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ABSTRACT

In this paper we examine the mode of dynamo action in the implicit large-eddy

magnetohydrodynamical simulation of solar convection reported upon in Ghizaru et

al. (2010, ApJL, 715, L133). Motivated by the presence of a strong and well-defined

large-scale axisymmetric magnetic component undergoing regular polarity reversals, we

define the fluctuating component of the magnetic field as the difference between the

total field and it zonal average. The subsequent analysis follows the physical logic and

mathematical formulation of mean-field electrodynamics, whereby a turbulent electro-

motive force (EMF) is computed by suitable averaging of cross-correlations between

fluctuating flow and field components, and expressed in terms of the mean-field via a

linear truncated tensorial expansion. We use singular value decomposition to perform

a linear least-squares fit of the temporal variation of the EMF to that of the large-scale

magnetic component, which yields the components of the full α-tensor. Its antisymmet-

ric component, describing general turbulent pumping, is also extracted. The α-tensor

so calculated reproduces a number of features already identified in local, cartesian sim-

ulations of magnetohydrodynamical rotating convection, including a αφφ component

positive in the Northern solar hemisphere, peaking at high latitudes and reversing sign

near the bottom of the convection zone; downward turbulent pumping throughout the

convecting layer; significant equatorward turbulent pumping at mid-latitudes, and pole-

ward at high latitudes in subsurface layers. We also find that the EMF contributes

significantly to the regeneration of the large-scale toroidal magnetic component, which

from the point of view of mean-field dynamo models would imply that the simulation

operates as an α2Ω dynamo. We find no evidence of α-quenching by the large-scale

magnetic field. The amplitude of the magnetic cycle appears instead to be regulated

primarily by a magnetically-driven reduction of the differential rotation.
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The solar magnetic field is the energy source for the whole set of physical phenomena collec-

tively known as “solar activity”. While flux emergence is the primary driver on timescales ranging

from minutes to months, on longer timescales of years to millenia solar activity is strongly modu-

lated by the solar cycle, namely the cyclic variation of the sun’s large-scale magnetic component.

This cyclic variation, characterized by polarity reversals approximately every 11 years, is believed

to be powered by a magnetohydrodynamical dynamo process operating in the solar interior, within

its convective envelope and possibly immediately beneath its interface with the underlying, sta-

bly stratified radiative core (r/R¯ ' 0.71, according to helioseismic inversions of the solar internal

sound speed profile; see, e.g., Christensen-Dalsgaard 2002). A proper understanding of this dynamo

process is thus justly recognized as a cornerstone of research into the myriad of manifestations of

solar activity.

For physical conditions characteristic of the solar interior, the solar dynamo is expected to be

well described by the classical magnetohydrodynamical approximation (e.g., Davidson 2001, Goed-

bloed & Poedts 2004), a fusion of the hydrodynamical fluid equations and Maxwell’s equations

applicable to a non-relativistic, globally neutral and collisionally-dominated plasma obeying Ohm’s

Law. The resulting set of nonlinear, coupled partial differential equations remains daunting, and

in general can only be solved numerically. Simplified model formulations based on mean-field elec-

trodynamics (e.g., Moffat 1978; Krause & Rädler 1980; Rüdiger & Hollerbach 2004, and references

therein) readily produce cyclic solutions for reasonable though largely ad hoc input parameters and

key functionals such as the α-effect and turbulent diffusivity (for a recent review see Charbonneau

2010). However, and without at all diminishing their usefulness as descriptive models as well as

thinking tools, the freedom to specify free functions, and the highly simplified treatment of the

nonlinear interactions between flow and field, poses fundamental limits the applicability of such

models to the solar cycle.

Alternately, the dynamo problem can be tackled as a dynamically consistent simulation of

thermally-driven magnetohydrodynamical convection in a thick, stratified and rotating spherical

shell of electrically conducting fluid (Gilman 1983; Glatzmaier 1984). The resulting computational

problem is quite challenging due to the turbulent nature of fluid motions in the solar convection

zone, which generates a very wide range of spatial and temporal scales in the evolving flow and

magnetic field. For many decades, the computational resources needed to capture dynamo action

in a global simulation of the whole solar convection zone has kept this type of simulations at

the forefront of computational fluid dynamics, a situation that persists to this day (see Miesch &

Toomre 2009 for a review).

Following the development of a massively parallel version of the Glatzmaier (1984) simulation

code by Clune et al. (1999), a reasonably turbulent regime could be attained. While such turbulent

global MHD simulations of solar convection do produce a lot of magnetic field (see, e.g., Brun

et al. 2004), they often fail to produce magnetic fields well-organized on large spatial scales and

carrying a significant net hemispheric flux. Towards this end the introduction of a stable fluid

layer underlying the convection zone, where strong, persistent angular velocity shear can develop
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in a tachocline-like layer, has been shown to be conducive to the buildup of persistent large-scale

magnetic fields (see Browning et al. 2006; Ghizaru et al. 2010; Käpylä et al. 2010); however, at

higher rotation rates it appears that the buildup of large-scale magnetic fields can occur entirely

within the convective envelope, without a tachocline (Brown et al. 2010a,b).

Regular, solar-like cyclic activity has been even harder to produce in such simulations. The

groundbreaking simulations of Gilman (1983) and Glatzmaier (1984, 1985) did produce polarity

reversals, but computing limitations restricted these simulations to mildly turbulent regimes, while

the resulting spatiotemporal evolution of the large-scale magnetic field they produced was non-solar

in a number of ways, notably the tendency for latitudinal migration of the large-scale magnetic field

to take place poleward rather than equatorward. In the more turbulent, contemporary versions of

these simulations, polarity reversals of large-scale magnetic field structures has so far only been

produced for rotation rates five times that of the Sun (Brown et al. 2010b), with the timing of

these reversals markedly asynchronous across hemispheres. Very recently Miesch et al. (2011) also

reported on the occurrence of a few polarity reversals in a variation on the simulations of Brown

et al. (2010b) operating now at the solar rotation rate, with better synchrony across hemisphere

but a tendency, albeit weak, for poleward migration of the large-scale magnetic component. Op-

erating under an entirely different numerical framework, Käpylä et al. (2010) also obtained cyclic

large-scale magnetic fields in a spherical wedge simulation spanning up to 120◦ in longitude, 67◦

in latitude, and including an underlying stable layer. Those cycling large-scale magnetic fields

again are characterized by poleward propagation much as in Gilman (1983), and also show strong

hemispheric asymetries.

At this writing the turbulent simulations having produced the most solar-like cyclic large-scale

magnetic fields are those presented in Ghizaru et al. (2010). Based on a MHD extension of the

well-documented general-purpose hydrodynamical simulation code EULAG (Prusa et al. 2008; Smo-

larkiewicz & Szmelter 2009; and references therein), the simulation is based on the hydrodynamical

model setup of solar convection described in Elliott & Smolarkiewicz (2002). The temporally

extended simulation reported upon in Ghizaru et al. (2010) is characterized by a number of encour-

agingly solar-like features: (1) a well-defined axisymmetric large-scale magnetic field component,

antisymmetric about the equatorial plane; (2) magnetic polarity reversals with a half-period of

approximately 30 yrs, synchronous across hemispheres, (3) a strong (up to 0.3 Tesla) toroidal com-

ponent concentrated at the interface between the convecting and underlying stable layers, peaking

at mid latitudes and showing a weak but clear tendency for equatorward migration as the cycles

unfold; (4) a dipolar component, well aligned with rotation axis and strongly peaked at high lati-

tudes; (5) a reasonably solar-like internal differential rotation, showing equatorial acceleration and

vanishing rapidly at the core-envelope interface. The most glaring departures from the observed

solar cycle are: the cycle period, three times too long; the fact that the large-scale poloidal and

toroidal component oscillate essentially in phase, in contrast to the π/2 phase lag observed on the

sun; and the pole-to-equator contrast in surface angular velocity, too small by a factor of almost

three.
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We are currently engaged in a systematic numerical exploration of parameter space, in order

to answer a number of pressing questions, notably (1) what sets the cycle period in the simulation;

(2) why is our simulation producing well-defined, fairly regular cycles while the simulations of, e.g.,

Browning et al. (2006), by all appearances quite similar in overall design and turbulent regime, do

not; (3) how robust are the cycles to the manner in which convection is being forced, and the dissi-

pation introduced via the numerical advection scheme. This is a long, tedious and computationally

demanding process, which could be greatly accelerated if the physical nature of dynamo action in

these simulations could be pinned down with some degree of confidence. Accordingly, the purpose

of this paper is to examine the mode of dynamo action in the one specific simulation run presented

in Ghizaru et al. (2010), which has by now been extended to 337 yr of simulated time, in the course

of which 11 polarity reversals have taken place. Our primary aim is to examine the degree (if any)

to which dynamo action in this simulation can be described through turbulent effects described by

mean-field electrodynamics, as embodied in the α-effect and turbulent pumping. A brief overview

of the simulation is first presented in §1, after which we describe the procedure adopted to extract

the components of the α-tensor, and what these turn out to look like in our simulation (§2). We

then examine (§3) the degree to which large-scale dynamo action in the simulation resembles what

one can observe in conventional mean-field dynamo models and examine the relative importance of

turbulent induction of the toroidal component versus shearing of the large-scale magnetic compo-

nent by differential rotation. We close (§4) by summarizing our results and speculating on further

improvements that could lead to a better reproduction of the observed characteristics of the solar

cycle in this type of MHD simulation.

1. Overview of the simulation

The purpose of this section is to give an overview of the magnetic cycles developing in a

temporally extended version of the global MHD simulations of solar convection reported upon in

Ghizaru et al. (2010). This specific simulation provides the numerical data used in the remainder

of this paper in our analysis of large-scale dynamo action.

A brief description of the simulation framework is given in Ghizaru et al. (2010), and a detailed

presentation will be given in a forthcoming publication. The simulation used in what follows is

computed at relatively low spatial resolution (Nr × Nθ × Nφ = 47 × 64 × 128), which permits long

temporal integrations, yet the low dissipative properties of the underlying EULAG computational

framework still yields a reasonably turbulent regime, with estimated Reynolds numbers of order 102

and magnetic Prandtl number of order unity. The simulation solves the anelastic form of the ideal

MHD equations in a thick, gravitationally stratified spherical shell (0.62 ≤ r/R¯ ≤ 0.96) spanning

3.4 density scale heights and rotating at the solar rate Ω¯ = 2.69×10−6 rad s−1. With the exception

of an explicit radiative diffusion term in the energy equation, all dissipation is delegated to the

numerical advection scheme MPDATA (Smolarkiewicz 2006), the higher-order truncation terms of

which provide an implicit turbulence model (Domaradzki et al. 2003; Margolin et al. 2006; Margolin
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& Rider 2007). The background stratification, defined through a combination of polytropes, is

stable below r/R¯ = 0.718, and convection in the overlying layers is driven by a Newtonian forcing

towards a weakly convectively unstable thermodynamic profile. This procedure, borrowed from

simulation of an idealized terrestrial climate (Held & Surez 1994; Smolarkiewicz et al. 2001) is

physically equivalent to imposing a heat flux through the fluid layer. The simulation of Ghizaru et

al. (2010), although subjected to the solar heat flux, is relatively weakly forced from the convection

point of view, and ongoing simulations operating under different forcing regimes indicate that

large-scale dynamo behavior can be sensitive to details of the forcing. Such sensitivity is not at all

unusual in a turbulent fluid system (Piotrowski et al. 2010).

Figure 1 shows a temporal sequence of the toroidal (zonal) magnetic component in the simu-

lation, extracted on a spherical shell corresponding to the core-envelope interface (r/R¯ = 0.718

in the simulation), plotted in latitude-longitude Mollweide projection. From top to bottom, the

sequence runs from one magnetic maximum to the next, and is temporally centered on a polarity

reversal (middle panel). Despite strong fluctuations in the magnetic field, a large-scale axisymmet-

ric component antisymmetric about the equatorial plane is clearly apparent except at the time of

polarity reversal. In fact, except for the obvious reversal of magnetic polarity, the magnetic field

distributions at top and bottom are remarkably similar, showing concentration at mid-latitudes

and comparable peak strenghts (∼ 0.3T) in both hemispheres. Polarity reversals occur through a

gradual weakening of the large-scale axisymmetric magnetic component, with antisymmetry about

the equatorial plane maintained reasonably well as the time of reversal is approached (t = 202.5 yr),

and establishing itself rapidly again once the next half-cycle starts to build up (t = 221.9 yr).

The spatiotemporal evolution of the large-scale axisymmetric component is best viewed by

zonally averaging the total magnetic field present at any given time in the simulation. Working in

spherical coordinates (r, θ, φ), where −π/2 ≤ θ ≤ π/2 is the latitude (rather than the polar angle),

such a zonal average is defined as:

〈B〉(r, θ, t) =
1

2π

∫ 2π

0
B(r, θ, φ, t)dφ (1)

The top panel on Figure 2 shows a time-latitude diagram of the toroidal magnetic component

(〈Bφ〉) averaged in this manner, constructed at a depth corresponding to the core-envelope interface

in the model (r/R¯ = 0.718). If the toroidal magnetic flux ropes assumed to give rise to bipolar

active regions are indeed stored at this depth, as suggested by stability analyses (e.g., Ferriz-Mas

et al. 1994; Fan 2009), and rise radially to the photosphere, then this is the simulation’s equivalent

to the sunspot butterfly diagram (e.g., Hathaway 2010). The toroidal magnetic component is

concentrated at mid-latitudes (40◦ ≤ |θ| ≤ 70◦), as opposed to the low latitudes (5◦ ≤ |θ| ≤ 40◦)

suggested by the butterfly diagram, but does show a tendency for equatorial migration as each

half-cycle unfolds. On a time-latitude diagram such as Fig. 2 (top panel), this is seen in the strong

toroidal field concentrations, which take an elongated, elliptical shape, with the “major axis” tilted

towards the equator as the cycle is followed in time. In other words, throughout a cycle the latitude
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of peak large-scale toroidal magnetic field occurs at decreasing latitudes, until the cycle terminates

and the next one begins anew at higher latitudes.

The middle panel of Figure 2 shows time-radius slice of the same simulation run, extracted in

the southern hemisphere at latitude −45◦, where the toroidal field is strongest at the core-envelope

interface (cf. top panel). Note how polarity reversals begin well within the convection zone, at

depth r/R¯ ' 0.8, with radial drift and concentration of the magnetic field both upwards as well

as downwards all the way to the core-envelope interface, where the field reaches its peak strength.

The bottom panel of Figure 2 shows the corresponding time-evolution of the zonally-averaged

radial surface magnetic component, again in a time-latitude diagram. The surface field is char-

acterized by a well-defined dipole moment closely aligned with the rotational axis, with transport

of surface fields taking place from lower latitudes, and possibly contributing to the reversal of the

dipole moment. Comparing the three panels in Fig. 2 reveals that the dipole moment and deep-

seated toroidal component reach their peaks at the same time, indicating that they oscillate in

phase, without significant temporal lag.

Overall, the magnetic cycle characterizing the large-scale, zonally-averaged magnetic compo-

nent is quite regular, here with a half-period of 30 years, almost thrice the 11 years of the solar

cycle. Notice the good long-term synchrony maintained between the Northern and Southern hemi-

spheres, persisting despite significant fluctuations in the amplitude and duration of cycles in each

hemiphere. In keeping with solar tradition, we delineate the cycles from one polarity reversal to

the next. Note therefore that what we henceforth refer to as “cycle”, as numbered on the bottom

panel of Fig. 2, span in fact one half of a complete magnetic cycle. While the average period of our

cycles so defined is almost exactly 30 yr for our 11 cycles, this period can become as low as 25 yr

(simulated cycle 11) or as high as 35 (simulated cycle 4) from one cycle to the next.

2. Mean-field analysis

2.1. Scale separation and averages

Mean-field electrodynamics is predicated on the assumption that the fluid flow (u) and mag-

netic field (B) can be separated into “mean” (usually spatially large-scale and slowly varying in

time) and “fluctuating” (usually small-scale and rapidly varying) components:

u = 〈u〉 + u′ , B = 〈B〉 + B′ , (2)

where the angular brackets denote an intermediate averaging scale for which

〈u′〉 = 0 , 〈B′〉 = 0 . (3)

Given the well-defined large-scale axisymmetric component present in our simulation, it becomes

natural to associate the averaging scale with the zonal average defined through Eq. (1), so that the
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fluctuating components become defined as:

u′(r, θ, φ, t) = u(r, θ, φ, t) − 〈u〉(r, θ, t) , (4)

B′(r, θ, φ, t) = B(r, θ, φ, t) − 〈B〉(r, θ, t) . (5)

In practice, it is of course possible to define fluctuating flows and fields in this way for any global

MHD simulation run. However, for the mean-field electrodynamics approach to be mathemati-

cally well-posed and physically meaningful, it is essential for a good separation of scales to hold.

Accordingly, we first examine in some detail whether this is indeed the case for our simulation.

Figure 3 shows the mean and fluctuating toroidal magnetic field components resulting from

this decomposition applied to the toroidal field distribution plotted on the bottom panel of Fig. 1

(simulation time t = 230 yr, very near the peak of simulated cycle 8). At the base of the convection

zone, both components have similar strength, but the fluctuating component on Fig. 3 shows little

or no azimuthal structuring on scales comparable to the solar radius, nor any clear hemispheric

pattern. In particular, no sign of a significant non-axisymmetric dipolar or quadrupolar components

is visible.

This visual impression is confirmed by a modal decomposition in spherical harmonics, which

reveals significant power concentrated in axisymmetric (m = 0) mode of low, odd angular degree

`. This is illustrated on Figure 4, showing the result of a spherical harmonic decomposition of the

toroidal magnetic component at the core-envelope interface (r/R¯ = 0.718). The decomposition

was carried out at every time step, and then averaged for two sets of disjoint data blocks of temporal

width 900 days centered either on the epochs of polarity reversals (panel A, “cycle minima”),

or peak toroidal field (panel B, for “cycle maxima”). The results are displayed in the form of

color coding of the absolute values of the modal coefficients, in the plane defined by the angular

degree ` (horizontal) and azimuthal degree m (vertical). The diamond shape results from the usual

triangular truncation of azimuthal modes, needed to ensure comparable spatial resolution in the

latitudinal and azimuthal directions.

Comparing panels A and B of Figure 4 reveals significant power in the axisymmetric (m = 0)

angular modes of odd-` angular degree at cycle maximum, that all but vanish at times of cycle

minimum. This is particularly prominent for the dipolar (`, m) = (1, 0) mode. At high-` values,

on the other hand, power is broadly and more evenly distributed in modes of all azimuthal orders

m, and shows no clear variations with the phase of the cycle for the large-scale field. Indeed,

subtracting panel B from panel A, yielding panel C on Figure 4, reveals very little residual power

at high wavenumbers. This indicates that the cycle in the large-scale axisymmetric magnetic

field does not alter significantly the spectral properties of the small-scale, “turbulent” magnetic

component.

A different look at these data is presented on Figure 5, which shows time series of a few selected

spherical harmonic coefficients, spanning the full simulation run. The cycle shows up prominently

in the (`, m) = (1, 0) and (5, 0) modes, but the time series for m 6= 0 modes, as well as for even-`
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axisymmetric modes, have much lower amplitudes and show no sign of persistent cyclic variation.

This has been further verified by computing Fourier transforms of these various time series, which

show clear peaks at periods of ∼ 29 and ∼ 58 yr in the odd-` axisymmetric modes, but no peaks

and overall power levels inferior by over an order of magnitude for even-` and m 6= 0 modes.

Similar temporal patterns are observed within the convection zone and/or for the other magnetic

components. Overall, the above analyses then suggest that the decomposition embodied in Eqs. (4)

and (5) represents a viable Ansatz, at least for this simulation run.

2.2. The turbulent electromotive force

With the assumption of scale separation vindicated at least to some degree, our purpose is

now to identify and characterize the dynamo mechanism underlying the observed magnetic cycle

described above. The starting point of the analysis is the magnetohydrodynamical induction equa-

tion (e.g., Davidson 2001), describing the evolution of a magnetic field B subjected to the inductive

action of a flow field u in addition to Ohmic dissipation of the associated electrical current density:

∂B

∂t
= ∇ ×

[

u × B − η∇ × B
]

, (6)

where η = (µ0σe)
−1 is the magnetic diffusivity, inversely proportional to the electrical conductivity

σe (SI units are used throughout). Inserting Eqs. (2) and performing the zonal average introduced

earlier, and remembering that the averaging operator commutes with spatial derivatives pertaining

to the large spatial scales, one readily obtains:

∂〈B〉
∂t

= ∇ ×
[

〈u〉 × 〈B〉 + E − η∇ × 〈B〉
]

, (7)

where

E = 〈u′ × B′〉 (8)

is the mean electromotive force (hereafter EMF) due to the fluctuations about the large scale

magnetic field. Note that this mean turbulent EMF is generally nonzero, because the correlation

between the fluctuating flow and magnetic field does not necessarily vanish upon averaging, even

though u′ and B′ individually do by definition. For more details on some of the many subtleties

involved, see, e.g., Moffatt (1978); Rüdiger & Hollerbach (2004), Hoyng (2003), Ossendrijver (2003).

From the simulation results, it is straightforward to reconstruct u′ and B′ via Eqs. (4) and

(5), and then compute the EMF by performing the required cross product and zonal averaging at

every time step, as per Eq. (8). The result of this calculation is presented on Figure 6 for the r

(top), θ (middle) and φ (bottom) components of the EMF, in the form of time-latitude slices at

depth r/R¯ = 0.85 near the middle of the convection zone (left panels), where polarity reversals

are initiated (see Fig. 2), and meridional slices extracted at simulation time t = 112 yr, at the

peak of the fourth magnetic half-cycle (right panels). Note already how the EMF vanishes rapidly

as one moves below the core-envelope interface, as expected since convectively-driven turbulence
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disappears there. Otherwise the EMF pervades most of the convection zone. Despite being a very

noisy “signal”, on the largest spatial scales all EMF components exhibit a well-defined symmetry

(Er, Eφ) or antisymmetry (Eθ) about the equatorial plane. Note in particular that a φ-component of

the EMF positive (negative) in both hemisphere is precisely what is required to support a positive

(negative) dipole moment (cf. bottom panels on Figs. 2 and 6), as per the right-hand rule, since

under the MHD approximation the EMF drives an parallel electrical current density. Moreover,

reversing the direction of this EMF every half-cycle then amounts to reversing the sign of that

dipole moment, as observed in the simulation.

All EMF components show strongly reduced amplitudes in the equatorial regions. This can be

traced to a change in the topological character of convective fluid motions, which at low latitudes

tend to organize themselves in longitudinal stacks of large, latitudinally-elongated convective cells

approximately aligned with the rotational axis (see Fig. 1A in Ghizaru et al. 2010). These are

quite typical of these types of global convection simulations (see, e.g., Browning et al. 2006, Fig. 1;

Brown et al. 2010, Fig. 1; Käpylä et al. 2010, Fig. 2). Evidence of a quenching of the small-scale

flow components can also be found in the spatial distribution of the small-scale surface magnetic

field, which shows a significant decrease in both coverage and magnitude at very low latitudes (see,

e.g., Fig. 1B in Ghizaru et al. 2010).

The most striking global spatiotemporal feature visible on Fig. 6 is certainly the cyclic variation

of all EMF components, with a period identical to that of the cycle observed in the large-scale

magnetic field (cf. Fig. 2). Here the large-scale velocity field is roughly stationary over the entire

simulation, and the small-scale turbulent velocity field is also stationary in a statistical sense. Since

the EMF term depends only on the small-scale fluctuations about the large scale magnetic fields,

it is then not at all obvious a priori that the EMF should exhibit the same cyclic evolution as the

mean-field; the fact that it does already provides us with important clues as to the nature of the

large-scale dynamo operating in our simulation. More specifically, it suggests that the turbulent

EMF actually plays a key role in the production of the large-scale magnetic component. We now

turn to this question, using the mathematical machinery of mean-field electrodynamics.

2.3. The α-tensor

The essence of mean-field electrodynamics is to provide an expression for the EMF in terms of

the large scale magnetic field, so that the small scales (fluctuations) are effectively removed from

the problem. The procedure consists of a simple linear expansion of the EMF as a power series

about the large-scale magnetic field and its derivatives, i.e.

Ei = αij〈Bj〉 + βijk∂j〈Bk〉 + higher order derivatives , (9)

with summation implied over repeated indices. The tensors appearing on the RHS of this expression

and relating the EMF to the mean-field can depend on the properties of small-scale flow and field

fluctuations, but not on the mean field itself, a situation expected to hold only if the latter is too
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weak to impact the dynamics of the fluctuating flow. Notice here that since this expansion is linear

in the large-scale field, if that field exhibits cyclic properties, then so should the EMF, which is what

we observe (cf. Fig. 6). This is our central motivation for appealing to mean-field electrodynamics

to analyze the dynamo operating deep in the convection zone of our simulation.

The leading-order contribution in the right-hand side of Eq. (9) is usually named “α-effect”.

The second term in the expansion is responsible, among other effects, for turbulent diffusion. For our

first analysis however, we retain only the α-effect for simplicity. Owing to the rough stationarity of

the large-scale flows in the simulation, we also assume that αij is time-independent, an assumption

that will prove itself well-verified a posteriori. We thus write, as a first approximation

Ei(t, r, θ) = αij(r, θ)〈Bj〉(t, r, θ) . (10)

One can further decompose αij into symmetric and antisymmetric parts, such that the EMF may

be rewritten as

Ei = α(ij)〈Bj〉 +
(

γ × 〈B〉
)

i
, (11)

where

γi = −1

2
εijkαjk (12)

is called the general turbulent pumping velocity, because it effectively provides an additive con-

tribution to the mean, large-scale inductive flow in Eq. (7), although its physical origin lies with

the fluctuating, small-scale flow and magnetic field. The flow-like vector field γ so-defined is in

general non-solenoidal (∇ · γ 6= 0) and acts on the total magnetic field, with variations between

magnetic component subsumed into the off-diagonal terms of the symmetric part of the α-tensor

(see Ossendrijver et al. 2002 for a more thorough discussion).

2.4. Extracting the components of the α-tensor

A number of methods have been designed to measure the components of the α-tensor in

turbulent MHD simulations (e.g., Ossendrijver et al. 2001, 2002; Käpylä et al. 2006, 2009; Hubbard

et al. 2009; and references therein). These method have been designed in the context of MHD

simulations that do not produce a well-defined large-scale magnetic component, so that the latter

must be imposed externally —and artificially,— with the consequence that the α-tensor being

measured is not necessarily that characterizing the simulation prior to the application of the external

field. For more on these —and other— difficulties, see Brandenburg (2009), Cattaneo & Hughes

(2009), and references therein. In contrast, we are in the very advantageous position to have in

hand a simulation that does generate a large-scale magnetic field, in a manner consistent with the

dynamical interaction of flow and field on all numerically resolved spatial scales.

The procedure we employ here to extract αij from the simulation data differs from the ap-

proaches found in the literature, and we shall therefore first detail it. Essentially, we attack this

problem from an experimentalist’s point of view, i.e., we have (numerical) data in our possession,
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namely the EMF and the average magnetic field, and we wish to verify if these data match a specific

model, namely the α-effect parametrization of the EMF embodied in Eq. (10). This task therefore

amounts to a fitting problem, in other words the components of the tensor αij are calculated a

posteriori by minimizing the difference between the LHS and RHS of Eq. (10). We opt here for a

standard least squares fit, based upon singular value decomposition (see Press et al. 1992, §15.4).
We state results of various theorems without proof.

For a given component, say i = a, of the EMF at a fixed grid point1 (rb, θc), we define the

time dependent functions y(t) and Xk(t) as follows

y(t) = Ea(t, rb, θc) , (13a)

Xk(t) = 〈Bk〉(t, rb, θc) . (13b)

We also define

ak = αak(rb, θc) , (14)

which then allows us to rewrite the parametrization of the EMF as

y(t) =
3

∑

k=1

akXk(t) . (15)

Denoting by nt the number of time steps of our simulation, we define a merit function as

χ2 =

nt
∑

i=1

[

y(ti) −
3

∑

k=1

akXk(ti)
]2

, (16)

where ti is the value of the time coordinate at the ith step. The goals are to find the three parameters

ak that minimize the merit function, and to obtain an estimate of the goodness of fit. The method

we employ to carry out these two tasks simultaneously is the singular value decomposition of the

“design matrix” A, defined as

Aij = Xj(ti) . (17)

The design matrix therefore depends on the large scale magnetic field components. This matrix has

nt rows and three columns, and by virtue of a theorem of linear algebra, can always be decomposed

as follows

A = U · w · VT , (18)

where the matrix U is an nt-by-three column orthogonal matrix, w is a three-by-three diagonal

matrix containing the so-called “singular values”, and V is a three-by-three orthogonal matrix. The

key element is that the solution to the minimization of the merit function (16) is directly obtained

in terms of the three matrices U, V and w. The solution vector a = (a1, a2, a3) is given by

a = V · w−1 · UT · y , (19)

1Since the quantities considered in this section are constructed from azimuthal averages, our computational grid

is reduced to two spatial dimensions here.
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where the vector y = (y1, y2, ..., ynt), and therefore depends on the selected EMF component.

To construct the singular value decomposition of our design matrix, we use the algorithm and

routines of Press et al. (1992), as implemented in the IDL programming language. By repeating

this procedure for all three components of the EMF and for each of the Nr ×Nθ grid points (rb, θc),

we can calculate the complete tensor αij(r, θ).

Figure 7 shows the results of this fitting procedure over the complete 337 year simulation

interval. Each meridional slice encodes one component of the α-tensor, or combinations thereof.

The 3 × 3 structure of the subfigures reflects the 3 × 3 components of the tensor, with the top-

left to bottom-right diagonal corresponding to the diagonal components αrr, αθθ and αφφ. The

three meridional slice above this diagonal (top right) correspond to the off-diagonal elements of

the symmetric part of the α-tensor (indices within parentheses), while the three plots below the

diagonal represent the three independent components of the antisymmetric part of the tensor,

plotted here as components of the turbulent pumping velocity γ defined through Eq. (12). To

facilitate comparison, the same color scale is used on all meridional slices.

Although all components of the α-tensor are roughly of the same order of magnitude, the

strongest components are found to be αrr and αφφ, both antisymmetric about the equatorial plane.

The former is highly structured spatially, peaking in subsurface layers and in the equatorial regions

and with numerous sign changes in each hemisphere. The latter is spatially more homogeneous,

with sign changes only across the equatorial plane and across a near-spherical surface located above

the core-envelope interface, at r/R ' 0.76. Significant amplitudes are obtained in the off-diagonal

contributions, particularly α(rθ) and its associated pumping velocity γφ. This can be traced to the

development of persistent non-axisymmetric flow structures in the low-latitude portions of the outer

convection zone (see Fig. 2 in Ghizaru et al. 2010), which contribute a strong signal to the “small-

scale” flow component even after the azimuthally-averaged mean-flow is subtracted (viz. Eq. (4)).

These flow structures are also responsible for the strong low-latitude signal seen in αrr.

The αφφ component is of particular interest here, as it is the primary contributor to the

production of the large-scale poloidal magnetic component (cf. bottom panel on Fig. 2). Its first

important structural property is antisymmetry with respect to the equatorial plane, as expected for

cyclonic turbulence, where reflectional symmetry is broken by Coriolis forces (Parker 1955). Note

that the fitting method we use to measure the components of the α-tensor treats each hemisphere

independently, so that the high degree of antisymmetry observed here is a real characteristic of

the simulation, rather than a fitting artefact. In the Northern hemisphere, the αφφ component

is positive in the bulk of the convection zone and peaks at high latitudes, as expected in view

of the sense of twist imparted by Coriolis forces on diverging convective updrafts and converging

downdrafts (Parker 1955). The sign change near the base of the convecting layer has been observed

before in measurements of the α-tensor in other MHD simulations of convection (e.g., Ossendrijver

et al. 2001), and is associated with the rapid decrease of the turbulent intensity as one moves

downwards towards and into the convectively stable fluid layer underlying the convection zone.



– 13 –

The singular value decomposition method has the additional advantage to automatically pro-

vide the variance in the estimate of a given parameter ak. Denoting this variance by σ2
k, it is given

by

σ2
k =

3
∑

i=1

(

Vki

wii

)2

. (20)

In Fig. 8 (panel B), we show the standard deviation (square root of variance) σφφ corresponding

to the fitted parameter αφφ, reproduced on part A. For r < 0.72 R¯, we set the variance to zero

since in the stable zone below the convective zone in order to clearly display the structure of the

standard deviation in the convective zone. The reason behind this manipulation is that the EMF

and large scale magnetic field are both very weak below the convective zone, reducing greatly the

quality of the fit in that region2. Figure 8 indicates that even though αφφ peaks at high latitudes,

the absolute quality of the fit is actually best at mid-latitudes, where the EMF signal is strongest

(see Fig. 6), as expected. Nonetheless, at mid-convection zone depth the inferred values of αφφ

in polar regions deviate from zero by more than three standard deviations, leaving no doubt that

these values are physically meaningful. On the other hand, in the equatorial region delimited by

|θ| . 30◦ and 0.7 . r/R¯ . 0.8 the standard deviation is of the same order of magnitude as αφφ,

indicating a poorer fit in that area. This is simply due to the fact that both the EMF and the

toroidal large-scale field are small in that region, as can be seen on Figs. 2A and 6.

While the variance of the fit provided by the singular value decomposition is a useful, well-

defined tool to characterize the accuracy of the fit, other methods can provide complementary

information regarding the parametrization of the EMF. Here we demonstrate the quality of the

fit by looking at the ability of the α-effect parametrization to reproduce the observed EMF from

the α tensor and the large-scale magnetic field. In Fig. 9A, we plot a time-latitude diagram of the

residual between the observed EMF and the reconstructed EMF, i.e. the quantity

∆φ = Eφ − αφj〈Bj〉 , (21)

computed at depth r/R¯ = 0.85. It is quite remarkable to see that essentially no cyclic features

remain in ∆φ. Apart from the equatorial band where the EMF barely manifests itself, there are in

fact no clearly discernible structures in ∆φ. This implies that the α-effect parametrization performs

very well at capturing the origin of the cyclic features of the EMF, the remainder of the EMF being

essentially turbulent noise. This visual impression is confirmed by averaging latitudinally and

performing a Fourier transform of the resulting time series, to produce the power spectrum plotted

on Figure 9B. This spectrum is well represented by a shallow power law with logarithmic slope

−2/3, and the spectrum does not show any particular features or changes in slope at frequencies

corresponding to the cycle period of the large-scale field or its first few harmonics.

2Essentially, where both the EMF and 〈B〉 are weak, the fitting algorithm attempts to obtain αij by inverting a

problem that is numerically ill-posed. Schematically this amounts to solving α = δ/ε, with α of order unity, but δ

and ε being very small.
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2.5. Turbulent pumping

The three meridional slices under the diagonal on Figure 7 represents the components of the

turbulent pumping speed, as defined through Eq. (12). The vertical component γr is found to be

negative through most of the convective envelope, with upward pumping taking place only in the

subsurface layers. This is better viewed on Figure 10 showing radial cuts of γr extracted at latitude

+45◦ (panel A, solid line), and latitudinal cuts extracted at depth r/R¯ = 0.75 (panel B). This is

qualitatively similar to the results obtained by Ossendrijver et al. (2002; see their Fig. 5) in their

local cartesian simulations including rotation3. This downward pumping reaches significant speeds,

∼ 1m s−1 in the bottom half of the convective layers, except at very low latitudes where it all but

vanishes. Upwards pumping occurs at all latitudes for r/R¯ ≥ 0.9, except at very low latitudes

|θ| ≤ 15◦), where the γr > 0 region reaches almost to the base of the convecting layer (see Fig. 7,

central bottom meridional slice).

We also detect in our simulation a significant equatorward latitudinal pumping in the outer

two thirds of the convective envelope (see bottom left meridional slice on Fig. 7 and dotted lines on

Fig. 10A and B), particularly prominent at mid-latitudes where it reaches ∼ 1m s−1 in the middle

of the convection zone. Both the direction and magnitude of this latitudinal pumping velocity are

similar to those measured in the local simulations of Ossendrijver et al. (2002). Again like these

authors, we also observe significant poleward latitudinal pumping in the subsurface layers of the

simulations, with speeds approaching 2 m s−1 at latitude |θ| ' 60◦. Given the ∼ 30 yr duration of

our cycles, it is therefore quite possible that the poleward drift and intensification of the surface

magnetic field seen on the bottom panel of Fig. 2 is driven at least in part by turbulent pumping,

as proposed already by Ossendrijver et al. (2002).

It is also interesting to compare the turbulent pumping velocity to the drift speed of the

large-scale toroidal magnetic field visible on the top and middle panels of Figure 2. The net drift

speed of large-scale magnetic structures is influenced by other physical processes, notably turbulent

diffusion. Indeed, if turbulent pumping plays a role in this drift its speed should still have values of

the same overall order-of-magnitude as to the observed drift speeds. For most cycles, the equatorial

drift of the toroidal component at the core-envelope interface (Fig. 2, top panel), as measured by

tracking the latitude of peak mean toroidal magnetic field at any given time, spans 25 to 30 degrees

in 20 to 25 yr years, depending on individual cycles. This yields drift speeds in the range 0.3–0.5m

s−1. Both the magnitude and direction of this drift compare well to the mid-latitude latitudinal

turbulent pumping speed |γθ| ' 0.2m s−1 at r/R¯ = 0.718, as plotted on Fig. 10A. Likewise,

measuring the slope from r/R¯ = 0.8 to 0.7 of the polarity reversal line on the middle panel of

3Note that although we both use right-handed coordinate systems, the pseudo-radial z-direction in Ossendrijver et

al. (2003) points into the domain, while our radial r-direction points outwards; therefore, a positive γr does correspond

to a radially upwards flow component in our simulation, while a positive γz defines a downward flow in Ossendrijver

et al. (2003). Our respective ”latitudinal” units vectors are however oriented in the same way, i.e. Northward, so

that our γθ is directly comparable to their γx.
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Fig. 2 leads to a radial drift speed ∼ −0.1m s−1, only a factor of five smaller than the mid-latitude

values of γr in this range of depth, as plotted on Fig. 10A. All of this suggests that turbulent

pumping may well play an important role in the spatiotemporal evolution of the large-scale, mean

magnetic field building up in the simulation.

2.6. α-quenching and cycle amplitude saturation

We next turn our attention to the possible time-dependence of the tensor αij . Our entire

analysis so far relies on the assumption that αij depends only on position and not time. As we

have just shown, this hypothesis works fairly well in practice, in the sense that it provides an

accurate parametrization of the electromotive force in terms of the large scale magnetic field. At a

more physical level, there are however reasons to believe that the α-effect could vary in time via a

nonlinear dependence on the magnetic field strength.

In the solar context, the α-effect can arise via the systematic twist imparted by cyclonic con-

vection on a pre-existing large-scale magnetic field. This idea was introduced by Parker (1955), who

argued that it could circumvent Cowling’s theorem by providing a viable regeneration mechanism

for the sun’s large-scale poloidal magnetic component. Because magnetic tension should tend to

resist any twisting by the flow, it has been argued that Parker’s mechanism can only operate up to

the point where the large-scale magnetic field reaches local equipartition with the turbulent fluid

motions. This has led to the introduction of a number of simple so-called α-quenching algebraic

formulae, e.g.,

αij =
α0

ij

1 + (〈Bj〉/Beq)2
, (22)

where Beq is the equipartition magnetic field strength (see also Rüdiger & Kitchatinov 1993).

In order to explore if the α-effect varies from one cycle to the next, in a manner related to the

strength of the mean magnetic field, we refine our analysis by breaking up the simulation data into

contiguous blocks each spanning one quarter of a full magnetic cycle. One set of blocks is centered

on time of cycle maximum, when the large-scale magnetic field reaches peak strength, and a second

set of interweaved blocks are centered on times of polarity reversals, where the large-scale magnetic

component reaches its minimum. Because of the regularity of the cycles in the simulations (see

Fig. 2), and of the fact that the mean poloidal component oscillates essentially in phase with the

mean toroidal component, such a partition of the simulation can be unambiguously defined and

readily carried out. We then apply the fitting procedure described previously to each block of data

independently, which yields a sequence of functions {αij(r, θ, tc)}, where tc is the time around which

a given half-cycle is centred. To display the results of this calculation as concisely as possible, for
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each tc we calculate the spatially-averaged quantities αc and σc defined as follows

αc =
1

V

∫ rmax

rmin

∫

hem.

αφφ(r, θ, tc) r2 cos θ dr dθ , (23a)

σc =
1

V

∫ rmax

rmin

∫

hem.

σφφ(r, θ, tc) r2 cos θ dr dθ , (23b)

where rmin and rmax are chosen to include the convective zone, but not the stable zone nor the

surface of the simulation, in order to capture the contributions from regions where the α-effect is

expected to operate substantially. The quantity V is the total integration volume. The latitudinal

integration is restricted to either the north or south hemisphere (to avoid uninteresting cancella-

tions, as the sign of αφφ flips from one hemisphere to the other). The results of those calculations

are displayed in Fig. 11, where each histogram-type column represents one half-cycle. The total

width of error bars is given by 2σc. Although the error bars are quite large4, the actual values of

αc do not vary substantially at all in both hemispheres throughout the entire simulation. Similar

results are obtained for the other components of the α-tensor. The αφφ component does show a very

weak (r = −0.27) anticorrelation with the mean magnetic field strength, but even there the range

of variation is only about one quarter of the standard deviation. All this seems to indicate that

there is no significant α-quenching occurring in our simulation, i.e. the value of αφφ is insensitive

to the value of the large-scale magnetic field.

3. Relationship to mean-field dynamo models

The scale separation and azimuthal averaging introduced earlier jointly form the basis of the so-

called mean-field dynamo models, which have been and continue to be used extensively in studying

solar and stellar magnetic activity cycles. If one assumes at the onset that the large-scale magnetic

field 〈B〉 is axisymmetric, then it can be expressed as the sum of a toroidal component and poloidal

component defined through a purely azimuthal axisymmetric vector potential 〈A〉 = 〈Aφ〉êφ, as:

〈B〉(r, θ, t) = 〈Bφ〉(r, θ, t)êφ + ∇× (〈Aφ〉(r, θ, t)êφ) . (24)

One can further assume that the mean flow is also axisymmetric, and comprised only of differential

rotation, i.e.,

〈u〉(r, θ, t) = $Ω(r, θ, t)êφ , (25)

where $ ≡ r cos θ and Ω is the (axisymmetric) angular velocity. Under those assumptions, Eq. (7)

for the mean field is then readily separated as:

∂〈Aφ〉
∂t

= η

(

∇2 − 1

$2

)

〈Aφ〉 + Eφ , (26)

4Since αφφ(r, θ, tc) is constructed from a substantially smaller data set (200 time steps) than the full αφφ shown

in Fig. 8, which is extracted from the full time span of the simulation, it is no surprise that the variance associated

with αφφ(r, θ, tc) is much larger than that associated with the full αφφ. This explains why the error bars are so large

in Fig. 11.
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∂〈Bφ〉
∂t

= η

(

∇2 − 1

$2

)

〈Bφ〉 + $[∇× (〈Aφ〉êφ)] · ∇Ω + êφ · [∇× E] , (27)

for constant η and under the Coulomb gauge ∇ · 〈A〉 = 0.

Equations (26)–(27) are known as the mean-field dynamo equations, and models based on

these equations (or variations thereof) remain to this day the workhorse of solar cycle modelling,

interpretation, and even prediction (see, e.g., Charbonneau 2010, and references therein). They

show the critical importance of the mean electromotive force in such axisymmetric mean-field

models; the EMF provides a source term on the RHS of the evolution equation for 〈Aφ〉, without

which dynamo action is impossible, as per Cowling’s theorem. It also provides a source term for the

toroidal component 〈Bφ〉, but here it is less crucial because differential rotation already provides a

source contribution, provided a poloidal magnetic component is present. The so-called αΩ dynamo

model results from dropping the α-effect term in Eq. (27), while dropping instead the differential

rotation shearing term yields the α2 model, in which the turbulent EMF is the sole inductive

mechanism. Keeping both terms leads to the α2Ω mean-field dynamo model.

3.1. Contributions to toroidal field induction

To which (if any) of these three possible mean-field model categories could we identify our

simulation? The answer clearly hinges on the relative importance of the 〈u〉×〈B〉 and 〈u′×B′〉 on

the right-hand side of the mean-field induction equation (7). In keeping with our “experimental”

approach, we simply use the mean and fluctuating flow and magnetic field components defined

previously do directely calculate, using simple centered finite differences, the azimuthal components

of both ∇× (〈u〉×〈B〉) and ∇×〈u′×B′〉, which then measures the rate of change of the magnetic

field associated with each inductive contribution.

Figure 12 shows the results of this exercise, in the form of time-latitude diagrams for the

azimuthal component of each of these two contributions extracted near the base of the convection

zone (r/R¯ = 0.74). At this depth differential rotation is the primary contributor to the total

mean flow. The turbulent EMF contribution (top panel) is seen to be spatiotemporally noisier than

induction by the mean flow acting on the mean field (bottom panel). This was to be expected, since

we are here taking spatial derivatives of a quantity, the turbulent EMF, which is itelf calculated

from the large scale average of products of small scale, highly turbulent fields. Nonetheless, at

any phase of the cycle both contributions are here clearly of the same overall order of magnitude.

Furthermore, constructing similar diagrams at other depths indicate that this remains the case

throughout the bulk of the convection zone. In the terminology of mean-field electrodynamics, one

would then conclude that in this one specific simulation, the large-scale magnetic is sustained by

an α2Ω dynamo.
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3.2. Relating the α-tensor to kinetic and magnetic helicities

The mathematical machinery of mean-field electrodynamics goes well beyond the characteri-

zation of the turbulent EMF in terms of the mean magnetic field. In particular, for turbulent flows

satisfying certain statistical properties and operating in certain specific physical regimes, it offers

the mean of calculating the form of the α-tensor (see, e.g., Moffatt 1978). In the case of a turbulent

flow that is isotropic and homogeneous but lacks reflectional symmetry, the α-tensor reduces to the

diagonal form αδjk, with

α = −τ

3
hv , (28)

where τ is the correlation time of the turbulence, and hv is the mean kinetic helicity associated

with this turbulent flow:

hv = 〈u′ · ∇ × u′〉 . (29)

The key result here is that albeit for the sign difference, the α-effect coefficient is directly propor-

tional to the kinetic helicity, a quantity readily computed a posteriori from the simulation output.

The result of such a calculation is plotted on Figure 8C, with the kinetic helicity having been aver-

aged temporally as well as azimuthally over the complete time span of the simulation. Except for

the sign difference, the degree of resemblance with the αφφ tensor component plotted on panel A is

quite striking. Both functionals are strongly peaked at very high latitudes, and in each hemisphere

only show a sign change near the base of the convection zone. The most prominent difference is

found at low latitudes, where hv shows a secondary peak in the middle of the convection zone that

is absent in the αφφ profile. The αθθ component (see Fig. 7) is also tolerably well represented by

the negative of the mean kinetic helicity, the most prominent discrepancy being that αθθ peaks

at mid-latitudes. The αrr diagonal component is that which shows the least similarity with the

mean kinetic helicity, presumably because it is more sensitive to the break of homogeneity on which

Eq. (28) is predicated, induced by stratification of the background state and/or upper boundary

condition.

Equation (28) is predicated on a number of other strong assumptions, including the requirement

that the small-scale turbulent flow remains entirely unaffected by the magnetic field. Once the

magnetic field becomes dynamically significant, it is expected that it will alter the small-scale

flow giving rise to the α-effect. Based on a set of local cartesian incompressible MHD simulations

operating in the strongly nonlinear regime, Pouquet et al. (1976) suggested that Eq. (29) should

be replaced by

α = −τ

3
(hv − hB) , (30)

where hB is the mean current helicity, generalized to our anelastic MHD formulation as:

hB =
1

µ0ρ
〈B′ · ∇ × B′〉 . (31)

The physical link between kinetic and current helicity becomes more transparent upon noting that

B′/
√

µ0ρ is the Alfvén velocity, measuring the propagation speed of transverse MHD waves for



– 19 –

which magnetic tension provides the restoring force; what Eq. (30) expresses is simply that magnetic

tension tends ot oppose any twisting of magnetic fieldlines by the small-scale turbulent flow. This

quantity is plotted on Figure 8D, again as an azimuthal and temporal average spanning the full

simulation duration. This magnetic contribution to the α-coefficient is found to be significantly

smaller than its kinetic counterpart, by a factor of about ten. The strong peaks straddling the base

of the convection zone at mid-latitude in both hemispheres are associated with the strong mean

magnetic field building up in these regions, which, acted upon by the small-scale turbulent flow,

feeds the production of small-scale current helicity.

The limited applicability of Eq. (30) to our simulation notwithstanding, the weak contribution

of the specific current helicity as compared to the kinetic helicity term suggests that the dynamical

impact of the small-scale magnetic component on the small-scale flow is correspondingly weak. Re-

call that we also demonstrated, in §2.6, that the α-tensor components does not show any significant

variation with the strength of the large-scale magnetic component. This would suggest that the

saturation of the dynamo amplitude must be achieved via a different mechanism, such as magnetic

backreaction on the large-scale flow.

4. Discussion and conclusion

We have investigated the mode of large-scale dynamo action taking place in the global im-

plicit large-eddy simulation of the solar convection zone reported upon in Ghizaru et al. (2010).

Motivated by the presence of a strong and well-defined axisymmetric magnetic component arising

in the simulation, we defined the large-scale magnetic field as the longitudinal average of the to-

tal simulated magnetic field, with the residual produced by subtracting this average component

from the total field defining the small-scale, fluctuating magnetic component. Zonally averaging

the cross-correlation of the latter with the corresponding small-scale flow component then allows

the calculation of a turbulent electromotive force, and its development in terms of the large-scale,

zonally-averaged component allows to calculate the components of the α-tensor. The α-tensor com-

ponents so calculated were found to compare well to a number of results obtained in local cartesian

simulations with an externally imposed large-scale magnetic component. Noteworthy results in-

clude: a positive αφφ component in the Northern solar hemisphere, peaking at high latitude and

changing sign near the base of the convecting shell; downward turbulent pumping in the bulk of the

convection zone, except in a thin subsurface layer where pumping is upward-directed; significant

latitudinal pumping, equatorward at mid- to low-latitude in the bulk of the convecting layer, but

poleward in the high-latitude, subsurface layers.

Because our simulation generates its own large-scale magnetic field, no such field need be

imposed externally to measure the α-effect. The α-effect that we do measure is then dynamically

consistent with the nonlinear interaction of flow and field at all numerically resolved spatial and

temporal scales. However, our results are physically meaningful only to the degree that the scale

separation procedure used to divide the total flow and field into mean and fluctuating components
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is applicable to our simulation results. The modal analysis described in §2.1 suggests that it is.

Moreover, Figure 9 provides additional empirical evidence that something closely akin to the α-

effect of mean-field electrodynamics offers an adequate representation of the turbulent electromotive

force arising in the simulation.

The mean-field analysis reported upon in this paper relies entirely on a posteriori calculations

of cross-correlations between the small-scale flow and magnetic field, as defined via Eqs. (4)–(5) and

as resolved by our computational grid. The implicit presence of dissipative terms at the level of the

MPDATA advection scheme at the core of EULAG has been shown, in the context of purely hydro-

dynamical simulations, to mimic subgrid dynamical processes such as self-similar energy cascade

(Domaradzki et al. 2003; Margolin et al. 2006; Margolin & Rider 2007). Evidently, the smallest

resolved scales in our simulation have been influenced by these subgrid effects, and therefore so

has our reconstructed EMF; yet the overall dynamo picture emerging from our analysis shows re-

markable internal self-consistency, which suggests that MHD subgrid effects, if present, are not the

primary direct drivers of cyclic evolution on large spatial scales.

The simultaneous presence of globally well-structured α-effect and significant internal differ-

ential rotation suggests that our simulation could be operating as what is known in mean-field

electrodynamics as an αΩ dynamo. This inference is buttressed by a number of simulation fea-

tures, notably the fact that the in-phase (or nearly so) production of a positive large-scale dipole

moment from a positive toroidal component is what is expected of kinematic αΩ dynamo models

having the angular velocity outwardly increasing on cylindrical isocontours and αφφ > 0 in the

Northern solar hemisphere (see Stix 1976). Oscillatory behavior has been shown to be possible also

in linear α2-type models, i.e., in the complete absence of differential rotation, provided the α-effect

has sufficiently steep radial variations, including sign changes (Stefani & Gerbeth 2003). Such os-

cillatory α2-type solutions were recently identified in the helically-forced MHD simulations of Mitra

et al. (2010). These authors also presented specific examples showing that such externally-forced

α2 dynamo models could also exhibit latitudinal propagation of the azimuthal large-scale magnetic

component. Given the rather complex spatial variations of our measured α-tensor components (see

Fig. 7), it then remains possible that the α-effect is the primary driver of the polarity reversals

and mild equatorward propagation of the deep-seated mean magnetic component observed in our

simulation. Then again, the comparable magnitudes of the small-scale and large-scale contributions

to the φ-component of the induction term (cf. Fig. 12A and B) would rather point to the so-called

α2Ω dynamo, in which shearing by the large-scale flow and the turbulent EMF both contribute to

the regeneration of the large-scale toroidal magnetic component. Unless differential rotation is very

weak, such dynamos behave qualitatively like αΩ dynamos. In particular, they also support travel-

ling dynamo waves propagating according to the Parker-Yoshimura sign rule (see, e.g., Choudhuri

1990; Charbonneau & MacGregor 2001). At a given turbulent intensity, the distinction between

these three classes of models therefore hinges on the magnitude of differential rotation in the region

where dynamo action is taking place.

Interestingly, the pole-to-equator angular velocity contrast in a purely hydrodynamical simu-
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lation using the same stratification and thermal forcing as in Ghizaru et al. (2010) is much closer

to solar, indicating that the magnetic field —both small-scale and large-scale— has a significant

impact on the dynamics of large-scale flow building up in the simulation. A similar behavior was

observed already in the simulations of Gilman (1983), and carried over also to the simulations of

Browning et al. (2006). Assume for the sake of the discussion that a stronger, solar-like internal

differential rotation could be produced in our simulation, e.g., by introducing a latitudinal gradient

in the thermal forcing, as done in Miesch et al. (2006) and Browning et al. (2006). In kinematic

αΩ mean-field models operating close to criticality, the cycle frequency is found to increase as a

power, usually close to unity, of the so-called dynamo number D, defined as

D =
α0(∆Ω)R3

η2
T

, (32)

where R is a measure of the size of the dynamo region (often taken as the solar/stellar radius), α0

measures the magnitude of the α-effect, ∆Ω that of the differential rotation, and ηT is the turbulent

diffusivity value used in the model. Consider now our simulation; assuming that ramping up ∆Ω

by a factor of three can be achieved without affecting too much the EMF or turbulent diffusivity,

Eq. (32) would then predict a decrease of the cycle period by a factor of ∼ 3, which would bring

it down to the solar value. This would alleviate simultaneously two of the primary failings of

the present simulation as compared to the solar cycle, namely the latitudinal surface differential

rotation being too weak, and the cycle period being too long. On the other hand, the fact that the

large-scale poloidal and toroidal components oscillate almost exactly in phase, may well lie outside

the reach of these types of global MHD simulations. Modelling of the solar surface magnetic flux

evolution (e.g. Wang & Sheeley 1991; Schrijver et al. 2002; Baumann et al. 2004) has shown that

the poleward transport of magnetic decay products of sunspots and active regions by supergranular

diffusion and the poleward meridional flow is an important driver of polar field reversals. There

is of course nothing equivalent to decaying active regions in our simulations, so in retrospect an

incorrect timing of surface polar field reversals is perhaps not exceedingly worrisome.

The question of cycle amplitude saturation also merits further investigation. The analysis

of §2.6 already suggests that nothing akin to classical α-quenching by the mean magnetic field

is taking place in the simulation, and that of §3.2 suggests that quenching by the small-scale

magnetic component is also insignificant. Further insight can be gained by examining the relative

contributions of the small- and large-scale flow and magnetic field to the global specific energy

budget. We simply define these contributions as volume averages over the full simulation domain:

E(〈u〉) =
1

2

∫

V

〈u〉2dV , (33)

E(u′) =
1

2

∫

V

(u′)2dV , (34)

E(〈B〉) =
1

µ0

∫

V

ρ−1〈B〉2dV , (35)
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E(B′) =
1

µ0

∫

V

ρ−1(B′)2dV , (36)

with 〈u〉2 = 〈u〉 · 〈u〉, etc. The comparison between these various contributions is carried out

pictorially on Fig. 13, in the form of time series spanning the full simulation run. The cycle stands

out as a prominent cyclic variation in the energy contribution of the large-scale magnetic field,

which varies by a factor 2—3 between epochs of cycle “maxima” and “minima”. Interestingly, the

energy contributions of the small-scale flow remain remarkably steady in comparison. Recall that

the requirement for u′ to be independent of 〈B〉 was in fact a sine qua non condition for Eq. (9) to

be physically meaningful. Even though it is defined globally, the steadiness of the E(u′) time series

is consistent with the conclusion already drawn on the basis of Fig. 11, namely that the α-tensor is

not affected by the presence of the large-scale magnetic field. In contrast, the small-scale magnetic

energy E(B′) does show some in-phase variations with E(〈B〉), which probably indicates that our

scale separation breaks down at some level. Detailed examination of the modal decomposition

indicates that this occurs primarily below the core-envelope interface, and therefore the impact on

the calculation of the turbulent EMF and α-tensor component in all likelihood remains small.

Things become more interesting with the kinetic energy associated with the large-scale flow,

which does show a clear cyclic variation, approximately in anti-phase with the large-scale magnetic

energy for most cycles; this suggests that dynamo saturation takes place via magnetic backreaction

on the large-scale flow. This inference also finds support in the fact that the overall level of

differential rotation in the simulation, as measured, e.g., by the pole-to-equator angular velocity

contrast, is smaller by a factor of three than the same constrast materializing in an unmagnetized,

purely hydrodynamical version of the simulation under the same forcing parameters. It remains to

be investigated whether magnetic backreaction on the large-scale flow is mediated by the Lorentz

force component associated with the large-scale magnetic field (the so-called Malkus-Proctor effect),

or through small-scale Maxwell stresses, either directly or through quenching of the small-scale

Reynolds stresses powering the large-scale flow (sometimes refered to as Λ-quenching; see, e.g.,

Kitchatinov & Rüdiger 1993; Rempel 2006; and references therein).

Another intriguing question relates to the mechanism(s) responsible for the equatorward prop-

agation of the sunspot activity belts in the course of the cycle. If sunspots are assumed to originate

from the destabilisation and vertical rise of toroidal magnetic flux ropes stored immediately be-

neath the solar core-envelope interface, then the observed equatorward drift should reflect a similar

drift in the deep-seated toroidal magnetic components from which these flux ropes are believed to

form. The weak equatorial propagation visible on the top panel of Fig. 2 amounts to a drift speed

in the range 0.3–0.5 m s−1, while in the sun this speed is estimated at 1 m s−1. In the simulation

considered here, a weak positive radial differential rotation is sustained at mid to low-latitudes at

the core-envelope interface. In conjunction with a negative αφφ at the base of the envelope (see

Fig. 7, bottom right meridional slice), we then have αφφ × dΩ/dr < 0, which should then lead to

equatorward propagation of the dynamo wave as per the Parker-Yoshimura sign rule. Then again,

our simulation is also characterized by a mean meridional flow component which, at mid-latitude at

the core-envelope interface, is equatorward and reaches a few tenths of meters per second, compa-
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rable to the drift speed infered from Fig. 2. Moreover, as discussed in §2.5 the latitudinal turbulent

pumping at the base of the envelope is equatorward and also reaches a few tenths of meters per

second. Because the large-scale differential rotation and meridional flow both show significant tem-

poral variations in phase with the cycle of the large-scale magnetic field, deciding whether it is the

large-scale flows that drive the magnetic cycle, of the magnetic field that propels the flows, again

requires a complete and detailed investigation of the dynamical balance arising in the simulation.

Such an analysis is now underway, and will be reported upon in a future paper.
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Fig. 1.— Temporal sequence of the toroidal magnetic component extracted at the core-envelope

interface (r/R¯ = 0.718) in the 3D MHD simulation presented in Ghizaru et al. (2010), plotted

in Mollweide projection. The sequence runs from top to bottom, and covers a time interval cor-

responding to a half-cycle, temporally centered on a polarity reversal. The color scale codes the

magnetic field strength, in Tesla. [We will make this available as an animation supplement for the

online version]
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Fig. 2.— Spatiotemporal evolution of the zonally-averaged magnetic field in the 3D MHD simu-

lation of Ghizaru et al. (2010). Top panel: time-latitude diagram of the zonally-averaged toroidal

magnetic component at the core-envelope interface (r/R¯ = 0.718); middle panel: corresponding

radius-latitude diagram, extracted at latitude −45◦ in the southern hemisphere. The dashed line

indicates the core-envelope interface; bottom panel: time-latitude diagram of the zonally-averaged

surface radial field (r/R¯ = 0.96), with magnetic half-cycles numbered from minima ot minima, as

with the sunspot cycles. The color scale codes the magnetic field strength, in Tesla.
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Fig. 3.— Latitude-longitude Mollweide projection of the zonally averaged toroidal magnetic com-

ponent (top), and associated small-scale fluctuating toroidal component (bottom), as defined by

Eq. (5), extracted at a depth corresponding to the core-envelope interface at simulation time

t = 230, near the peak of magnetic half-cycle number 8 (see Figure 2). The sum of these two

components is the total toroidal field distribution plotted on the bottom panel of Fig. 1.
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Fig. 4.— Spectral distribution of modal amplitudes for the toroidal magnetic component at the

core-envelope interface in the simulation, r/R¯ = 0.718. The unsigned values resulting from a

standard spherical harmonic decomposition were averaged over two set of disjointed blocks centered

over cycle minima (panel A) and maxima (panel B), respectively. Panel C results from subtracting

panel A from panel B, and shows the amplitude distribution associated with the large-scale magnetic

component, which is concentrated primarily in the (`, m) = (1, 0) and (5, 0) modes. The color scale

spans two orders of magnitude, in constant logarithmic increments.
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Fig. 5.— Time series of a few selected spherical harmonic coefficients, as labeled, over the full

simulation run. While the cycle shows up prominently in axisymmetric (m = 0) modes of low, odd

angular degree `, at high wavenumber the time series show no clear cyclic variations.



– 31 –

Fig. 6.— The three components of the turbulent EMF 〈u′ × B′〉. The left column shows time-

latitude slices extracted at the middle of the convection zone (depth ∼ r/R¯ = 0.85), while the right

column shows snapshots of the spatial variations in meridional planes, at the peak of simulate cycle

4. For the purpose of constructing the time-latitude diagrams, the simulation was undersampled

at intervals of 10 solar days (' 0.82 yr).
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Fig. 7.— The components of the α-tensor, plotted in meridional plane. The color scale encodes the

magnitude, in m s−1, and is the same for all plots. The three plots along the diagonal correspond to

αrr, αθθ, and αφφ; the three plots above the diagonal to the corresponding off-diagonal component

of the symetric part of the tensor, and the three plots below the diagonal to the three components

of the turbulent pumping velocity, as labeled and directly related to the three non-zero component

of the antisymmetric part of the full α-tensor via Eq. (12). The fitting procedure treats each

hemisphere separately, so that the high degree of symmetry or antisymmetry about the equatorial

plane characterizing the various tensor components is not a fitting artefact.
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Fig. 8.— Meridional slice plots of (A) αφφ, replotted directly from Figure 7; (B) its standard

deviation as returned by the fitting procedure based on singular value decomposition, purposefully

plotted using the same color scale as in A even though negative values are here meaningless. The

variance is artificially set to zero below the core-envelope interface; (C) temporally- and zonally-

averaged kinetic helicity; (D) temporally- and zonally-averaged specific current helicity. The dashed

circular arc indicates the core-envelope interface.
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Fig. 9.— (A) Time latitude diagram of the EMF residual defined by Eq. (21), constructed on a

sphere of radius r/R¯ = 0.8. (B) Power spectrum of the residuals of part (A) now averaged in

latitude to produce a simple time series. The sloping red line is a guide to the eye, showing a

power-law spectrum with logarithmic slope −2/3. The vertical line segment originating from the

abcissa indicate the frequencies corresponding to the primary magnetic cycle (full period 59.8 yr),

and its first few harmonics.
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Fig. 10.— (A) Radial and (B) latitudinal cuts of the radial (solid lines) and latitudinal (dashed

lines) turbulent pumping velocity components, extracted at latitude 45◦ in (A), and at depth

r/R¯ = 0.76 in (B). Radial pumping is downward in the bulk of the convecting layers, except

near the surface, while latitudinal pumping is equatorward at mid to low latitudes. See also the

bottom-left (γθ) and and bottom-middle (γr) panels on Fig. 7.
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Fig. 11.— Temporal variation of the spatially-averaged αφφ tensor component, computed sep-

arately in each hemisphere according to Eq. (23b); this yields positive (negative) values in the

Northern (Southern) solar hemisphere. The darker shading corresponds to blocks centered on

times of maxima in 〈B〉, and the lighter shades to interleaved blocks centered on times of polarity

reversals. The error bars are computed from the variance returned by the SVD fitting algorithm,

via Eq. (20). Qualitatively similar results are obtained for other α-tensor components, i.e., no

significant variation between epochs of cycle maxima and minima.
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Fig. 12.— Time-latitude diagrams for the azimuthal components of the inductive contributions ∇×
〈u′×B′〉 (top panel) and ∇× (〈u〉×〈B〉) (bottom panel), constructed at depth r/R¯ = 0.74, near

base of the convection zone. Although the contribution of the turbulent EMF is spatiotemporally

noisier, both contributions are here roughly of the same order of magnitude.
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Fig. 13.— Time series of the four contributions to the global energy budget, as defined via Eqs. (33)–

(36), as labeled. The 30 yr cycle shows up prominently in E(〈B〉), as it of course should, and also

in E(〈u〉) but more weakly in E(B′) and hardly at all in E(u′). Note also how the large-scale flow

and field are globally within a factor of two of energy equipartition at times of cycle maximum.

Numbering of simulated half-cycles as on Fig. 2.


