservation laws are formulated in moving fluids.
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1.2.1 Mass: the Continuity Equation

Consider the situation depicted on Figure 1.3, namely that of an arbitrarily
shaped fictitious surface S fixed in space and enclosing a volume V embedded
in a fluid of density ̺(x) moving with velocity u(x). Themass flux associated
with the flow across the (closed) surface is

Φ =

∮

S

̺u · n̂ dS [kg s−1] , (1.3)

where n̂ is a unit vector everywhere perpendicular to the surface, and by

Fig. 1.3 An arbitrarily shaped volume element V bounded by a closed surface S,
both fixed in space, and traversed by a flow u.

convention oriented towards the exterior. The mass of fluid contained within
V is simply

M =

∫

V

̺ dV [kg] . (1.4)

This quantity will evidently vary if the mass flux given by eq. (1.3) is non-
zero:

∂M

∂t
= −Φ . (1.5)

Here the minus sign is a direct consequence of the exterior orientation of
n̂. Inserting eq. (1.3) and eq. (1.4) into (1.5) and applying the divergence
theorem to the RHS of the resulting expression yields:

∂

∂t

∫

V

̺ dV = −
∫

V

∇ · (̺u) dV . (1.6)
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Because V is fixed in space, the ∂/∂t and
∫

V
operators commute, so that

∫

V

[
∂̺

∂t
+∇ · (̺u)

]

dV = 0 . (1.7)

Because V is completely arbitrary, in general this can only be satisfied pro-
vided that

∂̺

∂t
+∇ · (̺u) = 0 . (1.8)

This expresses mass conservation in differential form, and is known in hydro-
dynamics as the continuity equation.

Incompressible fluids have constant densities, so that in this limiting case
the continuity equation reduces to

∇ · u = 0 [incompressible] . (1.9)

Water is perhaps the most common example of an effectively incompressible
fluid (under the vast majority of naturally occuring conditions anyway). The
gaseous nature of most astrophysical fluids may lead you to think that incom-
pressibility is likely to be a pretty lousy approximation in cases of interest in
this course. It turns out that the incompressibility can lead to a pretty good
approximation of the behavior of compressible fluids provided that the flow’s
Mach number (ratio of flow speed to sound speed) is much smaller than unity.

The density of a fluid can vary by means other than mechanical forcing;
in many astrophysical circumstances, thermal dilation effects are in fact the
primary driver of density variations. Most fluids will dilate when heated, a
property measured by the coefficient of thermal dilation:

α = −1

̺

∂̺

∂T
[K−1] . (1.10)

Water, for example, has a substantial coefficient of thermal dilation, ≃
10−4K−1 at T = 10C. Thermal expansion of sea water, rather than melt-
down of the polar ice caps, is in fact the primary contributor to sea level rise
associated with predicted climate change for the coming century.

In a environment stratified by gravity, such a the atmospheres and interiors
of the sun and stars, a localized heat input can then, via thermal dilation,
lead to the appearance of a buoyancy force through a decrease in density of
the heated volume element. If not equilibrated sufficiently quickly by thermal
diffusion, this will generate a flow known as thermal convection, which will
play an important role in all solar/stellar dynamo models considered in later
chapters.
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1.2.2 The D/Dt Operator

Suppose we want to compute the time variation of some physical quantity (Z,
say) at some fixed location x0 in a flow u(x). In doing so we must take into
account the fact that Z is in general both an explicit and implicit function of
time, because the volume element “containing” Z is moving with the fluid,
i.e., Z → Z(t,x(t)). We therefore need to use the chain rule and write:

dZ

dt
=

∂Z

∂t
+

∂Z

∂x

∂x

∂t
+

∂Z

∂y

∂y

∂t
+

∂Z

∂z

∂z

∂t
. (1.11)

Noting that u = dx/dt, this becomes

dZ

dt
=

∂Z

∂t
+

∂Z

∂x
ux +

∂Z

∂y
uy +

∂Z

∂z
uz =

∂Z

∂t
+ (u · ∇)Z . (1.12)

This corresponds to the time variation of Z following the fluid element as

it is carried by the flow. It is a very special kind of derivative in hydrody-
namics, known as the Lagrangian derivative, which will be represented by the
operator:

D

Dt
≡ ∂

∂t
+ (u · ∇) . (1.13)

Note in particular that the Lagrangian derivative of u yields the acceleration
of a fluid element:

a =
Du

Dt
, (1.14)

a notion that will soon come very handy when we write F = ma for a fluid.
A material surface is defined as an ensemble of points that define a surface,

all moving along with the flow. Therefore, in a local frame of reference S′ co-
moving with any infinitesimal element of a material surface, u′ = 0. The
distinction between material surfaces, as opposed to surfaces fixed in space
such as in eq. (1.3), has crucial consequences with respect to the commuting
properties of temporal and spatial differential operators. In the latter case
∫

V
commutes with ∂/∂t, whereas for material surfaces and volume elements

it is D/Dt that commutes with
∫

V (and
∮

S , etc.).

1.2.3 Linear Momentum: the Navier–Stokes Equations

A force F acting on a point-object of mass m is easy to deal with; it simply
produces an acceleration a = F /m in the same direction as the force (sounds
simple but it still took the genius of Newton to figure it out...). In the presence
of a force acting on the surface of a spatially extended fluid element, the
resulting fluid acceleration will depend on both the orientation of the force
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and the surface. We therefore define the net force t in terms of a stress tensor :

tx = êxsxx + êysxy + êzsxz , (1.15)

ty = êxsyx + êysyy + êzsyz , (1.16)

tz = êxszx + êyszy + êzszz , (1.17)

where “sxy” denotes the force per unit area acting in the y-direction on a
surface perpendicular to the x-direction, tx is the net force acting in the x-
direction, and similarly for the other components. Consider now a unit vector
perpendicular to a surface arbitrarily oriented in space:

n̂ = êxnx + êyny + êznz , n2
x + n2

y + n2
z = 1 . (1.18)

The net force along this direction is simply

tn̂ = (n̂ · êx)tx + (n̂ · êy)ty + (n̂ · êz)tz = n̂ · s . (1.19)

We can now use the Lagrangian acceleration to write “a = F /m” for a fluid
element occupying a volume V bounded by a surface S:

D

Dt

∫

V

udV =
1

̺

∮

S

s · n̂ dS , (1.20)

where the LHS represents the mean acceleration of the fluid element, and ̺
on the RHS is its mean density. We now pull the same tricks as in §1.2.1: use
the divergence theorem to turn the surface integral into a volume integral,
commute the temporal derivative and volume integral on the RHS, invoke
the arbitrariness of the actual integration volume V , and finally make good
use of the continuity equation (1.8), to obtain the differential equation for u:

Du

Dt
=

1

̺
∇ · s [m s−2] . (1.21)

We now define the pressure (units: pascal; 1 Pa≡ 1N m−2) as the isotropic
part of the force acting perpendicularly on the volume’s surfaces, and separate
it explicitly from the stress tensor:

s = −p I+ τ , (1.22)

where I is the identity tensor, and the minus sign arises from the convention
that pressures acts on the bounding surface towards the interior of the volume
element, and τ will presently become the viscous stress tensor. Since ∇ ·
(p I) = ∇p, eq. (1.21) becomes
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Du

Dt
= −1

̺
∇p+

1

̺
∇ · τ . (1.23)

This is the celebrated Navier–Stokes equation. Any additional volumetric
body forces (gravity, Lorentz force, etc.) are simply added to the RHS.

The next step is to obtain expressions for the components of the tensor
τ . The viscous force, which is what τ stands for, can be viewed as a form
of friction acting between contiguous laminae of fluid moving with different
velocities, so that we expect it to be proportional to velocity derivatives.
Consider now the following decomposition of a velocity gradient:

∂uk

∂xl
=

1

2

(
∂uk

∂xl
+

∂ul

∂xk

)

︸ ︷︷ ︸

Dkl

+
1

2

(
∂uk

∂xl
− ∂ul

∂xk

)

︸ ︷︷ ︸

Ωkl

. (1.24)

The first term on the RHS is a pure shear, and is described by the (symmetric)
deformation tensor Dkl; the second is a pure rotation , and is described by the
antisymmetric vorticity tensor Ωkl. It can be shown that the latter causes no
deformation of the fluid element, therefore the viscous force can only involve

Dkl. A Newtonian fluid is one for which the (tensorial) relation between τ
and Dkl is linear:

τij = fij(Dkl) , i, j, k, l = (1, 2, 3) ≡ (x, y, z) . (1.25)

Since τ and D are both symmetric tensors, this linear relationship can involve
up to 36 independent numerical coefficients. The next step is to invoke the
invariance of the physical laws embodied in eq. (1.25) under rotation of the
coordinate axes to set some of these coefficients to zero. The mathematics is
rather tedious, but worth the effort because at the end of the day you end
up with:

τxx = 2µDxx + (µϑ − 2

3
µ)(Dxx +Dyy +Dzz) , (1.26)

τyy = 2µDyy + (µϑ − 2

3
µ)(Dxx +Dyy +Dzz) , (1.27)

τzz = 2µDzz + (µϑ − 2

3
µ)(Dxx +Dyy +Dzz) , (1.28)

τxy = 2µDxy , (1.29)

τyz = 2µDyz , (1.30)

τzx = 2µDzx , (1.31)

which now involves only two numerical coefficients, µ and µϑ, known as the
the dynamical viscosity and bulk viscosity, respectively. It is often convenient
to define a coefficent of kinematic viscosity as
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ν =
µ

̺
[m2 s−1] . (1.32)

In an incompressible flow, the terms multiplying µϑ vanish and it is possible
to rewrite the Navier–Stokes equation in the simpler form:

Du

Dt
= −1

̺
∇p+ ν∇2u [incompressible] . (1.33)

Note here the presence of a Laplacian operator acting on a vector quan-
tity (here u); this is only equivalent to the Laplacian acting on the scalar
components of u in the special case of cartesian coordinates2.

Incompressible or not, the behavior of viscous flows will often hinge on
the relative importance of the advective and dissipative terms in the Navier–
Stokes equation:

̺(u · ∇)u ↔ ∇ · τ . (1.34)

Introducing characteristic length scales u0, L, ̺0 and ν0, dimensional analysis
yields:

̺0
u2
0

L
↔ 1

L
̺0ν0

u0

L
, (1.35)

where we made use of the fact that the viscous stress tensor has dimensions
µ×Dik, with µ = ̺ν and the deformation tensorDik has dimension of velocity
per unit length (cf. eq. 1.24). The ratio of these two terms is a dimensionless
quantity called the Reynolds Number :

Re =
u0L

ν0
. (1.36)

This measures the importance of viscous forces versus fluid inertia. It is a
key dimensionless parameter in hydrodynamics, as it effectively controls fun-
damental processes such as the transition to turbulence, as well as more
mundane matters such as boundary layer thicknesses.

A few words on boundary conditions; in the presence of viscosity, the flow
speed must vanish wherever the fluid is in contact with a rigid surface S:

u(x) = 0 , x ∈ S . (1.37)

This remains true even in the limit where the viscosity is vanishingly small.
For a free surface (e.g., the surface of a fluid sphere floating in a vacuum),
the normal components of both the flow speed and viscous stress must vanish
instead:

u · n̂(x) = 0 , τ · n̂ = 0 , x ∈ S . (1.38)

2 See Appendix B for full listing of differential operators in cylindrical and spherical
polar coordinates.
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1.2.4 Angular Momentum: the Vorticity Equation

The “rotation” and “angular momentum” of a fluid system cannot simply
be reduced to simple scalars such as angular velocity and moment of inertia,
because the application of a torque to a fluid element can alter not just its
rotation rate, but also its shape and mass distribution. A more useful measure
of “rotation” is the circulation Γ about some closed contour γ embedded in
and moving with the fluid:

Γ (t) =

∮

γ

u(x, t) · dℓ =
∫

S

(∇× u) · n̂ dS =

∫

S

ω · n̂ dS , (1.39)

where the second equality follows from Stokes’ theorem, and the third from
the definition of vorticity :

ω = ∇× u . (1.40)

Thinking about flows in terms of vorticity ω rather than speed u can be
useful because of Kelvin’s theorem, which states that in the inviscid limit
ν → 0 (or, equivalently, Re → ∞), the circulation Γ along any closed loop γ
advected by the moving fluid is a conserved quantity:

DΓ

Dt
= 0 . (1.41)

Applying again Stokes’ theorem yields the equivalent expression

D

Dt

∫

S

ω · n̂ dS = 0 , (1.42)

stating that the flux of vorticity across any material surface S bounded by γ
is also a conserved quantity, both in fact being integral expressions of angular
momentum conservation.

An evolution equation for ω can be obtained via the Navier–Stokes equa-
tion, in a particularly illuminating manner in the case of an incompressible
fluid (∇·u = 0) with constant kinematic viscosity ν, in which case eq. (1.33)
can be rewritten as

Du

Dt
= −∇

(
p

̺
+ Φ

)

− ν∇× (∇× u) [incompressible] , (1.43)

where it was assumed that gravity can be expressed as the gradient of a
(gravitational) potential. Taking the curl on each side of this expression then
yields:

∇×
(
∂u

∂t

)

+∇×(u ·∇u) = ∇×
[

∇
(
p

̺
+ Φ

)]

︸ ︷︷ ︸

=0

−ν∇×∇×(∇×u) , (1.44)
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then, commuting the time derivative with ∇× and making judicious of some
vector identities to develop the second term on the LHS, remembering also
that ∇ · ω = 0, eventually leads to:

Dω

Dt
− ω · ∇u = ν∇2ω [incompressible] . (1.45)

This is the vorticity equation, expressing in differential form the conservation
of the fluid’s angular momentum. A useful vorticity-related quantity is the
kinetic helicity, defined as

h = u · ω , (1.46)

which measures the amount of twisting in a flow. This will prove an important
concept when investigating magnetic field amplification by fluid flows.

1.2.5 Energy: the Entropy Equation

Omitting to begin with the energy dissipated in heat by viscous friction, the
usual accounting of energy flow into and out of a volume element V fixed in
space leads to the following differential equation expressing the conservation
of the plasma’s internal energy per unit mass (e, in units J/kg):

De

Dt
+ (γ − 1)e∇ · u =

1

̺
∇ ·
[

(χ+ χr)∇T
]

, (1.47)

where for a perfect gas we have

e =
1

γ − 1

p

̺
=

1

γ − 1

kT

µm
, (1.48)

with γ = cp/cv the ratio of specific heats, and (χ + χr)∇T the heat flux in
or out of the fluid element, with χ and χr the coefficients of thermal and
radiative conductivity, respectively (units: JK−1m−1s−1). Equation (1.47)
expresses that any variation of the specific energy in a plasma volume mov-
ing with the flow (LHS) is due to heat flowing in or out of the volume by
conduction or radiation (here in the diffusion approximation). The “extra”
term ∝ ∇·u on the LHS of eq (1.47) embodies the work done against (or by)
the pressure force in compressing (or letting expand) the volume element.

It is often convenient to rewrite the energy conservation equation in terms
of the plasma’s entropy S ∝ ̺−γp, which allows to express eq. (1.47) in the
more compact form:

̺T
DS

Dt
= ∇ ·

[

(χ+ χr)∇T
]

, (1.49)
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which states, now unambiguously, that any change in the entropy S as one
follows a fluid element (LHS) can only be due to heat flowing out of or into
the domain by conduction or radiation (RHS).

While this is seldom an important factor in astrophysical flows, in general
we must add to the RHS of eq. (1.49) the heat produced by viscous dissipation
(and, as we shall see later, by Ohmic dissipation). This is given by the so-
called (volumetric) viscous dissipation function:

φν =
µ

2

(
∂ui

∂xk
+

∂uk

∂xi
− 2

3
δik

∂us

∂xs

)2

+ µϑ

(
∂us

∂xs

)2

[Jm−3s−1] , (1.50)

where summation over repeated indices is implied here. Note that since φν

is positive definite, its presence on the RHS of eq. (1.49) can only increase
the fluid element’s entropy, which makes perfect sense since friction, which is
what viscosity is for fluids, is an irreversible process.

For more on classical hydrodynamics, see the references listed in the bib-
liography at the end of this chapter.

1.3 The Magnetohydrodynamical Induction Equation

Our task is now to generalize the governing equations of hydrodynamics to
include the effects of the electric and magnetic fields, and to obtain evolu-
tion equations for these two physical quantities. Keep in mind that electrical
charge neutrality, as required by MHD, does not imply that the fluid’s mi-
croscopic constituents are themselves neutral, but rather that positive and
negative electrical charges are present in equal numbers in any fluid element.

The starting point, you guess it I hope, is Maxwell’s celebrated equations:

∇ ·E =
̺e
ε0

[Gauss’ Law] , (1.51)

∇ ·B = 0 [Anonymous] , (1.52)

∇×E = −∂B

∂t
[Faraday’s Law] , (1.53)

∇×B = µ0J + µ0ε0
∂E

∂t
[Ampère/Maxwell’s Law] , (1.54)

where, in the SI system of units, the electric field is measured in NC−1

(≡ Vm−1), and the magnetic field3 B in tesla (T). The quantity ̺e is the

3 Strictly speaking, B should be called the magnetic flux density or somesuch, but
on this one we’ll stick to common astrophysical usage.
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electrical charge density (C m−3), and J is the electrical current density
(A m−2). The permittivity ε0 (= 8.85 × 10−12C2 N−1m−2 in vacuum) and
magnetic permeability µ0 (= 4π× 10−7N A−2 in vacuum) can be considered
as constants in what follows, since we will not be dealing with polarisable or
ferromagnetic substances.

The first step is (with all due respect to the man) to do away altogether
with Maxwell’s displacement current in eq. (1.54). This can be justified if the
fluid flow is non-relativistic and there are no batteries around being turned
on or off, two rather sweeping statement that will be substantiated in §1.5.
For the time being we just revert to the original form of Ampère’s Law:

∇×B = µ0J . (1.55)

In general, the application of an electric field E across an electrically con-
ducting substance will generate an electrical current density J . Ohm’s Law
postulates that the relationship between J and E is linear:

J ′ = σE ′ , (1.56)

where σ is the electrical conductivity (units: C2s−1m−3kg−1 ≡ Ω−1m−1,
Ω ≡Ohm). Here the primes (“′”) are added to emphasize that Ohm’s Law is
expected to hold in a conducting substance at rest. In the context of a fluid
moving with velocity u (relativistic or not), eq. (1.56) can only be expected
to hold in a reference frame comoving with the fluid. So we need to transform
eq. (1.56) to the laboratory (rest) frame. In the non-relativitic limit (u/c ≪ 1,
implying γ → 1), the usual Lorentz transformation for the electrical current
density simplifies to J ′ = J , and that for the electric field to E′ = E+u×B,
so that Ohm’s Law takes on the generalized form

J = σ(E + u×B) , (1.57)

or, making use of the pre-Maxwellian form of Ampère’s Law and reorganizing
the terms:

E = −u×B +
1

µ0σ
(∇×B) . (1.58)

We now insert this expression for the electric field into Faraday’s Law (1.53)
to obtain the justly famous magnetohydrodynamical induction equation:

∂B

∂t
= ∇× (u ×B − η∇×B) , (1.59)

where

η =
1

µ0σ
[m2s−1] (1.60)
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is the magnetic diffusivity4. The first term on the RHS of eq. (1.59) represents
the inductive action of fluid flowing across a magnetic field, while the second
term represents dissipation of the electrical currents sustaining the field.

Keep in mind that any solution of eq. (1.59) must also satisfy eq. (1.52) at
all times. It can be easily shown (try it!) that if ∇·B = 0 at some initial time,
the form of eq. (1.59) guarantees that zero divergence will be maintained at
all subsequent times5.

1.4 Scaling Analysis

The evolution of a magnetic field under the action of a prescribed flow u will
depend greatly on whether or not the inductive term on the RHS of eq. (1.59)
dominates the diffusive term. Under what conditions will this be the case? We
seek a first (tentative) answer to this question by performing a dimensional
analysis of eq. (1.59); this involves replacing the temporal derivative by 1/τ
and the spatial derivatives by 1/ℓ, where τ and ℓ are time and length scales
that suitably characterizes the variations of both u and B:

B

τ
=

u0B

ℓ
+

ηB

ℓ2
, (1.61)

where B and u0 are a “typical” values for the flow velocity and magnetic field
strength over the domain of interest. The ratio of the first to second term
on the RHS of eq. (1.61) is a dimensionless quantity known as the magnetic

Reynolds number6:

Rm =
u0ℓ

η
, (1.62)

which measures the relative importance of induction versus dissipation over

length scales of order ℓ. Note that Rm does not depend on the magnetic field
strength, a direct consequence of the linearity (in B) of the MHD induction
equation. Our scaling analysis simply says that in the limit Rm ≫ 1, induction
by the flow dominates the evolution of B, while in the opposite limit of

4 A note of warning: some MHD textbooks use the symbol “η” for the inverse conduc-
tivity (units Ωm), so that the dissipative term on the RHS of the induction equation

retains a µ−1

0
prefactor.

5 This is true under exact arithmetic; if numerical solutions to eq. (1.59) are sought,
care must be taken to ensure ∇ ·B = 0 as the solution is advanced in time.
6 Not the structural similarity with the usual viscous Reynolds number defined in
§1.2.3, with the magnetic diffusivity η replacing the kinematic viscosity ν in the de-
nominator. Had we not absorbed µ0 in our definition of η, the magnetic permeability
µ0 would appear in the numerator of the magnetic Reynolds number, which I per-
sonally find objectionable.
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Rm ≪ 1, induction makes a negligible contribution and B simply decays
away under the influence of Ohmic dissipation.

One may anticipate great simplifications of magnetohydrodynamics if we
operate in either of these limits. If Rm ≪ 1, only the second term is retained
on the RHS of eq. (1.61), which leads immediately to

τ =
ℓ2

η
, (1.63)

a quantity known as the magnetic diffusion time. It measures the time taken
for a magnetic field contained in a volume of typical linear dimension ℓ to
dissipate and/or diffusively leak out of the volume. Now, for most astrophys-
ical objects, this timescale turns out to be quite large, indeed often larger
than the age of the universe! (see Table 1.2). This is not so much because
astrophysical plasmas are such incredibly good electrical conductors—copper
at room temperature is much better in this respect,—but rather because as-
trophysical objects tend to be very, very large. The existence of solar and
stellar magnetic fields is then not really surprising; any large-scale fossil field
present in a star’s interior upon its arrival on the ZAMS would still be there
today at almost its initial strength. The challenge in modeling the solar and
stellar magnetic fields is to reproduce the peculiarities of their spatiotempo-
ral variations, most notably the decadal cyclic variations observed in the Sun
and solar-type stars.

The opposite limit Rm ≫ 1, defines the ideal MHD limit. Then it is the
first term that is retained on the RHS of eq. (1.61), so that

τ = ℓ/u0 , (1.64)

corresponding to the turnover time associated with the flow u. Note already
that under ideal MHD, the only non-trivial (i.e., u 6= 0 and B 6= 0) steady-
state (∂/∂t = 0) solutions of the MHD equation are only possible for field-
aligned flows.

Table 1.2 below lists estimates of the magnetic Reynolds number (and
related physical quantities) for the various astrophysical systems considered
earlier in Table 1.17 The magnetic Reynolds number is clearly huge in all
cases, which would suggest that the ideal MHD limit is the one most appli-
cable to all these astrophysical systems. But things are not so simple. From
a purely mathematical point of view, taking the limit Rm → ∞ of the MHD
induction equation is problematic, because the order of the highest spatial

7 Choices for length scale ℓ (≡ L) as in Table 1.1. Velocity estimates correspond
to large convective cells (solar interior), granulation (photosphere), solar wind speed
(corona and solar wind), and turbulence (molecular clouds and interstellar medium).
All these numbers (especially the turbulent velocity estimates) are again very rough,
and rounded to the nearest factor of ten. The magnetic diffusivity estimates given for
molecular clouds and interstellar medium depend critically on the assumed degree of
ionization, and so are also very rough.
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Table 1.2 Properties of some astrophysical objects and flows

System/flow L [km] σ [Ω−1m−1] η [m2s−1] τ [yr] u [km/s] Rm

Solar interior 106 104 100 109 0.1 109

Solar atmosphere 103 103 1000 102 1 106

Solar corona 105 106 1 108 10 1012

Solar wind (1 AU) 105 104 100 108 300 1011

Molecular cloud 1014 102 104 1017 100 1018

Interstellar medium 1016 103 1000 1022 100 1021

Sphere of copper 10−3 108 10−1 10−7 — —

derivatives decreases by one. This situation is similar to the behavior of vis-
cous flows at very high Reynolds number: solutions to eq. (1.59) with η → 0
in general do not smoothly tend towards solutions obtained for η = 0. More-
over, the distinction between the two physical regimes Rm ≪ 1 and Rm ≫ 1
is meaningful as long as one can define a suitable Rm for the flow as a whole,
which, in turn, requires one to estimate, a priori, a length scale ℓ that ade-
quately characterizes the flow and magnetic field at all time and throughout
the spatial domain of interest. As we proceed it will become clear that this
is not always straightforward, or even possible. Finally, the scaling analysis
does away entirely with the geometrical aspects of the problem, by substitut-
ing u0B for u ×B; yet there are situations (e.g., a field-aligned flow) where
even a very large u has no inductive effect whatsoever.

In magnetohydrodynamics, the magnetic field is supported by an electrical
current density, as embodied in Ampère’s Law (eq. 1.55). Because the plasma
is assumed electrically neutral, this current density must arise from a drift
speed v between oppositely charged microscopic constituents. The associated
electrical current density is then

J = n q v , (1.65)

where n and q are the number density and charge of the drifting particles.
Now, dimensional analysis of Ampère’s Law gives an estimate of the cur-
rent density required to sustain a magnetic field of strength B varying over a
length scale L: |J | ∼ B/µ0L ≃ 10−5A m−2 for a solar-like mean surface mag-
netic field of strength 10−3T pervading a sphere of solar radius 7×108m. Sub-
stituting this value in eq. (1.65) and assuming a fully ionized proton+electron
mixture of mean density 102 kg m−3 (appropriate for the base of the solar
convection zone, at depth r/R ≃ 0.7), one can compute a mean drift speed
that turns out to be absolutely minuscule, i.e., |v| ∼ 10−15m s−1. This is a
direct reflection of the very large number of charge carriers available to sus-
tain the electrical current density, e.g., n ∼ 1029m−3 at depth r/R = 0.7 in
the interior of the sun. This is also why the single-fluid MHD approximation
works so well in this context. Induction, as represented by the u × B term
in the induction equation (1.59), results from a variation of this drift speed
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caused by the action of the Lorentz force on individual charged constituents
mechanically forced to flow across a pre-existing magnetic field.

1.5 The Lorentz Force

Getting to eq. (1.59) was pretty easy because we summarily swept the dis-
placement current under the rug, but it represents only half (in fact the easy
half) of our task; we must now investigate the effect of the magnetic field on
the flow u; and this, it turns out, is the tricky part of the MHD approxima-
tion.

You will certainly recall that the Lorentz force acting on a particle carrying
an electrical charge q and moving at velocity u in a region of space permeated
by electric and magnetic fields is given by

f = q(E + u×B) [N] , (1.66)

where q is the electrical charge. Consider now a volume element ∆V con-
taining many such particles; in the continuum limit, the total force per unit
volume (F ) acting on the volume element will be the sum of the forces acting
on each individual charged constituent divided by the volume element:

F =
1

∆V

∑

k

fk =
1

∆V

∑

k

qk(E + uk ×B)

=

(

1

∆V

∑

k

qk

)

E +

(

1

∆V

∑

k

qkuk

)

×B

= ̺eE + J ×B [Nm−3] , (1.67)

where the last equality follows from the usual definition of charge density and
electrical current density. At this point you might be tempted to eliminate
the term proportional to E, on the grounds that in MHD we are dealing with
a globally neutral plasma, meaning ̺e = 0, therefore ̺eE ≡ 0 and that’s the
end of it. That would be way too easy...

Let’s begin by taking the divergence on both side of the generalized form
of Ohm’s Law (eq. 1.57). We then make use of Gauss’s Law (eq. 1.52) to get
rid of the ∇ ·E term, and of the charge conservation law

∂̺e
∂t

+∇ · J = 0 (1.68)

to get rid of the ∇ · J term. The end result of all this physico-algebraical
juggling is the following expression:
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∂̺e
∂t

+
̺e

(ε0/σ)
+ σ∇ · (u×B) = 0 . (1.69)

The combination ε0/σ has units of time, and is called the charge relaxation

time, henceforth denoted τe. It is the timescale on which charge separation
takes place in a conductor if an electric field is suddenly turned on. For most
conductors, this a very small number, of order 10−18 s !! This is because the
electrical field reacts to the motion of electric charges at the speed of light
(in the substance under consideration, which is slower than in a vacuum but
still mighty fast). Indeed, in a conducting fluid at rest (u = 0) the above
expression integrates readily to

̺e(t) = ̺e(0) exp(−t/τe) , (1.70)

thus the name “relaxation time” for τe.
Now let us consider the case of a slowly moving fluid, in the sense that it

is moving on a timescale much larger than τe; this means that the induced
electrical field will vary on a similar timescale (at best), and therefore the
time derivative of ̺e can be neglected in comparison to the ̺e/τe term in
eq. (1.69), leading to

̺e = ε0∇ · (u×B) . (1.71)

This indicates that a finite charge density can be sustained inside a moving

conducting fluid. The associated electrostatic force per unit volume, ̺eE, is
definitely non-zero but turns out to much smaller than the magnetic force.
Indeed, a dimensional analysis of eq. (1.67), using eq. (1.71) to estimate ̺e,
gives:

̺eE ∼
(
ε0uB

ℓ

)(
J

σ

)

∼
(uτe

ℓ

)

JB , (1.72)

J ×B ∼ JB , (1.73)

where Ohm’s Law was used to express E in terms of J , and once again ℓ is
a typical length scale characterizing the variations of the flow and magnetic
field. The ratio of electrostatic to magnetic forces is thus of order uτe/ℓ. Now
τe ≪ 1 to start with, and for non-relativistic fluid motion we can expect that
the flow’s turnover time ℓ/u is much larger than the crossing time for an
electromagnetic disturbance ∼ ℓ/c ∼ τe; both effects conspire to render the
electrostatic force absolutely minuscule compared to the magnetic force, so
that eq. (1.67) becomes

F = J ×B [MHD approximation] . (1.74)

This must be added to the RHS of the Navier–Stokes equation (1.23)... with
a 1/̺ prefactor so we get a force per unit mass, rather than per unit volume.
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Now, getting back to this business of having dropped the displacement
current in the full Maxwellian form of Ampère’s Law (eq. 1.54); it can now
be all justified on the grounds that the time derivative of the charge density
can be neglected in the non-relativistic limit. Indeed, to be consistent the
charge conservation equation (1.68) now reduces to

∇ · J = 0 ; (1.75)

taking the divergence on both sides of eq. (1.54) then leads to

∇ · J = −ε0∇ ·
(
∂E

∂t

)

= ε0
∂

∂t
(∇ ·E) =

∂̺e
∂t

. (1.76)

This demonstrates that dropping the time derivative of the charge density
is equivalent to neglecting Maxwell’s displacement current in eq. (1.54). To
sum up, provided we exclude very rapid transient events (such as turning a
battery on or off, or any such process which would generate a large ∂̺e/∂t),
under the MHD approximation the following statements are all equivalent:

– The fluid motions are non-relativistic;
– The electrostatic force can be neglected as compared to the magnetic force;
– Maxwell’s displacement current can be neglected.

1.6 Joule Heating

In the presence of finite electrical conductivity, the volumetric heating asso-
ciated with the dissipation of electric currents must be included on the RHS
of the energy equation, in the form of the so-called Joule heating function:

φB =
η

µ0
(∇×B)2 [Jm−3s−1] . (1.77)

Note however that in very nearly all astrophysical circumstances, Joule heat-
ing makes an insignificant contribution to the energy budget. When it occurs,
heating by magnetic energy dissipation, such as in flares, involves dynamical
mechanisms that lead to effective dissipation far more rapid and efficient than
Joule heating.

1.7 The Full Set of MHD Equations

For the record, we now collect the set of partial differential equations gov-
erning the behavior of magnetized fluids in the MHD limit. In anticipation
of developments to follow, we write these equations in a frame of reference
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rotating with angular velocity Ω, with the centrifugal force absorbed within
the pressure gradient term:

∂̺

∂t
+∇ · (̺u) = 0 , (1.78)

Du

Dt
= −1

̺
∇p− 2Ω × u+ g +

1

µ0̺
(∇×B)×B +

1

̺
∇ · τ , (1.79)

De

Dt
+ (γ − 1)e∇ · u =

1

̺

[

∇ ·
(

(χ+ χr)∇T
)

+ φν + φB

]

, (1.80)

∂B

∂t
= ∇× (u ×B − η∇×B) . (1.81)

Equations (1.78)–(1.81) are further complemented by the two constraint
equations:

∇ ·B = 0 , (1.82)

p = f(̺, T, ...) , (1.83)

and suitable expressions for the viscous stress tensor and for the physical
coefficient ν, χ, η, etc. Note that gravity g is explicitly included on the RHS
of (1.79), that e is the specific internal energy of the plasma (magnetic energy
will be dealt with separately shortly), and that eq. (1.83) is just some generic
form for an equation of state linking the pressure to the properties of the
plasma such as density, temperature, chemical composition, etc.

This is it in principle, but in what follows we shall seldom solve these
equations in this complete form. In the parameter regime characterizing most
astrophysical fluids, we usually have Re ≫ 1, which means that the (u · ∇u)
term hidden in the Lagrangian derivative on the LHS of eq. (1.79) will play an
important role; this, in turn, means turbulence, already in itself an unsolved
problem even for unmagnetized fluids. There is also a strong nonlinear cou-
pling between eqs. (1.79) and (1.81), so that the turbulent cascade involves
both the flow and magnetic field. Finally, with both Re ≫ 1 and Rm ≫ 1,
astrophysical flows will in general develop structures on length scales very
much smaller than that characterizing the system under study, so that even
fully numerical solutions of the above set of MHD equations will tax the
power of the largest extant massively parallel computers, and will continue
to do so in the foreseeable future; which is why judicious geometrical and/or
physical simplification remains a key issue in the art of astrophysical magne-
tohydrodynamics... and will also continue to remain so in the same foreseeable
future!

Nonetheless, there are a few brave souls out there who have tackled the
study of thermal convection and dynamo action in the sun and stars by solv-
ing the above MHD equations, going almost as far back as the first electronic
computers. We will encounter a few such simulations in later chapters. In
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modelling dynamo action over solar cycle timescales, the MHD equations
(1.78)–(1.82) have been solved numerically under either one of two physical
approximations. Under the Boussinesq approximation the fluid density ̺ is
considered constant, except where it multiplies gravity on the RHS of the
momentum equation, thus retaining the effect of thermal buoyancy. In this
case the mass conservation equation (1.78) reverts to the form appropriate
for an incompressible fluid, i.e., ∇ · u = 0. The anelastic approximation,
nowadays in common usage, retains the possibility that ̺ be a function of
position and is thus better applicable to stratified environment, but still pre-
cludes any temporal variation of density other than associated with thermal
dilation. The mass conservation equation is then replaced by ∇·(̺u) = 0. In
both cases the primary practical advantage is to filter out sound waves and
the fast magnetosonic wave modes, which in turn allow the use of a much
larger time step than in fully compressible MHD. Both approximations still
capture the Alfvén wave mode (more on this one immediately below), and
the anelastic approximation also allows the propagation of gravity waves in
stably stratified environments.

1.8 MHD Waves

Although it looks innocuous enough, the magnetic force in the MHD approx-
imation has some rather complex consequences for fluid flows, as we will have
ample occasions to verify throughout this course. One particularly intricate
aspects relates to the types of waves that can be supported in a magne-
tized fluid; in a classical unmagnetized fluid, one deals primarily with sound
waves (pressure acting as a restoring force), gravity waves (gravity acting as
restoring force), or Rossby waves (Coriolis as a restoring force). It turns out
that the Lorentz force introduces not one, but really two additional restoring
forces.

Making judicious use of eqs. (1.52) and (1.55), together with some classical
vector identities, eq. (1.74) can be rewritten as

F =
1

µ0

[

(B · ∇)B − 1

2
∇(B2)

]

, (1.84)

where B2 ≡ B · B. The first term on the RHS is the magnetic tension,
and the second the magnetic pressure. Fluctuations in magnetic pressure
can propagate as a longitudinal wave, much as a sound wave, as depicted
on Fig. 1.4A. In fact, two such magnetosonic waves modes actually exist,
according to whether the magnetic pressure fluctuation is in phase with the
gas pressure fluctuation (the so-called fast mode), or in antiphase (the slow
mode). In addition, magnetic tension can produce a restoring force that allows
the propagation of wave-on-a-string-like transverse waves, known as Alfvén
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waves, as illustrated on Fig. 1.4B. Small-amplitude Alfvén waves travel with

Fig. 1.4 The two fundamental MHD wave modes in a uniform background magnetic
field: (A) magnetosonic mode, and (B) Alfvén mode. The wave vector k is indicated as
a thick arrow, and highlights the fact that the magnetosonic mode is a longitudinal
wave, while the Alfvén mode is a transverse wave. In the presence of plasma, the
magnetosonic mode breaks into two submodes, according to the phasing between the
magnetic pressure and gas pressure perturbations (see text).

a speed a given by

a =
B0√
µ0̺

, (1.85)

where B0 is the magnitude of the (uniform) magnetic field along which the
wave is propagating, and ̺ is the (constant) fluid density. Mechanical forcing
of a magnetic field permeating a compressible fluid will in general excite all
three wave modes. This is an essential aspect of the development and propa-
gation of perturbations in the solar corona and wind, but plays a minor role
in solar interior dynamics... unless one happens to be interested in subsurface
magnetohelioseismology.

1.9 Magnetic Energy

Consider the expression resulting from dotting B into the induction equa-
tion (1.59), integrating over the spatial domain (V ) under consideration, and
making judicious use of various well-known vector identities and of Gauss’
theorem:

d

dt

∫

V

B2

2µ0
dV = −

∮

S

(S · n̂) dS −
∫

V

(u · F ) dV −
∫

V

σ−1J2 dV , (1.86)



24 1 Magnetohydrodynamics

where n̂ is a outward-directed unit vector normal to the boundary surface,
and the vector quantity S is the Poynting flux:

S =
1

µ0
E ×B . (1.87)

Examine now the three terms on the RHS of eq. (1.86); the first is the Poynt-
ing flux component into the domain, integrated over the domain boundaries,
i.e., the flux of electromagnetic energy in (integrand < 0) or out (integrand
> 0) of the domain. This term evidently vanishes in the absence of applied
magnetic or electric fields on the boundaries. The second is the work done by
the Lorentz force (F ) on the flow. In general this term can be either positive
or negative; in the dynamo context we are interested in the u · F < 0 situa-
tion, where the flow transfers energy to the magnetic field. The third term is
evidently always negative, and represents the rate of energy loss due to Ohmic
dissipation. Equations (1.86) then naturally leads to interpret the quantity
B2/2µ0 as the magnetic energy density, and the total magnetic energy (EB)
within the domain is:

EB =
1

2µ0

∫

V

B2dV . (1.88)

The MHD dynamos that will be the focus of much of what follows are fluid
systems that convert mechanical energy into magnetic energy, through the
agency of the u · F term on the RHS of eq. (1.86).

1.10 Magnetic Flux Freezing and Alfvén’s Theorem

Let us return to the differential form of Faraday’s Law:

∇×E = −∂B

∂t
. (1.89)

Project now each side of this expression onto a unit vector normal to some
surface S fixed in space and bounded by a closed countour γ, integrate over
S, and apply Stokes’ theorem to the LHS:

∫

S

(∇×E) · n̂ dS =

∮

γ

E · dℓ = −
∫

S

(
∂B

∂t

)

· n̂ dS . (1.90)

So far the surface S remains completely arbitrary. If it is fixed in space, then
we get the usual integral form of Faraday’s Law:

∮

γ

E · dℓ = − ∂

∂t

∫

S

B · n̂ dS , (1.91)
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with the LHS corresponding to the electromotive force, and the RHS to the
time variation of the magnetic flux (ΦB). If we now assume instead that the
surface S is a material surface moving with the fluid, then (1) we must sub-
stitute the Lagrangian derivative D/Dt for the partial derivative on the RHS
of eq. (1.91); and (2) we are allowed to invoke Ohm’s Law to substitute J/σ
for E on the RHS since any point of the (material) contour is by definition
co-moving with the fluid:

1

σ

∮

γ

J · dℓ = − D

Dt

∫

S

B · n̂ dS . (1.92)

Now, obviously, in the limit of infinite conductivity we have

D

Dt

∫

S

B · n̂ dS = 0 . (1.93)

This states that in the ideal MHD limit σ → ∞, the magnetic flux threading
any (open) surface is a conserved quantity as the surface is advected (and
possibly deformed) by the flow. This results is known as Alfvén’s theorem.
Note in particular that in the limit of an infinitisemal surface pierced by
“only one” fieldline, Alfvén’s theorem is equivalent to saying that magnetic
fieldlines must move in the same way as fluid elements; it is customary to
stay that the magnetic flux is frozen into the fluid. In this manner it behaves
just like vorticity in the inviscid limit ν → 0. And like in the case of vorticity,
sheared flows can amplify magnetic fields by stretching, a subject we will
investigate in detail in the following chapter.

Alfvén’s theorem can be arrived at in a different way, upon noting that
the magnetic field is a solenoidal vector, in that ∇ ·B = 0; any such vector
transported by a flow u is subjected to the so-called kinematic theorem,
stating that:

D

Dt

∫

Sm

B · n̂ dS =

∫

Sm

[
∂B

∂t
−∇× (u ×B)

]

· n̂ dS . (1.94)

Now in the ideal limit, the RHS is zero as per our MHD induction equation
(1.59) with η = 0, and the LHS is just the magnetic flux threading the
material surface Sm, so there we have it.

From yet another point of view, one can also consider that what the flow
u is really transporting are the current system sustaining the magnetic field
(cf. §1.4), as per eq. (1.55). In the absence of Ohmic dissipation, these currents
are moving along with the fluid without attenuation, and therefore so does
the associated magnetic field.
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1.11 The Magnetic Vector Potential

It will often prove useful to work with the MHD induction equation written
in terms of a vector potential, A (units T m), such that B = ∇×A. Equation
(1.59) is then readily integrated to

∂A

∂t
= u× (∇×A)− η∇× (∇×A) +∇ϕ , (1.95)

where, in “uncurling” the induction equation we may elect to append the
gradient of a scalar function to the RHS, with no effect on B. This additional
term may contribute to the electric field E, however, and so ϕ is conveniently
regarded as the electrostatic potential. We will usually pick the Coulomb
gauge ϕ = ∇ · A in order to express the Ohmic dissipation term simply as
η∇2A.

1.12 Magnetic Helicity

In anology with fluid helicity, one can define the magnetic helicity as

hB = A ·B . (1.96)

Consider now the variation of the total magnetic helicity (HB) in a co-moving
fluid volume V ; making judicious use of eqs. (1.59), (1.95), and (1.55), a good
deal of vector algebra eventually leads to the following evolution equation for
(HB):

D

Dt

∫

V

A ·B dV

︸ ︷︷ ︸

HB

= −2µ0η

∫

V

J ·B dV

︸ ︷︷ ︸

HJ

, (1.97)

where the integral on the RHS defines the total current helicity HJ , which
measure the topological linkage between magnetic fieldlines and electrical
currents within the volume, much like the way in which the total magnetic
helicity HB measures the linkage of magnetic flux systems within V .

Equation (1.97) indicates that in the ideal MHD limit, magnetic helicity
becomes a conserved quantity. This will turn out to pose a severe constraint
on magnetic field amplification in astrophysical dynamos, an issue to which
we will return in due time.
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1.13 Force-Free Magnetic Fields

In many astrophysical systems, the magnetic field dominates the dynamics
and energetics of the system. Left to itself, such a system would tend to evolve
to a force-free state described by

F = J ×B = 0 . (1.98)

Broadly speaking, this can be achieved in two physically distinct ways (ex-
cluding the trivial solution B = 0). The first is J = 0 throughout the system.
Then Ampère’s Law becomes ∇×B = 0, which means that, as with the elec-
tric field in electrostatic, B can be expressed as the gradient of a potential.
Such a magnetic field is called a potential field. Substitution into ∇ ·B = 0
then yields a Laplace-type problem:

B = ∇ϕ , ∇2ϕ = 0 [Potential field] . (1.99)

Alternately, a system including a non-zero current density can still be force
free, provided the currents flow everywhere parallel to the magnetic field, i.e.,

∇×B = αB , (1.100)

where α need not necessarily be a constant, i.e., it can vary from one fieldline
to another, vary in space, and even depend on the (local) value of B. Imagine
now a situation where, in some domain (for example, the exterior of a star),
we are provided with a boundary condition on B and the task is to construct
a force-free field. Adopting the potential field Ansatz can lead to very different
reconstructions than if we adopt instead eq. (1.100), given that in the latter
case one is free to specify any electric current distribution within the domain,
as long as J remains parallel to B.

A very important result in this context is known as Aly’s Theorem; it
states that in a semi-infinite domain with B⊥ imposed at the boundary
and B → 0 as x → ∞, the (unique) potential field solution satisfying the
boundary conditions has a magnetic energy that is lower than any of the
(multiple) solutions of eq. (1.100) that satisfy the same boundary conditions,
even with complete freedom to specify α(x) within the domain. This poses a
strict limit to the amount of magnetic energy stored into a system that can
actually be tapped into to power astrophysically interesting phenomena.
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1.14 The Ultimate Origin of Astrophysical Magnetic
Fields

1.14.1 Why B and not E ?

Pretty much anywhere we look in the known universe, there are magnetic
fields of all strengths and shapes everywhere; but electric fields are conspicu-
ously absents. Why is that? You might think, looking at Maxwell’s equations
(1.51)–(1.54) that E and B appear therein on apparently equal footing, leav-
ing nothing to allow us to anticipate the observed astrophysical preponder-
ance of magnetic fields over electrical fields. Moreover, one observer’s mag-
netic field can be turned into another’s electric field by a simple change of
reference frame. So what’s the deal here?

Well, for one thing if you use any sort of sensible “rest frame” for astro-
nomical observation (Earth at rest; solar system at rest; Milky Way at rest;
local group at rest; etc. ad infinitum) there is a lot of B around and precious
little E. The crucial difference between E and B in Maxwell’s equations is
not the fields themselves, nor the reference frame in which they are measured,
but their sources. The Universe may be largely empty, but the fact is that
is contains a whopping number of electrically charged particles of various
sorts (free electrons, ionized atoms or molecules, photoelectrically charged
dust grains, etc). If a large-scale electric field were suddenly to be turned on,
all these charges will do the honorable thing, which is to separate along the
electric field direction until the secondary electric field so produced cancels
the externally applied electric field, at which point charge separation ceases.
Moreover, the low densities of most astrophysical plasmas lead to very large
mean-free paths for microscopic constituents, leading in turn to fairly good
electrical conductivities and very short electrostatic relaxation times τe (see
eq. (1.70)), even when the ionisation fraction is quite low (such as in molecu-
lar clouds). In other words, astrophysical electric fields, if and whenever they
appear, get shortcircuited mighty fast.

Not so with magnetic fields. For starters, as far as anyone can tell there
are no magnetic monopoles out there (well, maybe just one, of primordial ori-
gin... more on this shortly), so shortcircuiting the magnetic field by monopole
separation is out of the question. Magnetic fields, left to themselves, will sim-
ply decay as the electrical currents that support them (remember Ampère’s
Law) suffer Ohmic dissipation. We already obtained a timescale for this pro-
cess given by eq. (1.63), and we already noted, on the basis of the compilation
presented in Table 1.2, that this timescale is extremely large, often exceed-
ing the age of the universe. Once magnetic fields are produced, by whatever
means, they stick around for a long, long time. But when and how do they
first appear? If we remain within the realm of MHD, then we immediately
hit a Big Problem, arising from the linearity of the MHD induction equation
(1.59): if B = 0 at some time t0 then B = 0 at all subsequent times t > t0,
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a problem that persists unabated as t0 is pushed all the way back to the Big
Bang. We need something else.

1.14.2 Monopoles and Batteries

In subsequent chapters we will see that astrophysical flows are actually quite
apt at amplifying magnetic fields, so what we are after here is a very small
seed field to start up the process. Cheap and easy explanations along the
line of an original seed magnetic field being a primordial relic of the Big
Bang need not concern us here. Nor is early-universe ferromagnetism a viable
option, since permanent magnets require an externally-applied magnetic field
to become magnetized in the first place. Interestingly, the two options that
are currently deemed viable stand at the opposite ends of the physical exotism
scale: magnetic monopoles... and batteries8.

Already back in 1931 Paul Dirac (1902–1984) pointed out that there is
nothing to prevent there being magnetic monopoles so long as the magnetic
charge on a particle is some integer multiple of g ≡ hc/(4πe) ≈ 69e, where
h is Planck’s constant, and e is the fundamental electric charge. With just
one magnetic monopole in the universe we have our basic seed field. Some
Grand Unified (field) Theories “predict” that very early in the formation
of the universe a lot of mg ≈ 1016 GeV/c2 magnetic monopoles should be
produced, to the point that an inflationary cosmological scenarios are needed
to ensure that only a few such massive monopoles end up within each inflated
subdomain.

In light of the fact that no one has yet seen a magnetic monopole, it would
be wise to find a more pedestrian means to create seed magnetic fields, relying
on basic physics that we know functions sensibly at least in our part of the
universe. To this end, we return to our derivation of the induction equation
(§1.3). Recall that one essential step toward MHD from Maxwell required
stipulating Ohm’s law, in the form of eq. (1.57) for the laboratory frame of
reference. Consider now the possibility of a “mechanically-driven” process of
charge separation (i.e., not related to the presence of an electric field in any
reference frame); Ohm’s law then picks up an extra term:

J = σ
[

E + u×B
]

+ Jmech . (1.101)

If we keep only the very first term on the RHS of equation (1.101), and drop
the displacement current in equation (1.54), then we get back to the induction
equation (1.59). If we avail ourselves of neither of these opportunities then
we obtain instead:

8 This section is adapted from class notes written by Thomas J. Bogdan for the
graduate class APAS7500 we co-taught in 1997 at CU Boulder.
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{

1 +
η

c2
∂

∂t

}∂B

∂t
= ∇×

(

u×B − η∇×B + ηµ0Jmech

)

. (1.102)

Notice that our only hope for creating B out of nothing (so to speak) is the
Jmech term; retaining the displacement current gives us no advantage.

The Jmech term represents our ability to mechanically grab a hold of
electric charges and force currents to flow; in other words, an electromotive
force. In the dense interior of a conducting star, plasma kinetic theory permits
one to write down a prescription for this “battery” contribution to the total
electric current density as:

Jmech =
σ

ene

[

∇pe −
1

c
J ×B

]

, (1.103)

where pe is the contribution of the electrons alone to the thermal pressure (see
references in bibliography). For a completely ionized pure hydrogen plasma,
pe is just half of the total gas pressure, and ne = ̺/mp, and so,

Jmech =
σmp

2e̺

[

∇p− 2

c
J ×B

]

. (1.104)

Now, the second term on the RHS of equation (1.104) does not do us any
good since it carries a factor of B, so the whole plan rests upon the first
term generating a seed magnetic field. For a spherically symmetric star, we
know from hydrostatic equilibrium that ∇Φ = (∇p)/̺, and so the product
ηJmech ∝ ∇Φ. This will not work because of the curl operator on the RHS
of equation (1.102) will yield zero upon acting on Jmech since (∇p) is a
gradient of a scalar function. How can we get around this constraint? A viable
possibility is rotation. If a star is rotating, then there is a centrifugal force per
unit density of sΩ2ês which adds to ∇Φ and which leads to the generation
of a seed magnetic field. This process of the centrifugal force driving a flow
of electrons relative to the ions was first pointed out by Ludwig Biermann
(1907–1986) and is now called the Biermann battery.

In fact any process that can produce a relative motion between the ions
and electrons is a potential battery mechanism, and a possible candidate for
creating seed magnetic fields. For example, consider a rotating proto-galaxy,
where the outer portions of the proto-galaxy move at a speed U = RΩ
relative to the frame in which the microwave background is isotropic. The
Thomson scattering of the microwave photons by the electrons results in
the so-called Compton drag effect, which causes the electrons to counter-
rotate with respect to the ions. The net result is an azimuthal current which
generates a dipole-like magnetic field.

Of course, if you bother to put typical numbers in these various examples
you will find that you don’t really generate very much magnetic field. But
generating a lot of field is not the point, that can be done via magnetic flux
conservation in a collapsing protostellar cloud, or, as we shall see in due time,
via the u×B term in our MHD induction equation. The basic idea to take
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away from this section is that invoking weird, unproven physics to get away
from B = 0 is not necessary.

1.15 The Astrophysical Dynamo Problem(s)

Before moving on with astrophysical dynamos, it will prove instructive to
first consider the following example of a simple laboratory dynamo, which
illustrates nicely how the idea of amplifying magnetic field by bodily moving
electrical charges across a magnetic field is not so mysterious as one may
initially think.

1.15.1 A Simple Dynamo

One of the many practical inventions of Michael Faraday (1791–1867) was a
DC electric current generator based on the rotation of a conducting metallic
disk threaded by an external magnetic field. Figure 1.5(A) illustrates the
basic design: a circular disk of radius a mounted on an axle, rotating at
angular velocity ω through the agency of some external mechanical force (e.g.,
Faraday turning a crank). A vertical magnetic field is imposed across the disk.
Electrical charges in the disk will feel the usual Lorentz force F = qv × B
where, (initially) v is just the motion imposed by the rotation of the disk.
Working in cylindrical coordinates (s, φ, z) one can write

v = (ωs)êφ , B = B0êz , (1.105)

so that
F = (qωsB0)ês . (1.106)

Now consider the circuit formed by connecting the edge of the disk to the
base of the axle via frictionless sliding contacts. With the lower part of the
circuit away from the imposed magnetic field, the only portion of the circuit
where the magnetic force acts on the charges is within the disk, amounting
to an electromotive force

E =

∮

circuit

(
F

q

)

· dℓ =
∫ a

0

ωB0s ds =
ωB0a

2

2
. (1.107)

Neglecting for the time being the self-inductance of the circuit, the current
flowing through the resistor is simply given by I = E/R. This device is called
a homopolar generator.

There is a subtle modification to this setup that can turn this generator
into a homopolar dynamo, namely a device that converts mechanical energy
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Fig. 1.5 A homopolar generator (A) versus a homopolar dynamo (B). An external
magnetic field B is applied across a rotating conducting disk, producing an electro-
motive force that drives a radial current, a wire connecting the edge of the disk to the
axle, forming a circuit of resistance R. The only difference between the two electro-
mechanical devices illustrated here is that in the latter case, the wire completing the
circuit by connecting on the axle is wrapped into a loop in a plane parallel to the
disk, so that a secondary vertical magnetic field is produced (see text).

into self-amplifying electrical currents and magnetic fields. Instead of simply
connecting the resistor straight to the axle as on 1.5(A), the wire is wrapped
around the axle in a loop lying in a plane parallel to the disk, and then
connected to the axle, as shown on 1.5(B). Use your right-hand rule to con-
vince yourself that this current loop will now produce a secondary magnetic
field B∗ that will superpose itself on the external field B0. The magnetic flux
through the disk associated with this secondary field will be proportional
to the current flowing in the wire loop, the proportionality constant being
defined as the inductance (M):

MI = Φ = πa2B∗ , (1.108)

where the second equality comes from assuming that the secondary field is
vertical and constant across the disk; but what really matters here is that
B∗ ∝ I since the geometry is fixed. We now write an equation for the electrical
current, this time taking into consideration the counter-electromotive force
associated with self-inductance of the circuit since B, an therefore also I, are
time-varying:

E − L
dI

dt
= RI , (1.109)

where L is the coefficient of self-inductance. Substituting eqs. (1.107) and
(1.108) into this expression, leads to
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L
dI

dt
=

ωa2

2

(

B0 +
MI

πa2

)

−RI , (1.110)

indicating that the current—and thus the magnetic field—will grow provided
that initially,

ωa2B0

2
> RI , (1.111)

which it certainly will at first since I = 0 at t = 0. There will eventually
come a time (t∗) when the secondary magnetic field will be comparable in
strength to the externally applied field B0, at which point we may as well
“disconnect” B0; eq. (1.110) then becomes

L
dI

dt
=

(
ωM

2π
−R

)

I , (1.112)

which integrates to

I(t) = I(t∗) exp

[
1

L

(
ωM

2π
−R

)

t

]

, (1.113)

indicating that the current—and magnetic field—will grow provided the
externally-imposed angular velocity exceeds a critical value:

ω > ωc =
2πR

M
. (1.114)

This is not a (dreaded) case of perpetual motion, or creating energy out of
nothing, or anything like that. The energy content of the growing magnetic
field ultimately comes from the biceps of the poor experimenter working ever
harder and harder to turn the crank and keep the angular velocity ω at a
constant value.

There are many features of this dynamo system worth noting, and which
all find their equivalent in the MHD dynamos to be studied in chapters to
follow:

1. There exist a critical angular velocity that must be reached for the self-
inductance to beat Ohmic dissipation in the resistor, leading to an ex-
ponential growth of the magnetic field; below this critical value, the field
decays away exponentially once the initial field B0 is removed.

2. Not all circuits connecting the edge of the disk to the axle will operate in
this way; if we wrap the wire the other way around the axle, the magnetic
field produced by the loop will oppose the applied field;

3. The externally applied magnetic field B0 is only needed as a seed field to
initiate the amplification process.

4. The homopolar dynamo is really nothing more than a device turning me-
chanical energy into electromagnetic energy, more specifically magnetic
energy.
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1.15.2 The Challenges

Copper disks and sliding contacts being a rather sparse commodity in the
universe, we must now figure out to apply the general idea of a dynamo
to astrophysical fluids. In the MHD limit, our hope lies evidently with the
induction term ∇× (u ×B) in the induction equation (1.59).

In its simplest form, the dynamo problem consists in finding a flow field
u that can sustain a magnetic field against Ohmic dissipation. We will en-
counter in the following chapter flows that can amplify a magnetic field during
a transient time interval, after which B decays again. So we tighten our def-
inition of the dynamo problem by demanding that a flow be a dynamo if it
can lead to EB > 0 for times much larger than all relevant advective and
diffusive timescales of the problem. To make things even harder, we’ll add
the additional condition that no electromagnetic energy be supplied across
the domain boundaries i.e., S · n = 0 in eq. (1.86).

We must distinguish the kinematic dynamo problem, where the flow field
u is considered given a priori and constructed without any regards for its
underlying dynamics, from what can only be called (for lack of a generally
agreed-upon terminology) the full dynamo problem, in which the flow u re-
sults from a solution of the full set of MHD equations (§1.7), including the
backreaction of the magnetic field on the flow via the Lorentz force term
J × B on the RHS of the Navier–Stokes equation. The kinematic regime
carries the immense practical advantage that the induction equation then
becomes truly linear in B, and the dynamo problem reduces to finding a
(smooth) flow field u that has the requisite topological properties to lead
to field amplification. In the following chapters we will concentrate mostly
on this kinematic regime, but will occasionally touch upon the much more
difficult dynamical problem.

The solar dynamo problem can be tackled either in kinematic or fully
dynamical form. The aim there is to reproduce observed spatiotemporal pat-
terns of solar (and stellar) magnetic field evolution, including things like cyclic
polarity reversals, equatorward migration of activity belts, relative strengths
and phase relationships between poloidal and toroidal component, etc. This
will prove to be a very tall order. Yet, from solar irradiance variations and
their possible influence on Earth’s climate, space weather prediction, and the
understanding of stellar magnetic fields, it all begins with the solar cycle.
Keep this in mind as we now start to dig into the mathematical and physical
intricacies of magnetic field generation in electrically conducting fluids. We’ll
seem to venture pretty far away from the sun and stars at times, but stick to
it and you’ll see it all fitting together at the end. And now, into the abyss...

Bibliography:
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Griffith, D.J., Introduction to Electrodynamics, 3rd ed., Prentice Hall
(1999).

At the graduate level, the standard reference remains

Jackson, J.D., Classical Electrodynamics, 2nd ed., John Wiley & Sons
(1975),

who does devote a chapter to magnetohydrodynamics, including a discussion
of magnetic wave modes. My personal favorite on magnetohydrodynamics is:

Davidson, P.A., An Introduction to Magnetohydrodynamics, Cambridge
University Press (2001).

Sections 1.5 and 1.10 are strongly inspired by Davidson’s own presentation of
the subject. He also presents an illuminating proof of the kinematic theorem
embodied in eq. (1.94). The following textbook is also well worth consulting:

Goedbloed, H., & Poedts, S., Principles of Magnetohydrodynamics, Cam-
bridge University Press (2004).

These authors put greater emphasis on MHD waves, shocks, and on the in-
tersection of MHD and plasma physics. For those seeking even more focus on
plasma physics aspects, I would recommend:

Kulsrud, R.M., Plasma Physics for Astrophysics, Princeton University
Press (2005).

Also noteworthy in the general astrophysical context:

Shu, F.H., The Physics of Astrophysics, vol. I and II, University Science
Books (1992),

Choudhuri, A.R., The Physics of Fluids and Plasmas, Cambridge Univer-
sity Press (1998).

On Aly’s theorem, see

Aly, J.-J., Astrophys. J. Lett., 375, L61-L64 (1991),
Smith, D.F., & Low, B.C., Astrophys. J., 410, 412-425 (1993),

but brace yourself for some serious math. Many ambitious monographs have
been written on the general topic of astrophysical magnetic fields. My per-
sonal “top-three” selection is:

Parker, E.N., Cosmic magnetic fields, Oxford: Clarendon (1979),
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Mestel, L., Stellar magnetism, Oxford: Clarendon (1999),
Rüdiger, G., & Hollerbach, R., The magnetic universe, New York: John

Wiley (2004).

Parker’s book is unfortunately out of print, and Rüdiger & Hollerbach’s out-
rageously priced. The Mestel book was issued in paperback in 2003, but is
still quite pricey.

For some “light” reading on magnetic monopoles in field theory and astro-
physics, try,

Dirac, P.A.M., Proc. R. Soc. Lond. A, 133, 60-72 (1931)
Parker, E.N., Astrophys. J., 160, 383-404 (1970)
Cabrera, B., Phys. Rev. Lett., 48, 1378-1384 (1982)
Kolb, E.W., & Turner, M.S., The Early Universe, (New York: Addison-

Wesley), §7.6 (1990).

and references therein. For more on Biermann’s battery, see

Biermann, L., Zeits. f. Naturforsch. A, 5, 65 (1950),
Roxburgh, I.W., Mon. Not. Roy. Astron. Soc., 132, 201-215 (1966),
Chakrabarti, S.K., Rosner, R., & Vainshtein, S.I., Nature, 368, 434-436

(1994),

as well as chap. 13 in the Kulsrud book cited earlier.

1.16 Further Reading

There are a great many textbooks available on classical hydrodynamics. My
own top-three personal favorites are Tritton (1988), Acheson (1990), and
Landau & Lifschitz (1959). If you need a refresher on undergraduate elec-
tromagnetism, I would recommend Griffith (1999). At the graduate level,
the standard reference remains Jackson (1975) who does devote a chapter to
magnetohydrodynamics, including a discussion of magnetic wave modes. My
personal favorite on magnetohydrodynamics is Davidson (2001). Sections 1.5
and 1.10 are strongly inspired by Davidson’s own presentation of the subject.
He also presents an illuminating proof of the kinematic theorem embodied in
eq. (1.94). Also well worth consulting is Goedbloed & Poedts (2004). These
authors put greater emphasis on MHD waves, shocks, and on the intersection
of MHD and plasma physics. For those seeking even more focus on plasma
physics aspects, I would recommend Kulsrud (2005). Also noteworthy in the
general astrophysical context is Shu (1992) and Choudhuri (1998).

On Aly’s theorem, see Aly (1991) and Low & Smith (1993) but brace your-
self for some serious math. Many ambitious monographs have been written
on the general topic of astrophysical magnetic fields. My personal “top-three”
selection is Parker (1975), Mestel (1999), and Rüdiger & Hollerbach (2004).
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Parker’s book is, unfortunately, out of print, and Rüdiger & Hollerbach’s
outrageously priced. The Mestel book was issued in paperback in 2003, but
is still quite pricey.

For some “light” reading on magnetic monopoles in field theory and as-
trophysics, try Dirac (1931), Parker (1970), Cabrera (1982), Kolb & Turner
(1970), and references therein. For more on Biermann’s battery, see Biermann
(1950), Roxburgh (1966), Chakrabarti et al. (1994), as well as chap. 13 in the
Kulsrud book cited earlier.

References

Acheson, D. J. 1990, Elementary Fluid Dynamics (Clarendon Press)
Aly, J. J. 1991, Astrophys. J. Lett., 375, L61
Biermann, L. 1950, Zeitschrift Naturforschung Teil A, 5, 65
Cabrera, B. 1982, Physical Review Letters, 48, 1378
Chakrabarti, S. K., Rosner, R., & Vainshtein, S. I. 1994, Nature, 368, 434
Choudhuri, A. R. 1998, The Physics of Fluids and Plasmas (Cambridge Uni-
versity Press)

Davidson, P. A. 2001, An Introduction to Magnetohydrodynamics (Cam-
bridge University Press)

Dirac, P. A. M. 1931, Royal Society of London Proceedings Series A, 133, 60
Goedbloed, H., & Poedts, S. 2004, Principles of Magnetohydrodynamics
(Cambridge University Press)

Griffith, D. J. 1999, Introduction to Electrodynamics (Prentice Hall)
Jackson, J. D. 1975, Classical Electrodynamics (John Wiley & Sons)
Kolb, E. W., & Turner, M. S. 1970, The Early Universe (New York: Addison-
Wesley)

Kulsrud, R. M. 2005, Plasma Physics for Astrophysics (Princeton University
Press)

Landau, L., & Lifschitz, E. 1959, Fluid Mechanics (Oxford: Pergamon Press)
Low, B. C., & Smith, D. F. 1993, Astrophys. J., 410, 412
Mestel, L. 1999, Stellar magnetism (Oxford: Clarendon Press)
Parker, E. N. 1970, Astrophys. J., 160, 383
Parker, E. N. 1975, Cosmic magnetic fields (Oxford: Clarendon Press)
Roxburgh, I. W. 1966, Mon. Not. Roy. Astron. Soc., 132, 201
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Chapter 2

Decay and Amplification of Magnetic
Fields

It’s not whether a thing is hard to understand.
It’s whether, once understood, it makes any sense.

Hans Zinsser
Rats, Lice and History (1934)

We now begin our long modelling journey towards astrophysical dynamos.
This chapter concentrate for the most part on a series of (relatively) sim-
ple model problems illustrating the myriad of manners in which a flow and
a magnetic field can interact. We first consider the purely resistive decay
of magnetic fields (§2.1), then examine various circumstances under which
stretching and shearing by a flow can amplify a magnetic field (§2.2). This is
followed by a deeper look at some important subtleties of these processes in
the context of some (relatively) simple 2D flows (§2.3). We then move on to
the so-called anti-dynamo theorems (§2.4), which will shed light on results
from previous sections and indicate the way towards dynamo action, which
we will finally encounter in §§2.5 and 2.6.

Some of the material contained in this chapter may feel pretty far removed
from the realm of astrophysics at times, but please do stick to it because the
physical insight (hopefully) developed in the following sections will prove
essential to pretty much everything that will come next.

2.1 Resistive Decays of Magnetic Fields

Before we try to come up with flows leading to field amplification and dynamo
action, we better understand the enemy, namely magnetic field decay by
Ohmic dissipation. Consequently, and with the sun and stars in mind, we first
consider the evolution of magnetic fields in a sphere (radius R) of electrically
conducting fluid, in the absence of any fluid motion (or, more generally, in
the Rm ≪ 1 limit). The induction equation then reduces to

∂B

∂t
= −∇× (η∇×B) = η∇2B − (∇η)× (∇×B) . (2.1)

Were it not that we are dealing here with a vector—as opposed to scalar—
quantity, for constant η this would look just like a simple heat diffusion

39
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equation, with η playing the role of thermal diffusivity. Our derivation of the
magnetic energy equation (1.86) already indicates that under such circum-
stances, the field can only decay. Back in chapter 1 we already obtained an
order-of-magnitude estimate for the timescale τη ∼ ℓ2/η over which a mag-
netic field B with typical length scale ℓ can be expected to resistively decay,
which in the case of the stellar interiors ended up at ∼ 1010 yr, i.e., about
the main-sequence lifetime of the Sun. Let’s now validate this estimate by
securing formal solutions to the diffusive decay problem.

2.1.1 Axisymmetric Magnetic Fields

Without any significant loss of generality, we can focus on axisymmetric mag-
netic fields, i.e., fields showing symmetry with respect to an axis, usually ro-
tational. Working in spherical polar coordinates (r, θ, φ) with the polar axis
coinciding with the field’s symmetry axis, the most general axisymmetric
(now meaning ∂/∂φ = 0) magnetic field can be written as:

B(r, θ, t) = ∇× (A(r, θ, t)êφ) +B(r, θ, t)êφ . (2.2)

Here the vector potential component A defines the poloidal component of
the magnetic field, i.e., the component contained in meridional (r, θ) planes.
The azimuthal component B is often called the toroidal field. Equation (2.2)
satisfies the constraint∇·B = 0 by construction, and another great advantage
of this mixed representation is that the MHD induction equation for the
vector B can be separated in two equations for the scalar components A
and B. In the case of pure diffusive decay, and for a magnetic diffusivity η
depending at worst only on r, substitution of eq. (2.2) into (2.1) leads to:

∂A

∂t
= η

(

∇2 − 1

̟2

)

A , (2.3)

∂B

∂t
= η

(

∇2 − 1

̟2

)

B +
1

̟

∂η

∂r

∂(̟B)

∂r
, (2.4)

where ̟ = r sin θ. These are still diffusion-like PDEs, now fully decoupled
from one another. In the “exterior” r > R there is only vacuum, which
implies vanishing electric currents. In practice we will need to match whatever
solution we compute in r < R to a current-free solution in r > R; such a
solution must satisfy

µ0J = ∇×B = 0 . (2.5)

For an axisymmetric system, eq. (2.5) translates into the requirement that
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(

∇2 − 1

̟2

)

A(r, θ, t) = 0 , r > R , (2.6)

B(r, θ, t) = 0 , r > R . (2.7)

Solutions to eq. (2.6) have the general form

A(r, θ, t) =

∞∑

l=1

al

(
R

r

)l+1

Yl0(cos θ) r > R , (2.8)

where the Yl0 are the usual spherical harmonics of m = 0 azimuthal order,
and l is a positive integer, modes with negative l being discarded to ensure
proper behavior as r → ∞.

2.1.2 Reformulation as an Eigenvalue Problem

Let us now seek specific solutions for a few situations of solar/stellar interest1.
The first point to note is that the coefficients that appear in eqs. (2.3)–(2.4)
have no explicit dependence on time; provided that the magnetic diffusivity
η is at worst only a function of r, it is then is profitable to seek a separable
solution of the form:

e−λtfλ(r)Ylm(θ, φ) , (2.9)

where the Ylm are again the spherical harmonic, the natural functional basis
for modal development on a spherical surface. Substitution of this Ansatz
into eqs. (2.3) or (2.4), with m = 0 in view of axisymmetry, yields the ODE:

[ 1

r2
d

dr
r2

d

dr
− l(l+ 1)

r2
+

λ

η(r)

]

fλ(r) = 0 . (2.10)

Assume now that the magnetic diffusivity η is constant; the spherical Bessel
functions j(kr), with k2 = λ/η, are then the appropriate solution. The decay
rate, λ, is then determined by the above 1D eigenvalue problem, along with
some boundary conditions at the surface of the sphere, which turns out to
depend on the vector character of the decaying magnetic field.

1 This and the following two subsections are to a large extent adapted from class
notes written by Thomas J. Bogdan for the graduate class APAS7500 we co-taught
in 1997 at CU Boulder.
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2.1.3 Poloidal Field Decay

We first consider the decay of a purely poloidal field, i.e., fλ(r) is taken to
describe the radial dependency of the toroidal vector potential component
A(r, θ, t). Both the interior solution and outer potential field solution carry
the Yl0 angular dependency, so continuity of A at r = R demands that

fλ(r) =

{
jl(kr) r < R ,

jl(kR)
(

R
r

)l+1

r > R .
(2.11)

The continuity of the radial derivative at r = R, necessary for the continuity
of the latitudinal component of the magnetic field, then requires

kRj′l(kR) + (l + 1)jl(kR) = kRjl−1(kR) = 0 , (2.12)

which means that the decay rate of a poloidal magnetic field is determined by
the zeros of a spherical Bessel function. An l = 1 dipole calls for the positive
zeros of j0(x) = sinx/x:

λn =
ηπ2n2

R2
for l = 1 , n = 1, 2, 3, ... . (2.13)

Notice the many possible overtones associated with n ≥ 2. These decay more
rapidly than the fundamental (n = 1), since the radial eigenfunctions possess
n− 1 field reversals. For such overtones, the effective length scale to be used
in the decay-time estimate is roughly the radial distance between the field
reversals, or ≈ R/n.

Figure 2.1 (top row) shows the first three fundamental (n = 1) modes of
angular degrees l = 1, 2, 3, corresponding to dipolar, quadrupolar, an hexap-
olar magnetic fields, as well as a few higher overtones for l = 1, 2 (bottom
row). The decay time estimate provided by eq. (1.63) turns out to be too
large by a factor π2 ≈ 10, for a sun with constant diffusivity. Still not so bad
for a pure order-of-magnitude estimate!

2.1.4 Toroidal Field Decay

Computing the decay rate of a purely toroidal magnetic field follows the same
basic logic. We now require B = 0 at r = R, but we must further demand
that its radial derivative also be continuous, to avoid a blowup of the current
density at the surface. This second requirement is what ends up determining
the decay rate, which again ends up related to the zero of a spherical Bessel
function—only of index l rather than l − 1 as was found for the decay of
the poloidal field. Hence, a dipole (l = 1) toroidal magnetic field decays at
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Fig. 2.1 Six diffusive eigenmodes for a purely poloidal field pervading a sphere
of constant magnetic diffusivity embedded in vacuum. The top row shows the three
fundamental (n = 1) diffusive eigenmodes with smallest eigenvalues, i.e., largest decay
times. They correspond to the well-known dipolar, quadrupolar, and hexapolar modes
(l = 1, 2 and 3). The bottom row shows a few eigenmodes of higher radial overtones.
Poloidal fieldlines are shown in a meridional plane, and the eigenvalues are given in
units of the inverse diffusion time (τ−1 ∼ η/R2).

precisely the same rate as a quadrupole (l = 2) poloidal magnetic field (still
for constant diffusivity). Sneaking a peak in a handbook of special functions
soon reveals that the decay rate of a dipole toroidal field follows from the
transcendental equation:

tan kR = kR . (2.14)

The smallest non-zero solution of this equation gives,

λ1 =
η(4.493409...)2

R2
, l = 1 toroidal and l = 2 poloidal . (2.15)
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As with a purely poloidal field, higher radial overtones decay proportionally
faster.

2.1.5 Results for a Magnetic Diffusivity Varying with
Depth

We end this section by a brief examination of the diffusive decay of large-scale
poloidal magnetic fields in the solar interior. The primary complication cen-
ters on the magnetic diffusivity, which is no longer constant throughout the
domain, and turns out to be rather difficult to compute from first principles.
To begin with, the depth variations of the temperature and density in a solar
model causes the magnetic diffusivity to increase from about 10−2m2s−1 in
the central core to ∼ 1m2s−1 at the core–envelope interface. This already
substantial variation is however dwarfed by the much larger increase in the
net magnetic diffusivity expected in the turbulent environment of the con-
vective envelope. We will look into this in some detail in chapter 3, but for
the time being let us simply take for granted that η is much larger in the
envelope than in the core.

In order to examine the consequences of a strongly depth-dependent mag-
netic diffusivity on the diffusive eigenmodes, we consider a simplified situ-
ation whereby η assumes a constant value ηc in the core, a constant value
ηe (≫ ηc) in the envelope, the transition occurring smoothly across a thin
spherical layer coinciding with the core–envelope interface. Mathematically,
such a variation can be expressed as

η(r) = ηc +
ηe − ηc

2

[

1 + erf

(
r − rc
w

)]

, (2.16)

where erf(x) is the error function, rc is the radius of the core–envelope inter-
face, and w is the half-width of the transition layer.

We are still facing the 1D eigenvalue problem presented by eq. (2.10)!
Expressing time in units of the diffusion time R2/ηe based on the envelope
diffusivity, we seek numerical solutions, subjected to the boundary conditions
fλ(0) = 0 and smooth matching to a potential field solution in r/R > 1,
with the diffusivity ratio ∆η = ηc/ηe as a parameter of the model. Since we
can make a reasonable guess at the first few eigenvalues on the basis of the
diffusion time and adopted values of l and ηc (∼ π2nl∆η, for l and n not too
large), a (relatively) simple technique such as inverse iteration is well-suited
to secure both eigenvalues and eigenfunctions for the problem.

Figure 2.2 shows the radial eigenfunctions for the slowest decaying poloidal
eigenmodes (l = 1, n = 1), with rc/R = 0.7, w/R = 0.05 in eq. (2.16) and
diffusivity contrasts ∆η = 1 (constant diffusivity), 10−1 and 10−3. The cor-
responding eigenvalues, in units of R2/ηe, are λ = −9.87, −2.14 and −0.028.
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Fig. 2.2 Radial eigenfunctions for the slowest decaying (ℓ = 1) poloidal eigenmodes
(l = 1, n = 1) in a sphere embedded in a vacuum. The diffusivity is computed using
eq. (2.16) with rc/R = 0.7, w/R = 0.05, and for three values of the core-to-envelope
diffusivity ratio (∆η). The eigenvalues, in units of ηe/R2, are λ = −9.87, −2.14 and
−0.028 for ∆η = 1, 0.1, and 10−3, respectively. The diffusivity profile for ∆η = 10−3

is also plotted (dash-dotted line). The vertical dashed line indicates the location of
the core–envelope interface.

Clearly, the (global) decay time is regulated by the region of smallest diffusiv-
ity, since λ scales approximately as (∆η)−1. Notice also how the eigenmodes
are increasingly concentrated in the core region (r/R ∼< 0.7) as ∆η decreases,
i.e., they are “expelled” from the convective envelope.

2.1.6 Fossil Stellar Magnetic Fields

The marked decrease of the diffusive decay time with increasing angular and
radial degrees of the eigenmodes is a noteworthy result. It means that left to
decay long enough, any arbitrarily complex magnetic field in the Sun or stars
will eventually end up looking dipolar. Conversely, a fluid flow acting as a
dynamo in a sphere and trying to “beat” Ohmic dissipation can be expected
to preferentially produce a magnetic field approximating diffusive eigenmodes
of low angular and radial degrees (or some combination thereof), since these
are the least sensitive to Ohmic dissipation.
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There exists classes of early-type main-sequence stars, i.e., stars hotter
and more luminous than the Sun and without deep convective envelope, that
are believed to contain strong, large-scale fossil magnetic fields left over from
their contraction toward the main-sequence. The chemically peculiar Ap/Bp
stars are the best studied class of such objects. Reconstruction of their sur-
face magnetic field distribution suggests almost invariably that the fields are
largely dominated by a large-scale dipole-like component, as one would have
expected from the preceding discussion if the observed magnetic fields have
been diffusively decaying for tens or hundreds of millions of years. It is in-
deed quite striking that the highest strengths of large-scale magnetic fields in
main-sequence stars (a few T in Ap stars), in white dwarfs (∼ 105T) and in
the most strongly magnetized neutron stars (∼ 1011 T) all amount to similar
total surface magnetic fluxes, ∼ 1019Wb, lending support to the idea that
these high field strengths can be understood from simple flux-freezing argu-
ments (§1.10), with field amplification resulting directly from magnetic flux
conservation as the star shrinks to form a compact object. We will revisit the
origin of A-star magnetic fields in chapter 5.

2.2 Magnetic Field Amplification by Stretching and
Shearing

Having thus investigated in some details the resistive decay of magnetic field,
we turn to the other physical mechanism embodied in eq. (1.59): growth of
the magnetic field in response to the inductive action of a flow u. We first
take a quick look at field amplification in a few idealized model flows, and
then move on to a specific example involving a “real” astrophysical flow.

2.2.1 Hydrodynamical Stretching and Field
Amplification

Let’s revert for a moment to the ideal MHD case (η = 0). The induction
equation can then expressed as

(
∂

∂t
+ u · ∇

)

B = B · ∇u , (2.17)

where it was further assumed that the flow is incompressible (∇·u = 0). The
LHS of eq. (2.17) is the Lagrangian derivative of B, expressing the time rate
of change of B in a fluid element moving with the flow. The RHS expresses
the fact that this rate of change is proportional to the local shear in the flow
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field. Shearing has the effect of stretching magnetic fieldlines, which is what
leads to magnetic field amplification.

As a simple example, consider on Figure 2.3 a cylindrical fluid element
of length L1, threaded by a constant magnetic field of strength B1 oriented
parallel to the axis of the cylinder. In MHD, such a magnetic field could be
sustained by an azimuthal current concentrated in a thin sheet coindiding
with the outer boundary of the cylinder, giving a solenoid-like current+field
system. Assume now that this magnetic “flux tube” is embedded in a per-
fectly conducting incompressible fluid and subjected to a stretching motion
(∂uz/∂z > 0) along its central axis such that its length increases to L2. Mass
conservation demands that

R2

R1
=

√

L1

L2
. (2.18)

Conservation of the magnetic flux (= πR2B), in turn, leads to

B2

B1
=

L2

L1
, (2.19)

i.e., the field strength is amplified in direct proportion to the level of stretch-

Fig. 2.3 Stretching of a magnetized cylindrical fluid element by a diverging flow.
The magnetic field (fieldlines in gray) is horizontal within the tube, has a strength B1

originally, and B2 after stretching. In the flux-freezing limit mass conservation within
the tube requires its radius to decrease, which in turn leads to field amplification (see
text).



48 2 Decay and Amplification of Magnetic Fields

ing. This almost trivial result is in fact at the very heart of any magnetic field
amplification in the magnetohydrodynamical context, and illustrates two cru-
cial aspects of the mechanism: first, this works only if the fieldlines are frozen
into the fluid, i.e., in the high-Rm regime. Second, mass conservation plays
an essential role here; the stretching motion along the tube axis must be ac-
companied by a compressing fluid motion perpendicular to the axis if mass
conservation is to be satisfied. It is this latter compressive motion, occurring
perpendicular to the magnetic fieldlines forming the flux tube, that is ulti-
mately responsible for field amplification; the horizontal fluid motion occurs
parallel to the magnetic fieldline, and so cannot in itself have any inductive
effect as per eq. (1.59). This becomes evident upon considering the transfer
of energy in this magnetized fluid system. With the electrical current sus-
taining the magnetic field concentrated in a thin cylindrical sheet bounding
the tube, the field is force-free everywhere except at the surface of the tube,
where the Lorentz Force points radially outwards. It is the work done by the
flow against this force which transfers energy from the flow to the magnetic
field, and ultimately ends up in magnetic energy.

The challenge, of course, is to realize this idealized scenario in practice,
i.e., to find a flow which achieves the effect illustrated on Figure 2.3. This,
it turns out, is much simpler than one might expect! Working in cylindrical
coordinates (s, φ, z), consider the following incompressible flow:

us(s) =
αs

2
, uφ = 0 , uz(z) = −αz , (2.20)

with α > 0. This describes a flow converging towards the z = 0 plane along
the z-axis, and diverging radially away from the origin within the z = 0 plane.
Clearly, u = 0 at the origin (0, φ, 0) of the cylindrical coordinate system.
This is called a stagnation point, and its presence is vital to the inductive
amplification of the magnetic field. Now place a thin, straight magnetic flux
tube in the z = 0 plane, and enclosing the stagnation point, as shown on
Fig. 2.4. You can easily verify that you will get exactly the type of stretching
effect illustrated in cartoon form on Fig. 2.3.

2.2.2 The Vainshtein & Zeldovich Flux Rope Dynamo

So, the linear stretching of a flux tube amplifies the magnetic field, but the
magnetic flux remains constant by the very nature of the amplification mech-
anism. Nonetheless, this idea actually forms the basis of a dynamo that
can increase both the magnetic field strength and flux. S. Vainshtein and
Ya. B. Zeldovich have proposed one of the first and justly celebrated “car-
toon” model for this idea, as illustrated on Figure 2.5. The steps are the
following:
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Fig. 2.4 Streamlines of the stagnation point flow defined by eq. (2.20), plotted in
a constant-φ plane. The flow is rotationally invariant about the symmetry (z) axis,
indicated by the dotted line, and the stagnation point (solid dot) is located at the
origin of the cylindrical coordinate system. A thin magnetic flux tube located in the
z = 0 plane and crossing the origin, as shown, will be subjected to the shearing
motion illustrated in cartoon form on Fig. 2.3.

1. A circular rope of magnetic field is stretched to twice its length (a → b). As
we just learned, this doubles the magnetic field strength while conserving
the flux;

2. The rope is twisted by half a turn (c → d);
3. One half of the rope is folded over the other half in such a way as to align

the magnetic field of each half (e → f); this now doubles the magnetic
flux through any plane crossed by the stacked loops.

This is quite remarkable; the so-called stretch–twist–fold sequence (here-
after STF) illustrated on Fig. 2.5 first doubles the field strength while con-
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Fig. 2.5 Cartoon of the Strech–Twist–Fold flux rope dynamo of Vainshtein & Zel-
dovich. A circular flux rope is (a)→(b) stretched, (c)→(d) twisted, and (e)→(f) folded.
Diagram (g) shows the resulting structure after another such sequence acting on (f).
Diagram produced by D. Passos.

serving the total cross-section of the original rope, because the tube’s cross-
section (∝ R2) varies as the inverse of its length (as per eq. 2.18)), then
folding doubles the magnetic flux without reducing the field strength since
the loop’s cross-section remains unaffected. If the sequence is repeated n
times, the magnetic field strength (and flux) is then amplified by a factor

Bn

B0
∝ 2n = exp(n ln 2) , (2.21)

with n playing the role of a (discrete) time-like variable, Equation (2.21)
indicates an exponential growth of the magnetic field, with a growth rate
σ = ln 2. Rejoyce! This is our first dynamo!

A concept central to the STF dynamo—and other dynamos to be encoun-
tered later—is that of constructive folding. Note how essential the twisting
step is to the STF dynamo: without it (or with an even number of twists),
the magnetic field in each half of the folded rope would end up pointing in
opposite direction, and would then add up to zero net flux, a case of destruc-
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tive folding. We’ll have a more to say on the STF dynamo later on; for now
we turn to amplification by fluid motions that shear rather than stretch.

2.2.3 Hydrodynamical Shearing and Field Amplification

Magnetic field amplification by stretching, as illustrated on Figure 2.3, evi-
dently requires (1) a stagnation point in the flow, and (2) a rather specific
positioning and orientation of the flux tube with respect to this stagnation
point. We will encounter later more realistic flows that do achieve field am-
plification through stretching in the vicinity of stagnation points, but there
is a different type of fluid motion that can produce a more robust form of
magnetic field amplication: shearing. The idea is illustrated in cartoon form
on Figure 2.6. We start with a magnetic flux tube, as before, but this time the
flow is everywhere perpendicular to the axis of the tube, and its magnitude
varies with height along the length of the tube, e.g., u = ux(z)êx, so that
∂ux/∂z 6= 0; this is called a planar sheared flow. In the ideal MHD limit,
every small section of the tube is displaced sideways at a rate equal to the
flow speed. After a while, the tube will no longer be straight, and for the type
of shearing motion illustrated on Figure 2.6, its length will have increased.
By the same logic as before, the field strength within the tube must have
increased proportionally to the increase in length of the tube. Note also that
here the action of the shear leaves the z-component of the magnetic field
unaffected, but produces an x-component where there was initially none.

The beauty of this mechanism is that it does not require stagnation points,
and will in general operate for any sheared flow. The latter turn out to be
rather common in astrophysical objects, and we now turn to one particularly
important example.

2.2.4 Toroidal Field Production by Differential Rotation

A situation of great (astro)physical interest is the induction of a toroidal mag-
netic field via the shearing of a pre-existing poloidal magnetic field threading
a differentially rotating sphere of electrically conducting fluid. Working now
in spherical polar coordinates (r, θ, φ) and assuming overall axisymmetry (i.e.,
the poloidal field and differential rotation share the same symmetry axis), the
flow velocity can be written as:

u(r, θ) = ̟Ω(r, θ)êφ , (2.22)

where again ̟ = r sin θ, and the angular velocity Ω(r, θ) is assumed steady
(∂/∂t = 0), corresponding to the kinematic regime introduced earlier. Ne-
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Fig. 2.6 Stretching of a flux tube by a shearing motion directed perpendicularly to
the tube’s axis. Unlike on Fig. 2.3, here the tube does not remain straight, but it’s
length is still increasing as a consequence of the tube’s deformation; consequently,
in the ideal MHD limit the magnetic field threading the tube will be amplified by a
factor given by the ratio of its final to initial length, as per eq. (2.19).

glecting once again magnetic dissipation, the induction equation takes on the
reduced form

∂A

∂t
= 0 , (2.23)

∂B

∂t
= ̟[∇× (Aêφ)] · ∇Ω , (2.24)

where we took again advantage of the poloidal/toroidal decomposition intro-
duced in in §2.1. Equation (2.24) integrates immediately to

B(r, θ, t) = B(r, θ, 0) +
(

̟[∇× (Aêφ)] · ∇Ω
)

t . (2.25)

Anywhere in the domain, the toroidal component of the magnetic field grows
linearly in time, at a rate proportional to the net local shear and local poloidal
field strength. A toroidal magnetic component is being generated by shearing
the initially purely poloidal fieldlines in the φ-direction, and the magnitude of
the poloidal magnetic component remains unaffected, as per eq. (2.23). Note
also that for such an axisymmetric configuration, the only possible steady-
state (∂/∂t = 0) solutions must have

[∇× (Aêφ)] · ∇Ω = 0 , (2.26)

i.e., the angular velocity must be constant on any given poloidal flux surface.
This result is known as Ferraro’s theorem.
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Evidently, computing B via eq. (2.25) requires a knowledge of the so-
lar internal (differential) rotation profile Ω(r, θ). Consider the following
parametrization:

Ω(r, θ) = ΩC +
ΩS(θ) −ΩC

2

[

1 + erf

(
r − rC

w

)]

, (2.27)

where
ΩS(θ) = ΩEq(1− a2 cos

2 θ − a4 cos
4 θ) (2.28)

is the surface latitudinal differential rotation. We will make repeated use of
this parametrization in this and following and chapters, so let’s look into it
in some detail. Figure 2.7A shows isocontours of angular velocity (in black)
generated by the above parameterization with parameter values ΩC/2π =
432.8 nHz, ΩEq/2π = 460.7 nHz, a2 = 0.1264, a4 = 0.1591, rc = 0.713R,
and w = 0.05R, as obtained by a best-fit to helioseismic frequency splittings.
This properly reproduces the primary features of full helioseismic inversions,
namely:

1. A convective envelope (r ∼> rc) where the shear is purely latitudinal, with
the equatorial region rotating faster than the poles;

2. A core (r ∼< rc) that rotates rigidly, at a rate equal to that of the surface
mid-latitudes;

3. A smooth matching of the core and envelope rotation profiles occurring
across a thin spherical layer coinciding with the core–envelope interface
(r = rc), known as the tachocline.

It should be emphasized already at this juncture that such a solar-like
differential rotation profile is quite complex, in that it is characterized by
three partially overlapping shear regions: a strong positive radial shear in the
equatorial regions of the tachocline, an even stronger negative radial shear in
its polar regions, and a significant latitudinal shear throughout the convective
envelope and extending partway into the tachocline. For a tachocline of half-
thickness w/R = 0.05, the mid-latitude latitudinal shear at r/R = 0.7 is
comparable in magnitude to the equatorial radial shear; as we will see in
the next chapter, its potential contribution to dynamo action should not be
casually dismissed.

Figure 2.7B shows the distribution of toroidal magnetic field resulting from
the shearing of the slowest decaying, n = 1 dipole-like diffusive eigenmode
of §2.1 of strength 10−4T at r/R = 0.7, using the diffusivity profile given
by eq. (2.16) with diffusivity contrast ∆η = 10−2 (part A, red lines). This is
nothing more that eq. (2.25) evaluated for t = 10 yr, with B(r, θ, 0) = 0. Not
surprisingly, the toroidal field is concentrated in the regions of large radial
shear, at the core–envelope interface (dashed line). Note how the toroidal
field distribution is antisymmetric about the equatorial plane, precisely what
one would expect from the inductive action of a shear flow that is equatorially
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symmetric on a poloidal magnetic field that is itself antisymmetric about the
equator.

Fig. 2.7 Shearing of a poloidal field into a toroidal component by a solar-like dif-
ferential rotation profile. Part A shows isocontours of the rotation rate Ω(r, θ)/2π
(solid lines, contour spacing 10 nHz). The red lines are fieldlines for the n = 1 dipo-
lar diffusive eigenmode with core-to-envelope diffusivity contrast ∆η = 10−2. The
dashed line is the core–envelope interface at r/R = 0.7. Part B shows isocontours of
the toroidal field, with yellow-red (green-blue) corresponding to positive (negative)
B. The maximum toroidal field strength is about 0.2T, and contour spacing is 0.02T.
Part C shows logarithmically spaced isocontours of the φ-component of the Lorentz
force associated with the poloidal/toroidal fields of panels A and B.

Knowing the distributions of toroidal and poloidal fields on Figure 2.7
allows us to flirt a bit with dynamics, by computing the φ-component of the
Lorentz force:

[F ]φ =
1

µ0̟
Bp · ∇(̟B) . (2.29)

The resulting spatial distribution of [F ]φ is plotted on Figure 2.7C. Exam-
ine this carefully to convince yourself that the Lorentz force is such as to
oppose the driving shear. This is an important and totally general property
of interacting flows and magnetic fields: the Lorentz force tends to resist the
hydrodynamical stretching responsible for field induction. The ultimate fate
of the system depends on whether the Lorentz force become dynamically
significant before the growth of the toroidal field is mitigated by resistive
dissipation; in solar/stellar interiors the former situation is far more likely.
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Clearly, the growing magnetic energy of the toroidal field is supplied by
the kinetic energy of the rotational shearing motion (this is hidden the sec-
ond term on the RHS of eq. (1.86)). In the solar case, this is an attractive
field amplification mechanism, because the available supply of rotational ki-
netic energy is immense2. But don’t make the mistake of thinking that this
is a dynamo! In obtaining eq. (2.25) we have completely neglected magnetic
dissipation, and remember, the dynamos we are seeking are flows that can
amplify and sustain a magnetic field against Ohmic dissipation. In fact, nei-
ther flux tube stretching (Fig. 2.3) or shearing (Fig 2.6) is a dynamo either,
for the same reason3. Nonetheless, shearing of a poloidal field by differential
rotation will turn out to be a central component of all solar/stellar dynamo
models constructed in later chapters. It is also believed to be an important
ingredient of magnetic amplification in stellar accretion disks, and even in
galactic disks.

2.3 Magnetic Field Evolution in a Cellular Flow

Having examined separately the resistive decay and hydrodynamical induc-
tion of magnetic field, we now turn to a situation where both processes op-
erate simultaneously.

2.3.1 A Cellular Flow Solution

Working now in Cartesian geometry, we consider the action of a steady, in-
compressible (∇ · u = 0) two-dimensional flow

u(x, y) = ux(x, y)êx + uy(x, y)êy (2.30)

on a two-dimensional magnetic field

B(x, y, t) = Bx(x, y, t)êx +By(x, y, t)êy . (2.31)

Note that neither the flow nor the magnetic field have a z-component, and
that their x and y-components are both independent of the z-coordinate. The
flow is said to be planar because uz = 0, and has an ignorable coordinate (i.e.,
translational symmetry) since ∂/∂z ≡ 0 for all field and flow components.

2 This may no longer be the case, however, if dynamo action takes place in a thin
layer below the base of the convective envelope; see the paper by Steiner & Ferris-Mas
in the bibliography of the next chapter, for more on this aspect of the problem.
3 The STF dynamo (Fig. 2.5) is the lone exception here, it that it remains a dynamo
even when magnetic dissipation is brought into the picture; the reasons why are subtle
and will be clarified later on.
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Such a magnetic field can be represented by the vector potential

A = A(x, y, t)êz , (2.32)

where, as usual, B = ∇ × A. Under this representation, lines of constant
A in the [x, y] plane coincide with magnetic fieldlines. The only non-trivial
component of the induction equation (1.95) is its z-components, which takes
the form

∂A

∂t
+ u · ∇A = η∇2A . (2.33)

This is a linear advection-diffusion equation, describing the transport of a
passive scalar quantity A by a flow u, and subject to diffusion, the magnitude
of which being measured by η. In view of the symmetry and planar nature
of the flow, it is convenient to write the 2-D flow field in terms of a stream
function Ψ(x, y):

u(x, y) = u0

(
∂Ψ

∂y
êx − ∂Ψ

∂x
êy

)

. (2.34)

It is easily verified that any flow so defined will identically satisfy the con-
dition ∇ · u = 0. As with eq. (2.32), a given numerical value of Ψ uniquely
labels one streamline of the flow. Consider now the stream function

Ψ(x, y) =
L

4π

(

1− cos

(
2πx

L

))(

1− cos

(
2πy

L

))

, x, y ∈ [0, L] . (2.35)

This describes a counterclockwise cellular flow centered on (x, y) = (L/2, L/2),
as shown on Figure 2.8. The maximal velocity amplitude max‖u‖ = u0 is
found along the streamline Ψ = u0L/(2π), plotted as a thicker line on Figure
2.8. This streamline is well approximated by a circle of radius L/4, and its
streamwise circulation period turns out to be 1.065πL/2u0, quite close to
what one would expect in the case of a perfectly circular streamline. In what
follow this timescale is denoted τc and referred to as the turnover time of
the flow. Note that both the normal and tangential components of the flow
vanish on the boundaries x = 0, L and y = 0, L. This implies that the domain
boundary is itself a streamline (Ψ = 0, in fact), and that every streamline
interior to the boundary closes upon itself within the spatial domain.

We now investigate the inductive action of this flow by solving a nondi-
mensional version of eq. (2.33), by expressing all lengths in units of L, and
time in units of L/u0, so that

∂A

∂t
= −∂Ψ

∂y

∂A

∂x
+

∂Ψ

∂x

∂A

∂y
+

1

Rm

(
∂2A

∂x2
+

∂2A

∂y2

)

, x, y ∈ [0, L] , (2.36)

where Rm = u0L/η is the magnetic Reynolds number for this problem, and
the corresponding diffusion time is then τη = Rm in dimensionless units.
Equation (2.36) is solved as an initial-boundary value problem in two spatial
dimensions. All calculations described below start at t = 0 with an initially



2.3 Magnetic Field Evolution in a Cellular Flow 57

Fig. 2.8 Counterclockwise cellular flow generated by the streamfunction given by
eq. (2.35). Part (A) shows streamlines of the flow, with the thicker streamline corre-
sponding to Ψ = u0L/(2π), on which the flow attains its maximum speed u0. Part
(B) shows the profile of uy(x) along an horizontal cut at y = 1/2. A “typical” length
scale for the flow is then ∼ L.

uniform, constant magnetic field B = B0êx, equivalent to:

A(x, y, 0) = B0 y . (2.37)

We consider a situation where the magnetic field component normal to the
boundaries is held fixed, which amounts to holding the vector potential fixed
on the boundary. Figure 2.9 shows the variation with time of the magnetic
energy (eq. 1.88), for four solutions having Rm = 10, 102, 103 and 104. Figure
2.10 shows the evolving shape of the magnetic fieldlines in the Rm = 103 solu-
tion at 9 successive epochs. The solid dots are “floaters”, namely Lagrangian
markers moving along with the flow. At t = 0 all floaters are equidistant and
located on the fieldline initially coinciding with the coordinate line y/L = 0.5,
that (evolving) fieldline being plotted in the same color as the floaters on all
panels. Figure 2.10 covers two turnover times 4.

At first, the magnetic energy increases quadratically in time. This is pre-
cisely what one would expect from the shearing action of the flow on the ini-
tial Bx-directed magnetic field, which leads to a growth of the By-component
that is linear in time. However, for t/τc ∼> 2 the magnetic energy starts to
decrease again and eventually (t/τc ≫ 1) levels off to a constant value. To
understand the origin of this behavior we need to turn to Figure 2.10 and
examine the solutions in some detail.

4 An animation of this solution, and related additional solutions, can be viewed on
the course Web Page.
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Fig. 2.9 Evolution of the magnetic energy for solutions with increasing Rm. The
solutions have been computed over 10 turnover times, at which point they are getting
reasonably close to steady-state, at least as far as magnetic energy is concerned. One
turnover time corresponds to t/π = 0.532.

The counterclockwise shearing action of the flow is quite obvious on
Fig. 2.10 in the early phases of the evolution, leading to a rather pretty spiral
pattern as magnetic fieldlines get wrapped around one another. Note that the
distortion of magnetic fieldlines by the flow implies a great deal of stretching
in the streamwise direction, as well as folding in the cross-stream direction.
The latter shows up as sharp bends in the fieldlines, while the former is most
obvious upon noting that the distance between adjacent floaters increases
monotonically in time. In other words, an imaginary flux tube enclosing this
fieldline is experiencing the same type of stretching as on Fig. 2.6. It is no ac-
cident that the floaters end up in the regions of maximum field amplification
on frames 2–5; they are initially positioned on the fieldline coinciding with the
line y = L/2, everywhere perpendicular to the shearing flow (cf. Figs. 2.6 and
2.8), which pretty much ensures maximal inductive effect, as per eq. (2.33).

That all floaters remain at first “attached” onto their original fieldline is
what one would have expected from the fact that this is a relatively high-
Rm solution, so that flux-freezing is effectively enforced. As the evolution
proceeds, the magnetic field keeps building up in strength (as indicated by
the color scale), but is increasingly confined to spiral “sheets” of decreas-
ing thickness. Coincident with these sheets are are strong electrical currents
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Fig. 2.10 Solution to equation (2.36) starting from an initially horizontal magnetic
field. The panels show the shape of the magnetic fieldlines at successive times. The

color scale encodes the absolute strength of the magnetic field, i.e.,
√

B2
x +B2

y. The x-

and y-axes are horizontal and vertical, respectively, and span the range x, y ∈ [0, L].
Time t is in units of L/u0. The solid dots are “floaters”, i.e., Lagrangian marker
passively advected by the flow. The magnetic Reynolds number is Rm = 103.

perpendicular to the plane of the page, the current density being given here
by

Jz(x, y) =
1

µ0
∇2A(x, y) . (2.38)

This current density, integrated over the [x, y] plane, exhibits a time-evolution
resembling that of magnetic energy.

By the time we hit one turnover time (corresponding approximately to
frame 5 on Fig. 2.10), it seems that we are making progress towards our
goal of producing a dynamo; we have a flow field which, upon acting on a
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preexisting magnetic field, has intensified the strength of that field, at least
in some localized regions of the spatial domain. However, beyond t ∼ τc the
sheets of magnetic fields are gradually disappearing, first near the center of
the flow cell (frames 5–7), and later everywhere except close to the domain
boundaries (frames 7–9). Notice also how, from frame 5 onward, the floaters
are seen to “slip” off their original fieldlines. This means that flux-freezing no
longer holds; in other words, diffusion is taking place. Yet, we evidently still
have t ≪ τη (≡ Rm = 103 here), which indicates that diffusion should not
yet have had enough time to significantly affect the solution. What is going
on here?

2.3.2 Flux Expulsion

The solution to this apparent dilemma lies with the realization that we have
defined Rm in terms of the global length scale L characterizing the flow. This
was a perfectly sensible thing to do on the basis of the flow configuration and
initial condition on the magnetic field. However, as the evolution proceeds
beyond ∼ τc the decreasing thickness of the magnetic field sheets means that
the global length scale L is no longer an adequate measure of the “typical”
length scale of the magnetic field, which is what is needed to estimate the
diffusion time τη (see eq. (1.63)). Figure 2.11 shows a series of cuts of the
vector potential A in a Rm = 104 solution, plotted along the coordinate line
y = L/2, at equally spaced successive time intervals covering two turnover
times. Clearly the inexorable winding of the fieldline leads to a general de-
crease of the length scale characterizing the evolving solution. In fact, each
turnover time adds two new “layers” of alternating magnetic polarity to the
spiraling sheet configuration, so that the average length scale ℓ decreases as
t−1:

ℓ(t)

L
∝ L

u0t
, (2.39)

which implies in turn that the local dissipation time, ∝ ℓ2/η, is decreasing
as t−2. On the other hand, examination of Fig. 2.10 soon reveals that the
(decreasing) length scale characterizes the thickness of elongated magnetic
structures that are themselves more or less aligned with the streamlines,
so that the turnover time τc remains the proper timescale measuring field
induction. With τc fixed and τη inexorably decreasing, the solution is bound
to reach a point where τη ≃ τc, no matter how small dissipation actually is.
To reach that stage just takes longer in the higher Rm solutions, since more
winding of the fieldlines is needed. Larger magnetic energy can build up in
the transient phase, but the growth of the magnetic field is always arrested.
Equating τc (∼ L/u0) to the local dissipation time ℓ2/η, one readily finds
that the length scale ℓ at which both process become comparable can be
expressed in terms of the global Rm as
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Fig. 2.11 Cuts of a Rm = 104 solution along the coordinate line y = 0.5, at
successive times. Note how the “typical” length scale ℓ for the solution decreases
with time, from ℓ/L ∼ 0.25 at t/π = 0.266, down to ℓ/L ∼ 0.05 after two turnover
times (t/π = 1.065).

ℓ

L
= (Rm)

−1/2 , Rm =
u0L

η
. (2.40)

That such a balance between induction and dissipation materializes means
that a steady-state can be attained. Figure 2.12 shows four such steady state
solutions for increasing values of the (global) magnetic Reynolds number Rm.
The higher Rm solutions clearly show flux expulsion from the central regions
of the domain. This is a general feature of steady, high-Rm magnetized flows
with closed streamlines: magnetic flux is expelled from the regions of closed
streamlines towards the edges of the flow cells, where it ends up concentrated

in boundary layers which indeed have a thickness of order R
−1/2
m , as suggested

by eq. (2.40), an within which strong z-directed electrical currents flow—and
dissipate! It is important to understand how and why this happens.

To first get an intuitive feel for how flux expulsion operates, go back to
Figure 2.10. As the flow wraps the fieldlines around one another, it does
so in a manner that folds fieldlines of opposite polarity closer and closer to
each other. When two such fieldlines are squeezed closer together than the
dissipative length scale (eq. (2.40)), resistive decay takes over and destroys the
field faster than it is being stretched. This is an instance of destructive folding,
and can only be avoided along the boundaries, where the normal component
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Fig. 2.12 Steady-state solutions to the cellular flow problem, for increasing values
of the magnetic Reynolds number Rm. The Rm = 104 solution is at the resolution
limit of the Nx ×Ny = 128 × 128 mesh used to obtain these solutions, as evidenced
on part (D) by the presence of small scale irregularities where magnetic fieldlines
are sharply bent. The color scale encodes the local magnitude of the magnetic field.
Note how, in the higher Rm solutions, magnetic flux is expelled from the center of
the flow cell. With EB(0) denoting the energy of a purely horizontal field with same
normal boundary flux distribution, the magnetic energy for these steady states is
EB/EB(0) = 1.37, 2.80, 5.81 and 11.75, respectively, for panels (A) through (D).

of the field is held fixed. For flux expulsion to operate, flux-freezing must
be effectively enforced on the spatial scale of the flow. Otherwise the field is
largely insensitive to the flow, and fieldlines are hardly deformed with respect
to their initial configuration (as on panel [A] of Fig. 2.12).

Consider now the implication for the total magnetic flux across the domain;
flux conservation requires that the normal flux B0L imposed at the right
and left boundaries must somehow cross the interior, otherwise Maxwell’s
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equation ∇ ·B = 0 would not be satisfied; because of flux expulsion, it can
only do so in the thin layers along the bottom and top boundaries. Since

the thickness of these layers scales as R
−1/2
m , it follows that the field strength

therein scales as
√
Rm, which in turn implies that the total magnetic energy

in the domain also scales as
√
Rm in the t ≫ τc limit.

2.3.3 Digression: the Electromagnetic Skin Depth

You may recall that a sinusoidally oscillating magnetic field imposed at the
boundary of a conductor will penetrate the conductor with an amplitude
decreasing exponentionally away from the boundary and into the conductor,
with a length scale called the electromagnetic skin depth:

ℓ =

√

2η

ω
. (2.41)

Now, go back to the cellular flow and imagine that you are an observer
located in the center of the flow cell, looking at the domain boundaries while
rotating with angular frequency ∝ u0/L; what you “see” in front of you is
an “oscillating” magnetic field, in the sense that it flips sign with “angular
frequency” u0/L. The corresponding electromagnetic skin depth would then
be

ℓ

L
=

√
2η

u0L
≡
√

2

Rm
, (2.42)

which basically corresponds to the thickness of the boundary layer where
significant magnetic field is present in the steady-states shown on Figure
2.12. How about that for a mind flip...

2.3.4 Timescales for Field Amplification and Decay

Back to our cellular flow. Flux expulsion or not, it is clear from Figure 2.9
(solid lines) that some level of field amplification has occurred in the high Rm

solutions, in the sense that EB(t → ∞) > EB(0). But is this a dynamo? The
solutions of Fig. 2.12 have strong electric currents in the direction perpen-
dicular to the plane of the paper, concentrated in boundary layers adjacent
to the domain boundaries and subjected to resistive dissipation. Have we
then reached our goal, namely to amplify and maintain a weak, preexisting
magnetic field against Ohmic dissipation?

In a narrow sense yes, but a bit of reflection will show that the boundary
conditions are playing a crucial role. The only reason that the magnetic en-
ergy does not asymptotically go to zero is that the normal field component
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is held fixed at the boundaries, which, in the steady-state, implies a non-zero
Poynting flux into the domain across the left and right vertical boundaries.
The magnetic field is not avoiding resistive decay because of field induction
within the domain, but rather because external energy (and magnetic flux) is
being pumped in through the boundaries. This is precisely what is embodied
in the first term on the RHS of eq. (1.86).

What if this were not the case? One way to work around the boundary
problem is to replace the fixed flux boundary conditions by periodic boundary
conditions on B, which in terms of A becomes:

A(0, y) = A(L, y) ,
∂A(x, 0)

∂y
=

∂A(x, L)

∂y
. (2.43)

There is still a net flux across the horizontal boundaries at t = 0, but the
boundary flux is now free to decay away along with the solution. Effectively,
we now have an infinitely long row of contiguous flow cell initially threaded
by a horizontal magnetic field extendind to ±∞. It is time to reveal that the
hitherto unexplained dotted lines on Fig. 2.9 correspond in fact to solutions
computed with such boundary conditions, for the same cellular flow and ini-
tial condition as before. The magnetic energy now decays to zero, confirming
that the boundaries indeed played a crucial role in the sustenance of the
magnetic field in our previous solutions. What is noteworthy is the rate at
which it does so. In the absence of the flow and with freely decaying boundary
flux, the initial field would diffuse away on a timescale τη ∼ L2/η, which is
equal to Rm units of L/u0. With the flow turned on, the decay proceeds at
an accelerated rate because of the inexorable decrease of the typical length
scale associated with the evolving solution, which we argued earlier varied as
t−1. What then is the typical timescale for this enhanced dissipation? The
decay phase of the field (for t ≫ L/u0) is approximately described by

∂A

∂t
= η∇2A . (2.44)

An estimate for the dissipation timescale can be obtained once again via di-
mensional analysis, by replacing∇2 by 1/ℓ2, as in §2.1 but with the important
difference that ℓ is now a function of time:

ℓ → ℓ(t) =

(
L

t

)(
L

u0

)

, (2.45)

in view of our previous discussion (cf. Fig. 2.11 and accompanying text). This
leads to

∂A

∂t
≃ −ηu2

0t
2

L4
A , (2.46)

where the minus sign is introduced “by hand” in view of the fact that∇2A < 0
in the decay phase. Equation (2.46) integrates to
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A(t)

A0
= exp

[

− ηu2
0

3L4
t3
]

= exp

[

− 1

3Rm

(
u3
0t

3

L3

)]

. (2.47)

This last expression indicates that with t measured in units of L/u0, the

decay time scales as R
1/3
m . This is indeed a remarkable situation: in the low

magnetic diffusivity regime (i.e., high Rm), the flow has in fact accelerated

the decay of the magnetic field, even though large field intensification can
occur in the early, transient phases of the evolution. This is not at all what
a dynamo should be doing!

As it turns out, flux expulsion is even trickier than the foregoing discus-
sion may have led you to believe! Flux expulsion destroys the mean magnetic
field component directed perpendicular to the flow streamlines. It cannot
do a thing to a mean component oriented parallel to streamlines. For com-
pletely general flow patterns and initial conditions, the dissipative phase with

timescale ∝ R
1/3
m actually characterizes the approach to a state where the ad-

vected trace quantity—here the vector potential A—becomes constant along
each streamline, at a value Ā equal to the initial value of A averaged on
each of those streamlines. For the cellular flow and initial conditions used
above, this average turns out to be Ā = 0.5 for every streamline, so that

the R
1/3
m decay phase corresponds to the true decay of the magnetic field

to zero amplitude. If Ā varies from one fieldline to the next, however, the

R
1/3
m phase is followed by a third decay phase, which proceeds on a timescale

∼ Rm, since induction no longer operates (u ·∇A = 0) and the typical length
scale for A is once again L. At any rate, even with a more favorable initial
condition we have further delayed field dissipation, but we still don’t have
a dynamo since dissipation will proceed inexorably, at best on the “long”
timescale Rm × (L/u0).

2.3.5 Flux Expulsion in Spherical Geometry:
Axisymmetrization

You may think that the flux expulsion problem considered in the preceding
section has nothing to do with any astronomical objects you are likely to
encounter in your astrophysical careers. Wrong!

Consider the evolution of a magnetic field pervading a sphere of electri-
cally conducting fluid, with the solar-like differential rotation profile already
encountered previously (§2.2.4 and eqs. (2.27)–(2.28)), and with the field hav-
ing initially the form of a dipole whose axis is inclined by an angle Θ with
respect to the rotation axis (θ = 0). Such a magnetic field can be expressed
in terms of a vector potential having components:

Ar(r, θ, φ)=0 , (2.48)
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Aθ(r, θ, φ)=(R/r)2 sinΘ(sin β cosφ− cosβ sinφ) , (2.49)

Aφ(r, θ, φ)=(R/r)2[cosΘ sin θ − sinΘ cos θ(cos β cosφ+ sinβ sinφ)] , (2.50)

where β is the azimuthal angle locating the projection of the dipole axis on
the equatorial plane.

Now, the vector potential for an inclined dipole can be written as the sum
of two contributions, the first corresponding to an aligned dipole (Θ = 0), the
second to a perpendicular dipole (Θ = π/2), their relative magnitude being
equal to tanΘ. Since the governing equation is linear, the solution for an
inclined dipole can be broken into two independent solutions for the aligned
and perpendicular dipoles. The former is precisely what we investigated al-
ready in §2.2.4, where we concluded there that the shearing of an aligned
dipole by an axisymmetric differential rotation would lead to the buildup of
a toroidal component, whose magnitude would grow linearly in time at a rate
set by the magnitude of the shear.

The solution for a perpendicular dipole is in many way similar to the cellu-
lar flow problem of §2.3. You can see how this may be the case by imagining
looking from above onto the equatorial plane of the sphere; the fieldlines
contained in that plane will have a curvature and will be contained within
a circular boundary, yet topologically the situation is similar to the cellular
flow studied in the preceding section: the (sheared) flow in the equatorial
plane is made of closed, circular streamlines contained within that plane, so
that we can expect flux expulsion to occur. The equivalent of the turnover
time here is the differential rotation timescale, namely the time for a point
located on the equator to perform a full 2π revolution with respect to the
poles:

τDR = (ΩEqu −ΩPole)
−1 . (2.51)

For a freely decaying dipole, the perpendicular component of the initial dipole
will then be subjected to flux expulsion, and dissipated away, at a rate far
exceeding purely diffusive decay in the high Rm limit, as argued earlier.

But here is the amusing thing; for an observer looking at the magnetic
field at the surface of the sphere, the enhanced decay of the perpendicular
component of the dipole will translate into a gradual decrease in the inferred
tilt axis of the dipole. Figure 2.13 shows this effect, for the differential rotation
profile given by eq. (2.27) and a magnetic Reynolds number Rm = 103.
Contours of constant Br are plotted on the surface r/R = 1, with the neutral
line (Br = 0) plotted as a thicker line. At t = 0 the field has the form of a
pure dipole tilted by π/3 with respect to the coordinate axis, and the sphere
is oriented so that the observer (you!) is initially looking straight down the
magnetic axis of the dipole. Advection by the flow leads to a distorsion of
the initial field, with the subsequent buildup of small spatial scales in the r-
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and θ−directions (only the latter can be seen here)5. After only two turnover
times (last frame), the surface field looks highly axisymmetric.

Fig. 2.13 Symmetrization of an inclined dipole in a electrically conducting sphere in
a state of solar-like axisymmetric differential rotation. Each panel shows contours of
constant Br at the surface of the sphere, and the solution is matched to a potential
in the exterior (r/R > 1). The differential rotation is given by eq. (2.27). Time is
given in units of τDR, in which the turnover period (or differential rotation period)
is equal to 2π, and the magnetic Reynolds number is Rm = 103.

So, in a differentially rotating fluid system with high Rm, flux expulsion
leads to the symmetrization of any non-axisymmetric magnetic field com-
ponent initially present—or contemporaneously generated. The efficiency of
the symmetrization process should make us a little cautious in assuming that

5 An animation of this solution, as well as a few others for different Rm and/or tilt
angle, can be viewed on the course Web Page.
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the large-scale magnetic field of the Sun, which one would deem roughly
axisymmetric upon consideration of surface things like the sunspot butterfly
diagram, is characterized by the same level of axisymmetry in the deep-seated
generating layers, where the dynamo is presumed to operate. After all, stand-
ing in between is a thick, axisymmetrically differentially rotating convective
envelope that must be reckoned with. In fact, observations of coronal density
structures in the descending phase of the solar cycle can be interpreted in
terms of a large-scale, tilted dipole component, with the tilt angle steadily de-
creasing over 3–4 years towards solar minimum. Interestingly, the differential
rotation timescale for the Sun is ∼ 6 months. Are we seeing the axisym-
metrization process in operation ? Maybe. Axisymmetry is certainly a very
convenient modeling assumption when working on the large scales of the solar
magnetic field, but it may be totally wrong.

Axisymmetrization has also been invoked as an explanation for the almost
perfectly axisymmetric magnetic field of the planet Saturn, which stands in
stark contrast to the other solar system planetary magnetic fields. Saturn
has a very pronounced surface latitudinal differential rotation, characterized
by equatorial acceleration, and current structural models suggest that this
differential rotation may persist in the molecular Hydrogen envelope, down
to the edge of the metallic Hydrogen core (r/RS ≃ 0.55), where dynamo
action is presumed to take place. This would be an ideal configuration for
axisymmetrization of a non-axisymmetric deep magnetic field, provided the
electrical conductivity is high enough at the base of the envelope to ensure
good coupling between the magnetic field and the fluid.

2.4 Two Anti-Dynamo Theorems

The cellular flow studied in §2.3, although it initially looked encouraging
(cf. Fig. 2.9), proved not to be a dynamo after all. Is this peculiar to the flow
defined by eqs. (2.34)–(2.35), or is this something more general? Exhaustively
testing for dynamo action in all possible kinds of flow geometries is clearly
impractical. However, it turns out that one can rule out a priori dynamo
action in many classes of flows. These demonstrations are known as anti-

dynamo theorems.

2.4.1 Zeldovich’s Theorem

A powerful anti-dynamo theorem due to Ya. B. Zeldovich (1914–87), has a
lot to teach us about our cellular flow results. The theorem rules out dynamo
action in steady planar flows in cartesian geometry, i.e., flows of the form
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u2(x, y, z) = ux(x, y, z)êx + uy(x, y, z)êy (2.52)

in a bounded volume V at the boundaries (∂V ) of which the magnetic field
vanishes. Note that no other restrictions are placed on the magnetic field,
which can depend on all three spatial coordinate as well as time. Nonethe-
less, in view of eq. (2.52) it will prove useful to consider separately the z-
component of the magnetic field Bz(x, y, z, t) from the (2D) field component
in the [x, y] plane (hereafter denoted B2). It is readily shown that the z-
component of the induction equation then reduces to

(
∂

∂t
+ u · ∇

)

Bz = η∇2Bz (2.53)

for spatially constant magnetic diffusivity. Now, the LHS is just a Lagrangian
derivative, yielding the time variation of Bz as one moves along with the fluid.
Multiplying this equation by Bz and integrating over V yields, after judicious
use of a suitable vector identity and of the divergence theorem:

1

2

∫

V

DB2
z

Dt
dV = η

∫

∂V

Bz(∇Bz) · n dS − η

∫

V

(∇Bz)
2dV . (2.54)

Now, the first integral on the RHS vanishes sinceB = 0 on ∂V by assumption.
The second integral is positive definite, therefore Bz always decays on the

diffusive timescale (cf. §2.1 ).
Consider now the magnetic field B2 in [x, y] planes. The most general such

2D field can be written as the sum of a solenoidal and potential component:

B2(x, y, z, t) = ∇× (Aêz) +∇Φ , (2.55)

where the vector potential A and scalar potential Φ both depend on all three
spatial coordinates and time. Evidently, the constraint ∇ ·B = 0 implies

∇2
2Φ = −∂Bz

∂z
, (2.56)

where ∇2
2 ≡ ∂2/∂x2+∂2/∂y2 is the 2D Laplacian operator in the [x, y] plane.

Clearly, once Bz has resistively dissipated, i.e., for times much larger than
the global resistive decay time τη, Φ is simply a solution of the 2D Laplace
equation ∇2

2Φ = 0.
Here comes the sneaky part. We take the curl of the induction equation.

Upon substituting eq. (2.55), the z-component of the resulting expression
yields

∇×∇×
[
∂(Aêz)

∂t
+ u2 · ∇(Aêz)− η∇2

2(Aêz)− u2 ×∇Φ

]

= 0 , (2.57)
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with ∇ · (Aêz) = 0 as a choice of gauge. Note that only one term involving
Φ survives, because ∇×∇Φ = 0 identically. In general, the above expression
is only satisfied if the quantity in square brackets itself vanishes, i.e.,

(
∂

∂t
+ u · ∇

)

A = η∇2
2A+ (u2 ×∇Φ) · êz . (2.58)

This expression is identical to that obtained above for Bz, except for the pres-
ence of the source term u2 × ∇Φ. However, we just argued that for t ≫ τη,
∇2

2Φ = 0. In addition, B vanishes on ∂V by assumption, so that the only
possible asymptotic interior solutions are of the form Φ =const, which means
that the source term vanishes in the limit t ≫ τη. From this point on eq. (2.58)
is indeed identical to eq. (2.53), for which we already demonstrated the in-
evitability of resistive decay. Therefore, dynamo action, i.e., maintenance of
a magnetic field against resistive dissipation, is impossible in a planar flow
for any 3D magnetic field.

2.4.2 Cowling’s Theorem

Another powerful anti-dynamo theorem, predating in fact Zeldovich’s, is due
to T.G. Cowling (1906–90). This anti-dynamo theorem is particularly impor-
tant historically, since it rules out dynamo action for 3D but axisymmetric
flows and magnetic fields, which happen to be the types of flows and fields one
sees in the Sun, at least on the larger spatial scales. Rather than going over
one of the many formal proofs of Cowling’s theorem found in the literature,
let’s just follow the underlying logic of our proof of Zeldovich’s theorem.

Assuming once again that there are no sources of magnetic field exterior
to the domain boundaries, we consider the inductive action of a 3D, steady
axisymmetric flow on a 3D axisymmetric magnetic field. Working in spherical
polar coordinates (r, θ, φ), we write:

u(r, θ) =
1

̺
∇× (Ψ(r, θ)êφ) +̟Ω(r, θ)êφ , (2.59)

B(r, θ, t) = ∇× (A(r, θ, t)êφ) +B(r, θ, t)êφ , (2.60)

where ̟ = r sin θ. Here the vector potential component A and stream func-
tion Ψ defines the poloidal components of the flow, and Ω is the angular veloc-
ity (units rad s−1). Note that the form of eq. (2.59) guarantees ∇ · (̺u) = 0,
describing mass conservation in a steady flow. Separation of the (vector)
MHD induction equation into two components for the 2D scalar fields A and
B, as done in §2.1, now leads to:

(
∂

∂t
+ up · ∇

)

(̟A) = ̟η

(

∇2 − 1

̟2

)

A , (2.61)
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(
∂

∂t
+ up · ∇

)(
B

̟

)

=
η

̟

(

∇2 − 1

̟2

)

B +
1

̟2

dη

dr

∂(̟B)

∂r

−
(
B

̟

)

∇ · up +Bp · ∇Ω , (2.62)

where Bp and up are notational shortcuts for the poloidal field and merid-
ional flow. Notice that the vector potential A evolves in a manner entirely
independent of the toroidal field B, the latter being conspicuously absent on
the RHS of eq. (2.61). This is not true of the toroidal field B, which is well
aware of the poloidal field’s presence via the ∇Ω shearing term.

The LHS of these expressions is again a Lagrangian derivative for the
quantities in parentheses, and the first terms on each RHS are of course
diffusion. The next term on the RHS of eq. (??) vanishes for incompressible
flows, and remains negligible for very subsonic compressible flows. The last
term on the RHS, however, is a source term, in that it can lead to the growth
of B as long as A does not decay away. This is the very situation we have
considered in §2.2.4, by holding A fixed as per eq. (2.23). However, there is no
similar source-like term on the RHS of eq. (2.61), which governs the evolution
of A.

This should now start to remind you of Zeldovich’s theorem. In fact,
eq. (2.3) is structurally identical to eq. (2.53), for which we demonstrated
the inevitability of resistive decay in the absence of sources exterior to the
domain. This means that A will inexorably decay, implying in turn that B
will then also decay once A has vanished. Since axisymmetric flows cannot
maintain A against Ohmic dissipation, a 3D axisymmetric flow cannot act as

a dynamo for a 3D axisymmetric magnetic field. 6. Cowling’s theorem is not
restricted to spherical geometry, and is readily generalized to any situation
where both flow and field showing translational symmetry in one and the
same spatial coordinate. Such physical systems are said to have an ignorable

coordinate.
It is worth pausing and reflecting on what these two antidynamo theorems

imply for the cellular flow of §2.3. It was indeed a planar flow (uz = 0), and
moreover the magnetic field had an ignorable coordinate (∂B/∂z ≡ 0)! We
thus fell under the purview of both Zeldovich’s and Cowling’s theorems, so
in retrospect our failure to find dynamo action is now understood.

2.5 The Roberts Cell Dynamo

Clearly, the way to evade both theorems is to consider flows and fields that
are fully three-dimensional, and lack translational symmetry in either the

6 A fact often unappreciated is that Cowling’s theorem does not rule out the dynamo
generation of a non-axisymmetric 3D magnetic field by a 3D axisymmetric flow.
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flow or the magnetic field. We now consider one such flow, and examine some
of its dynamo properties.

2.5.1 The Roberts Cell

The Roberts cell is a spatially periodic, incompressible flow defined over a
2D domain (x, y) ∈ [0, 2π] in terms of a stream function

Ψ(x, y) = cosx+ sin y , (2.63)

so that

u(x, y) =
∂Ψ(x, y)

∂y
êx − ∂Ψ(x, y)

∂x
êy + Ψ(x, y)êz . (2.64)

Note that the flow velocity is independent of the z-coordinate, even though
the flow has a non-zero z-component. Equations (2.64)–(2.63) describes a
periodic array of counterrotating flow cells in the [x, y] plane, with a z-
component that changes sign from one cell to the next; the total flow is
then a series of helices, which have the same kinetic helicity h = u · ∇×u in
each cell. The Roberts cell flow represents one example of a Beltrami flows,
i.e., it satisfies the relation ∇ × u = αu, where α is a numerical constant.
Such flows are maximally helical, in the sense that their vorticity (ω ≡ ∇×u)
is everywhere parallel to the flow, which maximizes helicity for a given flow
speed. Figure 2.14 shows one periodic “unit” of the the Roberts cell flow pat-
tern. Take note already of the presence stagnation points where the corners
of four contiguous flow cells meet.

Let’s first pause and consider why one should expect the Roberts cell to
evade Cowling’s and Zeldovich’s theorems. First, note that this is not a planar
flow in the sense demanded by Zeldovich’s theorem, since we do have three
non-vanishing flow components. However, the z-coordinate is ignorable in the
sense of Cowling’s theorem, since all flow components are independent of z.
If this flow is to evade Cowling’s theorem and act as a dynamo, it must act

on a magnetic field that is dependent on all three spatial coordinates.

Consequently, we consider the inductive effects of this flow acting on a
fully three dimensional magnetic field B(x, y, z, t). Since the flow speed is
independent of z, we can expect solutions of the linear induction equation to
be separable in z, i.e.:

B(x, y, z, t) = b(x, y, t)eikz , (2.65)

where k is a (specified) wavevector in the z-direction, and the 2D magnetic
amplitude b is now a complex quantity. We are still dealing with a fully 3D
magnetic field, but the problem has been effectively reduced to two spatial
dimensions (x, y), which represents a great computational advantage.
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Fig. 2.14 The Roberts cell flow. The flow is periodic in the [x, y] plane, and in-
dependent of the z-coordinate (but uz 6= 0!). Flow streamlines are shown projected
in the [x, y] plane, and the +/− signs indicate the direction of the z-component of
the flow. The thicker contour defines the network of separatrix surfaces in the flow,
corresponding to cell boundaries and intersecting at stagnation points. The uz(x, y)
isocontours coincide with the projected streamlines.

2.5.2 Dynamo Solutions

From the dynamo point of view, the idea is again to look for solutions of
the induction equations where the magnetic energy does not fall to zero as
t → ∞. In practice this means specifying k, as well as some weak field as an
initial condition, and solve the 2D linear initial value problem for b(x, y, t)
resulting from the substitution of eq. (2.65) into the induction equation:

∂b

∂t
= (b · ∇xy)u− (u · ∇xy)b− ikuzb+R−1

m (∇2
xyb− k2b) , (2.66)

subjected to periodic boundary conditions on b, in order to avoid the po-
tentially misleading role of fixed-flux boundary conditions in driving dynamo
action, as encountered in §2.3. Here ∇xy and ∇2

xy are the 2D gradient and
Laplacian operators in the [x, y] plane. As before we use as a time unit the
turnover time τc, which is of order 2π here. All solutions described below
were again obtained numerically, starting from a weak, horizontal magnetic
field as the initial condition.
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The time evolution can be divided into three more or less distinct phases,
the first two being similar to the case of the 2D cellular flow considered in the
preceding chapter: (1) quadratic growth of the magnetic energy for t ∼< τc;
(2) flux expulsion for the subsequent few τc. However, and unlike the case
considered in §2.3, for some values of k the third phase is one of exponential
growth in the magnetic field (and energy).

Figure 2.15 shows a typical Roberts cell dynamo solution, for Rm = 102

and k = 2. What is plotted is the real part of the z-component of b(x, y, t),
at time t ≫ τc. The thick green lines are the separatrices of the flow. One
immediately recognizes the workings of flux expulsion, in that very little
magnetic flux is present near the center of the flow cells. Instead the field
is concentrated in thin sheets parallel to the separatrix surfaces. Given our
extensive discussion of flux expulsion in the preceding chapter, it should come

as no surprise that the thickness of those sheets scales as R
−1/2
m . For t ≫ τc,

the field grows exponentially, but the shape of the “planform” remains fixed.
In other words, even though we solved the induction equation as an initial
value problem, the solution can be thought of as an eigensolution of the form
B(x, y, z, t) = b(x, y)eikz+st, with Re(s) > 0 and Im(s) = 0.

In terms of the magnetic energy evolution, the growth rate s of b(x, y, t)
is readily obtained by a linear least-squares fit to the log EB vs t curves in
the t ≫ τc regime, or more formally defined as

s = lim
t→∞

[
1

2t
log(EB)

]

. (2.67)

It turns out that the Roberts cell flows yields dynamo action (i.e., s > 0) over
wide ranges of wavenumbers k and magnetic Reynolds number Rm. Figure
2.16 shows the variations in growth rates with k, for various values of Rm.
The curves peak at a growth rate value kmax that gradually shifts to higher
k as Rm increases. The largest growth rate is kmax ≃ 0.17, and occurs at
Rm ≃ 10. It can be shown (see bibliography) that in the high Rm regimes
the following scalings hold:

kmax ∝ R1/2
m , Rm ≫ 1 , (2.68)

s(kmax) ∝
log(logRm)

logRm
, Rm ≫ 1 . (2.69)

To understand the origin of these peculiar scaling relations, we need to take
a closer look at the mechanism through which the magnetic field is amplified
by the Roberts cell.
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Fig. 2.15 Isocontours for the z-component of the magnetic field in the [x, y] plane,
for Roberts cell dynamo solutions with Rm = 100 and k = 2, in the asymptotic
regime t ≫ τc. The color scale codes the real part of the z-component of b(x, y, t)
(gray-to-blue is negative, gray-to-red positive). The green straight lines indicate the
separatrix surfaces of the flow (see Fig. 2.14). Note the flux expulsion from the cell
centers, and the concentration of the magnetic flux in thin sheets pressed against the
separatrices. In the t ≫ τc regime, the field grows exponentially but the shape of the
planform is otherwise steady. Compare this with Fig. 2.12A and B.

2.5.3 Exponential Stretching and Stagnation Points

Even cursory examination of Figure 2.15 suggests that magnetic field am-
plification in the Roberts cell is somehow associated with the network of
separatrices and stagnation points. It will prove convenient in the foregoing
analysis and discussion to first introduce new coordinates
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Fig. 2.16 Growth rates of the magnetic energy in the Roberts cell, for sequences
of solutions with increasing k and various values of Rm, as labeled near the maxima
of the various curves. Growth typically occurs for a restricted range in k, and peaks
at a value kmax that increases slowly with increasing Rm. Note however how the
corresponding maximum growth rate decreases with increasing Rm. The small “dip”
left of the main peaks for the high-Rm solutions is a real feature, although here it is
not very well resolved in k.

x′ = x− y , y′ = x+ y +
3π

2
, (2.70)

corresponding to a 3π/2 translation in the y-direction, followed by 45◦ rota-
tion about the origin in the [x, y] plane. The separatrices are now parallel to
the coordinate lines x′ = nπ, y′ = nπ (n = 0, 1, ...), and the stream function
has become

Ψ(x′, y′) = 2 sin(x′) sin(y′) . (2.71)

Close to the stagnation points, a good approximation to eq. (2.71) is

Ψ(x′, y′) ≃ 2x′y′ , x′, y′ ≪ 1 , (2.72)

which, if anything else, should now clarify why this is called a hyperbolic
stagnation point... Consider now a fluid element flowing in the vicinity of this
stagnation point. From a Lagrangian point of view its equations of motion
are:

∂x′

∂t
= ux′ = 2x′ , (2.73)
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∂y′

∂t
= uy′ = −2y′ , (2.74)

which immediately integrates to

x′(t) = x′
0e

2t, y′(t) = y′0e
−2t , (2.75)

where (x′
0, y

′
0) is the location of the fluid element at t = 0. Evidently, the

fluid element experiences exponential stretching in the x′-direction, and cor-
responding contraction in the y′-direction (since ∇·u = 0!). Now, recall that
in ideal MHD (Rm = ∞) a magnetic fieldline obeys an equation identical to
that of a line element, and that stretching leads to field amplification as per
the mass conservation constraint (§2.2.1). Evidently stagnation point have
quite a bit of potential, when it comes to amplifying exponentially a pre-
existing magnetic field... provided diffusion and destructive folding can be
held at bay. Let’s look into how this is achieved in the Roberts Cell.

2.5.4 Mechanism of Field Amplification in the Roberts
Cell

We stick to the rotated Roberts cell used above, restrict ourselves to the
Rm ≫ 1 regime, and pick up the field evolution after flux expulsion is com-
pleted and the magnetic field is concentrated in thin boundary layers (thick-

ness ∝ R
−1/2
m ) pressed against the separatrices (as on Fig. 2.15).

Consider a x′-directed magnetic fieldline crossing a vertical separatrix, as
shown on Figure 2.17A (gray line labeled “a”). The y′ component of the
flow is positive on either side of the separatrix, and peaks on the separa-
trix. Consequently, the fieldline experiences stretching in the y′-direction
(a → b → c → d on Fig. 2.17A). However, the induced y′ component of
the magnetic field changes sign across the separatrix, so that we seem to be
heading towards our dreaded destructive folding. This is where the crucial
role of the vertical (z) dimension becomes apparent. Figure 2.17B is a view
of the same configuration in the [x′, z] plane, looking down onto the y′ axis
on part A. At t = 0 the fieldlines have no component in the z-direction, but
in view of the assumed eikz spatial dependency the x′ component changes
sign every half-wavelength k/π. Consider now the inductive action of the z-
component of the velocity, which changes sign across the separatrix. After
some time interval of order k/(πuz) the configuration of Fig. 2.17B will have
evolved to that shown on part C. Observe what has happened: the fieldlines
have been sheared in such a way that y′-components of the magnetic field of
like signs have been brought in close proximity. Contrast this to the situation
on part B, where magnetic footpoints in closest proximity have oppositely
directed y′-components.
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Fig. 2.17 Mechanism of magnetic field amplification in the Roberts cell flow. The
diagram is plotted in terms of the rotated [x′, y′] Roberts cell. The thick vertical line
is a separatrix surface, and the gray lines are magnetic fieldlines. Part (A) is a view
in the horizontal plane [x′, y′], and shows the production of a y′-directed magnetic
component from an initially x′-directed magnetic field (line labeled “a”). Parts (B)
and (C) are views in the [x′, z] plane looking down along the y′ axis, and illustrate
the phase shift in the z-direction of the y′ magnetic component caused by the z-
component of the velocity. The symbol ⊙ (⊗) indicates a magnetic field coming out
(into) the plane of the page. Note on part (C) how footpoints of identical polarity
are brought in close proximity, thus avoiding the destructive folding that would have
otherwise characterized the situation depicted on part B in the uz = 0 2D case.

The end result of this process is that a y′-directed magnetic field is pro-
duced by shearing of the initial x′-directed field, with a phase shift in the
z-direction such that destructive folding is avoided. Clearly, this requires
both a z-component of velocity, and a z-dependency in the magnetic field.
Either alone won’t do the trick.

Now, the same reasoning evidently applies to a y′-directed magnetic field-
line crossing a horizontal separatrix: a x′-directed magnetic field will be in-
duced. That magnetic field will be swept along the horizontal separatrix, get
further amplified by exponential stretching as it zooms by the stagnation
point, and continue along the vertical separatrix, where it can now serve as
a seed field for the production of a y′-directed field. The dynamo “loop” is
closed, at any time the rate of field production is proportional to the local
field strength, and exponential growth of the field follows. The process works
best if the half wavelength k/π is of order of the boundary layer thickness,
which in fact is what leads to the scaling law given by eq. (2.68). The scaling
for the growth rate (eq. 2.69), in turn, is related to the time spent by a fluid
element in the vicinity of the stagnation point.
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2.5.5 Fast Versus Slow Dynamos

One worrisome aspect of the Roberts cell dynamo is the general decrease
of the growth rates with increasing Rm (see Fig. 2.16); worrisome, because
the Rm → ∞ limit is the one relevant to most astrophysically interesting
circumstances. A dynamo exhibiting this property is called a slow dynamo,
in contrast to a fast dynamo, which (by definition) retains a finite growth
rate as Rm → ∞, the formal requirement being that

lim
Rm→∞

s(kmax) > 0 . (2.76)

In view of eq. (2.69), the Roberts cell is thus formally a slow dynamo. How-
ever the RHS of eq. (2.69) is such a slowly decreasing function of Rm that
the Roberts cell is arguably the closest thing it could be to a fast dynamo...
without formally being one. The distinction hinges on the profound differ-
ences between the strict mathematical case of Rm = ∞ (ideal MHD), and the
more physically relevant limit Rm → ∞. From the physical point of view, the
distinction is a crucial one. One example will suffice. Recall that in the ab-
sence of dissipation magnetic helicity is a conserved quantity in any evolving
magnetized fluid:

dHB

dt
=

d

dt

∫

V

A ·B dV = 0, (2.77)

where B = ∇×A. Dynamo action, in the sense of amplifying a weak initial
field, is then clearly impossible except for the subset of initial fields having
HB = 0. This is a very stringent constraint on dynamo action! Go back now
to the Roberts cell dynamo in the high-Rm regime. We saw that magnetic

structures builp up on a horizontal length scale∝ R
−1/2
m , and that the vertical

wavelength of the fastest growing mode also decreases as R
−1/2
m . The inex-

orable shrinking of the length scales ensures that dissipation always continue

to operate even in the Rm → ∞ limit. This is why the Roberts cell dynamo
can evade the constraint of helicity conservation. This is also why it is a slow
dynamo. On the other hand, the Vainshtein & Zeldovich Stretch–Twist–Fold
dynamo of §2.2, with its growth rate σ = ln 2, is a fast dynamo since nothing
prevents it from operating in the Rm → ∞ limit.

But is this really the case? In the flows we have considered up to now,
the existence of dynamo action hinges on stretching winning over destructive
folding; in the 2D cellular flow of §2.3, destructive folding won over stretching
everywhere away from boundaries. In the Roberts cell, destructive folding
is avoided only for vertical wavenumbers such that magnetic fields of like
signs are brought together, minimizing dissipation. The STF dynamo actually
combines stretching and constructive folding, such that folding reinforces

stretching. The fact that destructive folding is avoided entirely is why the
growth rate does not depend on Rm.
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Well, upon further consideration it turns out that magnetic diffusivity
must play a role in the STF rope dynamo after all. Diffusion comes in at two
levels; the first and most obvious one is at the “crossings” formed by the STF
sequence. The second and less obvious arises from the fact that as one applies
the STF operation n times, the resulting “flux rope” is in fact made up of
n closely packed flux ropes, each of cross-section ∝ 2−n times smaller than
the original circular flux rope, so that the total cross-section looks more like
a handful of spaghettis that it does a single monolithic flux rope of strength
∝ 2n. If one waits long enough, the magnetic length scale perpendicular to
the loop axis shrinks to zero, so that even in the Rm → ∞ limit dissipation
is bound to come into to play.

2.6 The CP Flow and Fast Dynamo Action

It turns out that a simple modification of the Roberts cell flow can turn
it into a true fast dynamo. The co-called CP flow (for “Circularly Polar-
ized”) is nothing more that the original Roberts cell flow, with a forced time-
dependence. It is once again a spatially periodic, incompressible flow, defined
in cartesian coordinate over a 2D domain (x, y) ∈ [0, 2π]:

ux(x, y, t) = A cos(y + ε sinωt) , (2.78)

uy(x, y, t) = C sin(x + ε cosωt) , (2.79)

uz(x, y, t) = A sin(y + ε sinωt) + C cos(x+ ε cosωt) . (2.80)

Although the CP flow is not expressed here in terms of a stream function,
this is the same as the Roberts Cell flow, except that now the counterotating
flow cells are “precessing” in unison in the [x, y] plane, along circular paths
of radius ε, undergoing a full revolution in a time interval 2π/ω. Here and
in what follows we set ω = 1, ε = 1, A = C =

√

3/2, without any loss of
generality.

2.6.1 Dynamo Solutions

The CP flow has the same spatial symmetry properties as the Roberts cell,
and in particular is invariant in the z-direction. Consequently we again need
to seek magnetic solutions with a z-dependency to evade Cowling’s theorem.
The magnetic field is again separable in z (eq. 2.65), which leads to the 2D
form of the induction equation already encountered with the Roberts cell
(eq. 2.66), subjected to periodic boundary conditions on b(x, y, t). As before
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the idea is to pick a value for the vertical wavenumber k, and monitor dynamo
action by tracking the growth (or decay) of the magnetic energy via eq. (2.67).

Computing solutions for varying k soon reveals that dynamo action (i.e.,
positive growth rates s(k,Rm)) occurs in a finite range of vertical wavenum-
ber k, with exponential growth setting in after a time of order of the
turnover time. Figure 2.18 shows snapshot of the vertical magnetic field
bz(x, y, t) in this phase of exponential growth, for a Rm = 2000 solutions
with k = 0.57, which here yields the largest growth rate. The solution is
fully time-dependent, and its behavior is best appreciated by viewing it as
an animation7.

The solution is characterized by multiple sheets of intense magnetic field,

of thickness once again ∝ R
−1/2
m . The magnetic field exhibits spatial intermit-

tency, in the sense that if one were to randomly choose a location somewhere
in the [x, y] plane, chances are good that only a weakish magnetic field would
be found. In high-Rm solutions, strong fields are concentrated in small re-
gions of the domain; in other words, their filling factor is small. This can
be quantified by computing the probability density function (hereafter PDF)
of the magnetic field strength, f(|Bz|). This involves measuring Bz at every
(x, y) mesh point in the solution domain, and simply counting how many
mesh points have |Bz| between values B and B + dB. The result of such
a procedure is shown in histogram form on Figure 2.19. The PDF shows a
power-law tail at high field strengths,

f(|Bz|) ∝ |Bz|−γ , |Bz| ∼> 10−5 , (2.81)

spanning over four orders of magnitude in field strength, and with γ ≃ 0.75
here. This indicates that strong field are still far more likely to be detected
than if the magnetic field was simply a normally-distributed random variable
(for example). The fact that the power law index γ is smaller than unity
means that the largest local field strength found in the domain will always
dominate the computation of the spatially-averaged field strength.

The CP flow dynamo solutions also exhibit temporal intermittency; if one
sits at one specific point (x, y) point in the domain and measures Bz at
subsequent time steps, a weak Bz is measured most of the time, and only
occasionally are large values detected. Once again the PDF shows a power-
law tail with slope flatter than −1 indicating that a temporal average of Bz

at one location will always be dominated by the largest Bz measured to date.
Unlike in the Roberts cell, the range of k yielding dynamo action does

not shift significantly to higher k as Rm is increased, and in the high Rm

regime the corresponding maximum growth rate kmax does not decrease with
increasing Rm (see Fig. 2.16). In the CP flow considered here (A = C =

√

3/2,
ω = 1, ε = 1), kmax ≃ 0.57, with s(kmax) ≃ 0.3 for Rm ∼> 102, as shown on

7 which you can do, of course, on the course’s Web Page, and for a few Rm values,
moreover...
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Fig. 2.18 Snapshot of the z-component of the magnetic field in the [x, y] plane,
for a CP Flow solution with Rm = 2000 and k = 0.57, in the asymptotic regime
t ≫ τc. The color scale codes the real part of the z-component of b(x, y, t) (gray-to-
blue is negative, gray-to-red positive). The green straight lines indicate the separatrix
surfaces of the underlying pattern of flow cells, and are no longer fixed in space due
to the precession of the flow cells (see eqs. (2.78)–(2.80)). This is a strongly time-
dependent solution, exhibiting overall exponential growth of the magnetic field.

Figure 2.20 (solid line). Figure 2.20 indicates that the CP flow operates as a
fast dynamo.
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Fig. 2.19 Probability density function for the (unsigned) strength of the z-
component of the magnetic field, for a Rm = 103, k = 0.57 CP flow dynamo. The
peak field strength has been normalized to a value of unity. Note the power-law tail
at large field strength (straight line in this log-log plot, with slope ∼ −0.75).

Fig. 2.20 Growth rate of k = 0.57 CP flow dynamo solutions, plotted as a function
of the magnetic Reynolds number (solid line). The constancy of the growth rate in
the high-Rm regime suggests (but does not strictly prove) that this dynamo is fast.
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2.6.2 Fast Dynamo Action and Chaotic Trajectories

Fast dynamo action in the CP flow turns out to be intimately tied to the pres-
ence of chaotic trajectories in the flow. In fact, theorems have been proven,
demonstrating that

1. A smooth flow cannot be a fast dynamo if λL = 0, so that λL > 0, or,
equivalently, the existence of chaotic regions in the flow, is a necessary
(although not sufficient) condition for fast dynamo action;

2. In the limit Rm → ∞, the largest Lyaponuv exponent of the flow is an
upper bound on the dynamo growth rate.

Proofs of these theorems need not concern us here (but see bibliography),
but they once again allow us to rule out fast dynamo action in many classes
of flows.

The presence or absence of chaotic trajectories in a flow can be quantified
in a number of ways, the most straightforward (in principle) being the calcu-
lations of the flow’s Lyapunov exponents. This is another fancy name for a
rather simple concept: the rate of exponential divergence of two neighbouring
fluid element located at x1, x2 at t = 0 somewhere in the flow. The Lyapunov
exponent λL can be (somewhat loosely) defined via

ℓ(t) = ℓ(0) exp(λLt) , (2.82)

where ℓ ≡ ‖x2 − x1‖ is the length of the tangent vector between the two
fluid elements. Because there are three independent possible directions in
3D space, one can compute three distinct Lyapunov exponents at any given
point in the flow, and it can be shown that for an incompressible flow their
sum is zero. Now, recalling the simple flux tube stretching example of §2.2,
exponential divergence of two points located in the same fieldline within the
tube clearly implies exponential increase in the tube’s length, and therefore,
via eq. (2.19), exponential increase of the magnetic field strength.

Calculating a Poincaré section, as plotted on Figure 2.21 for our CP flow,
is another very useful way to check for chaotic trajectories in a flow. It is
constructed by launching tracer particles at z = 0 (and t = 0), and following
their trajectories as they are carried by the flow. At every 2π time interval,
the position of each particle is plotted in the [x, y] plane (modulo 2π in x and
y, since most particles leave the original 2π-domain within which they were
released as a consequence of cell precession). Some particles never venture too
far away from their starting position in the [x, y] plane. They end up tracing
closed curves which, however distorted they may end up looking, identify re-
gions of space where trajectories are integrable. Other particles, on the other
hand, never return to their starting position. If one waited long enough, one
such particle would eventually come arbitrarily close to all points in the [x, y]
plane outside of the integrable regions. The corresponding particle trajectory
is said to be space filling, and the associated particle motion chaotic. The



2.6 The CP Flow and Fast Dynamo Action 85

Fig. 2.21 Poincaré section for the CP flow, for ε = 1, ω = 1, and A = C =
√

3/2.
The plot is constructed by repeatedly “launching” particles at z = 0, t = 0, following
their trajectories in time, and plotting their (projected) position (modulo 2π) in the
[x, y] plane at interval ∆t = 2π. The flow is chaotic within the featureless “salt-and-
pepper” regions, and integrable in regions threaded by close curves.

region of the [x, y] plane defined by the starting positions of all particles with
space filling trajectories is called the chaotic region of the flow.

2.6.3 Magnetic Flux Versus Magnetic Energy

With the CP flow, we definitely have a pretty good dynamo on our hands.
But how are those dynamo solutions to be related to the Sun (or other as-
trophysical bodies)? So far we have concentrated on the magnetic energy as
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a measure of dynamo action, but in the astrophysical context magnetic flux

is also important. Consider the following two (related) measures of magnetic
flux:

Φ = |〈B〉| , F = 〈|B|〉 , (2.83)

where the angular brackets indicate some sort of suitable spatial average over
the whole computational domain. The quantity Φ is nothing but the average
magnetic flux, while F is the average unsigned flux. Under this notation the
magnetic energy can be written as EB = 〈B2〉. Consider now the scaling of
the two following ratios as a function of the magnetic Reynolds number:

R1 =
EB
Φ2

∝ Rn
m , (2.84)

R2 =
F 2

Φ2
∝ Rκ

m . (2.85)

A little reflection will reveal that a large value of R1 indicates that the mag-
netic field is concentrated in a small total fractional area of the domain, i.e.,
the filling factor is much smaller than unity8. The ratio R2, on the other
hand, is indicative of the dynamo’s ability to generate a net signed flux. The
exponent κ measures the level of folding in the solution; large values of κ
indicate that while the dynamo may be vigorously producing magnetic flux
on small spatial scales, it does so in a manner such that very little net flux
is being generated on the spatial scale of the computational domain. Fig-
ure 2.22 shows the variations with Rm of the two ratios defined above. Least
squares fits to the curves yields n = 0.35 and κ = 0.13. Positive values for the
exponents κ and n indicate that the CP flow dynamo is relatively inefficient
at producing magnetic flux in the high Rm regime, and even less efficient at
producing net signed flux. While other flows yielding fast dynamo action lead
to different values for these exponents, in general they seem to always turn
out positive, with κ < n, so that the (relative) inability to produce net signed
flux seems to be a generic property of fast dynamos in the high-Rm regime.

2.6.4 Fast Dynamo Action in the Nonlinear Regime

We conclude this section by a brief discussion of fast dynamo action in the
nonlinear regime. Evidently the exponential growth of the magnetic field will
be arrested once the Lorentz force becomes large enough to alter the original
CP flow. What might the nature of the backreaction on u look like?

Naively, one might think that the Lorentz force will simply reduce the
amplitude of the flow components, leaving the overall geometry of the flow

8 If you can’t figure it out try this: take a magnetic field of strength B1 crossing a
surface area A1; now consider a more intense magnetic field, of strength B2 = 4B1,
concentrated in one quarter of the area A1; calculate EB, Φ, and R1... get it?
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Fig. 2.22 Variations with Rm of the two ratios defined in eqs. (2.84)–(2.85). Least
squares fits (solid lines) yield power law exponents n = 0.34 and κ = 0.12.

more or less unaffected. That this cannot be the case becomes obvious upon
recalling that in the high Rm regimes the eigenfunction is characterized by

magnetic structures of typical thickness ∝ R
−1/2
m , while the flow has a typical

length scale ∼ 2π in our dimensionless units. The extreme disparity between
these two length scales in the high-Rm regime suggests that the saturation of
the dynamo-generated magnetic field will involve alterations of the flow field
on small spatial scales, so that a flow very much different from the original
CP flow is likely to develop in the nonlinear regime.

That this is indeed what happens was nicely demonstrated some years
ago by F. Cattaneo and collaborators (see references in bibliography), who
computed simplified nonlinear solutions of dynamo action in a suitably forced
CP flow. They could show that

1. the r.m.s. flow velocity in the nonlinearly saturated regime is comparable
to that in the original CP flow;

2. magnetic dissipation actually decreases in the nonlinear regime;
3. dynamo action is suppressed by the disappearance of chaotic trajectories

in the nonlinearly modified flow.

2.7 Dynamo Action in Turbulent Flows

The Roberts cell and CP flow are arguably more akin to malfunctioning
washing machines than any sensible astrophysical object. Nonetheless many
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things we have learned throughout this chapter do carry over to more realistic
circumstances, and in particular to turbulent, thermally-driven convective
fluid motions.

As support for this grand sweeping claim, consider Figure 2.23 herein.
It is a snapshot of a numerical simulation of dynamo action in a stratified,
thermally-driven turbulent fluid being heated from below and spatially peri-
odic in the horizontal directions. The fluid is contained in rectangular box of
aspect ratio x : y : z = 10 : 10 : 1, and we are here looking at the top layer
of the simulation box, with the color scale encoding the vertical magnetic
field component Bz(x, y). Such thermally-driven turbulent flows in a strati-
fied background have long been known to be characterized by cells of broad
upwellings of warm fluid. These cells have a horizontal size set by, among
other things, the density scale height within the box; On the other hand, the
downwelling of cold fluid needed to satisfy mass conservation end up being
concentrated in a network of narrow lanes at the boundaries between adjacent
upwelling cells. This asymmetry is due to the vertical pressure and density
gradient in the box: rising fluid expands laterally into the lower density layers
above, and descending fluid is compressed laterally in the higher density lay-
ers below. Near the top of the simulation box, this leads to the concentration
of magnetic structures in the downwelling lanes, as they are continuously
being swept horizontally away from the centers of upwelling cells, through a
form of flux expulsion in fact.

Fig. 2.23 Closeup on a snapshot of the top “horizontal” [x, y] plane of a MHD
numerical simulation of thermally-driven stratified turbulent convection in a box of
aspect ratio x : y : z = 10 : 10 : 1, at a viscous Reynolds number of 245 and
Rm = 1225. The simulation uses a pseudo-spectral spatial discretization scheme,
with 1024 collocation points in the x and y directions, and 97 in z. The color scale
encodes the vertical (z) component of the magnetic field (orange-to-yellow is posi-
tive Bz, orange-to-blue negative). Numerical simulation results kindly provided by
F. Cattaneo, University of Chicago.
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This convectively-driven turbulent flow acts as a vigorous nonlinear fast
dynamo, with a ratio of magnetic to kinetic energy of about 20%. This dy-
namo, much like that arising in the CP flow,

1. produces magnetic fields that are highly intermittent, both spatially and
temporally;

2. produces flux concentrations on scales ∝ R
−1/2
m ;

3. produces little or no mean-field, i.e., signed magnetic flux on a spatial scale
comparable to the size of the system.

The fundamental physical link between turbulent convection and the CP
flow is the presence of chaotic trajectories in both flows, which leads to the
expectation that dynamo action should be possible in convection zones of
the Sun and stars. Time to move on, then, to the solar magnetic field and its
underlying dynamo mechanism(s).
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Chapter 3

Dynamo Models of the Solar Cycle

Was einmal gedacht wurde,
kann nicht mehr zurückgenommen werden.

Friedrich Dürrenmatt
Die Physiker (1962)

The time has now come to put together everything (well... almost) we have
learned so far to construct dynamo models for solar and stellar magnetic
fields. In this and the following chapter we concentrate on the Sun, for which
the amount of observational data available constrains dynamo models to a
degree much greater than for other stars. Dynamo action in stars other than
the Sun will be considered in chapter 5, using solar dynamo models as sky-
hooks.

We begin (§3.1) by briefly reviewing the basic properties of the solar mag-
netic cycle, which are to be (hopefully) reproduced by the (relatively) simple
dynamo models to be constructed in the remainder of this chapter. These dy-
namo models all share the shearing of a poloidal field by differential rotation
(§2.2.4) as a source of toroidal field, and all invoke some sort of enhanced,
“turbulent” magnetic diffusivity in the solar convective envelope (more on
that very shortly!). They differ primarily in the choice they make regard-
ing the physical mechanism responsible for the regeneration of the poloidal
magnetic component.

The first stop in our modeling journey is a statistical-physical theory
known as mean-field electrodynamics, which will allow us to construct (rela-
tively) simple dynamo models in which the poloidal field is produced through
the inductive action of convective turbulence, as described by mean-field elec-
trodynamics (§3.2). We then look into what currently stands as their main
“competitors”, namely solar cycle models based on poloidal field regeneration
by the surface decay of active regions, more succinctly known as Babcock–
Leighton models (§3.3). We then turn to cycle models relying on various hy-
drodynamical or MHD instabilities, which can under certain circumstances
act as sources of poloidal magnetic fields (§3.4). We carry on with an overview
of the current state of affairs with regards to investigations of the solar dy-
namo problem through large-scale MHD simulations of turbulent convection
in a thick, stratified rotating shell (§3.5). The chapter closes (§3.6). with a
brief look at some results from local MHD simulations of photospheric and

93
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subsurface convection, and what they can teach us regarding the possible
multiplicity of dynamo mechanisms in the sun and stars.

3.1 The Solar Magnetic Field

3.1.1 Sunspots and the Photospheric Magnetic Field

The Sun is the first astronomical object (Earth excluded) in which a mag-
netic field was detected, through the epoch-making work of George Ellery
Hale (1868–1938) and collaborators. In 1907–1908, by measuring the Zeeman
splitting in magnetically sensitive lines in the spectra of sunspots and de-
tecting the polarization of the split spectral components (see Fig. 3.1), Hale
provided the first unambiguous and quantitative demonstration that sunspots
are the seat of strong magnetic fields. Not only was this the first detection of
a magnetic field outside the Earth, but the inferred magnetic field strength,
0.3T, turned out a few thousand times greater than the Earth’s own mag-
netic field. It was subsequently realized that the Lorentz force associated with
such strong magnetic fields would also impede convective energy transport
from below, and therefore lead naturally to the lower temperatures observed
within the sunspots, as compared to the surrounding photosphere.

The solar surface magnetic field outside of sunspots, although of much
weaker strength, is accessible to direct observation, usually by measuring
Zeeman broadening of spectral lines, or the degree of linear or circular po-
larisation of light emitted from the solar photosphere. The first magnetic
maps, or magnetograms, of the solar disk were obtained in the late 1950’s
by the father-and-son team of Harold D. Babcock (1882–1986) and Horace
W. Babcock (1912–2003), and were little more than photographs of a few
dozen horizontally stacked scans of the solar disk displayed on an oscillo-
scope. Figure 3.2 (top) is a modern equivalent in pixel form, with the gray
scale coding the strength of the normal component of the magnetic field (mid-
level gray, |B| ∼< 1mT; going to white for positive normal field, and to black
for negative, peaking around 0.4T in both cases). Comparison with a contin-
uum image (bottom) reveals that the stronger magnetic fields coincide with
sunspots, but hefty fields of a few 10−2 Tesla can be found within and around
groups of sunspots. Away from these “magnetically active regions”, the mag-
netic field is weaker, concentrated into clumps that collectively make up a
spatially fragmentedmagnetic network distributed evenly over the whole sur-
face. Sunspots and active regions, in contrast, are restricted to heliographic
latitudes ∼< 40◦, and their number waxes and wanes on an eleven year cycle,
about which we’ll have a lot more to say in the next chapter.

Now then, to sum up: far from taking the form of a large-scale, smooth
diffuse field as on the Earth, the solar photospheric magnetic field is very
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Fig. 3.1 The magnetically-induced Zeeman splitting in the spectrum of a sunspot.
The vertical dark line on the left image is the slit having produced the vertical stack
of spectra on the right image (with wavelength running horizontally). Reproduced
from the 1919 paper by G.E. Hale, F. Ellerman, S.B. Nicholson, and A.H. Joy (in
The Astrophysical Journal, vol. 49, pps. 153-178).

fragmented and topologically complex, and shows up concentrated in small
magnetized regions separated by field-free plasma. This dichotomy persists
down to the smallest spatial scales than can be resolved with current obser-
vational techniques. It owes much to the fact that the outer 30% in radius
of the Sun is a fluid in a strongly turbulent state. High time-cadence and
spatial resolutions of the solar small-scale magnetic field have shown that the
associated photospheric magnetic flux is replenished on a hourly timescale,
commensurate with the convective turnover time immediately below the pho-
tosphere. Such observations have also shown that the magnetic flux of small-
scale magnetic structures visible at the solar surface distributed according
to a power-law spanning over 5 orders of magnitude in flux, a remarkable
instance of scale invariance. These observations offer strong support to a tur-
bulent dynamo-based explanation for the solar small-scale magnetic field, of
the type considered in the preceding chapter, away from active regions at
least, although other explanations are also possible (more on these in §3.6
further below).

From here onwards, we focus mostly on the large-scale solar magnetic field,
by which we mean the part of the Sun’s magnetic field spatially organized on
scales commensurate with the solar radius. While it may not be immediately
obvious on Fig. 3.2, sunspots provide one of the better tracers of this large-
scale magnetic component.
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Fig. 3.2 Full disk line-of-sight magnetogram (top) and continuum intensity im-
age (bottom) of the solar photosphere, both taken on 30 March 2001 by the MDI
instrument onboard the SOHO satellite. The sun’s rotation axis is vertical on
both images. Public domain images downloaded from the SOHO mission Website:
http://wwwsoho.nascom.nasa.gov
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3.1.2 Hale’s Polarity Laws

Hale and his collaborators did much more than just measure magnetic fields
in sunspots. Through painstaking observations and analyses spanning nearly
two decades, they went on to demonstrate the existence of a number of regu-
larities in the magnetic fields of sunspots, now known as Hale’s polarity laws.
Having noted early on that large sunspots often appear grouped in pairs of
opposite magnetic polarities, they could show that:

1. At any given time, the polarities of the leading spots of sunspot pairs are
the same in a given solar hemisphere;

2. At any given time, the polarities of the leading spots of sunspot pairs are
opposite in the N and S hemispheres;

3. Sunspot polarities reverse in each hemisphere from one 11-yr sunspot cycle
to the next;

This polarity ordering is fairly easy to discern on the magnetogram of
Fig. 3.2. The most straightforward interpretation of this common opposite
polarity grouping is that we are seeing the surface manifestation of a large-
scale toroidal field residing somewhere below the photosphere, having risen
upwards and pierced the photosphere in the form of a so-called “Ω-loop” (see
Figure 3.3), its intersection with the photosphere producing sunspot pairs of
opposite polarities. If the zonal unit vector êφ is aligned with the direction
of solar rotation, then the sign of the deep-seated toroidal component Bφ is
then given by the magnetic polarity of the trailing sunspots. This picture of
sunspot pairs, taken in conjunction with Hale polarity Laws, therefore indi-
cate that the sun’s internal toroidal field is antisymmetric about the equator
and reverses polarity from one sunspot cycle to the next.

Fig. 3.3 Schematic representation of a sunspot pair as the manifestation of an
underlying toroidal flux rope having risen through the photosphere as an “Ω-loop”.
At left, the flux tube lies in the azimuthal direction, before destabilisation and buoyant
rise through the photosphere (at right). The magnetic fields impedes convective energy
transport, so that cooling leads to a collapse of the magnetic field into two sunspots
of opposite polarities. Diagram kinly provided by D. Passos.
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Another pattern uncovered Hale and collaborators is that the line segment
joining two members of a sunspot pair tends to show a systematic tilt angle
(γ) with respect to the East–West direction, the sunspot farther ahead (in the
direction of solar rotation) being closer to the equator. Although there exists
considerable variations in observed tilt angles, statistically the magnitude of
the tilt increases with increasing heliocentric latitude. This is known as Joy’s
Law. Least-squares fits to observations yield a parametric representation of
the form:

sin γ = 0.5 cos(θ) , (3.1)

where θ is the usual polar angle This pattern plays an important role in
some of the solar cycle models to be considered later in this chapter. This is
because the existence of a finite, systematic tilt implies a net dipole moment,
which can contribute to the solar poloidal field.

The hemispheric antisymmetry evidenced by Hale’s polarity Laws can be
readily produced by the shearing of a large-scale poloidal field by a differen-
tial rotation symmetric about the equatorial plane, exactly as we modeled
already in in §2.2.4. The very existence of Hale’s polarity Laws thus suggests
the presence of a large-scale poloidal component to the solar magnetic field;
its detection was beyond the capability of Hale’s instruments, but later ob-
servations clearly established its existence, and its close connection to the
internal magnetic field through the solar magnetic cycle.

3.1.3 The Magnetic Cycle

Figure 3.4 is a synoptic (time-latitude) diagram of the longitudinally-averaged
photospheric radial magnetic field component, covering three sunspot cycles.
Such a diagram is constructed by averaging magnetograms (like the one on
Fig. 3.2) in longitude over each successive solar rotation, and stacking side-
by-side the resulting latitudinal distribution of φ-averaged magnetic field to
form a temporal sequence. The most immediately striking global patterns
apparent on Figure 3.4 are certainly the cyclic variations on a ∼ 22 yr period,
accompanying polarity reversals, and the (anti)symmetry about the solar
equator.

The magnetic signal present within the latitudinal band extending 30 de-
grees or so on either side of the equator is the magnetographic imprint of
sunspots. Their strong magnetic fields (∼ 0.1T) almost average out on such
synoptic diagram, because, as already noted, they tend to appear in close
pairs of opposite magnetic polarities with comparable (unsigned) magnetic
flux. At the beginning of a sunspot cycle (e.g., 1976, 1986, 1996 on Fig. 3.4),
sunspots are observed at relatively high (∼ 40◦) heliocentric latitudes, but
emerge at lower and lower latitudes as the cycle proceeds, until at the end of
the cycle they are seen mostly near the equator, at which time spots announc-
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Fig. 3.4 A synoptic magnetogram covering the last three sunspot cy-
cles. The radial component of the sun’s magnetic field is azimuthally aver-
aged over a solar rotation, and the resulting latitudinal strips stacked one
against the other in the form of a time-latitude diagram. Recall that 1T≡
104 Gauss. Data and graphics courtesy of David Hathaway, NASA/MSFC.
[http://solarscience.msfc.nasa.gov/images/magbfly.jpg]

ing the onset of the next cycle begin to appear again at ∼ 40◦ latitude. This
results in the so-called “butterfly diagram” of sunspot distribution, about
which we’ll have more to say in the following chapter. Cycle maximum (as
measured by sunspot number) occurs about midway along each butterfly,
when sunspot coverage is maximal at about 15 degrees latitude, here 1980,
1991 and 2002.

At high heliocentric latitude (∼> 50◦) the synoptic magnetograms are dom-
inated by a well-defined dipole component, with strength ∼ 10−3T, showing
a clean pattern of polarity changes occurring at or near sunspot maximum.
For example, during the 1976–1986 cycle the toroidal field was negative in the
N-hemisphere, and the Northern polar field reversed from positive to negative
magnetic polarity; taken at face value, Figure 3.4 then indicates that the high
latitude poloidal field lags the toroidal field by a phase interval ∆ϕ ≃ π/2.

At mid-latitudes the most prominent feature is a fairly regular poleward
drift of magnetic fields originating in sunspot latitudes, presumably released
there by the decay of sunspot and active regions. It is quite possible that this
poleward transport of magnetic flux from active region belts contributes to
the polarity reversal of the polar fields.

A ∼ 10−3T polar field pervading a polar cap of ∼ 30◦ angular width, as
on Fig. 3.4, adds up to a poloidal magnetic flux of ∼ 1014 Wb. The total
unsigned flux emerging in active regions, taken to be representative of the
solar internal toroidal magnetic component, adds up to a few 1017Wb over
a full sunspot cycle. This is usually taken to indicate that the solar internal
magnetic field is dominated by its toroidal magnetic component.
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We will return to sunspots an their spatiotemporal variations in numbers
in §4.1, when we consider the origin of fluctuations in the solar cycle. For the
time being we will just concentrate on what they tell us about the strength
of the sun’s internal magnetic field.

3.1.4 Sunspots as Tracers of the Sun’s Internal
Magnetic Field

In translating the cartoon of Figure 3.3 into a quantitative physical model,
we have a number of issues that need to be clarified. The first is to identify
the region(s) of the solar interior from which the flux ropes originate. The
magnetic pressure (∝ B2) within a strongly magnetized flux tube leads to
a density deficit in order to reach pressure equilibrium with the surrounding
plasma. The resulting upward buoyancy force can bring the tube to the sur-
face, which is good and needed, but it turns out that for tubes located within
the bulk of the convection zone the rise time is far too short to allow field
amplification to a level commensurate with observed sunspot field strengths.
This has led to the conclusion that the solar magnetic field is stored—maybe
even produced—not in the convective envelope proper, but rather immedi-
ately below it, within the tachocline.

Considerable efforts have gone into making models of the storage, desta-
bilization and buoyant rise of thin magnetic flux tubes through the solar
convective envelope (see bibliography at the end of this chapter). In most
cases, flux tubes are treated as structureless, flux-carrying material lines—
the so-called thin flux tube approximation—and so these kinds of calculations
cannot properly take into account the interaction of the tube with the sur-
rounding turbulent fluid motions. With this caveat in mind, thin flux tube
modeling has produced the following two important results:

1. The flux ropes rise essentially radially if they have a field strength in excess
of B ∼> 6–10T; otherwise the Coriolis force deflects the rising flux tubes
to high latitudes.

2. The flux ropes emerge without any tilt for B ∼> 100T, and with tilts
compatible with Joy’s Law for fields strengths in the range 6–16T.

The basic physical mechanism underlying these two remarkable results is the
same: if the rise time of the flux ropes is of the order of the solar rotation
period, the Coriolis force has an important influence. It is the Coriolis force
that, upon acting on the internal flow developing along the length of the
flux rope during its rise, gives rise to the twist that, at emergence, manifests
itself as Joy’s Law. If the field is strong enough for the rise time to be much
shorter than the rotation period, then the rising flux rope does not “feel” the
rotation, rises radially, and emerges without a tilt. If on the other hand the
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magnetic field is too weak, the Coriolis force deflects the rising flux rope on
a trajectory running parallel to the rotation axis, resulting in emergence at
high heliographic latitudes.

Now, this is great stuff: the observed emergence of sunspots at low helio-
centric latitudes puts a lower limit on the strength of the participating flux
ropes; Joy’s Law, on the other hand, translate into an upper limit on the field
strength. One concludes that the sunspot-forming toroidal flux ropes must
have magnetic field strengths in the rather narrow range

6 ∼< B ∼< 16T . (3.2)

While some level of field amplification is likely during the (ill-understood)
process of flux tube formation from the spatially diffuse large-scale magnetic
field produced by the dynamo, these modelling results are usually taken to
indicate that the large-scale toroidal magnetic field at or below the base of
the convective envelope, where stability analyses indicate sunspots-forming
toroidal flux rope are formed stored, must have a strenth in the range of a few
tenths to a few Teslas. By most estimates, the associated magnetic energy
density is at at least comparable, and perhaps quite a bit larger, that the
kinetic energy density of the turbulent fluid motions driving dynamo action.

3.1.5 A Solar Dynamo Shopping List

To close this very brief overview, let’s now collect a short list of fundamental
observational features that a physical model of the solar large-scale mag-
netic field should reproduce (anything related to amplitude fluctuation being
deferred to chapter 4):

1. A large-scale magnetic field, axisymmetric to a good approximation and
antisymmetric about the solar equatorial plane;

2. A cyclic variation of this large-scale magnetic field, characterized by po-
larity reversals with a ∼ 20 yr oscillation period;

3. An internal toroidal field of strength ∼ 0.1–1T, concentrated at low solar
latitudes (∼< 45◦, say), and migrating equatorward in the course of the
cycle with minimal spatiotemporal overlap between successive cycles;

4. A large-scale surface poloidal field of a few 10−3T, migrating poleward in
the course of the cycle, and reversing polarity at sunspot maximum.

These properties do not square well with fast dynamo action in turbu-
lent flow; in particular, the Sun’s large-scale magnetic field component is
characterized by a substantial signed (hemispheric) magnetic flux, for which
something else than fast dynamo action is needed. It turns out that the tur-
bulent nature of the flow in the solar convective envelope can still do the
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trick, but to examine this we will need to adopt a statistical approach to
turbulence and to the associated flow-field interactions.

3.2 Mean-Field Dynamo Models

The ‘toy” dynamo flows considered in §§2.5 and §2.6 exemplified the fact
that high-Rm turbulent flows can be quite effective at producing a lot of

small-scale magnetic fields, where “small-scales” is roughly R
−1/2
m times the

length scale of the flow. At the solar surface, the latter is around ∼ 106m
and the former ∼ 108 (for granulation), which yields very small scales in-
deed, ∼ 100m! So, at some level, the small-scale magnetic fields on the sun
and stars are already taken care of. It turns out that under certain condi-
tions, solar/stellar convective turbulence can also produce magnetic fields
with a mean component building up on large spatial scales. These mean-field

dynamo models remain arguably the most “popular” descriptive models for
dynamo action in the Sun and stars, but also in planetary metallic cores,
stellar accretion disks, and even galactic disks. Accordingly, we will look into
the formulation of these models at some depth1.

3.2.1 Mean-Field Electrodynamics

The fundamental idea on which mean field theory rests is the two scales ap-

proach, which consists of a decomposition of the field variables into mean and
fluctuating parts. This process naturally implies that an averaging procedure
can meaningfully be defined. The derivation of mean field theory can proceed
equally from the choice of space averages, time averages or ensemble aver-
ages. In the context of axisymmetric dynamo models, longitudinal averages
impose themselves rather naturally. For the time being let’s just define our
averaging operator as:

〈A〉 = 1

λ3

∫

V

Adx . (3.3)

We also assume that the velocity and magnetic field can be decomposed into
a mean and fluctuating part so that

u = 〈u〉+ u′ , and B = 〈B〉+B′ . (3.4)

The decomposition (3.4) makes sense provided 〈u′〉 = 〈B′〉 = 0. This is
not a linearization, in that it involves no assumption regarding the relative

1 §§3.2.1 through 3.2.6 are to a large extent adapted from class notes written by
Thomas J. Bogdan for the graduate class APAS7500 we co-taught in 1997 at the
University of Colorado at Boulder.
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magnitudes of the mean and fluctuating parts. The physical interpretation
of (3.4) is as follows. The velocity and magnetic fields are characterized by a
slowly varying component, 〈u〉 and 〈B〉, which vary on the characteristic large
scale L, plus rapidly fluctuating parts, u′ and B′, which vary on the much
smaller scale ℓ. The volume averages are computed over some intermediate
scale λ such that

ℓ ≪ λ ≪ L . (3.5)

Whenever (3.5) is satisfied we say that we have a “good” scale separation.
The objective of mean field theory is to produce a closed set of equations

for the mean quantities. Substituting (3.4) into the induction equation (1.59),
and averaging, we obtain equations for the mean magnetic fields

∂〈B〉
∂t

= ∇×
(
〈u〉 × 〈B〉+ E − η∇× 〈B〉

)
. (3.6)

Subtracting this expression from the full MHD induction equation, obtained
by substitution of (3.4) into (1.59) without applying the averaging opera-
tor, yields the following evolutionary equation for the fluctuating part of the
magnetic field:

∂B′

∂t
= ∇×

(
〈u〉 ×B′ + u′ × 〈B〉+G− η∇×B′

)
, (3.7)

where
E = 〈u′ ×B′〉, and G = u′ ×B′ − 〈u′ ×B′〉 . (3.8)

The important thing is that (3.6) now contains a source term, E, associated
with the average of products of fluctuations, which in general does not vanish
upon averaging even though u′ and B′ individually do. The term E, which
is called the mean electromotive force, or emf for short, plays a central role
in this theory.

Now, the whole point of the mean-field procedure is to avoid having to deal
explicitly with the small scales, so we do not want to be integrating eq. (3.7)
explicitly. But then we have a closure problem: eq. (3.6) is a 3-component
vector equation, for the six components of 〈B〉 and B′ (leaving the flow out
of the picture for the moment). Therefore it is clear that to solve (3.6), E
must be expressed as some function of 〈u〉 and 〈B〉.

In order to obtain the desired expression, we note that (3.7) is a linear

equation for B′ with the term ∇ ×
(
u′ × 〈B〉

)
acting as a source. There

must therefore exist a linear relationship between B and B′ , and hence, one
between B and 〈u′ ×B′〉. The latter relationship can be expressed formally
by the following series

Ei = αij〈B〉j + βijk∂k〈B〉j + γijkl∂j∂k〈B〉l + · · ·, (3.9)
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where the tensorial coefficients, α, β, γ, and so forth must depend on 〈u〉,
on what we might loosely term the statistics of the turbulent velocity fluctu-
ations, u′, and perhaps on the diffusivity η—but not on 〈B〉. In this sense,
equations (3.6) and (3.9), constitute a closed set of equations for the evolu-
tion of 〈B〉. The convergence of the series representation provided by equation
(3.9) can be anticipated in those cases where the good separation of scales ap-
plies. For in these cases each successive derivative in equation (3.9) is smaller
than the previous one by approximately a factor of ℓ/L ≪ 1. With any luck,
we may expect equation (3.9) to be dominated by the first few terms.

3.2.2 The α-Effect

We have already remarked that E in (3.6) acts as a source term for the mean
field. It is instructive to examine the contributions to E deriving from the
individual terms in the expansion (3.9). The first contribution is associated
with the second-rank tensor, αij , thus

E(1)
i = αij〈B〉j . (3.10)

The first thing to note is that αij must be a pseudo–tensor since it establishes
a linear relationship between a polar vector—the mean emf, and an axial
vector—the mean magnetic field. We can divide αij into its symmetric and
antisymmetric parts, thus2

αij = αs
ij − εijkak , (3.11)

where 2ak = −εijkαij . From (3.10) we have

E(1)
i = αs

ij〈B〉j +
(
a× 〈B〉

)

i
. (3.12)

The effect of the antisymmetric part is to provide an additional advective
velocity (not in general solenoidal), so that the effective mean velocity be-
comes 〈u〉 + a. It results in turbulent pumping of the large-scale magnetic
component. The nature of the symmetric part is most easily illustrated in

2 Here, εijk is the Levi–Civita tensor density, also known as the unit alternating
tensor, and has the values εijk = 0 when i, j, k are not all different, εijk = +1 or −1
when i, j, k are all different and in cyclic, or acyclic, order respectively. A particularly
useful formula is (Einstein summation over repeated indices in force):

εijkεklm = δilδjm − δimδjl ,

where δij is the Kronecker–delta, and has the value δij = 0 if i, j are different, and
δij = 1 when i = j.
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the case when u′ is an isotropic random field.3 Then a is zero, αij must be
an isotropic tensor of the form αij = αδij , and (3.12) reduces to

E
(1) = α〈B〉 . (3.13)

Using Ohm’s law, this component of the emf is found to generate a contribu-
tion to the mean current of the form

j(1) = ασe〈B〉 , (3.14)

where σe is the electrical conductivity. For nonzero α, equation (3.14) implies
the appearance of a mean current everywhere parallel to the mean magnetic
field—the so-called α–effect. This is in sharp contrast to the more conven-
tional case where the induced current σe

(
u×B

)
is perpendicular to the mag-

netic field. We are used to thinking as electrical currents being the source of
magnetic fields (think of the Biot–Savart Law, or the pre-Maxwellian form
of Ampère’s Law); but a mechanically forced magnetic field can become a
source of electrical current. That’s really what induction is all about.

In the context of axisymmetric large-scale astrophysical magnetic fields,
the importance of the α-effect is immediately apparent. We recall from our
deliberations in §2.2.4 that a toroidal field could be generated from a poloidal
one by differential rotation (velocity shear). The α-effect makes it possible to
drive a mean toroidal current parallel to the mean toroidal field, which, in
turn will regenerate a poloidal field thereby closing the dynamo loop.

To appreciate the physical nature of the α-effect we pause to examine the
original 1955 physical picture put forth by E.N. Parker. We define a cyclonic
event to be the rising of a fluid element associated with a definite twist, say
anticlockwise when seen from below (see Figure 3.5). In spherical geometry,
we then consider the effect of many such events, distributed randomly in
longitude and time, on an initially purely toroidal field line. Each cyclonic
event creates an elemental loop of field with an associated current distribution
that will have a component parallel to the initial field if the angle of rotation
is less than π and antiparallel if it is greater. By assuming that the individual
events are short lived we can rule out rotations of more than 2π. It is clear
that the combined effect of many such events is to give rise to a net current
with a component along 〈B〉.

An important property of α is its pseudoscalar nature, i.e., α changes sign
under parity transformations. This implies that α can be nonzero only if the

3 Throughout the rest of this chapter, we will have cause to repeatedly refer to
the statistical properties of the turbulent velocity field. In order to avoid confusion
we state the following definitions: a (random) field is stationary if its probability
density function (pdf) is time independent, it is homogeneous if its pdf is independent
of position, it is isotropic if its pdf is independent of orientation (or equivalently,
invariant under rotations), and it is reflectionally symmetric if its pdf is invariant
under parity reversal. We should note that isotropy and reflectional symmetry are
taken here to be distinct properties, although this protocol is not universally accepted.
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Fig. 3.5 A sketch of magnetic line of force entrained by a cyclonic, rising fluid
element in the frozen-in limit. Note that the resulting cyclonic loop can be viewed as
resulting from an element of electric current flowing parallel to the original, uniform
magnetic field. [from: Parker 1970, The Astrophysical Journal, vol. 162, Figure 1].

statistics of u′ lacks reflectional symmetry. In other words the velocity field
must have a definite chirality. For example, on Fig. 3.5 there is a definite
relationship between vertical displacements and sense of twist, set by the
Coriolis force. This is similar to the Roberts cell flow, where the sign of the
z-component changed sign in step with the sense of rotation in contiguous
flow cells. In general the lack of reflectional symmetry of the fluid velocity
manifests itself through a nonzero value of the mean fluid helicity 〈u′ · (∇×
u′)〉, itself a pseudo scalar. The Roberts Cell and CP flows introduced in the
preceding chapter are two examples of flows lacking reflectional symmetry.
As we shall presently see there is an important relation between fluid helicity
and the α-effect.

It is important to establish those cases in which α and β can rigorously
be computed from knowledge of u′. Not counting methods based on the
direct numerical solutions of the induction equation, there are two distinct
ways to proceed. In both cases the success of the approach depends on some
simplification of equation (3.7). In one case the term G is neglected leading to
the so-called first order smoothing approximation (FOSA). In the other, the
term η∇2B′ is neglected, leading to the Lagrangian approximation. The two
approaches are complementary in the sense that the former is applicable (for
most physically relevant circumstances) when the diffusivity is large and the
latter when it is small. Even these two most severe simplifying assumptions
do not exactly lead to simple mathematics, and to add insult to injury the
parameter regimes for which they are expected to hold do not square well
with what we think we know about solar interior conditions. The closest we
can get to the Sun and stars, in a tractable manner, is the so-called Second-
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Order Correlation Approximation (SOCA), which neglects cross-correlations
between the different velocity components but retains the possibility that the
intensity of turbulence itself can vary with position. Under this assumption
of near-isotropy, we then have

〈u′
ju

′
k〉 =

1

3
〈(u′)2〉δjk . (3.15)

This leads to a simple diagonal form for the α tensor:

α = −1

3
τc〈u′ · (∇× u′)〉 [m s−1] , (3.16)

where τc is the correlation time for the turbulent flow. Equation (3.16) tells us
that the α-effect is a direct function of the helicity of turbulent component of
the flow; think back of Parker’s picture of twisted magnetic fieldlines (Fig. 3.5)
and convince yourself that this is indeed how it should be for the “cartoon”
to work.

If one assumes that the (mild) inhomogeneity arises from the stratification,
the (mild) break of reflectional symmetry from the Coriolis force, and the
lifetime of turbulent eddies is commensurate with their turnover time, then
eq. (3.16) can be brought to the form:

α = −1

3
τ2c (u

′)2Ω · ∇ ln(̺u′) , (3.17)

where u′ =
√

〈u′2〉 is the local r.m.s. turbulent velocity, and Ω is the angular

velocity vector. With the turbulent velocity increasing outwards through the
convective envelope faster than the density decreases, eq. (3.17) would “pre-
dict” an α-effect varying as cos θ and positive (negative) in the solar Northern
(Southern) hemisphere. Such expression can be validated through MHD nu-
merical simulations of turbulent flows including an externally-imposed weak
magnetic field, and from the simulation statistics compute α by appropri-
ate averaging4. There has been many such simulations, which, almost sur-
prisingly, have corroborated the expressions obtained from SOCA. The key
parameter is the so-called Coriolis number, defined as the ratio of rotation
period to convective turnover time:

Co = 2Ωτc , (3.18)

equivalent to the inverse of the Rossby number of common usage in atmo-
spheric sciences. The Coriolis number is a dimensionless measure of the ability
of the Coriolis force to break the mirror symmetry of convective turbulence.
Estimates for this quantity in the Sun, with τc taken ed from mixing length

4 See the papers by Ossendrijver et al. (2001) and Käpylä et al. (2006) cited in the
bibliography, on which the foregoing discussion is based.
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theory, yield Co ≪ 1 in the outer convection envelope, up to Co ∼ 1–10 at
its base. For Co ∼ 1, the αφφ component of the α-tensor, which is the term
responsible for poloidal field regeneration in axisymmetric mean-field mod-
els, does turn out positive in the bulk of the convection zone, with a ∼ cos θ
latitudinal dependency. At larger rotation rate, the peak in αφφ is displaced
from the pole to lower latitudes, reaching ∼ 30◦ at Co ∼ 10. These simula-
tions also produce a sign change in all components of the α-tensor at the very
base of the convective envelope, with the region of negative αφφ growing in
size as Co increases from 1 to 10.

The above expressions for the α-coefficients are predicated on the small-
scale field B′ being much weaker than the mean-field 〈B〉, a situation ex-
pected to hold only in the Rm ≪ 1 regime, or if the coherence time of the
turbulent flow is much smaller than its turnover time. The first condition is
the regime entirely opposite to that expected in solar/stellar interiors, while
the second is at best marginaly satisfied. High-Rm MHD turbulence simula-
tions indicate that in this regime one has in factB′ ∼> 〈B〉, and that eq. (3.16)
should be replaced by:

α = −1

3
τc

(

〈u′ · (∇× u′)〉 − 1

̺
〈J ′ ·B′〉

)

, (3.19)

with J ′ = (∇×B′)/µ0. Notice that the second term on the RHS, correspond-
ing to the current helicity associated with the small-scale magnetic field, has
a sign opposite to that kinetic helicity. This says once again, in essence, that
the Lorentz force opposes the twisting of the large-scale magnetic field by the
turbulent flow. This impact of current helicity on the α-effect represents a
potentially powerful quenching mechanism for the α-effect, a topic we shall
revisit further below.

3.2.3 Turbulent Pumping

The non-diagonal part of the α tensor provides a contribution to the turbu-
lent emf taking the form of a non-solenoidal advective velocity (second term
on RHS of eq. (3.12)). This is emphatically not a real flow, in the sense that
it acts only on the large-scale magnetic component, and originates with the
turbulent emf. Turbulent pumping can also be measured in numerical simu-
lations, which indicate that the predominant effect is a downward pumping
driven by the stratification, with magnetic fields being expelled from the
high-diffusivity regions to the low diffusivity regions. In the presence of ro-
tation turbulent pumping also takes place in the latitudinal direction, with
a velocity reaching values of the order of a few meters per second at high
rotation rates (Co = 10).
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Although turbulent pumping is seldom explicitly included in the simple
mean-field dynamo models to be discussed presently, its impact on dynamo
action in the sun and solar-type stars is likely important; this is because it
can offset flux loss through magnetic buoyancy, and favors accumulation of
magnetic fields in the tachocline, where the large shear and low magnetic
diffusivity are conducive to the production of strong toroidal flux rope-like
structures, believed to give rise to sunspots following their destabilization,
buoyant rise through the convection zone and surface emergence.

3.2.4 The Turbulent Diffusivity

We now turn to the next term in the expansion (3.9), namely

E(2)
i = βijk∂k〈B〉j . (3.20)

The physical interpretation of the third-rank pseudotensor, βijk, is again
most easily gained when u′ is isotropic, in which case βijk = βεijk, where β
is a scalar, and so we have

∇× E
(2) = ∇×

(
−β∇× 〈B〉

)
= β∇2〈B〉 . (3.21)

We recognize the scalar β as an additional contribution to the effective dif-
fusivity of 〈B〉, which thus becomes ηe ≡ η + β. In cases where β ≫ η one
refers to ηe ≈ β as the turbulent diffusivity. For homogeneous and isotropic
turbulence, it can be formally related to the intensity of turbulence as

β =
1

3
τc〈(u′)2〉 [m2s−1] , (3.22)

where τc is once again the correlation time of the turbulent flow5. Equation
(3.22) states that the turbulent diffusivity is more efficient when the turbu-
lence is more vigorous, which makes intuitive sense since, in order to destroy
the magnetic field by folding, the flow must do work against the Lorentz
force.

Simple mixing length models of solar convection suggest u′ ∼ 10m s−1

and τc ∼ 1month at the base of the convection zone (r/R ∼ 0.7), which then
leads to β ∼ 108m2 s−1. This is very much larger than the ordinary magnetic
diffusivity ηc ∼ 1m2s−1, so that we indeed expect β ≫ η. This is why, back
in the previous chapter (§§2.1.5 and 2.2.4), whenever trying to model the
“real” Sun we made use of a magnetic diffusivity profile characterized by a
sharp increase when going from the radiative core to the overlying convective

5 This expression that still holds under SOCA, in which case β becomes a function
of position in the flow.
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envelope (viz. eq. (2.16) and dash-dotted line on Fig. 2.2). Note also that the
magnetic diffusion time (1.63) obtained using the above numerical estimate
β for the solar convection zone (with ℓ ∼ 0.3R) is now ∼ 10 yr, which is com-
mensurate to the solar cycle period, and suggests that (turbulent) dissipation
can be expected to play an important in solar cycle models.

3.2.5 The Mean-Field Dynamo Equations

In summary, our heuristic treatment of mean-field electrodynamics has led
us to an evolution equation for the large-scale magnetic field, 〈B〉, which
takes account of coherences between fluctuation-fluctuation interactions of
the small-scale turbulent magnetic and velocity fields. For homogeneous, sta-
tionary, and isotropic velocity turbulence, this equation assume the particu-
larly elegant and physically intuitive form

∂〈B〉
∂t

= ∇×
(
〈u〉 × 〈B〉+ α〈B〉 − β∇× 〈B〉

)
, (3.23)

which, according to SOCA, should remain valid in the case of mildly-
inhomoneoneus, mildly anisotropic turbulence as well, with α and β then
given by eqs. (3.16) and (3.22). The fluctuation-fluctuation interactions en-
ter this equation through the electromotive force described by the α-effect,
incarnating what we earlier called constructive folding, and the turbulent
diffusion of the mean magnetic field accounted for by β, tantamount to de-
structive folding. In principle, these coefficients can be calculated from the
lowest-order statistics of the turbulent flow, namely the spatial distribution
of turbulent intensity, as measured by 〈(u′)2〉.

The fact remains that more often that not, and certainly in all mean-field
dynamo models to be considered in what follows, the mean-field coefficients
α and β will be chosen a priori, although we will take care to embody in these
choices what we have learned from our brief excursion into mean-field theory.
Consequently, the resulting dynamo models will have a descriptive, rather
than predictive value. We will be picking numerically “reasonable” turbulent
dynamo coefficient that “do the right thing” for the Sun, and see how the
resulting models behave as we change other aspects of the model, or, later on,
apply them to stars other than the Sun. Yet, as the following example will
show, we can still learn a lot from mean-field electrodynamics, even though
we have foregone strict physical determinism.
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3.2.6 Dynamo Waves

As discussed already in §3.1 the shape of the sunspot butterfly diagram
suggests that the deep-seated toroidal magnetic flux system giving rise to
sunspots migrates equatorward in the course of the cycle. It turns out that
this remarkable pattern can arise naturally in the context of cycle models
based on mean-field electrodynamics.

Consider a local cartesian coordinate system oriented so that the direction
y corresponds to an ignorable coordinate (∂/∂y = 0), which we associate with
the azimutal direction in an axisymmetric spherical system, and with x and
z mapping onto the latitudinal and radial directions, respectively. Consider
now the action of a spatially constant α-effect acting in conjunction with a
vertically-sheared flow:

〈u〉 = Ωz êy , (3.24)

where Ω is a constant [units: s−1]. We shall further assume that the mean-
field coefficients α [units: m s−1] and ηe = β+ η [units: m2 s−1] are constant.
The cartesian equivalent of eq. (2.2) is now

〈B〉(x, z, t) = ∇× (A(x, z, t)êy) +B(x, z, t)êy . (3.25)

Substitution of eqs. (3.24) and (3.25) into our mean-field induction equation
(3.23) leads to

∂A

∂t
− ηe

(
∂2A

∂x2
+

∂2A

∂z2

)

= αB , (3.26)

∂B

∂t
− ηe

(
∂2B

∂x2
+

∂2B

∂z2

)

= −Ω
∂A

∂x
− α

(
∂2A

∂x2
+

∂2A

∂z2

)

. (3.27)

The two terms on the RHS of this equation parameterize the α-effect and the
Ω-effect. Recall that the Ω-effect describes generation of a toroidal magnetic
field by the shearing of a poloidal field (as in §2.2.4). The (mean-field) α-
effect accounts for the regeneration of both poloidal and toroidal magnetic
fields due to the chirality, or handedness, of the turbulent flow field. These
two terms offer the possibility of dynamo action overcoming the magnetic
diffusion term which resides on the LHS of this equation.

Equations (3.27)–(3.27) are again PDEs with constant coefficients. We can
therefore seek elementary plane-wave solutions of the form

[
A(x, z, t)
B(x, z, t)

]

=

[
a
b

]

exp
[
λt+ ik(z cosϑ+ x sinϑ)

]
. (3.28)

We may assume that k ≥ 0 and 0 ≤ ϑ ≤ 2π are prescribed (real) parameters,
where the latter sets the orientation of the wavevector in the [x, z] plane. If
equation (3.28) is substituted into eqs. (3.27)–(3.27), the requirement that
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there be nontrivial eigenvectors leads to the dispersion relation:

(
λ+ ηek

2
)2

= αk
(
αk + iΩ sinϑ

)
. (3.29)

This is a quadratic (complex) polynomial in λ, with the two solutions:

λ± = − ηek
2 ±

√

|α|k
2

{
(√

Ω2 sin2 ϑ+ α2k2 + |α|k
) 1

2

+ i sign(Ωα sinϑ)
(√

Ω2 sin2 ϑ+ α2k2 − |α|k
) 1

2

}

. (3.30)

The λ− solution can only produce a disturbance which decays with the pas-
sage of time, so our hope rests on the λ+ root, with dynamo action occurring
when Re(λ+) > 0. Examination of equation (3.30) indicates that an exponen-
tially growing dynamo wave is obtained when 0 < k < k⋆, where the critical
wavenumber k⋆ is one of the (six) roots of the equation,

k6⋆ −
α2

η2e
k4⋆ −

α2Ω2

4η4e
sin2 ϑ = 0 . (3.31)

If k⋆ → 0 then the “window” for dynamo action disappears. This occurs
when α → 0, in agreement with Cowling’s theorem. From a physical per-
spective it makes a good deal of sense that the dynamo window inhabits the
small-wavenumber, large-wavelength, end of the range of possible parame-
ters. Clearly dynamo waves with rapid spatial fluctuations are susceptible to
severe damping due to the enhanced diffusivity ηe ≈ β. On the other hand,
if the spatial variations of 〈A〉 are too large, then there is very little 〈B〉 for
the α-effect to work on, and so the dynamo process again stalls as k → 0.

Equation (3.31) can be solved exactly as a cubic equation for ζ ≡ k2⋆,
but for our purposes it is sufficient to simply estimate k⋆ by inspection of
eq. (3.31) in the limiting cases of “strong” shear, usually most relevant to
dynamo action in the sun and stars:

k⋆ ≈
[ |αΩ sinϑ|

2η2e

] 1

3

, |α| ≪
√

ηe|Ω sinϑ| . (3.32)

We use the word “wave” to describe these exponentially growing solutions
of the mean field equations, because it is clear from equation (3.30) that
Im(λ+) 6= 0. Note also that the direction of propagation clearly depends
upon the sign of the product of α and Ω, and that the largest growth rate
will occur for ϑ = π/2, i.e., wave propagating in the “latitudinal” x-direction,
which is a most excellent first step towards reproducing the sunspot butterfly
diagram!
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3.2.7 The Axisymmetric Mean-Field Dynamo Equations

We now proceed to reformulate the mean-field induction equation (3.23)
into a form suitable for axisymmetric large-scale magnetic fields pervading
a sphere of electrically conducting fluid. We proceed as we did way back in
§2.4, which is to express the poloidal field as the curl of a toroidal vector po-
tential, and restrict the large-scale flow to the axisymmetric forms given by
eq. (2.59), with the magnetic diffusivity restricted to vary at most only with
r. It will also prove convenient to express the resulting equations in nondi-
mensional form. Toward this end we opt to scale all lengths in terms of R,
and time in terms of the diffusion time τ = R2/ηe based on the (turbulent)
diffusivity in the convective envelope, which we assume to be provided by
the (scalar) β-term of mean-field electrodynamics. Henceforth dropping the
averaging brackets for notational simplicity, the poloidal/toroidal separation
procedure applied to the mean-field dynamo equation (3.23 ) now leads to

∂A

∂t
= η

(

∇2 − 1

̟2

)

A− Rm

̟
up · ∇(̟A) + CααB , (3.33)

∂B

∂t
= η

(

∇2 − 1

̟2

)

B +
1

̟

(
dη

dr

)
∂(̟B)

∂r
− Rm̟∇ ·

(
B

̟
up

)

+ CΩ̟(∇×Aêφ) · (∇Ω) + Cαêφ · ∇ × [α∇× (Aêφ)] , (3.34)

where the following three nondimensional numbers have materialized:

Cα =
αeR

ηe
, (3.35)

CΩ =
ΩeR

2

ηe
, (3.36)

Rm =
ueR

ηe
, (3.37)

with αe (dimension m s−1), ue (dimension m s−1) and Ωe (dimension s−1)
as reference values for the α-effect, meridional flow and differential rotation,
respectively. Remember that the functionals α, η, up and Ω are hereafter
dimensionless. The quantities Cα and CΩ are dynamo numbers, measuring
the importance of inductive versus diffusive effects on the RHS of eqs. (3.33)–
(3.34). The third dimensionless number, Rm, is a magnetic Reynolds num-
ber, which here measures the relative importance of advection (by merid-
ional circulation) versus diffusion in the transport of A and B in meridional
planes. For simplicity of notation, we continue to use η for the total mag-
netic diffusivity, retaining the possibility of variation with depth and with
the understanding that within the convective envelope this now includes the
(dominant) contribution from the β-term of mean-field theory.
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Equations (3.33)–(3.34) will hereafter be refered to as the dynamo equa-

tions (rather than the technically preferable but cumbersome “axisym-
metric mean-field dynamo equations”). Structurally, they only differs from
eqs. (2.3)–(2.4) by the presence of not one but two new source terms on
the RHS, both associated with the α-effect. The appearance of this term in
eq. (3.33) is crucial, since this is what allows us to evade Cowling’s theorem.
Acting in conjunction with the new α-effect term in eq. (3.34), it makes dy-
namo action possible in the absence of a large-scale shear, i.e., with ∇Ω = 0
in eq. (3.34). Such dynamos are known as α2 dynamos, and regenerate their
magnetic field entirely via the inductive action of small-scale turbulence. Tra-
ditionally, dynamo action in planetary cores has been assumed to belong to
this variety (at least from the point of view of mean-field theory). Another
possibility is that the shearing terms entirely dominates over the α-effect
term, in which case the latter is altogether dropped out of eq. (3.34). This
leads to the αΩ dynamo model, which is believed to be most appropriate to
the Sun and solar-type stars. Finally, retaining both source terms in eq. (3.34)
defines, you guessed it I hope, the α2Ω dynamo model. This has received
comparatively little attention in the context of solar/stellar dynamos, since
(simple) a priori estimates of the dynamo numbers Cα and CΩ usually yield
Cα/CΩ ≪ 1; caution is however warranted if dynamo action takes place in a
thin shell, in which case the α-term can still dominate toroidal field produc-
tion.

In general, solutions are sought in a meridional plane of a sphere of radius
R, and as with the diffusive problem of §2.1, are matched to a potential field in
the exterior (r/R > 1), and regularity requires that A(r, 0) = A(r, π) = 0 and
B(r, 0) = B(r, π) = 0 be imposed on the symmetry axis. In practice it is often
useful to solve explicitly for mode having odd and even symmetry with respect
to the equatorial plane. To do so, one simply solves the dynamo equations in
a meridional quadrant, and imposes the following boundary conditions along
the equatorial plane. For a dipole-like antisymmetric mode,

∂A(r, π/2)

∂θ
= 0, B(r, π/2) = 0 , [Antisymmetric] , (3.38)

while for symmetric (quadrupole-like) modes one sets instead

A(r, π/2) = 0,
∂B(r, π/2)

∂θ
= 0 , [Symmetric] . (3.39)

We are now ready, if not to rock, at least to roll...
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3.2.8 Linear αΩ Dynamo Solutions

In constructing mean-field dynamos for the sun, it has been a common proce-
dure to neglect meridional circulation, on the grounds that it is a very weak
flow (but more on this further below), and to adopt the αΩ model formu-
lation, on the grounds that with R ≃ 7 × 108m, Ωe ∼ 10−6 rad s−1, and
αe ∼ 1m s−1, one finds Cα/CΩ ∼ 10−3, independently of the assumed (and
poorly constrained) value for the turbulent diffusivity. We also restrict the
models to the kinematic regime, i.e., all flow fields posed priori and deemed
steady (∂/∂t = 0). Equations (3.33)–(3.34) then reduce to the so-called αΩ
dynamo equations:

∂A

∂t
= η

(

∇2 − 1

̟2

)

A+ CααB , (3.40)

∂B

∂t
= η

(

∇2 − 1

̟2

)

B + CΩ̟(∇×Aêφ) · (∇Ω) +
1

̟

dη

dr

∂(̟B)

∂r
, (3.41)

where α, Ω and η are now all dimensionless functions of spatial coordinates,
remember. In the spirit of producing a model that is solar-like we use a fixed
value CΩ = 2.5 × 104, obtained assuming Ωe ≡ ΩEq ∼ 10−6 rad s−1 and
ηe = 5× 107m2s−1, which leads to a diffusion time τ = R2/ηe ≃ 300 yr.

In the parameter regime characterizing the strongly turbulent solar con-
vection zone, the strength and spatial variation of the α-effect cannot be
computed in any reliable manner from first principles, so this will remain the
major unknown of the model. In accordance with the αΩ approximation of
the dynamo equations, we restrict ourselves to cases where |Cα| ≪ CΩ . For
the dimensionless functional α(r, θ) we use an expression of the form

α(r, θ) = f(r)g(θ) , (3.42)

where

f(r) =
1

4

[

1 + erf

(
r − rc
w

)][

1− erf

(
r − 0.8

w

)]

. (3.43)

This combination of error functions concentrates the α-effect in the bottom
half of the envelope, and lets it vanish smoothly below, just as the net mag-
netic diffusivity does (i.e., we again set rc/R = 0.7 and w/R = 0.05). Various
lines of argument point to an α-effect peaking at the bottom of the convective
envelope, since there the convective turnover time is commensurate with the
solar rotation period, a most favorable setup for the type of toroidal field
twisting at the root of the α-effect. Likewise, the hemispheric dependence of
the Coriolis force suggests that the α-effect should be positive in the Northern
hemisphere, and change sign across the equator (θ = π/2). The “minimal”
latitudinal dependency is thus

g(θ) = cos θ . (3.44)
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The Cα dimensionless number, measuring the strength of the α-effect, is
treated as a free parameter of the model. You may be shocked by the fact
that we are, in a very cavalier manner, effectively treating the α-effect as a
(almost) free-function; this sorry situation is unfortunately the rule rather
than the exception in mean-field dynamo modelling6.

With α, β and the large-scale flow given, the αΩ dynamo equations (3.40)–
(3.41) become linear in the mean-field B. With none of the PDE coefficients
depending explicitly on time, one can seek eigensolutions of the form

[
A(r, θ, t)
B(r, θ, t)

]

=

[
a(r, θ)
b(r, θ)

]

eλt , (3.45)

where the amplitudes a and b are in general complex quantities. Substituting
eqs. (3.45) into the αΩ dynamo equations yields a classical linear eigenvalue
problem. It will prove convenient to write the eigenvalue explicitly as

λ = σ + iω , (3.46)

so that σ is the growth rate and ω the cyclic frequency, both expressed in
terms of the inverse diffusion time τ−1 = ηe/R

2. In a model for the (oscilla-
tory) solar dynamo, we are looking for solutions where σ > 0 and ω 6= 0.

Armed (and dangerous) with the above model, we plow ahead and solve
numerically the αΩ dynamo equations as a 2D eigenvalue problem. We first
produce a sequence of solutions for increasing values of |Cα|, holding CΩ

fixed at a its “solar” value 2.5 × 104, Figure 3.6 shows the variation of the
growth rate σ and frequency ω as a function of Cα. Four sequences are shown,
corresponding to modes that are either antisymmetric or symmetric with
respect to the equatorial plane (“A” and “S” respectively), computed with
either positive or negative Cα. For |Cα| smaller than some threshold value,
the induction terms make too small a contribution to the RHS of eq. (3.40),
leaving the dissipation terms dominant, so that solutions all have σ < 0, as
per Cowling’s theorem. As |Cα| increases, the growth rate eventually reaches
σ = 0. At this point we also have ω 6= 0, so that the corresponding solution
oscillates with neither growth of decay of its amplitude. Further increases of
|Cα| lead to σ > 0. We are now finally in the dynamo regime, where a weak
initial field is amplified exponentially in time.

Computing similar sequences for the same model but different values of
CΩ soon reveals that the onset of dynamo activity (σ > 0) is controlled by
the product of Cα and CΩ:

D ≡ Cα × CΩ =
αeΩeR

3

η2e
. (3.47)

6 References to some of the more noteworthy exceptions are provided in the bibliog-
raphy at the end of this chapter.
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Fig. 3.6 Variations of the dynamo growth rate (top) and frequency (bottom) as a
function of increasing |Cα| in the minimal αΩ model with solar-like internal differ-
ential rotation. Sequences are shown for either positive or negative dynamo number
(as labeled), and symmetric (triangles) or antisymmetric (dots) parity. Modes having
σ < 0 are decaying, and modes with σ > 0 exponentially growing. Here modes with
A or S parity have very nearly identical eigenvalues. In this model the first mode to
reach criticality is the negative Cα mode, for which Dcrit = −0.9× 105. The positive
Cα mode reaches criticality at Dcrit = 1.1 × 105. The diamonds on panel (B) corre-
spond to the dynamo frequency measured in a nonlinear version of the same minimal
αΩ model, including algebraic α-quenching, to be discussed in §3.2.10.

The value of D for which σ = 0 is called the critical dynamo number (denoted
Dcrit). This, at least, is similar to what we found for the analytical solution of
§3.2.6. Modes having σ < 0 are called subcritical, and those having σ > 0 su-

percritical. Note on Fig. 3.6 how little the growth rate and dynamo frequency
depend on the assumed solution parity.

Here the first mode to become supercritical is the negative Cα mode, for
which Dcrit = −0.9× 105, followed shortly by the positive Cα mode (Dcrit =
−1.1 × 105). The dynamo frequency for these critical modes is ω ≃ 300,
which corresponds to a full cycle period of ∼ 6 yr. This is within a factor
of four of the observed full solar cycle period. Once again we should not be
too impressed by this, since we have quite a bit of margin of manoeuver in
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specifying numerical values for ηe and Cα, and there is no reason to believe
that the Sun should be exactly at the critical threshold for dynamo action.

Figure 3.7 shows a half a cycle of the dynamo solution, in the form of
snapshots of the toroidal (color scale) and poloidal (fieldlines) eigenfunctions
in a meridional plane, with the rotation/symmetry axis oriented vertically7.
The four frames are separated by a phase interval ϕ = π/3, so that panel (D)
is identical to (A) except for reversed magnetic polarities in both magnetic
components. Such linear eigensolutions leave the absolute magnitude of the
magnetic field undetermined, but the relative magnitude of the poloidal to
toroidal components is found to scale as ∼ |Cα/CΩ|.

The toroidal field peaks in the vicinity of the core–envelope interface,
which is not surprising since, in view of eqs. (2.27)–(2.28), the radial shear
is maximal there and the magnetic diffusivity and α-effect are undergoing
their fastest variation with depth. But why is the amplitude of the dynamo
mode vanishing so rapidly below the core–envelope interface? After all, the
poloidal and toroidal diffusive eigenmodes investigated in §2.1 were truly
global, and the adopted contrast in magnetic diffusivity between core and
envelope should favor stronger fields in the lower diffusivity core. The crucial
difference lies with the oscillatory nature of the solution: because the mag-
netic field produced in the vicinity of the core–envelope interface is oscillating
with alternating polarities, its penetration depth in the core is limited by the
electromagnetic skin depth ℓ =

√

2ηc/ω (§2.3), with ηc the core diffusivity.
Having assumed ηe = 5 × 107 m2s−1, we have ηc = ηe∆η = 5 × 106m2s−1.
A dimensionless dynamo frequency ω ≃ 300 corresponds to 3× 10−8 s−1, so
that ℓ/R ≃ 0.026, quite small indeed.

Careful examination of 3.7A→D also reveals that the toroidal/poloidal
flux systems present in the shear layer first show up at high-latitutes, and
then migrate equatorward to finally disappear at mid-latitudes in the course
of the half-cycle. If you haven’t already guessed it, what we are seeing on
Figure 3.7 is the spherical equivalent of the dynamo waves investigated in
§3.2.6 for the cartesian case with uniform α-effect and shear. In more general
terms, the dynamo wave travel in a direction s given by

s = α∇Ω × êφ , (3.48)

i.e., along isocontours of angular velocity. This result is known as the Parker–
Yoshimura sign rule. Here with a negative ∂Ω/∂r in the high-latitude region
of the tachocline, a positive α-effect results in an equatorward propagation
of the dynamo wave.

7 Animation of this solution, and another for its cousin with negative Cα, can be
viewed on the course Web Page.
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Fig. 3.7 Four snapshots in meridional planes of our minimal linear αΩ dynamo
solution with defining parameters CΩ = 25000, ηe/ηc = 10, ηe = 5 × 107 m2 s−1.
With Cα = +5, this is a mildly supercritical solution (cf. Fig. 3.6). The toroidal field
is plotted as filled contours (green to blue for negative B, yellow to red for positive B,
normalized to the peak strength and with increments ∆B = 0.2), on which poloidal
fieldlines are superimposed (blue for clockwise-oriented fieldlines, orange for counter-
clockwise orientation). The dashed line is the core–envelope interface at rc/R = 0.7.
The four snapshots shown here cover a half magnetic cycle, i.e., panel (D) is identical
to (A) except for reversed magnetic polarities.

3.2.9 Nonlinearities and α-Quenching

Obviously, the exponential growth characterizing supercritical (σ > 0) lin-
ear solutions must stop once the Lorentz force associated with the growing
magnetic field becomes dynamically significant for the inductive flow. This
magnetic backreaction can show up here in two distinct ways:
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1. Reduction of the differential rotation,
2. Reduction of turbulent velocities, and therefore of the α-effect (and per-

haps also of the turbulent magnetic diffusivity).

Because the solar surface and internal differential rotation shows very little
dependence on the phase of the solar cycle, it has been customary to assume
that magnetic backreaction occurs at the level of the α-effect. In the mean-
field spirit of not solving dynamical equations for the small-scales, it is still
a common practice to simply assume a dependence of α on B that “does the
right thing”, namely reducing the α-effect once the magnetic field becomes
“strong enough”, the latter usually taken to mean when the growing dynamo-
generated mean magnetic field reaches a magnitude such that its energy per
unit volume is comparable to the kinetic energy of the underlying turbulent
fluid motions:

B2
eq

2µ0
=

̺u2
t

2
→ Beq = ut

√
µ0̺ . (3.49)

This expression defines the equipartition field strength, denoted Beq, which
varies from ∼ 1T at the base of the solar convective envelope, to ∼ 0.1T in
the surface layers. It has become common practice to introduce an ad hoc
algebraic nonlinear quenching of α (and sometimes ηe as well) directly on the
mean-toroidal field B by writing:

α → α(B) =
α0

1 + (B/Beq)2
. (3.50)

Needless to say, this remains an extreme oversimplification of the complex
interaction between flow and field that is known to characterize MHD turbu-
lence, but its wide usage in solar dynamo modeling makes it a nonlinearity
of choice for the illustrative purpose of this section.

3.2.10 Kinematic αΩ Models with α-Quenching

With algebraic α-effect included in the poloidal source term, the mean-field
αΩ equations are now nonlinear, and are best solved as an initial-boundary-
value problem. The initial condition is an arbitrary seed field of very low
amplitude, in the sense that B ≪ Beq everywhere in the domain. Boundary
conditions remain the same as for the linear analysis of the preceding section.

Consider again the minimal αΩ model of §3.2.8, where the α-effect as-
sumes its simplest possible latitudinal dependency, ∝ cos θ. We use again
CΩ = 2.5 × 104 and positive Cα ≥ 5, so that the corresponding linear so-
lution are in the supercritical regime (see Figure 3.6). With a very weak B
as initial condition, early on the model is essentially linear and exponential
growth is expected. This is indeed what is observed, as can be seen on Fig. 3.8,



3.2 Mean-Field Dynamo Models 121

showing time series of the total magnetic energy in the simulation domain for
increasing values of Cα, all above criticality. Eventually however, B starts to
become comparable to Beq in the region where the α-effect operates, leading
to a break in exponential growth, and eventual saturation at some constant
value of magnetic energy. Evidently, α-quenching is doing what it was de-
signed to do! Note how the saturation energy level increases with increasing

Fig. 3.8 Time series of magnetic energy for a set of αΩ dynamo solutions using our
minimal αΩ model including algebraic α-quenching, and different values for Cα, as
labeled. Magnetic energy is expressed in arbitrary units. The dashed line indicates
the exponential growth phase characterizing the linear regime.

Cα, an intuitively satisfying behavior since solutions with larger Cα have a
more powerful poloidal source term. The cycle frequency for these solutions
is plotted as diamonds on Fig. 3.6B and, unlike in the linear solutions, now
shows very little increase with increasing Cα. Moreover, the dynamo fre-
quency of these α-quenched solutions are found to be slightly smaller than
the frequency of the linear critical mode (here by some 10–15%), a behavior
that is typical of these models. Yet the overall form of the dynamo solutions
closely resembles that of the linear eigenfunctions plotted on Fig. 3.7. Indeed,
the full cycle period is here P/τ ≃ 0.027, which translates into 9 yr for our
adopted ηe = 5 × 107m2 s−1, i.e., a little over a factor of two shorter than
the real thing. Not bad!

As a solar cycle model, these dynamo solutions do suffer from one obvious
problem: magnetic activity is concentrated at too high latitudes (see Fig. 3.7).
This is a direct consequence of the assumed cos θ dependency for the α-
effect. One obvious way to push the dynamo mode towards the equator is
to concentrate the α-effect at low latitude. This is not as ad hoc as one
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may think, given that the numerical simulation results discussed in §3.2.2
do indicate that in the high rotation regime (Co ∼> 4), the peak in the α-
effect is indeed displaced to low latitudes. We therefore proceed using now a
latitudinal dependency in ∝ sin2 θ cos θ for the α-effect.

Figure 3.9 shows a selection of three αΩ dynamo solutions, in the form
of time-latitude diagrams of the toroidal field extracted at the core–envelope
interface, here rc/R = 0.7. If sunspot-producing toroidal flux ropes form
in regions of peak toroidal field strength, and if those ropes rise radially
to the surface, then such diagrams are directly comparable to the sunspot
butterfly diagram. These three models all have CΩ = 25000, |Cα| = 10, ∆η =
0.1, and ηe = 5 × 107m2 s−1. To facilitate comparison between solutions,
antisymmetric parity is imposed via the boundary condition at the equator.
On such diagrams, the latitudinal propagation of dynamo waves shows up as
a “tilt” of the flux contours away from the vertical direction.

The first solution, on Figure 3.9A, is once again our basic solution of
Fig. 3.7, with an α-effect varying in cos θ. The other two use an α-effect vary-
ing in sin2 θ cos θ, and so manage to produce dynamo action that materializes
in two more or less distinct branches, one associated with the negative radial
shear in the high latitude part of the tachocline, the other with the positive
shear in the low-latitude tachocline. These two branches propagate in op-
posite directions, in agreement with the Parker–Yoshimura sign rule, since
the α-effect here does not change sign within an hemisphere, but the radial
gradient of Ω does.

It is noteworthy that co-existing dynamo branches, as on Fig. 3.9B and C,
can have distinct dynamo periods, which in nonlinearly saturated solutions
leads to long-term amplitude modulation. Such modulations are typically not
expected in dynamo models where the only nonlinearity present is a simple
algebraic quenching formula such as eq. (3.50). Note that this does not occur
for the Cα < 0 solution, where both branches propagate away from each
other, but share a common latitude of origin and so are phased-locked at
the onset (cf. Fig. 3.9B). We are seeing here a first example of potentially
distinct dynamo modes interfering with one another, a direct consequence of
the complex profile of solar internal differential rotation.

The solution of Fig. 3.9B is characterized by a low-latitude equatorially
propagating branch, and a full cycle period of 16 yr, which is getting pretty
close to the “target” 22yr. But again the strong high-latitude, poleward-
propagating branch has no counterpart in the sunspot butterfly diagram. This
is often summarily dealt with by flatly zeroing out the α-effect at latitudes
higher than ∼ 40◦, but this is clearly not a very satisfying approach. Let’s
try something else instead.
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Fig. 3.9 Northern hemisphere time-latitude (“butterfly”) diagrams for a selection
of nonlinear αΩ dynamo solutions including α-quenching, constructed at the depth
r/R = 0.7 corresponding to the core–envelope interface. Isocontours of toroidal field
are normalized to their peak amplitudes, and plotted for increments ∆B/max(B) =
0.2, with yellow-to-red (green-to-blue) contours corresponding to B > 0 (< 0). The
assumed latitudinal dependence of the α-effect is on given each panel. Other model
ingredients as on Fig. 3.7. Note the co-existence of two distinct cycles in the solution
shown on panel C, with periods differing by about 25%.

3.2.11 Enters Meridional Circulation: Flux Transport
Dynamos

Meridional circulation is unavoidable in turbulent, stratified rotating convec-
tion. It basically results from an imbalance between Reynolds stresses and
buoyancy forces. The ∼ 15m s−1 poleward flow observed at the surface has
been detected helioseismically, down to r/R ≃ 0.85 without significant depar-
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ture from the poleward direction, except locally and very close to the surface,
in the vicinity of active region belts. Mass conservation evidently requires an
equatorward flow deeper down.

Meridional circulation can bodily transport the dynamo-generated mag-
netic field (terms ∝ up · ∇ in eqs. (2.61)–(??)), and therefore, for a (pre-
sumably) solar-like equatorward return flow that is vigorous enough, can
overpower the Parker–Yoshimura rule and produce equatorward propagation
no matter what the sign of the α-effect is. At low circulation speeds, the
primary effect is a Doppler shift of the dynamo wave, leading to a small
change in the cycle period. The behavioral turnover from dynamo wave-like
solutions to circulation-dominated magnetic field transport sets in when the
circulation speed in the dynamo region becomes comparable to the propa-
gation speed of the dynamo wave. In the circulation-dominated regime, the
cycle period loses sensitivity to the assumed turbulent diffusivity value, and
becomes determined primarily by the circulation’s turnover time. Solar cycle
models achieving equatorward propagation of the deep-seated toroidal field
in this manner are often called flux transport dynamos.

These properties of dynamo solutions with meridional flows can be cleanly
demonstrated in simple αΩ models using a purely radial shear at the core–
envelope interface (see references in bibliography), but with a solar-like differ-
ential rotation profile the situation turns out to be far more complex. Consider
for example the three αΩ dynamo solutions of Fig. 3.9, now recomputed in-
cluding a meridional flow taking the form of a single cell per meridional
quadrant, directed poleward in the outer convective envelope and with the
equatorward return flow closing at the core–envelope interface, as illustrated
on Figure 3.10A8. As Rm is increased, for the solution of Fig. 3.9A, the dy-
namo is decaying in 102 ∼< Rm ∼< 600, and then kicks in again at Rm ≃ 800
with a double-branched structure in its butterfly diagram. The negative-Cα

solution (Fig. 3.9B), on the other hand transits to a steady mode around
Rm ∼ 102 that persists at least up to Rm = 5000; The solution of Fig. 3.9C,
develops a dominant equatorial branch at Rm ∼ 200, but a dominant high-
latitude branch takes over from Rm ∼ 103 onward.

Figure 3.10B through I shows half a cycle of our α ∝ cos θ reference so-
lution, now for parameter values Cα = 0.5, CΩ = 5 × 105, ∆η = 0.1, and
Rm = 2500, which for an envelope diffusivity reduced to ηe = 5× 106m2 s−1

corresponds to a solar-like surface poleward flow and differential rotation.
The transport of the magnetic field by meridional circulation is clearly ap-
parent, and concentrates the toroidal field to low latitudes, which is great from
the point of view of the sunspot butterfly diagram. Note also how poloidal
fieldlines suffer very strong stretching in the latitudinal direction within the
tachocline (panels C through F), a direct consequence of shearing—in ad-
dition to plain transport—by the equatorward flow. One interesting conse-
quence is that induction of the toroidal field is now effected primarily by the

8 An animation of this solution can be viewed on the course Web Page.
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latitudinal shear within the tachocline, with the radial shear, although larger
in magnitude, playing a lesser role since Br/Bθ ≪ 1.

Fig. 3.10 Snapshots covering half a cycle of an αΩ dynamo solution including merid-
ional circulation, starting at the time of polarity reversal in the polar surface field.
Meridional circulation streamlines are plotted on panel A, the flow being poleward
at the surface and equatorward at the core–envelope interface. Color coding of the
toroidal field and poloidal fieldlines as on Fig. 3.7. This α-quenched solution uses
the same differential rotation, diffusivity, and α-effect profiles as on Fig. 3.7, with
parameter values Cα = 0.5, CΩ = 5 × 105, ∆η = 0.1, Rm = 2500. Note the strong
amplification of the surface polar fields, the latitudinal stretching of poloidal field-
lines by the meridional flow at the core–envelope interface, and the weak, secondary
dynamo mode in the equatorial region of the tachocline.

The meridional flow also has a profound impact on the magnetic field evo-
lution at r = R, as it concentrates the poloidal field in the polar regions. This
leads to a large amplification factor through magnetic flux conservation, so
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that dynamo solutions such as shown on Fig. 3.10 are typically character-
ized by very large polar field strengths, here 0.07 T, for an equipartition field
strength Beq = 0.5T in eq. (3.50). This is only a factor of 4 or so smaller than
the toroidal field in the tachocline, even though we have here Cα/CΩ = 10−6.
This concentrated poloidal field, when advected downwards to the polar re-
gions of the tachocline, is responsible for the strong polar branch often seen
in the butterfly diagram of dynamo solutions including a rapid meridional
flow.

It is noteworthy that to produce a butterfly-like time-latitude diagram of
the toroidal field at the core–envelope interface, the required value of Rm in
conjunction with the observed surface meridional flow speed and reasonable
profile for the internal return flow, ends up requiring a rather low envelope
magnetic diffusivity, ∼< 107m2 s−1, which stands at the very low end of the
range suggested by mean-field estimates such as provided by eq. (3.22). Still,
kinematic αΩ mean-field models including meridional circulation and simple
algebraic α-quenching can produce equatorially-concentrated and equatori-
ally propagating dynamo modes with a period resembling that of the solar
cycle for realistic, solar-like differential rotation and circulation profiles. Nice
and fine, but it turns out we have another potential problem on our hands.

3.2.12 Interface Dynamos

The α-quenching expression (eq. 3.50) used in the two preceding sections
amounts to saying that dynamo action saturates once the mean, dynamo-
generated field reaches an energy density comparable to that of the driving
turbulent fluid motions, i.e., Beq ∼ √

µ0̺u, where u is the turbulent veloc-
ity amplitude. This appears eminently sensible, since from that point on a
toroidal fieldline would have sufficient tension to resist deformation by cy-
clonic turbulence, and so could no longer feed the α-effect. At the base of the
solar convective envelope, one finds Beq ∼ 1T, for u ∼ 10m s−1, according to
standard mixing length theory of convection. However, various calculations
and numerical simulations have indicated that long before the mean toroidal
field B reaches this strength, the helical turbulence reaches equipartition with
the small-scale, turbulent component of the magnetic field. Such calculations
also indicate that the ratio between the small-scale and mean magnetic com-

ponents should itself scale as R
1/2
m , where Rm = uℓ/η is a magnetic Reynolds

number based on the turbulent speed u but microscopic magnetic diffusivity.
This then leads to the alternate quenching expression

α → α(B) =
α0

1 + Rm(B/Beq)2
, (3.51)

known in the literature as strong α-quenching or catastrophic quenching.
Since Rm ∼ 108 in the solar convection zone, this leads to quenching of
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the α-effect for very low amplitudes of the mean magnetic field, of order
10−5T. Even though significant field amplification is likely in the formation
of a toroidal flux rope from the dynamo-generated magnetic field, we are now
a very long way from the 6–16T demanded by simulations of buoyantly rising
flux ropes and sunspot formation.

A way out of this difficulty was proposed by E.N. Parker in the form of in-
terface dynamos. The idea is beautifully simple: if the toroidal field quenches
the α-effect, amplify and store the toroidal field away from where the α-effect
is operating! Parker showed that in a situation where a radial shear and α-
effect are segregated on either side of a discontinuity in magnetic diffusivity
taken to coincide with the core–envelope interface, the constant coefficient
αΩ dynamo equations considered already in §3.2.6 support solutions in the
form of travelling surface waves localized on the discontinuity. The key as-
pect of Parker’s (linear, cartesian, analytical) solution is that for supercritical
dynamo waves, the ratio of peak toroidal field strength on either side of the
discontinuity surface is found to scale with the diffusivity ratio as

max(Be)

max(Bc)
∼
(
ηe
ηc

)− 1

2

. (3.52)

If the core diffusivity ηc assumes the microscopic value, and the envelope
diffusivity (ηe) is of turbulent origin so that ηe ∼ ℓu, then the toroidal field

strength ratio then scales as ∼ (uℓ/ηc)
1/2 ≡ R

1/2
m . This is precisely the factor

needed to bypass strong α-quenching, at least as embodied in eq. (3.51).
As an illustrative example, Figure 3.11A shows a series radial cuts of the

toroidal magnetic component at 15◦ latitude, spanning half a cycle in a nu-
merical interface solution with CΩ = 2.5 × 105, Cα = +10, and a core-
to-envelope diffusivity contrast ∆η = 10−2. The differential rotation and
magnetic diffusivity profiles are the same as before, but here the α-effect is
now (even more artificially) concentrated towards the equator, by imposing a
latitudinal dependency α ∼ sin(4θ) for π/4 ≤ θ ≤ 3π/4, and zero otherwise.

This model does achieve the kind of toroidal field amplification one would
like to see in interface dynamos. Notice how the toroidal field peaks below the
core–envelope interface (vertical dotted line), well below the α-effect region
and near the peak in radial shear. Figure 3.11B shows how the ratio of peak
toroidal field below and above rc varies with the imposed diffusivity contrast
∆η. The dashed line is the dependency expected from eq. (3.52). For relatively
low diffusivity contrast, −1.5 ≤ log(∆η) ∼< 0, both the toroidal field ratio and
dynamo period increase as ∼ (∆η)−1/2. Below log(∆η) ∼ −1.5, the max(B)-
ratio increases more slowly, and the cycle period falls, as can be seen on
Fig. 3.11C. This is basically an electromagnetic skin-depth effect; unlike in
the original picture proposed by Parker, here the poloidal field must diffuse
down a finite distance into the tachocline before shearing into a toroidal
component can commence. With this distance set by our adopted profile of
Ω(r, θ), as ∆η becomes very small there comes a point where the dynamo
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Fig. 3.11 A representative interface dynamo model in spherical geometry. This so-
lution has CΩ = 2.5 × 105, Cα = +10, and a core-to-envelope diffusivity contrast
of 10−2. Panel (A) shows a series of radial cuts of the toroidal field at latitude 15◦.
The (normalized) radial profiles of magnetic diffusivity, α-effect, and radial shear are
also shown, again at latitude 15◦. The core–envelope interface is again at r/R = 0.7
(dotted line), where the magnetic diffusivity varies near-discontinuously. Panels (B)
and (C) show the variations of the core-to-envelope peak toroidal field strength and
dynamo period with the diffusivity contrast, for a sequence of otherwise identical
dynamo solutions.

period is such that the poloidal field cannot diffuse as deep as the peak in
radial shear in the course of a half cycle. The dynamo then runs on a weaker
shear, thus yielding a smaller field strength ratio and weaker overall cycle.
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3.3 Babcock–Leighton Models

Solar cycle models based on what is now called the Babcock–Leighton mech-
anism were first developed in the early 1960’s, yet they were temporarily
eclipsed by the rise of mean-field electrodynamics a few years later. Their re-
vival was motivated in part by the fact that synoptic magnetographic moni-
toring over solar cycles 21 and 22 has offered strong evidence that the surface
polar field reversals are triggered by the decay of active regions (see Fig. 3.4).
The crucial question is whether this is a mere side-effect of dynamo action
taking place independently somewhere in the solar interior, or a dominant
contribution to the dynamo process itself.

Figure 3.12 illustrates the basic idea of the Babcock–Leighton mechanism.
Consider the bipolar magnetic regions (BMR) sketched on the right. Recall
that each of these is the photospheric manifestation of a toroidal flux rope
emerging as an Ω-loop (see Fig. 3.3). The leading (trailing) component of
each BMR is that located ahead (behind) with respect to the direction of
the Sun’s rotation. Joy’s Law states that, on average, the leading compo-
nent is located at lower latitude than the trailing component, so that a line
joining each component of the pair makes an angle with respect to the E–W
line. Hale’s polarity law also informs us that the leading/trailing magnetic
polarity pattern is opposite in each hemisphere, a reflection of the equato-
rial antisymmetry of the underlying toroidal flux system. Horace W. Bab-

Fig. 3.12 Cartoon of the Babcock–Leighton mechanism. At left, a number of bipo-
lar magnetic regions (BMR) have emerged, with opposite leading/following polarity
patterns in each hemisphere, as per Hale’s polarity Law. After some time (middle),
the BMRs have started decaying, with the leading components experiencing diffusive
cancellation across the equator, while the trailing components have moved to higher
latitudes. At later time, (right), the net effect is the buildup of an hemispheric flux
of opposite polarity in the N and S hemisphere, i.e., a net dipole moment (see text)
Diagram kindly provided by D. Passos.

cock (1912–2003) demonstrated empirically from his early magnetographic
observation of the sun’s surface solar magnetic field that as the BMRs decay
(presumably under the influence of turbulent convection), the trailing com-
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ponents drift to higher latitudes, leaving the leading components at lower
latitudes, as sketched on Fig. 3.12 (middle). Babcock also argued that the
trailing polarity poloidal flux released to high latitude by the cumulative ef-
fects of the emergence and subsequent decay of many BMRs was responsible
for the reversal of the sun’s large-scale dipolar field (right).

More germane from the dynamo point of view, the Babcock–Leighton
mechanism taps into the (formerly) toroidal flux in the BMRs to produce
a poloidal magnetic component. To the degree that a positive dipole moment
is being produced from a toroidal field that is positive in the N–hemisphere,
this is a bit like a positive α-effect in mean-field theory. In both cases the Cori-
olis force is the agent imparting a twist on a magnetic field; with the α-effect
this process occurs on the small spatial scales and operates on individual
magnetic fieldlines. In contrast, the Babcock–Leighton mechanism operates
on the large scales, the twist being imparted via the the Coriolis force acting
on the flow generated along the axis of a buoyantly rising magnetic flux tube.

3.3.1 Sunspot Decay and the Babcock–Leighton
Mechanism

Evidently this mechanism can operate as sketched on Figure 3.12 provided
the magnetic flux in the leading and trailing components of each (decaying)
BMR are separated in latitude faster than they can diffusively cancel with
one another. Moreover, the leading components must end up at low enough
latitudes for diffusive cancellation to take place across the equator. This is
not trivial to achieve, and we now take a more quantitative looks at the
Babcock–Leighton mechanism, first with a simple 2D numerical model.

The starting point of the model is the grand sweeping assumption that,
once the sunspots making up the bipolar active region lose their cohesiveness,
their subsequent evolution can be approximated by the passive advection and
resistive decay of the radial magnetic field component. This drastic simplifi-
cation does away with any dynamical effect associated with magnetic tension
and pressure within the spots, as well as any anchoring with the underlying
toroidal flux system. The model is further simplified by treating the evolution
of Br as a two-dimensional transport problem on a spherical surface corre-
sponding to the solar photosphere. Consequently, no subduction of the radial
field can take place.

Even under these simplifying assumptions, the evolution is still governed
by the MHD induction equation, specifically its r-component. The imposed
flow is made of an axisymmetric surface “meridional circulation”, basically
a poleward-converging flow in the latitudinal direction on the sphere, and
differential rotation in the azimuthal direction:

u(θ) = uθ(θ)êθ +ΩS(θ)R sin θêφ , (3.53)
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where ΩS is the solar-like surface differential rotation profile used in the
preceding chapter (see eq. (2.28)). Note that in general ∇ · u 6= 0 here,
a direct consequence of working on a spherical surface without possibility
of subduction. The r-component of the induction equation is cast in non-
dimensional form, by expressing length in units of the solar radius R, and
time in units of τc = R/u0, i.e., the advection time associated with the
meridional flow. Introducing a new latitudinal variable µ = cos θ, neglecting
all radial derivatives, and evaluating the resulting expression at r/R = 1
results in9:

∂Br

∂t
=

∂

∂µ

[

(1− µ2)1/2uθBr

]

− ΩS

Ru

∂Br

∂φ

+
1

Rm

[
∂

∂µ

(

(1− µ2)
∂Br

∂µ

)

+
1

(1 − µ2)

∂2Br

∂φ2

]

. (3.54)

The solutions are defined in terms of the two nondimensional numbers:

Rm =
u0R

η
, Ru =

u0

Ω0R
, (3.55)

with u0 a characteristic speed for the meridional flow, and η the net magnetic
diffusivity, assumed constant over the spherical surface defining the solution
domain. Using Ω0 = 3× 10−6 rad s−1, u0 = 15m s−1, and η = 6× 108 m2s−1

yields τc ≃ 1.5 yr, Rm ≃ 20 and Ru ≃ 10−2. The former is really a measure
of the (turbulent) magnetic diffusivity, and is the only free parameter of
the model, as u0 is well constrained by surface Doppler measurements. The
corresponding magnetic diffusion time is τη = R2/η ≃ 26 yr, so that τc/τη ≪
1.

Figure 3.13 shows a representative solution10, computed assuming a simple
analytic form for the meridional flow, namely uθ(θ) = 2u0 sin θ cos θ. The
initial condition (panel A, t = 0) describes a series of eight BMRs, four per
hemisphere, equally spaced 90o apart at latitudes ±15◦. Each BMR consists
of two Gaussian profiles of opposite sign and adding up to zero net flux,
with angular separation d = 10◦ and with a line joining the center of the
two Gaussians tilted with respect to the E–W direction11 by an angle γ,
itself related to the latitude θ0 of the BMR’s midpoint according to the Joy

9 This expression is best obtained through the original form of the MHD induction
equation (1.59), rather than the (usually) equivalent form where the −∇× (η∇×B)
is expressed as η∇2

B; the distinction hinges on the metric terms resulting from the
application of the Laplacian operator on a vector quantity. Some of have to be forced
to zero if radial diffusion is explicitly ignored. More specifically, in the case considered
here this would mean zeroing the −2Br/r2 term in the diffusive term on the RHS
of the r-component of the induction equation in spherical coordinates, as given in
Appendix B
10 An animation of which can of course be viewed on the course Web Page.
11 Remember that this is meant to represent the result of a toroidal flux rope erupting
through the surface, so that in this case the underlying toroidal field is positive in the
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Fig. 3.13 Evolution of the surface radial magnetic field for two sets of four BMRs
equally spaced in longitude, and initially located at latitudes ±15◦, with opposite
polarity ordering in each hemisphere, as per Hale’s polarity Laws. The surface field
evolves in response to diffusion and advective transport by differential rotation and a
poleward meridional flow, as described by the 2D advection-diffusion equation (3.54).
Parameter values are Ru = 10−2 and Rm = 50, with time given in units of the
meridional flow’s characteristic time τc = R/u0.
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Law-like relation:
sin γ = 0.5 cos θ0 . (3.56)

The symmetry of the flow and initial condition on Br(θ, φ) means that the
problem can be solved in a single hemisphere with Br = 0 enforced in the
equatorial plane, in a 90◦ wide longitudinal wedge with periodic boundary
conditions in φ.

The combined effect of circulation, diffusion and differential rotation is
to concentrate the magnetic polarity of the trailing “spot” to high latitude.
The polarity of the leading spot dominates at lower latitudes, but experiences
diffusive cancellation with the opposite polarity leading flux from it’s “cousin”
in the other solar hemisphere. It is this cross-equatorial diffusive cancellation
that is ultimately responsible for the builpup of a net hemispheric flux. At
mid-latitudes, the effect of differential rotation is to stretch longitudinally the
unipolar regions originally associated with each member of the BMR, causing
the development of thin banded structures of opposite magnetic polarities.
This leads to thus enhanced dissipation, much like in the cellular flow problem
considered earlier in §2.3.

The combined effects of these advection-diffusion processes is to separate
in latitude the two polarities of the BMR. This is readily seen upon cal-
culating the longitudinally averaged latitudinal profiles of Br, as shown on
Fig. 3.14 for the same six successive epochs corresponding to the snapshots
on Fig. 3.13. The poleward displacement of the trailing polarity “bump” is
the equivalent to Babcock’s original cartoon (cf. Fig. 3.12). The time required
to achieve this here is t/τc ∼ 1, and scales as (Rm/Ru)

1/3. The significant
amplification of the trailing polarity bump from t/τc ∼> 0.5 onward is a direct
consequence of magnetic flux conservation in the poleward-converging merid-
ional flow. Notice also the strong latitudinal gradient in Br at the equator
(dotted line) early in the evolution; the associated trans-equatorial diffusive
polarity cancellation affects preferentially the leading spots of each pairs,
since the trailing spots are located slightly farther away from the equator.

Consider again the mean signed and unsigned magnetic flux:

Φ = |〈Br〉| , F = 〈|Br|〉 , (3.57)

where the averaging operator is now defined on the spherical surface, for the
Northern and Southern hemispheres separately:

〈Br〉 =
∫ 2π

0

∫ 0(π/2)

−π/2(0)

Br(θ, φ) sin θdθ dφ . (3.58)

Figure 3.15 shows the time-evolution of the signed (Φ, solid line) and unsigned
(F , dashed) fluxes in the Northern hemisphere, for the solution of Fig. 3.13.

Northern hemisphere, which is the polarity of the trailing “spot”, as measured with
respect to the direction of rotation, from left to right here.
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Fig. 3.14 Latitudinal profile of the longitudinally averaged vertical magnetic field,
at the six epochs plotted on Fig. 3.13. The strong signal at t = 0 results entirely from
the slight misalignment of the emerging BMRs with respect to the E–W direction.
By one turnover time, two polar caps of oppositely-signed magnetic field have built
up, amounting to a net dipole moment (see text).

The unsigned flux decreases rapidly at first, then settles into a slower decay
phase. Meanwhile a small but significant hemispheric signed flux is building
up. This is a direct consequence of (negative) flux cancellation across the
equator, mediated by diffusion, and is the Babcock–Leighton mechanism in
action. Note the dual, conflicting role of diffusion here; it is needed for cross-
hemispheric flux cancellation, yet must be small enough to allow the survival
of a significant trailing polarity flux on timescales of order τc.

The efficiency (Ξ) of the Babcock–Leighton mechanism, i.e., converting
toroidal to poloidal field, can be defined as the ratio of the signed flux at
t = τc to the BMR’s initial unsigned flux:

Ξ = 2
Φ(t = τc)

F (t = 0)
. (3.59)

Note that Ξ is independent of the assumed initial field strength of the BMRs
since eq. (3.54) is linear in Br. Looking back at Fig. 3.15, one would eyeball
the efficiency at about 1% in converting the BMR flux to polar cap signed flux.
This conversion efficiency turns out to be a rather complex function of BMR
parameters; it is expected to grow as with increasing tilt γ, and therefore
should increase with latitudes as per Joy’s Law, yet proximity to the equator
favors transequatorial diffusive flux cancellation of the leading component;
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Fig. 3.15 Evolution of the Northern hemisphere signed (solid line) and unsigned
(dashed line) magnetic flux for the solution of Fig. 3.13. The solid dots mark the
times at which the snapshots and longitudinal averages are plotted on Figs. 3.13 and
3.14.

moreover, having duθ/dθ < 0 favors the separation of the two BMR com-
ponents, thus minimizing diffusive flux cancellation between the leading and
trailing components. These competing effects lead to a toroidal-to-poloidal
conversion efficiency peaking for BMRs emerging at fairly low latitudes, the
exact value depending on the latitudinal variation of the adopted surface
meridional flow profile. At any rate, we noted already (§3.1) that the sun’s
polar cap flux peaks at solar minimum, at a value amounting to ∼ 0.1% of
the cycle-integrated active region (unsigned) flux; the efficiency required of
the Babcock–Leighton mechanism is indeed quite modest.

3.3.2 Axisymmetrization Revisited

Take another look at Fig. 3.13; at t = 0 (panel A) the surface magnetic field
distribution is highly non-axisymmetric. By t/τc = 0.7 (panel E), however,
the field distribution shows a far less pronounced φ-dependency, especially
at high latitudes where in fact Br is nearly axisymmetric, and by t/τc = 1
(panel F) there is little non-axisymmetric field left over the surface. This
should remind you of something we encountered earlier: axisymmetrization
of a non-axisymmetric magnetic field by an axisymmetric differential rotation
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(§2.3.5), the spherical analog of flux expulsion. In fact a closer look at the
behavior of the unsigned flux on Fig. 3.15A (dashed line) already shows a hint
of the two-timescale behavior we have come to expect of axisymmetrization:
the rapid destruction of the non-axisymmetric flux component and slower
(∼ τη) diffusive decay of the remaining axisymmetric flux distribution.

Since the spherical harmonics represent a complete and nicely orthonormal
functional basis on the sphere, it follows that the initial condition for the
simulation of Fig. 3.13 can be written as

B0
r (θ, φ) =

∞∑

l=0

+l∑

m=−l

blmYlm(θ, φ) , (3.60)

where the Ylm’s are the spherical harmonics:

Ylm(θ, φ) =

√

2l+ 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ , (3.61)

and with the coefficients blm given by

blm =

∫ 2π

0

∫ π

0

B0
r (r, θ)Y

∗
lm(θ, φ) , (3.62)

where the “∗” indicates complex conjugation. Now, axisymmetrization will
wipe out allm 6= 0 modes, leaving only them = 0 modes to decay away on the
slower diffusive timescale12. Therefore, at the end of the axisymmetrization
process, the radial field distribution now has the form:

Br(θ) =

∞∑

l=0

√

2l + 1

4π
bl0P

0
l (cos θ) , t/τc ≫ Ru , (3.63)

which now describes an axisymmetric poloidal magnetic field13. Voilà!

3.3.3 Dynamo Models Based on the Babcock–Leighton
Mechanism

So now we understand how the Babcock–Leighton mechanism can convert
a toroidal magnetic field into a poloidal component, and therefore act as a

12 With u = 0, the decay rate of those remaining modes are given by the eigenvalues
of the 2D pure resistive decay problem, much like in §2.1.
13 Note however that this above expression does not include the advective effect of the
meridional flow, so that the axisymmetric distribution on Fig. 3.13F is more sharply
peaked at high latitudes than what one would infer from eq. (3.63) applied to the
initial radial field profile plotted on Fig. 3.13A.
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poloidal source term in eq. (2.61). Now we need to construct a solar cycle
model based on this idea. One big difference with the αΩ models considered in
§3.2 is that the two source regions are now spatially segregated: production of
the toroidal field takes place in the tachocline, as before, but now production
of the poloidal field takes place in the surface layers.

The mode of operation of a generic solar cycle model based on the
Babcock–Leighton mechanism is illustrated in cartoon form on Figure 3.16.
Let Pn represent the amplitude of the high-latitude, surface (“A”) poloidal
magnetic field in the late phases of cycle n, i.e., after the polar field has re-
versed. The poloidal field Pn is advected downward by meridional circulation
(A→B), where it then starts to be sheared by the differential rotation while
being also advected equatorward (B→C). This leads to the growth of a new
low-latitude (C) toroidal flux system, Tn+1, which becomes buoyantly unsta-
ble (C→D) and starts producing sunspots (D), which subsequently decay and
release the poloidal flux Pn+1 associated with the new cycle n+1. Poleward
advection and accumulation of this new flux at high latitudes (D→A) then
obliterates the old poloidal flux Pn, and the above sequence of steps begins
anew. Meridional circulation clearly plays a key role in this “conveyor belt”
model of the solar cycle, by providing the needed link between the two spa-
tially segregated source regions. Under this configuration, Babcock–Leighton
solar cycle models operate as flux-transport dynamos.

Fig. 3.16 Operation of a solar cycle model based on the Babcock–Leighton mecha-
nism. The diagram is drawn in a meridional quadrant of the sun, with streamlines of
meridional circulation plotted in blue. Poloidal field having accumulated in the sur-
face polar regions (“A”) at cycle n must first be advected down to the core–envelope
interface (dotted line) before production of the toroidal field for cycle n+ 1 can take
place (B→C). Buoyant rise of flux rope to the surface (C→D) is a process taking
place on a much shorter timescale.
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3.3.4 The Babcock–Leighton Poloidal Source Term

The definition of the Babcock–Leighton source term S to be inserted in
eq. (2.61) is evidently the crux of the model. The dynamo solutions presented
in what follows use the following:

S(r, θ, B(t)) = s0f(r)g(θ)h(B)B(rc , θ, t) , (3.64)

with

f(r) =
1

2

[

1 + erf

(
r − r2
d2

)][

1− erf

(
r − r3
d3

)]

, (3.65)

g(θ) = sin θ cos θ , (3.66)

h(B) =

[

1 + erf

(
B(rc, θ, t)−B1

w1

)][

1− erf

(
B(rc, θ, t)−B2

w2

)]

, (3.67)

where s0 is a numerical coefficient setting the strength of the source term
(corresponding dynamo number being CS = s0R/ηe), and with the various
remaining numerical coefficients taking the values r2/R = 0.95, r3/R = 1,
d2/R = d3/R = 10−2, B1 = 6, B2 = 10, w1 = 2, and w2 = 8, the latter
four all measured in Tesla. Note that the dependency on B is non-local,
i.e., it involves the toroidal field evaluated at the core–envelope interface rc,
(but at the same polar angle θ). This nonlocality in B represents the fact
that the strength of the source term is proportional to the field strength
in the bipolar active region, itself presumably reflecting the strength of the
diffuse toroidal field near the core–envelope interface, where the magnetic
flux ropes eventually giving rise to the bipolar active region originate. The
combination of error functions in eq. (3.67) restricts the operating range of
the model to a finite interval in toroidal field strength, and is motivated by
simulations of the stability and buoyantly rise thin flux tubes, as discussed
in §3.1.4. Other equally reasonable prescriptions and modelling approaches
are of course possible (see bibliography at the end of this chapter).

At any rate, inserting this source term into eq. (2.61) is what we need to
bypass Cowling’s theorem and produce a viable dynamo model. The nonlo-
cality of S notwithstanding, at this point the model equations are definitely
mean-field like. Yet no averaging on small scales is involved. What is implicit
in eq. (3.64) is some sort of averaging process at least in longitude and time,
over many BMR emergences.
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3.3.5 A Sample Solution

Figure 3.17 shows a series of meridional quadrant snapshot of one such
Babcock–Leighton dynamo solution, in the now usual format14. The Fig-
ure covers a half-cycle, corresponding to one sunspot cycle, starting approx-
imately at the time one would identify as sunspot minimum, with sunspot
maximum (based on magnetic energy as a SSN proxy) occurring between
panels E and F, and reversal of the polar field shortly thereafter, between
panels F and G. As with the advection-dominated αΩ solution of the preced-
ing section, this solution is characterized by an equatorward propagation of
the toroidal field in the tachocline driven by the meridional flow. The turnover
time of the meridional flow is here again the primary determinant of the cycle
period. With ηe = 3 × 107m2 s−1, this solution has a nicely solar-like half-
period of 12.4 yr. All in all, this is once again a reasonable representation of
the cyclic spatiotemporal evolution of the solar large-scale magnetic field.

The strong toroidal fields building up within the polar regions of the
tachocline in the course of the cycle (see panel C through G on Fig. 3.17)
are entirely unrelated to the adopted latitudinal dependency of the Babcock–
Leighton source term. It results instead from the strong polar field advected
downwards by the meridional flow, inducing a toroidal component through
the inductive action of both the latitudinal shear within the convective enve-
lope, and the negative radial shear in the polar regions of the tachocline. Here
this toroidal component mostly decays away under the influence of Ohmic
dissipation, and contributes very little to the production of the next cycle’s
poloidal component, which builds up at lower latitude (panel E) and is then
carried poleward by the meridional flow (panels E→H).

Although it exhibits the desired equatorward propagation, the toroidal
field butterfly diagram on Fig. 3.17A peaks at much higher latitude (∼ 45◦)
than the sunspot butterfly diagram (∼ 15◦–20◦). This occurs because this is
a solution with high magnetic diffusivity contrast, where meridional circula-
tion closes at the core–envelope interface, so that the latitudinal component
of differential rotation dominates the production of the toroidal field. This
difficulty can be alleviated by letting the meridional circulation penetrate
below the core–envelope interface, but this often leads to the production of
a strong polar branch, again a consequence of both the strong radial shear
present in the high-latitude portion of the tachocline, and of the concentra-
tion of the poloidal field taking place in the high latitude-surface layer prior
to this field being advected down into the tachocline by meridional circula-
tion (viz. Figs. 3.16 and 3.17). Another interesting option to avoid excessive
polar field amplification is to rely on turbulent pumping to carry the surface
field downward into the convection zone faster than it can accumulate at the
poles.

14 ...and guess where you have to go to view an animation of this solution...?
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Fig. 3.17 Snapshot covering half a cycle of a Babcock–Leighton dynamo solution,
as described in the text. Color coding of the toroidal field and poloidal fieldlines as
on Fig. 3.7. This solution uses the same differential rotation, magnetic diffusivity and
meridional circulation profile as for the advection-dominated αΩ solution of §3.2.11,
but now with the non-local surface source term defined through eq. (3.64), with
parameter values Cα = 5, CΩ = 5 × 104, ∆η = 0.003, Rm = 840. Note again the
strong amplification of the surface polar fields, the latitudinal stretching of poloidal
fieldlines by the meridional flow at the core–envelope interface.

A noteworthy property of this class of model is the dependency of the
cycle period on model parameters; over a wide portion of parameter space,
the meridional flow speed is found to be the primary determinant of the cycle
period (P ). This behavior arises because, in these models, the two source
regions are spatially segregated, and the time required for circulation to carry
the poloidal field generated at the surface down to the tachocline is what
effectively sets the cycle period. The corresponding time delay introduced in
the dynamo process has rich dynamical consequences, to be discussed in §4.4
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below. On the other hand, P is found to depend very weakly on the assumed
values of the source term amplitude s0, and turbulent diffusivity ηe; this is
very much unlike the behavior typically found in mean-field models, where
P scales nearly as η−1

e in α-quenched αΩ mean-field models.

3.4 Models Based on HD and MHD Instabilities

In the presence of stratification and rotation, a number of hydrodynamical
(HD) and magnetohydrodynamical (MHD) instabilities associated with the
presence of a strong toroidal field in the stably stratified, radiative portion of
the tachocline can lead to the growth of disturbances with a net kinetic he-
licity, which under suitable circumstances can act upon a pre-existing large-
scale magnetic field component to produce a toroidal electromotive force,
and therefore act as a source of poloidal field. Different types of solar cy-
cle models have been constructed in this manner, two promising ones being
briefly reviewed in this section. In both cases the resulting dynamo models
end up being described by something closely resembling our now well-known
axisymmetric mean-field dynamo equations, the novel poloidal field regener-
ation mechanisms being once again subsumed in an α-effect-like source term
appearing of the RHS of eq. (2.61).

3.4.1 Models Based on Shear Instabilities

Hydrodynamical stability analyses of the latitudinal shear profile in the so-
lar tachocline indicate that the latter may be unstable to non-axisymmetric
perturbations, with the instabilities planforms characterized by a net kinetic
helicity, which, loosely inspired by eq. (3.16), allows the construction of an
azimuthally-averaged α-effect-like source term that is directly proportional
to the large-scale toroidal magnetic field component, just as in mean-field
electrodynamics. The associated dynamo model is then described by the αΩ
form of the mean-field dynamo equations, including the meridional flow for
the specific model considered here.

Figure 3.18 shows representative time-latitude diagrams of the toroidal
magnetic field at the core–envelope interface, and surface radial field, for
a flux transport dynamo solution based on this poloidal source mechanism.
This is a solar-like solution with a mid-latitude surface meridional (poleward)
flow speed of 17 m s−1, envelope diffusivity ηe = 5 × 107m2 s−1, a core-to-
envelope magnetic diffusivity contrast ∆η = 10−3, and a simple α-quenching-
like amplitude-limiting nonlinearity15. Note the equatorward migration of

15 See the Dikpati & Gilman (2001) paper cited in the bibliography for more details.
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the deep toroidal field, set here by the meridional flow in the deep envelope,
and the poleward migration and intensification of the surface poloidal field,
again a direct consequence of advection by meridional circulation, as in the
mean-field dynamo models discussed in §3.2.11) in the advection-dominated,
high Rm regime. The three-lobe structure of each spatiotemporal cycle in the
butterfly diagram reflects the latitudinal structure in kinetic helicity profiles
associated with the instability planforms.

Fig. 3.18 Time–latitude “butterfly” diagrams of the toroidal field at the core–
envelope interface (top), and surface radial field (bottom) for a representative dy-
namo solution with the tachocline α-effect of Dikpati & Gilman. This solution has a
solar-like half-period of eleven years. Note how the deep toroidal field peaks at very
low latitudes, in good agreement with the sunspot butterfly diagram. For this solution
the equatorial deep toroidal field and polar surface radial field lag each other by ∼ π,
but other parameter settings can bring this lag closer to the observed π/2. Diagrams
kindly provided by M. Dikpati.
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The primary weakness of these models, in their present form, is their re-
liance on a linear stability analysis that altogether ignores the destabilizing ef-
fect of magnetic fields, especially since stability analyses have shown that the
MHD version of the instability is easier to excite for toroidal field strengths
of the magnitude believe to characterize the solar tachocline, Moreover, the
planforms in the MHD version of the instability are highly dependent on the
assumed underlying toroidal field profile, so that the kinetic helicity can be
expected to (1) have a time-dependent latitudinal distribution, and (2) be
intricately dependent on the mean toroidal field in a manner that is unlikely
to be reproduced by a simple amplitude-limiting quenching formula.

3.4.2 Models Based on Flux-Tube Instabilities

As briefly discussed in §3.1, modelling of the rise of thin toroidal flux tubes
throughout the solar convection zone has met with great success, in particular
in reproducing the latitudes of emergence and tilt angles of bipolar sunspot
pairs. It is also possible to use the thin-flux tube approximation to study the
stability of toroidal flux ropes stored immediately below the base of the con-
vection zone, to investigate the conditions under which they can actually be
destabilized and give rise to sunspots. Once the tube destabilizes, calculations
show that under the influence of rotation, the correlation between the flow
and field perturbations is such as to yield a mean azimuthal electromotive
force, equivalent to a positive α-effect in the N–hemisphere.

Figure 3.19 shows a stability diagram for this flux tube instability, in the
form of growth rate contours in a 2D parameter space comprised of flux tube
strength and latitudinal position at the core–envelope interface. The key is
now to identify regions where weak instability arises (growth rates ∼> 1 yr). In
the case shown on Fig. 3.19, these regions are restricted to flux tube strengths
in the approximate range 6–15T.

Although it has not yet been comprehensively studied, this dynamo mecha-
nism has a number of very attractive properties. It operates without difficulty
in the strong field regime (in fact in requires strong fields to operate). It also
naturally yields dynamo action concentrated at low latitudes. Difficulties in-
clude the need of a relatively finely tuned magnetic diffusivity to achieve a
solar-like dynamo period, and a relatively finely-tuned level of subadiabaticity
in the overshoot layer for the instability to kick on and off at the appropriate
toroidal field strengths.

The effects of meridional circulation in this class of dynamo models has
yet to be investigated; this should be particularly interesting, since both
analytic calculations and numerical simulations suggest a positive α-effect in
the Northern-hemisphere, which should then produce poleward propagation
of the dynamo wave at low latitude. Meridional circulation could then perhaps
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III
I
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Fig. 3.19 Stability diagram for toroidal magnetic flux tubes located in the overshoot
layer immediately beneath the core–envelope interface. The plot shows contours of
growth rates in the latitude-field strength plane. The gray scale encodes the azimuthal
wavenumber of the mode with largest growth rate, and regions left in white are
stable. Dynamo action is associated with the regions with growth rates ∼ 1 yr, here
labeled I and II. Region III is associated with the rapid destabilisation, buoyant rise
and emergence of magnetic flux, without significant dynamo action. Diagram kindly
provided by A. Ferriz-Mas.

produce equatorward propagation of the dynamo magnetic field even with a
positive α-effect, as it does in true mean-field models (cf. §3.2.11).

As an interesting aside, note on Fig. 3.19 how, except in a narrow range of
field strengths around ∼ 7T, flux tubes located at high latitudes are always
stable; this is due to the stabilizing effect of magnetic tension associated with
high curvature of the toroidal flux ropes. Even if flux ropes were to form
there, they may not necessarily show up at the surface as sunspots. This
should be kept in mind when comparing time-latitudes diagrams produced
by this or that dynamo model to the sunspot butterfly diagram; the two may
not map onto one another as well as often implicitly assumed.

3.5 Global MHD Simulations

After this grand tour of (relatively) simple solar cycle models, it is worth
briefly looking at the theoretical “real thing”, namely full MHD simulations
of thermally-driven convection in a thick, stratified rotating spherical shell,
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across which a solar heat flux is forced to flow. We focus in what follows on a
specific set of simulations carried out in the anelastic regime16. The simulation
domain includes most the convection zone (here 0.718 ∼< t/R ∼< 0.96), as
well as a stably stratified fluid layer underneath (0.61 ∼< r/R ∼< 0.718). The
background stratification is solar-like, and covers 4 scale heights in density,
and radiation is treated in the diffusion approximation, as in eq. (1.80).

Figure 3.20 shows time series of the kinetic and magnetic energies in a
typical simulation, starting from a static, unmagnetized configuration (u = 0,
B = 0) with small random seed magnetic field and velocity perturbation
introduced at t = 0. Thermal convection sets in very rapidly, and leads to
a rapid growth of kinetic energy across the convectively unstable part of
the simulation domain in the first few solar days (1 sd ≡ 30 Earth days).
Once convection has stabilized, small-scale dynamo action powered by this
turbulent flow commences, and leads to the exponential growth of magnetic
energy. Here his phase of exponential growth lasts up to ∼ 15 solar days, after
which the Lorentz force starts to backreact on the turbulent flow, leading to
a saturation of the magnetic energy reminescent of α-quenching, cf. Fig. 3.8),
and completed at ∼ 20 solar days.

Figure 3.21 shows snapshots at t = 100 sd of the radial flow (top) and
magnetic field (middle) components extracted near the top of the simulation
domain. The morphological asymmetry between the broad, diffuse upflows
and narrow concentrated downflows is quite typical of thermally-driven con-
vection in a stratified environment. The magnetic field is swept horizontally in
the broad areas of upflows and ends up preferentially concentrated in regions
where downflow lanes meet, a feature that is typical of MHD convection. As
with the CP flow solutions considered earlier, the subsurface magnetic field is
spatially and temporally very intermittent, and is characterized by significant
magnetic energy but very little net magnetic flux on large spatial scales17.

By this time, at least on the basis of these energy time series, one would
judge the system to have reached a statistically stationary state. However,
integrating further in time reveals variations setting in on longer timescales,
associated with the slow buildup a large-scale magnetic field carrying a net
flux on those scales. This slower buildup is already apparent on Fig. 3.20. By
about 100 solar days, the large-scale component has reached a strength such
that it begins to quench the differential rotation having built up in the earlier
phases of the simulation through the action of turbulent Reynolds stresses.
This leads to a ∼ 20% drop in the kinetic energy density, from ∼ 270 to 230 J
kg−1 at t ≃ 150 solar days.

This spatially well-organized magnetic component is particularly promi-
nent at and beneath the base of the convective envelope, where the significant
differential rotation, stably stratified environment, and injection of magnetic

16 The results presented here are taken pretty directly from the Ghizaru et al. and
Racine et al. papers listed in the bibliography.
17 Various animations pertaining to this simulation can be viewed on the course Web
page.
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Fig. 3.20 Time series of kinetic and magnetic energy densities in a 3D anelastic MHD
simulation of thermally-driven convection in a thick, stratified rotating spherical shell.
Part (A) is a closeup on the first 150 solar days (one solar day ≡ 30 terrestrial days),
and part (B) shows the evolution over 2000 solar days (≡ 165 yr). The phase of
exponential growth in the magnetic energy (5 ∼

< t ∼
< 15, slanted dotted line segment)

begins once the convection has attained a statistically stationary state. The slower
growth kicking in at r ≃ 50 is associated with the buildup of a large-scale magnetic
component, which eventually develops cyclic polarity reversals, leading to the long-
timescale modulation of the magnetic energy time series visible on part (B).

fields from above by downward turbulent pumping, all conspire to favor the
buildup and accumulation of of magnetic flux. The bottom Mollweide projec-
tion on Figure 3.21 shows the zonal magnetic component at a depth slightly
below the base of the convective envelope, at a later time in the simulation.
Here the zonally-averaged toroidal field is seen to be well-organized on the
larger scales, and in particular shows a clear antisymmetry with respect to
the equatorial plane, in agreement with inferences made on the basis of Hale’s
polarity laws. Even through the stratification is convectively stable at this
depth, convective undershoot from above introduces strong local fluctuations
in the magnetic field, without however destroying its large-scale organization.

What is truly remarkable is that this large-scale toroidal field undergoes
fairly regular solar-like polarity reversals on multi-decadal timescales. This is
shown on Figure 3.22, in the form of a time–latitude diagram of the zonally-
averaged toroidal magnetic component at the core–envelope interface (top),
time–radius diagram of the same at 45◦ in th Southern hemisphere (middle),
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Fig. 3.21 Mollweide projections of the radial components of the flow velocity (top)
and magnetic field (middle) on a spherical surface near the top of the simulation
domain. Flow speeds are color-coded in m s−1, and field strengths in Tesla. Note the
asymmetry in the upflow/downflow structures, and the relatively small spatial scale
of the subsurface magnetic field. The bottom Mollweide projection shows the zonal
magnetic component immediately beneath the base of the convective envelope, where
a strong and well-organized axiymmetric component is already builtding up after 200
solar days.
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and a time–latitude diagram of the zonally-averaged surface radial magnetic
component (bottom). This simulation spans 336 years, in the course of which
11 polarity reversals have taken place, with a mean (half-) period of almost
exactly 30 yr here. Examination of the top panel on Fig. 3.22 reveals a ten-
dency for equatorward migration in the course of each cycle. The middle panel
reveals that the cycles begin well within the convective envelope, with later
accumulation and intensification of the toroidal component at and immedi-
ately beneath the core–envelope interface, where the toroidal field strength
can peak at almost half a Tesla for the stronger cycles. The bottom panel on
Fig. 3.22 also shows the existence of a well-defined dipole moment aligned
with the rotational axis, reversing polarity approximatey in phase with the
deep-seated toroidal component. Note also how, despite significant fluctua-
tions in the amplitude and timing of the cycle in each hemisphere, in general
both hemispheres remain well-synchronized throughout the whole simulation.
This is all extremely solar-like!

What kind of dynamo could this be? To answer this question we need
first to look in more detail at the flow fields. Figure 3.23 shows zonally aver-
aged angular velocity profiles plotted in meridional [r, θ] planes, at maximum
(middle) and minimum (right) phase of the large-scale magnetic cycle. The
left panel shows the corresponding profile for an unmagnetized version of
the simulation of Fig. 3.22 running in the same parameter regime and sub-
jected to the same thermal forcing. The latter is characterized by a differ-
ential rotation profile that shows a number of helioseismically-inferred solar-
like features, notably equatorial acceleration and polar decceleration with a
∼ 25% contrast, with near-radial Ω-isocontours at mid- to high latitudes.
At these latitudes the latitudinal differential rotation vanishes abruptly in
the stable layers, the transition taking place across a thin shear layer co-
inciding with the base of the convecting layers. The most non-solar feature
is the strong shear region prominent at low-latitudes within the convecting
layers. The tendency for alignment of Ω-isocontours with with the rotation
axis is a reflection of the Taylor–Proudman theorem, which states that in
rotation-dominated systems (Coriolis term dominating over inertial and vis-
cous terms on the RHS of eq. (1.79)), the flow velocity cannot vary in the
direction parallel to the rotation axis. In the MHD version of the simulation
equatorial acceleration remains, but the pole-to-equator angular velocity con-
trast falls to about one third of what is observed on the Sun. This suggests
that magnetically-mediated reduction of the large-scale flows is an impor-
tant dynamo amplitude-limiting mechanism in this simulation, an inference
supported by the fact that significant torsional oscillations are also present,
varying on the same ∼ 30 yr period as the large-scale magnetic field.

How about the regeneration of the large-scale poloidal component? In
mean-field electrodynamics this takes place through the production of a mean
electromotive force associated with the small-scale flutuating flow and mag-
netic field. In the simulation considered here, the presence of a well-defined
axisymmetric magnetic component suggests the definition of the “mean” flow
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Fig. 3.22 Top: time–latitude diagram of the zonally-averaged toroidal magnetic field
at a depth corresponding to the interface between the convectively unstable layers and
the underlying stabe region. Note the antisymmetry of the large-scale field about the
equatorial plane, the regular polarity reversals fairly synchronous across hemispheres,
and the hint of equatorward migration of the toroidal field in the course of each
cycle. The middle panel shows a time–radius cut of the same at mid-latitudes in
the Southern hemisphere, with the dashed line marking the base of the convecting
shell. Although the toroidal field pervades the whole convecting layers, it becomes
strongly concentrated immediately beneath the convecting layers. The bottom panel
shows a time–latitude diagram for the surface radial component. The latter reveals
a well-defined axisymmetric dipole moment, oscillating essentially in phase with the
deep-seated toroidal component. The color scale codes the magnetic field strength,
measured in tesla. Compare to Fig. 3.4.



150 3 Dynamo Models of the Solar Cycle

Fig. 3.23 Zonally averaged angular velocity profiles plotted over a meridional plane,
in a hydrodynamical (unmagnetized) version of the simulation (left), with the equiv-
alent profiles in the MHD simulation at maximum (middle) and minimum (right)
phases of the magnetic cycle. The rotation axis is oriented vertically, and the dashed
circular arc indicates the base of the convectively unstable layers (r/R = 0.718). Note
the sharpness of the transition in angular velocity at this depth in the unmagnetized
simulation, the much reduced pole-to-equator contrast in the MHD simulation, and
associated torsional oscillations at high latitudes.

and magnetic field through zonal averages:

〈u〉(r, θ, t) = 1

2π

∫ 2π

0

u(r, θ, φ, t) dφ , (3.68)

〈B〉(r, θ, t) = 1

2π

∫ 2π

0

B(r, θ, φ, t) dφ . (3.69)

The small-scale components then become defined by subtracting these mean
quantities from the total flow and magnetic field vectors returned by the
simulation:

u′(r, θ, φ, t) = u(r, θ, φ, t)− 〈u〉(r, θ, φ, t) , (3.70)

B′(r, θ, φ, t) = B(r, θ, φ, t) − 〈B〉(r, θ, φ, t) (3.71)

(compare with eq. (3.4)!). With u′ and B′ so defined, It is then a simple
matter to calculate the mean emf directly via eq. (3.8). With the mean emf
and mean magnetic field in hand, one can then, at at each grid point (rk, θl)
in the [r, θ] plane, calculate the components of the α-tensor through a simple
least-square fit of the nine pairs of time series {Ei(t), 〈B〉j(t)}. This is carried
out by minimizing a residual defined as:
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Rij(rk, θl, t) = Ei(rk, θl, t)− αij〈B〉j(rk, θl, t) , i, j = {r, θ, φ} . (3.72)

The result of this procedure is shown on Figure 3.24A, for the αφφ component,
the primary source of large-scale poloidal fields in conventional mean-field
models of the solar cycle. This components reproduces many of the features
“predicted” by mean-field theory and also uncovered in local simulations of
MHD turbulence with an imposed large-scale field: an α-effect antisymmetric
about the equatorial plane and positive in the Northern hemisphere, with a
sign change in the bottom portion of the convecting layers. Moreover, the αφφ

tensor component is found to be proportional to the negative of kinetic helic-
ity (plotted on panel C) to a good first approximation, in agreement with the
prediction from mean-field theory in the SOCA approximation (cf. eq. (3.16)).
In fact, reconstructing the α-tensor via eqs. (3.19), as shown on Fig. 3.24B,
reveals that the current helicity (Fig. 3.24D) plays only a minor role here,
with the kinetic helicity setting the spatial variations of the α-tensor. This
good agreement is quite surprising because the turbulence in this simulation
is strongly inhomogeneous, strongly anisotropic, and is strongly influenced
by the magnetic field.

The combination of a well-defined mean axisymmetric differential rota-
tion and mean turbulent electromotive force producing a strong αφφ tensor
component would suggest that this simulation may be operating as the αΩ
dynamos considered earlier (§3.2). Moreover, the production of a positive
dipole moment from a positive toroidal field in the Northern hemisphere (see
Fig. 3.21) is indeed what one would associate in mean-field theory with a
positive αφφ in the Northern hemisphere. On the other hand, in this specific
simulation the α-tensor has all nine of its components showing compara-
ble amplitudes, with significant turbulent pumping contributing to the spa-
tiotemporal evolution of the large-scale magnetic field. This also reflects the
fact that the poloidal component of the electromotive force is quite signifi-
cant, having in fact here a magnitude comparable to the shearing term arising
from differential rotation. This would then suggest the α2Ω mode of dynamo
action, although of a somewhat peculiar nature because here the large- and
small-scale inductive contribution turn out to oppose each other throughout
a large portion of the convection zone. This situation is not unique to this
one specific simulation, having been noted already in other similar MHD sim-
ulations of solar/stellar convection using different modelling approaches18.

3.6 Local MHD Simulations

Throughout this chapter we have encountered various dynamo models of the
solar cycle, including a dynamically correct MHD simulation, each in their
own way producing a large-scale magnetic field undergoing polarity reversals

18 See papers by B.P. Brown et al. cited in the bibliography at the end of this chapter.
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Fig. 3.24 (A) The φφ component of the α-tensor, as extracted from the numerical
simulation. Note the hemispheric antisymmetry, and the sign change near the base
of the convectively unstable shell. (B) the same, this time reconstructed according
to eq. (3.19), using the zonally-averaged kinetic helicity and current helicity profiles
also extracted from the simulation and plotted on panels (C) and (D), respectively.
The two αφφ components are remarkably similar here, even though this simulation
is operating in a regime where the SOCA approximation is not expected to hold.

in a manner not too dissimilar to what is observed on the sun. We also argued
in §2.7 that the small-scale magnetic field observed at the solar surface could
well be produced by local, fast dynamo action powered by the vigorous surface
and subsurface turbulent convection. Are we then in a situation where two

distinct dynamos are operating in the solar convection zone, one producing
the large-scale magnetic component traditionally associated with the solar
cycle, and a second powering surface magnetism away from active regions?

Observational support for the idea of a local, subsurface dynamo mecha-
nism can be found in the fact that a tally of observed solar surface magnetic
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structures reveals a frequency distribution taking the form of a power law
spanning over five orders of magnitude in magnetic flux, with logarithmic
slope −1.85. This is a remarkable instance of scale invariance of the type
most readily produced by fast dynamo action (cf. Fig. 2.19 and accompany-
ing discussion). However, the presence of a scale-free distribution of magnetic
structures at the solar surface does not necessarily imply fast dynamo action.
Convective turbulence can reprocess magnetic flux originating elsewhere, be
it deep in the convective envelope or through the decay of active regions;
Likewise, surface flow can lead to the merging of magnetic structures, a pro-
cess that is also self-similar and that can therefore, in principle, lead to a
scale-free size distribution.

At an below the solar photosphere, the density scale height is small, con-
vective velocities can approach the local sound speed, and radiation plays an
important role in surface cooling; the anelastic approximation is no longer a
viable option, and the MHD equations (1.78)–(1.81) must be solved in their
fully compressible regime and with proper treatment of ionization and radia-
tive transfer. Moreover, the spatial resolution must be high enough to capture
granulation, the dominant surface convection pattern with a typical length
scale of ∼ 103 km, with intergranular downflow lanes an order of magnitude
smaller (at least). This is well beyond the reach of the type global dynamo
simulations just discussed, but is accessible to local simulations modelling
just a small portion of the convective envelope. Figure 3.25 gives an exam-
ple of such a simulation, in the form of a snapshot of the “photosphere”
showing emergent intensity (grayscale), on which are superimposed ±0.1T
isocontours of vertical field strength. This is a 1000×1000×490 compressible
MHD simulation, with 48 km horizontal resolution and going from the upper
photosphere (optical depth 0.01) down to 20Mm in depth. In this specific
simulation, a uniform horizontal magnetic field of strength 0.1T is advected
in the simulation domain through the bottom boundary.

The granulation pattern is quite obvious on Fig. 3.25, with cells of hot-
ter (brighter) rising fluids delineated by darker, narrow downflow lanes of
colder fluid, the telltale signature typical of thermally-driven convection in a
stratified environment. At this (relatively) late time in the simulation, some
of the magnetic flux injected at the base has reached the photosphere. This
magnetic field is swept horizontally by the granular flow and accumulates
in intergranular lanes. Here the combination of flux emergence and surface
evolution has managed to produce a few flux concentrations sufficiently large
to impede convection and form the simulation’s equivalent of so-called pores
(akin to small sunspots without penumbrae), where the strength of the ver-
tical magnetic field reaches a few tenths of Tesla. Notice also how many of
the smaller magnetic structures, of size comparable to the width of downflow
lanes and often seen where multiple downflow lanes meet, show an intensity
excess above and beyond what is observed in the center of granules.

Strictly speaking, this is not a dynamo, as magnetic flux is being contin-
uously injected through the bottom boundary. In this simulation turbulent
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Fig. 3.25 Snapshot of the 48× 48Mm top “horizontal” plane of a MHD numerical
simulation of thermally-driven stratified turbulent convection, with a 0.1 T uniform,
horizontal magnetic field injected at the base of the simulation box (depth 20Mm).
The gray scale codes the emergent radiative flux, on which contours of constant
vertical magnetic field are superimposed (red/yellow for Bz = ±0.1T). Numerical
simulation results kindly provided by R. Stein, Michigan State University.

convection is mostly “reprocessing” this magnetic flux, through the now usual
mechanisms of flux expulsion, constructive and destructive folding, shearing,
stretching, etc. The formation of surface flux concentrations results from the
accumulation of magnetic fields in convective downflow lanes, with associ-
ated merging or cancellation depending on the relative polarities of the field
elements involved. The resulting distribution of surface magnetic flux is once
again a power-law, and would be very hard to distinguish from that pro-
duced exclusively by fast dynamo action driven by turbulent convection, as
discussed earlier in §2.7. This highlights the difficulty to distinguish observa-
tionally local subsurface dynamo action from reprocessing of flux generated



3.6 Local MHD Simulations 155

elsewhere, be it by a deep-seated large-scale dynamo or through the decay
of active regions. Whether there is one or two (or more!) distinct dynamos
operating in the sun remains, at this writing, an open question.

Although global MHD simulations are just beginning to yield solar-like
regular cyclic global magnetic polarity reversals, they remain extremely de-
manding computationally, and are still a long way from producing anything
resembling a toroidal flux rope, let alone a sunspot—although the formation
of active regions has now been simulated in local MHD simulations19. This is
why the much simpler mean-field and mean-field-like cycle models described
earlier in this chapter remain at this writing the favored modelling framework
within which to investigate the observed characteristics of solar and stellar
cycles, and in particular the origin of fluctuations in their amplitude and
duration on long timescales. This is the topic to which we now turn.
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902 (1995).

The thin flux tube approximation used in most of these calculations is due
to
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19 See the paper by Cheung et al. listed in the bibliography at the end of this chapter.
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On the storage and stability of toroidal flux ropes below the solar convective
envelope, see

Ferriz-Mas, A., & Schüssler, M., Astrophys. J., 433, 852-866 (1994),
Ferriz-Mas, A., Astrophys. J., 458, 802-816 (1996).

Considerable effort is currently being put into doing away with the thin flux
tube approximation, in order to see which of the above results remains robust
once the flux tube is no longer treated as a one-dimensional object. This is a
rapidly moving field, so for the latest see the following recent on-line review:

Fan, Y., Liv. Rev. Sol. Phys., 6 (2009),
http://solarphysics.livingreviews.org/Articles/lrsp-2009-4/

The following three recent review papers jointly offer a good overview of
dynamo models of the solar cycle:

Charbonneau, P., Liv. Rev. Sol. Phys., 7 (2010),
http://solarphysics.livingreviews.org/Articles/lrsp-2010-3/

Ossendrijver, M. A. J. H., Astron. Astrophys. Rev., 11, 287-367 (2003).
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Braginskii, S.I., Sov. Phys. JETP, 20, 726; 1462 (1964),
Steenbeck, M., & Krause, F., Astr. Nach., 291, 49-84 (1969),
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wishing to dig deeper into the subject:
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Fluids, (Cambridge: Cambridge Univ. Press),

Parker, E.N. 1979, Cosmical Magnetic Fields, (Oxford: Clarendon Press),
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On empirical estimates of the α-effect from numerical simulations of MHD
turbulence, start with:
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Ossendrijver, M., Stix, M., and Brandenburg, A., Astron. Astrophys., 376,
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Käpylä, P.J., Korpi, M.J., Ossendrijver, M., and Stix, M., Astron. Astro-

phys., 455, 401-412 (2006),
Hubbard, A., Del Sordo, F., Käpylä, P.J., and Brandenburg, A.,Mon. Not. Roy. As-

tron. Soc., 398, 1891-1899.
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The technical literature on dynamo models of the solar cycle is truly immense.
There are many hundreds of noteworthy papers out there! Those included
below are just meant to be good entry points for those wishing to pursue in
greater depth topics covered in this chapter. For a good overview of mean-field
solar cycle models and their evolution in time, see

Lerche, I., & Parker, E.N., Astrophys. J., 176, 213-223 (1972),
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Küker, M., Rüdiger, G., and Schulz, M., Astron. Astrophys., 374, 301-308
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van Ballegooijen, A.A., & Choudhuri, A.R., Astrophys. J., 333, 965-977
(1988).
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On interface dynamos, see

Charbonneau, P., and MacGregor, K.B., Astrophys. J., 473, L59-L62
(1996),

MacGregor, K.B., and Charbonneau, P., Astrophys. J., 486, 484-501
(1997),
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158 3 Dynamo Models of the Solar Cycle

and on the energetics of thin layer dynamos:

Steiner, O., & Ferriz-Mas, A., Astron. Nachr., 326, 190-193 (2005).

What is now refered to as Babcock–Leighton solar-cycle models go back to
the following three seminal papers by H. Babcock and R. Leighton:
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Leighton, R.B., Astrophys. J., 140, 1547-1562 (1964),
Leighton, R.B., Astrophys. J., 156, 1-26 (1969).

Although some details of the model are different, the 2D surface simulations
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Wang, Y.-M., Nash, A.G., & Sheeley, N.R. Jr, Science, 245, 712-718
(1989),

Wang, Y.-M., & Sheeley, N.R. Jr, Astrophys. J., 375, 761-770 (1991),
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The formulation of the Babcock–Leighton solar cycle model of §3.3 is identical
to

Charbonneau, P., St-Jean, C., & Zacharias, P., Astrophys. J., 619, 613-622
(2005).

For different modeling approaches, see

Wang, Y.-M., & Sheeley, N.R. Jr, & Nash, A.G., Astrophys. J., 383, 431-
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Dikpati, M., & Charbonneau, P., Astrophys. J., 518, 508-520 (1999),
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Muñoz-Jaramillo, A., Nandy, D., Martens, P.C.H., and Yeates, A.R., As-

trophys. J. Lett., 720, L20-L25 (2010),

On the “tachocline α-effect” dynamo model described in §3.4.1, and associ-
ated stability analyses, begin with:

Dikpati, M., and Gilman, P. A., Astrophys. J., 559, 428-442 (2001),
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And for the “flux tube α-effect” dynamo model of §3.4.2, and associated
stability analyses, try first:

Ferriz-Mas, A., Schmitt, D., and Schüssler, M., Astron. Astrophys., 289,
949-956 (1994),

Ossendrijver, M. A. J. H., Astron. Astrophys., 359, 1205-1210 (2000).

On the numerical simulations of global 3D MHD convection in thick, rotating
stratified spherical shells, begin with

Brun, A.S., Miesch, M.S., & Toomre, J., Astrophys. J., 614, 1073-1098
(2004),

Browning,M.K., Miesch, M.S., Brun, A.S., & Toomre, J., Astrophys. J. Lett.,
648, 157-160 (2006),

Brown, B.P., Browning, M.K., Brun, A.S., Miesch, M.S., & Toomre, J.,
Astrophys. J., 711, 424-438 (2010),

Brown, B.P., Miesch, M.S., Browning, M.K., Brun, A.S., & Toomre, J.,
Astrophys. J., 731, id. 69 (2011),

as well as the following two recent review articles:

Miesch, M.S., Liv. Rev. Sol. Phys., 2 (2005),
http://solarphysics.livingreviews.org/Articles/lrsp-2005-1/

Miesch, M.S., & Toomre, J., Ann. Rev. Fluid Mech,, 41, 317-345 (2009).

See also the fascinating results presented in

Cline, K.S., Brummell, N.H., & Cattaneo, F., Astrophys. J., 599, 1449-
1468 (2003),

Käpylä, P.J., Korpi, M.J., Brandenburg, A., Mitra, D., Tavakol, R., As-
tron. Nach., 331, 73–ff (2010).

The production of solar-like magnetic cycles in such simulations is a recent
breakthrough. The simulation results presented in §3.5 are taken from

Ghizaru, M., Charbonneau, P., & Smolarkiewicz, P.K., Astrophys. J. Lett.,
715, L133-137 (2010).

Racine, É., Charbonneau, P., Ghizaru, M., Bouchat, A., & Smolarkiewicz,
P.K., Astrophys. J., 733, in press (2011).

These simulations were computed with the MHD version, developed at the
Université de Montréal, of the general purpose hydrodynamical simulation
code EULAG; on the latter, see

Prusa, J.M., Smolarkiewicz, P.K., & Wyszogrodzki, A.A., Comp. Fluids,
37, 1193-1207 (2008),
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The numerical simulation results displayed on Fig. 3.25 is publicly available
at:

http://steinr.pa.msu.edu/∼bob/data.html
Explanatory notes describing the simulation framework are also provided
there, and discussed in greated detail in

Stein, R.F., Lagerfjärd, A., Nordlund, Å, & Georgobiani, D., Solar Phys.,
268, 271-282 (2011).

In a similar vein, do not miss:

Cheung, M.C.M., Rempel, M., Title, A.M., & Schüssler, M., Astrophys. J.,
720, 233-244 (2010).

On the observational measurements and characterization of small-scale so-
lar surface magnetic structures, and the potential implications for dynamo
processes, see

Parnell, C.E., DeForest, C.E., Hagenaar, H.J., Johnston, B.A., Lamb,
D.A,, & Welsh, B.T., Astrophys. J. Lett., 698, 75-82 (2009).

and references therein. A simple diffusion-limited aggregation model produc-
ing power-law distributions of magnetic structures with logarithmic slope
comparable to observational inferences is presented in

Crouch, A.D., Charbonneau, P., & Thibault, K., Astrophys. J., 662, 715-
729 (2007).



Chapter 4

Fluctuations, Intermittency and
Predictivity

It is nice to know that the computer understands the
problem, but I would like to understand it too.

Attributed to E.P. Wigner

Given that the basic physical mechanism(s) underlying the operation of the
solar cycle are not yet agreed upon, attempting to understand the origin of
the observed fluctuations of the solar cycle may appear to be a futile un-
dertaking. Nonetheless, work along these lines continues at full steam in part
because of the high stakes involved: the solar radiative output and frequencies
of all eruptive phenomena relevant to space weather are strongly modulated
by the amplitude of the solar cycle; varying levels of solar activity may con-
tribute significantly to climate change; and certain aspects of the observed
fluctuations may actually hold important clues as to the physical nature of
the dynamo process.

We first briefly review some classical solar cycle fluctuation patterns, as
inferred from the sunspot number time series (§4.1). With an eye on reproduc-
ing these patterns, we then study the response of some of the basic dynamo
models considered in the preceding chapter to stochastic forcing (§4.2), dy-
namical nonlinearities (§4.3), and time delays (§4.4). We then examine how
the interaction of some of these modulation mechanisms can lead to intermit-
tency (§4.5), and close with a brief survey of the current status of model-based
solar cycle prediction schemes (§4.6).

4.1 Observed Patterns of Solar Cycle Variations

4.1.1 Pre-Telescopic and Early Telescopic Sunspot
Observations

Until the beginning of the twentieth century, the story of the solar activity
cycle is coincident with the story of sunspots. Appearing as dark blemishes
on the bright solar disk, only the largest sunspots can be visible to the naked-
eye under suitable viewing conditions, for example when the sun is partially
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obscured by clouds or mist, particularly at sunrise or sunset. Numerous such
sighting exist in the historical records, starting with Theophrastus (374–287
B.C.) in the fourth century B.C. However, the most extensive pre-telescopic
records are found in the far east, especially in the official records of the
Chinese imperial courts, starting in 165 B.C. In december 1128 the monks
authoring the Worcester Chronicles also left us with the first known sunspot
drawing of what must have been two exceptionally large sunspots, since their
umbrae and penumbrae could be visually distinguished. A fascinating pre-
telescopic sunspot sighting is certainly that of 28 May 1607 by none other than
Johannes Kepler (1571–1630). Kepler had been observing the sun for over a
month using his camera obscura projection technique, basically a pinhole
camera. He was hoping to detect a transit of Mercury across the solar disk,
as predicted by extant planetary ephemerides. On May 28, through a short-
lived break in cloud cover, he did notice a small black spot on the solar disk,
and concluded that he was indeed seeing Mercury in transit. It did not take
long before he came to realize his mistake.

At the end of the first decade of the seventeenth century, the “discov-
ery” of sunspots was definitely in the air. Within less than a year of one
another, four observers turned the newly invented astronomical telescope to-
ward the Sun, and independently noted the existence of sunspots. They were
Johann Goldsmid (1587–1616, a.k.a. Fabricius) in Holland, Thomas Harriot
(1560–1621) in England, Galileo Galilei (1564–1642) in Italy, and the Jesuit
Christoph Scheiner (1575–1650) in Germany. Fabricius was the first to pub-
lish his results in 1611, and to correctly interpret the apparent motion of
sunspots in terms of axial rotation of the Sun. Like Harriot, Fabricius and
his father (the then-well-known astronomer David Fabricius) first observed
sunspots directly through their telescope shortly after sunrise or before sun-
set. The harrowing account of their observations is worth quoting: (excerpt
from the translation in the paper by W.M. Mitchell cited at the end of this
chapter):

“... Having adjusted the telescope, we allowed the sun’s rays to enter it, at first
from the edge only, gradually approaching the center, until our eyes were accus-
tomed to the force of the rays and we could observe the whole body of the sun.
We then saw more distinctly and surely the things I have described [sunspots].
Meanwhile clouds interfered, and also the sun hastening to the meridian de-
stroyed our hopes of longer observations; for indeed it was to be feared that an
indiscreet examination of a lower sun would cause great injury to the eyes, for
even the weaker rays of the setting or rising sun often inflame the eye with a
strange redness, which may last for two days, not without affecting the appear-
ance of objects.”

Galileo and Scheiner, however, were the most active in using sunspots to at-
tempt to infer physical properties of the Sun. To Galileo belongs the credit
of making a convincing case that sunspots are indeed features of the so-
lar surface, as opposed to intra-Mercurial planets, as advocated initially by
Scheiner. But the Jesuit astronomer did detect and measure, after years of
careful observations of sunspots’ apparent motion on the solar disk, the slight
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inclination of the Sun’s equatorial plane with respect to the ecliptic. But as
for the physical nature of sunspots, even the universally opiniated Galileo
remained unusually cautious, tentatively granting them the status of clouds
in the solar atmosphere.

In the three subsequent centuries sunspots became dark mountains peak-
ing through luminous cloud layers, then orifices allowing a view of the dark
solar surface, then giant cyclones until, as we already discused in §3.1, their
magnetic nature was firmly established by Hale and collaborators. But this
did not prevent sunspot observers to make some striking discoveries in the
three centuries separating Hale from Galileo.

4.1.2 The Sunspot Cycle

Early sunspot observers noted the curious fact that sunspots rarely appear
outside of a latitudinal band of about ±40◦ centered about the solar equator,
but otherwise failed to discover any clear pattern in the appearance and dis-
appearance of sunspots. This fell to the German amateur astronomer Samuel
Heinrich Schwabe (1789–1875), who in 1843, after a 17-years telescopic hunt
for intra-mercurial planets, announced the existence of a decadal periodicity
in the average number of sunspots visible on the Sun. Much impressed by
Schwabe’s discovery, the Swiss astronomer Rudolf Wolf (1816–1893) launched
in a life-long quest for sunspot data and drawings from previous centuries,
with the aim of tracking the sunspot cycle all the way back to the beginning
of the telescopic era. Faced with the daunting task of comparing sunspot
observations carried out by many different astronomers using various instru-
ments and observing techniques, Wolf defined a relative sunspot number (r)
as follows:

r = k(f + 10g) , (4.1)

where g is the number of sunspot groups visible on the solar disk, f is the num-
ber of individual sunspots (including those distinguishable within groups),
and k is a correction factor that varies from one observer to another (with
k = 1 for Wolf’s own observations). This definition is still in used today,
but r is now usually called the Wolf (or Zürich) sunspot number. Wolf suc-
ceeded in reliably reconstructing the variations in sunspot number as far as
the 1755–1766 cycle, which has since been known conventionally as “Cycle 1”,
with all subsequent cycles numbered consecutively thereafter; at this writing
(December 2010), we are just coming out of the unusually extended minimal
activity phase delineating cycle 23 from the upcoming cycle 24.

Figure 4.1 shows two time series of the relative sunspot number. The first
(thin black line) is the monthly-averaged value of r as a function of time, and
the thick red line is a 13-month running mean of the same. The amplitude,
duration and even shape of sunspots cycles can vary substantially from one
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cycle to the next. The period, in particular, ranges from 9 (cycle 2) to 14 years
(cycle 4). Moreover, we have already seen (§3.1) that from a physical—rather

Fig. 4.1 Two time series of the celebrated Wolf Sunspot Number. The thin black
line is the monthly-averaged sunspot number, and the thick red line a 13-month
running mean thereof. On the basis of the latter, one can calculate a mean cycle
peak amplitude of SSN=115 with standard deviation ±40, and a mean period 10.8 yr
with standard deviation ±1.6 yr. Cycles are defined from one minimum to the next,
and are numbered following Wolf’s convention. These and other related data are
publicly available at the Solar Influences Data Analysis Center in Brussels, Belgium
(http://sidc.oma.be).

than botanical—standpoint, the full period of the underlying magnetic cycle
is twice that of the sunspot cycle. Yet, because the near totality of phenomena
defining solar activity are unaffected by the magnetic polarity of the sun’s
large-scale magnetic field, and also perhaps because astronomers are creatures
of tradition, even a century after Hale’s discovery of the sunspot polarity law
it remains customary to speak of the “11 year solar cycle”.

4.1.3 The Butterfly Diagram

To the striking cyclic pattern uncovered by Schwabe was soon added an
equally striking spatial regularity. In 1858, Gustav Spörer (1822–1895) and
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Richard Carrington (1826–1875) independently pointed out that sunspots are
observed at relatively high (∼ 40◦) heliocentric latitudes at the beginning of
a sunspot cycle, but are seen at lower and lower latitudes as the cycle pro-
ceeds, until at the end of the cycle they are observed mostly near the equator,
at which time spots announcing the onset of the next cycle begin to appear
again at ∼ 40◦ latitude. This is illustrated on Figure 4.2, in the form of a but-

terfly diagram for the time period 1875–2010. The construction of a sunspot
butterfly diagram, first carried out in 1904 by the husband-and-wife team of
Annie Maunder (1868–1947) and E. Walter Maunder (1851–1928), proceeds
as follows: one begins by laying a coordinate grid on, for example, a solar
white light or calcium image, with, as in the case of geographic coordinates
on Earth, the rotation axis defining the North–South direction. The visible
solar disk is then divided in latitudinal strips of constant projected area, and
for each such strip the percentage of the area covered by sunspots and/or
active regions is calculated and color coded. This defines a one-dimensional
(vertical) array describing the average sunspot coverage at one time. By re-
peating this procedure at constant time intervals and stacking the arrays one
besides the other, one obtains a two-dimensional image of average sunspot
coverage as a function of heliospheric latitude (vertical axis) and time (hori-
zontal axis).

Fig. 4.2 A sunspot butterfly diagram, showing the equatorward mi-
gration of sunspot latitudes in the course of each cycle. The sunspot
number peaks about midway though the equatorward migration. Pub-
lic domain data and graphics courtesy of David Hathaway, NASA/MSFC.
[http://solarscience.msfc.nasa.gov/images/bfly.gif]

The absence of sunspots at high latitudes (∼> 40◦) at any time during
the cycle, and the equatorward drift of the sunspot distribution as the cycle
proceeds from maximum to minimum, are both particularly striking on such
a diagram. Note how the latitudinal distribution of sunspots is never exactly
the same, and how for certain cycles there exists a significant North–South
asymmetry in the hemispheric distributions. Note also how, for most cycle,
spots from each new cycle begin to appear at mid-latitudes while spots from
the preceding cycle can still be seen near the equator1, and how sunspots are

1 The most recent, unusually extended ativity minimum between cycles 23 and 24
was definitely unusual in this respect.
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almost never observed within a few degrees in latitude of the equator. Sunspot
maximum (1991, 1980, 1969,...) occurs about midway along each butterfly,
when sunspot coverage is maximal at about 15 degrees latitude. Note also how
fairly good overall hemispheric synchrony is maintained, despite significant
amplitude variations and occasional large lag in the beginning of the cycle
in one hemisphere with respect to other, for example at the onset of the
1965–1976 cycle.

4.1.4 The Waldmeier and Gnevyshev–Ohl Rules

The sunspot numbers is our longest direct record of solar activity, and thus
remains a favored dataset for the analysis and modelling of solar cycle fluctu-
ations. Starting with Wolf himself, the sunspot number time series (monthly,
monthly smoothed, yearly, etc.) have been analyzed in every possible manner
known to statistics, nonlinear dynamics, and numerology2. Many otherwise
serious and respectable people engaged in this type of work seem to forget
that the definition of the sunspot number is largely arbitrary, and its quanti-
tative relationship to the real dynamical quantity, the sun’s magnetic internal
field, uncertain at best.

Nonetheless, some of the various patterns so uncovered do appear to be
robust, in that they do not depend too much on the manner the analysis
is being carried out, and are also found in other indicators of solar activity;
for example the so-called Gleissberg cycle refers to a ∼ 80 yr modulation
of the overall envelope of cycle amplitudes. Some sunspot number patterns
have even proven resilient enough to be upgraded to the status of empirical
“Rules”, two of the more convincing ones being the so-called Waldmeier Rule,
and Gnevyshev–Ohl Rule.

The Waldmeier Rule refers to an anticorrelation observed between cycle
amplitude and rise time (or duration). Starting for example from the time
series of smoothed monthly sunspot number (red line on Figure 4.1), it is
straightforward to assign to each cycle n a peak amplitude An and a dura-
tion Tn, the latter being simply the time interval between the two minima
bracketing a given cycle. Similarly, the rise time is the time interval between
a minimum and the subsequent maximum. Figure 4.3A shows a correlation
plot of cycle rise time and amplitude, which is characterized by a linear cor-
relation coefficient of r = −0.7, definitely large enough to merit attention. A
similar, through weaker anticorrelation exists between cycle amplitude and
duration, a consequence of a similarly weak correlation (r = +0.4) existing
between cycle rise time and duration (see Fig. 4.3B). The latter correlation is

2 Two colleagues, David J. Thomson and Werner Mende, both world-renowned ex-
perts in time series analysis, have independently remarked to me that the sunspot
number time series are quite possibly the “natural” time series having produced the
largest number of research journal pages per byte of actual data!
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taken to be indicative of some level of self-similarity in the temporal unfold-
ing of sunspot cycles. The amplitude-duration anticorrelations are intriguing,
because one might have (naively) expected that high amplitude cycles should
take longer to build up and also last longer, but in fact the opposite seems
to hold.

Fig. 4.3 A sample of solar cycle fluctuation patterns. (A) The anticorrelation be-
tween cycle rise time and amplitude, known as the Waldmeier Rule. A similar an-
ticorrelation, although weaker, characterizes cycle amplitudes and durations; this is
because a correspondingly weak correlation is found between cycle rise time and du-
ration, as shown in (B). The Gnevyshev–Ohl Rule is illustrated in (C). Under Wolf’s
numbering convention, the odd-numbered cycles (orange dots) are more often found
above the running mean (blue line) than even-numbered cycles (red dots), a pattern
that held true uninterrupted from cycle 9 to 21 inclusively.

The Gnevyshev–Ohl Rule is another intriguing pattern, and is illustrated
on Fig. 4.3C. Cycle peak amplitude An are plotted as solid dots, versus cycle
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number n, following Wolf’s numbering convention. Compute now a 1-2-1
running mean of cycle amplitude, i.e.,

〈An〉 =
1

4
(An−1 + 2An +An+1) , n = 2, 3, ... . (4.2)

The resulting time series for 〈An〉 is plotted as a thick blue line on Fig. 4.3C;
notice now how most odd-numbered cycles (orange) lie above the running
mean curve, while even-numbered cycles (red) usually lie below. In fact, from
cycle 9 to 21 inclusive, the pattern has held true without interruption. Re-
membering that the underlying magnetic cycle has a period of twice that of
the sunspot cycle, the Gnevyshev–Ohl Rule could then indicate a preference
for one magnetic polarity over the other. Such a preference could result from
the interaction of a cyclic, dynamo-generated large-scale magnetic field with
a steady, large-scale magnetic field contained within the sun’s radiative inte-
rior, presumably of fossil origin. We shall see shortly that there exist other
purely dynamo-based explanations for this pattern.

4.1.5 The Magnetic Activity Cycle

Because a fraction the solar magnetic field extends into the corona, and be-
cause it is dynamically significant there, the equilibrium structure of the
corona ends up being defined by a balance between three primary forces:
gravity, plasma pressure, and the Lorentz force. As the photospheric mag-
netic field inexorably evolves as a result of advection by flows and magnetic
flux emergence, this equilibrium is eventually lost, leading to rapid and often
spectacular disruptions of coronal structures. The associated phenomena are
grouped under the general name of solar activity, and include contributors
as diverse as flares, coronal mass ejections, and solar radio burst, to list but
a few. The sun’s magnetic field is in fact the primary energy source for the
majority of such coronal transients.

As discussed in §3.1, sunspots are effectively tracers of the deep-seated
solar magnetic field. One could then expect a strong correlation between
measures of solar activity and sunpot numbers. This expectation is indeed
borne out, as shown on Figure 4.4. The sunspot cycle is found to modulate
the sun’s radiative emission from the radio to the X-ray domain of the elec-
tromagnetic spectrum, as well as the frequency of geoeffective eruptive events
such as flares and coronal mass ejections. This is (in part) why understanding
the origin of fluctuations in the amplitude of the solar cycle remains such an
active area of research.
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Fig. 4.4 The solar activity cycle, as measured via various proxies. From bottom to
top: the sunspot number, the F10.7 radio flux, the disk-averaged line-of-sight mag-
netic field, the total solar irradiance, the MgII index (a good proxy of ultraviolet emis-
sion), and the solar flare index. Plot constructed from public-domain data archived
at NOAA (USA), available at http://www.ngdc.noaa.gov.

4.1.6 The Maunder Minimum

One final, peculiar feature associated with the sunspot cycle needs to be
discussed, because of its implications for dynamo modelling. The historical
reconstructions begun by Wolf have been pushed as far back as the inven-
tion of the telescope in the opening decade of the seventeenth century, which
marks the beginning of regular sunspot monitoring by astronomers. One such
full reconstruction, starting in 1610, is shown on Figure 4.5 (bottom panel).
While observations are a tad patchy from 1610 to 1640, coverage is actually
quite good beyond this date. The lack of sunspots in the period 1645–1715 is
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therefore not due to lack of data, but represents a phase of strongly suppressed
solar activity now known as the Maunder Minimum. The documented occur-
rence of exceptionally cold winters throughout Europe during those years
may be causally related to reduced solar activity, although this remains a
topic of controversy.

Fig. 4.5 The Maunder minimum, as seen through cosmogenic radioisotopes (top
panel) and sunspot and auroral counts (bottom panel). The thick red line is the so-
called Group Sunspot Number, a reconstruction similar to Wolf’s (thin orange line)
but deemed more reliable in the eighteenth century because it relies exclusively on
the more easily observable sunspot groups. Beryllium 10 data courtesy of J. Beer,
EAWAG/Zürich.

That this is not just a matter of failing to form sunspots is confirmed by
historical reconstructions of auroral counts, which are also strongly reduced
during the Maunder Minimum (cf. Fig. 4.5). On the other hand, cosmogenic
radioisotopes such as 10Be, whose production frequency is known to be mod-
ulated by the frequency of solar eruptive phenomena and general strength of
the interplanetary magnetic field, continue to show a cyclic pattern through-
out the Maunder minimum (Fig. 4.5, top panel), indicating that the cycle had
actually not come to a complete standstill. The Maunder Minimum remains
a real puzzle in many ways.

The cosmogenic isotope record also indicates that similar episodes of
markedly reduced solar activity occurred in 1282–1342 (Wolf minimum) and
1416–1534 (Spörer minimum), and that solar activity was significantly above
its modern average in the time period 1100–1250 (dubbed Medieval Maxi-
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mum by Min/Max aficionados). Some recent such reconstructions (see bib-
liography) have in fact identified 27 grand minima in the past 11,000 years.
No convincing periodicity or other temporal pattern has yet been identified
in the occurence of these grand minima. The 1798–1823 Dalton Minimum,
spanning the low and oddly-shaped cycles 5 and 6, is sometimes categorized
as a “failed Grand Minima”, although supporting arguments tend to be of a
botanical flavor.

4.1.7 From Large-Scale Magnetic Fields to Sunspot
Number

Pondering over the Maunder Minimum puzzle leads naturally into one major
difficulty that plagues any and all dynamo models and MHD simulations
discussed in the preceding chapter, when trying to reproduce this or that
solar cycle fluctuation patterns seen in the sunspot number: what is the
quantitative relationship between the internal large-scale magnetic field and
the number of sunspots emerging at the solar surface? The process through
which the dynamo-generated magnetic field produces toroidal flux ropes in
the tachocline is not understood, but the few extant calculations attempting
to simulate this formation process indicate that it is much more than a mere
matter of toroidal field strength. The destabilization and rise of these toroidal
flux ropes is also not just a matter of field strength, as the stability diagram
of Fig. 3.19 already shows quite well. Once the flux rope emerges, it is not at
all clear that the number of sunspots is uniquely and proportionally related
to the magnetic field strength or flux in the rope; a bipolar magnetic region
made up of two monolithic sunspots would contribute 10 + 2 to the sunspot
number, as defined by eq. (4.1); with the trailing component of the bipolar
region broken up into 10 small spots (say), as often observed, one gets instead
10 + 11 to the sunspot number; this is a difference by nearly a factor of two,
for the the same magnetic flux!

The fact remains that the sunspot number does correlate well with other
more “physical” measures of the solar magnetic field, such as photospheric
magnetic flux, active region magnetic flux, and the F10.7 solar radio flux (see
Fig. 4.4). Until strong evidence to the contrary is presented, it is probably
reasonable to assume that a more strongly magnetized sun will produce more
sunspots, but it would be really surprising if that relationship were nicely and
conveniently linear over a wide range of overall activity levels

We are used to thinking of sunspot numbers as a proxy for the solar
internal magnetic field; but starting from a dynamo solution for the solar
large-scale magnetic field, we must now construct a proxy for the sunspot
number! Consider the following equally “reasonable” simple proxies: the total
magnetic energy, the magnetic energy within the tachocline, and the net
toroidal magnetic flux in the tachocline:
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Even though these three proxies are closely related, they lead to SSN proxy
timeseries that show some significant differences. This is illustrated on Figure
4.6, for the advection-dominated mean-field αΩ model of §3.2.11, subjected
to stochastic forcing (more on this shortly, in §4.2). The plot covers a period
spanning a gradual rise and decline in cycle amplitude, and the time series
are normalized so as to yield the same peak amplitude for the first cycle
plotted. It is reassuring to see all three proxies correlating rather well, and
showing similar long-term trends in cycle amplitude and duration, yet signif-
icant differences are also apparent. Close examination of Figure 4.6 reveals
that the timing of cycle maxima and minima differs slightly from one proxy
to the other, moreover in a manner dependent on the cycle amplitude. Note
also how the relative differences between the three sunspot proxies depend
significantly on the cycle amplitude, approaching 40% for some cycle.

For the purposes of the foregoing discussion, these differences are incon-
sequential, except perhaps when considering cycle prediction schemes (§4.6),
where the aim is to predict sunspot number as accurately as possible. With
this important caveat under the belt, we proceed with our study of solar cycle
fluctuations, using the total magnetic energy as a SSN proxy.

4.2 Cycle Modulation Through Stochastic Forcing

An obvious means of producing amplitude fluctuations in dynamo models is
to introduce stochastic forcing in the governing equations. Sources of stochas-
tic “noise” certainly abound in the solar interior; large-scale flows in the
convective envelope, such as differential rotation and meridional circulation,
are observed to fluctuate, an unavoidable consequence of dynamical forcing
by the surrounding, vigorous turbulent flow. This convection is known to
produce its own small-scale magnetic field (viz. Fig. 2.23), and amounts to
a form of rapidly varying zero-mean “noise” superimposed on the slowly-
evolving mean magnetic field. This can be readily incorporated into dynamo
models by introducing, on the RHS of the governing equations, an additional
zero-mean source term localized at the surface, and varying randomly from
node-to-node in latitude and from one time step to the next:
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Fig. 4.6 Time series of the three different sunspot number proxies defined through
eqs. (4.3)–(4.5), constructed for the advection-dominated mean-field αΩ solution of
Fig. 3.10, subjected to stochastic fluctuations. The solid line is the total magnetic
energy in the domain, the dashed line the magnetic energy within the tachocline, and
the dash-dotted line the net toroidal magnetic flux within the tachocline. The three
time series have been normalized so that they yield the same peak amplitude for the
first cycle displayed here.

A(R, θ, t) → A(R, θ, t) + ̺× δA , ̺ ∈ [−1, 1] , (4.6)

with δA a fixed amplitude, and the random number ̺ is uniformly distributed
in the interval. Note that the current-free boundary condition at r/R = 1
for the toroidal component requires B(R, θ, t) = 0, therefore we only add a
perturbation to the poloidal component. This is a classical instance of additive
noise.

In addition, the azimuthal averaging implicit in all models of the solar cycle
considered earlier will yield dynamo coefficients showing significant temporal
deviations about their mean values, as a consequence of the spatiotempo-
rally discrete nature of the physical events (e.g., cyclonic updrafts, sunspot
emergences, flux rope destabilizations, etc.) whose collective effects add up
to produce a mean electromotive force. The impact of these statistical fluc-
tuations about the mean can be modeled in a number of ways. Perhaps the
most straightforward is to let the dynamo number fluctuate randomly in time
about some pre-set mean value C̄α:

Cα → C̄α + ̺× δCα , ̺ ∈ [−1, 1] , if(t mod τc) = 0 . (4.7)
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By most statistical estimates, the expected magnitude of these fluctuations
is quite large, i.e., many times the mean value, a conclusion also supported
by “measurements” of the α-tensor components in numerical simulations.
One typically also introduces a coherence time (τc) during which the dynamo
number retains a fixed value. At the end of this time interval, this value is
randomly readjusted. Depending on the dynamo model at hand, the coher-
ence time can be related to the lifetime of convective eddies (α-effect-based
mean-field models), to the decay time of sunspots (Babcock–Leighton mod-
els), or to the growth rate of instabilities (hydrodynamical shear or buoyant
MHD instability-based models). Equation (4.7) represents an instance ofmul-

tiplicative noise, since the fluctuating quantity is multiplying a source term in
the governing equations, which is itself a function of the system’s dependent
variables.

The effect of stochastic forcing varies according to the type of dynamo
model being forced, but some common trends and tendencies nonetheless
emerge. In most models stochastic forcing or noise increases both the av-
erage amplitudes and durations of cycles. It also introduces long-timescale
modulations in the overall cycle amplitudes, “long” in the sense of being
much longer than the assumed coherence time for the noise and/or forcing,
and often significantly longer than the cycle period itself. In kinematic moels,
this can often be traced to the production and storage of strong magnetic
fields in the low-diffusivity regions of the domain, below the core–envelope
interface, where the resistive decay time of these structures can be quite long.

Figures 4.7 and 4.8 show some representative results for the advection-
dominated mean-field αΩ model of §3.2.11, and for the Babcock–Leighton
model of §3.3.5, respectively. In both cases the total magnetic energy (red
line on panels A) is used as a proxy for sunspot number. These two specific
stochastically forced solutions were selected because they exhibit a number of
solar-like features, including relative ranges of variations in cycle amplitudes
(± ∼ 40% of the mean) and duration (± ∼ 15% of the mean), ampli-
tude modulation patterns spanning many cycles, and shorter-lived Dalton-
minimum-like intervals of markedly reduced amplitude.

Both of these solutions (and many of their “cousins” computed with vary-
ing amplitude of stochastic forcing) do fairly well at reproducing Gnevyshev–
Ohl-like alternating patterns of variations in cycle amplitude about their
running mean. This is illustrated on panels (B) of both Figures. A 1-2-1
running mean of cycle amplitudes is first computed according to eq. (4.2),
yielding the thin purple line on panels (A). This is then subtracted from the
temporal sequence of cycle amplitudes, to give the “detrended” amplitudes
plotted on panels (B). The gray horizontal bars flag the temporal intervals
during which a regular alternance of above-and-below the mean is sustained.
That such sequences should exist is in itself not surprising, in view of the de-
trending procedure adopted here; purely random numbers would distribute
themselves symetrically about their mean, so that the Gnevyshev–Ohl pat-
terns can materialize only by chance. What is striking here is the distribution
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Fig. 4.7 Impact of stochastic fluctuations of the Cα dynamo number on the behavior
of an advection-dominated mean-field solar cycle model including a meridional cir-
culation. This is the solution of Fig. 3.10, with 100% forcing of the poloidal dynamo
number (δCα/C̄α = 1 in eq. (4.7)). The top panel shows part of a time series for the
magnetic energy (red), together with a 1-2-1 running mean of the peak amplitudes
(purple), as defined in eq. (4.2). Subtracting this from the temporal sequence of peak
amplitudes yield the “detrended” sequence shown on panel (B), where odd- (even-
) numbered cycles are plotted in red (green), and the horizontal gray bars indicate
epochs where a Gnevyshev–Ohl-like pattern holds. Panels (C) and (D) are Waldmeier-
rule-like correlation plots between cycle peak, rise time and duration (cf. Fig. 4.3),
with cycle peak and duration normalized to their mean values over the full simulation
run.

of durations for these epochs, which can greatly exceed (especially here in the
Babcock–Leighton solution) what one could rightfully expect from Poissonian
statistics.

Most stochastically forced models, including the two shown on Figs. 4.7
and 4.8, do produce a positive correlation between cycle rise time and du-
ration (cf. panels (C) and Fig. 4.3C). In the case of the mean-field model
of Fig. 4.7 that correlation is too weak compared to solar, while for the
Babcock–Leighton model it is too strong, but adjustement of the amplitude
of stochastic forcing can readily yield a more solar-like correlation.
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Fig. 4.8 Identical in format to Fig. 4.7, but now the parent model is the Babcock–
Leighton solution of Fig. 3.17, with poloidal source term fluctuating at the level
δCα/C̄α = 0.5. The moderately strong positive correlation between cycle amplitudes
and rise time is markedly non-solar, but the similar correlation between cycle duration
and rise time is in better agreement with solar cycle data.

The situation is nowhere as good with regards to the observed anticor-
relation between cycle amplitude and rise time (or duration) embodied in
the Waldmeier Rule (viz. Fig. 4.3A). Whether forced stochastically through
the dynamo number or via additive noise in the surface layers, most of
the kinematic models considered here end up producing a positive corre-
lation (rather than an anticorrelation) between these two cycle parameters.
A Waldmeier-like anticorrelation has been observed in stochastically-forced
linear αΩ model near criticality3, but this interesting result in general does
not carry over to nonlinearly-saturated αΩ dynamo solutions. It has also
been observed in a Babcock–Leighton models subjected to stochastic per-
turbations imposed on the form of the meridional flow profile4, but again it
is not clear how generic or robust this actually is. It may well be that the
key to the Waldmeier Rule lies at least in part with non-kinematic effects,

3 See the paper by Ossendrijver & Hoyng (1996) cited in the bibliography.
4 See the paper by Charbonneau & Dikpati (2000) cited in the bibliography.
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such as the nonlinear backreaction of the dynamo-generated magnetic field
on differential rotation and/or meridional circulation.

4.3 Cycle Modulation Through the Lorentz Force

The dynamo-generated magnetic field will, in general, produce a Lorentz force
that will tend to oppose the driving fluid motions. This is a basic physical
effect that should be included in any dynamo model. It is not all trivial to
do so, however, since in a turbulent environment both the fluctuating and
mean components of the magnetic field can affect both the large-scale flow
components, as well as the small-scale turbulent flow providing the Reynolds
stresses powering the large-scale flows. One must thus distinguish between a
number (related) amplitude-limiting mechanisms:

1. Lorentz force associated with the mean magnetic field directly affecting
large-scale flows (sometimes called the “Malkus–Proctor effect”);

2. Large-scale magnetic field indirectly affecting large-scale flows via effects
on small-scale turbulence and associated Reynolds and Maxwell stresses
(sometimes called “Λ-quenching”)

3. The magnetic field, large or small-scale, directly affecting the small-scale
turbulent flow sustaining the α-effect and/or turbulent diffusivity.

The third of these we touched on already with the idea of algebraic α-
quenching (§3.2.9), but other approaches have been put forth, including
so-called dynamical α-quenching, where an additional dynamical equation
is introduced, describing the temporal evolution of the α-tensor component
(or some related quantity such as kinetic helicity) in response to the time-
varying magnetic field. Introducing magnetic backreaction on differential ro-
tation and/or meridional circulation is a far trickier business than one might
imagine, because one must then also, in principle, provide a model for the
Reynolds stresses powering the large-scale flows in the solar convective enve-
lope, as well as a procedure for computing magnetic backreaction on these.
This rapidly leads into the unyielding realm of MHD turbulence, although
algebraic “Λ-quenching” formulae akin to α-quenching have been proposed
based on specific turbulence models. Alternately, one can add an ad hoc
source term to the RHS of eq. (1.79), designed in such a way that in the ab-
sence of the magnetic field, the desired solar-like large-scale flow is obtained.
As a variation on this theme, one can simply divide the large-scale flow into
two components, the first (U) corresponding to some prescribed, steady pro-
file, and the second (U ′) to a time-dependent flow field driven by the Lorentz
force:

u(x, t,B) = U(x) +U ′(x,B(t)) , (4.8)

with the (non-dimensional) governing equation for U ′ including only the
Lorentz force and a viscous dissipation term on its RHS. This is not a lin-
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earisation, in that we are not assuming that U ′ ≪ U . The time-varying flow
contribution must then obey a (nondimensional) differential equation of the
form

∂U ′

∂t
=

Λ

µ0̺
(∇×B)×B + Pm∇2U ′ , (4.9)

where time has been scaled according to the magnetic diffusion time τ =
R2/ηe, as before. Two dimensionless parameters appear in eq. (4.9). The
first (Λ) is a numerical parameter measuring the influence of the Lorentz
force. The second, Pm = ν/η, is the magnetic Prandtl number. It measures
the relative importance of viscous versus Ohmic dissipation. When Pm ≪ 1,
large velocity amplitudes in U ′ can be produced by the dynamo-generated
mean magnetic field. This effectively introduces an additional, long timescale
in the model, associated with the evolution of the magnetically-driven flow;
the smaller Pm, the longer that timescale.

The majority of studies published thus far and using this approach have
only considered the nonlinear magnetic backreaction on differential rotation.
This has been shown to lead to a variety of behaviors, including amplitude
and parity modulation, periodic or aperiodic, as well as intermittency (more
on the latter in §4.5). It has been argued that amplitude modulation in such
models can be divided into two main classes:

1. Nonlinear interaction between modes of different parity, with the Lorenz
Force-mediated flow variations controlling the transition from one mode
to another;

2. Exchange of energy between a single dynamo mode (of some fixed par-
ity) with the flow field. This leads to quasiperiodic modulation of the ba-
sic cycle, with the modulation period controlled by the magnetic Prandtl
number.

Both types of modulation can co-exist in a given dynamo model, leading
to a rich overall dynamical behavior. Figure 4.9 shows two time-latitude dia-
grams produced by a nonlinear mean-field interface model5. The model is de-
fined on cartesian slab with a reference differential rotation varying only with
depth, and includes backreaction on the differential rotation according to the
procedure described above. The model exhibits strong, quasi-periodic mod-
ulation of the basic cycle, leading to epochs of strongly reduced amplitude.
Note how the dynamo can emerge from such epochs with strong hemispheric
asymmetries (top panel), or with a different parity (bottom panel).

The differential rotation can also be supressed indirectly by magnetic back-
reaction on the small-scale turbulent flow that produces the Reynolds stresses
driving the large-scale mean flow. Inclusion of this so-called “Λ-quenching”
in mean-field dynamo models, alone or in conjunction with other amplitude-
limiting nonlinearities, has also been shown to lead to a variety of periodic

5 For details on this model see paper by Tobias (1997) cited in the bibliography.
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Fig. 4.9 Amplitude and parity modulation in a dynamo model including magnetic
backreaction on the differential rotation. These are the usual time-latitude diagrams
for the toroidal magnetic field, now covering both solar hemispheres, and exemplify
the two generic classes of modulation arising in a nonlinear, non-kinematic dynamo
model defined over a cartesian slab (see text). Figure kindly provided by S.M. Tobias.

and aperiodic amplitude modulations, provided the magnetic Prandtl num-
ber is small6. This type of models stand or fall with the turbulence model
used to compute the various mean-field coefficients, and it is not yet clear
which aspects of the results are truly generic to Λ-quenching.

The dynamical backreaction of the large-scale magnetic field on meridional
circulation has received comparatively little attention. The few calculations
published so far7 suggest that diffuse toroidal magnetic fields of strength up
to 0.1T can probably be advected equatorward at the core–envelope inter-
face. That it can indeed do so is crucial models relying on the meridional
flow to produce equatorward propagation of magnetic fields as the cycle un-
folds. Interestingly, relatively small variations of the meridional persisting
over decadal timescales have been shown to produce cycle amplitude varia-

6 See, e.g., the paper by Küker et al. (1999) cited in the bibliography.
7 See paper by Rempel (2006) cited in the bibliography, and references therein.
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tions that are remarkably solar-like8. Such effects are potentially important
in all dynamo models of the flux transport variety, and clearly merit further
study.

4.4 Cycle Modulation Through Time Delays

It was already noted that in solar cycle models based on the Babcock–
Leighton mechanism of poloidal field generation, meridional circulation ef-
fectively sets—and even regulates—the cycle period. In doing so, it also in-
troduces a long time delay in the dynamo mechanism, “long” in the sense of
being comparable to the cycle period. This delay originates with the time
required for circulation to advect the surface poloidal field down to the
core–envelope interface, where the toroidal component is produced (A→C on
Fig. 3.16). In contrast, the production of surface fields from the deep-seated
toroidal component (C→D) is a “fast” process, growth rates and buoyant
rise times for sunspot-forming toroidal flux ropes being of the order of tens
of days. The first, long time delay turns out to have important dynamical
consequences.

As proposed originally by B.R. Durney, the long time delay inherent in
Babcock–Leighton models of the solar cycle allows a formulation of cycle-
to-cycle amplitude variations in terms of a simple one-dimensional iterative
map. Working in the kinematic regime, neglecting resistive dissipation, and
in view of the conveyor belt argument outlined in §3.3, the toroidal field
strength (Tn+1) at cycle n+ 1 is assumed to be linearly proportional to the
poloidal field strength (Pn) of cycle n, i.e.,

Tn+1 = aPn . (4.10)

Now, because flux eruption is a fast process, the strength of the poloidal field
at cycle n + 1 is (nonlinearly) proportional to the toroidal field strength of
the current cycle:

Pn+1 = f(Tn+1)Tn+1 . (4.11)

Here the “Babcock–Leighton” function f(Tn+1) measures the efficiency of
surface poloidal field production from the deep-seated toroidal field. Substi-
tution of eq. (4.10) into eq. (4.11) leads to a one-dimensional iterative map:

pn+1 = αf(pn)pn , n = 0, 1, 2, ... , (4.12)

where the pn’s are normalized amplitudes, and the normalization constants
as well as the constant a in eq. (4.10) have been absorbed into the definition
of the map’s parameter α, here operationally equivalent to a dynamo number.
In analogy with eq. (3.64), we adopt here the following nonlinear function

8 See paper by Lopes and Passos (2009) cited in the bibliography.



4.4 Cycle Modulation Through Time Delays 181

f(p) =
1
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)]

, (4.13)

with p1 = 0.6, w1 = 0.2, p2 = 1.0, and w2 = 0.8. This catches an essential
feature of the B–L mechanism, namely the fact that it can only operate in a
finite range of toroidal field strength.

A bifurcation diagram for the resulting iterative map is presented on Figure
4.10A. For a given value of the map parameter α, the diagram gives the locus
of the amplitude iterate pn for successive n values. The “critical dynamo
number” above which dynamo action becomes possible, corresponds here
to α = 0.851 (pn = 0 for smaller α values). For 0.851 ≤ α ≤ 1.283, the
iterate is stable at some finite value of pn, which grows gradually with α.
This corresponds to a constant amplitude cycle. As α reaches 1.283, period
doubling occurs, with the iterate pn alternating between high and low values
(e.g., pn = 0.93 and pn = 1.41 at α = 1.4). Further period doubling occurs
at α = 1.488, then at α = 1.531, then again at α = 1.541, and ever faster
until a point is reached beyond which the amplitude iterate seems to vary
without any obvious pattern (although within a bounded range); this is in
fact a chaotic regime.

As in any other dynamo model where the source regions for the poloidal
and toroidal magnetic field components are spatially segregated, the type of
time delay considered here is unavoidable. The Babcock–Leighton model is
just a particularly clear-cut example of such a situation. One is then led to
anticipate that the map’s rich dynamical behavior should find its counterpart
in the original, arguably more realistic spatially-extended, diffusive axisym-
metric model that inspired the map formulation. Remarkably, this is indeed
the case.

Fig. 4.10B shows a bifurcation diagram, conceptually equivalent to that
shown on part A, but now constructed from a sequence of numerical solutions
of the Babcock–Leighton model discussed earlier in §3.3, for increasing val-
ues of the dynamo number. Time series of magnetic energy were calculated
from the numerical solutions, successive peaks found and their peak ampli-
tude plotted for each individual solution. The sequence of period doubling,
leading to a chaotic regime, is strikingly similar to the bifurcation diagram
constructed from the corresponding iterative map, down to the narrow mul-
tiperiodic windows interspersed in the chaotic domain. This demonstrates
that time delay effects are a robust feature, and represent a very powerful
source of cycle amplitude fluctuation in Babcock–Leighton models, even in

the kinematic regime. Although transition to chaos does not always occur
through such a classical period doubling sequence, chaos is ubiquitous in this
model’s parameter space.
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Fig. 4.10 Two bifurcation diagrams for a kinematic Babcock–Leighton model, where
amplitude fluctuations are produced by time-delay feedback. The top diagram is com-
puted using the one-dimensional iterative map given by eqs. (4.12)–(4.13), while the
bottom diagram is reconstructed from numerical 2D kinematic solutions in spherical
geometry, of the type discussed in §3.3. The shaded area in panel (A) maps the at-
traction basin for the cyclic solutions, with initial conditions located outside of this
basin converging to the trivial solution pn = 0.

4.5 Intermittency

The term “intermittency” refers to systems undergoing apparently random,
rapid switching from quiescent to bursting behavior, as measured by the mag-
nitude of some suitable system variable. In the context of solar cycle model,
intermittency is invoked to explain the existence of Maunder Minimum-like
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quiescent epochs of strongly suppressed activity randomly interspersed within
periods of “normal” cyclic activity9.

Intermittency has been shown to occur through stochastic fluctuations of
the dynamo number in mean-field dynamo models operating at or near criti-
cality10. This mechanism for “on-off intermittency” works well, however there
is no strong reason to believe that the solar dynamo is running just at criti-
cality, so that is not clear how good an explanation this is of Maunder-type
grand minima. Parity modulation driven by stochastic noise can also lead
to a form of intermittency in linear or α-quenched models, by exciting the
higher-order modes that perturb the normal operation of the otherwise dom-
inant dynamo mode, producing marked hemispheric asymetries and strongly
reduced cycle amplitudes. The transition from active to quiescent (and vice
versa) being controlled by stochastic noise, the durations of active and qui-
escent phases tend to have exponential distributions, which agrees tolerably
well with inferences from the radioisotope record11.

Another way to trigger intermittency in a dynamo model is to let nonlinear
dynamical effects, for example a reduction of the differential rotation ampli-
tude, push the effective dynamo number below its critical value; dynamo
action then ceases during the subsequent time interval needed to reestablish
differential rotation following the diffusive decay of the magnetic field; in the
low Pm regime, this time interval can amount to many cycle periods, but
Pm must not be too small, otherwise grand minima become too rare. Values
Pm ∼ 10−2 seems to work best. Such intermittency is again most readily
produced when the dynamo is operating close to criticality12.

Intermittency has also been observed in strongly supercritical model in-
cluding α-quenching as the sole amplitude-limiting nonlinearity. Such so-
lutions can enter grand minima-like epochs of reduced activity when the
dynamo-generated magnetic field completely quenches the α-effect. The dy-
namo cycle restarts when the magnetic field resistively decays back to the
level where the α-effect becomes operational once again13.

9 It should be noted, however, that dearth of sunspots does not necessarily means a
halted cycle; as noted earlier, flux ropes of strengths inferior to ∼ 1T will not survive
their rise through the convective envelope, and the process of flux rope formation from
the dynamo-generated mean magnetic field may itself be subjected to a threshold in
field strength. The same basic magnetic cycle may well have continued unabated all
the way through the Maunder Minimum, but at an amplitude just below one of these
thresholds. This idea finds support in the 10Be radioisotope record, which shows an
uninterrupted cyclic signal through the Maunder minimum (see Fig. 4.5).
10 See paper by Ossendrijver & Hoyng (1996) cited in the bibliography for a partic-
ularly lucid discussion.
11 For more on this version of noise-driven intermittency, see the papers by Mininni
& Gomez (2004) and Moss et al. (2008) cited in the bibliography.
12 See, e.g., the papers by Küker et al. (1999) and Brooke et al. (2002) cited in the
bibliography.
13 For representative models exhibiting intermittency of this type, see the paper by
Tworkowski et al. (1998) cited in the bibliography.
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Intermittency can also arise naturally in dynamo models characterized by
a lower operating threshold on the magnetic field. These include models where
the regeneration of the poloidal field takes place via the MHD instability of
toroidal flux tubes (§3.4.2). In such models, the transition from quiescent to
active phases requires an external mechanism to push the field strength back
above threshold. This can be stochastic noise14, or a secondary dynamo pro-
cess normally overpowered by the “primary” dynamo during active phases.
Figures 4.11 show one representative solution of the latter variety, where
intermittency is driven by a weak α-effect-based kinematic dynamo operat-
ing in the convective envelope, in conjunction with magnetic flux injection
into the underlying region of primary dynamo action by randomly positioned
downflows15. The top panel shows a sample trace of the toroidal field, and
the bottom panel a butterfly diagram constructed near the core–envelope
interface in the model.

Fig. 4.11 Intermittency in a dynamo model based on flux tube instabilities
(cf. §3.4.2). The top panel shows a trace of the toroidal field, and the bottom panel
is a butterfly diagram covering a shorter time span including a quiescent phase at
9.6 ∼

< t ∼
< 10.2, and a “failed Minimum” at t ≃ 11. Figure produced from numerical

data kindly provided by M. Ossendrijver.

Dynamo models exhibiting amplitude modulation through time-delay ef-
fects are also liable to show intermittency in the presence of stochastic noise.

14 See the paper by Schmitt et al. (1996) cited in the bibliography.
15 For more details see paper by Ossendrijver (2000) in bibliography
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This intermittency mechanism hinges on the fact that the map’s attractor
has a finite basin of attraction (indicated by gray shading on Fig. 4.10A).
Stochastic noise acting in conjunction with the map’s dynamics can then
knock the solution out of this basin of attraction, which then leads to a col-
lapse onto the trivial solution pn = 0, even if the map parameter remains
supercritical. Stochastic noise eventually knocks the solution back into the
attractor’s basin, which signals the onset of a new active phase. This behavior
does materialize in the Babcock–Leighton model of §3.3. Figure 4.12 shows
one such representative solution, in the same format as Fig. 4.11. This is a dy-
namo solution which, in the absence of noise, operates in the singly-periodic
regime. Stochastic noise is added to the vector potential Aêφ in the surface
layers, and the dynamo number is also allowed to fluctuate randomly about a
pre-set mean value, as described in §4.2. The resulting solution exhibits both
amplitude fluctuations and intermittency.

Fig. 4.12 Intermittency in a dynamo model based on the Babcock–Leighton mech-
anism (cf. §3.3). The top panel shows a trace of the toroidal field sampled at
(r, θ) = (0.7, π/3). The bottom panel is a time-latitude diagram for the toroidal field
at the core–envelope interface. Numerical data from the Charbonneau et al. (2004)
paper cited in the bibliography.

With its strong polar branch often characteristic of dynamo models with
meridional circulation, Fig. 4.12 is not a particularly good fit to the sunspot
butterfly diagram. Yet its fluctuating behavior is solar-like in a number of
ways, including epochs of alternating higher-than-average and lower-than-
average cycle amplitudes (the Gnevyshev–Ohl rule, cf. Fig. 4.3), and residual
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pseudo-cyclic variations during quiescent phases, as suggested by 10Be data.
This latter property is due at least in part to meridional circulation, which
continues to advect the (diffusively decaying) magnetic field after the dynamo
has fallen below threshold.

4.6 Model-based Cycle Predictions

Over the past decade, the prediction of solar eruptive events and their geo-
magnetic impacts, known as space weather, has become a Very Big Business.
Even then, the prediction of the overall level of solar activity is also of in-
terest, as it could be useful, among other things, to the planning of space
missions and interplanetary travel. The understanding and prediction of ac-
tivity levels on timescales decadal and longer is becoming known as space

climate, and its primary data are the time series of sunspot numbers, and
proxies such as the radioisotopes records.

One “hot” prediction problem, lying at the boundary of space weather
and space climate, is forecasting the characteristic of the next solar activity
cycle, which is usually equated with the timing and amplitude of the cycle
as measured by the sunspot number time series (see Fig. 4.1). It is of course
possible to treat this prediction problem as an exercice in time series analysis
and forecasting, without any physical input. The SSN time series is just a
time series, and it can be extended using a number of techniques coming from
statistics (spectral analysis, wavelets, etc.) or dynamical system theory (such
as attractor reconstruction). To this day, forecasts based on such techniques
have not fared significantly better than so-called “climatological” forecasts,
which consists in simply “predicting”, e.g., that the next cycle will have the
same amplitude as the current cycle, or an amplitude equal to the mean
cycle amplitude over the length of the sunspot record, etc. In this section we
will focus instead on prediction schemes based, in one form or another, on
dynamo models.

In light of what we have learned thus far, we know we are facing a number
of difficulties in trying to use dynamo models to forecast the solar cycle. A
basic list of questions that need to be answered (excluding technical details
for the time being) should include, at the very least, the following:

1. What type of dynamo powers the solar cycle: αΩ, α2Ω, interface, Babcock–
Leighton, etc.?

2. Which mechanism is driving duration and amplitude fluctuations: stochas-
tic forcing, nonlinear modulation due to the Lorentz force, or time delay,
etc.?

3. How do we accurately “predict” sunspot number from a dynamo solution
which describes the spatiotemporal evolution of just the diffuse, large-scale
magnetic field?
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It is a sobering fact that none of these very basic and fundamental ques-
tions can be answered with confidence at this writing. Nonetheless, we have
learned some important things that are useful in the forecasting context. To
start with, the dynamo feeds on the existing magnetic field, therefore try-
ing to forecast the next cycle using characteristics of the current cycle (and
maybe recent past cycles as well) is definitely justified. This is the physical
underpinning of all so-called “precursor methods”, which we’ll first look into.

4.6.1 The Solar Polar Magnetic Field as a Precursor

Temporally extended synoptic magnetograms, such as Fig. 3.4, suggest that
the solar cycle can be divided into sequences of substeps whereby a poloidal
field (P ) produces a new toroidal component (T ), which then leads to the
buildup of a new poloidal component, with accompanying polarity reversals;
schematically:

... → P (+) → T (−) → P (−) → T (+) → P (+) → ... . (4.14)

This suggests that the optimal precursor for the amplitude of the sunspot-
generating toroidal component should be sought by moving back up the
causal chain by one substep, to the poloidal component produced in the pre-
vious sunspot cycle. This is the basis for the set of dynamo-inspired precursor
schemes pioneered by A.L. Ohl and brought to maturity by K. Schatten and
collaborators now over thirty years ago (see bibliography).

This idea is readily tested using our various dynamo models, as illus-
trated on Figure 4.13 for the stochastically forced Babcock–Leighton model
of Fig. 4.8. The top panel shows a short segment of the magnetic energy time
series, used again here as a proxy for the sunspot number, together with a
time series of the surface polar field strength (in green). The bottom panel
shows a time–latitude diagram of the surface radial magnetic component, to-
gether with the latitudes of peak toroidal field strength at the core–envelope
interface, where sunspots are presumed to originate. The overall spatiotempo-
ral evolution of the surface field, and its phase relationship to the deep-seated
toroidal field, are both remarkably solar-like. Examination of the two curves
on the top panels of Figs. 4.13 reveals that the surface radial field peaks
shortly following what one would identify with solar minimum on the basis
of our SSN proxy. It is then a simple matter to pair the peak polar field at
solar minimum with the SSN proxy of the following cycle, as indicated on
Fig. 4.13 by the purple connecting line segments.

The next step is to correlate the peak poloidal field and peak SSN proxy,
in order to ascertain the viability of poloidal field-based precursor schemes.
The result is shown on Figure 4.14A, for three different levels of stochastic
forcing, as color-coded, with the solution of Fig. 4.13 in red. In all cases the
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Fig. 4.13 Portion of a simulation run of a Babcock–Leighton model, with fluctua-
tions at the ±50% level imposed in the magnitude of the surface source term. The
unperturbed reference solution is that illustrated on Figure 3.17. The top panel shows
time series of the surface radial magnetic field (absolute value) sampled at the pole
(green), together with a time series of the total magnetic energy (red), used here as
a proxy for the sunspot number. The purple line segment join the peak poloidal field
at (or near) “sunspot minimum” with the peak in the SSN proxy for the following
cycle. The bottom panel is a time–latitude diagram of the surface radial field, and
the purple dots trace the latitude of peak toroidal field strength at the core–envelope
interface as a function of time. Figure taken from the Charbonneau & Barlet (2011)
paper cited in the bibliography.

time series for the SSN proxies and surface poloidal field strength have been
normalized to the peak values characterizing a parent run without stochastic
forcing.

The peak polar field at solar minimum clearly has precursor value, but
stochastic forcing rapidly degrades the forecasting accuracy. Consider for ex-
ample the solution with 100% fluctuation of the dynamo number Cα (green);
while a linear correlation coefficient of 0.83 may sound pretty good, the fact
remains that for a polar field of 0.8 (say) in the normalized units of Fig. 4.14
would lead to a SSN forecast covering a very broad range, namely 0.6–1.2 in
normalized units, which is not a very accurate forecast at all.

Performing the same analysis on our other solar cycle model reveals that
the polar surface field is also a good precursor of cycle amplitude for the
advection-dominated mean-field model with meridional circulation of §3.2.11,
more robust with respect to high-amplitude stochastic forcing in fact, but no
precursor at all for the classical αΩ model of §3.2.10. This curious situa-
tion can be traced to the fact that in the former, the surface polar field does
feed back into the dynamo loop, as circulation drags it down back into the
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Fig. 4.14 (A) Correlations between peak SSN and surface poloidal field strength in
the stochastically-forced Babcock–Leighton solutions of Fig. 3.17, for three different
levels δCα/C̄α of forced stochastic fluctuations in the surface source term, color-
coded as indicated. The red dots correspond to the simulation run illustrated on
Fig. 4.13. The amplitudes are normalized to those caracterizing the non-fluctuating
parent simulation. The linear correlation coefficients r are again given. (B) Similar
plot, but this time attempting to correlate the peak SSN peak values for pairs of
successive cycles.

tachocline, where it merges with the poloidal field produced there by the
α-effect (see Fig. 3.10). In the circulation-free models, on the other hand,
the poloidal field diffuses more or less radially outwards to the surface, with
poloidal field of the subsequent cycle being generated completely indepen-
dently at the base of the envelope (see Fig. 3.7).

In retrospect, the logic behind Schatten et al.’s precursor argument can
be understood to hold only for a subset of dynamo models, namely those
where some “feedback” of the surface polar field on the dynamo loop takes
place. In Babcock–Leighton-type models, the surface field is the sole source
of the next cycle’s toroidal field, and so is good precursor. In advection-
dominated mean-field models including circulation, the surface poloidal field
is a significant source of toroidal field, albeit not the only one. In classical αΩ
mean-field models of the type considered in §3.2.10, where the surface field is
only a “passive” manifestation of dynamo action taking place independently
in the deep interior, the surface field has no precursor value.

As final point of interest, it is noteworthy that in the solar cycle models
considered here, the value for the peak SSN proxy has little or no precursor
value in forecasting the next SSN proxy peak. This is illustrated on Fig. 4.14B
for the set of stochastically-forced Babcock–Leighton solutions. This is some-
what surprising, since the peak polar field at the solar minimum separating
two successive cycles is here a rather good precursor (cf. Fig. 4.14A). This
situation can be traced to the manner in which stochasticity is introduced
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in the model. In the case of imposed stochastic fluctuations in the poloidal
source term, the scheme given by eq. (4.14) must be replaced by something
like:

...
stoch−→ P (+) −→ T (−)

stoch−→ P (−) −→ T (+)
stoch−→ P (+) −→ ... . (4.15)

Precursor forecasts based on either component is only possible if the forecast
does not go across a “stochastic” arrow. For classical mean-field models,
where the shear and α-effect are spatially coincident and operate concurrently
in time, the above sequence should instead be schematized as:

...
stoch

րց P (+)

T (−)

stoch

րց P (−)

T (+)

stoch

րց P (+)

T (−)

stoch

րց ... , (4.16)

which precludes any precursor relationship from previous-cycle magnetic field
measurements... unless of course stochastic forcing is very weak or absent, and
cycle amplitude modulation is produced primarily by deterministic effects, as
briefly considered in §4.3.

4.6.2 Model-Based Prediction Using Solar Data

Some recent solar cycle amplitude forecasts have used solar cycle models
of the Babcock–Leighton variety (§3.3), in conjunction with input of solar
magnetic field observations in a manner usually (and, strictly speaking, in-
correctly) described as “data assimilation”. It is particularly instructive to
compare the forecast schemes (and cycle 24 predictions) of M. Dikpati and
collaborators on the one hand, and of A.R. Choudhuri and collaborators on
the other. As detailed in Table 4.1 below, these two schemes are remark-
ably similar in their overall design, differing mostly in their formulation of
the poloidal source term, solar data used to drive the model, and manner in
which this driving is implemented.

As similar as they may be, except at the level of what one would usually
consider modelling details, these two forecasting schemes end up producing
cycle 24 amplitude forecasts that stand at opposite ends of the very wide
range of cycle 24 forecasts produced by other techniques, as well as opposite
ends of the range of past cycle amplitudes. A cycle 24 with SSN=80 would
place it amongst the weakest of the past century, while SSN=180 would make
it second only to the highest cycle amplitude on record, that for cycle 19 (see
Fig. 4.1).

These model-based forecast have been subjected to strident criticism, for
a variety of reasons. One of the most fundamental is the possibility—some
would say “certainty”—that the solar dynamo is a nonlinear system oper-
ating in the chaotic regime, in which case long-term prediction is severely
restricted by the exponential divergence of trajectories of the model in phase
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Table 4.1 Two dynamo-based solar cycle forecasting schemes

Authors Dikpati, deToma & Gilman Choudhuri, Chatterjee, & Jiang
Code name DdTG CCJ
Reference GRL 33, L05102 (2005) PRL 98, 131103 (2007)
Dynamo model kinematic axisymmetric kinematic axisymmetric

Babcock–Leighton Babcock–Leighton
Core–CZ interface r/R = 0.7 r/R = 0.7
Magnetic diffusivity eq. (2.16), ∆η = 300 eq. (2.16), ∆η = 104

plus high-η surface layer
Differential rotation solar-like parameterization solar-like parameterization

eqs. (2.27)–(2.28), w/R = 0.05 eqs. (2.27)–(2.28), w/R = 0.015
all other parameters same all other parameters same

Meridional circulation single cell per quadrant single cell per quadrant
closing at r/R = 0.71 closing at r/R = 0.635

Poloidal source term data-driven surface forcing subsurface α-effect
plus weak tachocline α-effect plus buoyancy algorithm

Nonlinearity algebraic α-quenching algebraic α-quenching
only in tachocline α-effect in subsurface α-effect

Solar data time series of total sunspot area DM Index
used to (continuously) drive used to reset amplitude of A
parametric surface forcing of A at “solar minimum”

Calibration interval Cycles 16–23 Cycles 21–23
Cycle 24 forecast SSN=155–180 SSN=80

space. This criticism probably does not apply to the DdTG scheme, which
is really a quasi-linear magnetic flux processing “machine”, rather than a
truly nonlinear dynamo model; it probably does not apply either to the CCJ
scheme, which uses a simple algebraic amplitude-quenching nonlinearity that
is usually not conducive to chaotic modulation, although this remains to be
verified in the context of their specific choice of dynamo model. More to the
point has been the explicit demonstration that very small changes in some
unobservable and poorly constrained input parameters to the dynamo model
used for the forecast, or alternate but by all appearances equally reasonable
means of carrying out data input into the model, can introduce significant
errors already for next-cycle amplitude forecasts16.

In the context of Babcock–Leighton models, this model-based approach
to forecasting is definitely viable in principle, since the solar surface mag-
netic field is that which will serve as seed to produce the sunspot-generating
toroidal component of the next cycle. The one thing that the two model-based
forecasting schemes compared and contrasted in Table 4.1 have demonstrated,
beyond any doubt, is that modelling details matter a lot.

Bibliography:

16 See, e.g., the papers by Bushby & Tobias (2007) and Cameron & Schüssler (2007)
cited in the bibliography
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The possible impact of long-term variations of solar activity on climate change
remains a topic of controversy; the following three volumes are good starting
point for those interested in learning more about this:

Haigh, J.D., Lockwood, M., & Giampapa, M.S., The Sun, Solar Analogs
and the Climate, Saas-Fee Advanced Course 34, Swiss Society
for Astrophysics and Astronomy, 2004;

Benestad, R.E., Solar Activity and Earth’s Climate, 2nd ed., Springer-
Praxis, 2006

Schrijver, C.J., and Siscoe, G.L. (eds.), Heliophysics III: Evolving Solar
Activity and the Climates of Space and Earth, Cambridge Uni-
versity Press, 2010.

On pre- an early-telescopic observations of sunspots, begin with

Mitchell, W.M., “The history of the discovery of the solar spots”, in Pop-

ular Astronomy, 24, 22-ff (1916),
Vaquero, J.M., and Vázquez, M., “The Sun recorded through history”,

Springer (2009),
Reeves, E., and Van Helden, A. (eds. & trans.), “Galileo Galilei &

Christoph Scheiner on sunspots”, University of Chicago Press
(2010).

If such historical matters are of interest to you, you can also consult the ever-
being-enlarged Web site “Great Moments in the History of Solar Physics”:

http : //www.astro.umontreal.ca/∼ paulchar/grps

and click on ”History of Solar Physics” at left. For everything you ever wanted
know on the characterisations of the sunspot cycle, start with

Hathaway, D.H., Liv. Rev. Solar Phys., 71 (2010),
http://solarphysics.livingreviews.org/Articles/lrsp-2009-4/

On the Maunder minimum, see

Eddy, J. A., Science, 192, 1189-1202 (1976),
Eddy, J. A., Solar Phys., 89, 195-207 (1983),
Ribes, J. C., and Nesme-Ribes, E., Astron. Astrophys., 276, 549-563

(1993),

and on cosmogenic radioisotopes:

Beer, J., Sp. Sci. Rev., 94, 53-66 (2000).
Usoskin, I.G., Solanki, S.K., & Kovaltsov, G.A., Astron. Astrophys., 471,

301-309 (2007).

as well as the chapter by J. Beer in the volume edited by Schrijver & Siscoe
just listed above. On the effects of stochastic forcing on various dynamo
models, start with:

Choudhuri, A. R., Astron. Astrophys., 253, 277-285 (1992),
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Moss, D., Brandenburg, A., Tavakol, R., and Tuominen, I., Astron. Astro-
phys., 265, 843-849 (1992),

Hoyng, P., Astron. Astrophys., 272, 321-339 (1993),
Ossendrijver, M. A. J. H., and Hoyng, P., Astron. Astrophys., 313, 959-970

(1996),
Charbonneau, P., and Dikpati, M., Astrophys. J., 543, 1027-1043 (2000),
Mininni, P., and Gomez, D.O., Astrophys. J., 573, 454-463 (2002).

The following offer a good sample of the possible amplitude and parity modu-
lation behaviors in nonlinear (sometimes non-kinematic) mean-field dynamo
models:

Brooke, J. M., Moss, D., and Phillips, A., Astron. Astrophys., 395, 1013-
1022 (2002),

Küker, M., Arlt, R., and Rüdiger, R., Astron. Astrophys., 343, 977-982
(1999),

Sokoloff, D., and Nesme-Ribes, E., Astron. Astrophys., 288, 293-298
(1994),

Tobias, S. M., Astron. Astrophys., 322, 1007-1017 (1997),
Bushby, P.J., Mon. Not. Roy. Astron. Soc., 371, 772 (2006),
Rempel. M., Astrophys. J., 647, 662 (2006),
Lopes, I., & Passos, D., Solar Phys., 257, 1 (2009).

On time delay and its consequences for Babcock–Leighton dynamo models,
see:

Durney, B.R., Solar Phys., 196, 421-426 (2000),
Charbonneau, P., Solar Phys., 199, 385-404 (2001),
Charbonneau, P., St-Jean-Leblanc, C., and Zacharias, P., Astrophys. J.,

619, 613-622 (2005).

The following offers a few good entry points in the literature on intermittency
in various types of dynamo models:

Schmitt, D., Schüssler, M., and Ferriz-Mas, A., Astron. Astrophys., 311,
L1-L4 (1996),

Tworkowski, A., Tavakol, R., Brandenburg, A., Brooke, J.M., Moss, D.,
and Tuominen, I., Mon. Not. Roy. Astron. Soc., 296, 287-295
(1998),

Covas, E., and Tavakol, R., Phys. Rev. E, 60, 5435-6645 (1999),
Ossendrijver, M. A. J. H., Astron. Astrophys., 359, 364-372 (2000),
Charbonneau, P., Blais-Laurier, G., and St-Jean-Leblanc, C.,Astrophys. J.,

616, L183-L186 (2004),
Petrovay, K., Astron. Nachr., 328, 777-780 (2007),
Moss, D., Sokoloff, D., Usoskin, I., and Tutubalin, V., Solar Phys., 250,

221-234 (2008).
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Cycle prediction is a topic that has generated a massive literature, which
often stands closer to statistical black magic than physics. Two good recent
review papers are:

Hathaway, D.H., Space Sci. Rev., 144, 401-412 (2009).
Petrovay, K., Liv. Rev. Sol. Phys., 7 (2010),

http://solarphysics.livingreviews.org/Articles/lrsp-2009-6/

On dynamo-inspired precursor schemes, see

Schatten, K.H., Scherrer, P.H., Svalsgaard, L., & Wilcox, J.M., Geo-

phys. Res. Lett., 5, 411-414 (1978),
Svalsgaard, L., Cliver, E.W., & Kamide, Y., Geophys. Res. Lett., 32,

021664 (2005),
Charbonneau, P., & Barlet, G., J. Atmos. Solar-Terrestrial Phys., 73,

198-206 (2011).

On the use of dynamo models for cycle prediction, see

Dikpati, M., DeToma, G., & Gilman, P.A., Geophys. Res. Lett., 33, L05102
(2006),

Choudhuri, A.R., Chatterjee, P., & Jiang, J., Phys. Rev. Lett., 98, 131103
(2007),

Cameron, R., & Schüssler, M., Astrophys. J., 659, 801-811 (2007),

as well as

Bushby, P., & Tobias, S.M., Astrophys. J., 661, 1289-1296 (2007).

This last paper is an illuminating discussion of the fundamental limitations
inherent in using nonlinear dynamo models for cycle amplitude forecasting.
Keep in mind, however, that the two forecasting models discussed in §4.6.2
(1) are not operating in a chaotic regime, and (2) achieve their forecasting
not just through direct forward integration, but also through continuous or
episodic input of observational data. Finally, the following paper is a very
interesting example of true data assimilation in a very simple albeit truly
nonlinear dynamo model:

Kitiashvili, I., & Kosovichev, A.J., Astrophys. J. Lett., 688, 49-52 (2008).



Chapter 5

Stellar Dynamos

ELWOOD: It’s 106 miles to Chicago, we’ve got a full
tank of gas, half a pack of cigarettes, it’s dark and
we’re wearing sunglasses.
JAKE: Hit it!

Dan Ackroyd and John Belushi
The Blues Brothers (1980)

The problem—and the beauty—with the Sun is that it overwhelms us with
data. Many of the intricacies we have busied ourselves with in the preceding
chapter were directly motivated by the detailed observations and magnetic
measurements made possible by the sun’s astronomical proximity. The sun
remains for sure an exemplar, but with other stars observational contraints
are much more sparse, and theoretical considerations take on an enlarged
role.

What have we learned in the preceding three chapters about dynamo ac-
tion in electrically conducting fluids? At the most fundamental level, a top-
three list could run as follows:

– We learned in chapter 2 that rotation, and especially differential rotation,
is one very powerful mechanism allowing to build up a large-scale magnetic
field;

– We also learned in chapter 2 that flows with chaotic trajectories, such as
arising from turbulent convection, can act as dynamos;

– We learned in chapter 3 that in turbulent flows, the presence of rotation
and stratification can break isotropy and reflectional symmetry, and in
doing so generate a mean electromotive force that can produce large-scale
magnetic fields.

So, offhand we are not in too bad a shape with regards to stellar dynamos.
Stars certainly are stratified, and certainly rotate. Thermally-driven convec-
tion is also present across large-part of the HR diagram, but here we start to
encounter complications that restrict the use of the “solar exemplar”.

Figure 5.1 illustrates, in schematic form, the internal structure of main-
sequence stars, more specifically the presence or absence of convection zones.
A G-star like the Sun has a thick outer convection zone, spanning the outer
30% in radius in the solar case. As one moves down to less massive stars,
the relative thickness of the convective envelope increases until, somewhere
around spectral type M5, stars become fully convective. Moving instead from
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the Sun to higher masses, the convective envelope becomes ever thinner, un-
til somewhere around spectral type A0 it essentially vanishes. However, at
around the same spectral type Hydrogen burning switches from the p-p chain
to the CNO cycle, for which nuclear reaction rates are much more sensitively
dependent on temperature. Core energy release becomes strongly depth-
dependent, leading to a steep—and convectively unstable—temperature gra-
dient. This produces a small convective core, which grows in size as one moves
up to larger masses. In a “typical” B-star of solar metallicity, the convective
core spans the inner 25% or so in radius of the star.

Fig. 5.1 Schematic representation of the radiative/convective internal structure of
main-sequence stars. The thickness of the outer convection zone for the A-star is
here greatly exaggerated; drawn to scale it would be thinner than the black circle
delineating the stellar surface on this drawing. Relative stellar sizes are also not
to scale; a main-sequence M0 star has a radius some 12 times smaller than its B0
counterpart.

In main-sequence O and B stars, the presence of a turbulent convective
core combined with high rotation then makes dynamo action more than likely.
However, as we shall see in §5.1 below, the challenge is actually to bring the
magnetic field produced in the core to the surface.

Intermediate mass main-sequence stars rotate but lack a convective zone
of substantial size. Interestingly, only the most slowly rotating of these stars
show evidence of strong magnetic fields, for which the fossil hypothesis re-
mains the favored explanation. This is reviewed in §5.2, along with some
dynamo-based alternatives.

Until strong evidence to the contrary is brought to the fore, we are allowed
to assume that late-type stars with a thick convective envelopes overlying a
radiative core host a solar-type dynamo. This is buttressed by the observation
of solar-like cyclic activity in many such stars. It then becomes natural to
look into the way(s) the various types of solar-cycle models considered in
the preceding chapters can be “scaled” to other solar-type stars, of varying
masses, rotation rates, etc. Some of these issues are discussed in §5.3 below.

With fully convective stars (§5.4), we encounter potential deviations from
a solar-type dynamo mechanism; without a tachocline and radiative core
to store and amplify toroidal flux ropes, the Babcock–Leighton mechanism
becomes problematic. Mean-field models based on the turbulent α-effect re-
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main viable, but the dynamo behavior becomes dependent on the presence
and strength of differential rotation, about which we really don’t know very
much in stars other than the sun.

Moving off the main-sequence, stellar magnetic field remain ubiquitous,
but dynamo modelling is comparatively undeveloped. Observational evidence
points towards turbulent dynamo action in pre-main-sequence stars, as briefly
reviews in §5.5. On the other hand, the very strong magnetic fields observed in
the many types of compact objects marking the endpoint of stellar evolution
appear, for the most part, to be remnant of earlier evolutionary phases, rather
than being produced by ongoing dynamo action (§5.6).

5.1 Early-Type Stars

5.1.1 Mean-Field Models

We first consider dynamo action in massive stars, beginning with a few sim-
ple, representative solutions obtained in the framework of mean-field theory1.
Within the convective core (radius rc), thermally-driven turbulent fluid mo-
tions are assumed to give rise to an α-effect and turbulent diffusivity, which
both vanish for r ∼> rc (under the assumption that the radiative envelope is
turbulence free). In the spirit of the other mean-field models discussed earlier,
we consider kinematic dynamos with parametric profiles for α and η:

α(r, θ) =
1

2

[

1 + erf

(
r − rc
w

)]

erf

(
2r

w

)

cos(θ) , (5.1)

η(r) = ηe +
ηc − ηe

2

[

1− erf

(
r − rc
w

)]

, (5.2)

where erf(x) is the error function. Note that now, unlike in the solar models
of the preceding chapters, it is the low-diffusivity stable envelope that sits
atop the high-diffusivity convective core, i.e., now ηe ≪ ηc. Equations (5.1)
once again represent “minimal” assumptions on the spatial dependency of
the α-effect: it changes sign across the equator (θ = π/2), vanishes at r = 0,
rises to a maximum value within the convective core, and falls again to zero
for r ∼> rc, the transition occurring across a spherical layer of thickness ∼ 2w.

All dynamo solutions discussed below are obtained as eigenvalue prob-
lems, as in §3.2.8, solving now the α2 form or the axisymmetric kinematic
mean-field dynamo equations. Remember that such linear solutions leave the
absolute scale of the magnetic field unspecified. However, an interesting phys-
ical quantity accessible from linear models is the ratio of the surface field field

1 The content of this section is based on the paper by P. Charbonneau & K.B. Mac-
Gregor, ApJ, 559, 1094 (2001)
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strength to the field strength in the dynamo region, here the convective core.
In what follows we use towards this purpose the ratio (Σ) of the r.m.s. surface
poloidal field to the r.m.s. poloidal field at the core–envelope interface rc:

Σ =

(
R2
∫
|∇ ×A|2r=R sin θdθ

r2c
∫
|∇ ×A|2r=rc sin θdθ

) 1

2

. (5.3)

Figure 5.2 shows a series of typical linear α2 solution with increasing diffu-
sivity contrasts between the core and envelope. Linear mean-field dynamo of

Fig. 5.2 Four antisymmetric steady α2 dynamo solutions, computed using varying
magnetic diffusivity ratios between the core and envelope. The solutions are plotted
in a meridional quadrant, with the symmetry axis coinciding with the left quadrant
boundary. Poloidal fieldlines are plotted superimposed on a gray scale representation
for the toroidal field (light to dark is weaker to stronger field). The dashed line marks
the core–envelope interface depth rc, and the two dotted lines indicates the depths
rc ±w corresponding to the width of the transition layer between core and envelope.
These solutions have a surface-to-core magnetic field strength ratio Σ ≃ 10−2 at
ηe/ηc = 1, down already to 3 × 10−4 at ηe/ηc = 10−1 and falling below 10−8 for
ηe/ηc ∼

< 10−2.

the α2 type with a time-independent scalar functional α(r) usually produce
steady magnetic fields, i.e., the solution eigenvalue is purely real (ω = 0 in
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eq. (3.46)). The solution plotted on Figure 5.2A is dipole-like (i.e., antisym-
metric), and is the fastest growing solution for our model with constant η, at
the adopted value for Cα

2. The poloidal and toroidal magnetic components
have comparable strengths, which is again typical of α2 mean-field models
with scalar α-effect. Here the growth rate of the eigenmode is about 20 yr in
dimensional units, leaving no doubt that ample time is available to amplify
a weak seed magnetic field in the core of a massive star. Note also on Figure
5.2 how the dynamo-generated magnetic field becomes trapped within and
in the immediate vicinity of the convective core for even moderately large
values of magnetic diffusivity contrast between core and envelope.

In the presence of significant differential rotation, core dynamo action can
produce polarity reversals and wave-like propagation of the magnetic field,
much like in the αΩ solar cycle models considered earlier. Figure 5.3 illus-
trates a half-cycle of a representative α2Ω solution, constructed by imposing
a radial gradient of angular velocity across a thin shear layer coinciding with
the core–envelope interface:

Ω(r, θ) = Ωc +
Ωe −Ωc

2

[

1 + erf

(
r − rc
w

)]

. (5.4)

The magnetic field distribution is shown at five distinct phases, at constant
intervals of ∆ϕ = π/4, in a format identical to that of Fig. 5.2 for each panel
(note in particular that the eigenmodes are again plotted only in the inner
half of the star). At a given phase the solutions bear some resemblance to the
α2 solutions of Fig. 5.2C, in that the magnetic field is again trapped in the
interior. As before, the toroidal field is concentrated near the core–envelope
interface, and in fact here peaks slightly outside r = rc (dashed circular arc).

The availability of an additional energy source in the toroidal component
of the dynamo equations leads to solutions where the toroidal field strength in
general exceeds that of the poloidal field, scaling roughly as the ratio CΩ/Cα

in the limit CΩ ≫ Cα. For a given diffusivity ratio ηe/ηc, oscillatory α2Ω
solutions have a smaller surface-to-core field strength ratio Σ than α2 models,
a direct consequence of the oscillatory nature of the field, which restricts
the radial extent of the eigenfunction above the core–envelope interface to a
distance comparable to the electromagnetic skin depth, which is very much
smaller than the stellar radius for ηe/ηc ≪ 1.

2 The α2 form of the mean-field dynamo equations also admits growing solutions
than are non-axisymmetric even though the α-effect profile exhibits axisymmetry
with respect to the rotation axis. Growth rates for non-axisymmetric modes are of-
ten comparable to those of their axisymmetric counterparts. Motivated largely by
the challenge posed by planetary magnetic fields, α2 models can and have been con-
structed where non-axisymmetric modes are the fastest growing, and dominate in the
moderately supercritical nonlinear regime. For complex enough spatial profiles of α,
i.e., including multiple sign changes in each hemisphere, it is also possible to produce
α2 dynamo solutions undergoing cyclic polarity reversals.
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Fig. 5.3 A representative α2Ω solution. As this is an oscillatory solution, the eigen-
function is plotted at five equally spaced phase intervals (∆ϕ = π/4), covering half
an oscillation cycle. The format in each panel is similar to Fig. 5.2. White (black)
lines indicate fieldlines oriented in a clockwise (counterclockwise) direction. Note the
wave-like propagation of the magnetic field from low to high latitudes. This symmetric
solution has Cα = −21, CΩ = 2000, w/R = 0.1, ηe/ηc = 10−2, and is characterized
by a growth rate σ = 21.8 τ−1 and frequency ω = 186 τ−1. For ηc = 109 m2 s−1, this
corresponds to a dynamo period of about 7 yr, quite short compared to any other
relevant timescales.

5.1.2 Numerical Simulations of Core Dynamo Action

It is interesting to compare and contrast core dynamo action, as modeled
via mean-field electrodynamics, to what is produced by three-dimensional
MHD simulations3. Such simulations do yield vigorous core dynamo action,
with the magnetic energy approching equipartition with the turbulent fluid
motions. However, most of the magnetic energy is contained in small spatial
scales, with the axisymmetric large-scale component accounting for only a
few percent of the total magnetic energy. The simulations generate a highly
time-variable differential rotation that contributes significantly to the induc-
tion of a toroidal component by shearing of the poloidal fields. This is most
pronounced in the vicinity of the core–envelope boundary, where a persis-
tent system of magnetic field bands approximately aligned in the azimutal
direction are produced.

3 The content of this section is based primarily on the paper by A.S. Brun,
M.K. Browning, & J. Toomre, ApJ, 629, 461 (2005).
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These simulations could be said to behave like α2Ω mean-field dynamo,
but the analogy is only superficial because significant differences exist, most
notably perhaps the absence of a well-defined, persistent mean-field-aligned
turbulent electromotive force. Except in the innermost portion of the convec-
tive core, the mean kinetic helicity is negative in the Northern hemisphere,
but in contrast the mean magnetic helicity does not show a well-defined, per-
sistent hemispheric pattern, again a departure from mean-field expectations.

One important similarity with the mean-field models considered in §5.1.1
is the trapping of the magnetic field within or in the immediate vicinity of
the convective core. This is shown on Figure 5.4, which depicts two temporal
and azimutal averages at different epochs in a representative simulation. The
weak axisymmetric toroidal field present in the inner portion of the radiative
envelope is produced primarily by the shearing effect of the differential rota-
tion, which is imprinted from the core to the lower envelope by the relatively
high viscous forces characterizing this simulation.

Fig. 5.4 Temporal+Azimuthal average of the toroidal magnetic field in a 3D MHD
numerical simulation of dynamo action in the core of a 2M⊙ early A-star. The mag-
netic field reaches a few Tesla in strength, evolves rapidly, and is structured on a
broad range of spatial scales, but remains confined to the convective core (dashed
cicular arc; the simulation domain only covers the inner 30% in radius of the star).
Figure taken from Brun et al. 2005, ApJ, 629, 461 (Figure 18, p. 478).
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5.1.3 Getting the Magnetic Field to the Surface

Whatever the mode of core dynamo action, a universal feature is the “trap-
ping” of the magnetic field within the core and in the lower part of the
radiative envelope, a direct consequence of the difficulty experienced by a
magnetic field to diffusively penetrate a good electrical conductor. This is
long-recognized property of stellar core dynamos, and represents a rather
formidable obstacle to be bypassed if the magnetic fields generated by dy-
namo action in the convective core are to become observable at the stel-
lar surface. For O and B main-sequence stars, estimates for the diffusion
time yield values largely in excess of the main-sequence lifetime. Introducing
thermally-driven meridional circulation in the radiative envelope, expected
to be a significant internal flow in rapidly rotating stars, does accelerate the
transport of the deep field to the surface, but also impedes dynamo action.
Another possibility is that the dynamo-generated magnetic field manages to
produce toroidal flux ropes that subsequently rise buoyantly to the surface.
The analogy with the sun becomes even more compelling if a rotational shear
layer does exist at the boundary between the inner convective core and outer
radiative envelope. However, and unlike in the solar case, here the toroidal
flux ropes are rising through a stably stratified environment, and so lose their
buoyant force as they rise, because they cool faster than the surrounding
stratification. Calculations performed in the thin flux tube approximation
suggest that such toroidal flux ropes, assuming they do form, could rise per-
haps halfway across the radiative envelope, but are unlikely to make it all the
way to the surface through buoyancy alone. References listed in the bibliogra-
phy should provide helpful entry points into the literature to those interested
in further pursuing this aspect of massive star magnetism.

5.1.4 Alternative to Core Dynamo Action

Dynamo-based explanations for the magnetic fields of early-type main-
sequence stars certainly exist. One intriguing possibility that clearly requires
serious modelling is that dynamo action in the outer layers of massive stars
could take place in convection zones associated with a peak in iron opacities.
Recent years have also witnessed renewed interest in the possibility that dy-
namo action could take place in the radiative envelope of intermediate- and
high-mass main-sequence stars, through turbulence associated with one or
more global instabilities of the magnetic field. This idea has attracted atten-
tion outside of the dynamo circles because the associated turbulent transport
would also cause enhanced chemical mixing, known to be required to properly
fit evolutionary tracks of massive stars, but whose origin remains mysterious.
Introduction of simple parametrizations for the associated chemical and an-
gular momentum mixing in models of evolving massive stars has shown that
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it is difficult to maintain sufficient differential rotation for the instability to
operate, while keeping chemical mixing at the required level. The interested
reader will find entry point in this vast literature in the bibliography at the
end of this chapter.

This instability-driven dynamo mechanism probably cannot explain the
strong magnetic fields observed in the very slowly rotating Ap/Bp stars (more
on these presently), again because significant internal differential rotation is
unlikely in the radiative envelope of these stars.

5.2 A-Type Stars

5.2.1 Observational Overview

Extant observations suggest a true dichotomy with regards to stellar mag-
netism in intermediate-mass stars: most A and B stars (around 95%) on
or near the main-sequence have no measurable (as yet) magnetic field, but
nearly all those who do combine strong, large-scale magnetic fields, steady on
decadal timescales at least, with slow rotation and pronounced photospheric
abundance anomalies. As we will see later in this course, the presence of a
strong, large-scale photospheric magnetic field (of whatever origin) favors an-
gular momentum loss, and therefore slow rotation; and a strong magnetic field
and low rotation favor atmospheric stability, giving full leeway for chemical
separation to operate and alter photospheric abundances.

In the most slowly rotating, strongly magnetized Ap stars, the mean sur-
face magnetic field stength (“mean” in the sense of being averaged over the
stellar surface) can be detected by Zeeman splitting, as in sunspots. Figure
5.5 below shows a striking example of such splitting. In more rapidly rotat-
ing stars magnetic Doppler imaging become a possibility; this relies on the
varying shapes of spectral lines formed as magnetic structures cross the vis-
ible part of the stellar disk. “Imaging” remains indirect, in the sense that
the stellar surface is of course not resolved spatially, but the availability of
many spectral lines, with some appropriate regularization scheme, allows this
inverse problem to be solved. Figure 5.6 shows a particularly well-studied ex-
emplar, namely the chemically peculiar star 49Cam. The field strength is
high, the magnetic topology quite complex, with the idea of a strongly in-
clined dipole, historically the common interpretation for Ap stars magnetic
fields, being a rather rough approximation here.

It is an intriguing fact that the few chemically-normal, (relatively) rapidly
rotating early-type stars on which magnetic fields have been detected all
sit in the early-B range of spectral types and belong to the βCep sub-class
(and include the prototype star βCep itself). However, indirect evidence for
photospheric magnetism in O and B star has been accumulating steadily, be
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Fig. 5.5 Zeeman splitting of magnetically-sensitive absorption line in the spectrum
of the Ap star HD94660. The inferred mean field strength for this star is 0.62T. The
top trace is that of a typical unmagnetized star of similar spectral type. The horizontal
axis is the wavelength, measured in Å. The bottom trace shows the multiplet structure
of the three spectral lines. Figure reproduced from the Mathys et al. paper cited in
the bibliography, with a few labels added.

Fig. 5.6 The surface magnetic field on the Ap star 49Cam, as reconstructed for
various rotational phases (ϕ) by magnetic Doppler imaging. The top row shows the
net field strength, and the bottom row the orientation of the surface magnetic field
vector. Plot courtesy of J. Silvester and G. Wade, RMC/Kingston.
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it as emission of hard radiation above and beyond what shock dissipation
can provide, channelling of stellar winds, and spectral variability. Ongoing
spectropolarimetric campains targeting massive stars are now providing more
and more data for theoreticians/modellers to chew on in upcoming years.

5.2.2 The Fossil Field Hypothesis

Stars with spectral types ranging from late-B to early-F stand out as the
least likely to support dynamo action, because they lack a convective region
of substantial size. This squares well with various lines of observations; in
particular, main-sequence A-stars are amongst the most “magnetically quiet”
stars in the HR diagram. As we just discussed, a subset of late-B and A stars,
namely the slowly-rotating, chemically peculiar Ap/Bp stars, do show strong
magnetic fields, but those show no sign of anything even mildly analogous to
solar activity. The single pattern of temporal evolution noted is a decrease,
by factors of 2–3, in the overall strength of the surface field, most prominent
in the early stages of main-sequence evolution. This seems compatible with
the idea of diffusive decay of residual higher-degree eigenmodes, and slow
decreases associated with flux conservation as the stars slowly expand in the
course of their main-sequence evolution (cf. §2.1).

5.2.3 Dynamical Stability of Large-Scale Magnetic
Fields

The study of the purely resistive decay of large-scale magnetic field in stellar
interiors carried out in §2.1 precluded, by it very design, the development of
flows propelled by potential hydromagnetic instabilities. Investigations into
the latter have shown that under typical stellar interior conditions, large-scale
magnetic fields embedded in stably-stratified radiative interiors are indeed
susceptible to the development of instabilities with growth rates much smaller
than any relevant evolutionary timescales. Even simple field configurations,
such as low-order multipole purely toroidal or purely poloidal fields are found
to be unstable, with rotation possibly providing a stabilizing influence at high
rotation rates (see references in the bibliography at the end of this chapter).
Although these (linear) stability analyses rely on a number of strong sim-
plifying assumptions, they lead to a picture whereby the most likely stable
global configurations are magnetic fields comprised of a mixture of large-scale
poloidal and toroidal component with comparable strengths. Remarkably,
this has recently been confirmed by full MHD simulations. Such configura-
tions would establish themselves on very short timescales, after which they
would undergo resistive decay on the magnetic diffusion timescale. Short-lived
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unstable phase early in their evolution notwithstanding, this overall picture
remains generally consistent with the fossil field Ansatz for Ap/Bp stars.

5.2.4 The Transition to Solar-Like Dynamo Activity

On the main-sequence, as one move down from late-A to late-F spectral
types, solar-type surface convection sets in, with the convection zone rapidly
gaining in depth as below spectral type F5. How and when solar-type dynamo
action sets in is a relatively unexplored question that clearly deserves further
attention, from both the observational and modelling standpoints.

5.3 Solar-Type Stars

5.3.1 Observational Overview

The photosphere of solar-type stars other than the sun cannot be spatially
resolved, and so direct observation of starspots is not possible, although ro-
tational modulations of the luminosity associated with starspot darkening
most certainly is. Direct measurements of magnetic polarisation of starlight
is difficult as well, unless the field has a strong large-scale component, oth-
erwise the polarisation associated with regions of opposite polarities—e.g.,
starspot pairs—cancel out when integrated over the solar disk. Most evi-
dence for the presence of magnetic fields on such stars is thus indirect, yet
extremely compelling, as it covers a wide range of phenomena visible on
the sun, such as spectral line variability, rotational modulation of luminos-
ity due to the passage of large starspots, flares, radio bursts, and variability
in magnetically-sensitive spectral lines on a wide range of timescales. Such
indirect observational evidence for magnetic fields has been found on every

late-type main-sequence star observed with sufficient sensitivity. The sun is,
indeed, a typical solar-type stars!

One magnetic field-related stellar observable that is particularly notewor-
thy is the emission in the cores of the H and K lines of CaII (396.8nm and
393.4nm, respectively). On the Sun, this emission is known to be associated
with non-radiative heating of the upper atmosphere, and is known to scale
well with the local photospheric magnetic flux. Starting back in 1968 at Mt
Wilson Observatory, Olin C. Wilson (1909–94) began measuring the CaII
H+K flux in a sample of solar-type stars, a laborious task that was later
picked up by a brave group of undeterrable associates and followers, whose
collective labor has produced a 40+ year long archive of CaII emission time
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series for no less than 111 stars in the spectral type range F2–M2, on or near
the main-sequence.

Figure 5.7 shows a few sample time series of the so-called Calcium in-
dex S, mesuring the ratio of core emission intensity in the H and K lines
to that of the neighbouring continuum. Some stars show solar-like cycles,
others have irregular CaII emission, some show long term trends and others
can only be dubbed “flatliners”. Note that the mere presence of detectable
CaH+K emission indicates magnetic activity; the absence of detectable tem-
poral variations in flatliner stars simply means that they stars lack a solar-like
large-scale magnetic field undergoing cyclic variation.

5.3.2 Empirical Stellar Activity Relationships

From the point of view of dynamo theory and modelling, the following two
empirical facts are particularly noteworthy:

1. Magnetic activity, as measured e.g. by the level of CaH+K emission, gen-
erally increases with increasing rotation rate (decreasing Prot).

2. Stellar cycle periods increase with increasing rotation periods Prot.

Among stars showing cycles in CaH+K, at a given spectral type the re-
lationship between cycle period and rotation rate is well represented by a
power-law of the form Pcyc ∝ Pn

rot, with n varying between 0.75 and 1.75
depending on spectral type. Interestingly, all these data can be described
reasonably well by a single power-law fit to the ratio of the rotation period to
the convective turnover time, known as the Rossby Number (Ro; the inverse
Rossby number is often referred to as the Coriolis number):

Pcyc ∝
(
Prot

τc

)n

, n = 1.25 . (5.5)

Recall from the discussion in §3.2.2 that this ratio is supposed to measure
the efficiency of the Coriolis force in breaking the mirror-symmetry of convec-
tive turbulence, and thus producing a non-zero α-effect. Recall also that the
larger the dynamo number, the more magnetic energy mean-field models can
produce (viz. Fig. 3.8). So, in a rough qualitative sense, observations seem to
fit our (naive) theoretical expectations.

In reality, there are of course significant complications to this highly sim-
plified picture. For example, coronal (X-Ray) and chromospheric (Ca H+K)
emission is observed to saturate as Ro falls below about 0.1, and even de-
creases a bit beyond Ro ∼ 10−2, although it not clear whether this reflects a
saturation of the emission mechanism, of the surface filling factor of magne-
tized structured, or of magnetic field generation by the large-scale dynamo.
The Prot vs Ro relationship becomes a lot tighter if stars for which reliable cy-
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Fig. 5.7 Calcium emission index in a small subsample of the Mt Wilson dataset,
showing the variety of CaII emission patterns: cycles, non-cyclic irregular emission,
long term trend, and constant emission. On such plots, the sun would have a mean
emission level 〈S⊙〉 = 0.179, with a min/max range of about 0.04. Figure cropped
from a much larger Figure in Baliunas et al. 1995, ApJ, 438, 269 [Figure 1g].

cle periods are known are first divided into “active” and “inactive” subgroups
on the basis of their overall level of Ca emission.

Solar-like cyclic activity is by no means the rule among solar-type stars,
with only about 60% of stars showing well-defined cycles, 25% showing ape-
riodic variations, and the remaining 15% being “flatliners” with low level,
constant chromospheric emission. Indeed, the Sun has “twins”, i.e., main-
sequence stars of closely similar surface temperature, gravity and rotation
rate, which do not show any variability in chromospheric emission. An in-
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triguing possibility is that these stars just happened to have been caught in
a Maunder Minimum-like phase of suppressed cyclic activity.

5.3.3 Solar and Stellar Spin-Down

Stellar observations indicate that there is evidently a lot more to dynamo
action than just rotation, nonetheless the latter is clearly a key factor. For
this reason, in any attempt to secure a coherent picture of dynamo action in
solar-type stars, an important global feedback mechanism of dynamo action
must first be considered: angular momentum loss, and its effect on stellar
rotation rates.

Although the existence of systematic differences between the average ro-
tation rates of early- and late-type stars was known already for nearly a
hundred years, observational evidence for main-sequence spin-down of solar-
type stars was established much later. Figure 5.8 below is a reproduction of
a diagram put together by Robert Kraft in 1967, showing the distribution in
a HR diagram of projected equatorial rotational velocities (v sin i) measured
in a sample of field stars. As one runs down the main sequence, there oc-
curs a sharp drop in v sin i starting around spectral type F5. Slow rotation
is the rule on the cool side of this so-called rotational dividing line, while on
the hot side rapid rotation is common. Kraft went on to show that under
the assumption of solid-body rotation, in the interval 1.5 ∼< M/M⊙ ∼< 20
observed rotation rates are consistent with a power-law dependence between
stellar angular momentum (J) and mass (M) of the form J ∝ M1.57, which
abruptly breaks down below F5.

The decrease in the moment of inertia of stars associated with their con-
traction towards the main-sequence can easily account for ZAMS equatorial
rotational velocities of a few hundreds of kilometers per second. As was al-
ready understood then, the anomaly in Kraft’s diagram lay in fact with the
slowly-rotating low-mass stars. A most spectacular illustration that this is
due to main-sequence spin-down and is associated with magnetism was pro-
vided in a short, now classical 1972 paper by Andrew Skumanich. Figure
5.9, reproduced from this paper, illustrates the simultaneous and gradual de-
crease of both the average rotation rates and magnetic activity for late-type
stars—as mesured by emission in the core of the Ca H and K lines—in a few
open clusters of known ages. Later observations focusing on young clusters
such as αPersei and the Pleiades have revealed that main-sequence spin-down
for late-type stars is very swift, with the bulk of it completed in the first few
100Myr after arrival on the ZAMS.

The key in explaning main-sequence spin-down is the realisation that stars
with hot coronae lose mass through thermally-driven winds, and that the
presence of a coronal magnetic field—ultimately of dynamo origin—turns out
to greatly enhance the loss of angular momentum in the wind. We first ex-
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Fig. 5.8 Distribution of projected rotational velocities (v sin i) for main-sequence
stars, plotted in an observational HR diagram. Luminosity increases vertically up-
wards, and effective temperature horizontally leftward. Astronomical spectral types
are listed along the upper axis. Solid lines are stellar evolutionay tracks, labeled ac-
cording to mass in solar units. These tracks, particularly for M/M⊙ ∼

> 1.2, are now
somewhat obsolete. Diagram reproduced from Kraft, R. 1967, ApJ, 150, 551 (Figure
1, p. 558).

amine this issue, using a geometrically simple but dynamically self-consistent
MHD wind solution known as the Weber–Davis model.

Working under ideal MHD, we consider a steady (∂/∂t = 0) spherically
symmetric (∂/∂θ = ∂/∂φ = 0) compressible outflow from a star rotating at
angular velocity Ω and characterized by a known surface radial component
of the magnetic field Br0. The coronal base temperature T (r0) ≡ T0 is con-
sidered given, and the energy equation is summarily dealt with by assuming
a polytropic relationship between pressure and density. Outflow solutions are
sought only in the equatorial plane, where we also set Bθ = 0. This may
smell of monopolar magnetic fields, but this is actually a fair representation
of the interplanetary magnetic field measured in the ecliptic plane during
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Fig. 5.9 Main-sequence temporal evolution of rotation rates, Calcium emission and
Lithium abundance in solar-type stars. Diagram reproduced from Skumanich, A.
1972, ApJ, 171, 565 (Figure 1, p. 566).

solar minimum conditions. Under these assumptions, mass conservation and
the ∇ ·B = 0 constraint yield two conservation statements for the mass and
magnetic flux across a spherical surface:

1

r2
∂

∂r
(r2̺ur) = 0 → r2̺ur = C1 , (5.6)

1

r2
∂

∂r
(r2Br) = 0 → r2Br = C2 , (5.7)

where C1 and C2 are integration constants, corresponding respectively to
the mass and magnetic flux carried by the wind. The φ-component of the
induction equation is also readily integrated to yield:

1

r

∂

∂r
(rurBφ − ruφBr) = 0 → r(urBφ − uφBr) = C3 . (5.8)

To evaluate the integration constant C3 we transform to a reference frame
co-rotating with the star, i.e., uφ → u′

φ + Ωr, where the prime indicates
evaluation in the co-rotating frame. Note that this (non-relativistic) trans-
formation leaves the radial components of u and B unaffected. In that frame
B is stationary, and since we are working under the flux-freezing approxima-
tion u and B must be parallel: u′

r/u
′
φ = B′

r/B
′
φ. Since Br = B′

r, eq. (5.8)

yields C3 = −Ωr2Br, so that
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Bφ =
Br

ur
(uφ −Ωr) . (5.9)

Now, under the geometry and flow symmetry considered here, the φ-components
of the momentum equation can be brought to the form:

∂

∂r
(ruφ) =

Br

µ0̺ur

∂

∂r
(rBφ) ; (5.10)

but in view of eqs. (5.6) and (5.7), we have Br/µ0̺ur = C2/µ0C1, i.e., a
constant! Consequently, eq. (5.10) integrates immediately to

ruφ − rBφBr

µ0̺ur
= L , (5.11)

where L is yet another integration constant. It has a well-defined physical
meaning, as it corresponds to the total specific angular momentum carried
away by the wind, which is made up of two contributions: the specific angular
momentum of the expanding fluid (first term on LHS), and the torque den-
sity associated with magnetic tension. Using eq. (5.9) to substitute for Bφ,
and expressing the magnetic field components in terms of the corresponding
Alfvén velocity components (§1.8):

ar =
Br√
µ0̺

, aφ =
Bφ√
µ0̺

, (5.12)

produces, after some straightforward algebra:

uφ = Ωr
(u2

rL/Ωr2)− a2r
u2
r − a2r

. (5.13)

The denominator of this expression vanishes if the radial flow velocity ever
becomes equal to the radial Alfvén speed, unless the numerator also happens
to vanish. Regularity of the solution through this critical point then requires
that we set

L = Ωr2A , (5.14)

where rA is the Alfvén radius, defining the spherical shell where ur = ar. Now,
remember that L is the total angular momentum carried away by the wind,
including the torque density provided by magnetic tension. Equation (5.14)
states that this is equal to the angular momentum that would be carried
away by an unmagnetized wind flowing strictly radially, and co-rotating with
the solar/stellar surface out to radius rA.

Equation (5.14) holds only in the equatorial plane, where the WD solution
is computed. The WD model can be “stretched” to the whole sphere by
assuming that a whole spherical shell is co-rotating out to rA; this means
replacing eq. (5.7) by:
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Lsph =
2

3
Ωr2A , (5.15)

where the factor 2/3 arises from the moment of inertia integral. The angular
momentum loss rate then follows directly from mutiplication by the mass loss
rate:

dJ

dt
= Ṁ × Lsph = −4π̺Ar

2
AurA

(
2

3
Ωr2A

)

. (5.16)

At the Alfvén radius we have urA = arA, with B2
rA = 4π̺Aa

2
rA. Moreover,

conservation of magnetic flux implies r20Br0 = r2ABrA. Putting all this into
eq. (5.16) leads to

dJ

dt
= −2

3
B2

r0r
4
0Ωa−1

rA . (5.17)

Knowing the stellar moment of inertia I and assuming rigid rotation through-
out the interior, the spin-down timescale is readily calculated:

τsp = IΩ

(
dJ

dt

)−1

. (5.18)

Now, for rotating magnetized winds that are mostly thermally driven, arA is
of the order of the sound speed (cs =

√
kT/µmp ∼ 105m s−1 for a coronal

temperature of ∼ 106K) to within a factor of two or so. If the coronal tem-
perature is held fixed, this means that the angular momentum loss rate is
only a function of the rotation rate and surface magnetic field strength. We
encountered in earlier chapters various lines of argument indicating that the
dynamo-generated magnetic field strength should increase with increasing ro-
tation rate, an expectation also buttressed by observations of chromospheric
activity in solar-type stars of varying rotation rates. If one assumes Br0 ∝ Ω,
and for a fixed moment of inertia on the main-sequence (a very good approx-
imation, for a change...), eq. (5.17) then lead to

dΩ

dt
∝ −Ω3 . (5.19)

This already indicates that faster rotating stars spin down a lot faster than
their more slowly rotating cousins, which provides a natural explanation for
the convergence of rotation rates observed at a given spectral types when
looking at stellar rotation in progressively older clusters. Now, eq. (5.19)
readily integrates to.

1

Ω2(t)
− 1

Ω2(t0)
∝ t− t0 , (5.20)

where t0 is the time of arrival on the ZAMS (or shortly thereabouts). In the
asymptotic limit t ≫ t0, Ω ≪ Ω(t0), this becomes

Ω(t) ∝ t−1/2 , (5.21)
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which, how about that, is precisely the power-law relationship inferred ob-
servationally by Skumanich (cf. Fig. 5.9). For the sun, with I ≃ 1047 kg m2

Ω = 2.6× 10−6 rad s−1 and B0 ∼ 2× 10−4 T one finds a leasurely spin-down
timescale of about 5 Gyr; but in a “young sun” with a rotation period of 2
day and B0 = 3× 10−3T, this drops to a few 107 yr, indicating that rapidly
rotating young solar-type stars spin down swiftly after arriving on the ZAMS.

5.3.4 Modelling Dynamo Action in Solar-Type Stars

The above discussion indicates that one could expect dynamo action to be
far more vigorous in young, rapidly rotating solar-type stars, and the good
fit of our spin-down model prediction with Skumanich’s t−1/2 relationship
even suggests a linear increase of magnetic field strength with rotation rate,
at least up to ∼ 10 times the present solar rotation if coronal X-Ray emission
can be taken as proxy of dynamo efficiency. Can such trends be convincingly
recovered from the various solar dynamo models introduced in chapter 3?
In practice, we are facing a number of difficulties in carrying out such an
“extrapolation” to stars other than the sun, with convection zones of greater
or lesser depths, differing luminosity, and a range of rotation rates. At the
very least we need to be able to specify:

1. How the form and magnitude of differential rotation and meridional circu-
lation change with rotation rate and luminosity, the latter determining the
magnitude of convective velocities, and thus the magnitude of the turbu-
lent Reynolds stresses powering the large-scale flows important for dynamo
action;

2. How the α-effect and turbulent diffusivities vary in stars with different
rotation rates and convection zone properties;

3. How the process of sunspot formation (essential in Babcock–Leightonmod-
els) varies with varying convection zone depth, rotation, etc.

It is quite sobering to reflect upon the fact that we currently do not have
theories or models allowing us to provide firm, quantitative and robust an-
swers to any of these questions. Moreover, the preceding two chapters should
have made it clear that even in the sun, we don’t really know for sure what
is the mechanism responsible for the regeneration of the poloidal magnetic
component. How then can we hope to go about modelling stellar dynamos
with anything resembling confidence? At this point in time I would argue
that we cannot. However, the problem can be turned around, in that stel-
lar observations can perhaps be used to distinguish between different classes
of dynamo models. The possibility hinges on features like the distinct de-
pendency of the cycle period on model parameters in various models. For
the simple α-quenched kinematic mean-field dynamo solutions discussed in
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§3.2.9, the (dimensionless) cycle period is, to a first approximation, indepen-
dent on the dynamo numbers (see Fig. 3.6B), so that the physical period
scales primarily as

Pcyc ∝ η−1
0 [α-quenched αΩ model] , (5.22)

where η0 is the assumed turbulent diffusivity. Mean-field models includ-
ing more complex form of nonlinearities produce more complex parametric
dependencies, but a strong dependency on η always emerges. This quan-
tity, in turn, is expected to increase with increasing convective velocities
(cf. eq. (3.16)), an therefore with increasing luminosity. On the other hand,
in Babcock–Leighton dynamo models operating in the advection-dominated
regime, the cycle period is found to be controlled primarily by the turnover
time of the meridional flow cell, with a much weaker dependency on the
assumed value for the turbulent diffusivity. For the specific “solar” model
described in §3.3, the cycle period is found to vary as:

Pcyc ∝ u−0.89
0 s−0.13

0 η−0.22
0 [Babcock–Leighton] , (5.23)

where u0 is the surface meridional flow speed (see Fig. 3.10, top left), and s0
is the parameter measuring the magnitude of the Babcock–Leighton source
term in eq. (3.64)4. Unfortunately, using this relationship in conjunction with
observed stellar cycle data requires one to specify how the meridional flow
speed varies with rotation, which currently remains highly uncertain on the
theoretical and simulation fronts. But this is a very promising avenue.

All of these model-based cycle period formulae have been obtained in kine-
matic dynamo models, and how well they hold in the dynamical nonlinear
regime is entirely unknown. With regular cycles now reproduced in global 3D
MHD simulations of solar convection (cf. §3.5), these dynamical effects may
become ripe for investigation in the near future.

5.4 Fully Convective Stars

We now move to the bottom end of the main-sequence, where stars become
fully convective around spectral type M5. Observationally, no obvious dis-
continuity is observed in X-Ray or Ca H+K emission as one moves into
spectral types M, and indeed some of the more active (single) flare stars
are fast rotators of very late spectral type. Yet with such fully convective
stars we certainly encounter potential deviations from a solar-type dynamo
mechanism; without a stably stratified tachocline and radiative core to store

4 Note however that the above relation was calibrated in a relatively narrow range of
parameters: 2 ≤ u0 ≤ 30m s−1, 0.03 ≤ s0 ≤ 1m s−1, 2× 106 ≤ η0 ≤ 5× 107 m2s−1,
and is only expected to hold in the so-called advection-dominated regime; see the
paper by Dikpati & Charbonneau (1999) cited in the bibliography of chapter 3.
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and amplify toroidal flux ropes, the Babcock–Leighton mechanism (§3.3), the
tachocline α-effect and the flux-tube α-effect (§3.4) all becomes problematic.
Mean-field models based on the turbulent α-effect remain viable in principle,
but the dynamo behavior becomes dependent on the presence and strength
of differential rotation, about which we really don’t know very much in stars
other than the sun.

One might have expected dynamo action in fully convective stars—either
in late-M main-sequence or pre-main sequence TTauri stars—to be a mere
variant on core dynamo action in massive stars, but in fact a number of
significant differences come into play, related to the physical conditions at
the boundary of the convecting sphere. Full-sphere MHD simulations 5 of a
“M-star in a box” by Dobler, Stix & Brandenburg (2006) are particularly
interesting in this respect. They indicate that vigorous dynamo action does
occur, with the magnetic energy at ∼ 20% of equipartition with the turbu-
lent fluid motions at low to moderate rotation, and reaching equipartition
at high rotation rates. The simulations are characterized by a very well-
defined, persistent spatial pattern of mean kinetic helicity, again negative in
N-hemisphere (see Fig. 5.10A). This leads to the production of a well-defined
large-scale magnetic component, with energy content going from some 20%
of the total magnetic energy at low rotation, up to ∼ 50% at high rotation
rates. The large-scale field has poloidal and toroidal components of compara-
ble strengths, typical of mean-field α2 dynamos, and is often dominated by a
well-defined quadrupolar component (see Fig. 5.10B). Because the convecting
sphere cannot exchange angular momentum across its outer boundary (here
the stellar surface), differential rotation is much weaker than in the massive
star core dynamo simulations reviewed in §5.1.2), and is concentrated in the
vicinity of the rotation axis, as shown on Fig. 5.10C).

Much like in the core dynamo simulations briefly described in §5.1.2, these
simulations only reach moderate values of the viscous and magnetic Reynolds
numbers, many orders of magnitude below what one would expect under
stellar interior conditions. Nonetheless the important bottom line, once again,
is that production of magnetic field through dynamo action here also appears
inescapable.

5.5 Pre- and Post-Main-Sequence Stars

As with main-sequence late-type stars, abundant evidence for magnetic fields
in pre- and post-main sequence stars of spectral types later than F has
now been accumulating, mostly again in the form of stellar analogs to well-
observed solar phenomena: X-Ray and EUV emission, flaring, spectral vari-
ability, rotational modulation by starspots, and so on. More recently magnetic

5 The content of this section is based primarily on the paper by W. Dobler, M. Stix
& A. Brandenburg, ApJ, 638, 336 (2006)
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Fig. 5.10 Temporal+Azimuthal average of (A) kinetic helicity, (B) toroidal and
poloidal magnetic field, and (C) large-scale flows the toroidal magnetic field in a
complete MHD simulation (including overall structure) of a fully convective star in-
cluding central heat source and surface cooling. The gray scale codes kinetic helicity
in part (A), the toroidal magnetic component in (B), and the zonal flow component
in (C), gray to black (white) coding negative (positive) values. Figure adapted from
Dobler et al. 2006, ApJ, 638, 336 (Figure 5, p. 341, and Figure 10, p. 343).

Doppler imaging has been used to reconstruct the surface magnetic field of
some pre-main-sequence stars in the TTauri evolutionary phase. Whether
TTauri or giants, all these stars have low surface temperature and thick con-
vection zones, so observations of magnetic activity indicators similar to what
is observed in late-type main-sequence stars points once again to the impor-
tance of convection zones of significant radial extent below the photosphere.
Indeed, there seems to exist a rather clear-cut, slightly inclined dividing line
bisecting the upper part of the HR diagram (main-sequence and up in lumi-
nosity), on the right side (low Teff) of which evidence of magnetic activity
is ubiquitous. Things get messy again with very cool supergiants, with signs
of magnetic activity disppearing across various not quite coincident divid-
ing lines, depending on the indicator chosen (X-Ray emission, non-thermal
emission lines, etc).

With classical TTauri stars, additional complications also come from the
presence of an accretion disk, itself most likely magnetized, perhaps the site of
magnetic field generation by dynamo action, and perhaps even magnetically
coupled to its central star. Such a coupling has been invoked to explain the
(relatively) low rotation rates of TTauri stars, which after all are contracting
and accreting large amounts of mass—and angular momentum—from their
disk, and should therefore spin up far more than is observed. Indeed, without
angular momentum loss mediated by magnetic fields in the early stages of
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star formation, it is quite likely that stars could simply not eliminate enough
angular momentum to form at all!

In hot post-main sequence stars, the observational situation is not well doc-
umented or understood. It is a remarkable fact that magnetic fields have been
detected in all sdO and sdB hot subdwarfs for which a serious attempt has
been made. The evolutionary status of these objects is not well-understood,
but they most likely represent what used to be the inner core of giants prior
to the episode of strong mass loss that accompanies the transition to the hor-
izontal branch. Detection of ∼ 0.1T-strength magnetic fields in such stars
is strong evidence for the existence of magnetic fields in the deep interior of
their main-sequence progenitors.

5.6 Compact Objects

Magnetic fields in isolated white dwarfs have been detected through circu-
lar polarisation measurements in the wings of strong spectral lines, usually
Balmer lines in the so-called “DA” white dwarfs showing Hydrogen lines in
their photospheres. Actual Zeeman splitting is only detected in the most
strongly magnetized objects (∼> a few 102T). Inferred field strengths range
from a few T up to a whopping 104T, with a few objects possibly approach-
ing 105T, and the overall incidence of magnetism standing at 10–15 percent.
However, these techniques are only sensitive to large-scale magnetic fields,
still producing a net polarisation signal when integrated over the stellar disk,
and so the true incidence of magnetism in white dwarfs may actually be sig-
nificantly higher. At around 22,000K on the white dwarf cooling track, there
appears a subclass of Carbon-rich objects, the so-called “hot DQ” white
dwarfs, in which the Carbon enrichment is believed to be due to the onset
of envelope convection and associated mixing. Interestingly, the incidence of
magnetism in this subclass of white dwarfs is some four times larger than
across the overall white dwarf population. Could this sudden increase in the
incidence of magnetism be physically associated with the onset of envelope
convection through a dynamo mechanism? This interesting question remains
to be explored.

Inferred magnetic field strengths in neutron stars range from 104 to 1011T.
Neutron stars magnetic fields are of course most readily detected via the
pulsar phenomenon, arising from the misalignement of the magnetic axis
with respect to the rotation axis of the (very rapidly rotating) neutron star.
It is quite striking that the highest strengths of large-scale magnetic fields in
main-sequence stars (a few T in Ap stars), in white dwarfs (∼ 105T) and in
the most strongly magnetized neutron stars (∼ 1011 T) all amount to similar
surface magnetic fluxes, lending support to the idea that these high field
strengths can be understood from simple flux-freezing arguments (§1.10).
There is also observational evidence that actual magnetic field evolution is



5.7 Galaxies and Beyond 219

taking place as pulsars age, but this remains very slippery territory, both
from the modelling and observational points of view.

Observationally, very little is known about black holes except that there
seems to be one at the center of our galaxy, so you won’t be surprised to
hear that even less is known about black hole magnetic fields. One should
perhaps just point out that solutions to the field equations of general relativity
for rotating, electrically charged black holes do exist, which is a good start
towards magnetic fields production. Evidence to date is limited to energetic
phenomena interpreted in terms of magnetic channelling of material onto the
black hole. But beyond that, at the present time there is mostly religious
fervor.

5.7 Galaxies and Beyond

Magnetic fields in the diffuse, low-density interstellar gas is most readily
detected through synchrotron radiation emitted by relativistic charged parti-
cles spiralling along magnetic fieldlines. This technique is succesfull not only
within the Milky Way, but also for other galaxies. Other means of detec-
tion, for the time being limited to the Milky Way, include the polarisation of
optical starlight by elongated (i.e., non-spherical) dust grains aligning them-
selves perpendicularly to magnetic fieldlines; these aligned dust grains also
sometimes emit detectable polarized infrared radiation. Finally, for relatively
strong fields Zeeman splitting of spectral lines in the radio domain has also
been measured. As with stars, magnetic fields seem to be ubiquitous features
in pretty much all galaxies. Indirect evidence for the existence of extragalactic
magnetic fields also exists, with an upper limit of ∼ 10−3 nT on the mean field
strength over length scales of order 100MPc and larger. These fields could
be primordial in origin, or could have been ejected in intergalactic space by
galactic winds.

The galactic magnetic field in the solar neighbourhood has a strength of
about 0.6nT, up to a few nT near galactic center. This is indeed typical of
spiral galaxies, which show field strengths in the range 0.5–1.5nT, up to some
3nT in high density regions of spiral arms. The strongest large-scale galactic
magnetic fields so far measured have strength reaching 1nT, and have been
found in starburst galaxies. While this may seem quite low values, such field
strengths have important consequences for star formation, the distribution
of cosmic rays, and equilibrating the interstellar medium against gravity.

Given that most stars appear to be magnetized to some degrees, and that
many stars tend lose mass (some by blowing up!), it is perhaps not surprising
to detect magnetic field in the galactic interstellar medium. What is surpris-
ing is that this magnetic field tends to be organized on large spatial scales,
commensurate in fact with galactic dimensions. Such large-scale, spatially
well-organized magnetic fields are most likely produced by a dynamo mech-
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anism, not at all dissimilar to that responsible for the presence of magnetic
fields in many stars, including the Sun. Simple kinematic models, much like
those considered in §3.2, have been built, in which differential rotation in
the disk and interstellar turbulence driven by supernovae explosion and/or
magnetic buoyancy instabilities could jointly act as a αΩ dynamo on galactic
scales. Additional, indirect evidence for well-organized large-scale magnetic
fields in galaxies include the collimation of jets, and energetic phenomena
often encountered in quasars and AGN; at the present time, the most con-
vincing physical models for such phenomena all involve magnetic fields at
some level.

These galactic magnetic fields can also provide the seed required to start
up the dynamo processes in the sun and stars, as per the linearity of the
MHD induction equation, which brings us back almost to the beginning of
our grand tour of solar and stellar dynamos. The next lap is yours to take.
Have fun with it!
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Appendix A

Useful Identities and Theorems from
Vector Calculus

A.1 Vector Identities

A · (B ×C) = C · (A×B) = B · (C ×A)

A× (B ×C) = B(A ·C)−C(A ·B)

(A×B)×C = B(A ·C)−A(B ·C)

∇×∇f = 0

∇ · (∇×A) = 0

∇ · (fA) = (∇f) ·A+ f(∇ ·A)

∇× (fA) = (∇f)×A+ f(∇×A)

∇ · (A×B) = B · (∇×A)−A · (∇×B)

∇(A ·B) = (B · ∇)A+ (A · ∇)B +B × (∇×A) +A× (∇×B)

∇ · (AB) = (A · ∇)B + (B · ∇)A

∇× (A×B) = (B · ∇)A− (A · ∇)B −B(∇ ·A) +A(∇ ·B)

∇× (∇×A) = ∇(∇ ·A)−∇2A
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A.2 The Gradient Theorem

For two points a, b in a space where a scalar function f with spatial deriva-
tives everywhere well-defined up to first order,

∫ b

a

(∇f) · dℓ = f(b)− f(a) ,

independently of the integration path between a and b.

A.3 The Divergence Theorem

For any vector field A with spatial derivatives of all its scalar components
everywhere well-defined up to first order,

∫

V

(∇ ·A)dV =

∮

S

A · n̂ dS ,

where the surface S encloses the volume V .

A.4 Stokes’ Theorem

For any vector field A with spatial derivatives of all its scalar components
everywhere well-defined up to first order,

∫

S

(∇×A) · n̂ dS =

∮

γ

A · dℓ ,

where the contour γ delimits the surface S, and the orientation of the unit
normal vector n̂ and direction of contour integration are mutually linked by
the right-hand rule.



Appendix B

Coordinate Systems and the Fluid
Equations

This Appendix is adapted in part from Appendix B of the book by Jean-
Louis Tassoul entitled Theory of Rotating Stars (Princeton University Press,
1978), with a number of additions, including the MHD induction equation,
expressions for the operators u · ∇ and ∇2 acting on a vector field, and
for the divergence of a second rank tensor. Note also, in sections B.1.4 and
B.2.4, the quantities in square brackets correspond to the components of the
deformation tensor Djk = (1/2)(∂juk + ∂kuj).

B.1 Cylindrical Coordinates (s, φ, z)

B.1.1 Conversion to Cartesian Coordinates

x = s cosφ , y = s sinφ , s =
√

x2 + y2 , φ = atan(y/x) , z = z .

êx = cosφ ês − sinφ êφ , êy = sinφ ês + cosφ êφ ,

ês = cosφ êx + sinφ êy , êφ = − sinφ êx + cosφ êy , êz = êz .

B.1.2 Infinitesimals

dℓ = dsês + sdφ êφ + dz êz

dV = s ds dφdz
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Fig. B.1 Geometric definition of cylindrical coordinates. The coordinate ranges are
s ∈ [0,∞], φ ∈ [0, 2π], z ∈ [−∞,∞]. The cylindrical radius s is measured perpendic-
ularly from the cartesian z-axis. The zero point of the azimuthal angle φ is on the
cartesian x-axis. The local unit vector triad is oriented such that êz = ês × êφ.

B.1.3 Vector Operators

D

Dt
=

∂

∂t
+ us

∂

∂s
+

uφ

s

∂

∂φ
+ uz

∂

∂z

∇f =
∂f

∂s
ês +

1

s

∂f

∂φ
êφ +

∂f

∂z
êz

(u · ∇)A =

(

u · ∇As −
uφAφ

s

)

ês +

(

u · ∇Aφ +
uφAs

s

)

êφ + (u · ∇Az) êz

∇ ·A =
1

s

∂

∂s
(sAs) +

1

s

∂Aφ

∂φ
+

∂Az

∂z

∇×A =

(
1

s

∂Az

∂φ
− ∂Aφ

∂z

)

ês

+

(
∂As

∂z
− ∂Az

∂s

)

êφ +
1

s

(
∂(sAφ)

∂s
− ∂As

∂φ

)

êz
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∇2 =
1

s

∂

∂s

(

s
∂

∂s

)

+
1

s2
∂2

∂φ2
+

∂2

∂z2

∇2A =

(

∇2As −
As

s2
− 2

s2
∂Aφ

∂φ

)

ês

+

(

∇2Aφ − Aφ

s2
+

2

s2
∂As

∂φ

)

êφ +
(
∇2Az

)
êz

B.1.4 The Divergence of a Second-Order Tensor

[∇ · T]s =
1

s

∂(sTss)

∂s
+

1

s

∂Tφs

∂φ
+

∂Tzs

∂z
− Tφφ

s

[∇ · T]φ =
1

s

∂sT(sφ)

∂s
+

1

s

∂Tφφ

∂φ
+

∂Tzφ

∂z
+

Tφs

s

[∇ · T]z =
1

s

∂(sTsz)

∂s
+

1

s

∂Tφz

∂φ
+

∂Tzz

∂z

B.1.5 Components of the Viscous Stress Tensor

τss = 2µ

[
∂us

∂s

]

+ (µϑ − 2

3
µ)∇ · u

τφφ = 2µ

[
1

s

∂uφ

∂φ
+

us

s

]

+ (µϑ − 2

3
µ)∇ · u

τzz = 2µ

[
∂uz

∂z

]

+ (µϑ − 2

3
µ)∇ · u

τsφ = τφs = 2µ

[
1

2

(
1

s

∂us

∂φ
+ s

∂

∂s

uφ

s

)]

τφz = τzφ = 2µ

[
1

2

(
∂uφ

∂z
+

1

s

∂uz

∂φ

)]

τzs = τsz = 2µ

[
1

2

(
∂uz

∂s
+

∂us

∂z

)]
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B.1.6 Equations of Motion

̺

(

Dus

Dt
−

u2
φ

s

)

= −̺
∂Φ

∂s
− ∂p

∂s
+

Bz

µ0

(
∂Bs

∂z
− ∂Bz

∂s

)

− Bφ

µ0s

(
∂(sBφ)

∂s
− ∂Bs

∂φ

)

+
1

s

∂

∂s
(sτss) +

1

s

∂τsφ
∂φ

+
∂τsz
∂z

− τφφ
s

̺

(
Duφ

Dt
− uφus

s

)

= −̺

s

∂Φ

∂φ
− 1

s

∂p

∂φ
+

Bs

µ0s

(
∂(sBφ)

∂s
− ∂Bs

∂φ

)

− Bz

µ0

(
1

s

∂Bz

∂φ
− ∂Bφ

∂z

)

+
1

s

∂

∂s
(sτφs) +

1

s

∂τφφ
∂φ

+
∂τφz
∂z

+
τsφ
s

̺
Duz

Dt
= −̺

∂Φ

∂z
− ∂p

∂z
+

Bφ

µ0

(
1

s

∂Bz

∂φ
− ∂Bφ

∂z

)

− Bs

µ0

(
∂Bs

∂z
− ∂Bz

∂s

)

+
1

s

∂

∂s
(sτzs) +

1

s

∂τzφ
∂φ

+
∂τzz
∂z

B.1.7 The Energy Equation

̺T
Ds

Dt
= Φu ++Φη +

1

s

∂

∂s

[

χs
∂T

∂s

]

+
1

s2
∂

∂φ

[

χ
∂T

∂s

]

+
∂

∂z

[

χ
∂T

∂z

]

Φu = 2µ(D2
ss +D2

φφ +D2
zz + 2D2

sφ + 2D2
φz + 2D2

zs) + (µϑ − 2

3
µ)(∇ · u)2

Φη =
η

µ0

[(
1

s

∂Bz

∂φ
− ∂Bφ

∂z

)2

+

(
∂Bs

∂z
− ∂Bz

∂s

)2

+
1

s2

(
∂(sBφ)

∂s
− ∂Bs

∂φ

)2
]

B.1.8 The MHD Induction Equation

∂Bs

∂t
=

1

s

∂

∂φ
(usBφ − uφBs)−

∂

∂z
(uzBs − usBz)

− 1

s2
∂η

∂φ

(
∂(sBφ)

∂s
− ∂Bs

∂φ

)

+
∂η

∂z

(
∂Bs

∂z
− ∂Bz

∂s

)

+ η

(

∇2Bs −
Bs

s2
− 2

s2
∂Bφ

∂φ

)
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∂Bφ

∂t
=

∂

∂z
(uφBz − uzBφ)−

∂

∂s
(usBφ − uφBs)

− ∂η

∂z

(
1

s

∂Bz

∂φ
− ∂Bφ

∂z

)

+
1

s

∂η

∂s

(
∂(sBφ)

∂s
− ∂Bs

∂φ

)

+ η

(

∇2Bφ − Bφ

s2
+

2

s2
∂Bs

∂φ

)

∂Bz

∂t
=

1

s

∂

∂s
(suzBs − susBz)−

1

s

∂

∂φ
(uφBz − uzBφ)

− ∂η

∂s

(
∂Bs

∂z
− ∂Bz

∂s

)

+
1

s

∂η

∂φ

(
1

s

∂Bz

∂φ
− ∂Bφ

∂z

)

+ η
(
∇2Bz

)

B.2 Spherical Coordinates (r, θ, φ)

Fig. B.2 Geometric definition of polar spherical coordinates. The coordinate ranges
are r ∈ [0,∞], θ ∈ [0, π], φ ∈ [0, 2π]. The zero point of the azimuthal angle φ is
on the cartesian x-axis and the zero point of the polar angle θ (sometimes called
colatitude) is on the cartesian z-axis. Note that in so-called geographical coordinates,
longitude ≡ φ, but latitude ≡ π/2 − θ. The local unit vector triad is oriented such
that êr = êθ × êφ.
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B.2.1 Conversion to Cartesian Coordinates

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ .

r =
√

x2 + y2 + z2 , θ = atan(
√

x2 + y2/z) , φ = atan(y/x) .

êx = sin θ cosφ êr + cos θ cosφ êθ − sinφ êφ ,

êy = sin θ sinφ êr + cos θ sinφ êθ + cosφ êφ ,

êz = cos θ êr − sin θ êθ .

êr = sin θ cosφ êx + sin θ sinφ êy + cos θ êz ,

êθ = cos θ cosφ êx + cos θ sinφ êy − sin θ êz ,

êφ = − sinφ êx + cosφ êy .

B.2.2 Infinitesimals

dℓ = drêr + rdθêθ + r sin θdφêφ

dV = r2 sin θ dr dθ dφ

B.2.3 Operators

D

Dt
=

∂

∂t
+ ur

∂

∂r
+

uθ

r

∂

∂θ
+

uφ

r sin θ

∂

∂φ

∇f =
∂f

∂r
êr +

1

r

∂f

∂θ
êθ +

1

r sin θ

∂f

∂φ
êφ

(u · ∇)A =

(

u · ∇Ar −
uθAθ

r
− uφAφ

r

)

êr

+

(

u · ∇Aθ −
uφAφ

r
cot θ +

uθAr

r

)

êθ

+

(

u · ∇Aφ +
uφAr

r
+

uφAθ

r
cot θ

)

êφ
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∇ ·A =
1

r2
∂

∂r
(r2Ar) +

1

r sin θ

∂(Aθ sin θ)

∂θ
+

1

r sin θ

∂Aφ

∂φ

∇×A =
1

r sin θ

(
∂(Aφ sin θ)

∂θ
− ∂Aθ

∂φ

)

êr

+
1

r sin θ

(
∂Ar

∂φ
− ∂(Aφr sin θ)

∂r

)

êθ +
1

r

(
∂(rAθ)

∂r
− ∂Ar

∂θ

)

êφ

∇2 =
1

r2
∂

∂r

(

r2
∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2

∇2A =

(

∇2Ar −
2Ar

r2
− 2

r2 sin θ

∂Aθ sin θ

∂θ
− 2

r2 sin θ

∂Aφ

∂φ

)

êr

+

(

∇2Aθ +
2

r2
∂Ar

∂θ
− Aθ

r2 sin2 θ
− 2 cos θ

r2 sin2 θ

∂Aφ

∂φ

)

êθ

+

(

∇2Aφ +
2

r2 sin θ

∂Ar

∂φ
+

2 cos θ

r2 sin2 θ

∂Aθ

∂φ
− Aφ

r2 sin2 θ

)

êφ

B.2.4 The Divergence of a Second-Order Symmetric
Tensor

[∇ · T]r =
1

r2
∂(r2Trr)

∂r
+

1

r sin θ

∂(Tθr sin θ)

∂θ
+

1

r sin θ

∂Tφr

∂φ
− Tθθ + Tφφ

r

[∇ · T]θ =
1

r2
∂(r2Trθ)

∂r
+

1

r sin θ

∂(Tθθ sin θ)

∂θ
+

1

r sin θ

∂Tφθ

∂φ
+

Tθr

r
− Tφφ cot θ

r

[∇ · T]φ =
1

r2
∂(r2Trφ)

∂r
+

1

r sin θ

∂(Tθφ sin θ)

∂θ
+

1

r sin θ

∂Tφφ

∂φ
+

Tφr

r
+

Tφθ cot θ

r

B.2.5 Components of the Viscous Stress Tensor

τrr = 2µ

[
∂ur

∂r

]

+ (µϑ − 2

3
µ)∇ · u

τθθ = 2µ

[
1

r

∂uθ

∂θ
+

ur

r

]

+ (µϑ − 2

3
µ)∇ · u
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τφφ = 2µ

[
1

r sin θ

∂uφ

∂φ
+

ur

r
+

uθ cot θ

r

]

+ (µϑ − 2

3
µ)∇ · u

τrθ = τθr = 2µ

[
1

2

(
1

r

∂ur

∂θ
+ r

∂

∂r

uθ

r

)]

τθφ = τφθ = 2µ

[
1

2

(
1

r sin θ

∂uθ

∂φ
+

sin θ

r

∂

∂θ

uφ

sin θ

)]

τφr = τrφ = 2µ

[
1

2

(

r
∂

∂r

uφ

r
+

1

r sin θ

∂ur

∂φ

)]

B.2.6 Equations of Motion

̺

(

Dur

Dt
−

u2
θ + u2

φ

r

)

= −̺
∂Φ

∂r
− ∂p

∂r

+
Bφ

µ0r sin θ

(
∂Br

∂φ
− ∂

∂r
(Bφr sin θ)

)

− Bθ

µ0r

(
∂(rBθ)

∂r
− ∂Br
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1
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r

∂
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(τrθ sin θ) +

∂τrφ
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r

̺

(

Duθ

Dt
+

uruθ

r
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u2
φ cot θ

r

)
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r

∂Φ

∂θ
− 1

r

∂p

∂θ
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µ0r

(
∂(rBθ)

∂r
− ∂Br

∂θ

)

− Bφ

µ0r sin θ

(
∂(Bφ sin θ)

∂θ
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)

+
1

r sin θ
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sin θ

r

∂
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(r2τθr) +

∂

∂θ
(τθθ sin θ) +

∂τθφ
∂φ

]

+
τrθ
r

− τφφ cot θ
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̺

(
Duφ

Dt
+

uruφ

r
+

uθuφ cot θ

r

)

= − ̺

r sin θ

∂Φ

∂φ
− 1

r sin θ

∂p

∂φ

+
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µ0r sin θ

(
∂(Bφ sin θ)

∂θ
− ∂Bθ

∂φ

)
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µ0r sin θ
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∂Br

∂φ
− ∂(Bφr sin θ)

∂r

)

+
1
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∂
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(τφθ sin θ) +

∂τφφ
∂φ
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τrφ
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+
τθφ cot θ
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B.2.7 The Energy Equation

̺T
Ds

Dt
= Φu + Φη +

1

r2
∂

∂r

[

χr2
∂T

∂r

]

+
1

r2 sin θ

∂

∂θ

[

χ sin θ
∂T

∂θ

]

+
1

r2 sin2 θ

∂

∂φ
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χ
∂T

∂φ
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Φu = 2µ(D2
rr +D2

θθ +D2
φφ + 2D2

rθ + 2D2
θφ + 2D2

φr) + (µϑ − 2

3
µ)(∇ · u)2

Φη =
η

µ0r2 sin
2 θ
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∂(Bφ sin θ)

∂θ
− ∂Bθ
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)2

+
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∂Br

∂φ
− ∂(Bφr sin θ)

∂r

)2
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∂r
− ∂Br
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)2
]

B.2.8 The MHD Induction Equation

∂Br
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=

1

r sin θ
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∂

∂θ
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∂
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r2
∂η
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+
1
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− ∂(Bφr sin θ)
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)
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∂φ

)
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1

r sin θ

∂
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∂η
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∂Bφ

∂t
=

1

r

[
∂

∂r
(ruφBr − rurBφ)−

∂

∂θ
(uθBφ − uφBθ)

]

− 1

r sin θ

∂η

∂r

(
∂Br

∂φ
− ∂(Bφr sin θ)

∂r

)

+
1

r2 sin θ

∂η

∂θ

(
∂(Bφ sin θ)

∂θ
− ∂Bθ

∂φ

)

+ η

(
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Appendix C

Physical and Astronomical Constants

C.1 Physical Constants

Physical Quantity Symbol Value Units (SI)

Charge of electron e 1.602 × 10−19 C
Mass of electron me 9.109 × 10−31 kg
Mass of proton mp 1.673 × 10−27 kg
Permittivity of vacuum ε0 8.854 × 10−12 C2N−1m−2

Permeability of vacuum µ0 4π × 10−7 N A−2

Speed of light c 2.998 × 108 m s−1

Planck constant h 6.626 × 10−34 J s
Boltzmann constant h 1.381 × 10−23 J K−1

Stefan–Boltzmann constant σ 5.670 × 10−8 J K−4m−2s−1

Gravitational constant G 6.671 × 10−11 m3kg−1s−2

C.2 Astronomical Constants

Astronomical Quantity Symbol Value Units (SI)

Earth mass M⊕ 5.977 × 1024 kg
Earth radius R⊕ 6.378 × 106 m
Astronomical Unit AU 1.496 × 1011 m
Solar mass M⊙ 1.989 × 1030 kg
Solar radius R⊙ 6.960 × 108 m
Solar luminosity L⊙ 3.83 × 1026 J s−1

Parsec pc 3.086 × 1016 m
Light-year ly 9.461 × 1015 m
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Appendix D

Maxwell’s Equations and Physical Units

Electromagnetism is, unfortunately, a subfield of physics where the choice of
units does not only influence the numerical values assigned to measurements,
but also the mathematical form of the fundamental laws, i.e., Maxwell’s equa-
tions.

D.1 Maxwell’s Equations

The whole mess in converting SI units to the astrophysically ubiquitous CGS
units all harks back to the definition for the unit of charge, as embodied in
Coulomb’s Law. Under the SI system we write the electrostatic force between
two charges q1 and q2 located at positions x1 and x2 as

F =
1

4πε0

q1q2
r2

r̂ [SI] , (D.1)

with electrical charge measured in coulomb, and with r ≡ x1 − x2 for no-
tational brevity; whereas under the CGS system the constant 1/4πε0 is ab-
sorbed into the definition of the unit of charge:

F =
q1q2
r2

r̂ [CGS] , (D.2)

with electrical charge now measured in “electrostatic units”, abbreviated
“esu” and sometimes also called “statcoulomb”. It electrostatics it is rela-
tively easy to switch from CGS to SI with the simple substitution ε0 →
1/(4π). With electrical currents now measured in esu s−1 in the CGS system,
and remembering that c2 = (ε0µ0)

−1, the µ0/4π prefactor in the Biot–Savart
Law now becomes 1/c :

B =
1

c

∫
dℓ× r

r2
[CGS] [Biot–Savart] . (D.3)
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If you then now go through the process of re-constructing Maxwell’s equa-
tions under these two new forms for the fundamental relations (electric and
magnetic forces), you eventually get to

∇ ·E = 4π̺e [Gauss’ Law] , (D.4)

∇ ·B = 0 [Anonymous] , (D.5)

∇×E = − 1

c

∂B

∂t
[Faraday’s Law] , (D.6)

∇×B =
4π

c
J +

1

c

∂E

∂t
[Ampère/Maxwell’s Law] . (D.7)

In some sense, the CGS system is perhaps more “natural”, as it omits the
introduction of new, apparently fundamental physical constants ε0 and µ0,
to simply stick with the speed of light c, the only price to pay being an
extraneous factor 4π in Gauss’ Law. The Lorentz force and Poynting vector
become, in CGS units:

F = q(E +
1

c
u×B) [Lorentz Force] , (D.8)

S =
c

4π
(E ×B) [Poynting Flux] , (D.9)

and the electrostatic and magnetic energies:

Ee =
1

8π

∫

E2dV , (D.10)

EB =
1

8π

∫

B2dV . (D.11)

D.2 Conversion of Units

The Table that follows gives you the conversion factor (f) required to go
from SI to cgs units, i.e., SI Unit = f × cgs units. Any “3” appearing in a
given value for f is a notational shortcut for 2.99792458.

For a somewhat humourous close to this rather dry Appendix, here are
five different ways, actually to be found in various textbooks or research
monographs, to express teslas in terms of other fundamental SI units:

1 T = 1
V s

m2
= 1

N

Am
= 1

kg

A s2
= 1

Wb

m2
= 1

kg

C s
. (D.12)
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Table D.1 Conversion between SI ands CGS units

Quantity SI name SI symbol conversion factor f CGS name CGS symbol

Length meter m 102 centimeter cm
Mass kilogram kg 103 gram g
Force newton N 105 dyne dyne
Energy joule J 107 erg erg
Charge coulomb C 3× 109 electrostatic units esu
Current ampere A 3× 109 statampere esu s−1

Potential volt V 1/300 statvolt statvolt
Electric field — V m−1 (1/3)×10−4 — statvolt cm−1

Magnetic field tesla T 104 gauss G
Magnetic flux weber Wb 108 maxwell Mx
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