
Draft version April 12, 2016
Preprint typeset using LATEX style emulateapj v. 12/16/11

A COUPLED 2× 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. II. REFERENCE DYNAMO
SOLUTIONS

Alexandre Lemerle1,2 and Paul Charbonneau1

Draft version April 12, 2016

ABSTRACT

In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo model
of the solar cycle based on the Babcock–Leighton mechanism of poloidal magnetic field regeneration
via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by
coupling the surface magnetic flux transport described in Lemerle et al. (2015) to an axisymmetric
kinematic flux transport dynamo model defined in a meridional plane. The surface model provides the
poloidal source term for the internal dynamo model via its outer boundary condition, while the latter
generates the bipolar emergences which drive reversal of the surface dipole in the surface model. A
key aspect of the coupled model is the definition of an emergence function describing the probability of
BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field.
We use a genetic algorithm (GA) to calibrate this function, together with other model parameters,
against observed cycle 21 emergence data. Using these GA-calibrated best-fit parameter values, we
present a reference dynamo solution reproducing many solar cycle characteristics, including good
hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal
field, correlation between dipole strength at cycle maximum and peak amplitude of the next cycle,
and lack thereof between peak cycle amplitude and dipole strength of next minimum. The saturation
of the mean cycle amplitude takes place only through the quenching of the mean BMR tilt as a
function of erupting magnetic flux, as suggested by observational analyses. The observed statistical
scatter about the mean BMR tilt, built into the model, acts as a strong source of stochasticity which
dominates amplitude fluctuations, at least in the parameter regimes investigated so far. The model
thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles.
Although significant spectral power is produced at low frequencies, no Gleissberg- or Suess-like long
periodicities are apparent in the power spectra of magnetic energy, dipole moment, or other cycle
characteristics. The dynamo can also shut off entirely following an unfavorable sequence of emergence
events, typically through emergence of a large BMR deviating significantly from Joy’s law. Because it
includes a spatially resolved representation of the solar photosphere, this hybrid model is particularly
well-suited for providing synthetic data for coronal magnetic field reconstructions, as well as for
assimilation of magnetographic data towards solar cycle forecasting.

Keywords: dynamo — Sun: activity — Sun: interior — Sun: magnetic fields — Sun: photosphere —
sunspots

1. INTRODUCTION

Close to a century has now gone by since the discov-
ery of the underlying magnetic nature of the eleven-year
sunspot cycle (Hale et al. 1919). The magnetic polarity
reversals of the leading and following (with respect to
rotation) components of large bipolar magnetic regions
(BMRs) is now thought to reflect the presence, some-
where in the solar interior, of a large-scale, dominantly
axisymmetric zonally-oriented (toroidal) magnetic field,
antisymmetric about the sun’s equator and itself un-
dergoing polarity reversals approximately every eleven
years, for a full magnetic cycle period of ' 22 years. The
rotational shear of a pre-existing dipole, later detected
on the solar surface (Babcock & Babcock 1955), can act
as an inductive source for such an internal toroidal mag-
netic flux system. However, closing the dynamo loop
requires an inductive mechanism capable of regenerating
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the dipole from this internal toroidal component, in a
manner such as leading the cyclic polarity reversals of
both of these large-scale components of the solar mag-
netic field.

Many candidates for this toroidal-to-poloidal hydro-
magnetic inductive mechanisms have been identified,
starting with cyclonic convection (Parker 1955) and its
associated mean electromotive force, and the surface de-
cay of bipolar magnetic regions (Babcock 1961), now
referred to as the Babcock–Leighton (BL) mechanism.
These were joined more recently by helical waves along
thin magnetic flux tubes (Schmitt 1987; Ossendrijver
2000, and references therein), and shear instabilities in
the tachocline (Dikpati & Gilman 2001), the stably strat-
ified rotational shear layer located beneath the base of
the solar convection zone, as revealed by helioseismol-
ogy. In all cases, the rotational influence mediated by
the Coriolis force is the key agent that breaks the mir-
ror symmetry of the inductive flows, thus allowing to
circumvent Cowling’s theorem.

Of these various candidates for poloidal field regenera-
tion, the BL mechanism stands out as the only one that
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can be directly observed operating at the solar surface,
and as such is far better constrained than any other.
In particular, the distribution of tilt angles of BMRs,
namely the angle defined by a line segment joining each
pole of the BMR measured with respect to the east–
west direction, is now well characterized from white light
(Howard 1991; Dasi-Espuig et al. 2010) and magneto-
graphic observations (Wang & Sheeley 1989). This tilt
arises through the action of the Coriolis force, and as-
sociated with it is a net dipole moment so that, effec-
tively, a poloidal magnetic component is being produced
from the pre-existing deep-seated toroidal component ul-
timately giving rise to emerging BMRs (see Fan 2009 for
a review). The magnitude of this tilt, and its pattern
of variations with latitude, BMR flux and separation,
and statistical fluctuations about the mean, all play a
key role in setting the magnitude of the surface dipole
moment produced in the course of a sunspot cycle.

Because the BL mechanism operates at the solar sur-
face, a transport mechanism is also needed to carry the
surface poloidal magnetic field down into the interior,
where rotational shearing is taking place. Here again a
number of appropriate candidate mechanisms are avail-
able, including advection by large-scale meridional flows
pervading the solar convection zone, as well as turbu-
lent transport effects, namely isotropic diffusive trans-
port and directional turbulent pumping. Viewed glob-
ally, the BL mechanism is a non-local inductive effect:
the surface source of poloidal field is driven by the deep-
seated toroidal component, on timescales much shorter
than the magnetic cycle period.

Dynamo models of the solar cycle relying on the BL
mechanism of poloidal field regeneration have undergone
a vigorous revival in the last 25 years of so, spurred by
Wang et al. (1989), Wang & Sheeley (1991), Choudhuri
et al. (1995), and Durney (1995). Many such models
are now dispersed in the literature (for recent reviews
see Charbonneau 2010; Karak et al. 2014). The vast
majority rely on a two-dimensional axisymmetric formu-
lation of the problem, whereby the large-scale flows and
magnetic field components are both axisymmetric, and
the dynamo equations solved in a meridional (r, θ) plane.
Typically, helioseismology-compatible parameterizations
for solar-like internal differential rotation and meridional
circulation are introduced, and these flows are assumed
steady (the so-called kinematic approximation).

Many such models do differ in how they incorporate
the BL mechanism, a fundamentally non-axisymmetric
effect, into the axisymmetric dynamo equations (com-
pare, e.g., Durney 1995; Dikpati & Charbonneau 1999;
Nandy & Choudhuri 2001; Muñoz-Jaramillo et al. 2010).
They also differ in assumptions made regarding the pri-
mary magnetic field transport mechanism. As a conse-
quence, models based on rather different input physics
can do roughly as well as one another in reproducing
the primary characteristics of the observed solar cycle.
However, the differences can matter a lot in practice.
Perhaps no better illustration of this point can be found
than the widely differing dynamo model-based predic-
tions of sunspot cycle 24 made by Dikpati et al. (2006)
and Choudhuri et al. (2007), each using a distinct BL
model “calibrated” to earlier sunspot cycles.

This problem is compounded when introducing data
assimilation into the model-based prediction, as the

datasets must then also be preprocessed in some way
to accommodate the axisymmetric formulation of the
dynamo model used for forecasting. Both aforecited
model-based prediction schemes used distinct geometri-
cally simplified implementations of different datasets be-
ing assimilated, and in all likelihood these differences also
contributed to the widely varying predictions for the am-
plitude of cycle 24. Ideally, data assimilation should be
carried out using full-disk magnetograms and/or detailed
observations of active region emergences, including com-
plete positional and timing information. Either way, this
requires a dynamo model with a geometrically complete
representation of the solar surface, and thus demands
abandoning axisymmetry.

One extreme possibility consists in turning to global
magnetohydrodynamical simulations of solar convection.
Despite remarkable progress in the past decade (for a
review see, e.g., § 3 of Charbonneau 2014), such simu-
lations still cannot accommodate sufficient spatial reso-
lution to resolve convection and magnetic field evolution
in the surface layers, or even capture the interior pro-
cess of magnetic flux rope formation and buoyant rise
(but on the latter do see Nelson et al. 2013; 2014). Typi-
cally, such simulations also fail to drive regular, solar-like
polarity cyclic reversals in the large-scale magnetic field
they generate (see Passos & Charbonneau 2014 for the
closest thing yet).

Intermediate approaches are also possible: finding a
way to include the full non-axisymmetric representation
of, at-least, the surface processes, while retaining the
kinematic approach for the transport of magnetic flux.
To our knowledge, only two such models exist in the
literature (Yeates & Muñoz-Jaramillo 2013; Miesch &
Dikpati 2014, hereafter MD2014), as they include a full
three-dimensional kinematic representation of the solar
convection zone up to the surface. Here again, they
mostly differ in how they incorporate the localized emer-
gence of new magnetic flux: Yeates & Muñoz-Jaramillo
(2013) impose localized flow perturbations at the base of
the convection zone to trigger the eruption of active re-
gions out of the toroidal flux, while MD2014 and Miesch
& Teweldebirhan (2015) apply a surface flux deposition
technique, through an empirical masking of the deep-
seated toroidal field.

In this series of paper we present a BL dynamo model
that belongs to this same category. We retain a fairly
conventional two-dimensional axisymmetric kinematic
flux transport dynamo (FTD) model, specifically the
model described in Charbonneau et al. (2005), with-
out its non-local poloidal source term, and couple it to
a two-dimensional surface flux transport (SFT) simula-
tion. The latter provides the source term for the former
through the upper boundary condition, and in turn the
FTD provides the emergences required as input to the
SFT simulation. We opted to call this a “2 × 2D” dy-
namo model. This is still a kinematic model, in that
it uses steady parametrized large-scale flow fields com-
patible with helioseismology and surface measurements.
Specifying the form of these flows requires the adjust-
ment of many model parameters, in order to generate
the most “solar-like” dynamo solutions possible.

In Lemerle et al. (2015, hereafter Paper I) we intro-
duced a genetic algorithm-based method for formally car-
rying out this optimization problem, in the context of the
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surface flux transport simulation. The optimization pro-
cess is set to minimize deviations with respect to synoptic
magnetograms (and derived global quantities). Not only
does this approach finds an optimal solution, but it also
allows to map a range of acceptable solutions, thus pro-
viding robust Monte Carlo-like confidence intervals on
best-fit model parameters and allowing the identification
of degeneracies in parameter landscape. A key result
is that the range of acceptable surface meridional flow
profiles fits nicely surface Doppler measurements (Ulrich
2010), even though these data are not used to constrain
the optimization process.

In the present paper we extend the procedure to the
coupled model described above, and thus produce an
“optimal” 2 × 2D BL dynamo model of the solar cycle.
The use of quotes is motivated by the fact that even this
basic optimal model involves unavoidable stochastic com-
ponents, associated with the flux emergence process, so
that it can only fit the Sun (meaning, e.g., the sunspot
number time series) in a statistical sense. Indeed, the
SFT solutions presented in Paper I already show how
the uncertainties in global cycle characteristics are dom-
inated by the inherent stochasticity of the flux emergence
process.

In § 2 we discuss the formulation of the coupled model
and its components. In § 3 we turn to its calibration
against observed solar features. In § 4 we present self-
consistent reference dynamo solutions and examine their
patterns of long term variability. In § 5 we discuss
the limitations of the calibration technique and compare
some of the results with direct solar observations. We
conclude by summarizing our most salient results as well
as possible paths of improvement and ongoing work.

2. MODEL

The contemporary version of the original scenario pro-
posed by Babcock (1959) runs as follows:

(0) at solar maximum, strong toroidal magnetic fields
are present deep in the solar interior, antisymmetric
with respect to the equator;

(i) during the ascending and descending phases of the
solar cycle, toroidal flux loops rise and emerge at
the solar surface in the form of BMRs, twisted due
to the Coriolis effect, such that the western spots
tend to be closer to the equator (tilt following on
average the Joy’s law);

(ii) surface diffusion/transport near the equator allows
for more cancellation of the western polarities, when
merging with their counterparts from the other
hemisphere, leaving the remaining “eastern” flux to
be transported toward the poles and trigger the po-
larity reversal of magnetic polar caps;

(iii) the new surface dipole is subducted and sheared
by differential rotation, building up a new internal
toroidal magnetic structure, opposite to the preced-
ing one and ready for

(iv) the generation of a new population of BMRs during
the next half-cycle (from now on, we refer to such
half magnetic cycle, or sunspot cycle, as simply a
“cycle”).

The numerical implementation we propose for carrying
out this scheme is quite simple:

(i) new BMRs are continuously deposited at the so-
lar surface, at times, latitudes and longitudes, tilts,
angular separations, magnetic fluxes and polarity
generated through a (probabilistic) flux emergence
algorithm based on the strength and spatial distri-
bution of the deep-seated magnetic fields;

(ii) the SFT equation is solved on the solar spherical
surface, and generates the expected cancellation,
decay, transport and specific features typically ob-
served in surface magnetograms (see Paper I);

(iii) the FTD equation is solved in the meridional plane,
using the evolving results of the surface simulation
as a time-dependent upper boundary condition on
the poloidal field; transport of this poloidal field
to the base of the convection zone and subsequent
shearing by differential rotation eventually builds
up strong toroidal magnetic fields deep in the con-
vection zone;

(iv) the dynamo loop is closed by allowing this deep-
seated magnetic structure to generate the emer-
gences required in step (i).

2.1. Basic Ingredients

In the depths of the solar convection zone or in the tan-
gles of photospheric turbulent motions, magnetic fields
are dispersed, transported, amplified or destroyed by
small and large-scale flows. In the solar interior and
photosphere, these processes are well-captured by the
magnetohydrodynamics (MHD) induction equation:

∂B

∂t
= ∇××× (u×××B− η∇×××B) , (1)

with η the net magnetic diffusivity, including contri-
butions from the small microscopic magnetic diffusivity
ηe = c2/4πσe (with σ−1

e the electric resistivity of the
plasma), as well as a dominant turbulent contribution
associated with the destructive folding of magnetic field
lines by small-scale convective fluid motions. We adopt
here the kinematic approximation, whereby the flow u is
considered given. This approximation has been shown to
be appropriate in reproducing reasonably well the syn-
optic evolution of the solar surface magnetic field (see,
e.g., Wang et al. 2002a; Baumann et al. 2004), as well
as the overall solar dynamo properties (see, e.g., Karak
et al. 2014, and references therein). On spatial scales
much larger than convection, two flows contribute to u:
meridional circulation uP(r, θ) and differential rotation
$Ω(r, θ)êφ. Both these flows can be considered axisym-
metric (∂/∂φ ≡ 0) and steady (∂/∂t ≡ 0) as per the kine-
matic approximation. They can be expressed in spherical
polar coordinates (r, θ, φ) as

u(r, θ) =
R

ρ(r)/ρ0
∇××× (Ψ(r, θ)êφ)︸ ︷︷ ︸

uP(r,θ)=ur(r,θ)êr+uθ(r,θ)êθ

+$Ω(r, θ)êφ , (2)

where the meridional flow has been formulated in terms
of a stream function Ψ(r, θ), thus ensuring mass con-
servation in a ρ(r) = ρ0ξ

m density profile, with ξ(r) =
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(R/r)− 1, m = 1.5 for an adiabatic stratification, R the
solar radius, and $ = r sin θ.

2.1.1. Meridional Circulation

We opted to use a modified form of the meridional
flow profile introduced by van Ballegooijen & Choudhuri
(1988). This flow can be defined through a separable
stream function of the form:

Ψ(r, θ) = uθ(R, θ)
R

r

[
− ξm+1

m+ 1
+
c1ξ

2m+1

2m+ 1
− c2ξ

2m+p+1

2m+ p+ 1

]
,

(3a)
where

c1 =
(2m+ 1)(m+ p)

(m+ 1)p
ξ−mb ,

c2 =
(2m+ p+ 1)m

(m+ 1)p
ξ
−(m+p)
b ,

and ξb = (R/Rb) − 1. Parameters p and m determine
the depth and concentration of the return flow, down to
r = Rb. For the purpose of the foregoing analysis and
calibration, parameters p and Rb will be treated as free
parameters, while m is set at 1.5, characteristic of an
adiabatic stratification.

We deviate from the original formulation of van Balle-
gooijen & Choudhuri (1988) by using the following lati-
tudinal dependence, also used in Paper I:

uθ(R, θ) = −u0

u∗0
erfq
(
v sin θ

)
erfn

(
w cos θ

)
, (3b)

with u∗0 a normalization factor such that u0 is the maxi-
mum meridional flow velocity and q, n, v, and w parame-
ters that allow to generate a very wide range of solar-like
surface meridional flow profiles. The value of n is fixed to
1 as to prevent the formation of a 0 m s−1 plateau near
the equator. We developed this flexible formulation in
Paper I to allow for the inclusion of various profiles used
in flux transport modeling (e.g., Dikpati & Charbonneau
1999; van Ballegooijen & Choudhuri 1988; Wang et al.
2002b) and measured on the Sun (e.g., Ulrich 2010).

2.1.2. Differential Rotation

Unlike meridional circulation, the solar internal differ-
ential rotation profile is well constrained by helioseismol-
ogy. We use here the helioseismically-calibrated solar-
like parameterization introduced in Charbonneau et al.
(1999):

Ω(r, θ) = Ωc+
Ω(R, θ)− Ωc

2

[
1 + erf

(
r −Rc
δc/2

)]
, (4a)

with Ωc = 2.724 µrad s−1, Rc = 0.7R, and surface rota-
tion

Ω(R, θ) = Ω0

(
1 + a2 cos2 θ + a4 cos4 θ

)
, (4b)

where a2 = −0.1264, a4 = −0.1591, and Ω0 =
2.894 µrad s−1 (see also Snodgrass 1983). The thickness
δc of the transition region between differential and solid
rotation, the tachocline, near the base of the convection
zone, is kept as a free parameter.

2.1.3. Magnetic Diffusivity

In the stably stratified core, the presumed absence of
turbulence suggests a net diffusivity (ηc) given by Ohmic
dissipation, while in the bulk of the convection zone, en-
hanced turbulent dissipation (ηt) of the magnetic field
is expected to dominate. The following parametric pro-
file, given by Dikpati & Charbonneau (1999), allows for
a smooth transition between these two regimes:

η(r) = ηc +
ηt
2

[
1 + erf

(
r −Rc
δc/2

)]
, (5)

where Rc takes the same value as in the preceding differ-
ential rotation profile.

In the surface layer, supergranular convective motions
drive a random walk that disperses magnetic flux, and
can be modeled as a diffusive process (Leighton 1964)
characterized by an effective magnetic diffusivity of order
ηR ' 1012 − 1013 cm2 s−1. This value is used solely in
the SFT part of the model. The overall radial profile
of η(r) consequently includes an implicit step fonction
at r = R. The exact values for ηc, ηt, and ηR, as well
as δc, are virtually impossible to determine from first
principles, such that they must be treated as a unknown
parameter needing a proper calibration.

2.2. The Flux Transport Dynamo Equations

The large-scale axisymmetric magnetic field simulated
in the FTD component of the model can be expressed as

B(r, θ, t) = ∇××× (Aφ(r, θ, t)êφ)︸ ︷︷ ︸
BP=Br êr+Bθ êθ

+Bφ(r, θ, t)êφ , (6)

where BP and Bφêφ are respectively the poloidal and
toroidal vector components of the field. Inserting this
decomposition for B, along with Equation (2) for the
flow, into the MHD induction equation (Equation (1))
then yields the usual two evolutionary equations for the
scalar components Aφ(r, θ, t) and Bφ(r, θ, t):

∂Aφ
∂t

= − 1

$
(uP ·∇)($Aφ) + η

(
∇2 − 1

$2

)
Aφ , (7a)

∂Bφ
∂t

= −$(uP ·∇)

(
Bφ
$

)
+ η

(
∇2 − 1

$2

)
Bφ

−(∇ ···uP)Bφ +
1

$

∂η

∂r

∂($Bφ)

∂r
+$BP ·∇Ω . (7b)

These two equations are linear in Aφ andBφ, but are cou-
pled by the shearing term in Equation (7b) which acts
as a source for Bφ proportional to Aφ. No such source
appears explicitly in Equation (7a). Here the regenera-
tion and amplification of the poloidal field is supplied by
a continuous input from the SFT simulation, providing a
time-evolving surface boundary condition for Aφ which
effectively acts as a source.

2.3. Surface Flux Transport

Following earlier modeling work on surface magnetic
flux evolution, in particular in the preceding paper of
this series (Paper I), we consider the magnetic field to be
predominantly radial on global scales and we solve only
the r-component of Equation (1), at r = R. This leads
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to the usual two-dimensional linear advection–diffusion
equation for the scalar component BR = Br(R, θ, φ, t),

∂BR
∂t

=− 1

R sin θ

∂

∂θ

[
uθ(R, θ)BR sin θ

]
− Ω(R, θ)

∂BR
∂φ

+
ηR
R2

[
1

sin θ

∂

∂θ

(
sin θ

∂BR
∂θ

)
+

1

sin2 θ

∂2BR
∂φ2

]
− BR
τR

+ SBMR(θ, φ, t) , (8)

to which two supplementary terms have been added:
a source term SBMR(θ, φ, t) to account for the discrete
emergence of new surface flux in the form of BMRs, and
a linear sink term −BR/τR to allow for an exponential
decay of the surface field with time. Schrijver et al.
(2002) originally found such a decay on a timescale of
5− 10 years to be necessary to preclude secular drift and
ensure polarity reversal of the polar caps when modeling
surface flux evolution over many successive cycles of dif-
fering amplitudes. This was subsequently justified phys-
ically by Baumann et al. (2006) as the effect of a vertical
turbulent diffusion, or equivalently a convective submer-
gence, on the decay of the dominant dipole mode, two
physical mechanisms that cannot be directly included in
the SFT model. We included this term in Paper I but did
not find it to be required for the SFT results to match
the synoptic magnetogram of cycle 21. We test it again
here, with τR treated as a free parameter.

2.4. Numerical Solution and Coupling

The FTD equations (7) and SFT equation (8) are
solved concurrently, each on a separate two-dimensional
computational grid on which spatial discretization is car-
ried out via the Galerkin finite element method, and im-
plicit temporal discretization through the one-step Θ-
method (see, e.g., Burnett 1987).

The SFT simulation is solved over a regular Carte-
sian grid in (θ, φ) representing the whole solar surface,
with longitudinal periodicity enforced through a padding
of ghost cells. Rigorous flux conservation is also re-
quired since only a small fraction of the emerging mag-
netic flux ultimately builds up the axial dipole observed
at sunspot minima. We minimize numerical discretiza-
tion errors by adopting double precision arithmetics, a
256 × 128 longitude–latitude grid, and 8000 time steps
for the eight-cycle runs that will be analyzed in § 3 (for
more details on numerical errors see Paper I, § 2.4 and
discussion therein).

The FTD simulation is solved simultaneously over a
regular 96 × 128 Cartesian grid in (r,cos θ), from pole
to pole and 0.5 ≤ r/R ≤ 3.0. Below r = 0.5R, the
radiative core is considered perfectly conductive and the
Aφ = Bφ = 0 boundary condition is applied. For r >
R, the absence of flows and electrical currents imposes
Bφ = 0. The spherical geometry finally constrains Aφ =
Bφ = 0 at the poles. The overall scheme is similar to
that described in (Charbonneau et al. 2005).

2.4.1. From SFT to FTD

The surface (r = R) boundary condition on Aφ is up-
dated at every FTD time step, via the longitudinal aver-
aging of the SFT solution 〈BR〉φ(θ, t) and integration of

the resulting latitudinal function:

Aφ(R, θ, t) = A0
φ +

R

sin θ

∫
〈BR〉φ(θ, t) sin θdθ , (9)

where A0
φ is set to zero at the poles. This provides the

coupling from the SFT toward the FTD model.
Such coupling assumes that physical processes respon-

sible for surface magnetic flux evolution occur only inside
the single FTD grid layer located at r = R, which is of
thickness ' 3.7 Mm for our working spatial mesh.

2.4.2. From FTD to SFT: Emergence Function

The coupling from the FTD toward the SFT is the
emergence of BMRs. In view of the considerable com-
plexity of the various processes involved in the formation,
destabilization, buoyant rise, and emergence of deep-
seated magnetic flux tubes (see, e.g., Weber et al. 2011
and review by Fan 2009), we opted here to input emerg-
ing BMRs directly into the SFT component of the model,
based on a semi-empirical emergence function giving, as
a function of the strength of the internal magnetic field,
the probability that the emergence of a BMR will occur.

Calculations of the destabilization and buoyant rise of
magnetic flux tubes carried out in the thin-tube approxi-
mation do offer some useful guidance. From the stability
diagrams obtained by Schüssler et al. (1994) and Ferriz-
Mas et al. (1994), one can infer the depth, latitude and
magnetic amplitudes at which toroidal flux tubes are ex-
pected to destabilize. According to their results, and
depending on the level of subadiabaticity in the outer
reaches of the radiative core, instability growth rates near
r/R ' 0.7 remain approximately constant, or show a
smooth increase with latitude, from the equator up to
' 70◦, and then fall of rapidly to zero in ' 5◦. A lower
threshold of order 104 − 105 G is also required, on the
amplitude of the magnetic field inside concentrated flux
tubes. A crucial missing link is the degree of magnetic
field amplification taking place during the formation of
these toroidal flux tubes. Accordingly, we define this
lower limit as B∗ ∈ [101, 104] G, and treat it as another
free parameter to be calibrated. Modeling also shows
that a certain level of twist is required for the tube to
maintain its coherence during the rise through the con-
vective envelope (Fan 2009). Accordingly, we introduce

the quantity |Bmix| = |Bφ|b |Aφ|a, with exponents in the
range b ∈ [0.5, 3.0] and a ∈ [0.0, 2.0], and use it to build
the following quasi-normalized emergence function:

|FB(θ, t)| = 1

4

(
1 + erf

(
|Bmix| −B∗

δB∗

)) ∣∣∣∣ Bmix

max |Bmix|

∣∣∣∣c
×
((

1− µ`
) |`|

90
+ µ`

)(
1− erf

(
|`| − `∗

δ`∗

))
.

(10)

The first part of Equation (10) sets an emergence cut-
off in Bmix below B∗, as well as a possible saturation
(c→ 0) or linear growth (c→ 1) of the probability above
B∗. The second part accounts for the latitudinal depen-
dence of the instability’s growth rate, which we assume
to increase linearly from µ` ∈ [0, 1] at the equator to 1
near latitude `∗ ∈ [65◦, 90◦], followed by a quick drop to
zero in δ`∗ = 3◦ (cf. Figures 1 and 2 in Ferriz-Mas et al.
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1994). The sign of FB(θ, t) is given by the sign of the
input Bφ.

The emergence process is made inherently non-
deterministic with the following sources of stochasticity:

(i) at every SFT time step, the number N(t) of
new BMRs to emerge is extracted from a uni-
form random distribution, proportional to the sum∑
θ FB(θ, t) at the corresponding FTD time step,

(ii) the probability of emergence of a BMR at a given
latitude is made proportional to FB(θ, t).

Also, independently from the distribution of FB(θ, t),
and as determined in our analysis of Wang & Sheeley
(1989)’s database entries (see Appendix A of Paper I):

(iii) emergence longitudes are assumed to be random,

(iv) magnetic fluxes Φ are extracted from a log-normal
distribution centered at log Φ0 = 21.3 (log Mx) with
standard deviation σlog Φ = 0.5 (log Mx) (Paper I,
Equation (13)),

(v) magnetic bipole separations δ follow a power law
with flux, with a gaussian dispersion about it (Pa-
per I, Equation (15)),

(vi) magnetic bipole tilts α relative to the equatorial di-
rection follow a linear increase with latitude (Joy’s
law) and a gaussian spread with standard devia-
tion decreasing exponentially with log Φ (Paper I,
Equations (16a) and (16b)).

The input of BMRs in the SFT simulation enters the
source term

SBMR(θ, φ, t) =

N(t)∑
i=1

Bi(θ, φ)δ(t− ti) , (11a)

with δ the Dirac delta. Each new BMRs is placed at
its given position (θi, φi) and time ti, with a gaussian
distribution for each pole:

Bi(θ, φ) = Bi0e
−δ2i+/2σ

2︸ ︷︷ ︸
Bi+(θ,φ)

+−Bi0e−δ
2
i−/2σ

2︸ ︷︷ ︸
Bi−(θ,φ)

, (11b)

where δi+ and δi− are the heliocentric angular distances
from the centres (θi+, φi+) and (θi−, φi−) of the two
poles, respectively, and σ = 4◦ the width of the gaus-
sians.

The preceding steps dictate the relative probability of
given emergences to occur, but the actual number N(t)
of BMRs to emerge every time step remains adjustable.
The conversion factor K, between the emergence func-
tion FB(θ, t) and the actual emerged butterfly diagram
(N(t) = K ·

∑
θ FB(θ, t)), eventually sets the absolute

amplitude of the dynamo. It therefore plays the role of
a dynamo number.

These distributions of BMRs emergence, i.e. the SFT
source term, is a most critical aspect of the 2 × 2D BL
dynamo model. In order for it to match the solar dy-
namo behaviors, the next logical step is to carry out a
calibration of all parameters describing the full model,
using observed emergences as a constraint, as detailed in
the following section.

3. MODEL CALIBRATION

The various physical components of the coupled
FTD+SFT model introduced in the preceding section
jointly involve a large number of numerical parameters;
27 to be precise. Nine of these can be fixed confidently
either through observations or theoretical considerations.
Five (rc, Ω0, Ωc, a2, and a4) are the numerical parame-
ters defining the differential rotation profile (see § 2.1.2),
another (m) is the polytropic index characterizing the
stratification within the convection zone, and yet an-
other (n) is used to formulate a flexible surface merid-
ional flow profile but set to 1 to reflect solar observa-
tions (see § 2.1.1). The last two parameters to be held
fixed, δB∗ and δ`∗, control the shapes of the latitudinal
and magnetic masking used in the emergence function
(see § 2.4.2); experimenting with the model reveals that
within reasonably wide ranges, the exact values chosen
for these parameters have little impact on the global dy-
namo behavior. Consequently, they are fixed at values
0.1B∗ and 3◦ respectively.

This leaves 18 adjustable parameters, which are listed
in Table 1. Eleven pertain to the linear terms in the
model, including the shape of the meridional flow, mag-
netic diffusivity and surface sink (δc, Rb, u0, p, q, v, w,
ηc, ηt, ηR, and τR), and the remaining seven (r∗, b, a, c,
B∗, `∗, and µ`) to the form of the nonlinear emergence
function (Equation (10)).

3.1. Validation with the MD2014 Model

The large number of model parameters listed in Ta-
ble 1 results from the very general forms adopted for
many model ingredients, notably the meridional flow pro-
file and emergence function. This gives the model great
flexibility, in that it includes as a subset a number of
published models. As an example and a form of val-
idation exercise, we now reproduce a dynamo solution
resembling that presented in MD2014.

Since MD2014’s model includes a full two-dimensional
representation of the solar surface and an emergence al-
gorithm similar to ours, direct contact is allowed between
specific features of the two models despite significant
differences in algorithmic implementation and numeri-
cal procedures. Their (single-cell) meridional circulation
profile (described in Dikpati 2011) and magnetic diffu-
sivity profile (described in Dikpati & Gilman 2007) may
be closely approached by ours, provided the parameter
values listed in the first column of Table 1. Similarly,
their emergence function is comparable to the one we
describe in § 2.4.2, with a latitudinal masking approx-
imated by parameters µ` = 0 and `∗ = 45◦ (a low-
latitude cutoff conducive to the production of a solar-like
butterfly diagram but hard to justify from the point of
view of stability of thin flux tubes) and applied only to
the Bφ component evaluated near depth r∗/R = 0.705.
The magnetic masking includes a lower threshold B∗ of
unknown value and apparently no higher threshold (pa-
rameter c) (see first column of Table 1). The detailed
parametrization of individual emerging BMRs nonethe-
less differs significantly from ours, in a generally more
deterministic manner. The latitude of emergence is di-
rectly associated with the location of peak toroidal field,
as compare to the probabilistic approach we use. The
tilt, separation, size and flux of the spot pair are mainly
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Table 1
Parameter values

Parameters aReference Tested fOptimal
Values Intervals Values

(C = 0.42) (C ∈ [0.92, 0.94])

r∗/R 0.705 [0.60 , 0.80 ] 0.68± 0.04
0.03

b 1.0 [0.5 , 3.0 ] 1.5± 1.5
0.5

a 0.0 [0.0 , 2.0 ] 0.0± 0.8
0.0

c 1.0 [0.0 , 1.0 ] 1.0± 0.0
0.6

B∗/G b 102 [101 , 104 ] 102 ± 0
102

`∗ 45 [64 , 90 ] 70± 9
6

µ` 0.0 [0.0 , 1.0 ] 0.5± 0.5
0.5

δc/R 0.05 [0.04 , 0.10 ] 0.05± 0.02
0.01

Rb/R 0.69 [0.60 , 0.70 ] 0.60± 0.02
0.00

u0/m s−1 18 d [8 , 18 ] 17± 1
8

log p 2.0 [−1.0 , 2.0 ] −0.7± 1.2
0.2

q 2.5 e [20 , 25 ] 1± 31
0

v 1.0 e [20 , 23 ] 7± 1
5

w 3.5 e [20 , 25 ] 1± 1
0

log(ηc/cm2 s−1) 9 [7 , 11 ] 8.0± 2.4
1.0

log(ηt/cm2 s−1) 10.7 [11.0 , 13.0 ] 12.0± 0.2
0.4

log(ηR/cm2 s−1) 12.48 d [12.38, 12.82] 12.78± 0.04
0.40

τR/years c 32 d [7 , 32 ] 10±∞3
Notes.

a Reference values as to approximate velocity and diffusivity profiles
and emergence algorithm used by MD2014, leading to the solution
shown in Figure 1(a).
b Threshold value B∗ unavailable from MD2014.
c τR & 32 years is similar to removing term −BR/τR in Equation (8).
d As determined in Paper I, where the initial interval were u0 ∈
[5, 30] m s−1, ηR ∈ [102, 104] km2 s−1, and τR ∈ [21, 25] years. The
linear correlation between u0 and ηR obtained from the surface anal-
ysis should still be considered in conjunction with the final results
given in the rightmost column.
e As opposed to the optimal intervals obtained in Paper I, where

w=8± 24
4 , v=2.0± 1.5

1.0, and q=
(
2.8± 2.0

1.1

)
· 21.25(log2 v)2 .

f Solutions for the first seven parameters (r∗, b, a, c, B∗, `∗, and
µ`) result from the full W21×8-18 optimization. Solutions for the
remaining eleven parameters (δc, Rb, u0, p, q, v, w, ηc, ηt, ηR, and
τR) result from the subsequent W21×8-11 optimization. “Optimal
values” listed in bold font correspond to one chosen optimal solution
(see Figures 1(e) and (f)) among the acceptable solutions bounded by
the given error bars. Other combinations of parameters allowed by
the error bars should still be used with care, considering the shape
of the parameter-space landscape inside the optimal region and in
particular the correlations described at the end of § 3.5.

determined by the value of Bφ and the latitude of emer-
gence, and so are deterministic rather than stochastic.

In order to minimize the differences associated with
stochastic realizations of our emergence procedure, we
limit this exercise to the input of observed emergences.
Following Paper I, we use the comprehensive database
of over 3000 BMRs gathered by Wang & Sheeley (1989)
for cycle 21. By feeding these data into Equations (11a)
and (11b), the 2 × 2D simulation is indirectly forced to
run in a cycle-21-like mode. The remaining model pa-
rameters are set to mimic MD2014’s model (first column
of Table 1). We obtain the two-cycles solution presented
in Figure 1(a), for the synoptic evolution of Bφ at the
base of the convection zone. This solutions resembles
MD2014’s result in that it presents a strong mid-high-

latitude poleward branch. Our low-latitude equatorial
branch is however much weaker. Applying the appro-
priate latitudinal and magnetic mask from MD2014, we
obtain the emergence function, or equivalently the prob-
abilistic distribution of emergences, presented in Fig-
ure 1(b). This resembles the pattern of emergence pro-
duced in MD2014, with surface emergences strongly lo-
calized around ±40◦ latitude, with a hint of equator-
ward propagation (see their Figure 2a, keeping in mind
that the slanted thick poleward streaks going from mid
to high latitudes on this time–latitude plot reflect post-
emergence surface flux transport, not emergence per se).

3.2. Numerical Optimization

We now seek to select model parameter values so as
to obtain a solar-like dynamo solution. This defines a
numerical optimization task which consists in optimizing
the 18 parameters listed in Table 1 to yield the closest
possible fit to solar observations.

The first choice to be made is the goodness-of-fit mea-
sure to be used to drive such optimization. We opted
to use a single fitness measure, namely the value of the
linear correlation coefficient C between the synoptic dis-
tribution of synthetic and observed emergences of BMRs.
This presupposes that the magnetic flux tubes produc-
ing BMRs upon emergence through the photosphere rise
radially through the convection zone, on a timescale very
much shorter than the cycle period. Models based on the
thin flux tube approximation support this idea, at least
for the more strongly magnetized flux tube presumably
producing the larger BMRs (see, e.g., Fan 2009, and ref-
erences therein).

Next we must select a suitable observational dataset
against which to optimize the model. As for the preced-
ing validation exercise, we use Wang & Sheeley (1989)’s
BMRs database for cycle 21. In order to minimize any in-
fluence of the initial condition (solar minimum-like dipo-
lar configuration, as introduced in Paper I), we generate
a sequence of eight replications of the cycle 21 database
(hereafter W21×8), by sequentially inverting the lati-
tudes of emergence from one replication to the next, and
use the output corresponding to the last two cycles to
compute the correlation coefficient.

3.3. Genetic Algorithm (GA): PIKAIA

We perform the numerical optimization of C using
the GA-based optimizer PIKAIA 1.23 (Charbonneau &
Knapp 1995; Charbonneau 2002). GA allow for an effi-
cient and adaptive exploration of the parameter space,
and are thus quite robust at handling global optimiza-
tion problems. As described in Paper I, they also al-
low for a quasi-Monte Carlo sampling of the parameter
space about the current optimum solution, thus help-
ing to construct error estimates on optimal parameter
values. In the present context PIKAIA is operating in
a 18-dimensional parameter space (viz. Table 1), with
the fitness measure given by the correlation C. Calcu-
lating the fitness of a single trial solution (18-parameter
vector) implies running the SFT and FTD simulations
in parallel, with appropriate coupling through the sur-
face boundary condition, and finally evaluating C. For

3 http://www.hao.ucar.edu/modeling/pikaia/pikaia.php
(March 2015)

http://www.hao.ucar.edu/modeling/pikaia/pikaia.php


8 A. Lemerle & P. Charbonneau

Figure 1. Left: time–latitude contour plots of the toroidal magnetic field component Bφ(r∗, θ, t), at r∗/R = 0.68, for (a) a two-cycle
reference solution approaching that by MD2014, (c) an example of an acceptable solution with C = 0.92, and (e) an optimal solution
(Cmax = 0.94). (g) Raw density plot of observed BMRs, extracted from Wang & Sheeley (1989)’s database, where all emergences in a
given hemisphere and cycle have been attributed the same polarity. Right: (b),(d), and (f) time-latitude contour plots of the emergence
function FB(θ, t) associated with each of the solutions presented at the left, with their respective fitness factor C. (h) Smoothed version of
the density plot presented at the left. All diagrams show the last quarter of simulations W21×8 (last two repetitions of cycle 21), which
was used for optimization. Time, given in years, starts at the beginning of the eight-cycles runs. Vertical dotted lines indicate the times of
activity minima.

our working spatial mesh and time stepping this requires
about twenty minutes on a single-core modern CPU. For
a typical optimization run of 500 generations with 96
trial solutions per generation, this adds up to 667 core-
days, but the fitness calculation being almost trivial to
parallelize across the population, the wall-clock time can
be brought down to a few days.

3.4. Choosing Parameter Ranges

PIKAIA is designed to carry out optimization in a
bounded parameter space. The intervals explored for
each parameter (second column of Table 1) are chosen to
be physically meaningful and computationally stable. In
particular, parameters u0, ηR, and τR are restricted to
the intervals found in Paper I to better reproduce surface
synoptic magnetograms. Parameters q, v, and w, how-
ever, are left free to vary in their original intervals despite
the preceding calibration, to allow full exploration of the
domain. Diffusivity values ηc and ηt and profile param-
eters δc, Rb, and p are given broad intervals but still
within limits inferred by theoretical considerations and
numerical experiments. Masking parameters are allowed
to vary within ranges inferred from calculated stability
diagrams, as described in § 2.4.2.

3.5. Optimal Solution for Cycle 21

The first sequence of optimizations are run with all
18 unconstrained parameters allowed to vary freely in
the intervals listed in Table 1, hence called W21×8-18.
We first analyse the model’s behavior relative to the pa-
rameters involved in the very definition of the emergence
function FB(θ, t) (Equation (10)). Figure 2 illustrates
the value of the goodness-of-fit C as a function of emer-
gence parameters r∗, b, a, c, B∗, `∗, and µ` for a set
of 192000 solutions obtained from four independent op-
timizations (different seed populations), 500 generations
each, 96 trial solutions per generation. In all four op-
timizations, the fitness reaches the same optimal value
Cmax = 0.94. Such optimal solution, which parameters
are listed in bold font in the rightmost column of Table 1,
is presented in Figures 1(e) and 1(f). The fit between the
emergence function (Figure 1(f)) and the smoothed but-
terfly diagram of cycle 21 emergences (Figure 1(h)) is
net, with expected butterfly shapes and cycle overlaps.

However, it is clear from Figure 2 that considering only
a single optimal solution is insufficient, optima being sur-
rounded by a wide variety of sub-optimal but likely ac-
ceptable solutions, besides the clearly unacceptable ones.
Also, all seven parameters presented are not equally con-
strained by the fitting procedure. By looking at all so-
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Figure 2. Distribution of the fitness C (vertical inverse log scale)
as a function of each of the seven “emergence” parameters (r∗, b,
a, c, B∗, `∗, and µ`). Each gray dot indicates the parameter-space
position of one of the 192000 solutions obtained from four inde-
pendent W21×8-18 optimizations. The remaining eleven parame-
ters are not shown here since their final analysis is based instead
on the W21×8-11 optimization (see Figure 4). On each plot, the
thick horizontal line indicates the interval where C ≥ 0.935, and
the thick vertical line the parameter value where true maximum
fitness C = 0.94 is reached. Thin vertical blue lines delimit the
parameter values where fitness reaches C = 0.92, such that any
solution above the horizontal blue line is considered acceptable.

Figure 3. “Stability diagram” used as a mask on the toroidal
magnetic field component Bφ(r∗, θ, t) shown in Figure 1(e), to pro-
duce the emergence function FB(θ, t) shown in Figure 1(f).

lutions standing above the C ≥ 0.935 level (thick black
line), we get a first estimate of the relative restriction
applied on each parameter. For instance, parameters r∗,
a, and B∗ appear fairly well constrained to a limited in-
terval within the original boundaries, while parameters
b, c, `∗, and µ` show wider regions of acceptable fit.

In order to build meaningful error estimates for each
parameter, we must assess the physical limit of validity
of the optimization criterion. Clearly, there must exist a
value of C above which solutions are physically accept-
able, even if not strictly optimal. An example of such
a solution, with C = 0.92, is presented in Figures 1(c)
and 1(d). The butterfly shape in this solution is still
clearly visible, though a second tail is starting to build
towards the high latitudes. These differences are signifi-
cant enough to declare such a solution inferior to the op-
timal one, but still at the limit of acceptability in terms
of observed global features. The horizontal blue lines in
Figure 2 delimit the solutions that are characterized by
a criterion C ≥ 0.92.

Before proceeding further into the parameters analy-
sis, we now opt to get rid of the variability associated
with the definition of the empirical emergence function
(Equation (10)), and pick up definitive values, within
the interval of acceptability, for the parameters involved.
The inferred depth for the generation of flux instabilities
is thus set near its optimal value r∗/R = 0.68, by aver-
aging the magnetic field values between r/R = 0.68 and
0.70. For simplicity, the relative contribution to Bmix of
the poloidal field is set to zero (a = 0), while we round the
optimal exponent of the toroidal contribution to b = 1.5.
The lower threshold, above which this diffuse toroidal
field is assumed to be able to generate instabilities, is set
to its highest acceptable value: B∗ = 102G. The emer-
gence function FB remains proportional to Bmix, with
c = 1.0, rather than saturating above B∗. The highest
latitude of emergence is fixed to `∗ = 70◦ (sin `∗ = 0.94),
in accordance with stability diagrams by Ferriz-Mas et al.
(1994), and the equatorial intercept µ` is set to 0.5, such
that the latitudinal filter halves smoothly from `∗ = 70◦

down to the equator. The final emergence function (i.e.
emergence probability) can now be mapped as a func-
tion of latitude and toroidal field amplitude, as shown in
Figure 3, to form a synthetic “stability” diagram, which
is the model’s equivalent to the stability diagrams pre-
sented in Ferriz-Mas et al. (1994, Figures 1 and 2).

With the emergence function now fixed, we carry out a
new series of four optimizations, hereafter called W21×8-
11, with only the 11 physical model parameters (δc,
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Figure 4. Same as Figure 2, but for the eleven model parameters (δc, Rb, u0, p, q, v, w, ηc, ηt, ηR, and τR), from four independent
W21×8-11 optimisations, while the seven “emergence” parameters are held fixed to their optimal value listed in Table 1.

Rb, u0, p, q, v, w, ηc, ηt, ηR, and τR) left to vary
freely in their prescribed intervals. The corresponding
192000 solutions are presented in Figure 4 as a func-
tion of each parameter values. Again, the optimal fitness
reaches Cmax = 0.94, and all solutions characterized by
a C ≥ 0.92 are considered acceptable. The correspond-
ing interval for each parameter is used to define final
error bars about the optimal value, as listed in the right-
most column of Table 1. As mentioned earlier, various
combinations of parameters within these accepted inter-
vals lead to acceptable solutions, but not all do, due to
various correlations between some pairs of best-fit pa-
rameters (see also discussion in Paper I, § 3.5). Figure 5
depicts two of the strongest such correlations uncovered

in our W21×8-11 set of solutions. The left panel shows
a net linear (anti)correlation between the surface merid-
ional flow speed u0 and one of the parameters (p) setting
the depth dependence of the meridional flow in the in-
terior (viz. Equation 3a). This (anti)correlation has an
unambiguous physical explanation: it leads to all solu-
tions near the red line having an equatorward meridional
flow speed equal to 6.6 m s−1 ± 8% at r/R = 0.66, that
is below the base of the convective envelope, beneath the
layer where the emergence function is calculated. It is
the speed of this return flow that strongly constrains the
period of the sunspot butterfly diagram. The right panel
of Figure 5 shows another strong relation between a pair
of parameters, in the form of a somehow triangular con-
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Figure 5. Correlations between the best-fit parameter values for
surface meridional flow speed u0 and (left) depth variation parame-
ter p and (right) latitudinal profile parameter q (see Equations (3a)
and (3b)). The blue squares correspond to the C ≥ 0.92 regions on
Figure 4, third, fourth, and fifth panels at left. The linear best-fit
(red line) and Pearson’s correlation coefficient are also shown on
the left panel. In particular, despite the ranges of values for u0, p,
and q, all these solutions have a peak equatorward flow speed of
6.6 m s−1 ± 8% near r/R = 0.66.

straint on parameter q, which controls the polar end of
the latitudinal dependence of the meridional flow, as a
function of maximum flow speed u0 (viz. Equation 3b).
This correlation sets a lower limit on the surface flow
speed at mid–high latitude, of the order of & 5 m s−1.

4. A SOLAR-LIKE DYNAMO SOLUTION

Now that the physical model and masking parameters
have been properly calibrated to ensure that function
FB(θ, t) reproduces the observed solar butterfly diagram
of surface emergences, we may use it as the statistical
emergence function it was meant to be, i.e. providing the
missing surface source term SBMR(θ, φ, t) with new emer-
gences generated from deep seated toroidal flux (Equa-
tions (11a) and (11b)) and thus closing the loop for a
self-consistent 2× 2D dynamo.

In all following cases, we use as initial condition the
simulation state at the end of the previously calibrated
W21×8 sequences. This ensures that the new simula-
tions start up from an adequate state not so far from a
solar activity minimum.

4.1. Quasi-Linear Regime

The quasi-linearity in B of the FTD equations (7a)
and (7b) and SFT equation (8) is expected to lead to ei-
ther growing or decaying dynamo solutions. In the well-
studied mean-field framework, this behavior is controlled
by the dynamo number, namely the dimensionless prod-
uct of the strength of differential rotation and turbulent
electromotive force, over magnetic dissipation. Here it is
the proportionality constant K between FB(θ, t) and the
the absolute number of emerging BMRs per time step
that plays the equivalent role. The top panel of Fig-
ure 6 depicts the temporal evolution of the total mag-
netic energy content inside the simulated Sun, for ' 8-
cycles sample realizations of a 2 × 2D dynamo run in
the quasi-linear regime at four different dynamo num-
bers K. From these few samples, the transition between
decaying (small K) and exponentially growing (large K)
solutions seems sharp, but a more complete analysis re-
veals otherwise. The middle panel of Figure 6 shows
how the growth rate of the magnetic energy can show
a wide spread at a given value of K. Error bars on
the plot illustrate the intervals of growth rates obtained
at each given K, through ten different realizations of
the statistical emergence procedure described earlier (cf.

Figure 6. Top panel: evolution of the total magnetic energy con-
tent inside the simulated Sun, for ' 8-cycles sample realizations of
a 2 × 2D dynamo run in the quasi-linear regime at four different
dynamo numbers K (horizontal dashed line indicates the initial en-
ergy level). Middle panel: long term growth rate of the magnetic
energy as a function of dynamo number K, for ten independent
realizations of (thick gray) the full statistical emergence procedure
(cf. § 2.4.2, stochasticity sources (i) to (vi)) per value of K and of
(thin black) a reduced stochastic emergence procedure (retaining
sources (i) to (iv) only, and fixing bipole separations (v) and tilts
(vi) at their observed mean values). Bottom panel: similar as the
preceding panel, but for the oscillating frequency of the detrended
magnetic energy.

§ 2.4.2). We also performed a similar set of simulations in
a reduced stochastic regime (shown in gray on the plot).
This reveals the strong global impact of stochasticity in
the emergence process, particularly by the distributions
in separations and tilts of emerging BMRs. The con-
sequence is that a precise value for the critical dynamo
number cannot be defined, with different realizations of
the dynamo with K ∈ [0.4, 0.6] resulting in dynamo so-
lutions that can either grow or decay. The fact that this
transition region lies significantly below the value K ' 1
required to reproduce the observed butterfly diagram for
cycle 21 in the preceding section suggests that the dy-
namo should run in the supercritical regime, with some
non-linear feedback regulating the mean cycle amplitude.
This aspect will be discussed in the following subsection.

As another indicator of the model behavior, average cy-
cle frequencies (periods) of the corresponding solutions,
are also presented in the bottom panel of Figure 6, again
with error bars showing the intervals of frequencies ob-
tained for a given K. Considering the difficulty of mea-
suring cycle periods in quickly decaying oscillatory so-
lutions (low K), no strong trend appears from this plot.
This suggests how robust is the model at producing oscil-
lations on a 9− 12 years timescale, in spite of the strong
variability associated with stochastic processes.
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Figure 7. A representative solar-like tilt-quenched 2 × 2D dynamo solution obtained using the optimal parameter values listed in the
rightmost column of Table 1. (a) Latitude–radius snapshots of the toroidal magnetic field between r/R = 0.5 and 1.0, at nine different
phases of the dynamo cycle delimited by two vertical continuous lines in the following plots (color table saturates above 1.5 kG; dashed lines
indicate the depth of the tachocline (r/R = 0.7)). (b) Time–latitude contour plot of the toroidal magnetic field averaged in the depth range
0.68 ≤ r∗/R ≤ 0.70; (c) corresponding temporal evolution of the total magnetic energy content inside the simulated Sun (0.5 ≥ r/R ≥ 1.0;
horizontal dashed line indicates the initial energy level). (d) Time–latitude density plot (butterfly diagram) of the number of BMRs emerged
at the surface, as dictated by the emergence function FB , in turn based on the preceding toroidal field amplitude; (e) corresponding monthly
number of newly emerged BMRs (pseudo-SSN), as a function of time. (f) Time–latitude contour plot of the surface radial magnetic field
(color scale saturated above 27 G); (g) corresponding temporal evolution of the surface axial dipole moment. Vertical dotted lines indicate
the times of activity minima as defined by the minimum values of the pseudo-SSN.
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4.2. Tilt-Quenching and Reference Dynamo Solutions

To overcome the problem of linearity, but without deal-
ing explicitly with dynamical feedback, some ad hoc
quenching may be added to the dynamo source terms.
Motivated by the observational analyses of Dasi-Espuig
et al. (2010), we introduce a quenching of the BMR mean
tilt as a function of the amplitude of the contributing
underlying toroidal field Bφ(r∗, θ, t), in order to mimic
the resistance of magnetic tension in strongly magnetized
flux tubes against the twisting imparted by the Coriolis
force.

The quenched tilt is written

αq =
α

1 + (Bφ/Bq)2
, (12)

with Bq some ajustable critical magnetic field amplitude.
In the context of the present dynamo model, we find
a tilt-quenching with Bq ' 500 G, at dynamo number
K = 0.75, to be adequate to generate stable dynamo
solutions, comparable to solar amplitudes for the but-
terfly density plot and the monthly number of newly-
emerged BMRs. The latter we refer to as a “pseudo-
SSN”, since no consideration is given here to distinguish-
ing groups vs individual emergences, or assigning them
different weights, as is the case in the definition of the
international SunSpot Number. For instance, observed
cycle 21 peaks at a SSN of ' 175 while the correspond-
ing monthly number of newly-emerged BMRs in Wang
& Sheeley (1989)’s database is ' 50.

Figure 7(b)–(g) illustrate the evolution of the deep
toroidal field, total magnetic energy, BMRs density,
pseudo-SSN, surface radial field, and axial dipole mo-
ment for a sample dynamo solution run over more than
300 years and roughly 32 synthetic solar cycles. The
temporal series exhibits solar-like behaviors in many as-
pects, in particular cycle periods varying between 8.5 and
12 years, cycle amplitude variations of a factor three to
four in the pseudo-SSN, and long term variability such
as some progressive increase of cycle amplitude after the
occurence of a weak cycle or the triggering of small cy-
cles after very strong ones. Some significant hemispheric
asymmetries are also noticeable on the various plots, but
polarity reversals remain sharply synchronized, indicat-
ing strong cross-hemispheric coupling. The oscillating
surface axial dipole moment peaks at or near pseudo-
SSN minimum, in agreement with observations, but its
amplitude is too high by a factor of two (' 10 G ·R2) as
compared with the Sun (' 4 G ·R2 at the end of cycle
21) as is the pseudo-SSN. This is due to both a surplus
of emerged flux induced by too high a value for K and
to the use of a suboptimal profile for the surface merid-
ional circulation leading to extra flux accumulation near
the poles. The peak amplitude of the radial surface field,
systematically located near the poles at activity minima,
is in fact an order of magnitude stronger than the ob-
served one. The phase relationship between the surface
dipole and deep-seated toroidal field is solar-like, with the
dipole peaking at or shortly prior to pseudo-SSN mini-
mum.

Also shown in Figure 7(a) is a series of radius–latitude
cuts of the toroidal field component, at nine different
phases of a synthetic sunspot cycle. The toroidal field
reverses amplitude after ' 9 years, which is slightly

Figure 8. Amplitude (maximum pseudo-SSN) of cycle n as a
function of maximum axial dipole moment at the end of (a) cycle
n− 3, (b) cycle n− 2, (c) cycle n− 1, and (d) cycle n, for the sam-
ple dynamo solution presented in Figure 7. (e) Cycle amplitude as
compared to the period of the same cycle. (f) Cycle amplitude cal-
culated independently in each hemisphere and plotted against one
another. In each panel is also given the corresponding Pearson’s
linear coefficient.

shorter than the average observed sunspot cycle. The
peak toroidal field amplitude near r/R = 0.7 is reached
at mid-cycle, near maximum sunspot activity. Below
the tachocline, the magnetic field from three to four
successive cycles piles up to thinner and thinner lay-
ers as it reaches the depth r/R = 0.6. This is pre-
cisely what is to be expected from the average diffusivity
η ' 5× 1010 cm2 s−1 used at 0.6 ≥ r/R ≥ 0.7, which
corresponds to a diffusive time-scale of ' 31 years. Below
r/R = 0.6, the magnetic diffusivity of 109 cm2 s−1, leads
to a diffusive time-scale & 1000 years. Therefore, while
the meridional circulation acts on a time-scale commen-
surate with the sunspot cycle period, the deep diffusive
processes act on much longer timescales. The remnants
from old cycles appear to be able to feed back into the
dynamo system and induce some long term memory in
cycle amplitude.

Figure 8 shows some long term interrelations between
cycle properties, extracted from the preceding dynamo
solution. Panel (c) in the figure shows the strong linear
correlation (0.89) obtained between cycle (n) amplitude
(maximum pseudo-SSN) and maximum axial dipole mo-
ment at the end of the preceding cycle (n − 1). This
behavior is to be expected from the quasi-linear trans-
port and shearing of the poloidal magnetic field accumu-
lated at cycle minimum into a deep toroidal component
peaking at cycle maximum and generating a proportional
number of surface emergences. As shown in panel (d) of
the figure, the reverse correlation is not true, however,
as the stochastic properties of emerged BMRs during a
given cycle n destroy the otherwise expected correlation
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Figure 9. Relative spectra of the total magnetic energy (thick
black) and pseudo-SSN (thin black) time series, averaged over three
independent realizations of a ' 96-cycles tilt-quenched 2× 2D dy-
namo simulation. Continuous blue curves illustrate the gaussian
best fit to each spectrum.

between pseudo-SSN and axial dipole amplitude at the
end of the same cycle (n). Also, even if long term mag-
netic memory does exist in the interior, the poor corre-
lations obtained between amplitude of cycle n and axial
dipole at the end of cycles n − 2 (panel (b)) and cy-
cles n − 3 (panel (a)) indicate that it is erased by the
stochasticity of flux emergence. Despite these stochastic
sources of fluctuations, hemispheric cycle amplitudes re-
main strongly correlated, as shown in Figure 8(f). All the
preceding results are in good agreement with observed so-
lar cycle characteristics (see, e.g., Muñoz-Jaramillo et al.
2013, Figure 5).

As also shown in panel (e) of Figure 8, cycle ampli-
tude and period are essentially uncorrelated. This differs
from the behavior observed in the Sun, where a signifi-
cant anticorrelation is inferred between these two cycle
measures. Some additional dynamical feedback would
likely be required to reproduce such behavior.

4.3. Long Term Variability

Figure 9 shows the Fourier transforms of the total mag-
netic energy and pseudo-SSN time series. These are aver-
age spectra constructed from three statistically indepen-
dent realizations of a ' 96-cycles tilt-quenched 2 × 2D
dynamo, similar to the reference solution of Figure 7.
The inverted parabola are Gaussian fits to the promi-
nent peak in each spectrum. The cycle period, as re-
vealed by the pseudo-SSN temporal spectrum, peaks at
10.3± 0.6 years (at the two sigma level), while that de-
termined from the spectrum of the oscillating magnetic
energy time series peaks at 10.5± 1.2 years. These re-
sults indicate that despite the strong variability in cycle
amplitude characterizing the simulations, the period is
very stable, even more so than in the real Sun. The low-
frequency portion of the spectra are also of interest. Sig-
nificant power is seen at these low frequencies, especially
in the spectrum constructed from the total magnetic en-
ergy time series. This is consistent with the long term
memory associated with persistent deep-seated magnetic
structures (viz. Figure 7(a)). The effect is much less ap-
parent at the surface as revealed by the temporal spec-
trum of the pseudo-SSN. Neither average spectrum shows
hints of peaks at low frequencies, of the type one would
associate with the so-called Gleissberg or Suess cycles
detected in temporally-extended records of solar activ-
ity. Low amplitude (< 1 % of peak power) structures
are seen at low frequency in the spectra of individual
runs, but occur at different frequencies for different run
realizations, and so do not represent physically robust

signals.
Figure 10 shows two sets of synthetic butterfly dia-

grams and associated pseudo-SSN time series, obtained
for the same parameter values as the solution of Figure 7
but using distinct stochastic realizations for the fluctuat-
ing properties of the synthetic BMRs. The top solution
generally resembles panels (d) and (e) of Figure 7 in its
overall amplitude fluctuation pattern, but now also shows
an episode of strongly reduced cycle amplitude, persist-
ing here for four cycles (84 ≤ t ≤ 132 years) and reminis-
cent of the 1796–1825 Dalton minimum of the sunspot
record. Entry into this low amplitude episode is sudden,
the preceding few cycles being of average amplitude or
higher. Recovery is however more gradual, with a few
cycles required for the cycle to build back up to its pre-
event average amplitude.

The solution plotted on the two bottom panels of Fig-
ure 10 shows yet another interesting behavior: a com-
plete halt of the cyclic dynamo, here at t ' 150 years,
following a sequence of unfavorably positioned and/or
tilted large BMRs, leading to a much reduced dipole mo-
ment building up in the descending phase of the cycle
peaking at t ' 118 years. Because of the lower cutoff B∗

built into our emergence function (viz. Equation (10)
herein), once the toroidal magnetic field falls below this
threshold, BMRs are no longer produced, so that the ex-
isting dipole then undergoes simple resistive decay, fol-
lowed by resistive decay of the toroidal component, as
per Cowling’s theorem. A distinct inductive mechanism
able to operate at low mean-field strengths, such as the
alpha-effect of classic mean-field electrodynamics, would
be needed here to restart the dynamo cycle. Ongoing
numerical experiments along these lines suggest that this
would be a feasible path towards the generation of solar-
like Grand Minima of activity.

In a set of 30 realizations similar to the one displayed
in Figure 7 and the two in Figure 10, seven shut off be-
fore reaching the 32th cycle, and 15 before reaching the
96th cycle. The probability of a dynamo to remain ac-
tive after a certain number of cycles thus decreases with
time in a manner that appears consistent with a station-
ary memoryless random process, as would be expected
from the stochastic nature of the properties of emerging
BMRs built into the model. A detailed, quantitative in-
vestigation of these matters, currently underways, will
be the focus of a subsequent paper in this series.

5. DISCUSSION

The dynamo solutions presented above result from the
use of a model calibrated to cycle 21 emergence data
through an optimization process operating on a specific
goodness-of-fit measure and in a bounded search space.
These bounds were set (loosely) on observational and/or
physical grounds, but obviously pose a restriction on the
range of solutions accessible to the optimization. Could
we do better than the optimal solution listed in Table 1 ?
We have carried out a number of alternate optimization
runs in order to answer this question, as described in
what follows.

An 18-parameter optimization similar to that de-
scribed in § 3.5 but using much broader ranges of pa-
rameter does manage to return a best-fit solution with
C = 0.97, significantly better than the original 18-
parameter best-fit solution, which has C = 0.94. This
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Figure 10. Time–latitude density plot (butterfly diagram) and corresponding monthly number (pseudo-SSN) of newly emerged BMRs,
for two distinct realizations of a ' 32-cycles tilt-quenched 2 × 2D dynamo simulation using the same optimal parameter values used to
produce the reference solution of Figure 7 (viz. panels (d) and (e)).

nominally superior fit, however, is achieved through a
low-latitude cutoff for the emergence function, down to
`∗ = 30◦, which is clearly incompatible with stability
diagrams for thin toroidal flux ropes.

We also carried out optimization runs in which the
parameters defining the latitudinal dependence of the
meridional flow (via Equations (3a)—(3b)) are con-
strained to a narrower range of acceptable values, cor-
responding to the best-fit surface flux transport solution
obtained in Paper I by fitting actual synoptic magne-
tograms, rather than just the spatiotemporal distribu-
tions of BMR emergences. The best-fit solution from
such an optimization reached only C ' 0.86, which is
much less satisfactory than the C = 0.94 best-fit solution.
More worrisome is the fact that the surface meridional
flow for the best-fit solution and error bars of Table 1,
plotted in Figure 11 (dark gray band), provides a rather
poor fit to the Doppler observations of Ulrich (2010),
which lie completely outside the range of acceptable so-
lutions from the optimization run. The best-fit profile
of Paper I did much better in this respect (reproduced
herein as the pale gray band in Figure 11).

This suggests some incompatibility between the opti-
mization of the SFT model relative to surface magne-
tograms and the optimization of the coupled SFT–FTD
model relative to the shape of the sunspot butterfly di-
agram. The W21×8-11 optimal solution of § 3.5 still
lies within the surface-optimized ranges for the maximum
meridional flow amplitude u0, the surface diffusivity ηR,
and the exponential decay time τR, while the parameters

Figure 11. Observed and modeled latitudinal profiles of surface
meridional flow. The dark gray band indicates the range of accept-
able profiles in the W21×8-11 optimal solution of § 3.5, while the
pale gray band indicates the acceptable range obtained in Paper I
by fitting the full synoptic magnetograms. The solid dots and error
bars are the Doppler measurements of Ulrich (2010) for cycles 22
(red) and 23 (black).

q, v and w (see Equation (3b)), setting the latitudinal de-
pendence of the stream function, do not. Interestingly,
despite significant variations in latitudinal profiles all ac-
ceptable solutions (C ≥ 0.92) have a peak equatorward
meridional flow speed of 6− 7 m s−1 near the base of the
circulation cell; this is consistent with the deep merid-
ional flow setting the cycle period in these dynamo solu-
tions, which leads to a very tight constraint when fitting
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the butterfly diagram.
The analytic form adopted here for the meridional flow

stream function is of course extremely simple: steady and
separable in r and θ, which enforces the same latitudinal
dependence at all depths, here defining a single flow cell
per meridional quadrant. What our butterfly diagram-
based goodness-of-fit measure thus constrains is primar-
ily the flow at the base of the convection zone. The
misfit with the results from purely surface optimization
suggests that the internal flow is more complex than the
single-cell profile used here. Indeed, the recent helio-
seismic inversions of Zhao et al. (2013) and Schad et al.
(2013) suggest multiple cells in radius, which is known
to have a large impact on the operation of flux transport
dynamos (e.g., Jouve & Brun 2007). The dynamo mod-
elling work of Hazra et al. (2014a) indicates, however,
that provided additional transport processes such as tur-
bulent diffusion and/or pumping can couple the surface
and base of the convection zone, solar-like butterfly dia-
grams can be produced as long as an equatorward flow is
present at or immediately beneath the base of the con-
vection zone (see also Jiang et al. 2013).

Another physical inconsistency of the W21×8-11 op-
timal solution is the meridional flow’s deep penetration
below the base of the convection zone. This is known
to be conducive to the production of solar-like butterfly
diagrams (e.g., Nandy & Choudhuri 2002), but unlikely
on dynamical grounds (Gilman & Miesch 2004), and del-
icate to reconcile with observed solar light element abun-
dances (Charbonneau 2007). Finally, both observations
(Ulrich 2010) and numerical simulations (Passos et al.
2012) suggest that the meridional flow may undergo sys-
tematic temporal variations in the course of the cycle,
presumably driven by the cycling magnetic field. Such
effects are a priori excluded from the meridional flow
parametrization used here.

All these incompatibilities and inconsistencies most
likely reflect, at least in part, the specific choices made
for the parametrization of the meridional flow profile.
An interesting possibility would be to use our GA-based
fitting technique to invert a spatially-resolved discretiza-
tion of the internal meridional flow from the sunspot but-
terfly diagram. Such a method, dubbed genetic forward
modelling, has already been used successfully to infer
the rotational profile of the deep solar core from low-`
rotational frequency splittings (see Charbonneau et al.
1998).

Genetic forward modelling could also be used to in-
vert stability diagrams for the emergence of BMRs. Our
best-fit emergence function has a = 0 in Equation (10),
implying that the emergence probability is primarily set
by the strength of the toroidal magnetic component, in
agreement with the idea that sunspots form from axisym-
metric toroidal magnetic flux ropes located at or near
the base of the convection zone. However, our eruption
threshold of 100 G is rather low, even if some level of
amplification is expected in forming a compact flux rope
from a diffuse magnetic field. There is clearly room for
improvement in this model component.

6. CONCLUSIONS

In this paper we have described a new solar cycle model
based on the Babcock–Leighton mechanism of poloidal
field regeneration through the surface decay of active re-

gions. This new model is based on the coupling of a con-
ventional latitude–longitude simulation of surface mag-
netic flux evolution (as described in Paper I), coupled
to an equally conventional axisymmetric kinematic flux
transport dynamo model defined in a meridional plane
(closely following Charbonneau et al. 2005). The novelty
lies in the coupling between these to model components:
the surface flux evolution simulation provides the source
term of the internal dynamo through the surface bound-
ary condition; while the internal dynamo provides the
magnetic flux emergence, in the form of pseudo-sunspot
bipolar pairs, that act as a source in the surface mag-
netic flux simulation. The properties of these synthetic
bipolar pairs —flux distribution, component separation,
tilt angles, etc— are tailored to reflect observed statis-
tical properties of real sunspots and active regions, as
documented in Paper I (Appendix).

The other key aspect of the coupling is the emergence
function, which controls the probability of bipole emer-
gence as a function of the spatiotemporal distribution of
the deep-seated magnetic field produced by the dynamo
component of the coupled model. The emergence prob-
ability is assumed to scale linearly with this emergence
function, with the proportionality constant acting as the
dynamo number for the full coupled model.

The coupled model involves a number of parameters
and functionals that cannot be set from first principle,
and thus must be optimized to provide the best pos-
sible fit to solar observations. We opted to carry out
this optimization task through a genetic algorithm-based
maximization of the fit between the spatiotemporal dis-
tribution of sunspot emergences (butterfly diagram) as
produced by the model, and the cycle 21 emergence data
of Wang & Sheeley (1989). This scheme returns not only
a globally optimal solution, but also Monte Carlo-like
error estimates on best-fit parameters values.

The magnetic cycles generated by this dynamo model
are intrinsically non-steady, due primarily to the large
statistical scatter about the mean East–West tilt pattern
of BMRs (as embodied in Joy’s Law). This is expected,
since the axial dipole component of the bipolar pair is
determined by this tilt. As a consequence, a critical dy-
namo number can only be defined in a statistical sense.

A quenching parametrization of the mean tilt angle
based on the strength of the internal magnetic field read-
ily stabilizes the mean cycle amplitude, but large fluc-
tuations about this mean nonetheless persist. Such a
quenching is consistent with both observational analy-
ses (see Dasi-Espuig et al. 2010) and modeling of the
buoyant rise of thin magnetic flux tubes (see Fan 2009,
§ 5.1.2, and references therein). One consequence of tilt
quenching is that a very high amplitude cycle tend to be
followed by a lower-than-average cycle. This alternation
would tend to amplify over time were it not for the stabi-
lizing effect of the linear sink term used in Equation (8)
with τR = 10 years. Very low amplitude cycles can also
be produced by unfavorable emergence patterns, which
then lead to persistently low amplitudes in subsequent
cycles, with slow recovery to normal amplitude values.

Even though the amplitude of successive simulated cy-
cles are strongly affected by the specific stochastic re-
alization of flux, separation and tilts in the course of a
given cycle, even in the linear regime the cycle period
is largely insensitive to the value of the dynamo num-
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ber. The magnetic cycle is also characterized by good
hemispheric coupling, in terms of both hemispheric cycle
amplitude and timing of hemispheric minima/maxima.

As a descriptive representation of the observed solar
cycle, the model reproduces a number of well-known fea-
tures. The dipole peaks at or slightly before the time of
pseudo-sunspot cycle minimum, and its amplitude shows
no correlation with the maximum pseudo-sunspot num-
ber of the ending cycle. This is a direct consequence
of the strong stochasticity introduced by the realization
of tilt patterns throughout the cycle, which is the pri-
mary source of cycle amplitude fluctuations. However,
the model reproduces the observed positive correlation
between dipole strength at cycle minimum and the am-
plitude of the subsequent pseudo-sunspot cycle. This
indicates that, as in the real Sun, the dipole moment
generated in the model is a good precursor of cycle am-
plitude.

Room for improvement certainly remains. The model
fails to reproduce the observed moderate anticorrelation
between cycle amplitude and duration, producing in-
stead a very weak positive correlation between these two
quantities. While a few extant kinematic flux transport
dynamo models do better in this respect (e.g., Karak
& Choudhuri 2011), another possibility is that the ori-
gin of this pattern is to be found in dynamical effects,
namely the magnetic backreaction on large-scale flows.
The recent analyses of Passos et al. (2012) suggest that
an increase in the speed of the deep equatorward merid-
ional flow may indeed be driven by a higher-than-average
large-scale magnetic field, which in advection-dominated
flux transport dynamos would be expected to lead to a
proportional reduction in cycle period (see, e.g., Dikpati
& Charbonneau 1999).

The long timescale behavior of the simulated cycles
also shows some interesting features, some solar-like and
others less so. The model autonomously generates sig-
nificant power at low frequencies, but without any well-
defined spectral peaks that could be associated with
Gleissberg-like long periodicities. The model does pro-
duce occasional Dalton-minimum-like periods of succes-
sive low amplitude cycles, and can also spontaneously
shut down the cycle and enter a non-cycling grand-
minima-like state, through an unfavorable stochastic pat-
tern of bipolar pseudo-sunspot emergences in the course
of a cycle. This is a relatively common occurrence for a
simulation using the best-fit parameter values obtained
in § 3: about one half of simulations initialized with dis-
tinct random seeds were found to undergo shutdown at
some point during a 100-cycle long time span.

In subsequent papers in this series we will investigate
cycle fluctuation patterns in greater detail, and quantify
the occurrence statistics of Dalton-like minima. The few
such events found so far in our extant simulation runs
suggest that entry into these failed minima is rapid, from
one cycle to the next, while recovery to average cycle
amplitudes is more gradual. We also plan to add a weak
turbulent alpha-effect in the convective envelope portion
of the domain, and investigate whether this can pull the
model out of a shutdown state, as existing simulations
have already suggested (e.g., Ossendrijver 2000; Karak
& Choudhuri 2013; Hazra et al. 2014b).

Because it includes an explicit, spatially-resolved rep-
resentation of the solar “surface”, the solar cycle model

presented here is ideally suited for assimilation of magne-
tographic data. The resulting data-driven model could
then be used to carry out predictions of upcoming cy-
cles. The results presented in this paper indicate that
an accurate determination of the tilt angles of individual
emerging bipolar sunspot pairs will be a critical element
of such an endeavor.
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covery Grant Program (P. C.) of the Natural Science and
Engineering Research Council of Canada. Calculations
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