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ABSTRACT

We present a large series of numerical simulations of the solar magnetic activity cycle based on the Babcock-
Leighton mechanism for the regeneration of the solar poloidal magnetic field. While the primary cycle period
changes very little as the dynamo number is increased, the model shows a well-defined transition to chaos through a
sequence of period-doubling bifurcations, i.e., the sequential appearance of modulations of the primary cycle’s
amplitude, with associated periods equal to twice the periods characterizing the amplitude variations prior to a given
bifurcation. This behavior arises through the unavoidable time delay built into this type of solar dynamo model,
rather than through the effects of complex, nonlinear magnetic back-reaction on the fluid motions driving the
dynamo process. It is noteworthy that a chaotic regime exists in this numerical model, given that the only non-
linearity present is a simple algebraic amplitude-quenching factor in one of the governing partial differential equa-
tions. The results also represent a rare instance in which the complex dynamical behavior of a spatially extended,
diffusive solar dynamo model can be reproduced in detail on the basis of the simplest of low-order dynamical
systems, namely a one-dimensional iterative map. The numerical results also demonstrate the central role of me-
ridional circulation in setting the primary cycle period in this class of dynamo models; despite variations by many
orders of magnitude in the dynamo number and concomitant large and sometimes even chaotic variations in
amplitude, the cycle period remains tightly locked to the meridional circulation turnover time.

Subject headinggs: Sun: activity — Sun: magnetic fields

1. THE SOLAR CYCLE

The solar activity cycle originates in the periodic polarity
reversal of the Sun’s internal large-scale magnetic field. Com-
pared to the Earth’s magnetic field, this temporal variation of
the Sun’s field is fairly regular and takes place on decadal time-
scales, which is some 9 orders of magnitude shorter than the
expected ohmic dissipation time. The solar cycle thus requires
a vigorous, active regeneration process operating on a compara-
ble timescale.

It is now generally agreed that the physical origin of the cy-
cle itself is in a dynamo process powered by the inductive action
of fluid motions in the Sun’s interior (for recent reviews, see
Petrovay 2000; Stix 2002; Ossendrijver 2003; Rüdiger & Arlt
2003). Beginning in the late 1950s, magnetographic observa-
tions have revealed that the Sun’s poloidal magnetic field com-
ponent also undergoes cyclic variations along with its toroidal
component (as mapped by sunspots), with the large-scale po-
loidal field peaking in strength at times of sunspot minima and
flipping polarity around times of sunspot cycle maxima.

Helioseismology, the art and science of mapping the solar
interior from acoustic waves detected spectroscopically via the
Doppler shift they induce at the surface, has now pinned down
with unprecedented accuracy the thermodynamic structure of
and large-scale flows through most of the Sun’s interior (see
Christensen-Dalsgaard 2002). In particular, it has revealed that
the observed surface latitudinal (pole-to-equator) differential
rotation persists through the outer 30% of the Sun’s interior
and then vanishes across a thin layer, dubbed the ‘‘tachocline,’’
coinciding approximately with the interface between the sta-
ble internal core and the unstable, convecting outer envelope.

Such an internal differential rotation, symmetric about the equa-
tor and acting upon a poloidal field antisymmetric about the
equator, readily produces a sunspot-compatible toroidal field on
decadal timescales. The second half of the dynamo process,
turning this newly generated toroidal field into a new poloidal
field, has proved much harder to pin down. Various toroidal-to-
poloidal production mechanisms have been put forth, including
turbulent inverse MHD cascade (the so-called �-effect of mean
field theory; see Moffatt 1978), the surface decay of sunspot
pairs (also known as the Babcock-Leighton mechanism; more
on this shortly), and a regenerative process based on various
instabilities of the differential rotation and/or toroidal magnetic
field (Ferriz-Mas et al. 1994; Ossendrijver 2000; Thelen 2000;
Dikpati & Gilman 2001).

Such issues notwithstanding, the physical origin of the cy-
cle’s amplitude variations remains a controversial topic in itself.
Explanations typically fall into one of two broad categories: sto-
chastic forcing or dynamical nonlinearities. Vigorous turbulence
is known to pervade the Sun’s outer convective layers, where the
dynamo is believed to operate, in part or in toto. Thus, it would
be very surprising if any dynamo cycle operating therein were
nicely regular (e.g., Hoyng 1988, 1993; Choudhuri 1992; Moss
et al. 1992; Hoyng et al. 1994; Ossendrijver et al. 1996). Stochas-
tic forcing is, therefore, a perfectly viable working hypothesis.
The observed strength of the dynamo-generated solar magnetic
field is also such that dynamical (nonlinear) feedback on the
driving fluid motions is not only possible but, in fact, expected,
and this has been shown to lead to marked amplitude fluctua-
tions in a variety of solar cycle models (see, e.g., Gilman 1983;
Brandenburg et al. 1991; Tobias 1997; Küker et al. 1999; Moss
& Brooke 2000 and references therein).

In this paper we focus on a third class of nonlinear feedback
mechanism, based on the notion of time delay in the dynamo
mechanism.We do so in the context of solar cycle models based
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on the Babcock-Leighton mechanism, which we describe in x 2,
but in fact the general idea is applicable to any dynamomodel in
which the source regions for the two field components, poloidal
and toroidal, are spatially segregated. In such circumstances, there
exists a physically plausible procedure whereby the MHD dy-
namo equations can be reduced to a one-dimensional iterative
map, as outlined in x 3. The dynamical behavior predicted from
such maps finds a striking counterpart in the dynamical behav-
ior of a more realistic model based on numerical solutions of
the MHD induction equations in two spatial dimensions (x 4).
We conclude (x 5) by positioning our results in the wider con-
text of solar cycle fluctuation studies.

2. BABCOCK-LEIGHTON SOLAR CYCLE MODELS

2.1. The Surface Decay of Sunspots

Sunspots are the photospheric manifestation of undulating
magnetic flux ropes rising through the Sun’s convective enve-
lope to emerge at the photosphere. Observational support for this
notion is well established (see Schüssler 1994 and references
therein). As a consequence of disconnection from the underly-
ing flux system and/or buffeting from surrounding turbulent con-
vective fluid motions, sunspots do eventually decay; in doing
so, they release a fraction of their magnetic flux into the pho-
tosphere. Under the joint action of turbulent diffusion, differ-
ential rotation, and poleward meridional circulation, this flux
accumulates in the polar regions until it overwhelms the ‘‘old’’
poloidal flux and causes a reversal of the poloidal field. This
global flux release and transport process has now been observed
in great detail by space-borne solar monitoring instruments for
more than two sunspot cycles. It has also been successfully mod-
eled as a two-dimensional advection-diffusion transport problem
on a sphere, with model results comparing favorably to obser-
vations (see Wang et al. 1989, 2002; Wang & Sheeley 1991;
Schrijver et al. 2002). A crucial question in the dynamo context,
and one that has yet to be resolved, is whether this observed
phenomenon is a mere side effect or an active component of the
underlying magnetic cycle.

Decaying sunspots end up contributing a net dipole moment
to the photospheric field because the lines joining the centers
of sunspot pairs of opposite polarities show a statistically sig-
nificant, systematic pattern of tilt with respect to the east-west
( longitudinal) direction. This is perhaps most easily understood
by considering the spherical harmonic decomposition of a bi-
polar structure on a sphere. If the line segment joining each pole
is aligned with the �-direction, allm ¼ 0 terms in the modal de-
composition have zero amplitude. If, on the other hand, this line
segment is inclined with respect to the �-direction, then non-
vanishingm ¼ 0 contributions arise in the decomposition. These
collectively add up to an axisymmetric poloidal field. The joint
action of dissipation and differential rotation rapidly destroys
all m 6¼ 0 modes, but the m ¼ 0 modes, in contrast, decay on
their much longer purely dissipative timescales, leaving merid-
ional circulation enough time to concentrate a portion of the
corresponding axisymmetric poloidal magnetic field toward the
solar poles. Since sunspot pairs originate with the Sun’s deep-
seated toroidal magnetic field, the net effect is to convert a frac-
tion of that toroidal field to a large-scale poloidal field. The
second half of the dynamo loop, producing a toroidal field from
a preexisting poloidal component, is readily achieved by the
shearing associated with differential rotation.

Solar cycle models based on this mechanism were first pro-
posed by Babcock (1961) and Leighton (1964, 1969) and are
now usually referred to as ‘‘Babcock-Leighton models’’ (here-

after B-L models). Following ever-growing difficulties in rec-
onciling helioseismic results on internal flows with the long-
favored dynamo models based on mean field electrodynamics,
B-L models have been enjoying a vigorous revival in the on-
going helioseismic era of solar cycle modeling (see Wang et al.
1991; Durney 1995; Dikpati & Charbonneau 1999, hereafter
DC99; Nandy & Choudhuri 2001). As of this writing, they re-
main solid contenders as explanatory models of the solar cycle,
comparing quite favorably with any other class of current solar
dynamo models at similar levels of complexity.
The tilt of sunspot pairs with respect to the zonal direction is a

crucial component of the B-L poloidal field generation mech-
anism. Simulations of magnetic flux ropes buoyantly rising
through the Sun’s convective envelope have shown that this tilt
builds up under the action of the Coriolis force acting on the
internal, axis-aligned flow that develops in the course of the flux
tube’s rise through the convective envelope (Fan et al. 1993;
D’Silva & Choudhuri 1993; Caligari et al. 1995). An important
aspect of this mechanism is that it is subject to both a lower and
an upper operating threshold. Flux ropes of strength in excess
of about 100 kG rise too quickly for the Coriolis force to have
significant effects; thus, the resulting sunspot pairs are east-west
aligned and have no axisymmetric poloidal component to re-
lease during their subsequent decay. Flux ropes of strength in-
ferior to about 10 kG show no systematic pattern of tilt for a
number of reasons, including deflection to high latitudes and
randomization of their spatial orientations by turbulent con-
vective fluid motions (Longcope & Fisher 1996). In addition, it
appears that such weak flux ropes cannot become unstable on
sufficiently short timescales; even if they could, they could not
retain their structural integrity in the course of their buoyant
rise (Schüssler 1994; Moreno-Insertis et al. 1995).

2.2. Axisymmetric Formulation of Solar Cycle Models

All partial differential equation (PDE)-based numerical so-
lutions discussed further below make use of the general B-L
modeling formalism of DC99, to which we refer the interested
reader for all details regarding the specification of the differ-
ential rotation, meridional circulation, and magnetic diffusivity
profiles. This model uses solar-like profiles for these quantities
and yields cyclic solutions that compare very well to a number
of observed features of the solar cycle.
The DC99 model describes the time evolution of an axi-

symmetric, large-scale magnetic field in spherical geometry and
in the kinematic regime. Working in the usual spherical polar
coordinates (r; �; �), an axisymmetric magnetic field can be
written as

B(r; �; t) ¼ :< ½A(r; �; t) ê��þ B(r; �; t) ê�; ð1Þ

where A describes the poloidal component of the magnetic
field and B its toroidal component. Note that this formulation
ensures that : = B ¼ 0, as required by Maxwell’s equations.
The MHD induction equation can then be separated into two
PDEs for A and B, which take the form

@A

@t
þ 1
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where $ ¼ r sin �, �(r; �) is the angular velocity profile,
up(r; �) is the meridional flow, and �(r) is the net magnetic
diffusivity. The two PDEs are linearly coupled via the shearing
term (/9�) and nonlinearly coupled through the nonlocal source
term S(B) appearing in equation (2), which represents the pro-
duction of a poloidal magnetic field by the B-L mechanism
(see x 2.3 of DC99). With the flow fields (differential rotation
and meridional circulation) specified as steady, this source term
is the only nonlinearity left in the kinematic regime considered
here. The following functional form is adopted in all computa-
tions reported on below:

S(r; �; B)¼ s0

4
1þ erf

B� B1

w1

� �� �
1� erf

B� B2

w2

� �� �
f (r; � )B;

ð4Þ

where the toroidal field B is to be evaluated at the correspond-
ing colatitude at the core-envelope interface, and f (r; �) is a
function of spatial coordinates that concentrates the source term
in the surface layers while enforcing the minimal latitudinal de-
pendency compatible with results from thin flux tube simula-
tions (see DC99 for further details; also x 2.1 of Charbonneau
& Dikpati 2000). Note that the source term so defined is non-
local, which is meant to account for the fact that sunspot pairs
ultimately originate with the rapid rise to the surface of toroi-
dal flux tubes forming in the vicinity of the core-envelope in-
terface from the dynamo-generated large-scale magnetic field.
The numerical coefficient s0 then sets the absolute strength of
the source term.

Unless noted otherwise, in all numerical calculations reported
on below, the numerical parameters defining the form of the
nonlinearity take the values B1 ¼ 60, w1 ¼ 20, B2 ¼ 100, and
w2 ¼ 80 kG. The source term then ‘‘turns on’’ at a toroidal field
strength of �B1� w1 ¼ 40 kG and turns off at �B2þ w2 ¼
180 kG, in basic agreement with the aforementioned simulations
of rising thin flux tubes. This implies that unlike in the original
model of DC99, the numerical model defined herein is now
characterized by both upper and lower operating thresholds on
the magnetic field strength.

Three dimensionless quantities arising in the scaling of the
model’s governing equations are of interest in what follows. The
first is a dynamo number (CS), which will serve as the control pa-
rameter in the numerical calculations to be reported on presently.
It essentially measures the efficiency of poloidal magnetic field
production via the B-L mechanism (a magnetic energy source)
relative to ohmic dissipation (a magnetic energy sink):

CS ¼ s0R

�T
; ð5Þ

where R is the Sun’s radius. The quantity �T is the (turbulent)
magnetic diffusivity in the Sun’s convective envelope, which
is also used to define a diffusion time � :

� ¼ R2

�T
: ð6Þ

Physically, this diffusion time represents the adjustment time
of the model to externally imposed forcing and is also a typ-
ical timescale for the damping of transients associated with
initial conditions (for example). In the simulations discussed
here, we adopt �T ¼ 1:7 ; 1011 cm2 s�1, which leads to � ¼ 920 yr
with the Sun’s radius used as a typical length scale (for some
purposes the thickness of the envelope would perhaps be more

appropriate; this would reduce the diffusion time to �100 yr
for our adopted value of �T ). The third important dimensionless
quantity is the magnetic Reynolds number, which measures
the relative efficiency of meridional circulation and magnetic
diffusion in transporting magnetic fields across the domain,

Rm¼ u0R

�T
; ð7Þ

where u0 is a characteristic meridional flow speed. Note that
the solar radius is again used as a typical length scale.

3. REDUCTION TO A ONE-DIMENSIONAL
ITERATIVE MAP

3.1. Time Delays in Babcock-Leigghton Models

A crucial aspect of solar cycle models based on the B-L
mechanism is the fact that the two source terms in the governing
equations (2) and (3) are segregated in two distinct regions of the
spatial domain. The B-L mechanism operates in the surface lay-
ers, while production and storage of the sunspot-generating toroi-
dal field takes placemuch deeper in the interior, at or immediately
beneath the core-envelope interface. For the dynamo to operate,
these two source regions must somehow ‘‘communicate.’’

In the most recent solar cycle models based on the B-L
mechanism, this communication is assumed to take place via
advection by a quadrupolar meridional flow pervading the con-
vective envelope. Such a flow has been detected helioseismi-
cally down to r=R� ’ 0:85 (see Braun & Fan 1998; Schou &
Bogart 1998). The basic idea is illustrated in cartoon form in
Figure 1. Let Pn represent the amplitude of the high-latitude,
surface (s1) poloidal magnetic field in the late phases of cycle n,
i.e., after the polar field has reversed. The poloidal field Pn is
advected downward by meridional circulation (s1 ! s2), where
it then starts to be sheared by the differential rotation while also
being advected equatorward (s2 ! s3). This leads to the growth
of a new low-latitude (s3) toroidal flux system, Tnþ1, which
becomes buoyantly unstable (s3 ! s4) and starts producing
sunspots (s4), which subsequently decay and start releasing the
poloidal flux Pnþ1 associated with the new cycle nþ 1. Pole-
ward advection and accumulation of this new flux at high lat-
itudes (s4 ! s1) then obliterates the old poloidal flux Pn, and
the above sequence of steps begins anew.

Meridional circulation plays a key role in this ‘‘conveyor belt’’
model of the solar cycle. First and foremost, it effectively sets—
and even regulates—the cycle period (DC99; Charbonneau &
Dikpati 2000; Hathaway et al. 2003). In doing so, it also in-
troduces a long time delay in the dynamo mechanism (‘‘long’’
in the sense of being comparable to the cycle period). In con-
trast, the production of the poloidal field from the deep-seated
toroidal field is a ‘‘fast’’ process, growth rates and buoyant rise
times for sunspot-forming toroidal flux ropes being of the order
of a few months (see Moreno-Insertis 1986; Fan et al. 1993;
Caligari et al. 1995 and references therein). The time delay as-
sociated with advection by meridional circulation turns out to
have rich dynamical consequences.

3.2. From PDEs to Iterativve Maps

The long time delay inherent in B-L models of the solar cycle
makes it possible to express the cycle-to-cycle amplitude var-
iations as a simple one-dimensional iterative map (Durney 2000;
Charbonneau 2001). The procedure runs as follows (for details
see Charbonneau 2001). In view of the preceding conveyor-belt
argument, in the kinematic regime the toroidal field strength
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(Tnþ1) at cycle nþ 1 is linearly proportional to the poloidal field
strength (Pn) of cycle n, i.e.,

Tnþ1 ¼ aPn: ð8Þ

In writing down equation (8), we are neglecting any ohmic
dissipation of either poloidal or toroidal components during the
magnetic field’s advection from the surface polar regions to the
low-latitude regions of the tachocline (s1 ! s2 ! s3 in Fig. 1).
In contrast, the strength of the poloidal field at cycle nþ 1 is non-
linearly proportional to the toroidal field strength of that cycle,

Pnþ1 ¼ f (Tnþ1)Tnþ1; ð9Þ

where the function f (Tnþ1) measures the efficiency of surface
poloidal field production from the deep-seated toroidal field
by the B-L mechanism. After normalizing the field amplitudes,
substitution of equation (8) into equation (9) leads immedi-
ately to a one-dimensional iterative map,

pnþ1 ¼ � f ( pn)pn; ð10Þ

where the pn values are normalized amplitudes, and the nor-
malization constants and the constant a in equation (8) have
been absorbed into the definition of the map’s parameter �.
Equation (10) is called a ‘‘map’’ because it allows the calcula-
tion of a cycle amplitude in terms of the amplitudes of pre-
ceding cycles (here only the previous cycle) and is said to be
‘‘one-dimensional’’ because it involves only a single dynam-
ical variable, namely the amplitude iterate pn.

3.3. Dynamical Behavvior

The nonlinear function f ( pn) in equation (10) must be chosen
so as to catch the essential features of the B-L mechanism, most
importantly the fact that it can only operate in a finite range of

toroidal field strength. The product of error functions, as in-
troduced previously, can again be used here:

f ( pn) ¼
�

4
1þ erf

pn� B1

w1

� �� �
1� erf

pn� B2

w2

� �� �
; ð11Þ

now with B1 ¼ 0:6, w1 ¼ 0:2, B2 ¼ 1:0, and w2 ¼ 0:8, so as
to obtain the same shape for the nonlinearity as in the two-
dimensional numerical model (cf. x 2.2). The bifurcation di-
agram for the resulting iterative map is presented in Figure 2.
The diagram is constructed by plotting as small dots succes-
sive values of the amplitude iterate pn for increasing values of
the map parameter �. For low values of � , one finds pnþ1 ¼
pn, and pn ends up looking like a single-valued function of � .
For � exceeding 1.283, however, the amplitude iterate starts to
alternate between ‘‘high’’ and ‘‘low’’ values, bracketing the for-
mer single amplitude value. This is called ‘‘period doubling’’ in
dynamical system jargon; however, it must be emphasized that
the primary cycle period remains unaltered, with ‘‘doubling’’ re-
ferring instead to the number of amplitude modulation periods
superimposed on the primary cycle. The same pattern eventually
repeats at higher � values, leading to multiply periodic as well
as aperiodic solutions. This bifurcation diagram shows the usual
generic characteristics of one-dimensional single-hump iterative
maps (see, e.g., Holton & May 1993), namely:

1. A first bifurcation from the trivial solution, here super-
critical and occurring at �1 ¼ 0:851.
2. A sequence of period-doubling bifurcations, beginning at

�2 ¼ 1:283 (1 ! 2), then �4 ¼ 1:488 (2 ! 4), �8 ¼ 1:531, etc.
3. A chaotic regime starting at the end of the period-doubling

cascade.
4. A set of periodic windows interspersed across the chaotic

domain. The widest is a 3 period window, spanning the range
1:6855 � � � 1:6958 and preceded by a narrower 5 period

Fig. 2.—Bifurcation diagram for the one-dimensional iterative map defined
by eqs. (10) and (11). It shows the usual features of one-dimensional single-
hump maps, most notably a transition to chaos via a sequence of period-
doubling bifurcations. Multiperiodic windows are interspersed throughout the
chaotic regime, the first three widest being indicated by vertical lines and
labeled (n) in terms of their n-fold periodicity.

Fig. 1.—Operation of a solar cycle model based on the B-L mechanism. The
diagram is drawn in a meridional quadrant of the Sun. Streamlines of meridional
circulation are plotted as solid lines. This flow is poleward in the outer layers,
sinks at the pole, and is equatorward along the core-envelope interface at
r=R� ’ 0:7 (dotted line). Poloidal fields accumulated in the surface polar re-
gions (s1) at cycle n must first be advected down to the core-envelope interface
before production of the toroidal field for cycle nþ 1 may commence. This
introduces a long time delay in the dynamo process (see text).
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window at 1:6422 � � � 1:6453, itself preceded by an even
narrower 7 period window at 1:6226 � � � 1:6233.

This rich dynamical behavior ultimately originates with
the time delay in the dynamo process, which is what makes
possible the reduction of the governing equations to a one-
dimensional iterative map in the first place. Not surprisingly,
the introduction of ad hoc time delays in dynamo models has
long been known to lead to cycle amplitude fluctuations (see,
e.g., Yoshimura 1978). However, in the model considered here,
the time delay is not at all ad hoc but is, rather, unavoidable, as
in any other dynamo model in which the source regions for the
poloidal and toroidal magnetic field components are spatially
segregated. The B-L model being a particularly clear-cut exam-
ple of such a situation, one is then led to anticipate that the
map’s rich dynamical behavior should find its counterpart in
the original, more realistic, spatially extended, diffusive axisym-
metric model that inspired the map formulation. This is the quest
to which we now turn.

4. COMPARISON WITH A SPATIALLY EXTENDED
NUMERICAL MODEL

4.1. Numerical Solutions and Their Analysis

We now seek the counterpart of the iterative map’s behavior
in the two-dimensional axisymmetric dynamo model of DC99,
modified to include a nonlinearity with a lower threshold, as de-
scribed in x 2.2. Starting from an arbitrary but finite-amplitude
initial condition, the axisymmetric dynamo equations (2) and
(3) are integrated forward in time using a finite element-based
numerical scheme with implicit time-stepping. Solutions are
followed over up to 40,000 time steps spanning 10 diffusion
times to ensure that all transients have died out. We compute so-
lutions for dynamo numbers spanning more than 3 orders of
magnitude to fully sample the dynamical behavior of the model.
Our reference model below has parameter values C� ¼ 8:4 ;
104, Rm¼ 420, �� ¼ 500, rb ¼ 0:65, d1 ¼ 0:025, and rc ¼
0:7 (see x 2 of DC99 for descriptions and definitions of these
model parameters).

The first step in the subsequent analysis is to compute the
magnetic energy at every time step,

EB(t) ¼
1

8�

Z
B2(t) dV ; ð12Þ

where the integral is carried out over the full spatial volume of
the simulation. An autocorrelation analysis is then performed
to identify periodicities in the time series. We first compute a
standard autocorrelation coefficient,

P(L) ¼
PN�L

k¼1 EB(tk)� ĒB

� �
EB(tkþL)� ĒB

� �
PN

k¼1 EB(tk )� ĒB

� �2 ; ð13Þ

where EB(tk ) is the magnetic energy at the kth time step, ĒB is
the mean of the time series, and L is the lag measured in time
steps. Whenever an autocorrelation coefficient larger than 0.5 is
found, the solution is tentatively flagged as ‘‘periodic,’’ and the
last full period in the time series is scanned to identify the number
of peaks in EB(t) (excluding endpoints) having distinct values.
When autocorrelation fails, a solution is deemed ‘‘nonperiodic,’’
and all peaks in the time series are retained for further analysis.

4.2. Bifurcation Diaggram

To construct a bifurcation diagram conceptually equivalent
to that depicted in Figure 2, we now plot, as a function of the

dynamo number CS (equivalent to the map parameter � in
eq. [10]), the various distinct peaks in EB(t) identified in the
autocorrelation analysis.3 The result is shown in Figure 3, and a
few representative magnetic energy time series are shown in
Figure 4 (left column).

Striking similarities are immediately seen between Figure 3
and the bifurcation diagram arising from the one-dimensional
iterative map (Fig. 2). As with the latter, nontrivial behavior
materializes along the sequence of increasing � as a supercrit-
ical bifurcation at CS;1 ’ 2:4, followed by a first period-doubling
bifurcation at CS;2 ’ 132 and a second at CS;4 ’ 210. [No at-
tempt was made to identify with very high accuracy the nu-
merical values of the dynamo numbers corresponding to the
bifurcation points; this would have consumed much CPU time
in view of the very slow relaxation to the stable branch(es) in
the vicinity of a bifurcation point.] This is followed (225PCS P
242) by a regime in which the vast majority of solutions are
nonperiodic and after which well-defined multiperiodic behav-
ior emerges once again. These are now triply periodic solutions,
just as in the first wide multiperiodic window encountered in
the chaotic regime for the attractor of Figure 2 (� ’ 1:69). As
in Figure 2, chaotic nonperiodicity resumes at CS ’ 256, again
through a sequence of period doubling (a hint of which is visible
in Fig. 3 [CS ’ 254]), up to CS ’ 270, where a drastic transition
takes place in dynamo behavior (more on this shortly) and once
again yields singly periodic solutions as CS is further increased.
Although it is not immediately apparent in the figure, the nu-
merical solutions include a narrow 5 period window at CS ’
226:5, which is the second-widest periodic window ‘‘predicted’’
by the one-dimensional iterative map, at � ’ 1:644 (see Fig. 2).

Fig. 3.—Bifurcation diagram reconstructed from a sequence of numerical
dynamo solutions with increasing dynamo numbers CS . Amplitudes are mea-
sured in time series of magnetic energy. Time series for a few representative
individual solutions, flagged here by vertical lines, are depicted in Fig. 4. In
this and the following figures, magnetic energies have been arbitrarily but con-
sistently scaled to values of order unity.

3 In Fig. 3 we actually plot the square root of the magnetic energy peaks as a
measure of the cycle amplitude in order to facilitate the comparison with Fig. 2,
itself constructed directly from the amplitude iterates pn.
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The distinction between multiperiodic and nonperiodic solu-
tions can be quite striking upon computing power spectra of the
corresponding time series, as depicted in the right column of
Figure 4 for time series plotted in the left column. Multiperiodic
solutions show narrow peaks in frequency standing clearly above
a noisy background. The chaotic solution (bottom frame), on the
other hand, shows a much flatter spectrum. The 5 period solu-
tion has the least well defined peaks, yet these remain clearly vis-
ible; examination of the full time series reveals that this solution
occasionally ‘‘lapses’’ into nonperiodic behavior for some half-
dozen cycles at a time before 5-periodic behavior resumes again,
thus accounting for the poor quality of the power spectrum.

Closer examination of the power spectra in Figure 4 soon
reveals that the frequency peak at f ’ 16��1 is always present
in all spectra (although slightly shifted in the bottom two) and,
moreover, acts as the base frequency from which period dou-
bling develops. This is readily visualized upon stacking power
spectra for all solutions making up Figure 3 for increasing val-
ues of the dynamo number CS. This results in a form of bifur-
cation diagram in frequency, rather than amplitude. One such
diagram is shown in Figure 5 and should be carefully compared

to Figure 3. The primary frequency stands out quite clearly in
this diagram and persists in a well-defined manner even through
nonperiodic intervals.
This primary frequency is associated with the turnover time

of meridional circulation, which is known to be the primary
determinant of cycle period in this class of dynamomodels (see,
e.g., x 4 of DC99). Charbonneau & Dikpati (2000) also showed
that meridional circulation can also regulate the cycle period
in the presence of high-amplitude stochastic fluctuation, effec-
tively acting as a ‘‘clock’’ ensuring sustained phase coher-
ence over many cycles. The results presented here reinforce this
conclusion. It is quite noteworthy that the primary cycle fre-
quency shows up so well throughout the two chaotic intervals in
Figure 5, given that the cycle amplitude is fluctuating chaoti-
cally from one cycle to the next (cf. Fig. 4e). Here the primary
cycle period is roughly solar, varying from �25 yr at CS ¼ 100
to 57 yr at CS ¼ 200. The discrepancy is not worrisome, since a
twofold increase in u0 (from 10 to 20 m s�1, well within ob-
servational bounds) together with relatively minor variations in
the form of the circulation profile could easily bring the dynamo
period down to �10 yr.

Fig. 4.—Time series (left column) and power spectra (right column) for a sample of numerical solutions at values of CS indicated by vertical lines in Fig. 3.
Interestingly, the magnetic energy curves resemble observed sunspot cycles in that their rising phases are of significantly shorter duration than their more leisurely
decaying phases.

CHARBONNEAU, ST-JEAN, & ZACHARIAS618 Vol. 619



4.3. Is It Really Chaos?

Obviously, care must be taken before declaring this or that
solution ‘‘chaotic’’ simply on the basis of having failed to detect
periodicity in a time series that samples 100 oscillations or so.
Since sensitivity to initial conditions is the hallmark of deter-
ministic chaos, the allegedly chaotic nature of our nonperiodic
solutions is best assessed by introducing a small perturbation in
such a numerical solution and tracking the solution’s further
evolution in comparison to an unperturbed counterpart.

The result of such an exercise is shown in Figure 6 for a
solution in the nonperiodic window following the first sequence
of period doubling (see Fig. 3). A perturbation of relative am-
plitude 10�4 was introduced at time t � along a thin spherical
shell centered on the core-envelope interface in the model, and
the evolution followed for 5000 time steps thereafter (amount-
ing to 1.25 magnetic diffusion times). The expectation is that
after a transient phase during which the spatially localized per-
turbation spreads across the spatial domain and lasting pre-
sumably some significant fraction of the diffusion time, the two
solutions will start to diverge exponentially. This is indeed what
happens in the numerical solutions, as shown in Figure 6. The
solid line in Figure 6a is the magnetic energy time series EB(t)
for the reference (unperturbed) solution, starting at the time
t � when the perturbation was introduced. The dashed line is the
corresponding time series E �

B(t) for the perturbed solution. The
two solutions are indistinguishable on this plot up to about 0.8
diffusion time past the introduction of the perturbation, but then
they diverge markedly.

Figure 6b shows a time series of the normalized unsigned
difference �(t) between the two magnetic energy time series,
defined as

�(t) ¼ E�
B(t)� EB(t)

E�
B(t)þ EB(t)

����
����: ð14Þ

This time series is very noisy, so we smoothed it with a 1000
iteration wide boxcar averaging filter, resulting in the thick
solid line plotted in Figure 6b. The quantity �(t) varies ir-

regularly at first, corresponding to the transient phase associ-
ated with the spatial spread of the perturbation, but then enters
a phase of exponential increase during which �(t) increases
by more than 2 orders of magnitude. After about 1 diffusion
time, the two solutions have become entirely decorrelated, and
thereafter �(t) remains of order unity. This is exactly the be-
havior expected from deterministic chaos and confirms that our
‘‘chaotic’’ solutions are indeed chaotic in the strict sense of the
word.

4.4. Behavvior at Higgh CS

The sudden drop in frequency so striking at CS ¼ 272 in
Figure 5 heralds a switch to a qualitatively distinct dynamo be-
havior. At all smaller dynamo numbers, the primary cycle fre-
quency is that associated with the turnover time of meridional
circulation, with only weak dependence on the dynamo number.
However, upon reaching CS ¼ 272, the primary frequency drops
abruptly by some 25%, while chaotic solutions give way equally
suddenly to a singly periodic cycle with amplitude now increas-
ing much more rapidly with CS than prior to the transition

Fig. 5.—Variations of power spectra as a function of dynamo numberCS. The
dotted tick marks along the top of the figure indicate the boundaries between
various types of cyclic behavior, labeled by their n-fold periodicity. As one
moves from left to right, period-doubling bifurcations correspond to the sudden
appearance of well-defined power ridges at half the frequency of existing ridges.
A frequency of 10 ��1 corresponds here to a cycle period of 92 yr.

Fig. 6.—Sensitivity to initial conditions in a nonperiodic solution. (a) The
solid line shows a reference time series of magnetic energy EB(t), and the dashed
line shows the corresponding time series E�

B(t) for a solution in which a spatially
localized perturbation of normalized amplitude 10�4 was introduced at time t�.
(b) The normalized unsigned difference between the two time series (thin solid
line), on which is superimposed a smoothed version (via a 1000 iteration run-
ning boxcar filter). The two vertical dotted lines bracket a phase of exponential
increase in�(t). The exponential divergence of the two solutions indicates sen-
sitivity to initial conditions, the hallmark of deterministic chaos.
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(see Fig. 3). Note also that this dynamo branch has no coun-
terpart in the bifurcation diagram arising from the iterative map
(Fig. 2).

This high-CS branch is one in which the kinematic time delay
associated with meridional circulation no longer plays a lead-
ing role in the dynamical behavior. Instead, at the onset of the
cycle the magnetic field grows extremely rapidly, leading to a
quenching on the source term so swift that the cycle cannot
really get underway; i.e., circulation no longer has time to carry
the poloidal field equatorward. Instead, the toroidal magnetic
field grows until the poloidal field begins to decay resistively,
which in turn leads to the resistive decay of the toroidal field.
When the latter has fallen to amplitudes low enough for the
source term to turn on again, a new cycle begins.

4.5. Robustness of Results

We have obtained results qualitatively similar to those pre-
sented above for other choices of amplitude-limiting nonlinear-
ities and over substantial portions of the parameter space defined
by the DC99 dynamomodel, as modified to include a lower thresh-
old on the B-L source term. Not surprisingly, the solutions are
most sensitive near the bifurcation points to the size of the spa-
tial mesh used, the time-step size, and other purely numerical
details.

The bifurcation structure is most maplike in models with a
high Reynolds number, a high magnetic diffusivity contrast be-
tween core and envelope, and/or circulation penetrating below
the core-envelope interface. The high Reynolds number require-
ment (meaning low envelope diffusivity �T for a fixed circulation
speed u0; cf. eq. [7]) is important here; if the envelope mag-
netic diffusivity is large, the diffusion time across the envelope
can become comparable to or even shorter than the advection
time by the meridional flow, which leads to a ‘‘short-circuiting’’
of the dynamo conveyor belt and a loss of memory of past cycle
amplitudes. Such solutions typically do not show a transition to
chaos through period-doubling bifurcations and instead often
remain singly periodic over a very wide range of dynamo num-
bers. The dynamical behavior discussed here thus characterizes
B-L models operating in the advection-dominated regime; for
u0 � 20 m s�1, this requires �T P 4 ; 1011 cm2 s�1 or, equiva-
lently, Rmk 300.

While transition to chaos via a sequence of period-doubling
bifurcations characterizes the model’s behavior in wide regions
of parameter space, the degree of resemblance to the bifurca-
tion structure calculated using the iterative map is often not as
good as that between Figures 2 and 3. The distinction hinges on
the degree of invariance of the solution’s spatial planforms to
the overall amplitude of the cycle. This effect is illustrated in
Figure 7, which shows time-latitude (‘‘butterfly’’) diagrams of
the toroidal magnetic field constructed at the core-envelope
interface r=R ¼ 0:7. The top solution is the CS ¼ 228 solu-
tion from the sequence whose bifurcation diagram is shown in
Figure 3, while the bottom solution has a much higher meridi-
onal flow speed (parameter values �T ¼ 1:67 ; 1011 cm2 s�1,
C� ¼ 84;000,CS ¼ 40, Rm¼ 2335,�� ¼ 500, and rb ¼ 0:68).
In the first case, successive cycles have more or less the same
spatiotemporal structure in this diagram, while this clearly is
not the case for the second solution. In the former case, the
conveyor belt always operates in the same manner indepen-
dently of cycle amplitude, with toroidal magnetic fields peaking
around 60

�
latitude; in the latter case, however, the cycles can

look very different from one cycle to the next, with the field
peaking at polar latitudes for some cycles and showing a mid- to
low-latitude branch of comparable strength for others. In such a

situation the simple conveyor-belt argument of Figure 1 cannot
be expected to hold very well.
A numerical bifurcation diagram for the sequence of solu-

tions to which that plotted in the bottom panel of Figure 7 be-
longs shows similarities as well as important differences with
that produced by the iterativemap (Fig. 2). As the dynamo num-
ber is increased, cyclic activity appears at a supercritical bifur-
cation, but the singly periodic regime rapidly undergoes a first
period doubling, eventually transiting to chaos via further pe-
riod doublings, in the usual manner. However, as the dynamo
number is further increased, chaos almost immediately gives
way to multiperiodic behavior with multiple pairs of branches
gradually merging asCS is further increased until stable, doubly
periodic behavior is recovered. Chaos then reappears abruptly
and persists to much higher dynamo numbers, within which the
widest imbedded periodic window is of even periodicity. None
of these latter features are characteristic of classical, single-
hump iterative maps.
With toroidal fields often peaking at high latitudes, neither one

of the time-latitude diagrams plotted in Figure 7 compares well to
the sunspot butterfly diagram. However, stability analyses of to-
roidal flux ropes stored immediately beneath the core-envelope
interface indicate that flux ropes stored at high latitudes are
much harder to destabilize because of the strong magnetic ten-
sion associated with the greater curvature about the polar axis
(see, e.g., Fig. 1 in Ferriz-Mas et al. 1994). The high-latitude to-
roidal fields in Figure 7 may well remain invisible on a sunspot
butterfly diagram. Concentration of toroidal fields closer to the
equatorial regions can also be achieved by allowing for deeper
penetration of the meridional flow into the tachocline (e.g., Nandy
& Choudhuri 2002; also DC99), although the recent boundary
layer analysis of Gilman & Miesch (2004) indicates that this is
probably not a viable alternative. At any rate, the time-delayed
nonlinear behavior is largely insensitive to the detailed form of
the butterfly diagram as long as the ‘‘conveyor belt’’ operates
in an amplitude-independent manner, as discussed above.

Fig. 7.—Two butterfly diagrams for chaotic solutions in two different pa-
rameter regimes. The gray scale indicates the toroidal magnetic field at the
core-envelope interface in the model (r=R ¼ 0:7), in which sunspot-producing
toroidal flux ropes presumably form prior to their buoyant destabilization and
rise through the overlying convective envelope. In the top diagram, the so-
lution’s planform remains more or less the same independent of the overall
amplitude; this is not true of the bottom diagram. Because of this, the bifur-
cation diagram for the first solution is well reproduced by the one-dimensional
iterative map, while the second is not (see text).
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5. CONCLUDING REMARKS

In this paper, we have presented a series of numerical sim-
ulations of the solar magnetic activity cycle showing a well-
defined transition to chaos via a sequence of period-doubling
bifurcations as the numerical value of the model’s source pa-
rameter is increased. Multiperiodic and chaotic behavior orig-
inates with the long time delay built into the dynamo process, as
confirmed by the very good agreement of the numerical results
with the behavior predicted using a simple one-dimensional
iterative map, at all but very high dynamo number values.

In the solar cycle context, we are aware of no other example
in which a PDE-based two-dimensional model incorporating
only a simple amplitude-limiting quenching nonlinearity can be
shown to undergo transition to chaos through a sequence of
period-doubling bifurcations. One related case in torus geom-
etry has been well documented by Brooke & Moss (1994), but
the transition to chaos could not be resolved beyond the first
period-doubling bifurcation.

Numerous procedures have been proposed whereby the
dynamo-governing equations are truncated to yield a dynamical
system described by a set of nonlinearly coupled ordinary dif-
ferential equations resembling the famed Lorenz system (e.g.,
Ruzmaikin 1981; Weiss et al. 1984). Alternately, the search for
chaotic behavior has been made in various more elaborate and
spatially extended dynamo models, as in the present paper, but
including various forms of nonlinear feedback mechanisms.
Here also a variety of irregular behavior has been observed, with
some deemed chaotic (see, e.g., Belvedere et al. 1990; Brandenburg
et al. 1991; Schmalz & Stix 1991; Roald & Thomas 1997). At-
tempts have also been made to connect the two approaches by
looking for similarity between the bifurcation structure of low-
order dynamical systems and that reconstructed from numerical
solutions to spatially extended dynamo models, including dy-
namical nonlinearities. In some cases the comparison is, in fact,
quite favorable (Knobloch et al. 1998), suggesting that suitably
constructed low-order dynamical systems do catch some essen-
tial features of the full problem and that the nonlinear behaviors
observed therein are generic. On the other hand, some impor-
tant aspects of the nonlinear behavior are also found to depend,
sometimes quite sensitively, on what one would have hoped
would be relatively minor details of the model’s formulation
(see, e.g., Phillips et al. 2002 and discussion therein). At any
rate, in all these cases, the nonlinearities built into the dynam-
ical systems and introduced in the numerical models relate di-
rectly to the back-reaction of the dynamo-generated magnetic
field on the fluid motions powering the dynamo.

In contrast, the results presented in this paper indicate that
observed fluctuations in the amplitude of the solar cycle may
also originate with a simple, kinematic time-delayed feedback
effect, rather than with magnetically mediated nonlinear dy-
namical back-reaction on fluid motions. It must be emphasized

that in the context of solar cycle models based on the B-L
mechanism of poloidal field regeneration, such a time delay is
not at all an ad hoc modeling ingredient but instead represents
an unavoidable consequence of the spatial segregation of the
two source regions for the toroidal and poloidal magnetic
components (see Fig. 1).

The dynamo solutions presented here also confirm the remark-
able cycle period regulation achieved by meridional circulation
in B-L models. Charbonneau & Dikpati (2000) have demon-
strated this property in the context of a singly periodic B-L
dynamo model subjected to strong stochastic forcing, and sup-
porting observational evidence has been presented in Hathaway
et al. (2003). Here the cycle frequency is found to remain
constant within 20% despite period doubling and transition to
chaos taking place as the dynamo number is increased by nearly
2 orders of magnitude.Meridional circulation is truly acting as a
clock regulating the cycle period in this class of dynamo mod-
els. In more general terms, we wish to also emphasize that the
inclusion of meridional circulation in the dynamo equations is
far from being an ad hoc addition. Meridional flows have now
been detected helioseismically down to r=R� 0:8, and mass
conservation requires an equatorward return flow somewhere in
the interior. A surface meridional flow has long been known to
be an important ingredient for properly reproducing the spa-
tiotemporal evolution characterizing synoptic magnetograms
(e.g., Wang et al. 2002 and references therein). Evidence is also
accumulating that the speed (and fluctuations) of the surface
meridional flow have a determining influence on some observed
solar cycle characteristics, such as the relative amplitudes of suc-
cessive cycles (Hathaway et al. 2003, but see also Schüssler &
Schmitt 2004) and the timing of polar field reversals (Dikpati
et al. 2004). Including meridional circulation in dynamo models
is no longer a mere modeling option; it is there and it plays an
important role, and not only in models based on the B-L mech-
anism of poloidal field regeneration.

Finally, we note that the remarkable agreement between the
behavior observed in the spatially extended numerical model and
the corresponding one-dimensional iterative map legitimizes the
use of such map to investigate phenomena that would be im-
practical to study using the full numerical model, most notably
intermittency. We turn to this interesting issue in the next paper
of this series (P. Charbonneau et al. 2005, in preparation).
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