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toroidal field below and above rc varies with the imposed diffusivity contrast
∆η. The dashed line is the dependency expected from eq. (248). For relatively
low diffusivity contrast, −1.5 ≤ log(∆η) ∼< 0, both the toroidal field ratio and
dynamo period increase as ∼ (∆η)−1/2. Below log(∆η) ∼ −1.5, the max(B)-
ratio increases more slowly, and the cycle period falls, as can be seen on
Fig. 39C. This is basically an electromagnetic skin-depth effect; unlike in the
original picture proposed by Parker, here the poloidal field must diffuse down
a finite distance into the tachocline before shearing into a toroidal component
can commence. With this distance set by our adopted profile of Ω(r, θ), as
∆η becomes very small there comes a point where the dynamo period is such
that the poloidal field cannot diffuse as deep as the peak in radial shear in
the course of a half cycle. The dynamo then runs on a weaker shear, thus
yielding a smaller field strength ratio and weaker overall cycle.

0.27 Babcock-Leighton models{pch_sec:BLsoldyn}

Solar cycle models based on what is now called the Babcock-Leighton mech-
anism were first developed in the early 1960’s, yet they were temporarily
eclipsed by the rise of mean-field electrodynamics a few years later. Their re-
vival was motivated in part by the fact that synoptic magnetographic moni-
toring over solar cycles 21 and 22 has offered strong evidence that the surface
polar field reversals are triggered by the decay of active regions (see Fig. 32).
The crucial question is whether this is a mere side-effect of dynamo action
taking place independently somewhere in the solar interior, or a dominant
contribution to the dynamo process itself.

Figure 40 illustrates the basic idea of the Babcock-Leighton mechanism.
Consider the bipolar magnetic regions (BMR) sketched on the right. Recall
that each of these is the photospheric manifestation of a toroidal flux rope
emerging as an Ω-loop (see Fig. 31). The leading (trailing) component of each
BMR is that located ahead (behind) with respect to the direction of the Sun’s
rotation. Joy’s Law states that, on average, the leading component is located
at lower latitude than the trailing component, so that a line joining each
component of the pair makes an angle with respect to the E-W line. Hale’s
polarity law also informs us that the leading/trailing magnetic polarity pat-
tern is opposite in each hemisphere, a reflection of the equatorial antisymme-
try of the underlying toroidal flux system. Horace W. Babcock (1912–2003)
demonstrated empirically from his early magnetographic observation of the
sun’s surface solar magnetic field that as the BMRs decay (presumably under
the influence of turbulent convection), the trailing components drift to higher
latitudes, leaving the leading components at lower latitudes, as sketched on
Fig. 40 (middle). Babcock also argued that the trailing polarity poloidal flux
released to high latitude by the cumulative effects of the emergence and sub-
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Fig. 40 {F6.1} Cartoon of the Babcock-Leighton mechanism. At left, a number
of bipolar magnetic regions (BMR) have emerged, with opposite leading/following
polarity patterns in each hemisphere, as per Hale’s polarity Law. After some time
(middle), the BMRs have started decaying, with the leading components experiencing
diffusive cancellation across the equator, while the trailing components have moved to
higher latitudes. At later time, (right), the net effect is the buildup of an hemispheric
flux of opposite polarity in the N and S hemisphere, i.e., a net dipole moment (see
text) Diagram kindly provided by D. Passos.

sequent decay of many BMRs was responsible for the reversal of the sun’s
large-scale dipolar field (right).

More germane from the dynamo point of view, the Babcock-Leighton
mechanism taps into the (formerly) toroidal flux in the BMRs to produce
a poloidal magnetic component. To the degree that a positive dipole moment
is being produced from a toroidal field that is positive in the N-hemisphere,
this is a bit like a positive α-effect in mean-field theory. In both cases the Cori-
olis force is the agent imparting a twist on a magnetic field; with the α-effect
this process occurs on the small spatial scales and operates on individual
magnetic fieldlines. In contrast, the Babcock-Leighton mechanism operates
on the large scales, the twist being imparted via the the Coriolis force acting
on the flow generated along the axis of a buoyantly rising magnetic flux tube.

0.27.1 Sunspot decay and the Babcock-Leighton mechanism {pch_ssec:BLmech}

Evidently this mechanism can operate as sketched on Figure 40 provided
the magnetic flux in the leading and trailing components of each (decaying)
BMR are separated in latitude faster than they can diffusively cancel with
one another. Moreover, the leading components must end up at low enough
latitudes for diffusive cancellation to take place across the equator. This is
not trivial to achieve, and we now take a more quantitative looks at the
Babcock-Leighton mechanism, first with a simple 2D numerical model.

The starting point of the model is the grand sweeping assumption that,
once the sunspots making up the bipolar active region lose their cohesiveness,
their subsequent evolution can be approximated by the passive advection and
resistive decay of the radial magnetic field component. This drastic simplifi-
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cation does away with any dynamical effect associated with magnetic tension
and pressure within the spots, as well as any anchoring with the underlying
toroidal flux system. The model is further simplified by treating the evolution
of Br as a two-dimensional transport problem on a spherical surface corre-
sponding to the solar photosphere. Consequently, no subduction of the radial
field can take place.

Even under these simplifying assumptions, the evolution is still governed
by the MHD induction equation, specifically its r-component. The imposed
flow is made of an axisymmetric surface “meridional circulation”, basically
a poleward-converging flow in the latitudinal direction on the sphere, and
differential rotation in the azimuthal direction:

u(θ) = 2u0 sin θ cos θêθ + ΩS(θ)R sin θêφ , (249){E6.10a}

where ΩS is the solar-like surface differential rotation profile used in the
preceding chapter (see eq. (140)). Note that ∇·u 6= 0, a direct consequence of
working on a spherical surface without possibility of subduction. Introducing
a new latitudinal variable µ = cos θ and neglecting all radial derivatives, the
r-component of the induction equation (evaluated at r = R) becomes:

∂Br

∂t
=

2u0

R
(1 − µ2)

[

Br + µ
∂Br

∂µ

]

− ΩS(1 − µ2)1/2 ∂Br

∂φ

+
∂

∂µ

[

η

R2

∂Br

∂µ

]

+
∂

∂φ

[

η

R2(1 − µ2)

∂Br

∂φ

]

, (250){E6.11}

with η being the net magnetic diffusivity. As usual, we work with the nondi-
mensional form of eq. (250), now obtained by expressing time in units of
τc = R/u0, i.e., the advection time associated with the meridional flow. This
leads to the appearance of the following two nondimensional numbers in the
scaled version of eq. (250):

Rm =
u0R

η
, Ru =

u0

Ω0R
. (251){E6.12}

Using Ω0 = 3 × 10−6 rad s−1, u0 = 15m s−1, and η = 6 × 108 m2s−1 yields
τc ' 1.5 yr, Rm ' 20 and Ru ' 10−2. The former is really a measure of the
(turbulent) magnetic diffusivity, and is the only free parameter of the model,
as u0 is well constrained by surface Doppler measurements. The correspond-
ing magnetic diffusion time is τη = R2/η ' 26 yr, so that τc/τη ¿ 1.

Figure 41 shows a representative solution. The initial condition (panel A,
t = 0) describes a series of eight BMRs, four per hemisphere, equally spaced
90o apart at latitudes ±15◦. Each BMR consists of two Gaussian profiles of
opposite sign and adding up to zero net flux, with angular separation d = 10◦

and with a line joining the center of the two Gaussians tilted with respect
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Fig. 41 {F6.2} Evolution of the surface radial magnetic field for two sets of four
BMRs equally spaced in longitude, and initially located at latitudes ±15◦, with op-
posite polarity ordering in each hemisphere, as per Hale’s polarity Laws. The surface
field evolves in response to diffusion and advective transport by differential rotation
and a poleward meridional flow, as described by the 2D advection-diffusion equation
(250). Parameter values are Ru = 10−2 and Rm = 50, with time given in units of
the meridional flow’s characteristic time τc = R/u0.
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to the E-W direction24 by an angle γ, itself related to the latitude θ0 of the
BMR’s midpoint according to the Joy’s Law-like relation:

sin γ = 0.5 cos θ0 . (252){E6.13}

The symmetry of the flow and initial condition on Br(θ, φ) means that the
problem can be solved in a single hemisphere with Br = 0 enforced in the
equatorial plane, in a 90◦ wide longitudinal wedge with periodic boundary
conditions in φ.

The combined effect of circulation, diffusion and differential rotation is
to concentrate the magnetic polarity of the trailing “spot” to high latitude,
while the polarity of the leading spot dominates at lower latitudes, but ex-
periences diffusive cancellation with the opposite polarity leading flux from
it’s “cousin” in the other solar hemisphere. At mid-latitudes, the effect of dif-
ferential rotation is to stretch longitudinally the unipolar regions originally
associated with each member of the BMR, causing the development of thin
banded structures of opposite magnetic polarities, thus enhancing dissipation.

The combined effects of these advection-diffusion processes is to separate
in latitude the two polarities of the BMR. This is readily seen upon calculat-
ing the longitudinally averaged latitudinal profiles of Br, as shown on Fig. 42
for the same six successive epochs corresponding to the snapshots on Fig. 41.
The poleward displacement of the trailing polarity “bump” is the equivalent
to Babcock’s original cartoon (cf. Fig. 40). The time required to achieve this
here is t/τc ∼ 1, and scales as (Rm/Ru)1/3. The significant amplification of
the trailing polarity bump from t/τc ∼> 0.5 onward is a direct consequence of
magnetic flux conservation in the poleward-converging meridional flow. No-
tice also the strong latitudinal gradient in Br at the equator (dotted line)
early in the evolution; the associated trans-equatorial diffusive polarity can-
cellation affects preferentially the leading spots of each pairs, since the trailing
spots are located slightly farther away from the equator.

Consider again the mean signed and unsigned magnetic flux:

Φ =| 〈Br〉 | , F = 〈| Br |〉 , (253){E6.13a}

where the averaging operator is now defined on the spherical surface, for the
Northern and Southern hemisphere separately:

〈Br〉 =

∫ 2π

0

∫ 0(π/2)

−π/2(0)

Br(θ, φ) sin θdθdφ . (254){E6.13b}

Figure 43 shows the time-evolution of the signed (Φ, solid line) and unsigned
(F , dashed) fluxes in the Northern hemisphere, for the solution of Fig. 41.

24 Remember that this is meant to represent the result of a toroidal flux rope erupting
through the surface, so that in this case the underlying toroidal field is positive in the
Northern hemisphere, which is the polarity of the trailing “spot”, as measured with
respect to the direction of rotation, from left to right here.
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Fig. 42 {F6.2B} Latitudinal profile of the longitudinally averaged vertical magnetic
field, at the six epochs plotted on Fig. 41. The strong signal at t = 0 results entirely
from the slight misalignment of the emerging BMRs with respect to the E-W direction.
By one turnover time, two polar caps of oppositely-signed magnetic field have built
up, amounting to a net dipole moment (see text).

The unsigned flux decreases rapidly at first, then settles into a slower decay
phase. Meanwhile a small but significant hemispheric signed flux is building
up. This is a direct consequence of (negative) flux cancellation across the
equator, mediated by diffusion, and is the Babcock-Leighton mechanism in
action. Note the dual, conflicting role of diffusion here; it is needed for cross-
hemispheric flux cancellation, yet must be small enough to allow the survival
of a significant trailing polarity flux on timescales of order τc.

The efficiency (Ξ) of the Babcock-Leighton mechanism, i.e., converting
toroidal to poloidal field, can be defined as the ratio of the signed flux at
t = τc to the BMR’s initial unsigned flux:

Ξ = 2
Φ(t = τc)

F (t = 0)
. (255) {E6.13c}

Note that Ξ is independent of the assumed initial field strength of the BMRs
since eq. (250) is linear in Br. Looking back at Fig. 43, one would eyeball the
efficiency at about 1% in converting the BMR flux to polar cap signed flux.
This conversion efficiency turns out to be a rather complex function of BMR
parameters; it is expected to increases with increasing tilt γ, and therefore
should increasing with latitudes as per Joy’s Law, yet proximity to the equa-
tor favors transequatorial diffusive flux cancellation of the leading component;
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Fig. 43 {F6.3} Evolution of the Northern hemisphere signed (solid line) and un-
signed (dashed line) magnetic flux for the solution of Fig. 41. The solid dots mark
the times at which the snapshots and longitudinal averages are plotted on Figs. 41
and 42.

moreover, having duθ/dθ < 0 favors the separation of the two BMR compo-
nents, thus minimizing diffusive flux cancellation between the leading and
trailing components. These competing effects lead to a toroidal-to-poloidal
conversion efficiency peaking for BMRs emerging at fairly low latitudes, the
exact value depending on the latitudinal variation of the adopted surface
meridional flow profile. At any rate, we noted already (§0.25) that the sun’s
polar cap flux peaks at solar minimum, at a value amounting to ∼ 0.1% of
the cycle-integrated active region (unsigned) flux; the efficiency required of
the Babcock-Leighton mechanism is indeed quite modest.

0.27.2 Axisymmetrization revisited

Take another look at Fig. 41; at t = 0 (panel A) the surface magnetic field dis-
tribution is highly non-axisymmetric. By t/τc = 0.7 (panel E), however, the
field distribution shows a far less pronounced φ-dependency, especially at high
latitudes where in fact Br is nearly axisymmetric. This should remind you of
something we encountered earlier: axisymmetrization of a non-axisymmetric
magnetic field by an axisymmetric differential rotation (§0.20.5), the spherical
analog of flux expulsion. In fact a closer look at the behavior of the unsigned
flux on Fig. 43A (dashed line) already shows a hint of the two-timescale be-
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havior we have come to expect of axisymmetrization: the rapid destruction
of the non-axisymmetric flux component and slower (∼ τη) diffusive decay of
the remaining axisymmetric flux distribution.

Since the spherical harmonics represent a complete and nicely orthonormal
functional basis on the sphere, it follows that the initial condition for the
simulation of Fig. 41 can be written as

B0
r (θ, φ) =

∞
∑

l=0

+l
∑

m=−l

blmYlm(θ, φ) , (256) {E6.15}

where the Ylm’s are the spherical harmonics:

Ylm(θ, φ) =

√

2l + 1

4π

(l − m)!

(l + m)!
Pm

l (cos θ)eimφ , (257) {E6.15b}

and with the coefficients blm given by

blm =

∫ 2π

0

∫ π

0

B0
r (r, θ)Y ∗

lm(θ, φ) , (258) {E6.16}

where the “∗” indicates complex conjugation. Now, axisymmetrization will
wipe out all m 6= 0 modes, leaving only the m = 0 modes to decay away on the
slower diffusive timescale25. Therefore, at the end of the axisymmetrization
process, the radial field distribution now has the form:

Br(θ) =

∞
∑

l=0

√

2l + 1

4π
bl0P

0
l (cos θ) , t/τc À Ru . (259) {E6.17}

which now describes an axisymmetric poloidal magnetic field. Voilà!

0.27.3 Dynamo models based on the Babcock-Leighton

mechanism

So now we understand how the Babcock-Leighton mechanism can convert
a toroidal magnetic field into a poloidal component, and therefore act as a
poloidal source term in eq. (172). Now we need to construct a solar cycle
model based on this idea. One big difference with the αΩ models considered
in §0.26 is that the two source regions are now spatially segregated: produc-
tion of the toroidal field takes place in the tachocline, as before, but now
production of the poloidal field takes place in the surface layers.

25 With u = 0, the decay rate of those remaining modes are given by the eigenvalues
of the 2D pure resistive decay problem, much like in §0.18.


