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ABSTRACT

We report on a global magnetohydrodynamical simulation of the solar convection zone, which
succeeds in generating a large-scale axisymmetric magnetic component, antisymmetric about the
equatorial plane and undergoing regular polarity reversals on decadal timescales. We focus on
a specific simulation run covering 175 yr, during which 5 polarity reversals are observed, with a
mean period of 32 yr. Time-latitude slices of the zonally-averaged toroidal magnetic component
at the base of the convecting envelope show a well-organized toroidal flux system building up
in each solar hemisphere, peaking at mid-latitudes and migrating towards the equator in the
course of each cycle, in remarkable agreement with inferences based on the sunspot butterfly
diagram. The simulation also produces a large-scale dipole moment, varying in phase with the
internal toroidal component, suggesting that the simulation may be operating as what is known
in mean-field theory as an αΩ dynamo.

Subject headings: Convection — MHD — Sun: magnetic fields — Sun: cycle

1. Numerical simulations of convection
and the solar dynamo

It is now generally agreed upon that the solar
activity cycle ultimately owes its existence to the
inductive action of fluid flows pervading the so-
lar interior; cf. Charbonneau (2005). In view of
the physical conditions therein, the associated dy-
namo mechanism is believed to be well-described
by the MHD equations — cf., Priest 2000, Goed-
bloed and Poedts 2004 — but the turbulent nature
of these internal flows yields a computationally
challenging problem. Gilman (1983) and Glatz-
maier (1984, 1985) produced the first large-scale
numerical simulations resulting in cyclic dynamo
action in the solar convection zone, but in view of
computing limitations their groundbreaking sim-
ulations operated in physical parameter regime
rather far removed from solar interior conditions.
Following the advent of high-performance comput-
ing, parallelized versions of the Glatzmaier sim-
ulation model (Clune et al. 1999) made possible

much higher resolution runs attaining a strongly
turbulent regime (Miesch et al. 2000). Dynamo
action in these simulations proved very efficient at
producing small-scale magnetic fields, but failed
to generate a spatially well-organized large-scale
component, let alone equatorward migration and
polarity reversals (Brun et al. 2004). Further sim-
ulations showed that towards this end the presence
of a stably stratified tachocline-like layer, where
significant rotational shear could persist, allowed
the buildup of a strong, large-scale magnetic com-
ponent, antisymmetric about the equator and per-
sistent on yearly timescales (Browning et al. 2006).
However, no polarity reversals were observed over
the 8 yr time span of these simulations1.

Herein, we report on a series of global MHD
simulations of the solar convection zone (SCZ),
conceptually similar to those referenced above,

1M.K. Browning (personal communication) informs us that
subsequent to the publication of the Browning et al. (2006)
paper their simulations were extended to 30 years, still
without producing any hint of polarity reversal.
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that do produce well-organized large-scale mag-
netic fields undergoing regular cyclic polarity re-
versals on decadal timescales.

2. Model formulation

Our global model integrates the anelastic form
of the MHD equations (Glatzmaier 1984) in a
thick, rotating spherical shell of electrically con-
ducting fluid. We use a modified version of the
general-purpose hydrodynamical simulation code
EULAG (cf. Prusa et al 2008 for a review) in
which we have introduced magnetic fields and
a solar-like stratification of the ambient state.
Our overall simulation setup is similar to that
in Browning et al. (2006). The solution domain
spans the range 0.61 ≤ r/R� ≤ 0.96, covering 3.4
density scale heights and across which we force
the solar heat flux. The background stratifica-
tion is convectively stable in the bottom portion
of the domain (0.61 ≤ r/R� ≤ 0.71), and un-
stable above. Stress-free boundary conditions are
imposed at the top and bottom boundaries, with
the magnetic field set to zero at the bottom (per-
fect conductor) and constrained to remain radial
at the top (magnetically open). We defer an expo-
sition of the model formulation to a forthcoming
publication, with only a few highlights provided
below.

The anelastic hydrodynamic SCZ model of El-
liot & Smolarkiewicz (2002) is cast in an an-
holonomic time-dependent curvilinear framework
of Prusa & Smolarkiewicz (2003), which enables
mesh adaptivity, and extended to MHD. The gov-
erning equations take the form:

Dv
Dt

= −∇π − g
θ′

θo
+ 2v′ ×Ω +

1
µρo

(B · ∇) B + Dv ,

Dθ′

Dt
= −v · ∇θe + H− αθ′ , (1)

DB
Dt

= −∇π∗ + (B · ∇)v −B(∇ · v) + DB ,

∇ · (ρov) = 0 , ∇ ·B = 0 ,

where v and B denote vectors of the physical ve-
locity and of the magnetic field, measurable at ev-
ery point of the spherical shell in a local Carte-
sian frame tangent to the lower surface of the
shell, and θ is the potential temperature (tanta-
mount to the specific entropy, s = cp ln θ). Sub-
scripts “o ” refer to the basic isentropic state with

density satisfying hydrostatic balance with radi-
ally decreasing gravity. Primes denote deviations
from an arbitrary prescribed ambient state (which
can, but does not have to, coincide with the ba-
sic state; Prusa et al. 2008). In the momentum
equation, π is a density-normalized pressure per-
turbation inclusive of the magnetic pressure and
centrifugal force, and Dv symbolizes viscous dis-
sipation. In the entropy equation, H combines
heat sink/sources due to radiation, diffusion and
viscous heating. The Newtonian relaxation term,
with an inverse time-scale α, forces the system to-
wards an ambient stable/unstable thermodynamic
profile in the tachocline/SCZ. In the induction
equation, the gradient of potential π∗ denotes an
auxiliary term introduced to assure ∇ · B = 0 in
numerical integrations, and DB is a short hand for
magnetic diffusion. All other symbols have their
usual meaning. Using the mass continuity equa-
tion and the B solenoidality constrain, the system
(1) is rewritten as a set of Eulerian conservation
laws and solved using the non-oscillatory forward-
in-time (NFT) approach, widely documented in
the literature; cf. Prusa et al. 2008 and Smo-
larkiewicz & Szmelter (2009) for recent reviews
and discussions. In essence, the resulting system
of PDE is viewed as

∂ρ∗Ψ
∂t

+ ∇ · (V∗Ψ) = R , (2)

where Ψ denotes the vector of prognosed depen-
dent variables (components of v, B and θ′), ρ∗ =
Gρo combines the anelastic density and the Jaco-
bian of coordinate transformation, V∗ = ρ∗ẋ is
an effective transporting momentum with ẋ sym-
bolizing the contravariant velocity of the actual
curvilinear coordinates, and R is a shorthand for
the associated right-hand-side (rhs) inclusive of
the metric forces (viz. Christophel’s terms). The
model algorithm for a discrete integration of (2)
in the time-space continuum relies on the implicit
trapezoidal rule approximation. It is formulated
in the spirit of

Ψn,ν
i = Ψ̂i +

δt

2
LΨ

∣∣n,ν

i
+

δt

2
NΨ

∣∣n,ν−1

i
−∇Φ

∣∣n,ν

i
,

(3)
with n, i and δt marking discrete locations in
the model (t,x) domain and a temporal incre-
ment, L and N denoting linear and nonlinear
part of the rhs operators, Ψ ≡ (v, θ′, B), Φ ≡
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0.5δt(φ, φ, φ, 0, φ∗, φ∗, φ∗), and ν = 1, .., m num-
bering the fixed point iterations. With all prog-
nostic dependent variables co-located, the execu-
tion of (3) invokes its local algebraic inversion with
respect to Ψn,ν

i ; after which, enforcing discretized
mass continuity and magnetic-field solenoidality
on the components v and B leads to the associ-
ated discrete elliptic problems for φ and φ∗. These
are solved with a robust, preconditioned non-
symmetric Krylov-subspace solver (Smolarkiewicz
et al., 1997, 2004), essentially completing the
model algorithm. A key element of the NFT ap-
proach implemented in EULAG is a universally
second-order-accurate (in time and space) NFT
advection operator MPDATA that forms the ex-
plicit element Ψ̂i ≡ Ai(Ψn−1 + 0.5δtRn−1, Ṽ∗)
of (3), with A and Ṽ∗ denoting, respectively, the
advection operator and a solenoidal O(δt2) es-
timate of V∗ at tn−1/2. MPDATA is a finite-
volume, high-resolution multi-pass (iterative) up-
wind scheme, already well reviewed in the liter-
ature; cf. Smolarkiewicz & Szmelter (2009), and
references therein.

A particular feature of MPDATA important for
the present study is its proven dissipative prop-
erty mimicking the action of explicit subgrid-scale
turbulence models where flow is under-resolved,
while maximizing the effective Reynolds number;
see Waite & Smolarkiewicz (2008) and Piotrowski
et al. (2009), for relevant discussions and refer-
ences. Such calculations relying on the properties
of non-oscillatory differencing are referred to in
the literature as implicit large-eddy simulations,
or ILES. In the experiments reported here, we re-
tained only the radiative diffusion in the H forc-
ing term on the rhs of the entropy equation in (1),
while delegating the entire system dissipativity to
ILES. Moreover, we use exclusively the third-order
(for constant coefficients but second-order in gen-
eral) option of MPDATA that minimizes the solu-
tion dependence on local Courant numbers while
evincing desirable dissipative properties (Margolin
and Smolarkiewicz 1998, Margolin et al. 2006).

3. Results: magnetic cycles

Figure 1 is a snapshot, in longitude-latitude
Mollweide projection, of the radial component of
the convective flow below the outer surface of
the simulation domain. This flow exhibits the

Fig. 1.— Radial component of the flow velocity
at r/R� = 0.954, near the domain top, in a 256×
128 × 93 simulation. The results are plotted in a
Mollweide projection, with the color scale coding
the flow speed in m s−1. Peak radial flow speed
occur in downflow lanes, and here can reach ∼
25 m s−1.

expected pattern of broad upflows cells (orange-
yellow-white) delineated by a network of nar-
rower downflow lanes (purple-blue-black), typical
of thermal convection in a stratified environment
(compare to Miesch et al. 2000, Fig. 5, and Brun
et al. 2004, Fig. 1). The influence of rotation on
convection is most pronounced in the equatorial
regions, where convective cells become elongated
and aligned in the latitudinal direction.

In these surface and subsurface layers, the mag-
netic field is temporally and spatially intermit-
tent, reaching locally values in excess of 0.1 T,
but carries little net flux — the hallmark signa-
ture of turbulent small-scale dynamo action (Cat-
taneo 1999). The magnetic fields remains largely
unstructured throughout the convective envelope,
but at and below its base a strong and spatially
well-organized large-scale component builds up.
This occurs via the combined action of downward
turbulent pumping of the magnetic field produced
within the SCZ, amplification by the velocity shear
present at the core-envelope interface, and reduced
destruction of the field by the folding action of
turbulence. The latter vanishes rapidly as one
moves down into the tachocline-like stably strati-
fied fluid layer underlying the SCZ. Figure 2 shows
a snapshot of the toroidal magnetic component be-
neath the nominal interface between the bottom
stable layer and the SCZ. Note that significant
turbulence still persists at this depth, as a result
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Fig. 2.— Toroidal component of the magnetic
field, in the uppermost portion of the stable
layer underlying the convective envelope (r/R� =
0.695). A well-organized axisymmetric field com-
ponent is evident, reaching 0.25 T in strength
at mid-latitudes and showing antisymmetry about
the equator. Although the snapshot is extracted
in the nominally stable layer, convective under-
shoot from above induces strong fluctuations in
the magnetic field.

of convective undershoot from above, so that the
magnetic field still shows strong local fluctuations.
Yet, a very well-defined large-scale component is
clearly present, antisymmetric with respect to the
equatorial plane, and reaching here strengths of
' 0.25 T. This compares well to the simulation
results of Browning et al. (2006; Fig. 2B), and
supports their conclusion that a stably stratified
tachocline-like layer is an essential component of
a global solar-like large-scale dynamo.

Our ILES simulations break into novel terri-
tory in that they exhibit regular polarity rever-
sals on multi-decadal time scales, something that
to the best of our knowledge had not yet been ob-
served in global 3D simulations of the SCZ operat-
ing in the turbulent regime. Figure 3 shows results
of a low resolution simulation (Nφ × Nθ × Nr =
128× 64× 47) that was ran for almost 175 years.
Figure 3A shows a time-latitude diagram of the
zonally-averaged toroidal magnetic component ex-
tracted at the core-envelope interface in the simu-
lation. Under the usual assumptions that sunspots
do form following the buoyant rise and emergence
of toroidal flux ropes formed and stored in the up-
per reaches of the tachocline, and that the number
and the latitude of formation of these flux ropes
are determined primarily by the strength of the

Fig. 3.— (A) Time-latitude “butterfly” diagram
of the zonally-averaged toroidal magnetic field
component at r/R� = 0.718. (B) Time series
of the hemispheric tachocline toroidal flux den-
sities (solid lines) and polar cap radial magnetic
flux densities (dotted lines). The vertical line seg-
ments indicate the time of polarity reversals of
the deep-seated toroidal component for each hemi-
sphere, as color-coded. (C) Time-radius slice of
the zonally-averaged toroidal magnetic field com-
ponent extracted at mid-latitudes in the Southern
hemisphere. The base of the nominally unstable
layer is indicated by a horizontal dashed line.

large-scale toroidal magnetic field therein, this di-
agram is our simulation’s analog to the well-known
sunspot butterfly diagram.

Several features of this diagram are noteworthy:
(1) the toroidal magnetic component undergoes
fairly regular polarity reversals on a time scale of
some 32 years. This is three times the observed
mean period of the solar cycle, but the fact that
the simulation yields a cycle at all is already re-
markable; (2) the large-scale magnetic component
manages to retain a dipole-like polarity pattern
throughout the whole simulation interval, again in
agreement with inferences based on sunspot mag-
netic polarities; (3) the deep-seated toroidal mag-
netic field is concentrated at mid-latitudes, rather
than the lower latitudes indicated by the sunspot
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butterfly diagram, but does show a hint of equa-
torward propagation in the course of each unfold-
ing cycle; (4) despite strong fluctuations in the am-
plitude and duration of individual cycles, the two
solar hemispheres manage to retain a good level
of long-term synchronicity in their spatiotemporal
evolution. These characteristics are all solar-cycle-
like.

Figure 3B shows time series of the zonally-
averaged toroidal magnetic flux density (BT , solid
lines) in each solar hemisphere, as color-coded,
and of the polar cap radial magnetic flux den-
sity (BP , dotted lines), again for each hemisphere.
The former is calculated in a thin meridional slice
straddling the core-envelope interface (0.695 ≤
r/R� ≤ 0.749), and the latter at the top of the
simulation domain over a cap extending 30 degrees
in latitude from the poles. Despite strong tempo-
ral variability and marked amplitude and duration
fluctuations from one cycle to the next, these time
series leave no doubt as to the global and cyclic
nature of the large-scale dynamo mechanism. The
apparent predominance of positive-signed toroidal
flux densities, independently of hemisphere, can
be traced to the buildup of an equatorially con-
centrated band of positive toroidal field persist-
ing from simulated cycle 2 to 4 and most promi-
nent during simulated cycle 3 (see Figure 3A). The
high degree of correlation between variations in
the hemispheric polar cap fluxes indicates that the
large-scale surface magnetic field is dominated by
a dipole component approximately aligned with
the rotation axis. Figure 3B also shows that the
dipole moment and the deep-seated toroidal com-
ponent oscillate essentially in phase.

Figure 3C shows a time-radius slice of the zon-
ally averaged toroidal magnetic component, ex-
tracted at mid-latitudes in the Southern hemi-
sphere. The cycles are seen to originate well within
the SCZ, with the magnetic field undergoing fur-
ther amplification once it has been pumped down
into the underlying stably stratified fluid layer,
reaching peak strengths in excess of 0.3 T for
the stronger cycles. Field amplification also takes
place in the upper half of the SCZ, but the toroidal
field strength therein seldom exceeds 0.1 T. The
signature of the magnetic cycle clearly pervades
the whole SCZ.

4. The physical nature of the large-scale
dynamo process

The simultaneous presence of a well-defined
dipole moment and of a Reynolds-stress-driven
axisymmetric mean differential rotation sustained
throughout the simulation suggests that the simu-
lation may be operating as what is known in mean-
field theory as an αΩ dynamo, with the regen-
eration of the poloidal magnetic component tak-
ing place through the agency of the so-called α-
effect, more precisely, the αφφ component of the al-
pha tensor. For mildly inhomogeneous and mildly
anisotropic fluid turbulence, the latter is predicted
to be proportional to the negative flow helicity
(cf., Ossendrijver 2003; Käpylä et al. 2006; and
references therein). In our simulations the latter
is predominantly negative in the Northern hemi-
sphere, which should then yield a positive α-effect
in the bulk of the SCZ. This is consistent with
the production of a positive dipole moment from a
toroidal component positive in the N-hemisphere,
as seen on Fig. 3B.

It remains to be understood why our simula-
tions manage to produce regular polarity reversals,
while those of Browning et al. (2006) by all appear-
ances do not. Both simulations are very similar in
design, and reach comparable turbulent and mag-
netic intensities, at least judging from the convec-
tive flow speeds, strengths of mean magnetic field
in stable layer, surface field strengths, ratio of to-
tal magnetic to kinetic energies, etc. However, our
ILES approach allows to reach a highly turbulent
state at relatively low spatial resolution, which in
turn permits longer temporal integrations in rea-
sonable wallclock time. It is certainly possible
that the lack of polarity reversals in the Browning
et al. (2006) simulations is a simple consequence
of their relatively short integration time. The is-
sue of so-called “spin-up” is also a possibility, as
some of our simulations indicate that the time in-
terval required to establish regular cyclic activity
of the large-scale field is affected by the manner in
which the simulation is initialized, although cyclic
activity itself appears to be a robust feature.

The upper boundary condition may also play a
role; Browning et al. (2006) match their simulated
magnetic field to an exterior potential field, while
our vertical-field boundary is probably more effi-
cient at allowing magnetic helicity to exit the sim-
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ulation domain, which is believed to favor large-
scale dynamo action (cf., Käpylä et al. 2008; Bran-
denburg 2009; and references therein). At a more
fundamental level, it is also quite possible that the
behavior of the simulation at small spatial scales
plays a key role in governing large-scale dynamo
action. The latter can be viewed as a combination
of forward and inverse cascades, of both magnetic
energy and helicity, operating from the energy in-
jection (intermediate) scale to both the (small)
dissipative scales and the (large) dynamo scales.
Varying treatment of the manner small scales are
treated can affect the inverse cascades, especially
if an insufficient separation of scales is realized in
the simulation between the dissipative and energy
injection scales. The numerical experiments of El-
liott & Smolarkiewicz (2002) on purely hydrody-
namical solar convection offer empirical support to
this conjecture.

This letter has focused on the general char-
acteristics of the solar-like cycles of the large-
scale magnetic component building up in MHD
implicit large eddy simulations of the solar con-
vection zone. There are of course many additional
simulation features that are of interest and need to
be explored in detail. Our preliminary analyses in-
dicate that low amplitude solar-like equatorially-
propagating torsional oscillations develop across
the convective envelope. We also detect a weak
but clear signature of the magnetic cycle in the
heat transport throughout the convective enve-
lope. This has direct relevance to the ongoing
debate regarding the ultimate origin of the ob-
served decadal variations of the total solar irra-
diance during the activity cycle. We are currently
investigating in detail these appealing features of
our simulations.

The numerical simulations reported in this Let-
ter were carried out primarily on the computing fa-
cilities of the Réseau Québécois de Calcul de Haute
Performance. This work is supported by Canada’s
Natural Sciences and Engineering Research Coun-
cil, Research Chair Program, and Foundation for
Innovation (MG and PC). The National Center
for Atmospheric Research is supported by the Na-
tional Science Foundation (PKS).
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