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ABSTRACT

In this paper we examine the mode of dynamo action in the implicit large-eddy
magnetohydrodynamical simulation of solar convection reported upon in Ghizaru et
al. (2010, ApJL, 715, L133). Motivated by the presence of a strong and well-defined
large-scale axisymmetric magnetic component undergoing regular polarity reversals, we
define the fluctuating component of the magnetic field as the difference between the
total field and it zonal average. The subsequent analysis follows the physical logic and
mathematical formulation of mean-field electrodynamics, whereby a turbulent electro-
motive force (EMF) is computed by suitable averaging of cross-correlations between
fluctuating flow and field components, and expressed in terms of the mean-field via a
linear truncated tensorial expansion. We use singular value decomposition to perform
a linear least-squares fit of the temporal variation of the EMF to that of the large-scale
magnetic component, which yields the components of the full a-tensor. Its antisymmet-
ric component, describing general turbulent pumping, is also extracted. The a-tensor
so calculated reproduces a number of features already identified in local, cartesian sim-
ulations of magnetohydrodynamical rotating convection, including a a4s component
positive in the Northern solar hemisphere, peaking at high latitudes and reversing sign
near the bottom of the convection zone; downward turbulent pumping throughout the
convecting layer; significant equatorward turbulent pumping at mid-latitudes, and pole-
ward at high latitudes in subsurface layers. We also find that the EMF contributes
significantly to the regeneration of the large-scale toroidal magnetic component, which
from the point of view of mean-field dynamo models would imply that the simulation
operates as an %) dynamo. We find no evidence of a-quenching by the large-scale
magnetic field. The amplitude of the magnetic cycle appears instead to be regulated
primarily by a magnetically-driven reduction of the differential rotation.
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The solar magnetic field is the energy source for the whole set of physical phenomena collec-
tively known as “solar activity”. While flux emergence is the primary driver on timescales ranging
from minutes to months, on longer timescales of years to millenia solar activity is strongly modu-
lated by the solar cycle, namely the cyclic variation of the sun’s large-scale magnetic component.
This cyclic variation, characterized by polarity reversals approximately every 11 years, is believed
to be powered by a magnetohydrodynamical dynamo process operating in the solar interior, within
its convective envelope and possibly immediately beneath its interface with the underlying, sta-
bly stratified radiative core (r/Rg =~ 0.71, according to helioseismic inversions of the solar internal
sound speed profile; see, e.g., Christensen-Dalsgaard 2002). A proper understanding of this dynamo
process is thus justly recognized as a cornerstone of research into the myriad of manifestations of
solar activity.

For physical conditions characteristic of the solar interior, the solar dynamo is expected to be
well described by the classical magnetohydrodynamical approximation (e.g., Davidson 2001, Goed-
bloed & Poedts 2004), a fusion of the hydrodynamical fluid equations and Maxwell’s equations
applicable to a non-relativistic, globally neutral and collisionally-dominated plasma obeying Ohm’s
Law. The resulting set of nonlinear, coupled partial differential equations remains daunting, and
in general can only be solved numerically. Simplified model formulations based on mean-field elec-
trodynamics (e.g., Moffat 1978; Krause & Rédler 1980; Riidiger & Hollerbach 2004, and references
therein) readily produce cyclic solutions for reasonable though largely ad hoc input parameters and
key functionals such as the a-effect and turbulent diffusivity (for a recent review see Charbonneau
2010). However, and without at all diminishing their usefulness as descriptive models as well as
thinking tools, the freedom to specify free functions, and the highly simplified treatment of the
nonlinear interactions between flow and field, poses fundamental limits the applicability of such
models to the solar cycle.

Alternately, the dynamo problem can be tackled as a dynamically consistent simulation of
thermally-driven magnetohydrodynamical convection in a thick, stratified and rotating spherical
shell of electrically conducting fluid (Gilman 1983; Glatzmaier 1984). The resulting computational
problem is quite challenging due to the turbulent nature of fluid motions in the solar convection
zone, which generates a very wide range of spatial and temporal scales in the evolving flow and
magnetic field. For many decades, the computational resources needed to capture dynamo action
in a global simulation of the whole solar convection zone has kept this type of simulations at
the forefront of computational fluid dynamics, a situation that persists to this day (see Miesch &
Toomre 2009 for a review).

Following the development of a massively parallel version of the Glatzmaier (1984) simulation
code by Clune et al. (1999), a reasonably turbulent regime could be attained. While such turbulent
global MHD simulations of solar convection do produce a lot of magnetic field (see, e.g., Brun
et al. 2004), they often fail to produce magnetic fields well-organized on large spatial scales and
carrying a significant net hemispheric flux. Towards this end the introduction of a stable fluid
layer underlying the convection zone, where strong, persistent angular velocity shear can develop
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in a tachocline-like layer, has been shown to be conducive to the buildup of persistent large-scale
magnetic fields (see Browning et al. 2006; Ghizaru et al. 2010; Kapyla et al. 2010); however, at
higher rotation rates it appears that the buildup of large-scale magnetic fields can occur entirely
within the convective envelope, without a tachocline (Brown et al. 2010a,b).

Regular, solar-like cyclic activity has been even harder to produce in such simulations. The
groundbreaking simulations of Gilman (1983) and Glatzmaier (1984, 1985) did produce polarity
reversals, but computing limitations restricted these simulations to mildly turbulent regimes, while
the resulting spatiotemporal evolution of the large-scale magnetic field they produced was non-solar
in a number of ways, notably the tendency for latitudinal migration of the large-scale magnetic field
to take place poleward rather than equatorward. In the more turbulent, contemporary versions of
these simulations, polarity reversals of large-scale magnetic field structures has so far only been
produced for rotation rates five times that of the Sun (Brown et al. 2010b), with the timing of
these reversals markedly asynchronous across hemispheres. Very recently Miesch et al. (2011) also
reported on the occurrence of a few polarity reversals in a variation on the simulations of Brown
et al. (2010b) operating now at the solar rotation rate, with better synchrony across hemisphere
but a tendency, albeit weak, for poleward migration of the large-scale magnetic component. Op-
erating under an entirely different numerical framework, Kéapyla et al. (2010) also obtained cyclic
large-scale magnetic fields in a spherical wedge simulation spanning up to 120° in longitude, 67°
in latitude, and including an underlying stable layer. Those cycling large-scale magnetic fields
again are characterized by poleward propagation much as in Gilman (1983), and also show strong
hemispheric asymetries.

At this writing the turbulent simulations having produced the most solar-like cyclic large-scale
magnetic fields are those presented in Ghizaru et al. (2010). Based on a MHD extension of the
well-documented general-purpose hydrodynamical simulation code EULAG (Prusa et al. 2008; Smo-
larkiewicz & Szmelter 2009; and references therein), the simulation is based on the hydrodynamical
model setup of solar convection described in Elliott & Smolarkiewicz (2002). The temporally
extended simulation reported upon in Ghizaru et al. (2010) is characterized by a number of encour-
agingly solar-like features: (1) a well-defined axisymmetric large-scale magnetic field component,
antisymmetric about the equatorial plane; (2) magnetic polarity reversals with a half-period of
approximately 30 yrs, synchronous across hemispheres, (3) a strong (up to 0.3 Tesla) toroidal com-
ponent concentrated at the interface between the convecting and underlying stable layers, peaking
at mid latitudes and showing a weak but clear tendency for equatorward migration as the cycles
unfold; (4) a dipolar component, well aligned with rotation axis and strongly peaked at high lati-
tudes; (5) a reasonably solar-like internal differential rotation, showing equatorial acceleration and
vanishing rapidly at the core-envelope interface. The most glaring departures from the observed
solar cycle are: the cycle period, three times too long; the fact that the large-scale poloidal and
toroidal component oscillate essentially in phase, in contrast to the w/2 phase lag observed on the
sun; and the pole-to-equator contrast in surface angular velocity, too small by a factor of almost
three.
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We are currently engaged in a systematic numerical exploration of parameter space, in order
to answer a number of pressing questions, notably (1) what sets the cycle period in the simulation;
(2) why is our simulation producing well-defined, fairly regular cycles while the simulations of, e.g.,
Browning et al. (2006), by all appearances quite similar in overall design and turbulent regime, do
not; (3) how robust are the cycles to the manner in which convection is being forced, and the dissi-
pation introduced via the numerical advection scheme. This is a long, tedious and computationally
demanding process, which could be greatly accelerated if the physical nature of dynamo action in
these simulations could be pinned down with some degree of confidence. Accordingly, the purpose
of this paper is to examine the mode of dynamo action in the one specific simulation run presented
in Ghizaru et al. (2010), which has by now been extended to 337 yr of simulated time, in the course
of which 11 polarity reversals have taken place. Our primary aim is to examine the degree (if any)
to which dynamo action in this simulation can be described through turbulent effects described by
mean-field electrodynamics, as embodied in the a-effect and turbulent pumping. A brief overview
of the simulation is first presented in §1, after which we describe the procedure adopted to extract
the components of the a-tensor, and what these turn out to look like in our simulation (§2). We
then examine (§3) the degree to which large-scale dynamo action in the simulation resembles what
one can observe in conventional mean-field dynamo models and examine the relative importance of
turbulent induction of the toroidal component versus shearing of the large-scale magnetic compo-
nent by differential rotation. We close (§4) by summarizing our results and speculating on further
improvements that could lead to a better reproduction of the observed characteristics of the solar
cycle in this type of MHD simulation.

1. Overview of the simulation

The purpose of this section is to give an overview of the magnetic cycles developing in a
temporally extended version of the global MHD simulations of solar convection reported upon in
Ghizaru et al. (2010). This specific simulation provides the numerical data used in the remainder
of this paper in our analysis of large-scale dynamo action.

A brief description of the simulation framework is given in Ghizaru et al. (2010), and a detailed
presentation will be given in a forthcoming publication. The simulation used in what follows is
computed at relatively low spatial resolution (NN, x Ny x Ny = 47 x 64 x 128), which permits long
temporal integrations, yet the low dissipative properties of the underlying EULAG computational
framework still yields a reasonably turbulent regime, with estimated Reynolds numbers of order 102
and magnetic Prandtl number of order unity. The simulation solves the anelastic form of the ideal
MHD equations in a thick, gravitationally stratified spherical shell (0.62 < r/Rg < 0.96) spanning
3.4 density scale heights and rotating at the solar rate Qo = 2.69x 10~%rad s~!. With the exception
of an explicit radiative diffusion term in the energy equation, all dissipation is delegated to the
numerical advection scheme MPDATA (Smolarkiewicz 2006), the higher-order truncation terms of
which provide an implicit turbulence model (Domaradzki et al. 2003; Margolin et al. 2006; Margolin
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& Rider 2007). The background stratification, defined through a combination of polytropes, is
stable below r/ R = 0.718, and convection in the overlying layers is driven by a Newtonian forcing
towards a weakly convectively unstable thermodynamic profile. This procedure, borrowed from
simulation of an idealized terrestrial climate (Held & Surez 1994; Smolarkiewicz et al. 2001) is
physically equivalent to imposing a heat flux through the fluid layer. The simulation of Ghizaru et
al. (2010), although subjected to the solar heat flux, is relatively weakly forced from the convection
point of view, and ongoing simulations operating under different forcing regimes indicate that
large-scale dynamo behavior can be sensitive to details of the forcing. Such sensitivity is not at all
unusual in a turbulent fluid system (Piotrowski et al. 2010).

Figure 1 shows a temporal sequence of the toroidal (zonal) magnetic component in the simu-
lation, extracted on a spherical shell corresponding to the core-envelope interface (r/Rs = 0.718
in the simulation), plotted in latitude-longitude Mollweide projection. From top to bottom, the
sequence runs from one magnetic maximum to the next, and is temporally centered on a polarity
reversal (middle panel). Despite strong fluctuations in the magnetic field, a large-scale axisymmet-
ric component antisymmetric about the equatorial plane is clearly apparent except at the time of
polarity reversal. In fact, except for the obvious reversal of magnetic polarity, the magnetic field
distributions at top and bottom are remarkably similar, showing concentration at mid-latitudes
and comparable peak strenghts (~ 0.3'T) in both hemispheres. Polarity reversals occur through a
gradual weakening of the large-scale axisymmetric magnetic component, with antisymmetry about
the equatorial plane maintained reasonably well as the time of reversal is approached (¢t = 202.5yr),
and establishing itself rapidly again once the next half-cycle starts to build up (¢t = 221.9 yr).

The spatiotemporal evolution of the large-scale axisymmetric component is best viewed by
zonally averaging the total magnetic field present at any given time in the simulation. Working in
spherical coordinates (r,0, ¢), where —7/2 < 6 < /2 is the latitude (rather than the polar angle),
such a zonal average is defined as:
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The top panel on Figure 2 shows a time-latitude diagram of the toroidal magnetic component
({(Bg)) averaged in this manner, constructed at a depth corresponding to the core-envelope interface
in the model (r/Rs = 0.718). If the toroidal magnetic flux ropes assumed to give rise to bipolar
active regions are indeed stored at this depth, as suggested by stability analyses (e.g., Ferriz-Mas
et al. 1994; Fan 2009), and rise radially to the photosphere, then this is the simulation’s equivalent
to the sunspot butterfly diagram (e.g., Hathaway 2010). The toroidal magnetic component is
concentrated at mid-latitudes (40° < || < 70°), as opposed to the low latitudes (5° < |f| < 40°)
suggested by the butterfly diagram, but does show a tendency for equatorial migration as each
half-cycle unfolds. On a time-latitude diagram such as Fig. 2 (top panel), this is seen in the strong
toroidal field concentrations, which take an elongated, elliptical shape, with the “major axis” tilted
towards the equator as the cycle is followed in time. In other words, throughout a cycle the latitude
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of peak large-scale toroidal magnetic field occurs at decreasing latitudes, until the cycle terminates
and the next one begins anew at higher latitudes.

The middle panel of Figure 2 shows time-radius slice of the same simulation run, extracted in
the southern hemisphere at latitude —45°, where the toroidal field is strongest at the core-envelope
interface (cf. top panel). Note how polarity reversals begin well within the convection zone, at
depth r/Rg ~ 0.8, with radial drift and concentration of the magnetic field both upwards as well
as downwards all the way to the core-envelope interface, where the field reaches its peak strength.

The bottom panel of Figure 2 shows the corresponding time-evolution of the zonally-averaged
radial surface magnetic component, again in a time-latitude diagram. The surface field is char-
acterized by a well-defined dipole moment closely aligned with the rotational axis, with transport
of surface fields taking place from lower latitudes, and possibly contributing to the reversal of the
dipole moment. Comparing the three panels in Fig. 2 reveals that the dipole moment and deep-
seated toroidal component reach their peaks at the same time, indicating that they oscillate in
phase, without significant temporal lag.

Overall, the magnetic cycle characterizing the large-scale, zonally-averaged magnetic compo-
nent is quite regular, here with a half-period of 30 years, almost thrice the 11 years of the solar
cycle. Notice the good long-term synchrony maintained between the Northern and Southern hemi-
spheres, persisting despite significant fluctuations in the amplitude and duration of cycles in each
hemiphere. In keeping with solar tradition, we delineate the cycles from one polarity reversal to
the next. Note therefore that what we henceforth refer to as “cycle”, as numbered on the bottom
panel of Fig. 2, span in fact one half of a complete magnetic cycle. While the average period of our
cycles so defined is almost exactly 30 yr for our 11 cycles, this period can become as low as 25 yr
(simulated cycle 11) or as high as 35 (simulated cycle 4) from one cycle to the next.

2. Mean-field analysis
2.1. Scale separation and averages

Mean-field electrodynamics is predicated on the assumption that the fluid flow (u) and mag-
netic field (B) can be separated into “mean” (usually spatially large-scale and slowly varying in
time) and “fluctuating” (usually small-scale and rapidly varying) components:

w=(u+u, B=(B+B, (2)
where the angular brackets denote an intermediate averaging scale for which
(u)=0, (B)=0. (3)

Given the well-defined large-scale axisymmetric component present in our simulation, it becomes
natural to associate the averaging scale with the zonal average defined through Eq. (1), so that the



fluctuating components become defined as:

u'(r,0,0,t) =u(r,0,¢,t) — (u)(r,0,t) , (4)
B'(r,0,¢,t) = B(r,0,¢,t) — (B)(r,0,t) . (5)

In practice, it is of course possible to define fluctuating flows and fields in this way for any global
MHD simulation run. However, for the mean-field electrodynamics approach to be mathemati-
cally well-posed and physically meaningful, it is essential for a good separation of scales to hold.
Accordingly, we first examine in some detail whether this is indeed the case for our simulation.

Figure 3 shows the mean and fluctuating toroidal magnetic field components resulting from
this decomposition applied to the toroidal field distribution plotted on the bottom panel of Fig. 1
(simulation time ¢ = 230 yr, very near the peak of simulated cycle 8). At the base of the convection
zone, both components have similar strength, but the fluctuating component on Fig. 3 shows little
or no azimuthal structuring on scales comparable to the solar radius, nor any clear hemispheric
pattern. In particular, no sign of a significant non-axisymmetric dipolar or quadrupolar components
is visible.

This visual impression is confirmed by a modal decomposition in spherical harmonics, which
reveals significant power concentrated in axisymmetric (m = 0) mode of low, odd angular degree
£. This is illustrated on Figure 4, showing the result of a spherical harmonic decomposition of the
toroidal magnetic component at the core-envelope interface (r/Rs = 0.718). The decomposition
was carried out at every time step, and then averaged for two sets of disjoint data blocks of temporal
width 900 days centered either on the epochs of polarity reversals (panel A, “cycle minima”),
or peak toroidal field (panel B, for “cycle maxima”). The results are displayed in the form of
color coding of the absolute values of the modal coefficients, in the plane defined by the angular
degree ¢ (horizontal) and azimuthal degree m (vertical). The diamond shape results from the usual
triangular truncation of azimuthal modes, needed to ensure comparable spatial resolution in the
latitudinal and azimuthal directions.

Comparing panels A and B of Figure 4 reveals significant power in the axisymmetric (m = 0)
angular modes of odd-¢ angular degree at cycle maximum, that all but vanish at times of cycle
minimum. This is particularly prominent for the dipolar (¢/,m) = (1,0) mode. At high-¢ values,
on the other hand, power is broadly and more evenly distributed in modes of all azimuthal orders
m, and shows no clear variations with the phase of the cycle for the large-scale field. Indeed,
subtracting panel B from panel A, yielding panel C on Figure 4, reveals very little residual power
at high wavenumbers. This indicates that the cycle in the large-scale axisymmetric magnetic
field does not alter significantly the spectral properties of the small-scale, “turbulent” magnetic
component.

A different look at these data is presented on Figure 5, which shows time series of a few selected
spherical harmonic coefficients, spanning the full simulation run. The cycle shows up prominently
in the (¢,m) = (1,0) and (5,0) modes, but the time series for m # 0 modes, as well as for even-£
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axisymmetric modes, have much lower amplitudes and show no sign of persistent cyclic variation.
This has been further verified by computing Fourier transforms of these various time series, which
show clear peaks at periods of ~ 29 and ~ 58 yr in the odd-¢ axisymmetric modes, but no peaks
and overall power levels inferior by over an order of magnitude for even-{ and m # 0 modes.
Similar temporal patterns are observed within the convection zone and/or for the other magnetic
components. Overall, the above analyses then suggest that the decomposition embodied in Egs. (4)
and (5) represents a viable Ansatz, at least for this simulation run.

2.2. The turbulent electromotive force

With the assumption of scale separation vindicated at least to some degree, our purpose is
now to identify and characterize the dynamo mechanism underlying the observed magnetic cycle
described above. The starting point of the analysis is the magnetohydrodynamical induction equa-
tion (e.g., Davidson 2001), describing the evolution of a magnetic field B subjected to the inductive
action of a flow field u in addition to Ohmic dissipation of the associated electrical current density:

B
%:Vx[uxB—anB, (6)

where 1 = (pooe) ! is the magnetic diffusivity, inversely proportional to the electrical conductivity
0 (SI units are used throughout). Inserting Eqgs. (2) and performing the zonal average introduced
earlier, and remembering that the averaging operator commutes with spatial derivatives pertaining
to the large spatial scales, one readily obtains:

%:VX (w) x (B) + € —nV x (B)], (7)

where

E=('xB) (8)

is the mean electromotive force (hereafter EMF) due to the fluctuations about the large scale
magnetic field. Note that this mean turbulent EMF is generally nonzero, because the correlation
between the fluctuating flow and magnetic field does not necessarily vanish upon averaging, even
though »' and B’ individually do by definition. For more details on some of the many subtleties
involved, see, e.g., Moffatt (1978); Riidiger & Hollerbach (2004), Hoyng (2003), Ossendrijver (2003).

From the simulation results, it is straightforward to reconstruct u’ and B’ via Egs. (4) and
(5), and then compute the EMF by performing the required cross product and zonal averaging at
every time step, as per Eq. (8). The result of this calculation is presented on Figure 6 for the r
(top), 6 (middle) and ¢ (bottom) components of the EMF, in the form of time-latitude slices at
depth r/Rs = 0.85 near the middle of the convection zone (left panels), where polarity reversals
are initiated (see Fig. 2), and meridional slices extracted at simulation time ¢ = 112yr, at the
peak of the fourth magnetic half-cycle (right panels). Note already how the EMF vanishes rapidly
as one moves below the core-envelope interface, as expected since convectively-driven turbulence
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disappears there. Otherwise the EMF pervades most of the convection zone. Despite being a very
noisy “signal”, on the largest spatial scales all EMF components exhibit a well-defined symmetry
(&, Ep) or antisymmetry (Eg) about the equatorial plane. Note in particular that a ¢-component of
the EMF positive (negative) in both hemisphere is precisely what is required to support a positive
(negative) dipole moment (cf. bottom panels on Figs. 2 and 6), as per the right-hand rule, since
under the MHD approximation the EMF drives an parallel electrical current density. Moreover,
reversing the direction of this EMF every half-cycle then amounts to reversing the sign of that
dipole moment, as observed in the simulation.

All EMF components show strongly reduced amplitudes in the equatorial regions. This can be
traced to a change in the topological character of convective fluid motions, which at low latitudes
tend to organize themselves in longitudinal stacks of large, latitudinally-elongated convective cells
approximately aligned with the rotational axis (see Fig. 1A in Ghizaru et al. 2010). These are
quite typical of these types of global convection simulations (see, e.g., Browning et al. 2006, Fig. 1;
Brown et al. 2010, Fig. 1; Képyla et al. 2010, Fig. 2). Evidence of a quenching of the small-scale
flow components can also be found in the spatial distribution of the small-scale surface magnetic
field, which shows a significant decrease in both coverage and magnitude at very low latitudes (see,
e.g., Fig. 1B in Ghizaru et al. 2010).

The most striking global spatiotemporal feature visible on Fig. 6 is certainly the cyclic variation
of all EMF components, with a period identical to that of the cycle observed in the large-scale
magnetic field (cf. Fig. 2). Here the large-scale velocity field is roughly stationary over the entire
simulation, and the small-scale turbulent velocity field is also stationary in a statistical sense. Since
the EMF term depends only on the small-scale fluctuations about the large scale magnetic fields,
it is then not at all obvious a prior: that the EMF should exhibit the same cyclic evolution as the
mean-field; the fact that it does already provides us with important clues as to the nature of the
large-scale dynamo operating in our simulation. More specifically, it suggests that the turbulent
EMF actually plays a key role in the production of the large-scale magnetic component. We now
turn to this question, using the mathematical machinery of mean-field electrodynamics.

2.3. The a-tensor

The essence of mean-field electrodynamics is to provide an expression for the EMF in terms of
the large scale magnetic field, so that the small scales (fluctuations) are effectively removed from
the problem. The procedure consists of a simple linear expansion of the EMF as a power series
about the large-scale magnetic field and its derivatives, i.e.

& = aj(B;) + Bijr0;(By) + higher order derivatives , 9)

with summation implied over repeated indices. The tensors appearing on the RHS of this expression
and relating the EMF to the mean-field can depend on the properties of small-scale flow and field
fluctuations, but not on the mean field itself, a situation expected to hold only if the latter is too
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weak to impact the dynamics of the fluctuating flow. Notice here that since this expansion is linear
in the large-scale field, if that field exhibits cyclic properties, then so should the EMF, which is what
we observe (cf. Fig. 6). This is our central motivation for appealing to mean-field electrodynamics
to analyze the dynamo operating deep in the convection zone of our simulation.

The leading-order contribution in the right-hand side of Eq. (9) is usually named “a-effect”.
The second term in the expansion is responsible, among other effects, for turbulent diffusion. For our
first analysis however, we retain only the a-effect for simplicity. Owing to the rough stationarity of
the large-scale flows in the simulation, we also assume that «;; is time-independent, an assumption
that will prove itself well-verified a posteriori. We thus write, as a first approximation

c%(t,?“, 9) = Oéw’(?", 9)<Bj>(t,7‘, 0) . (10)

One can further decompose «;; into symmetric and antisymmetric parts, such that the EMF may
be rewritten as

& = agy (B + (v (B)) (1)
where 1
Yi = _§6ijk04jk: (12)

is called the general turbulent pumping velocity, because it effectively provides an additive con-
tribution to the mean, large-scale inductive flow in Eq. (7), although its physical origin lies with
the fluctuating, small-scale flow and magnetic field. The flow-like vector field « so-defined is in
general non-solenoidal (V -+ # 0) and acts on the total magnetic field, with variations between
magnetic component subsumed into the off-diagonal terms of the symmetric part of the a-tensor
(see Ossendrijver et al. 2002 for a more thorough discussion).

2.4. Extracting the components of the a-tensor

A number of methods have been designed to measure the components of the a-tensor in
turbulent MHD simulations (e.g., Ossendrijver et al. 2001, 2002; Képyla et al. 2006, 2009; Hubbard
et al. 2009; and references therein). These method have been designed in the context of MHD
simulations that do not produce a well-defined large-scale magnetic component, so that the latter
must be imposed externally —and artificially,— with the consequence that the a-tensor being
measured is not necessarily that characterizing the simulation prior to the application of the external
field. For more on these —and other— difficulties, see Brandenburg (2009), Cattaneo & Hughes
(2009), and references therein. In contrast, we are in the very advantageous position to have in
hand a simulation that does generate a large-scale magnetic field, in a manner consistent with the
dynamical interaction of flow and field on all numerically resolved spatial scales.

The procedure we employ here to extract «;; from the simulation data differs from the ap-
proaches found in the literature, and we shall therefore first detail it. Essentially, we attack this
problem from an experimentalist’s point of view, i.e., we have (numerical) data in our possession,
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namely the EMF and the average magnetic field, and we wish to verify if these data match a specific
model, namely the a-effect parametrization of the EMF embodied in Eq. (10). This task therefore
amounts to a fitting problem, in other words the components of the tensor «;; are calculated a
posteriori by minimizing the difference between the LHS and RHS of Eq. (10). We opt here for a
standard least squares fit, based upon singular value decomposition (see Press et al. 1992, §15.4).
We state results of various theorems without proof.

For a given component, say i = a, of the EMF at a fixed grid point! (r,6.), we define the
time dependent functions y(t) and Xy(t) as follows

y(t) = &alt,re,0c), (13a)
Xi(t) = (Bg)(trp,0c). (13b)

We also define
ak = aak(ry, 0c) (14)

which then allows us to rewrite the parametrization of the EMF as

3
y(t) =D apX(t). (15)
k=1

Denoting by n; the number of time steps of our simulation, we define a merit function as

nt

3
=) [?J(ti) - Zaka(ti)]za (16)
k=1

i=1

where t; is the value of the time coordinate at the i*" step. The goals are to find the three parameters
aj, that minimize the merit function, and to obtain an estimate of the goodness of fit. The method
we employ to carry out these two tasks simultaneously is the singular value decomposition of the
“design matrix” A, defined as

Aij = Xj(ti) . (17)

The design matrix therefore depends on the large scale magnetic field components. This matrix has
ng rows and three columns, and by virtue of a theorem of linear algebra, can always be decomposed
as follows

A=U.w-VT, (18)

where the matrix U is an n;-by-three column orthogonal matrix, w is a three-by-three diagonal
matrix containing the so-called “singular values”, and V is a three-by-three orthogonal matrix. The
key element is that the solution to the minimization of the merit function (16) is directly obtained
in terms of the three matrices U, V and w. The solution vector a = (a1, az, as) is given by

a=V -w .U .y, (19)

1Since the quantities considered in this section are constructed from azimuthal averages, our computational grid
is reduced to two spatial dimensions here.
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where the vector y = (y1,¥2,...,Yn,), and therefore depends on the selected EMF component.
To construct the singular value decomposition of our design matrix, we use the algorithm and
routines of Press et al. (1992), as implemented in the IDL programming language. By repeating
this procedure for all three components of the EMF and for each of the N, x Ny grid points (74, 6.),

we can calculate the complete tensor a;;(r,6).

Figure 7 shows the results of this fitting procedure over the complete 337 year simulation
interval. Each meridional slice encodes one component of the a-tensor, or combinations thereof.
The 3 x 3 structure of the subfigures reflects the 3 x 3 components of the tensor, with the top-
left to bottom-right diagonal corresponding to the diagonal components oy, cgg and age. The
three meridional slice above this diagonal (top right) correspond to the off-diagonal elements of
the symmetric part of the a-tensor (indices within parentheses), while the three plots below the
diagonal represent the three independent components of the antisymmetric part of the tensor,
plotted here as components of the turbulent pumping velocity ~ defined through Eq. (12). To
facilitate comparison, the same color scale is used on all meridional slices.

Although all components of the a-tensor are roughly of the same order of magnitude, the
strongest components are found to be a,. and a4, both antisymmetric about the equatorial plane.
The former is highly structured spatially, peaking in subsurface layers and in the equatorial regions
and with numerous sign changes in each hemisphere. The latter is spatially more homogeneous,
with sign changes only across the equatorial plane and across a near-spherical surface located above
the core-envelope interface, at r/R ~ 0.76. Significant amplitudes are obtained in the off-diagonal
contributions, particularly ) and its associated pumping velocity v4. This can be traced to the
development of persistent non-axisymmetric flow structures in the low-latitude portions of the outer
convection zone (see Fig. 2 in Ghizaru et al. 2010), which contribute a strong signal to the “small-
scale” flow component even after the azimuthally-averaged mean-flow is subtracted (viz. Eq. (4)).
These flow structures are also responsible for the strong low-latitude signal seen in a;...

The ogs component is of particular interest here, as it is the primary contributor to the
production of the large-scale poloidal magnetic component (cf. bottom panel on Fig. 2). Its first
important structural property is antisymmetry with respect to the equatorial plane, as expected for
cyclonic turbulence, where reflectional symmetry is broken by Coriolis forces (Parker 1955). Note
that the fitting method we use to measure the components of the a-tensor treats each hemisphere
independently, so that the high degree of antisymmetry observed here is a real characteristic of
the simulation, rather than a fitting artefact. In the Northern hemisphere, the ags component
is positive in the bulk of the convection zone and peaks at high latitudes, as expected in view
of the sense of twist imparted by Coriolis forces on diverging convective updrafts and converging
downdrafts (Parker 1955). The sign change near the base of the convecting layer has been observed
before in measurements of the a-tensor in other MHD simulations of convection (e.g., Ossendrijver
et al. 2001), and is associated with the rapid decrease of the turbulent intensity as one moves
downwards towards and into the convectively stable fluid layer underlying the convection zone.
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The singular value decomposition method has the additional advantage to automatically pro-
vide the variance in the estimate of a given parameter a;. Denoting this variance by a,%, it is given
by

3 Vk 2
agzz<w—) . (20)
i=1 “

In Fig. 8 (panel B), we show the standard deviation (square root of variance) 044 corresponding
to the fitted parameter age, reproduced on part A. For r < 0.72 R, we set the variance to zero
since in the stable zone below the convective zone in order to clearly display the structure of the
standard deviation in the convective zone. The reason behind this manipulation is that the EMF
and large scale magnetic field are both very weak below the convective zone, reducing greatly the
quality of the fit in that region?. Figure 8 indicates that even though age peaks at high latitudes,
the absolute quality of the fit is actually best at mid-latitudes, where the EMF signal is strongest
(see Fig. 6), as expected. Nonetheless, at mid-convection zone depth the inferred values of age
in polar regions deviate from zero by more than three standard deviations, leaving no doubt that
these values are physically meaningful. On the other hand, in the equatorial region delimited by
10| < 30° and 0.7 < r/Re S 0.8 the standard deviation is of the same order of magnitude as agg,
indicating a poorer fit in that area. This is simply due to the fact that both the EMF and the
toroidal large-scale field are small in that region, as can be seen on Figs. 2A and 6.

While the variance of the fit provided by the singular value decomposition is a useful, well-
defined tool to characterize the accuracy of the fit, other methods can provide complementary
information regarding the parametrization of the EMF. Here we demonstrate the quality of the
fit by looking at the ability of the a-effect parametrization to reproduce the observed EMF from
the o tensor and the large-scale magnetic field. In Fig. 9A, we plot a time-latitude diagram of the
residual between the observed EMF and the reconstructed EMF, i.e. the quantity

Ay =Ep — agj(Bj) (21)

computed at depth r/Rs = 0.85. It is quite remarkable to see that essentially no cyclic features
remain in Ag. Apart from the equatorial band where the EMF barely manifests itself, there are in
fact no clearly discernible structures in Ag. This implies that the a-effect parametrization performs
very well at capturing the origin of the cyclic features of the EMF, the remainder of the EMF being
essentially turbulent noise. This visual impression is confirmed by averaging latitudinally and
performing a Fourier transform of the resulting time series, to produce the power spectrum plotted
on Figure 9B. This spectrum is well represented by a shallow power law with logarithmic slope
—2/3, and the spectrum does not show any particular features or changes in slope at frequencies
corresponding to the cycle period of the large-scale field or its first few harmonics.

*Essentially, where both the EMF and (B) are weak, the fitting algorithm attempts to obtain a;; by inverting a
problem that is numerically ill-posed. Schematically this amounts to solving a = /€, with « of order unity, but §
and € being very small.
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2.5. Turbulent pumping

The three meridional slices under the diagonal on Figure 7 represents the components of the
turbulent pumping speed, as defined through Eq. (12). The vertical component +, is found to be
negative through most of the convective envelope, with upward pumping taking place only in the
subsurface layers. This is better viewed on Figure 10 showing radial cuts of v, extracted at latitude
+45° (panel A, solid line), and latitudinal cuts extracted at depth r/Rs = 0.75 (panel B). This is
qualitatively similar to the results obtained by Ossendrijver et al. (2002; see their Fig. 5) in their
local cartesian simulations including rotation®. This downward pumping reaches significant speeds,
~ 1m s~! in the bottom half of the convective layers, except at very low latitudes where it all but
vanishes. Upwards pumping occurs at all latitudes for r/Rs > 0.9, except at very low latitudes
|0] < 15°), where the 7, > 0 region reaches almost to the base of the convecting layer (see Fig. 7,
central bottom meridional slice).

We also detect in our simulation a significant equatorward latitudinal pumping in the outer
two thirds of the convective envelope (see bottom left meridional slice on Fig. 7 and dotted lines on
Fig. 10A and B), particularly prominent at mid-latitudes where it reaches ~ 1m s~! in the middle
of the convection zone. Both the direction and magnitude of this latitudinal pumping velocity are
similar to those measured in the local simulations of Ossendrijver et al. (2002). Again like these
authors, we also observe significant poleward latitudinal pumping in the subsurface layers of the
simulations, with speeds approaching 2 m s~! at latitude |§| ~ 60°. Given the ~ 30yr duration of
our cycles, it is therefore quite possible that the poleward drift and intensification of the surface
magnetic field seen on the bottom panel of Fig. 2 is driven at least in part by turbulent pumping,
as proposed already by Ossendrijver et al. (2002).

It is also interesting to compare the turbulent pumping velocity to the drift speed of the
large-scale toroidal magnetic field visible on the top and middle panels of Figure 2. The net drift
speed of large-scale magnetic structures is influenced by other physical processes, notably turbulent
diffusion. Indeed, if turbulent pumping plays a role in this drift its speed should still have values of
the same overall order-of-magnitude as to the observed drift speeds. For most cycles, the equatorial
drift of the toroidal component at the core-envelope interface (Fig. 2, top panel), as measured by
tracking the latitude of peak mean toroidal magnetic field at any given time, spans 25 to 30 degrees
in 20 to 25 yr years, depending on individual cycles. This yields drift speeds in the range 0.3-0.5m
s~!. Both the magnitude and direction of this drift compare well to the mid-latitude latitudinal
turbulent pumping speed |yg| ~ 0.2m s=! at r/Rs = 0.718, as plotted on Fig. 10A. Likewise,
measuring the slope from r/Rs = 0.8 to 0.7 of the polarity reversal line on the middle panel of

3Note that although we both use right-handed coordinate systems, the pseudo-radial z-direction in Ossendrijver et
al. (2003) points into the domain, while our radial r-direction points outwards; therefore, a positive 7, does correspond
to a radially upwards flow component in our simulation, while a positive 7, defines a downward flow in Ossendrijver
et al. (2003). Our respective ”latitudinal” units vectors are however oriented in the same way, i.e. Northward, so
that our v is directly comparable to their v,.
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Fig. 2 leads to a radial drift speed ~ —0.1m s™!, only a factor of five smaller than the mid-latitude
values of 7, in this range of depth, as plotted on Fig. 10A. All of this suggests that turbulent
pumping may well play an important role in the spatiotemporal evolution of the large-scale, mean
magnetic field building up in the simulation.

2.6. a-quenching and cycle amplitude saturation

We next turn our attention to the possible time-dependence of the tensor a;;. Our entire
analysis so far relies on the assumption that «;; depends only on position and not time. As we
have just shown, this hypothesis works fairly well in practice, in the sense that it provides an
accurate parametrization of the electromotive force in terms of the large scale magnetic field. At a
more physical level, there are however reasons to believe that the a-effect could vary in time via a
nonlinear dependence on the magnetic field strength.

In the solar context, the a-effect can arise via the systematic twist imparted by cyclonic con-
vection on a pre-existing large-scale magnetic field. This idea was introduced by Parker (1955), who
argued that it could circumvent Cowling’s theorem by providing a viable regeneration mechanism
for the sun’s large-scale poloidal magnetic component. Because magnetic tension should tend to
resist any twisting by the flow, it has been argued that Parker’s mechanism can only operate up to
the point where the large-scale magnetic field reaches local equipartition with the turbulent fluid
motions. This has led to the introduction of a number of simple so-called a-quenching algebraic

formulae, e.g.,
0

=T (B, B -

where B is the equipartition magnetic field strength (see also Riidiger & Kitchatinov 1993).

«

Oéij

In order to explore if the a-effect varies from one cycle to the next, in a manner related to the
strength of the mean magnetic field, we refine our analysis by breaking up the simulation data into
contiguous blocks each spanning one quarter of a full magnetic cycle. One set of blocks is centered
on time of cycle maximum, when the large-scale magnetic field reaches peak strength, and a second
set of interweaved blocks are centered on times of polarity reversals, where the large-scale magnetic
component reaches its minimum. Because of the regularity of the cycles in the simulations (see
Fig. 2), and of the fact that the mean poloidal component oscillates essentially in phase with the
mean toroidal component, such a partition of the simulation can be unambiguously defined and
readily carried out. We then apply the fitting procedure described previously to each block of data
independently, which yields a sequence of functions {a;;(r, 0, t.)}, where t. is the time around which
a given half-cycle is centred. To display the results of this calculation as concisely as possible, for
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each t. we calculate the spatially-averaged quantities . and o, defined as follows

1 Tmax
@ = / (T, 0,tc) 7% cos O dr db (23a)
Tmin hem.
1 Tmax
oo = 3 / oss(r,0,t.) r? cosOdrdf (23b)
Tmin hem.

where 7,5, and 7,4, are chosen to include the convective zone, but not the stable zone nor the
surface of the simulation, in order to capture the contributions from regions where the a-effect is
expected to operate substantially. The quantity V is the total integration volume. The latitudinal
integration is restricted to either the north or south hemisphere (to avoid uninteresting cancella-
tions, as the sign of ayg flips from one hemisphere to the other). The results of those calculations
are displayed in Fig. 11, where each histogram-type column represents one half-cycle. The total
width of error bars is given by 20.. Although the error bars are quite large*, the actual values of
a. do not vary substantially at all in both hemispheres throughout the entire simulation. Similar
results are obtained for the other components of the a-tensor. The a4 component does show a very
weak (r = —0.27) anticorrelation with the mean magnetic field strength, but even there the range
of variation is only about one quarter of the standard deviation. All this seems to indicate that
there is no significant a-quenching occurring in our simulation, i.e. the value of a4y is insensitive
to the value of the large-scale magnetic field.

3. Relationship to mean-field dynamo models

The scale separation and azimuthal averaging introduced earlier jointly form the basis of the so-
called mean-field dynamo models, which have been and continue to be used extensively in studying
solar and stellar magnetic activity cycles. If one assumes at the onset that the large-scale magnetic
field (B) is axisymmetric, then it can be expressed as the sum of a toroidal component and poloidal
component defined through a purely azimuthal axisymmetric vector potential (A) = (A4)é,, as:

(B)(r,0,t) = (Bg)(r,0,t)e4 + V x ((Ag)(r,0,t)ey) . (24)

One can further assume that the mean flow is also axisymmetric, and comprised only of differential
rotation, i.e.,

(u)(r,0,t) = wQ(r,0,t)ey , (25)

where @ = rcosf and  is the (axisymmetric) angular velocity. Under those assumptions, Eq. (7)
for the mean field is then readily separated as:

0%‘?) =1 <V2 - ;) (Ag) + &, (26)

“Since gy (r, 0, te) is constructed from a substantially smaller data set (200 time steps) than the full ayg shown
in Fig. 8, which is extracted from the full time span of the simulation, it is no surprise that the variance associated
with age(r,0,tc) is much larger than that associated with the full ags. This explains why the error bars are so large
in Fig. 11.
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9(By)
ot

for constant 1 and under the Coulomb gauge V - (A) = 0.

=1 <V2 - #) (By) + @[V x ({(Ag)€4)] - VR + &5 - [V x E] (27)

Equations (26)—(27) are known as the mean-field dynamo equations, and models based on
these equations (or variations thereof) remain to this day the workhorse of solar cycle modelling,
interpretation, and even prediction (see, e.g., Charbonneau 2010, and references therein). They
show the critical importance of the mean electromotive force in such axisymmetric mean-field
models; the EMF provides a source term on the RHS of the evolution equation for (A), without
which dynamo action is impossible, as per Cowling’s theorem. It also provides a source term for the
toroidal component (By), but here it is less crucial because differential rotation already provides a
source contribution, provided a poloidal magnetic component is present. The so-called af2 dynamo
model results from dropping the a-effect term in Eq. (27), while dropping instead the differential
rotation shearing term yields the a? model, in which the turbulent EMF is the sole inductive
mechanism. Keeping both terms leads to the a?§) mean-field dynamo model.

3.1. Contributions to toroidal field induction

To which (if any) of these three possible mean-field model categories could we identify our
simulation? The answer clearly hinges on the relative importance of the (u) x (B) and (u’ x B’) on
the right-hand side of the mean-field induction equation (7). In keeping with our “experimental”
approach, we simply use the mean and fluctuating flow and magnetic field components defined
previously do directely calculate, using simple centered finite differences, the azimuthal components
of both V x ((u) x (B)) and V x (u’ x B’), which then measures the rate of change of the magnetic
field associated with each inductive contribution.

Figure 12 shows the results of this exercise, in the form of time-latitude diagrams for the
azimuthal component of each of these two contributions extracted near the base of the convection
zone (r/Re = 0.74). At this depth differential rotation is the primary contributor to the total
mean flow. The turbulent EMF contribution (top panel) is seen to be spatiotemporally noisier than
induction by the mean flow acting on the mean field (bottom panel). This was to be expected, since
we are here taking spatial derivatives of a quantity, the turbulent EMF, which is itelf calculated
from the large scale average of products of small scale, highly turbulent fields. Nonetheless, at
any phase of the cycle both contributions are here clearly of the same overall order of magnitude.
Furthermore, constructing similar diagrams at other depths indicate that this remains the case
throughout the bulk of the convection zone. In the terminology of mean-field electrodynamics, one
would then conclude that in this one specific simulation, the large-scale magnetic is sustained by
an o) dynamo.
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3.2. Relating the a-tensor to kinetic and magnetic helicities

The mathematical machinery of mean-field electrodynamics goes well beyond the characteri-
zation of the turbulent EMF in terms of the mean magnetic field. In particular, for turbulent flows
satisfying certain statistical properties and operating in certain specific physical regimes, it offers
the mean of calculating the form of the a-tensor (see, e.g., Moffatt 1978). In the case of a turbulent
flow that is isotropic and homogeneous but lacks reflectional symmetry, the a-tensor reduces to the
diagonal form adjj, with

o= —ghv : (28)
where 7 is the correlation time of the turbulence, and h, is the mean kinetic helicity associated
with this turbulent flow:

he = (0 -V x ') . (29)

The key result here is that albeit for the sign difference, the a-effect coefficient is directly propor-
tional to the kinetic helicity, a quantity readily computed a posteriori from the simulation output.
The result of such a calculation is plotted on Figure 8C, with the kinetic helicity having been aver-
aged temporally as well as azimuthally over the complete time span of the simulation. Except for
the sign difference, the degree of resemblance with the s tensor component plotted on panel A is
quite striking. Both functionals are strongly peaked at very high latitudes, and in each hemisphere
only show a sign change near the base of the convection zone. The most prominent difference is
found at low latitudes, where h, shows a secondary peak in the middle of the convection zone that
is absent in the ayg profile. The agg component (see Fig. 7) is also tolerably well represented by
the negative of the mean kinetic helicity, the most prominent discrepancy being that agg peaks
at mid-latitudes. The «,, diagonal component is that which shows the least similarity with the
mean kinetic helicity, presumably because it is more sensitive to the break of homogeneity on which
Eq. (28) is predicated, induced by stratification of the background state and/or upper boundary
condition.

Equation (28) is predicated on a number of other strong assumptions, including the requirement
that the small-scale turbulent flow remains entirely unaffected by the magnetic field. Once the
magnetic field becomes dynamically significant, it is expected that it will alter the small-scale
flow giving rise to the a-effect. Based on a set of local cartesian incompressible MHD simulations
operating in the strongly nonlinear regime, Pouquet et al. (1976) suggested that Eq. (29) should
be replaced by

.
a:—g(hv—hg) ) (30)
where hp is the mean current helicity, generalized to our anelastic MHD formulation as:
1
hg = —(B' -V x By . (31)
fop

The physical link between kinetic and current helicity becomes more transparent upon noting that
B’/ /nop is the Alfvén velocity, measuring the propagation speed of transverse MHD waves for
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which magnetic tension provides the restoring force; what Eq. (30) expresses is simply that magnetic
tension tends ot oppose any twisting of magnetic fieldlines by the small-scale turbulent flow. This
quantity is plotted on Figure 8D, again as an azimuthal and temporal average spanning the full
simulation duration. This magnetic contribution to the a-coeflicient is found to be significantly
smaller than its kinetic counterpart, by a factor of about ten. The strong peaks straddling the base
of the convection zone at mid-latitude in both hemispheres are associated with the strong mean
magnetic field building up in these regions, which, acted upon by the small-scale turbulent flow,
feeds the production of small-scale current helicity.

The limited applicability of Eq. (30) to our simulation notwithstanding, the weak contribution
of the specific current helicity as compared to the kinetic helicity term suggests that the dynamical
impact of the small-scale magnetic component on the small-scale flow is correspondingly weak. Re-
call that we also demonstrated, in §2.6, that the a-tensor components does not show any significant
variation with the strength of the large-scale magnetic component. This would suggest that the
saturation of the dynamo amplitude must be achieved via a different mechanism, such as magnetic
backreaction on the large-scale flow.

4. Discussion and conclusion

We have investigated the mode of large-scale dynamo action taking place in the global im-
plicit large-eddy simulation of the solar convection zone reported upon in Ghizaru et al. (2010).
Motivated by the presence of a strong and well-defined axisymmetric magnetic component arising
in the simulation, we defined the large-scale magnetic field as the longitudinal average of the to-
tal simulated magnetic field, with the residual produced by subtracting this average component
from the total field defining the small-scale, fluctuating magnetic component. Zonally averaging
the cross-correlation of the latter with the corresponding small-scale flow component then allows
the calculation of a turbulent electromotive force, and its development in terms of the large-scale,
zonally-averaged component allows to calculate the components of the a-tensor. The a-tensor com-
ponents so calculated were found to compare well to a number of results obtained in local cartesian
simulations with an externally imposed large-scale magnetic component. Noteworthy results in-
clude: a positive agy component in the Northern solar hemisphere, peaking at high latitude and
changing sign near the base of the convecting shell; downward turbulent pumping in the bulk of the
convection zone, except in a thin subsurface layer where pumping is upward-directed; significant
latitudinal pumping, equatorward at mid- to low-latitude in the bulk of the convecting layer, but
poleward in the high-latitude, subsurface layers.

Because our simulation generates its own large-scale magnetic field, no such field need be
imposed externally to measure the a-effect. The a-effect that we do measure is then dynamically
consistent with the nonlinear interaction of flow and field at all numerically resolved spatial and
temporal scales. However, our results are physically meaningful only to the degree that the scale
separation procedure used to divide the total flow and field into mean and fluctuating components
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is applicable to our simulation results. The modal analysis described in §2.1 suggests that it is.
Moreover, Figure 9 provides additional empirical evidence that something closely akin to the a-
effect of mean-field electrodynamics offers an adequate representation of the turbulent electromotive

force arising in the simulation.

The mean-field analysis reported upon in this paper relies entirely on a posteriori calculations
of cross-correlations between the small-scale flow and magnetic field, as defined via Eqgs. (4)—(5) and
as resolved by our computational grid. The implicit presence of dissipative terms at the level of the
MPDATA advection scheme at the core of EULAG has been shown, in the context of purely hydro-
dynamical simulations, to mimic subgrid dynamical processes such as self-similar energy cascade
(Domaradzki et al. 2003; Margolin et al. 2006; Margolin & Rider 2007). Evidently, the smallest
resolved scales in our simulation have been influenced by these subgrid effects, and therefore so
has our reconstructed EMF; yet the overall dynamo picture emerging from our analysis shows re-
markable internal self-consistency, which suggests that MHD subgrid effects, if present, are not the
primary direct drivers of cyclic evolution on large spatial scales.

The simultaneous presence of globally well-structured a-effect and significant internal differ-
ential rotation suggests that our simulation could be operating as what is known in mean-field
electrodynamics as an af)2 dynamo. This inference is buttressed by a number of simulation fea-
tures, notably the fact that the in-phase (or nearly so) production of a positive large-scale dipole
moment from a positive toroidal component is what is expected of kinematic af) dynamo models
having the angular velocity outwardly increasing on cylindrical isocontours and agg > 0 in the
Northern solar hemisphere (see Stix 1976). Oscillatory behavior has been shown to be possible also
in linear a-type models, i.e., in the complete absence of differential rotation, provided the a-effect
has sufficiently steep radial variations, including sign changes (Stefani & Gerbeth 2003). Such os-
cillatory o-type solutions were recently identified in the helically-forced MHD simulations of Mitra
et al. (2010). These authors also presented specific examples showing that such externally-forced
a? dynamo models could also exhibit latitudinal propagation of the azimuthal large-scale magnetic
component. Given the rather complex spatial variations of our measured a-tensor components (see
Fig. 7), it then remains possible that the a-effect is the primary driver of the polarity reversals
and mild equatorward propagation of the deep-seated mean magnetic component observed in our
simulation. Then again, the comparable magnitudes of the small-scale and large-scale contributions
to the ¢-component of the induction term (cf. Fig. 12A and B) would rather point to the so-called
a?Q dynamo, in which shearing by the large-scale flow and the turbulent EMF both contribute to
the regeneration of the large-scale toroidal magnetic component. Unless differential rotation is very
weak, such dynamos behave qualitatively like af2 dynamos. In particular, they also support travel-
ling dynamo waves propagating according to the Parker-Yoshimura sign rule (see, e.g., Choudhuri
1990; Charbonneau & MacGregor 2001). At a given turbulent intensity, the distinction between
these three classes of models therefore hinges on the magnitude of differential rotation in the region

where dynamo action is taking place.

Interestingly, the pole-to-equator angular velocity contrast in a purely hydrodynamical simu-
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lation using the same stratification and thermal forcing as in Ghizaru et al. (2010) is much closer
to solar, indicating that the magnetic field —both small-scale and large-scale— has a significant
impact on the dynamics of large-scale flow building up in the simulation. A similar behavior was
observed already in the simulations of Gilman (1983), and carried over also to the simulations of
Browning et al. (2006). Assume for the sake of the discussion that a stronger, solar-like internal
differential rotation could be produced in our simulation, e.g., by introducing a latitudinal gradient
in the thermal forcing, as done in Miesch et al. (2006) and Browning et al. (2006). In kinematic
af) mean-field models operating close to criticality, the cycle frequency is found to increase as a
power, usually close to unity, of the so-called dynamo number D, defined as

3

D= L(A? B (32)
T

where R is a measure of the size of the dynamo region (often taken as the solar/stellar radius), ag
measures the magnitude of the a-effect, AQ that of the differential rotation, and 5y is the turbulent
diffusivity value used in the model. Consider now our simulation; assuming that ramping up AQ
by a factor of three can be achieved without affecting too much the EMF or turbulent diffusivity,
Eq. (32) would then predict a decrease of the cycle period by a factor of ~ 3, which would bring
it down to the solar value. This would alleviate simultaneously two of the primary failings of
the present simulation as compared to the solar cycle, namely the latitudinal surface differential
rotation being too weak, and the cycle period being too long. On the other hand, the fact that the
large-scale poloidal and toroidal components oscillate almost exactly in phase, may well lie outside
the reach of these types of global MHD simulations. Modelling of the solar surface magnetic flux
evolution (e.g. Wang & Sheeley 1991; Schrijver et al. 2002; Baumann et al. 2004) has shown that
the poleward transport of magnetic decay products of sunspots and active regions by supergranular
diffusion and the poleward meridional flow is an important driver of polar field reversals. There
is of course nothing equivalent to decaying active regions in our simulations, so in retrospect an
incorrect timing of surface polar field reversals is perhaps not exceedingly worrisome.

The question of cycle amplitude saturation also merits further investigation. The analysis
of §2.6 already suggests that nothing akin to classical a-quenching by the mean magnetic field
is taking place in the simulation, and that of §3.2 suggests that quenching by the small-scale
magnetic component is also insignificant. Further insight can be gained by examining the relative
contributions of the small- and large-scale flow and magnetic field to the global specific energy
budget. We simply define these contributions as volume averages over the full simulation domain:

1

B(() = 3 [ @iy (33)

By = /V (W)2dV | (34)

/V p BV (35)
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E(B') = 1 / p (B)?dV , (36)
Ho Jv

with (u)? = (u) - (u), etc. The comparison between these various contributions is carried out
pictorially on Fig. 13, in the form of time series spanning the full simulation run. The cycle stands
out as a prominent cyclic variation in the energy contribution of the large-scale magnetic field,
which varies by a factor 2—3 between epochs of cycle “maxima” and “minima”. Interestingly, the
energy contributions of the small-scale flow remain remarkably steady in comparison. Recall that
the requirement for u' to be independent of (B) was in fact a sine qua non condition for Eq. (9) to
be physically meaningful. Even though it is defined globally, the steadiness of the F(u’) time series
is consistent with the conclusion already drawn on the basis of Fig. 11, namely that the a-tensor is
not affected by the presence of the large-scale magnetic field. In contrast, the small-scale magnetic
energy F(B’) does show some in-phase variations with F((B)), which probably indicates that our
scale separation breaks down at some level. Detailed examination of the modal decomposition
indicates that this occurs primarily below the core-envelope interface, and therefore the impact on
the calculation of the turbulent EMF and a-tensor component in all likelihood remains small.

Things become more interesting with the kinetic energy associated with the large-scale flow,
which does show a clear cyclic variation, approximately in anti-phase with the large-scale magnetic
energy for most cycles; this suggests that dynamo saturation takes place via magnetic backreaction
on the large-scale flow. This inference also finds support in the fact that the overall level of
differential rotation in the simulation, as measured, e.g., by the pole-to-equator angular velocity
contrast, is smaller by a factor of three than the same constrast materializing in an unmagnetized,
purely hydrodynamical version of the simulation under the same forcing parameters. It remains to
be investigated whether magnetic backreaction on the large-scale flow is mediated by the Lorentz
force component associated with the large-scale magnetic field (the so-called Malkus-Proctor effect),
or through small-scale Maxwell stresses, either directly or through quenching of the small-scale
Reynolds stresses powering the large-scale flow (sometimes refered to as A-quenching; see, e.g.,
Kitchatinov & Riidiger 1993; Rempel 2006; and references therein).

Another intriguing question relates to the mechanism(s) responsible for the equatorward prop-
agation of the sunspot activity belts in the course of the cycle. If sunspots are assumed to originate
from the destabilisation and vertical rise of toroidal magnetic flux ropes stored immediately be-
neath the solar core-envelope interface, then the observed equatorward drift should reflect a similar
drift in the deep-seated toroidal magnetic components from which these flux ropes are believed to
form. The weak equatorial propagation visible on the top panel of Fig. 2 amounts to a drift speed
in the range 0.3-0.5 m s~!, while in the sun this speed is estimated at 1 m s~!. In the simulation
considered here, a weak positive radial differential rotation is sustained at mid to low-latitudes at
the core-envelope interface. In conjunction with a negative agg at the base of the envelope (see
Fig. 7, bottom right meridional slice), we then have ays x dQ2/dr < 0, which should then lead to
equatorward propagation of the dynamo wave as per the Parker-Yoshimura sign rule. Then again,
our simulation is also characterized by a mean meridional flow component which, at mid-latitude at
the core-envelope interface, is equatorward and reaches a few tenths of meters per second, compa-
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rable to the drift speed infered from Fig. 2. Moreover, as discussed in §2.5 the latitudinal turbulent
pumping at the base of the envelope is equatorward and also reaches a few tenths of meters per
second. Because the large-scale differential rotation and meridional flow both show significant tem-
poral variations in phase with the cycle of the large-scale magnetic field, deciding whether it is the
large-scale flows that drive the magnetic cycle, of the magnetic field that propels the flows, again
requires a complete and detailed investigation of the dynamical balance arising in the simulation.
Such an analysis is now underway, and will be reported upon in a future paper.

We wish to thank Patrice Beaudoin for assistance in the preparation of the final version of
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supported by Canada’s Natural Sciences and Engineering Research Council, Research Chair Pro-
gram, and Foundation for Innovation (ER, PC, MG and AB). The National Center for Atmospheric
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Fig. 1.— Temporal sequence of the toroidal magnetic component extracted at the core-envelope
interface (r/Rs = 0.718) in the 3D MHD simulation presented in Ghizaru et al. (2010), plotted
in Mollweide projection. The sequence runs from top to bottom, and covers a time interval cor-
responding to a half-cycle, temporally centered on a polarity reversal. The color scale codes the
magnetic field strength, in Tesla. [We will make this available as an animation supplement for the
online version]
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Fig. 2.— Spatiotemporal evolution of the zonally-averaged magnetic field in the 3D MHD simu-
lation of Ghizaru et al. (2010). Top panel: time-latitude diagram of the zonally-averaged toroidal
magnetic component at the core-envelope interface (r/Rs = 0.718); middle panel: corresponding
radius-latitude diagram, extracted at latitude —45° in the southern hemisphere. The dashed line
indicates the core-envelope interface; bottom panel: time-latitude diagram of the zonally-averaged
surface radial field (r/Rs = 0.96), with magnetic half-cycles numbered from minima ot minima, as
with the sunspot cycles. The color scale codes the magnetic field strength, in Tesla.
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Fig. 3.— Latitude-longitude Mollweide projection of the zonally averaged toroidal magnetic com-
ponent (top), and associated small-scale fluctuating toroidal component (bottom), as defined by
Eq. (5), extracted at a depth corresponding to the core-envelope interface at simulation time
t = 230, near the peak of magnetic half-cycle number 8 (see Figure 2). The sum of these two
components is the total toroidal field distribution plotted on the bottom panel of Fig. 1.
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Fig. 4.— Spectral distribution of modal amplitudes for the toroidal magnetic component at the
core-envelope interface in the simulation, r/Rs = 0.718. The unsigned values resulting from a
standard spherical harmonic decomposition were averaged over two set of disjointed blocks centered
over cycle minima (panel A) and maxima (panel B), respectively. Panel C results from subtracting
panel A from panel B, and shows the amplitude distribution associated with the large-scale magnetic
component, which is concentrated primarily in the (¢,m) = (1,0) and (5,0) modes. The color scale
spans two orders of magnitude, in constant logarithmic increments.
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Fig. 5.— Time series of a few selected spherical harmonic coefficients, as labeled, over the full
simulation run. While the cycle shows up prominently in axisymmetric (m = 0) modes of low, odd
angular degree ¢, at high wavenumber the time series show no clear cyclic variations.
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Fig. 6.— The three components of the turbulent EMF (u’ x B’). The left column shows time-
latitude slices extracted at the middle of the convection zone (depth ~ /R = 0.85), while the right
column shows snapshots of the spatial variations in meridional planes, at the peak of simulate cycle
4. For the purpose of constructing the time-latitude diagrams, the simulation was undersampled
at intervals of 10 solar days (~ 0.82yr).
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Fig. 7.— The components of the a-tensor, plotted in meridional plane. The color scale encodes the
magnitude, in m s~!, and is the same for all plots. The three plots along the diagonal correspond to
oy 09, and age; the three plots above the diagonal to the corresponding off-diagonal component
of the symetric part of the tensor, and the three plots below the diagonal to the three components
of the turbulent pumping velocity, as labeled and directly related to the three non-zero component
of the antisymmetric part of the full a-tensor via Eq. (12). The fitting procedure treats each
hemisphere separately, so that the high degree of symmetry or antisymmetry about the equatorial
plane characterizing the various tensor components is not a fitting artefact.
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Fig. 8.— Meridional slice plots of (A) age, replotted directly from Figure 7; (B) its standard
deviation as returned by the fitting procedure based on singular value decomposition, purposefully
plotted using the same color scale as in A even though negative values are here meaningless. The
variance is artificially set to zero below the core-envelope interface; (C) temporally- and zonally-
averaged kinetic helicity; (D) temporally- and zonally-averaged specific current helicity. The dashed
circular arc indicates the core-envelope interface.
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Fig. 9.— (A) Time latitude diagram of the EMF residual defined by Eq. (21), constructed on a
sphere of radius r/Rs = 0.8. (B) Power spectrum of the residuals of part (A) now averaged in
latitude to produce a simple time series. The sloping red line is a guide to the eye, showing a
power-law spectrum with logarithmic slope —2/3. The vertical line segment originating from the
abcissa indicate the frequencies corresponding to the primary magnetic cycle (full period 59.8 yr),
and its first few harmonics.
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Fig. 10.— (A) Radial and (B) latitudinal cuts of the radial (solid lines) and latitudinal (dashed
lines) turbulent pumping velocity components, extracted at latitude 45° in (A), and at depth
r/Res = 0.76 in (B). Radial pumping is downward in the bulk of the convecting layers, except
near the surface, while latitudinal pumping is equatorward at mid to low latitudes. See also the
bottom-left (75) and and bottom-middle (,) panels on Fig. 7.
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Fig. 11.— Temporal variation of the spatially-averaged ag¢ tensor component, computed sep-
arately in each hemisphere according to Eq. (23b); this yields positive (negative) values in the
Northern (Southern) solar hemisphere. The darker shading corresponds to blocks centered on
times of maxima in (B), and the lighter shades to interleaved blocks centered on times of polarity
reversals. The error bars are computed from the variance returned by the SVD fitting algorithm,
via Eq. (20). Qualitatively similar results are obtained for other a-tensor components, i.e., no
significant variation between epochs of cycle maxima and minima.
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Fig. 12.— Time-latitude diagrams for the azimuthal components of the inductive contributions V x
(u' x B') (top panel) and V x ({(u) x (B)) (bottom panel), constructed at depth r/Rs = 0.74, near
base of the convection zone. Although the contribution of the turbulent EMF is spatiotemporally
noisier, both contributions are here roughly of the same order of magnitude.
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Fig. 13.— Time series of the four contributions to the global energy budget, as defined via Eqs. (33)—
(36), as labeled. The 30 yr cycle shows up prominently in E((B)), as it of course should, and also
in E((u)) but more weakly in E(B’) and hardly at all in E(u"). Note also how the large-scale flow
and field are globally within a factor of two of energy equipartition at times of cycle maximum.
Numbering of simulated half-cycles as on Fig. 2.



