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Chapter 1

Kinematic axisymmetric dynamo

models {chap:dynmod}

It’s not whether a thing is hard to understand.

It’s whether, once understood, it makes any sense.

Hans Zinsser
Rats, Lice and History (1934)

These Notes contain information pertaining to the Laboratory component of the Lectures
on stellar dynamos at the 2014 NASA Heliophysics Summer School. The Lab itelf consists
in exploring the behavior of various types of dynamos as defining parameters are varied, as a
means of interpreting observations of magnetic activity in late-type stars.

The truly impatients can skip directly to §1.5 and get going, but I strongly recommend that
the preceeding sections be read at least rapidly, so as to know a bit how the dynamo solutions
you will be working with are designed, and what the parameters you will be playing with relate
to.

References to your Heliophysics textbooks are in the form Volume.chapter.section, e.g.,
III.6.2.1 refers to section 2.1 in chapter 6 of the third volume. I have also included a few
homework problems and a short general bibliography at the end of the document.

1.1 Model design {sec:design}

The starting point is the magnetohydrodynamical induction equation (see §I.3.2):

∂B

∂t
= ∇× (u × B − η∇× B) . (1.1) {eq:induction}

where u is the total flow and η [m2 s−1] the magnetic diffusivity. In the SI system of units, the
the magnetic field B is measured in tesla (T).

We restrict ourselves here to kinematic, axisymmetric (two-dimensional) mean-field-like
models, in the sense that we will be setting and solving partial differential equations for poloidal
and toroidal large-scale magnetic components in a meridional [r, θ] plane, and subsume the
effects of small-scale fluid motions and magnetic fields into coefficients of these PDEs (see
§III.6.1). Working in spherical polar coordinates (r, θ, φ), the (time-indendent) large-scale flow
and (time-dependent) magnetic field are expressed as

u(r, θ) = up(r, θ) + $Ω(r, θ)êφ , (1.2) {eq:axiu}

B(r, θ, t) = ∇× (A(r, θ, t)êφ) + B(r, θ, t)êφ . (1.3) {eq:axiB}
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6 CHAPTER 1. KINEMATIC AXISYMMETRIC DYNAMO MODELS

where B is the large-scale toroidal (zonally-oriented) component of the magnetic field, the
toroidal vector potential A defines the poloidal field, Ω is the rotational angular velocity (rad
s−1), and up is a large-scale flow component contained in meridional planes [r, θ], like the
poloidal magentic field. Upon substituting these expressions into eq. (1.1), the latter can be
separated into two coupled partial differential equations for A and B (see §III.6.XXX ...and
problem 1!):

∂A

∂t
= η

(

∇2 −
1

$2

)

A

︸ ︷︷ ︸

resistive decay

−
up

$
· ∇($A)

︸ ︷︷ ︸

advection

+ S(B)
︸ ︷︷ ︸

poloidalsource

, (1.4){eq:cowa}

∂B

∂t
= η

(

∇2 −
1

$2

)

B

︸ ︷︷ ︸

resistive decay

+
1

$

∂($B)

∂r

∂η

∂r
︸ ︷︷ ︸

diamagnetic transport

−$∇ ·

(
B

$
up

)

︸ ︷︷ ︸

advection

+$(∇× (Aêφ)) · ∇Ω
︸ ︷︷ ︸

shearing

. (1.5){eq:cowb}

with $ = r sin θ and we have already anticipated that the total magnetic diffusivity η will
depend only on depth. The source term S(B) in eq. (1.4), usually taken to depend on the
toroidal field B, does not arise from the substitution of eqs. (1.2)–(1.3) into (1.1). Its ad hoc

introduction in eq. (1.4) is however essential for sustained dynamo action, in order to bypass
Cowling’s theorem (see §I.3.3.8). Specific prescriptions for this source term are discussed further
below in §1.2.5.

Numerical solutions to eqs. (1.4)—(1.5) are sought in a meridional [r, θ] quadrant, spanning

0.5 ≤ r/R ≤ 1 , 0 ≤ θ ≤ π/2 , (1.6){eq:domain}

where R is the star’s radius. For solar-like dynamos, most of the action takes place in the
convecting layers (0.7 ≤ r/R ≤ 1 for the sun), but the solution domain includes part of the
underlying stably-stratified radiative core, as the latter can play a significant role in the storage
and amplification of magnetic fields.

In the “exterior” r > R there is only vacuum. Whatever solution we compute in r < R
must be matched to a current-free solution in r > R. For an axisymmetric magnetic field this
translates into

(

∇2 −
1

$2

)

A(r, θ, t) = 0 , (1.7){eq:J0a}

B(r, θ, t) = 0 . (1.8){eq:J0b}

Note in particular that the vector potential A must be continuous up to its first derivative
normal to the surface, so that the magnetic field component tangential to the surface remains
continuous across r = R. Regularity of the magnetic field on the symmetry axis (θ = 0) requires
that we set B = 0 there. Without any loss of generality, we can also set A = 0 on the axis.

The boundary condition imposed on the equatorial plane (θ = π/2) sets the equatorial
symmetry (parity) of the solutions. All dynamo solutions in the database have dipole-like
(antisymmetric) polarity enforced by setting:.

∂A(r, π/2)

∂θ
= 0, B(r, π/2) = 0 , [Antisymmetric] , (1.9){E5.22b}

while for symmetric (quadrupole-like) modes one would have set instead

A(r, π/2) = 0,
∂B(r, π/2)

∂θ
= 0 , [Symmetric] . (1.10){E5.22c}
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1.2. MODEL INGREDIENTS 7

1.2 Model ingredients{sec:ingredients}

The numerical solution of eqs. (1.4)–(1.5) requires the specification of various functionals defin-
ing the inductive flows as well as source and dissipative terms. These are described in this
section. In all cases we opt to use simple analytical parameterizations, either calibrated on
observations, extracted from numerical simulations, and/or motivated on physical ground. For
the illustrative purposes of this dynamo lab, this is entirely appropriate.

1.2.1 The differential rotation {ssec:difrot}

This is Ω in eq. (1.5). Differential rotation is driven by Reynolds stresses associated with turbu-
lent convection and is essentially unavoidable in a rotating, convecting system (see §III.5.5). For
Ω(r, θ) we use here a simple solar-like parametrization, scaled in terms of the surface equatorial
rotation rate:

Ω(r, θ) = ΩC +
ΩS(θ) − ΩC

2

[

1 + erf

(
r − rc

w

)]

, (1.11) {E5.68a}

where

ΩS(θ) = (1 − a2 cos2 θ − a4 cos4 θ) (1.12) {E5.68b}

with parameter values ΩC = 0.939, a2 = 0.1264, a4 = 0.1591, rc/R = 0.7, and w/R = 0.05,
as inferred helioseismologically (see, e.g., Kosovichev 1996, ApJL, 469, L61; Antia et al. 1998,
MNRAS, 298, 543; Charbonneau et al. 1999, ApJ, 527, 445). Figure 1.1 below shows the
corresponding isocontours of angular velocity, together with radial cuts at the pole, equator
and mid-latitudes.

It should be noted that such a solar-like differential rotation profile is quite complex from
the point of view of dynamo modelling, in that it is characterized by three partially overlapping
shear regions: a strong positive radial shear in the equatorial regions of the tachocline, an
even stronger negative radial shear in its polar regions, and a significant latitudinal shear
throughout the convective envelope and extending partway into the tachocline. As shown on
panel B of Fig. 1.1, for a tachocline of half-thickness w/R = 0.05, the mid-latitude latitudinal
shear at r/R = 0.7 is comparable in magnitude to the equatorial radial shear; its potential
contribution to dynamo action should not be casually dismissed. Conspicuously missing is the
so-called surface shear layer also evidenced by helioseismology; it is usually deemed of secondary
importance for internal dynamo action (but see Brandenburg 2005, ApJ, 625, 539).

1.2.2 The total magnetic diffusivity

This is η in eqs. (1.4)–(1.5). Assuming that the total magnetic diffusivity η(r) varies only
with depth, we use the same error-function radial profile as before, normalized to the turbulent
diffusivity η0 in the convective envelope:

η(r)

η0
= ∆η +

1 − ∆η

2

[

1 + erf

(
r − rc

w

)]

. (1.13) {eq:eta}

The corresponding profile is plotted on Fig. 1.1 as a dash-dotted line. In practice, the core-to-
envelope diffusivity ratio ∆η ≡ ηc/η0 is treated as a model parameter, with of course ∆η ¿ 1,
since we associate ηc with the microscopic magnetic diffusivity, and η0 with the presumably
much larger mean-field turbulent diffusivity β (see §I.3.4.3). With the microscopic diffusivity
ηc ∼ 1m2s−1 below the core-envelope interface, and taking mean-field estimates of β at face
value, one obtains ∆η ∼ 10−9—10−6. The solutions in the database you will be using have ∆η =
10−3—10−1, which is much larger, but still small enough to nicely illustrate some important
consequence of radial gradients in magnetic diffusivity.
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8 CHAPTER 1. KINEMATIC AXISYMMETRIC DYNAMO MODELS

Figure 1.1: Isocontours of angular velocity generated by eqs. (1.11)—(1.12), with parameter
values w/R = 0.05, ΩC = 0.8752, a2 = 0.1264, a4 = 0.1591 (panel A). The radial shear
changes sign at colatitude θ = 55◦. Panel B shows the corresponding angular velocity gradients,
together with the total magnetic diffusivity profile defined by eq. (1.13) (dash-dotted line, here
with ∆η = 0.1 for illustrative purposes). The core-envelope interface is located at r/R = 0.7
(dotted lines). {fig:dr}
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1.2. MODEL INGREDIENTS 9

1.2.3 The meridional circulation {ssec:circmed}

This is a contribution to up in eqs. (1.4)–(1.5), and denoted by uM in what follows. Meridional
circulation is also unavoidable in turbulent rotating convective shells and results from an im-
balance between Reynolds stresses and buoyancy forces (see §III.5.5). A ∼ 15m s−1 poleward
flow observed at the surface requires an equatorward return flow to satisfy mass conservation.
Recent helioseismic measurements and analyses based on magnetic feature tracking suggest
that this return flow occurs well within the convection zone, with multiple flow cells present
in the convection zone (REFs), although most dynamo models to date have used a monolithic
single-cell per meridional quadrant.

For all models discussed below including a meridional circulation uM(r, θ), we use the fol-
lowing convenient parametric form, designed by van Ballegooijen & Choudhuri (1988, ApJ,
333, 965):

ur(r, θ) = 2u0

(
R

r

)2 [

−
1

m + 1
+

c1

2m + 1
ξm −

c2

2m + p + 1
ξm+p

]

×ξ[(q + 2) cos2 θ − sin2 θ] sinq θ , (1.14) {eq:cm1}

uθ(r, θ) = 2u0

(
R

r

)3
[
−1 + c1ξ

m − c2ξ
m+p

]
sinq+1 cos θ , (1.15) {eq:cm2}

with

c1 =
(2m + 1)(m + p)

(m + 1)p
ξ−m
b , (1.16) {eq:cm3}

c2 =
(2m + p + 1)m

(m + 1)p
ξ
−(m+p)
b , (1.17) {eq:cm4}

ξ =
R

r
− 1 , (1.18) {eq:cm5}

ξb =
R

rb

− 1 . (1.19) {eq:cm6}

Don’t get too jazzed by the intricate look of these expressions, and the large number of constants
they introduce. This formulation allows the generation of a wide class of meridional flows, all
satisfying the mass conservation (∇ · (ρup) = 0) for a polytropic density profile of the form:

ρ(r)

ρb

=

(
R

r
− 1

)m

. (1.20) {eq:cm7}

Setting m = 0.5, p = 0.25 and q = 0, this defines a steady quadrupolar circulation pattern,
with a single flow cell per quadrant extending from the surface down to a depth rb. Circulation
streamlines are shown on Fig. 1.2, together with radial cuts of the latitudinal component at
mid-latitudes (θ = π/4), here for rb/R = 0.675. The flow is poleward in the outer convection
zone, with an equatorward return flow peaking slightly above the core-envelope interface, and
rapidly vanishing below.

In the solution database, the only parameters that are varied are the mid-latitude surface
flow speed u0, and the lower extent rb of the equatorward return flow.
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10 CHAPTER 1. KINEMATIC AXISYMMETRIC DYNAMO MODELS

Figure 1.2: Streamlines of meridional circulation (panel A), together with the total magnetic
diffusivity profile defined by eq. (1.13) (dash-dotted line, again with ∆η = 0.1) and a mid-
latitude radial cut of uθ (bottom panel). The dotted line is the core-envelope interface. This is
the analytic flow defined by eqs. (1.14)–(1.19), with parameter values m = 0.5, p = 0.25, q = 0
and rb = 0.675. {fig:cm}
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1.2. MODEL INGREDIENTS 11

Figure 1.3: Radial profile of the turbulent pumping speed for all models in the solution database
for which this physical effect is incorporated. Both the r- and θ-component of the turbulent
pumping velocity share this profile, as defined by eq. (1.23) with parameter values rc = 0.7,
d1 = 0.025, r2 = 0.85, and d2 = 0.05. The total magnetic diffusivity profile is shown as a
dash-dotted line. The core-envelope interface is located at r/R¯ = 0.7 (vertical dotted line).
{fig:turbpump}

1.2.4 Turbulent pumping {ssec:turbpump}

This is another contribution to up in eqs. (1.4)–(1.5), denoted by γγγγ in what follows. Turbulent
pumping is a pseudo-flow, in the sense that it is an advective contribution to the turbulent elec-
tromotive force in mean-field theory and so affects only the large-scale magnetic field (§I.3.4.3);
a drop of ink dropped in the sun would not feel turbulent pumping!

The parameterization used here is inspired by measurements of turbulent pumping in MHD
numerical simulations of solar convection (see, e.g., Käpylä et al. 2006, A&A, 455, 401; Racine
et al. 2011, ApJ, 735:46). These measurements indicate that turbulent pumping is predomi-
nantly downwards in the bulk of the convection zone, with an equatorward latitudinal compo-
nent peaking at low latitudes. Here we model this through:

γr(r) = −γ0f(r) , (1.21) {eq:gamr}

γθ(r, θ) = γ0f(r) sin2 θ cos θ (1.22) {eq:gamth}

where

f(r) =
1

4

[

1 + erf

(
r − rc

d1

)] [

1 − erf

(
r − r2

d2

)]

. (1.23) {eq:gamfr}

with d1 = 0.025, r2 = 0.85, and d2 = 0.05. The resulting radial profile f(r) is plotted on
Fig. 1.3. The quantity γ0 [m s−1] measures the strength of turbulent pumping; this is the only
parameter that is varied in the solution database, so that the ratio γr/γθ remains the same as
γ0 changes.
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12 CHAPTER 1. KINEMATIC AXISYMMETRIC DYNAMO MODELS

Figure 1.4: Radial profiles of the poloidal source terms for the αΩ mean-field model (solid line),
as defined by by eqs. (1.24)—(1.25), with parameter values rc = 0.7, d1 = 0.025, r3 = 0.85,
and d3 = 0.05. The dashed line shows the radial profile for the Babcock-Leighton source term,
as defined by by eqs. (1.26)—(1.27), with parameter values r4 = 0.95, d4 = 0.01, r5 = 1.0,
and d5 = 0.01. The core-envelope interface is located at r/R¯ = 0.7 (vertical dotted line).
{fig:sourceterms}

1.2.5 Poloidal source terms {ssec:source}

This is S in eq. (1.4). Dynamo solutions for two classes of source terms are used in the solution
database. The first is the classical local α-effect of mean-field electrodynamics (§I.3.4):

S(r, θ;B) = α(r, θ)B(r, θ, t) , [αΩ] (1.24) {eq:saO}

where

α(r, θ) =
s0

4

[

1 + erf

(
r − rc

d1

)] [

1 − erf

(
r − r2

d2

)]

cos(θ) . (1.25){eq:saOfr}

with parameter values r3 = 0.85 and d2 = 0.05, so that the radial dependency is the same as for
the turbulent pumping speed γγγγ, reflecting the fact that the α-effect and turbulent pumping both
from the same turbulent electromotive force. The combination of error functions concentrates
the α-effect in the bottom half of the envelope, and let it vanish smoothly below, just as the net
magnetic diffusivity does (i.e., we again set rc/R = 0.7 and w/R = 0.05). The corresponding
radial profile is plotted on Fig. 1.4. Various lines of argument point to an α-effect peaking in the
bottom half the convective envelope, since there the convective turnover time is commensurate
with the solar rotation period, a most favorable setup for the type of toroidal field twisting at
the root of the α-effect. Likewise, the hemispheric dependence of the Coriolis force suggests
that the α-effect should be positive in the Northern hemisphere, and change sign across the
equator (θ = π/2). The “minimal” latitudinal dependency is thus cos θ. These expectations are
generally borne out by measurements of the α-tensor in MHD simualtions of solar convection
(e.g., Ossendrijver et al. 2001, A&A, 376, 713; Racine et al. 2011, ApJ, 735:46; and refereces
therein)

Paul Charbonneau, Université de Montréal helio14lab.tex, June 20, 2014



1.2. MODEL INGREDIENTS 13

For dynamo models relying on the Babcock-Leighton mechanism of poloidal field regenera-
tion, the source term S to be inserted in eq. (1.4) is given instead by:

S(r, θ, B(t)) = s0 f(r) sin θ cos θB(rc, θ, t) , [Babcock − Leighton] (1.26){eq:sBL}

where

f(r) =
1

4

[

1 + erf

(
r − r4

d4

)] [

1 − erf

(
r − r5

d5

)]

, (1.27) {eq:sBLfr}

where s0 is a numerical coefficient setting the strength of the source term, and with the various
remaining numerical coefficient taking the values r4 = 0.95, r5 = 1, d4 = d5 = 0.01. Note that
the dependency on B is non-local, i.e., it involves the toroidal field evaluated at the core-envelope
interface rc, (but at the same polar angle θ). The combination of error functions concentrates
the source term immediately beneath the surface, which is where the Babcock-Leighton mech-
anism is observed to operate. The sin θ cos θ dependency is a first order description of Joy’s
Law, i.e., the tilt of active regions increases with latitude at low latitudes, but the tilts become
randomized by convection for weakly magnetized flux ropes emerging at high latitudes. The
nonlocality in B represents the fact that the strength of the source term is proportional to the
field strength in the bipolar active region, itself presumably reflecting the strength of the diffuse
toroidal field near the core-envelope interface, where the magnetic flux ropes eventually giving
rise to the bipolar active region presumably originate.

This specific formulation of the Babcock-Leighton source term is taken directly from Dikpati
& Charbonneau (1999, ApJ, 518, 508), and ha the practical advantage of being readily incor-
porated in the classical mean-field dynamo equations. A number of alternate but conceptually
equivalent formulations do exist in the literature (e.g., Nandy & Choudhuri 2001, ApJ, 551,
576; Munoz-Jaramillo et al. 2010, ApJ, 720, L20; Yeates & Munoz-Jaramillo 2013, MNRAS,
436, 3366).

Whether working with αΩ or Babcock-Leighton models, all spatial dependencies are held
fixed, with parameter values as specified above. The parameter s0 measuring the overall mag-
nitude of the poloidal source term is the only source-term-related parameter varying for all
dynamo solutions in the database.

1.2.6 The amplitude-quenching nonlinearity {ssec:quenching}

With the flow and source terms time-independent and specified a priori, eqs. (1.4)–(1.5) are
linear in A and B and will accept eigensolutions ∝ exp(st), with s a (complex) eigenvalue.
For dynamo solutions, Re(s) > 0 and unbounded exponential growth will ensue. To bypass
this problem we introduce the simplest amplitude-limiting nonlinearity of common usage in so-
lar/stellar dynamo modelling, namely the so-called “α-quenching”. This consists in multiplying
the source term amplitude parameter s0 by a toroidal field-dependent prefactor which tends to
zero as the field strength exceeds an equilibrium value Beq.

s0 →
s0

1 + (B(r, θ, t)/Beq)2
, (1.28) {???}

where the equilibrium field strength Beq then setting the absolute scale of the magnetic field
amplitude. All solutions in the database use Beq = 0.5T. Note that for the Babcock-Leighton
source term, the toroidal field B on the RHS of this expression is evaluated at the core-envelope
interface rc rather than locally at r, in keeping ith the non-local nature of this poloidal source
mechanism.

Notably missing in the Babcock-Leighton context is a lower toroidal field threshold on S,
to mimic the fact that flux ropes with field strengths lower than a few teslas either fail to
be destabilized in a short enough timescale, rise to the surface at high latitudes and without
systematic tilt patterns, and/or fail altogether to survive their rise through the convective
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14 CHAPTER 1. KINEMATIC AXISYMMETRIC DYNAMO MODELS

envelope. Including such a lower threshold has interesting consequences for the behavior of the
resulting dynamo model (see, e.g., Charbonneau et al. 2005, ApJ, 619, 613), but things being
complicated enough as is, for this lab we’ll just stick to the same algebraic amplitude-quenching
nonlinearity for both classes of source terms.

Physically, the quenching nonlinearity intoduced in αΩ models captures the fact that a
stronger toroidal field is harder for cyclonic convection to twist and give rise to an α-effect (see
§I.3.5.2 and III.6.2.1.2). In the Babcock-Leighton context, the nonlocal quenching nonlinearity
reflects the fact that as the strength of the flux rope reaches about 2T, it emerges without the
East-West tilt essential to the Babcock-Leighton mechanism. (see §III.6.2.2).

1.3 Scalings, dynamo numbers and Reynolds numbers{ssec:scaling}

With all “ingredients” specified, our next step is to put the dynamo equations into nondimen-
sional form. This can actually be carried out in a number of ways. We opt here to scale all
lengths in terms of the star’s radius R, and time in terms of the corresponding diffusion time
τ = R2/η0. Equations (1.4)–(1.5) become

∂A

∂t
=

(

∇2 −
1

$2

)

A −
1

$
(RMuM + RT γγγγ) · ∇($A) + CαS (1.29){E5.16a}

∂B

∂t
=

(

∇2 −
1

$2

)

B
1

$

∂($B)

∂r

∂η

∂r
− $∇ ·

(
B

$
(RMuM + RT γγγγ)

)

+CΩ$(∇× A) · (∇Ω) , (1.30){E5.16b}

where we have also explicitly separated the total poloidal flow up of eqs. (1.4)–(1.5) into its con-
tributions arising from meridional circulation (uM , §1.2.3) and turbulent pumping (γγγγ, §1.2.4).
The scaling procedure has led to the appearance of four nondimensional numbers:

Cα =
s0R

η0
, (1.31){E5.17a}

CΩ =
Ω0R

2

η0
, (1.32){E5.17b}

RM =
u0R

η0
, (1.33){E5.17c}

RT =
γ0R

η0
, (1.34){E5.17d}

with s0 (dimension m s−1), η0 (dimension m2 s−1), u0 (dimension m s−1) γ0 (dimension m s−1)
and Ω0 (dimension s−1) as reference values for the poloidal source, diffusivity, surface merid-
ional flow, turbulent pumping speed, and shear, respectively. Remember that the functionals
S, η, uM , γγγγ and Ω are hereafter dimensionless quantities. The quantities Cα and CΩ are dy-

namo numbers, measuring the importance of inductive versus diffusive effects on the RHS of
eqs. (1.29)–(1.30). The other two dimensionless numbers, RM and RT , are Reynolds numbers,
measuring the relative importance of advection (by meridional circulation for RM , and by tur-
bulent pumping for RT ) versus diffusion (by Ohmic dissipation) in the transport of A and B
in meridional planes.
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These four dimensionless parameters are the primary “knobs” with are varied when building
dynamo models applicable to the sun and stars, so let’s get some numerical estimates for their
values. The turbulent diffusivity at the base of the solar convective envelope is estimated to be

η0 = 5 × 107 m2 s−1 , (1.35){???}

which yields a diffusion time:

τ =
R2

η0
= 1010 s ' 300 yr . (1.36){???}

For the sun,

Ωeq = 2.6 × 10−6 rad2 s−1 , (1.37) {???}

so that

CΩ = 2.6 × 104 , (1.38) {???}

With a surface meridional flow speed u0 ∼ 15m s−1,

RM ' 200 , (1.39) {???}

while of the turbulent pumping speed extracted from numerical simulations suggest γ0 ∼ 1m
s−1, so that

RT ' 15 . (1.40) {???}

Estimates for the source term amplitude of either the α-effect of αΩ mean-field models, or of
the Babcock-Leighton mechanism, are the most ill-constrained observationally. Values of a few
m s−1 are often used, leading to Cα in the range 5–50.

1.4 Numerical implementation {sec:numerics}

Algorithmic details regarding how eqs. (1.29)–(1.30) are solved numerically matter little for
this lab, but for those interested in such matters, what follows is a brief synopsis.

The solution domain is the N-hemisphere meridional plane, on which a 2D cartesian grid in
[r, cos(θ)] is defined. The dynamo equations are discretized on this grid using bilinear Galerkin
finite elements. Although computationally heavier than finite differences, the use of finite
elements has a number of practical advantages, most notably here the fact that the discretization
error is not affected by the definition of a mesh where cells vary in size across the domain. This
is important here because of the sharp gradients often building up in the vicinity of the core-
envelope interface. The solutions included in the database are all computed on a (relatively)
small grid of 96 × 64 in radius× latitude, as plotted on Figure 1.5.

Time stepping achieved through the implicit single-step Θ-method. Such an implicit scheme
allows the use of relatively large time steps, making it possible to cover many cycles in a
reasonably small number of time step, typically ∼ 103. The overall code structure follows fairly
closely that described in Burnett (1988, Finite Element Analysis, Reading:Addison-Wesley).

The initial condition is a weak global toroidal field, and the dynamo equations are integrated
until the solutions has reached a statistically stationary state. At every time step, the poloidal
vector potential and toroidal field values at every mesh node are written to file.

1.5 The solution database {sec:database}

The various tasks associated with the Lab (as detailed in §1.7 below) basically involve running
αΩ or Babcock-Leighton dynamo models, varying a subset of the defining parameters Cα,
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Figure 1.5: The computational grid in physical space. Part (A) shows the grid within the star’s
meridional quadrant, with the thick line indicating the core-envlope interface rc/R = 0.7 for a
“solar” model. Part (B) indicates the outer computational grid tiling the “buffer zone” within
which the zero-current eqs. (1.7)–(1.8) are simultaneously solved. On each panel, the rotation
(symmetry) axis runs vertically at left, and the equatorial plane horizontally at bottom. The
grid shown here has dimension Nr×Nθ = 96×64, which is used in all dynamo solutions included
in the database. The computation itself is carried out on a cartesian grid in [r/R, cos θ] space,
with each cell tiled with a bilinear finite element. {fig:grid}

CΩ, RM , RT , rc, and/or rb, and investigating the consequences of these variations on global
properties of the dynamo, with an eye towards interpreting the multiplicity of magnetic activity
behavior observed in late-type stars. This being a HUGE undertaking, the first decision made
was to focus on dynamo activity in main-sequence solar-type stars, i.e., stars with a radiative
core overlaid by a convective envelope of significant thickness.

After much consideration, and in view of the limited time available to do this lab, it was
decided to assemble a database of pre-calculated dynamo solutions, and let you mine that
database as a means to explore the behavior of different classes of such models in the broader
context of stellar dynamos. Each solution file in the database has a name codified in such a
manner as to ease the identification of the subset of solution files required to carry out the lab
tasks defined in §1.7 below. Appendix A provides a list of all dynamo solutions included in
ther database, each identified by this filename. Here is an example of a file name:

AO
︸︷︷︸

1

− 025
︸︷︷︸

2

− 005
︸︷︷︸

3

− 200
︸︷︷︸

4

− 000
︸︷︷︸

5

− 700
︸︷︷︸

6

− 675
︸︷︷︸

7

(1.41){eq:filename}

The various 2- or 3-digit character or integer substrings of the filename correspond to the
following, as numbered in the above:

1. A two-letter code indicating which type of dynamo this is; AO= a mean-field αΩ dynamo,
with a local poloidal source term given by eq. (1.24); BL= a Babcock-Leighton model,
with a non-local surface source term given by eq. (1.26).

2. The value of the dimensionless dynamo number CΩ, in units of 103; this is a measure of
the strength of differential rotation.

3. The value of the dimensionless dynamo number Cα; this is a measure of the strength of
the source term.
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4. The value of the dimensionless Reynolds number RM ; this is effectively a measure of the
surface poleward meridional flow speed.

5. The value of the dimensionless Reynolds number RT ; this is effectively a measure of the
strength of turbulent pumping.

6. The radius rc setting base of the convecting layers, in units of 10−3. of the star’s radius

7. The radius rb setting the depth of the equatorward return meridional flow, in units of
10−3 of the star’s radius.

Therefore, the file name given above contains a αΩ dynamo solution computed with CΩ =
2.5 × 104, Cα = 5, RM = 200, RT = 0, with the base o the convection zone at r/R = 0.7 and
the meridional return flow closing at r/R = 0.675.

The “.i3e” suffix flags this file as unformatted fortran-IEEE data. Don’t try to view the
file’s content with a text editor, it will just look like junk. The IDL analysis routine provided
to analyze the solutions (see below) is set up to properly read it. The advantages of storing the
solutions as unformatted data are twofold: (1) smaller filesizes in the database, and (2) swifter
read-in by the IDL analysis routine.

For each solution in the database, you will find a file with the same name except for a “.mpg”
suffix. This is a pre-computed animation of the solutions contained in each of the parent .i3e
file, in mpeg format. Viewing these animations as you analyze the dynamo solutions will be a
useful complement to the analyses carried out by the IDL analysis routine,... to which we now
turn.

1.6 The IDL analysis routine {sec:idl}

Given that as a group you will be running the lab on a collection of laptop of varying speeds,
ages, and operating systems, we opted to keep the bells and whitles to a minimum, and have you
do the lab using a single IDL routine which is fed a filename (following the naming convection
explained in the preceding section), and carries out a series of postprocessing calculations and
displays results in graphical form. Normally you should not have to touch/edit anything within
this IDL files, but you will need to understand what graphical and numerical information is
being procuced.

Examples of the graphical output produced by the IDL software are reproduced in Figures
1.6 and 1.7 below. The information provided in these windows should allow you to carry out
the task assigned to your group, as defined in §1.7 further below. Let’s detail the content of
each window in turn.

1.6.1 IDL Window 1

The top of IDL Window 1 first echoes the filename given as input, and writes a one-line brief
description of the solution. Immediately beneath follows a list (two leftmost columns) of input
parameters to the dynamo solution, following the notation established in §1.2 of these Lab
Notes. The third column lists (in yellow) useful physical (dimensional) quantities associated
with the solution parameters, including the envelope magnetic diffusivity η0, the diffusion time
τ in years, the surface meridional flow speed and turbulent pumping speed, both in meters per
second. The fourth column lists (in purple) quantities extracted from the simulation output per
se, namely (1) the peak toroidal field value at the core-envelope interface and the peak surface
radial field, both in Tesla; (2) the magnetic cycle period, in years; (3) the phase lag between
the toroidal field at the core-envelope interface and the surface radial field.

The first graphical panel is a time-latitude diagram of the toroidal magnetic component
B(r, θ, t) extracted the depth rc/R corresponding to the core-envelope inetrface; the equator is
at bottom and the North-Pole on top, as indicated on the far left. This is usually considered
the dynamo model’s equivalent to the sunspot butterfly diagram. The color scale encodes the
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Figure 1.6: The first IDL window generated by helio14.idl. {fig:IDLw1}
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Figure 1.7: The second IDL window generated by helio14.idl. {fig:IDLw2}
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field strength, normalized to the peak value listed previously. The series of purple dots indicate
the latitudes of peak toroidal field at each time step within this time-latitude slice. This,
presumably, would correspond to the prefered latitude for sunspot emergences. On this and
the two subsequent plot, only the second half of the dynamo run is plotted, to be better able
to distinguish individual cycles, and time is in units of the diffusion time τ .

The middle graphical panel is now a time-radius slice extracted at the latitude of peak
toroidal field on the time-latitude slice just discussed, and normalized to the same peak field
strength. The horizontal dashed line indicates the core-envelope interface rc/R.

The bottom graphical panel is a time-latitude slice of the radial magnetic component at the
surface (r/R = 1), normalized to the peak values given in the top-right column.

1.6.2 IDL Window 2

The second IDL window plots a time-series of the toroidal field extracted at point (rc, θm) in
the meridional plane, where rc is the core-envelope interface the latitude at which the toroidal
component reaches it maximal value at the peak of the cycles. The top panels shows the power
spectrum of this time series, computed by Fast Fourier Tranform. Note also that the vertical
scale is logarithmic.

The vertical dotted line flags the peak frequency in the spectrum, listed at top right of the
plot along with the cycle period The shorter dotted vertical line segments indicate the first 5
harmonics of the primary peak, which may or may not show significant power, according to the
degree to which the underlying time series departs from sinusoidal shape.

1.6.3 Example IDL session

You will be given access to an IDL source file, named helio14.idl. The file containes a
number of IDL procedures which must be compiled prior to running the main viewing procedure
viewdynamo; this procedure must be called with three arguments:

1. A valid filename pointing to a file in the database; PLEASE NOTE: the file name must
be typed inside quotes, so IDL can identify it as a character string;

2. A fractional radius at which the top time-latitude diagram of the toroidal field is con-
structed (see Fig. 1.6), the valid range being [0.5, 1.0]; if you enter a value outside of this
range, a default value equal to the base of the convection zone rc/R is used;

3. A latitude in degrees at which the middle time-radius diagram of the toroidal field is
constructed (see Fig. 1.6), the valid range being [0, 90]; if you enter a value outside of this
range, a default value of 45◦ is used.

Figure 1.8 shows how to go about starting a typical analysis, with IDL launched from a “ter-
minal” window. The steps are, line by line:

1. Launch IDL by imply typing idl <return> at the command line;

2. compile the IDL procedures by typing .run helio14.idl <return>

3. view the solution by calling the viewdynamo procedure contained in the helio14.idl

source file. In the specific example shown in Fig. 1.8, the time-latitude diagram is ex-
tracted at the default value rc = 0.7 and the time-radius diagram at θ = 60◦, for an αΩ
dynamo solution with parameter values Cα = 10, CΩ = 5 × 104, RM = 100, RT = 0,
rc/R = 0.7, and rb = 0.675.

As your first validation test, you should try to replicate exactly the above steps, and if all
goes well (!) the two windows reproduced on Figs. 1.6 and 1.7 should pop up on your screen.
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Figure 1.8: Screenshot of a typical dynamo analysis session; here the file analyzed is called
AO-050-010-100-000-700-675.i3e, the default value rc = 0.7 is used for the depth at which
the toroidal field time-latitude diagram is constructed, and the time-radius diagram is extracted
at latitude of 60◦. This session produced the two windows reproduced on Figs. 1.6 and 1.7.
{fig:IDLcmd}
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22 CHAPTER 1. KINEMATIC AXISYMMETRIC DYNAMO MODELS

1.7 The tasks{sec:tasks}

You are finally ready to get to work.
Here is a (non-exhaustive) list of quantities whose variations may be interesting to track as

you work through your sequence of dynamo solutions:

1. The cycle period;

2. The ratio of surface poloidal to deep toroidal field; even though thre absolute scale of the
magnetic field is set by our adopted algebraic α-quenching nonlinearity, this ratio remains
a meaningful quantity.

3. The occurence of multiple dynamo modes, and/or long-timecale modulations of the dy-
namo solution. Both can arise through “interference” between dynamo modes feeding on
distinct source regions, and do materialize in some corners of the parameter space for this
dynamo model;

4. The concentration of the magnetic field at or beneath the core-envelope interface;

5. The concentration of the surface magnetic field at polar latitudes;

6. The phase lag between the surface and deep magnetic field;

1.7.1 Impact of meridional flows in αΩ dynamo solutions

vary meridional flow speed, depth of return flow, dynamo number
Here are a few specific queries and suggestions, to get you going:

1. Starting with the RM = 0 solution, why is the dynamo mode confined to relatively high
latitudes here, and why is the mode propagating equatorward ?

2. What happens to the dynamo period as the meridional flow speed increases (via increasing
RM )?

3. Do you perceive a transition in the mode of dynamo action, as RM is increased ? Is this
transition abrupt of gradual ?

If lacking inspiration, see §III.6.X in your Heliophysics textbooks.

1.7.2 Impact of meridional flows in Babcock-Leighton dynamo solu-

tions

vary meridional flow speed, depth of return flow, dynamo number
If lacking inspiration, see Dikpati & Charbonneau (1999, ApJ, XXX, YYY).

1.7.3 Impact of turbulent pumping in Babcock-Leighton models with

shallow meridional flows

vary depth of meridional flow and turbulent pumping speed
If lacking inspiration, see Guerrero & Gouveia Dal Pino (2008, A&A, 485, 267).

1.7.4 Impact of rotation rate on αΩ dynamo solutions

Try out various prescriptions on how model ingredients reacts to change in rotation rate Vary
first just Cα; then Cα and CΩ; then Cα, CΩ and RM .

If lacking inspiration, see §III.6.X in your Heliophysics textbooks.
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1.7.5 Impact of deepening convection zone on αΩ dynamo solutions

Try out various prescriptions on how model ingredients reacts to change in depth of convection
zonei (i.e., decreasing luminosity).

First vary only rc; then vary also Cα and CΩ following reasonable prescriptions.

1.7.6 Impact of deepening convection zone on Babcock-Leighton dy-

namo solutions

Problems:

1. Obtain equations (1.4) and (1.5) by substitution of eqs. (1.2) and (1.3) into the MHD
induction equation (1.1). Hint: the induction equation is a vector equation; terms “ori-
ented” in the φ-direction must cancel one another independently of terms oriented per-
pendicular to the φ-direction.

2. Let’s consider a constant-density “sun” made of purely ionized Hydrogen. Suppose now
that its exterior magnetic field can be approximated by a dipole, with a surface field
strength of 10−3 T. Assume now that this magnetic field is produced by an azimuthal
(i.e., φ-directed) current density within the interior (r/R¯ < 1); then,

(a) Estimate the magnitude of the current density required to produce such a dipolar
field;

(b) Estimate the drift velocity between protons and electrons required to produce such
a current density. How does it compare to the average thermal velocity?

(c) How can such a small velocity difference not be erased by collisions between micro-
scopic constituents? To answer this one will have to think back to some fundamental
aspects of the induction process, as covered in your first course on electromagnetism.

3. Consider the case of shearing of a pure dipole by the parametrized solar-like differential
rotation of §1.2.1 herein;

(a) Starting from a poloidal field strength of 10−4 T at the core-envelope interface, cal-
culate/estimate the time taken for the toroidal field strength to reach a strength of
1T;

(b) By judicious dimensional analysis of the φ-component of the inviscid form of of the
momentum equation, evaluate the timescale over which the rotational shear at the
core-envelope interface would be altered by the Lorentz force, once the toroidal field
strength has reached 1T;

(c) Is your result in (b) much longer or shorter than the solar cycle period? What does
this suggest?

Bibliography:

If you need a refresher on undergraduate electromagnetism, you should go back to

Griffith, D.J., Introduction to Electrodynamics, 3rd ed., Prentice Hall (1999).

At the graduate level, the standard reference remains

Jackson, J.D., Classical Electrodynamics, 2nd ed., John Wiley & Sons (1975),
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who does devote a chapter to magnetohydrodynamics, including a discussion of magnetic wave
modes. My personal favorite on magnetohydrodynamics is:

Davidson, P.A., An Introduction to Magnetohydrodynamics, Cambridge University Press
(2001).

Further specializing to the dynamo problem, the all-time classic is:

Moffatt, H.K. 1978, Magnetic Field Generation in Electrically Conducting Fluids, (Cam-
bridge: Cambridge Univ. Press).

For more on dynamo models for the sun (and, by extension, solar-type stars), see the following
recent review paper and monograph authored by yours very truly:

Charbonneau, P., 2010, LRSP, 7,
http://solarphysics.livingreviews.org/Articles/lrsp-2010-3/
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Appendix A

The dynamo solution database
{app:database}

Table 1
The database of dynamo solutions

File Name Model type Cα CΩ RM RT rc rb

AO-010-050-000-000-700-675.i3e αΩ 10 5 × 104 0 0 0.7 0.675
AO-010-050-030-000-700-675.i3e αΩ 10 5 × 104 30 0 0.7 0.675
AO-010-050-050-000-700-675.i3e αΩ 10 5 × 104 50 0 0.7 0.675
AO-010-050-100-000-700-675.i3e αΩ 10 5 × 104 100 0 0.7 0.675
AO-010-050-200-000-700-675.i3e αΩ 10 5 × 104 200 0 0.7 0.675
AO-010-050-500-000-700-675.i3e αΩ 10 5 × 104 200 0 0.7 0.675

AO-010-050-200-000-700-675.i3e αΩ 10 5 × 104 200 0 0.7 0.75
AO-010-050-200-000-700-675.i3e αΩ 10 5 × 104 200 0 0.7 0.85
AO-010-050-500-000-700-675.i3e αΩ 10 5 × 104 200 0 0.7 0.75
AO-010-050-500-000-700-675.i3e αΩ 10 5 × 104 200 0 0.7 0.85

AO-010-050-000-000-700-675.i3e αΩ 10 5 × 104 0 0 0.6 0.575
AO-010-050-000-000-700-675.i3e αΩ 10 5 × 104 0 0 0.8 0.775
AO-010-050-000-000-700-675.i3e αΩ 10 5 × 104 0 0 0.9 0.875
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