
Solar Physics
DOI: 10.1007/•••••-•••-•••-••••-•

AN EXPLORATION OF NON-KINEMATIC
EFFECTS IN FLUX TRANSPORT DYNAMOS

Dário Passos1,2,3,♣, Paul Charbonneau2,♠,
Patrice Beaudoin2,♡

c⃝ Springer ••••

Abstract
Recent global magnetohydrodynamical simulations of solar convection produc-

ing a large-scale magnetic field undergoing regular, solar-like polarity reversals also
present related cyclic modulations of large-scale flows developing in the convecting
layers. Examination of these simulations reveal that the meridional flow, a crucial
element in flux transport dynamos, is driven at least in part by the Lorentz force
associated with the cycling large-scale magnetic field. This suggests that the back-
reaction of the field onto the flow may have a pronounced influence on the long
term evolution of the dynamo. We explore some of the associated dynamics using
a low order dynamo model that includes this Lorentz force feedback. We identify
several characteristic solutions which include single period cycles, period doubling
and chaos. To emulate the role of turbulence in the back-reaction process we subject
the model to stochastic fluctuations in the parameter that controls the Lorentz force
amplitude. We find that short term fluctuations provide long term modulations of
the solar cycle and, in some cases, grand minima episodes where the amplitude of the
magnetic field decays to near zero. The chain of events that trigger these quiescent
phases is identified. A subsequent analysis of the energy transfer between large scale
fields and flows in the global magnetohydrodynamical simulation of solar convection
shows that the magnetic field extracts energy from the solar differential rotation and
deposits part of that energy into the meridional flow. The potential consequences
of this marked departure from the kinematic regime are discussed in the context of
current solar cycle modelling efforts based on flux transport dynamos.
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1. Introduction

The long phase of very low activity having separated sunspot cycle 23 from cycle 24
has been unusual in more than its duration (White et al., 2011). Both the solar polar
magnetic field and interplanetary magnetic field have reached record low values; the
poleward propagating branch of the rotational torsional oscillations has failed to
appear (Howe et al., 2011); the solar F10.7 radio flux failed to track sunspot number
in its usual manner (Tapping and Valdés, 2011); and the solar irradiance itself may
have hit record low values (Fröhlich, 2011), although this latter point remains subject
of debate as it hinges on the manner irradiance composites are constructed from the
disparate datasets spanning 30 years of space-borne measurements.

This state of affairs has prompted a flurry of modelling activities, whereby various
types of dynamo and surface magnetic flux evolution models have been used to
design explanations for these various anomalies. Prominent among these explana-
tory frameworks have been the so-called flux transport dynamos, in which both the
equatorward propagation of activity belts and poleward transport of surface fields
leading to polarity reversal are ascribed to the conveyor-belt effect of the large-scale
meridional flow believed to pervade the solar convective envelope (see Charbonneau
(2010) for a review). That forced variations in the meridional flow speed, whether
stochastic or persistent, can affect the cycle amplitude in such models has been known
for many years, and many specific examples have been published (e.g., Charbonneau
and Dikpati (2000); Bushby and Tobias (2007); Passos and Lopes (2008); Lopes
and Passos (2009); Passos and Lopes (2011); Karak (2010). However, modelling
specifically targeted at the cycle 23/24 minimum has produced some interesting
novel results. For example, Nandy et al. (2011) have shown that an increase in the
meridional flow speed in the rising phase of the cycle, followed by a decrease in the
descending phase, could produce both a long minimum and a low polar field strength.
Although this trend runs counter to observational inferences of the surface meridional
flow (see Hathaway and Rightmire (2010); but also Basu and Antia (2010); Ulrich
(2010)), the discrepancy may well be related to the development of a high-latitude
counterrotating secondary meridional flow cell in the late descending phase of cycle
23, which in itself could yield a delayed onset for cycle 24 as well as low polar field
strengths (see Jiang et al. (2009); Dikpati et al. (2010)).

At any rate, all of the aforecited calculations utilize dynamo and/or surface flux
transport models in which the spatial form of the meridional flow and its time vari-
ation (if any) are specified a priori, sometimes on the basis of surface observations,
sometimes not. Indeed, with some rare exceptions (e.g., Rempel (2006), Karak and
Choudhuri (2011)) all flux transport dynamo models published to date operate in this
kinematic regime, where the backreaction of the Lorentz force on the relevant flows
—meridional circulation, but also differential rotation and small-scale turbulence— is
altogether neglected or, at best, modeled using simple and ad hoc algebraic quenching
nonlinearities acting on the model’s large-scale flows and/or source terms. This poses
severe limitations on the explanatory capabilities of such models.

Our aim here is to go beyond this kinematic regime and explore the impact of
dynamical magnetic backreaction of the dynamo-generated magnetic field on the
global properties of the dynamo itself. Towards this end we take advantage of recent
global magnetohydrodynamical simulations of solar convection producing solar-like
cycles in the large-scale magnetic field they generate (Ghizaru et al., 2010; Racine
et al., 2011). In such simulations, the nonlinear interaction between flow and field
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is treated in a dynamically consistent manner at all spatial and temporal scales
resolved in the simulations. In principle, any variation of the meridional flow can
then be retraced to its dynamical origin by a posteriori analysis of the simulation
output.

The remainder of this paper is organized as follows. In §2, we first examine and
analyze a simulation output to extract trends between variations of the azimuthally-
averaged large-scale meridional flow and magnetic field. Guided by these findings,
we turn in §3 to a well-validated low-order dynamo model to further explore the
variety of behaviors that could potentially materialize through the backreaction of
the Lorentz force on the meridional flow. In §4 we add stochastic forcing to this low-
order model, and investigate the resulting patterns of amplitude fluctuations, as well
as the occurrence of Maunder-Minimum-like epochs of strongly suppressed activity.
Armed with the insight so gained, we conclude in §5 by returning to the simulation
output, to better understand the ways in which this magnetic backreaction regulates
the amplitude of cycles developing therein.

2. Spatiotemporal variations of meridional flow in simulations

In kinematic flux transport dynamo models, the absence of dynamical feedback on
the flow by the Lorentz force implies that the magnetic field is passively driven by
whatever large-scale flow has been prescribed; in other words, the flow drives the
magnetic field, and this is precisely what is implied by the “conveyor belt” analogy
often tagged to flux transport dynamos. Moving to a fully dynamical situation, with
the Lorentz force feedback now included, opens the possibility that the large-scale
magnetic field could drive the flow, rather than the other way around. So the first
question to be addressed is: is the flow driving the field, or the field driving the flow?
or some possibly spatiotemporally-dependent combination of these two effects?

In order to seek a first answer to this question, we analyze the output of one of
the global MHD simulations of the solar convection zone produced by Ghizaru et
al. (2010) using the MHD simulation code EULAG-MHD (Charbonneau and Smo-
larkiewicz, 2011). This code solves the anelastic magnetohydrodynamical equations
in a thick, thermally-forced stratified fluid shell (0.62 ≤ r/R⊙ ≤ 0.96) rotating
at the solar rate and convectively unstable in the upper two thirds of the domain
(0.718 ≤ r/R⊙ ≤ 0.96). At the algorithmic level, these simulations utilize a non-
oscillatory forward-in-time upwind advection scheme, which guarantees the nonlinear
stability of field gradients developing down to the mesh cell size, which in the present
context yields a maximally turbulent state on a given mesh size. This permits the
use of a relatively small spatial mesh, and therefore allows very long integration
times. In the simulations analyzed herein, all dissipative effects are delegated to
the numerical scheme, with the exception of radiative diffusion which is explicitly
included in the energy equation. One disadvantage of this so-called implicit large-
eddy simulation approach is the difficulty to directly estimate the Reynolds numbers
from the simulation output; for the simulations considered here, estimates based on
turbulent energy spectra suggest values ∼ 102 (Ghizaru et al., 2010), with magnetic
Prandtl number of order unity. Full details on algorithmic implementation and model
setup are provided in (Charbonneau and Smolarkiewicz, 2011), to which we refer the
interested reader.
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The particular simulation we are using is computed on a relatively coarse spatial
mesh, namely 128 × 64 × 47 in longitude × latitude × radius, spans 3615 solar
days (nearly 300 years), and exhibits a number of solar-like features, including: (1)
buildup of a strong (few kG) toroidal magnetic component peaking at the base of the
convective layers, (2) regular magnetic polarity reversals with a period in the range
of 35–40 years, (3) well-defined surface dipole moment, with the surface field strongly
peaked at high latitudes, (4) internal differential rotation characterized by equatorial
acceleration, polar decceleration, and a thin, modest tachocline-like rotational shear
layer immediately beneath the convective layers, (5) torsional oscillations superim-
posed on the mean differential rotation, with twice the magnetic cycle period and
amplitudes of a few nHz.

These simulations are fully dynamical on all spatiotemporally-resolved scales.
Their analysis by Racine et al. (2011) indicates that dynamo action therein can be
understood as akin to the α2Ω of mean-field theory, in which shearing by differential
rotation and the turbulent electromotive force both contribute to the production
of the large-scale axisymmetric toroidal magnetic component. This type of dynamo
action differs in some important ways from what is usually incorporated in some of
the kinematic flux transport dynamos commonly used nowadays to model —and even
predict— various characteristics of the solar cycle: there are no emerging or decaying
sunspots and active regions in these simulations, and therefore no Babcock-Leighton
mechanism, so that the production of the poloidal large-scale magnetic compo-
nent is wholly due to the action of the turbulent electromotive force. Nonetheless,
these simulations do develop an axisymmetric large-scale meridional flow component
throughout the convective layers and, as will be shown presently, this meridional
flow components does show a well-defined pattern of spatiotemporal variations on
the same period as the magnetic cycle. These numerical simulation data are thus
well-suited to study the two-way interaction between large-scale fields and flows.

The first step is to extract the large-scale components of the magnetic field and
flows from the simulation output. Following Racine et al. (2011), we associate “large-
scale” with the axisymmetric components of the flow and field, e.g. for the flow:

U(r, θ, t) = 1
2π

∫ 2π

0
u(r, θ, ϕ, t) dϕ , (1)

where each component of u is a four-dimensional data cube (three spatial dimensions
plus time) returned by the simulation. Large-scale meridional circulation then cor-
responds to the r and θ-component of the large-scale flow U. In Figure 1 we present
meridional plots of the time averaged large scale toroidal component of the magnetic
field, Bϕ, rotational frequency Ω/2π = Uϕ/r cos θ, with θ ∈ [−π/2, π/2] the latitude,
and the meridional flow components Uθ and Ur over cycles 1, 3 and 5 (cycles with
the same polarity).

As can be seen on panel A, in this simulation the axisymmetric large-scale mag-
netic field peaks at mid-latitude immediately beneath the core-envelope interface,
where its toroidal component dominates. The meridional flow component (C and D)
are dominated in equatorial regions by strong, persistent flow structures approxi-
mately aligned with the rotation axis. These represent the residual signature of a
system of elongated convective cells, the presence of which is typical of these types of
global simulations, whether magnetohydrodynamical or purely hydrodynamical (e.g.,
Brun et al. (2004), Miesch and Toomre (2009)). Because the associated convective
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flow velocities are quite large, even upon zonal and temporal averaging they yield
a residual signal that dominates the axisymmetric meridional flow at low to mid-
latitudes. At mid- to high latitudes, on the other hand, one recovers a relatively
strong (∼ 1 m s−1) surface poleward flow, as well as an equatorward return flow
concentrated at the core-envelope interface. Nonetheless, the meridional flow struc-
ture is clearly more complex than the single-cell configuration typically used in most
flux transport dynamos.

We pay special attention to the bottom of the convection zone at the latitudes
where Bϕ builds up to peak strength (near 58◦ in this simulation). We do this
because in this region, Bϕ is strongest and the Lorentz force influence should be more
pronounced. Moreover, in this region the meridional flow is mainly oriented in the
latitudinal direction (|Ur|/|Uθ| < 0.1), and is akin to the return flow usually invoked
in 2D flux transport models. Consequently, this region is perhaps most relevant for
a comparative study between the behavior of Uθ and Bϕ. Figure 2 shows the time
evolution of Uθ and B2

ϕ, our proxy to represent the solar cycle.
By subtracting a 1 year smoothed signals from the original data, i.e., subtracting

the black curves from the gray curves in Figure 2, we define the fluctuating compo-
nents of the signals. The ratio between the rms power of the smoothed Uθ and its
fluctuations U ′

θ reaches 29% here. Individual fluctuations with amplitude as high as
60% can be frequently identified in this longitudinally averaged velocity component,
and even much higher at individual grid points. This is hardly surprising, given
that the speeds characterizing the large-scale meridional flow are much lower than
those associated with turbulent convection in this simulation, as in the sun. For the
magnetic field, at this location this rms ratio is much smaller, at the 10% level.

An interesting point arises when we plot the evolution of B2
ϕ and Uθ side by side

(top panel of Figure 3). The two quantities follow the same general pattern with Uθ

lagging behind B2
ϕ, most easily seen here in the N-hemisphere. A lag analysis reveals

a small average lag of about 5 years. This lag suggests that the field at the base of
the convection zone is modulating Uθ, rather than the other way around, i.e., the
opposite of what is implicitly assumed in the kinematic dynamo regime.

We also examine several relations between cycle amplitude (defined by the value
of B2

ϕ at cycle maximum), cycle period (time between two minima) and meridional
flow amplitude (given by the maximum Uθ amplitude near cycle maximum). This
is done separately for the two hemispheres at the latitudes and depths previously
mentioned for the 6 half-cycles present in the simulation. The results are shown in the
bottom panels of Figure 3. The linear correlation coefficient between flow amplitude
and cycle period is r = −0.04, that between cycle amplitude and flow amplitude
is r = 0.78, and that between cycle amplitude and cycle period is r = −0.58.
Note that the latter moderate anticorrelation is similar to the so-called Waldmeier
rule characterizing the sunspot number record. The moderately strong correlation
between cycle amplitude and flow speed (Figure 3D) suggests again a dynamical link
between these two quantities. The near-zero correlation between cycle period and flow
speed (Figure 3E) arises because both hemisphere show here an opposite pattern
of correlation, but examination of another similar simulations indicate that this
hemispheric pattern is not robust, and that very low correlation between meridional
flow speed and cycle period is the rule rather than the exception in these simulations.

Measuring joint variations of the large-scale magnetic field and meridional flow at
one specific location in the simulation domain evidently offers an incomplete picture
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of the complex interaction between flow and field. In particular, in the simulation
considered here, the cycling large-scale magnetic fields alters not only the speed
of the meridional flow, but also its spatial topology, namely its structuring into
large-scale circulation cells spanning a large fraction of the simulation domain. One
particular noteworthy such alteration is the development, in the descending phase of
the magnetic cycle, of high latitudes, counterrotating meridional flow cells. This is
quite interesting, because good evidence exists for the similar development of high-
latitude counterrotating cells on the solar surface (Dikpati et al., 2010; Ulrich, 2010).
Basu and Antia (2010) and González Hernández et al. (2011), using helioseismic data
for a complete solar cycle, also found evidence of time dependent variations in the
meridional flow in the subsurface layers of the Sun.

Interestingly, we do observe in the simulation the growth and disappearance of a
counterrotating secondary meridional flow cells at high latitudes in the course of each
magnetic cycle, with a spatiotemporal evolution showing some definite similarities
with observationally-inferred patterns, as depicted on Figure 4. Panel (A) is a time-
latitude diagram of the zonally-averaged magnetic component at the core-envelope
interface (r/R = 0.718), taken to be the simulation’s equivalent to a sunspot butterfly
diagram. Panel (B) is a time-latitude diagram of the latitudinal velocity residual at
the top of the simulation domain (r/R = 0.96). This is obtained by subtracting
from the latitudinal component of the velocity returned by the simulation the zonal
and temporal average flow component over the full extent of the simulation. Notice,
between ±50 and 75 degrees latitude, the periodic alternance of regions of accel-
eration (yellow) and decceleration (blue) with respect to the mean, at a frequency
twice that of the magnetic cycle. The peak amplitude of this oscillation is ∼ 2 m
s−1, i.e. it exceeds the mean surface poleward speed at this latitude (∼ 1 m s−1,
cf. Figure 1) by a factor of about two; in other words, starting near cycle maximum
and throughout the descending phase of the magnetic cycle the surface flow becomes
equatorward at these latitudes, reaching as far equatorward as 60 degrees latitude in
the later stage of the descending phase of the cycle. The bottom panels on Figure 4,
from (C) to (E), shows a series of snapshots of zonally-averaged meridional flow
vectors near the North pole in the simulation, equidistant in time and collectively
spanning the second magnetic half-cycle (as indicated by vertical line segments on
panel A), plotted in a cartesian radius-latitude plane for clarity. At the time of
polarity reversal (t = 60 yr) the zonally-averaged meridional flow is characterized
by a strong downflow in polar regions, with a generally poleward surface flow and
equatorward return flow at the core-envelope interface. Near the peak of the cycle
(t = 70 yr) the polar downflow has reversed in the outer half of the convective
layers, and a strong subsurface equatorward flow has begun to build up above 60
degrees in latitude. Halfway through the descending phase of the cycle (t = 80 yr) the
primary surface flow is equatorward above 70 degrees latitude, and the subsurface
meridional meridional flow has essentially vanished at all depths at high latitudes.
Note however that at all times, a generally equatorward return flow remains present
at and immediately beneath the core-envelope interface. Clearly, the reversal of the
surface latitudinal flow is not a mere surface phenomenon, but is associated with
changes in the zonally-averaged meridional flow extending deep into the convecting
layers.

A precise and physically meaningful comparison of these results to surface obser-
vations of cycle-related variations in the meridional flow is unfortunately hampered
by the fact that the simulation domain here extends only out to r/R = 0.96. The
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anelastic approximation does break down in the subsurface layers, but the primary
constraint here is of a practical computational nature: we simply cannot afford the
very large number of grid points that would be required to capture the rapid outward
decrease in density in the last few percent of the sun’s radius, with the associated
horizontal size reduction of convective cells it would produce due to the rapidly
decreasing scale height. Nonetheless, the simple analysis carried out in this section
indicate already that the meridional flow responds dynamically to the evolving large-
scale magnetic field, and that the amplitude of this response is quite large. One can
then wonder whether these variations in the meridional flow have an impact on the
operation of the magnetic cycle itself. We now turn to this question.

3. Modified LODM

The fact that we observe a clear modulation from the magnetic cycle into the
meridional flow, particularly obvious on both Figures 2 and 3, suggest that there
may be feedback on the dynamo itself; this then raises a host of questions regarding
the possible long term evolution of such a system, subjected to two-way dynamical
coupling. This could be particularly important in dynamo models relying on the
meridional flow to couple spatially distinct source regions, such as most current
Babcock-Leighton solar cycle models operating in the advection-dominated regime.

In order to make a first exploration of the impact of this interaction on the
long term dynamics of a flux transport dynamo, we modify the low order dynamo
model (LODM) developed by Passos and Lopes (2008), Passos and Lopes (2011)
to incorporate a magnetic field-dependent meridional flow. This low order model
allows us to fully isolate the global aspects of the dynamical interactions between
the meridional flow and magnetic field.

The model itself is a truncated version of the axisymmetric flux transport dynamo
equations (Charbonneau, 2010), including Ohmic dissipation, shearing by differential
rotation, as well as transport and shearing by meridional circulation. The truncation
procedure is described at length in Passos and Lopes (2011), to which we refer the
reader for all technical details. In brief, a dimensional approach is used to collapse
all spatial dependencies by substituting ∇ → 1/ℓ0, where ℓ0 is a specific length
of interaction for the large scale magnetic fields, usually taken in the range ℓ0 ∈
[0.01R⊙ , 0.3R⊙]. The key assumption implicit in this spatial reduction is that there
exist a single length scale ℓ0 that properly characterizes the spatial variations of
both large-scale flows and magnetic field. The model also incorporates an explicit
magnetic buoyancy loss term as a limiting growth mechanism for the toroidal field
when dynamo action is achieved. In this LODM the temporal evolution of toroidal
and poloidal components of the solar magnetic field (Bϕ and Ap) is given by

dBϕ

dt
=

(
c1 − vp(t)

ℓ0

)
Bϕ + c2Ap − c3B3

ϕ , (2)

dAp

dt
=

(
c1 − vp(t)

ℓ0

)
Ap + αBϕ . (3)

The "structural coefficients" cn are given by

c1 = η

ℓ2
0

− η

R2
⊙

, (4)
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c2 = R⊙Ω
ℓ2

0
, (5)

c3 = γ

8πρ
, (6)

where R⊙ is the solar radius, vp is an average speed for the meridional circulation, Ω
represents an average differential rotation of the Sun, η is a mean magnetic diffusion
in the SCZ and the term c3 is defined by γ, a magnetic buoyancy loss rate and an
average density, ρ, for the SCZ. As usual the regeneration mechanism from toroidal
to poloidal field is represented by α. These cn coefficients contain all the structure
parameters in the model (e.g. rotation, buoyancy, magnetic diffusion, etc.), hence
their name.

By using this LODM (working in the kinematic regime) and by comparing it to
a magnetic field proxy constructed from the sunspot number time series, Passos and
Lopes (2008), Passos (2011) inferred variations in the amplitude of the meridional
flow for the past three centuries. Forcing complex 2.5D kinematic axisymmetric flux-
transport models such as the Surya dynamo code (Chatterjee et al., 2004) with this
variation profile leads to very solar-like cycle amplitude fluctuation patterns (Lopes
and Passos, 2009). Independent experiments with the Surya code by Karak (2010)
also reveal a similar relation between flow and cycle amplitude.

We now assume that our large-scale meridional circulation, vp, is divided into a
“kinematic” constant part, v0, due to angular momentum distribution and a time
dependent part, v(t), that is affected by the feedback of the magnetic field. Since
the Lorentz force is highly dependent of the topology of the magnetic field, within
this LODM we can only assume that this feedback term will depend on both com-
ponents of the magnetic field. Therefore we redefine vp(t) = v0 +v(t) where the time
dependent part evolves according to

dv(t)
dt

= a BϕAp − b v(t) . (7)

In this expression, the first term is a magnetic nonlinearity representing the Lorentz
force and the second is a "newtonian drag" that ensures exponentially decay of v(t)
towards its imposed kinematic value v0 in the absence of magnetic fields. From a
dynamical point of view, this amounts to assuming that the Lorentz force associated
with the cyclic large-scale magnetic field acts as a perturbation on the otherwise
dominant, steady hydrodynamical quasi-balance between buoyancy and Reynolds
stresses driving the meridional flow in the absence of magnetic fields. This approach
to magnetic backreaction on large-scale flows has been used extensively already to
model magnetically-mediated variations of differential rotation in mean-field dynamo
models (see, e.g., Tobias (1996); Moss and Brooke (2000); Brooke et al. (2002),
Bushby (2006)).

The system of equations (2-3) and (7) defines a simplified but non-kinematic
flux transport dynamo model, in that it incorporates a dynamical feedback of the
magnetic field on the meridional flow. As shown in Figure 5 for one cycle of a typical
solution, the formulation proposed for vp satisfies basic observational requirements,
i.e., the amplitude of the flow component influenced by the Lorentz force, v(t) varies
in phase with the toroidal field (as observed in the 3D MHD simulation) while the
amplitude of the complete meridional flow vp follows the observational behavior
and varies in anti-phase with Bϕ (vp grows in amplitude as Bϕ approaches zero).
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Although all spatial dependencies have been integrated away, the sign change of vp

near solar maximum can be related to the appearance of a high latitude counter-
rotating cell. From a purely mathematical point of view (viz. eqs. (2) and 3)), in
this model the meridional flow with negative values behaves as a source term and
with positive values behaves as a sink term. The decrease in the amplitude of vp

during the rising phase of the cycle provides an extra quenching mechanism for the
magnetic field growth.

This system presents a wide range of behaviors, according to the values chosen
for the various numerical coefficients. The values used for the structure parameters,
cn, are taken from Passos and Lopes (2008), where the authors fit the LODM to a
Bϕ proxy data derived from the sunspot number. With these values the solution of
the model reproduces the main features of the solar cycle (polarity reversals, cycle
period, etc.). The focus now turns to the parameters associated with the meridional
flow evolution, a, b and v0. These coefficients will have a major role in the evolution
of the solution space, as exemplified in Figure 6 where a few examples of solutions
obtained using different values for these parameters are presented.

The initialization parameters (common to all calculations) are Bϕ(0) = 0.1,
Ap(0) = 0.1 and v(0) = 0.0, which ensures that we start from a weak seed magnetic
field and that the time dependent part of the flow is null. For the standard kinematic
solution (panel (A) of Figure 6), the maximum amplitude of the cycles saturates after
70 years while for the non kinematic solution (second panel) this requires around 160
years. We also find that this initial transient depends nonlinearly on a and b. For
example for fixed a = 0.1 the smaller the drag term b is, the longer it takes for the
system to stabilize.

Behavior observed range from fixed-amplitude oscillations closely resembling kine-
matic solutions (cf. top and second panels), multiperiodic solutions (third panel),
and even chaotic solutions (bottom panel). In order to better visualize these chaotic
regimes and the manner in which they arise, we construct analogs of classical bifurca-
tion diagrams by plotting successive peak values of cycle amplitudes, in sequences of
solutions with fixed (a, v0) combinations but increasing values of the drag parameter
b. The result of this procedure is shown in Figure 7 for four such sequences. For certain
(a, v0) combinations, while sweeping through b, the system undergoes transition to
and from chaos via series of classical period doubling bifurcations. Transition to chaos
through bifurcations are also observed when holding b fixed and varying a instead.
The range of dynamical behaviors accessible to this simple dynamical system is
obviously quite rich.

4. Fluctuations and intermittency

In section (2) we verified that both the magnetic field and the flow exhibit significant
amplitude fluctuations. Since the feedback of the magnetic field on the flow takes
place in a very turbulent environment, it is plausible to assume that the parameter
a, the one which controls the influence of the Lorentz force, could be subjected to
stochastic variations.

To simulate this scenario we add to a a piecewise constant perturbation δa ex-
tracted from a zero-mean bounded uniform distribution δa ∈ [−∆a, ∆a], with a new
updated value for δa generated at a cadence τ corresponding to the coherence time
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of the fluctuations. We choose this coherence time to be one year, i.e. much smaller
than the length of the cycle. Afterwards the LODM is solved under this stochastic
forcing of a.

4.1. Modulation of cycle amplitude

As a result, and depending on the range of fluctuations, we see that the short term
stochastic kicks in the Lorentz force amplitude create long term modulations in the
amplitude of the cycles (hundreds of years). Panel B of Figure 8 shows clearly that
even with a coherence time much shorter than the cycle period, cycle amplitude
modulation patterns spanning many cycles nonetheless develop, including relatively
frequent Dalton-Minimum-like episodes of reduced cycle amplitude lasting a few
cycles (e.g., at t ≃ 11210, 11970, 12125, and 12280).

In order to produce better statistics, we extended the simulation of Figure 8 to
240000 years. The power spectrum of this simulation is shown in black on Figure 9,
together with the equivalent power spectrum for a parent simulation (in gray) with-
out stochastic forcing of the parameter a, but otherwise using the same numerical
values for the other model parameters. The stochastically-forced solution has a mean
period of of 10.2 years, a little lower than the 11 years characterizing the constant-
a solution. The amplitudes of higher frequency harmonics decrease similarly with
increasing frequency in both spectra, indicating that the shape of the cycles is not
strongly affected by the fluctuations. The most significant difference between the
two spectra is the presence, in the stochastically forced solution, of an extended
low-frequency tail characterized by a broad bump around 56 yr period, the spectral
manifestation of the multi-cycle amplitude modulation already visible on Figure 8.

4.2. Intermittency and Grand Minima

This stochastically-forced solution also exhibits intermittency, namely temporally
extended epochs where cycle behavior ceases and the magnetic field falls close to
zero. Panel C of Figure 8 shows one such episode. The duration and frequency of
these long quiescent phases, where the magnetic field decays to very low values, is
determined by the level of fluctuations of a and the value of b. The stronger this
drag term b is, the shorter the minima are. At fixed value of b, the higher the level
of fluctuation of a, the more frequent intermittency episodes become.

Figure 8 show a solution example computed over 40000 years that exhibits all
the behaviors described before. For this example we used a ∈ [0.01, 0.03] which
corresponds to a ∆a/a = 0.5 fluctuation level relative to its mean value (0.02),
b = 0.05 and v0 = −0.11. In this parameter range, the parent solution without
stochastic forcing operates in the single period regime. Therefore, the fluctuations
observed in this solution are a direct consequence of the stochastic forcing of the
Lorentz force, rather than arising from excursions in the chaotic regime produced by
random changes in the numerical value of a. For the same mean value of a = 0.02,
the fluctuations threshold below which we do not detect intermittency episodes (in
a 40000 years interval) is around ∆a/a = 0.45. The systematic study needed to
establish the variations of this intermittency threshold across the model’s parameter
space is beyond the scope of this paper, but the exploration we have carried out to
date indicate that intermittency occurs over a broad portion of parameter space.
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The characterization of these grand minima episodes is of obvious interest. Using
the record of annual averaged sunspot number, we calculated the ratio between cycle
maximum and cycle minimum. The mean value found for the complete time series
indicates that the sunspot number at solar minimum is ∼ 4.5% of its value during
solar maximum. On this basis, we assume that this threshold can be extrapolated
to the toroidal field and we look for time intervals in our simulation where Bϕ falls
below 4.5% of its average peak amplitude. We define a grand minimum when this
period of low activity is longer than 11 years, as on Figure 8C. Based on this criteria
we can investigate the statistical characteristics of these grand minima. Figure 10A
identifies the moment and duration of grand minima episodes in this long simulation.
The heights of the vertical bars indicate the duration of the minima. No obvious
periodicity or other temporal pattern jumps to the eye here. This is confirmed upon
computing the frequency distribution of grand minima duration (Panel B) and of
inter-minima wait-times (Panel C), the latter being defined as the time interval
elapsed between the end of a grand minimum and the onset of the subsequent one.
That frequency distribution is compatible with an exponential form, as expected
from a memoryless stationary random process. Also noteworthy on Figure 10B, the
durations of grand minima cluster around integer multiples of the base period. This
indicates that the phase coherence of the underlying cycle is preserved throughout
grand minima. This behavior is compatible with the cosmogenic radioisotope record,
which indicates that during the Maunder minimum, cyclic magnetic activity still took
place, despite the dearth of sunspots (Beer et al., 1998).

In this specific simulation we obtained 67 grand minima episodes. Although the
average time between these events is of approximately 3500 years, the distribution
of the "normal solar activity" in these inter-minima wait-times range from a couple
of cycles to several millennia. As mentioned before, for a different (a, b, v0) set, these
distributions could take very different forms. In particular, increasing b reduces the
recovery time, and therefore tends to shorten the duration of grand minima, with
the opposite behavior when b is instead reduced. This behavior is similar to that
observed by Brooke et al. (2002), who used a dynamical formulation similar to eq. (7)
herein to model the magnetic backreaction on differential rotation, with their Prandtl
number equivalent to our b parameter; in both models, the numerical value of these
parameters sets the dynamical recovery time to “normal” cyclic behavior.

4.3. Phase space behavior

It is also interesting to look at the phase space {Bϕ, Ap, vp} to see how these
quantities vary in relation to each other and try to understand what chain of events
might trigger the grand minima episodes. Using the solution presented in Figure 8
we built the several phase spaces shown in Figure 11. The standard solution for
the LODM without stochastic forcing, i.e. with a fixed at the mean value of the
random number distribution used, is a limit cycle attractor, i.e., a closed trajectory
in the {Bϕ, Ap} phase space. This curve is represented as a black dashed trajectory
in the panels of Figure 11. The gray points in this figure are the stochastic forced
solution values sampled at a 1 year cadence. These points scatter around the attractor
representing the variations in amplitude of the solution. Occasionally, the trajectories
defined by these points collapse to the center of the phase space indicating a decrease
in amplitude of the cycle, i.e. a grand minimum. The point {0,0} is also another
natural attractor of the system. The colored trajectory evolving in time from dark
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red to yellow represents one of those grand minima, specifically that seen on Fig. 8C.
The onset occurs when the solution is at a critical distance from the limit cycle
attractor and gets a random kick further away from it. This kick makes the field
grow rapidly. In turn, since the amplitude of the field grows fast, the Lorentz force
will induce a similar growth in v(t) eventually making vp change sign. When this
occurs, vp behaves as a sink term quenching the field growth very efficiently. This
behavior is seen in the two bottom panels of Figure 11 where we can see vp decaying
to it imposed ”kinematic” value v0 after the fields decay. After this collapse of vp

to v0, the latter starts behaving has a pure source term again, and cyclic activity
eventually resumes.

An interesting prediction can therefore be made in association with the specific
manner in which the model enters such grand minima phases. As shown on Figure 11,
onset takes place through a large excursion away from the attractor, which then
implies higher-than average cycle amplitudes in the few cycles preceding collapse
onto the Ap = 0, Bϕ = 0 axis in phase space. That this is indeed the case is readily
apparent on Figure 8C. Under this specific form of intermittency, onset of grand
minima should then be preceded by a few increasingly higher-than average cycles,
with onset then taking place abruptly, while recovery is more gradual. This pattern
of rapid onset and slow recovery is in fact compatible with inferences made on the
basis of sunspot observations before and after the Maunder Minimum.

5. Concluding remarks: implications for solar cycle modelling

In this paper we have examined the dynamical interplay between a dynamo-generated
large-scale magnetic field and large-scale meridional flows. We have done so us-
ing numerical output from global MHD simulations of solar convection, as well as
from a simple low-order dynamical model obtained from spatial truncation of the
axisymmetric mean-field dynamo equations, augmented by a nonlinearly coupled
evolutionary equation for the meridional flow amplitude. The former is computa-
tionally expensive, but geometrically more realistic and dynamically consistent at
all numerical resolved scales, while the latter allows very efficient exploration of
parameter space, and the investigation of behaviors developing over timescales far
too long to be accessible through the former. In both cases, the interaction between
flow and field emerges as highly dynamical, with the cyclic evolution of the magnetic
field impacting the flow as much as magnetically-mediated variations of the flow
influence the evolution of the magnetic field.

The numerical results obtained in sections 3 and 4 using the dynamo-inspired
LODM indicate that the nonlinear backreaction of the magnetic field on the merid-
ional flow can cause large variations in the magnetic cycle’s amplitude, including
period doubling, chaos, and, in the presence of relatively low levels of stochastic
forcing, multi-cycle amplitude modulation and intermittency. Even though the dy-
namo operating in the global MHD simulations investigated in section 2 is not a flux
transport dynamo, one may legitimately ask whether variations of the meridional
flow observed therein play a role in determining the amplitude of the magnetic cycles
developing in these simulations.

We therefore return to the simulation results discussed in section 2, and now
examine the energetics of the flow-field interaction. In the absence of Poynting flux
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through the domain boundaries, the magnetic energy εB in a volume V varies in
time according to

∂εB

∂t
= −

∫
V

u · F dV −
∫

V

j2

σ
dV , (8)

where j is the electric current density and σ is the electrical conductivity of the
plasma. In practice, the second term on the r.h.s. corresponds to the Ohmic dissi-
pation and will always contribute to the decrease of the magnetic energy. We are
especially interested here in the first term of the r.h.s. of equation (8). This term
represents the work done per unit time by the Lorentz force F on the velocity field
u, or vice versa: If u · F is positive, the magnetic field transfers energy to the flow,
and if u · F is negative, the magnetic field gains energy from the flow. This quantity
can be computed from the simulation output.

The results of calculating F and u · F in our simulation are presented in Fig-
ure 12. These meridional plane diagrams are constructed by first computing the
j × B Lorentz force directly from the simulation output, computing u · F at every
grid point on the 3D mesh, and then averaging zonally and temporally over the extent
of the first six half-cycles in the simulation. The energy transfer term u · F embodies
some important information specially when broken up into its three contributions in
the zonal, latitudinal and radial directions (B through D on Figure 12). The radial
and zonal contributions are negatively-signed throughout the domain, indicating
average energy transfer from the associated flow components to the magnetic field.
Physically, these distributions are dominated by the work done by the differential
rotation shear (UϕFϕ) and convective updrafts and downdrafts (UrFr) against the
poloidal and toroidal magnetic components, respectively. However, the latitudinal
contribution (UθFθ) is almost everywhere positive, indicating magnetic driving of
the latitudinal mean flow. The magnetic field thus extracts energy from rotation and
differential rotation, and transfers part of this energy into the meridional flow via
the Lorentz force associated with the dynamo-generated large-scale magnetic field.
As can be inferred from Figure 12A, this transfer dominates the global energy flow
between large scale flow and field at the base of the convecting layers, near the poles,
and at mid-depth in the high-latitude portions of the convecting layers.

This simple energy analysis indicates that cyclic acceleration of the meridional
flow acts as a sink of magnetic energy. This suggests that magnetically-driven modu-
lation of the meridional flow contributes significantly to the amplitude saturation of
the large-scale magnetic field building up these simulations. If this state of affairs were
to carry over to the real sun, then some very fundamental working assumptions of
many contemporary versions of flux transport dynamo models of the solar cycle must
be called into question. In nearly all versions of these models that we are aware of,
the large-scale magnetic field is passively advected by the flow; and, in particular for
advection-dominated flux transport dynamo models relying on the Babcock-Leighton
mechanism of poloidal field regeneration through the surface decay of active regions,
the presence and continuous operation of this flow is essential to carry this poloidal
component to the base of the convective envelope, where induction of the toroidal
component is presumed to take place. At least in the few global MHD simulation
we have analyzed in some detail as yet, the dynamical relationship between the
meridional flow and large-scale magnetic field could not be farther from this simple
kinematic picture, with the field driving the meridional flow at most depths and
latitudes throughout the convectively unstable layers (Figure 12C). Nor can the
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magnetic backreaction of the large-scale magnetic field on the meridional flow be
reduced to a mere overall decrease of this flow’s amplitude, as one may be tempted
to infer from, e.g., the observational analysis of Hathaway and Rightmire (2010);
instead, the backreaction shows a strong spatial dependency, as evidenced by the
breakup of the primary large-scale flow cell in the descending phases of the cycle
(Figure 4), and the presence of spatially extended regions where the meridional flow
speed actually increases with increasing magnetic field strength (Figure 2), as well
as overall cycle amplitude (Figure 3).

On the other hand, the analysis of §3, based on LODM reduction of the ax-
isymmetric mean-field dynamo equations, suggests that the interplay between the
meridional flow and large-scale magnetic can lead to very rich dynamical behavior,
including amplitude modulation, period doubling, chaos, and even intermittency. The
global MHD simulations analyzed in §2 span only six half-cycles, which is of course
far too short to be able to identify unambiguously counterparts of these behaviors;
yet the strong positive correlation found between the mid-latitude meridional flow
speed at the core-envelope interface and toroidal field strength measured at the same
location, (Figure 3D) is consistent with the behavior observed in the LODM.

Recent observational analyses of the meridional flow at the solar surface over
timescales decadal and up have revealed a modulation in antiphase with the sunspot
cycle, with the development of a secondary, counterrotating flow cell at high latitudes.
While some controversy remains regarding what the various data analyses techniques
are really measuring, the fact that very similar modulation patterns also arise in our
global MHD simulations suggests that in the sun these are also ultimately powered by
the dynamo-generated large-scale magnetic field. Such a modulation can be driven
directly by the Lorentz force, and/or indirectly via magnetic driving of torsional
oscillations, as is indeed observed in the simulations analyzed here (Beaudoin et al.
2012, in preparation). Cyclic variations in the meridional flow may therefore hold
important clues regarding the manner in which this dynamo operates, and most
importantly perhaps, on what drives the cycle-to-cycle variations in amplitude and
duration.
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Figure 1. Longitudinal means of various quantities extracted from the simulation output,
and temporally averaged over 3 cycles of the same magnetic polarity (cycles 1, 3 and 5). Panel
(A) presents Bϕ while panels (B), (C) and (D) show rotational frequency (Ω/2π = Uϕ/r cos θ),
Uθ and Ur respectively. The color scales for Uθ and Ur are slightly saturated to show more
detail. All quantities are plotted in meridional planes, over a depth range 0.62 ≤ r/R⊙ ≤ 0.96.
The rotation axis oriented vertically, and the latitudinal variable θ ranging from -90◦ south to
90◦ north. The Uθ component is measured in relation to the south pole, i.e., positive values
correspond to Northward motions and negative values to Southward motions. The dashed
circular arc indicates the base of the convectively unstable layers in the simulation.
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Figure 2. In panel (A) we present B2
ϕ (in Tesla square) evolution over the simulation period

(in gray). The thick black line is a smoothed version obtained with a FFT low pass filter of
width 1 year. Panel (B) shows Uθ (in m s−1), for the same period. Again, the thick black
line results form a 1 year low pass filter of the original simulation data, in gray. These two
quantities are sampled at the base of the convecting layers (r/R = 0.718) and at 58◦ north.
Individual half-cycles are delineated from one minimum in the B2

ϕ time series to the next, as
indicated by the dotted lines, and numbered for future reference.
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Figure 3. In panel (A) we show the evolution of the smoothed squared toroidal field (black)
and the meridional flow (Uθ in gray) measured at tachocline depth near 58 degrees north. The
same quantities measured at 58 degrees south at tachocline depth are shown in panel (B). In
the bottom row, we have in panel (C) the cycle amplitude represented by B2

ϕ at cycle peak
vs cycle period (linear correlation coefficient r = −0.58), in panel (D) the peak amplitude of
the meridional flow vs cycle amplitude (r = 0.78), and in panel (E) the peak amplitude of
the meridional flow vs cycle period (r = −0.04). In all cases black triangles indicate values
measured at 58 degrees South while gray circles represent values measured at 58 degrees North.
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Figure 4. Development of secondary, high-latitude counterrotating meridional flow cells in the
same simulation used to produce Figures 1, 2 and 3. Panel (A) shows a time-latitude diagram
of the zonally-averaged large-scale toroidal magnetic component at the core-envelope interface
(r/R = 0.718), the simulation’s equivalent of the sunspot butterfly diagram. Panel (B) shows
the surface latitudinal velocity residual obtained by subtracting the zonal and temporal mean
of this flow component from the simulation output. Panels (C) through (E) show meridional
flow vectors in the vicinity of the N-pole in a cartesian latitude-radius plot, uniformly spaced
across the second magnetic half-cycle of panel (A) at times indicated therein by vertical line
segments. The horizontal dashed line indicates the core-envelope interface.
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Figure 5. Comparison between the toroidal field (black thick line), vp (dashed blue line), v(t)
(purple dotted line) and v0 (gray dot-dashed line) for a standard solution. Here the values of
the flow are multiplied by a factor of 5 so as to be visible on the scale of B2

ϕ.
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Figure 6. Example of solutions for equations (2) and (3) under different feedback parameters.
In light gray we have B2

ϕ, in black A2
p and the dashed gray line represents vp. All solutions

were generated using c1 = −0.01, c2 = 0.95, c3 = 0.002, α = −0.1. In panel (A) is presented
a kinematic reference solution produced by enforcing v(t) = 0 at all times, with v0 = −0.1,
a = b = 0; (B) shows a regular cyclic non-kinematic solution, with v0 = −0.1, a = 0.1, b = 0.05;
(C) presents a solution displaying period doubling, obtained using v0 = −0.1, a = 0.1, b = 0.25.
Panel (D) shows a solution in the chaotic regime, with v0 = −0.13, a = 0.1, b = 0.25.

ms7.tex; 23/01/2012; 15:14; p.21



D. Passos, P. Charbonneau & P. Beaudoin

(A)

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

b

C
yc

le
Pe

ak
A

m
pl

itu
de

(B)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

b

C
yc

le
Pe

ak
A

m
pl

itu
de

(C)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

b

C
yc

le
Pe

ak
A

m
pl

itu
de

(D)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

b

C
yc

le
Pe

ak
A

m
pl

itu
de

Figure 7. Bifurcation maps for maximum amplitude of the toroidal field (equivalent to solar
cycle maximum) obtained by varying b between 10−4 and 1 for different a and v0. (A) Single
period regime, v0 = −0.1, a = 0.01. (B) Appearance of period doubling, v0 = −0.1, a = 0.1.
Panels (C) and (D) show signatures of chaotic regimes with multiple attractors and windows,
obtained with v0 = −0.13, a = 0.05 and v0 = −0.13, a = 0.2 respectively. Bifurcation and
chaos are common in this model’s parameter space, but the size and shape of chaotic windows
can vary significantly in different regions.
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Figure 8. Simulation results for fluctuating a ∈ [0.01, 0.03], b = 0.05 and v0 = −0.11. All
other model parameters are the same as in the reference solution. Panel (A) shows B2

ϕ(t) (light
gray) and A2

p(t) (black) for 40000 years simulation. Panel (B) is a zoom in to show a section
of the simulation where the long term modulation can be seen. In light gray is B2

ϕ(t), black
A2

p(t) and a scaled version of the meridional flow, in this case 5×vp(t) is presented as a gray
dashed line. In panel (C) the same quantities but this time zooming in into a grand minimum
(off phase) period.
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Figure 9. Power spectrum of a 240000 yr long extension of the simulation plotted on Figure 8
(in black). The peak amplitude is found around 10.2 years, with harmonics at 5.2, 3.4 and 2.6
years. On the low band of the spectrum, we have a broad bump centered around 56 years. The
power spectrum in gray is that associated with a parent solution using the same parameter
values but not subjected to stochastic forcing, plotted on a different scale (on the right) to
ease comparison.
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Figure 10. Panel (A) indicates the times of occurrence of grand minima (black bars) and
their duration in years. The corresponding histogram is presented in panel (B) using 1 yr bins.
The vertical dotted lines are references at multiples of the base period of 10.2 yr. In panel
(C) is displayed the histogram of the duration of normal cyclic activity phases between grand
minima, in 1500 yr bins.
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Figure 11. Phase spaces of a solution with stochastic forcing of the Lorentz force parameter
a, here with amplitude ∆a/a = 0.5. The gray dots represent 1 year intervals between t=35000
and t=40000. The colored line shows the trajectory in and out of a grand minimum (starting
from dark red, t=27300 and ending in yellow, t=27400 (cf. Fig. 8C). The black dashed line
represents the trajectory of an unperturbed solution with a = 0.02.
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Figure 12. Meridional plane representation of the zonal and temporal average of u · F (panel
A), together with the individual contributions from the three coordinate directions in panels
B through D. The dashed circular arc indicates the base of the convectively unstable layers in
the simulation.
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