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Abstract We characterize and analyze rotational torsional oscillations devel-
oping in a large-eddy magnetohydrodynamical simulation of solar convection
(Ghizaru, Charbonneau, and Smolarkiewicz, 2010; Racine et al., 2011; Charbon-
neau and Smolarkiewicz, 2012) producing an axisymmetric large-scale magnetic
field undergoing periodic polarity reversals. Motivated by the many solar-like
features exhibited by these oscillations, we carry out an analysis of the large-
scale zonal dynamics, separating the contributions arising from large-scale flows
and magnetic field, namely magnetic torques and Coriolis force acting on the
meridional flow, and small-scale contributions associated with Reynolds and
Maxwell stresses. Through an analysis of the associated angular momentum
fluxes, we demonstrate that torsional oscillations are not driven primarily by
the periodically-varying large-scale magnetic torque, as one might have had ex-
pected, but rather via the magnetic modulation of angular momentum transport
by the large-scale meridional flow. This surprising result is confirmed by a simple
energy analysis, which indicates that globally and in a time-average sense, only
the Coriolis term drives a net input of energy into the mean zonal flow. We also
examine the dynamical nature of the rotational coupling existing between the
convection zone and underlying stably stratified fluid layers, and find a fairly
sharp transition in rotational dynamics taking place as one moves from the base
of the convecting layers to the base of the thin tachocline-like shear layer forming
immediately below. We conclude by discussing the implication of our analyses
with regards to the mechanism of amplitude saturation in the global dynamo
operating in the simulation, and speculations on the possible precursor value of
torsional oscillations for the forecast of solar cycle characteristics.
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1 Département de Physique, Université de Montréal
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1. Introduction

Differential rotation of the solar surface was first noted in the seventeenth century
by Christoph Scheiner on the basis of his extensive sunspot observations. In
his 1632 Rosa Ursina, Scheiner states that sunspots moved more slowly the
farther away they were from the solar equator, and even concludes that “...From
this phenomenon is drawn the strongest argument for a fluid surface of the
Sun.” (Rosa Ursina, p. 559; as cited and translated in Mitchell, 1916, p. 440).
Rediscovered in the mid-nineteenth century by R.C. Carrington and G. Spörer
and soon thereafter extended to high latitudes by Doppler measurements, solar
differential rotation has now been mapped deep into the Sun by helioseismol-
ogy (Christensen-Dalsgaard, 2002; Howe, 2009). From the frequency splitting of
acoustic eigenmodes of varying azimuthal orders, it has now been shown that the
surface latitudinal differential rotation pattern, with the solar equator rotating
approximately 30% faster than the poles, persists throughout the bulk of the
solar convective envelope, down to r/R ' 0.71, where it abruptly vanished
across a thin spherical shear layer located immediately beneath the core-envelope
interface, known as the tachocline. The underlying stably-stratified core appears
to be rotating rigidly (or nearly so) down to r/R ' 0.3, at a rate equal to that
of the surface mid-latitudes (see, e.g., Howe, 2009, and references therein).

This internal differential rotation pattern has remained generally steady since
the first helioseismic rotational inversions carried out in the late 1980’s; but
not exactly steady. Rotational torsional oscillations were first noted in surface
Doppler measurements (Howard and Labonte, 1980), and later shown by helio-
seismology to extend all the way to the base of the Sun’s convective envelope.
The torsional oscillation signal only reaches a few nHz in amplitude (about
0.5% of the rotational frequency), and peaks at high latitudes and in surface
and subsurface layers. The oscillations develop at twice the solar cycle frequency
and, at mid- to high latitudes (where the signal is the strongest), retains the
same phase at all depths (see, e.g., Fig. 26 in Howe, 2009). More elaborate
phasing patterns occur with latitudes with two diverging “branches” of faster
rotating fluid appearing at mid-latitudes around solar activity minimum : one
migrating all the way down to the equator in the span of two full activity cycles,
the other migrating poleward to cause a marked spin-up of the polar region
peaking at around the time of activity maximum (see Fig. 25 in Howe, 2009,
and accompanying discussion).

Numerous models have been proposed to explain the observed behavior of
solar torsional oscillations, the vast majority relying directly or indirectly on
the Lorentz force associated with the Sun’s magnetic field. Howe (2009) in §9.5
gives a succint overview of these various theoretical explanations, which turn
out to be difficult to confirm or refute on the basis of extant observations.
Torsional oscillations having higher amplitudes near the surface and at high
latitudes are certainly to be expected; subjected to a torque of a given magnitude
(and of whatever origin), a ring of fluid centered on the solar rotation axis will
experience greater angular acceleration if located high up in the envelope since
its moment of inertia will be reduced through the lower density; and at a given
depth, that same moment will also be smaller at higher latitude because of
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the shorter moment arm, yielding again greater angular acceleration. At any
rate, both the good phase locking with the magnetic activity cycle as mesured,
e.g. through the sunspot number, and the close tracking of the equatorially
migrating band of rotational acceleration with the activity belts, point toward
a close dynamical link between torsional oscillations and the cycling large-scale
solar magnetic field. This has in fact remained the favored explanation ever
since the discovery of torsional oscillations (Schuessler, 1981; Yoshimura, 1981).
Interest in this possible dynamical linkage has in fact recently ramped up, due
primarily to the curious observation that the poleward branch of the torsional
oscillations, expected to appear in the final years of cycle 23, has failed to show up
as expected. Taken together with other peculiar features of the extended activity
minimum having followed cycle 23, this has prompted speculations regarding the
possibility that the Sun is about to enter a phase of strongly suppressed magnetic
activity, perhaps akin to the Maunder Minimum (Hill et al., 2011).

From a dynamical point of view, the simplest hypothesis would be to assume
that torsional oscillations are directly driven by the Lorentz force associated
with the cycling large-scale magnetic component that we associate with the
magnetic activity cycle, acting on the zonal flows as a time-varying perturbation
of the global hydrodynamical (HD) balance setting the form of solar internal
differential rotation. Such a balance would involve Reynolds stresses, Maxwell
stresses, angular momentum advection by the meridional flow within the con-
vection zone1. As will become apparent in what follows, the situation may well
be far more complex.

In this paper we present an analysis of the dynamics and energetics of torsional
oscillations arising in a global magnetohydrodynamical (MHD) simulation of
solar convection producing solar-like cycles in its dynamo-generated large-scale
magnetic field. We first (§2) give an overview of the simulation itself together
with a description of torsional oscillations arising therein. We then recast the
azimuthal component of the momentum equation in conservative form, which
allows the study of azimuthal force balance in terms of fluxes of angular mo-
mentum and their temporal variations (§3). We also examine the energetics of
torsional oscillations, and conclude (§4) by elaborating on some consequences
of our analysis for dynamo saturation, and for the possible use of torsional
oscillations as precursors of cycle amplitude fluctuations.

2. Numerical data

2.1. The global simulation

We use numerical data produced by one of the global implicit large-eddy simu-
lations of MHD solar convection of the type presented in Ghizaru, Charbon-
neau, and Smolarkiewicz (2010), and Racine et al. (2011). These remain so

1Some level of dynamical coupling to the underlying stably stratified radiative core may also
play important role; on the possible participation of the outer radiative core in setting the
angular momentum balance within the convection zone, see the prescient analysis presented
in Gilman, Morrow, and Deluca (1989).
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far unique in producing an axisymmetric large-scale magnetic field component
undergoing cyclic polarity reversals on a multi-decadal timescale, in a manner
similar in many ways to what is observed on the sun. The underlying mathe-
matical and computational frameworks are described in detail in Charbonneau
and Smolarkiewicz (2012), and represent a MHD generalization of the well-
proven general-purpose geophysical flow simulation code EULAG (see Prusa,
Smolarkiewicz, and Wyszogrodzki, 2007, and references therein). An unique
feature of both EULAG and EULAG-MHD is the possibility to delegate all
dissipation to the underlying non-oscillatory forward-in-time advection scheme,
which makes it possible to reach a maximally turbulent state at a given grid size,
with stability persisting even when field gradients reach spatial scales commen-
surate with the computational cell size. As a consequence, turbulent simulations
can be produced on relatively coarse grids, which allows very long time integra-
tion, as required in the study of behaviors such as magnetic cycles, which develop
on timescales very much longer than the turbulent turnover time. The specific
simulation segment analyzed in what follows spans 180 yr, and is executed on a
relatively small mesh of size Nr ×Nθ ×Nφ = 47× 64× 128 in radius × latitude
× longitude. The spatial domain is a thick spherical shell 0.62 ≤ r/R ≤ 0.96
rotating initially rigidly at the solar rate, convectively unstable in its outer two
thirds (0.718 ≤ r/R ≤ 0.96). The overall modelling framework is described in
detail in Charbonneau and Smolarkiewicz, 2012, to which we refer the interested
reader for further details.

The foregoing analysis begins with the four-dimensional data cubes (3 spatial
dimensions plus time) returned by the simulation. The first step is to extract
the axisymmetric components of the total flow and magnetic field. As shown in
Racine et al. (2011) through modal decomposition, these axisymmetric compo-
nents evolve on a timescale much longer than their non-axisymmetric counter-
parts, and can thus be legitimately considered as a distinct dynamical entity.
We therefore express the total flow (U) and magnetic field (B) as

U(r, θ, φ, t) = u(r, θ, t) + u′(r, θ, φ, t) , (1)
B(r, θ, φ, t) = b(r, θ, t) + b′(r, θ, φ, t) , (2)

where

u(r, θ, t) = 〈U(r, θ, φ, t)〉 , (3)
b(r, θ, t) = 〈B(r, θ, φ, t)〉 , (4)

are the axisymmetric large-scale components, calculated by zonal averaging :

〈X(r, θ, φ, t)〉 =
1

2π

∫ 2π

0

X(r, θ, φ, t) dφ . (5)

Note that under these definitions, 〈u′〉 = 〈b′〉 = 0, so that the non-axisymmetric
contributions of the flow and field play the role of the “small scales” in mean-field
theory.

Figure 1 offers four views of the large-scale (axisymmetric) toroidal magnetic
field components evolving over the timespan of the simulation. The top two
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panels (A) and (B) show time-latitude cuts, the first extracted at the depth
coinciding with the base of the convecting layers (r/R = 0.718), and the other
near its top (r/R = 0.94). The bottom two panels show time-radius cuts ex-
tracted at (C) low and (D) mid-latitudes in the southern hemisphere. Regular
polarity reversals of the large-scale magnetic field stand out prominently in these
diagrams, here on a period of about 36 yr for each half cycle (equivalent to a
sunspot cycle); thus the magnetic cycle period in this simulation is a little over
three times longer than the ' 11 yr observed on the sun. The large-scale toroidal
component is antisymmetric about the equatorial plane, in agreement with Hale’s
polarity laws, and peaks at mid-latitudes (panel A) and immediately beneath the
core-envelope interface (panel D); this latter property is in line with the need
to form and store in the convectively stable layer the toroidal magnetic flux
ropes that, upon buoyancy-driven destabilization and emergence, will give rise
to sunspots (see Fan, 2009, and references therein). The subsurface time-latitude
diagram on panel (C) and time-radius diagram on panel (D) also show a hint
of a secondary dynamo mode, of much shorter period and lower amplitude than
the primary mode, producing what looks like an oscillation superimposed on the
more slowly evolving magnetic component pervading the bulk of the domain.
Interestingly, a similar combination of long- and short-period dynamo modes
was also observed in the spherical wedge simulations of Käpylä et al. (2010).
This intriguing dynamo feature will be revisited in what follows.

Other features of this simulation are discrepant with respect to the solar cycle,
besides the period. Most notably, the toroidal magnetic component at the core-
envelope interface, where sunspots are presumed to originate, peaks at too high
latitudes compared to the sunspot butterfly diagram, and only shows a hint of
equatorward migration. Moreover, analysis of the poloidal large-scale component
reveals that the latter oscillates in phase with the deep-seated toroidal compo-
nent, whereas in the sun a phase lag of π/2 is inferred. The specific simulation
we are using for the foregoing analysis develops a slow phase drift between
hemisphere, which eventually leads, after some 300 years, to a switch to a non-
axisymmetric large-scale dynamo mode, a fascinating dynamo behavior in and
of itself. Despites these departures with respect to observed solar behavior, the
presence of a well-defined cyclic behavior in the large-scale magnetic field offers
a unique opportunity to investigate quantitatively the magnetic backreaction
on large-scale flows building up in the simulation and observed in the sun, in
particular differential rotation.

2.2. The mean differential rotation

Mechanically-speaking, solar differential rotation is driven primarily by Reynolds
stresses arising through rotation-driven anisotropies in convective turbulence,
and angular momentum transport by meridional flows. Helioseismology has now
mapped with good accuracy differential rotation throughout the bulk of the solar
convection zone and upper radiative core (see, e.g., Fig. 18 in Howe, 2009). If
one excludes subphotospheric layers, the primary rotational gradient in the solar
convection zone is latitudinal, with the rotational frequency of equatorial region
exceeding that of polar regions by about 30%. This latitudinal gradient vanishes
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Figure 1. Two latitude-time representations of the zonally-averaged toroidal magnetic field
at two different radii, along with two radius-time representations at two different latitudes. The
dashed line in panels (C) and (D) represents the interface between the convectively stable and
unstable fluid layers in the simulation’s background stratification. The vertical lines in panels
(A) and (D) flags five specific epochs across the second half-cycle, for subsequent reference.
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at the interface between the convection zone and the underlying radiative core,
across a thin shear layer known as the tachocline.

In the simulations, differential rotation can be directly computed from the
zonally-averaged φ-component of the flow velocity. We first compute the mean
differential rotation profile by temporally averaging over the full temporal extent
of the simulation. We have carried out this averaging exercise for the MHD
simulation of Fig. 1, as well as a purely HD convection simulation operating
under the same forcing regime and rotation rate, and computed using the same
mesh size. The results are shown on Figure 2, expressed as angular velocity
Ω = 〈uφ〉/(r cos θ) with −π/2 ≤ θ ≤ π/2 the latitude. The left panels show
isocontour maps, with corresponding radial cuts plotted on the right panels, on
the same scales to allow quick visual comparisoni of the two simulations. Both
simulations are characterized by equatorial acceleration, but with isocontours too
closely aligned with the rotation axis, and too concentrated towards the middle
of the convection zone at low latitudes, as compared to the helioseismically-
inferred solar internal differential rotation. These features are in fact typical of
these types of simulations (see, e.g., Fig. 9 in Brun, Miesch, and Toomre, 2004;
Fig. 1 in Browning et al., 2006; Fig. 3 in Brown et al., 2008), unless a latitudinal
gradient in the heat flux is artificially imposed at the base of the domain (see
Miesch, Brun, and Toomre, 2006). Nonetheless, the differential rotation charac-
terizing the HD simulation (top row) shows some remarkably solar-like features,
notably the magnitude of the pole-to-equator angular velocity contrast, and,
in particular, a thin tachocline-like rotational shear layer located immediately
beneath the core-envelope interface. The thinness of this layer (' 0.05R here) is
a direct reflection of the very low dissipation levels characterizing this simulation
(cf. Fig. 1 in Browning et al., 2006).

The resemblance to solar differential rotation degrades, however, upon moving
to the MHD simulation (bottom row on Fig. 2). The pole-to-equator angular
velocity contrast is now reduced by a factor of three as compared to the HD
simulation, and the latitudinal gradient has all but vanished at mid to high
latitude. A residual tachocline remains, in the sense that the weak convection
zone latitudinal differential rotation again vanishes across a thin shear layer
beneath the core-envelope interface. Although quite weak, this remaining dif-
ferential rotation remains important for the operation of the dynamo, as the
analysis of a similar simulation carried out in Racine et al. (2011) shows that
it contributes approximately equally with the turbulent electromotive force to
the regeneration of the large-scale toroidal magnetic field near the core-envelope
interface.

Another important difference between the differential rotation profiles char-
acterizing the HD and MHD simulations is that the former is temporally steady
once the simulation has attained a statistically stationary state, while the latter
exhibit spatiotemporally coherent cyclic variations superimposing themselves
on the mean rotational profile. We now turn to the characterization of these
torsional oscillations.
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Figure 2. Two different representations of the angular velocity in a purely hydrodynamical
simulation (top) and the MHD simulation of Fig. 1 (bottom). The left panels show contour
plots of rotational frequency at each position in the Sun, constructed from the zonally-averaged
longitudinal velocity averaged in time over the duration of the simulation. The right panels
show the same results in the form of constant-latitude radial cuts, highlighting the presence
of a tachocline-like shear layer immediately beneath the core-envelope interface (r/R = 0.718,
dashed line).
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2.3. The torsional oscillations

Torsional oscillations are best visualized by subtracting the temporally-averaged
rotational frequency profile of Fig. 2 from the corresponding zonally-averaged
rotational frequency at each time step :

〈∆ω〉(r, θ, t) = (2πr cos θ)−1(uφ(r, θ, t)− ūφ(r, θ)) , (6)

where the overbar denotes temporal averaging over the time span of the simu-
lation :

ūφ(r, θ) =
1

2πT

∫ T

0

∫ 2π

0

Uφ(r, θ, φ, t) dφ dt , (7)

amounting to the zonal and temporal average of the full azimuthal velocity
Uφ(r, θ, φ, t) data cube, with T the length of the simulation. The result of this
procedure is shown on Figures 3 and 4, which display respectively time-latitude
diagrams at four fixed depths, and radius-latitude diagrams at four fixed lati-
tudes. Several features visible in these plots are noteworthy: (1) A cyclic signal
is clearly present at all depths and latitudes so sampled, at twice the frequency
characterizing the magnetic cycle (cf. Fig. 1); (2) The torsional oscillations
peak in amplitude at high latitudes and in the surface and subsurface layers,
reaching there ' 3 nHz; (3) At mid- to high latitudes, the oscillations show a
phase approximately independent of depth. The oscillations reach their peak
prograde phase (i.e., 〈∆ω〉 peaking at positive values) at about the peak of the
magnetic cycle. All these features are remarkably solar-like, as can be inferred
from comparison with similarly-formatted diagram in Howe (2009; cf. her Fig. 26
to Fig. 4 herein).

At first glance, the surface spatiotemporal pattern of the torsional oscillations
is not particularly solar-like (cf. Fig. 25 of Howe, 2009, and Fig. 3D herein).
Near the surface, a strong and rather complex oscillatory signal is present at
low latitudes, arising from the superposition of an oscillation associated with
the large-scale magnetic cycle with a second, characterized by higher frequency
oscillations and restricted to the subsurface equatorial regions. Examinations
of the simulation reveals that this is associated with a secondary dynamo mode
feeding on the strong latitudinal shear present in the outer half of the convection
zone at low latitudes (see Fig. 2; also Fig. 1B,C).

However, the dissimilarities greatly diminish if one focuses on the pattern
present at latitudes higher than the magnetic “activity belts”. Figure 5 illustrates
the idea. It is essentially a closeup of the northern hemisphere portion of Fig. 3C,
on which have been superimposed a few isocontours of mean toroidal magnetic
field strengths at the core-envelope interface (cf. Fig. 1A) for the first three half-
cycles in the simulation. This stretching procedure “renormalizes” the activity
belts to low latitudes, and allows a comparison that is arguably more relevant
to the patterns observed on the sun. If one accepts this stretch at face value,
then the comparison becomes actually quite good (cf., e.g., Fig. 25 in Howe,
2009). In particular, the torsional acceleration (〈∆ω〉 > 0) is seen to begin at
high latitude (here ' 70◦) at about the time of magnetic polarity reversal (akin
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Figure 3. Time-latitude diagrams of the zonally-averaged perturbation in rotational fre-
quency, at four different depths in the simulation. Positive (negative) perturbations correspond
to rotational acceleration (deceleration) with respect to the mean state plotted on Fig. 2B

to solar minimum here), and develops in two diverging branches, one propagat-
ing poleward and the second, of lower amplitude, propagating equatorward. In
the sun, this second branch requires two activity cycles to reach the equator,
while here it does so in only one cycle; this may be a reflection of the fact
that our activity belts are located at too high latitudes, but this remains to be
demonstrated through further simulations. It is also quite remarkable that this
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Figure 4. Time-radius diagrams of the zonally-averaged perturbation in rotational frequency,
at four different latitudes in the simulation. The dashed line indicates the position of the
core-envelope interface.

latitudinal double-branch pattern in the torsional oscillations persists all the
way to the base of the convecting layers in the simulation. Careful examination
of Fig. 4D also reveals that an oscillatory signal even penetrates all the way
through the underlying stably-stratified layer to the base of the computational
domain (r/R = 0.62), although this signal may reflect the excitation of gravity
waves.
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Figure 5. A close up on the time-latitude diagram of Fig. 3D, showing the zonally-averaged
rotational frequency perturbation. The color scale and range are now chosen identical to those
used in Fig. 25 of Howe (2009), to ease comparison. A few isocontours of zonally-averaged
toroidal field at the core-envelope interface (r/R = 0.718) have been superimposed, to indicate
the relative phase of the magnetic cycle. White (grey) correspond to positive (negative) toroidal
field, and the innermost contours has value ± 0.2 T.

At any rate, the results presented here demonstrate clearly that this simula-
tion generates a global torsional oscillation pattern that is solar-like in a number
of ways. Remaining discrepancies notwithstanding, we have in hand a unique
“virtual laboratory” allowing a quantitative and fully dynamical investigation
of the mechanism(s) driving these torsional ocillations. This is the topic to which
we now turn.

3. The dynamical drivers of torsional oscillations

3.1. The zonal momentum equation

Torsional oscillations are generated because the (magneto)dynamics of the con-
vecting layers lead to a systematic, time-dependent redistribution of angular
momentum that is driven, directly or indirectly, by the magnetic cycle. In parallel
to the MHD equations solved in the simulation, the foregoing analysis focuses on
the azimuthal component of the Navier-Stokes equations, including the Lorentz
and Coriolis forces, and written under the anelastic approximation. The latter
implies, in particular, that mass conservation reduces to ∇ · (ρU) = 0.

The starting point of our analysis is to recast the azimuthal momentum
equation in conservative form involving fluxes of angular momentum. We begin
by applying the azimuthal averaging operator previously defined in eq. (5)〈

∂(ρUφ)
∂t

〉
+ 〈[∇ · (ρUU)]φ〉 = − 1

r cos θ

〈
∂P

∂φ

〉
+

1
µ0
〈[(∇×B)×B]φ〉 , (8)

with U = V + Ω × R, where V is the velocity field of the plasma in the
rotating frame of the Sun, Ω is the mean angular velocity of the Sun, R is
a radial vector locating a given fluid element in a spherical coordinate sys-
tem with origin at the Sun’s center, and once again the variable θ denotes
the latitude. Now, the azimuthal averaging operator commutes with derivatives
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acting on large-scale quantities, and the Lorentz force term can be rewritten as
(∇×B)×B = (B ·∇)B− 1

2∇B
2. Moreover, under the axisymmetry assumption,

all azimuthal derivatives of averaged quantities automatically vanish, so that the
above expression reduces to:

∂〈ρUφ〉
∂t

+ 〈φ̂ · [∇ · (ρUU)]〉 =
1
µ0
〈φ̂ · (B · ∇)B〉 . (9)

Use of judicious vector identities also lead to:

〈φ̂ · [∇ · (ρUU)]〉 =
1

r cos θ
∇ · (r cos θρ̄〈UφU〉) , (10)

〈φ̂ · [(B · ∇)B]〉 =
1

r cos θ
∇ · (r cos θ〈BφB〉) , (11)

where ρ̄(r) is simply the density in the reference state, that substitution being
consistent with the anelastic approximation.

Using the scale separation introduced in eq. (1)–(2), the various terms can be
separated between large-scale and small-scale contributions, e.g.:

〈UφU〉 = 〈(uφ + u′φ)(u + u′)〉 = uφu + 〈u′φu′〉 , (12)

and likewise for 〈BφB〉. Rewriting eq. (10), eq. (11) and assembling them in
eq. (9) while using the previous identities gives

∂(ρ̄uφ)
∂t

− 1
r cos θ

∇ ·
[
r cos θ

( 1
µ0

(bφb + 〈b′φb′〉)− ρ̄(uφu + 〈u′φu′〉)
)]

= 0 . (13)

Changing now to the co-rotating reference frame implies u = v + Ω × r and
u′ = v′ because there is no small-scale contribution to Ω × r. Since the latter
term is also divergenceless, we can write:

uφu = (vφ + Ωr cos θ)v . (14)

The end result of all this is to recast eq. (13) in conservative form :

∂(ρ̄vφ)
∂t

− 1
r cos θ

∇ ·
[
r cos θ

( 1
µ0

(bφb + 〈b′φb′〉)−

− ρ̄((vφ + Ωr cos θ)v + 〈v′φv′〉)
)]

= 0 . (15)

Notice that ∂t(ρ̄vφ) is in fact a volumic force density in the longitudinal direc-
tion, as expressed in the rotating frame. The four terms adding up under the
divergence are the four contributors to zonal dynamics :

FReyn =
−1

r cos θ
∇ · (r cos θ ρ̄〈v′φv′〉) , (16)

FCirc =
−1

r cos θ
∇ · (r cos θ ρ̄(vφ + Ωr cos θ)v) , (17)

FMaxw =
1

r cos θ
∇ ·
(r cos θ

µ0
〈b′φb′〉

)
, (18)
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FMagn =
1

r cos θ
∇ ·
(r cos θ

µ0
bφb

)
, (19)

These are, respectively, turbulent Reynolds stresses, Coriolis force acting on
the meridional flow, turbulent Maxwell stresses (small-scale Lorentz force) and
the magnetic torque (Lorentz-force associated with large-scale magnetic compo-
nent). Note that viscous stresses do not appear explicitly here, as our simulation
is of the implicit large-eddy type, i.e., it does not include explicit dissipative
terms in the momentum equation.

3.2. Angular momentum fluxes

As per eq. (15), the mean radial and latitudinal angular momentum fluxes are
given by:

Lr(r, θ, t) = r cos θ
( 1
µ0

(bφbr + 〈b′φb′r〉)−

− ρ̄((vφ + Ωr cos θ)vr + 〈v′φv′r〉)
)
, (20)

Lθ(r, θ, t) = r cos θ
( 1
µ0

(bφbθ + 〈b′φb′θ〉)−

− ρ̄((vφ + Ωr cos θ)vθ + 〈v′φv′θ〉)
)
. (21)

Following Brun, Miesch, and Toomre (2004), we first examine the global rota-
tional dynamics by computing from the simulation output the fluxes of angular
momentum integrated across spherical shells or conical wedges centered on the
rotation axis:

Ir(r, t) =
∫ π/2

−π/2
Lr(r, θ, t)r2 cos θ dθ , (22)

Iθ(θ, t) =
∫ rtop

rbot

Lθ(r, θ, t)r cos θ dr , (23)

so that Ir(r, t) is the net angular momentum transport rate through shells of
different radii, and Iθ(r, t) through cones tangent to different latitudes.

In order to disentangle the various physical contribution to angular momen-
tum transport, these integrals are computed separately for the four distinct
contributions to the total angular momentum fluxes. The result of this procedure
is shown in Figure 6, where the fluxes have also been temporally averaged over
the extent of the simulation. The procedure was also carried out for the same
parent hydrodynamical simulation whose mean rotational frequency is plotted
on Fig. 2 (top). In this HD simulation, the only contributors to zonal dynamics
are the Reynolds stresses and Coriolis force acting on the meridional flow.

In the HD simulation, the Reynolds stresses and Coriolis force are seen to
act in opposition at all latitudes and depths. This is precisely what one would
expect for a stationary rotational state to ensue. With all fluxes vanishing at
domain boundaries, the fact that these two contributions do not add up to zero
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Figure 6. A four panels diagram showing angular momentum flux contributions. Panels (A)
and (C) show these contributions in the HD simulation, while panels (B) and (D) show them in
the MHD simulation. Panels (A) and (B) represent angular momentum fluxes through spherical
shells of different radii, with positive fluxes amounting to upwards transport of angular momen-
tum. Panels (C) and (D) show the fluxes through conical surfaces of different latitudes, with
positive values indicating northward transport. The various curves are color-coded as follows
: blue - Reynolds stresses; green - Coriolis force; orange - Maxwell stresses; red - large-scale
magnetic fields; black - total of all the contributions. The vertical dotted lines in the top two
panels show the location of the core-envelope interface at r/R = 0.718.
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reflects the presence, in the simulation, of a dissipative force associated with the
numerical scheme, which here contributes significantly to the zonal dynamics,
especially at low latitudes in the convection zone. This can be traced in part
to the very strong rotational shear which builds up there in the HD simulation
(cf. top panels Fig. 2).

Turning to the MHD simulation, the most obvious feature is perhaps the
fact that all four potential fluxes of angular momentum contribute more or less
equally to the global rotational dynamics. Moreover, the presence of magnetic
fields has greatly altered the non-magnetic fluxes of angular momentum. This is
particularly the case for the radial flux of angular momentum associated with
the Coriolis force (cf. green curves on panels A and B), and latitudinal fluxes
by Reynolds stresses (cf. blue curves on panels C and D), which both undergo
reversals in direction over a substantial portion of their spatial range when going
from HD to MHD. Also noteworthy in this MHD simulation, the Maxwell stresses
associated with the small-scale magnetic field contribute more or less equally to
the Lorentz force associated with the large-scale, cycling magnetic field. Finally,
the presence of a magnetic field leads to a significant rotational coupling between
the convection zone and underlying stably stratified core, extending deep into
the latter. Such a coupling is almost entirely absent in the HD simulation. Note
finally that the high degree of (anti)symmetry about the equator apparent on
panels (C) and (D) is a true feature of these simulations, as no averaging of
hemispheres has been carried out here.

It is particularly interesting to compare Figs. 6B and D to the corresponding
diagrams presented in Brun, Miesch, and Toomre (2004), namely their Fig. 102.
Their simulation differs from ours in three important ways: (1) it covers only
the convecting layers; (2) it includes substantial explicit viscosities and magnetic
diffusivities throughout the simulation domain; and (3) it does not generate a
large-scale magnetic component. Even though their mean differential rotation
is qualitatively similar to ours (equatorial acceleration, polar deceleration, ten-
dency towards cylindrical isocontours in equatorial regions), major differences
exist in the underlying rotational dynamics. Viscous forces play a major role
in the radial transport of angular momentum in their simulation, teaming with
Maxwell stresses to offset the Coriolis force and Reynolds stresses throughout
the whole convection zone. In our simulation, this dynamical balance (minus
viscous force) materializes only in the lower third of the convecting layers, with
Reynolds and Maxwell stresses acting in opposition to the Coriolis force higher
up. In both simulations, the latter leads to a net upward transport of angular
momentum, and Maxwell stresses drive a downward transport.

For the simulation analyzed on Fig. 10 of Brun, Miesch, and Toomre (2004),
viscous diffusion makes a lesser contribution to angular momentum transport in
the latitudinal direction than it does in the radial direction, and not surprisingly
there are now more similarities with our latitudinal fluxes, Reynolds and Maxwell
stresses now opposing each other at most latitudes. The primary difference,
beside the presence of a significant large-scale magnetic torque in our simulation,

2Note that in Brun, Miesch, and Toomre (2004) their equivalent of our integrated radial fluxes
are divided by R2 and they are using CGS units instead of SI units.
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is found with the net latitudinal angular momentum transport by the meridional
flows, which is poleward at most latitudes in our simulation, but equatorward
in Brun, Miesch, and Toomre (2004) simulations.

The differences between these two sets of simulations most likely do not arise
exclusively from the presence of a large-scale cyclic magnetic field in our sim-
ulations, as angular momentum fluxes calculated in purely HD versions of the
Brun, Miesch, and Toomre (2004) simulations (see Miesch, 2000 and Brun and
Toomre, 2002) also differ markedly from the HD balance depicted on Fig. 6A,C
herein. Looking at case C in Fig. 11 from Brun and Toomre (2002), which is the
most turbulent and closest to our parameter regime, and comparing it with our
Figs. 6A,C, we observe very different patterns for both the Reynolds stresses
and the Coriolis force acting on the meridional flow. The radial fluxes show
distinct depth variations, particularly in the middle of the convection zone, but
the difference is most striking in the latitudinal fluxes distributions. inverted.
When looking at latitudes located in the range −30o ≤ θ ≤ 30o in Fig. 6C
and Fig. 11C from Brun and Toomre (2002), both the Reynolds stresses and
the meridional circulation contributions are of opposite sign when comparing
both simulations together. Additionally, there is a sign change around ±30o in
our simulation that has no counterpart in theirs. Brown et al. (2008) present
another set of HD simulations, all strongly turbulent but where they also vary
the rotation rate. More specifically, in their Fig. 9 they show angular momnentum
fluxes for two cases: Ω = Ω� in panels (A) and (B), and Ω = 5Ω� in (C) and (D).
While panels (A) and (B) remain similar to the aforecited equivalent plots in
Brun and Toomre (2002), the more rapidly rotating case (panels C and D) reveal
yet again a distinct dynamical balance. The major players in the radial transport
of angular momentum are the Reynolds stresses and the viscous transport terms,
with the Coriolis force exerted on the meridional circulation playing a lesser role.
While latitudinal transport has a very complex profile, the Reynolds stresses and
meridional circulation terms usually have the same sign and are counterbalanced
by the viscous transport.

Another major difference lies of course with the fact that our dynamical bal-
ance is not perfectly stationary, showing instead periodic variations which drives
the torsional oscillations visible on Figs. 3 and 4. It is therefore also interesting
to examine the temporal evolution of those angular momentum fluxes over a
magnetic half-cycle. This is carried out on Figure 7, which shows the evolution
of each individual flux component, from the beginning of the second half-cycle on
Fig. 1 to its end, i.e. from one minimum to the next, at a 9 yr temporal cadence,
as indicated by the vertical line segments on Fig. 1A and D. Each panel also
reproduces the temporal average of the corresponding contribution over the full
simulation duration (in black), taken directly from Fig. 6B.

The magnetic torque contribution (panel D) shows large variations about its
temporal average, which is of course expected in view of the cyclic evolution
characterizing the large-scale magnetic field. Far less expected a priori, however,
is the fact that all other flux contributions also undergo similar variations in
the bulk of the convecting layers. This is even the case for the nominally non-
magnetic contributions, namely the turbulent Reynolds stresses and Coriolis
force acting on the meridional flow. The latter’s temporal variations show little
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Figure 7. Temporal evolution of the various radial angular momentum flux contributions
sampled at a 9 yr cadence between 54 and 90 yr: dotted t = 54 yr; short-dashed t = 63 yr;
dot-dashed t = 72 yr; triple-dot-dashed t = 81 yr; long-dashed t = 90 yr, indicated by the cor-
respondingly coded vertical line segments on Fig. 1A and D. The solid line is the corresponding
flux contribution averaged over the entire simulation time. Note the varying vertical scales on
the four panels.
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spatial coherence, whereas Reynolds stresses vary largely in unison at all depths.
A similar situation arises with the magnetic contributions, with the magnetic
torque showing a complex spatiotemporal behavior, while temporal variations
in Maxwell stresses are very well-correlated spatially. Also noteworthy, flux con-
tributions associated with the small-scale flow and magnetic field —Reynolds
and Maxwell stresses— fall rapidly with depth at and below the core-envelope
interface, where they show almost no temporal variability. Consequently, the
time-dependence of the rotational coupling between the convection zone and
underlying stably stratified fluid layers is driven by the interplay between the
strongly time-varying contributions of large-scale magnetic torques and angular
momentum advection by the meridional flow.

The most important take-home message offered by Fig. 7 is the following :
torsional oscillations are not driven by a cyclic, magnetically-mediated pertur-
bation superimposing itself on an otherwise steady hydrodynamical balance. All
angular momentum flux contributions, including those of a purely hydrodynam-
ical nature, are strongly modulated by the magnetic cycle. In these simulations,
torsional oscillations are a fully nonlinear and truly MHD phenomenon.

Another interesting aspect of our results relates to the rotational coupling
between the convection zone, where differential rotation is generated, and the
underlying stably-stratified nominally stable fluid layers. Figure 8A shows time
series of the radial fluxes of angular momentum, computed via eq. (22) separately
for each of its four contributions, as labeled. At the core-envelope interface proper
(r/R = 0.718), the net transport of angular momentum across the corresponding
spherical shell is directed upward, and is driven primarily by the Coriolis force
acting on the meridional flow, and resisted by the magnetic forces. Although
the magnitude of the the large-scale magnetic torque varies cyclically in phase
with the magnetic cycle, as one would have expected, the Coriolis term does
also, which results in a net upward flux of angular momentum (in black) that
does not show a well-defined cyclic signal. This general pattern is maintained
down to r/R ' 0.70 in the stable layers, but with the disappearance of the
HD forces further below the magnetic terms take over completely, as shown on
Figure 8B. The large-scale torque now drives an upward angular momentum
flux, and is opposed by the Maxwell stresses. Cyclic variations on the magnetic
cycle frequency can still be detected, but quasi-cyclic modulations on shorter
periods are also apparent at these depths.

A similar dynamical transition as a function of depth in the stable layer is also
present in the latitudinal angular momentum fluxes, as illustrated on Fig. 8C,D.
These time series result from the calculation of the four individual contributions
on the RHS of eq. (21) at latitude −45◦ and two diferents depths, as labeled. At
the mid-latitude core-envelope interface (r/R = 0.718, panel C), the latitudinal
flux is directed equatorward and dominated by the meridional flow contribution,
which shows a strong cyclic signal in phase with the magnetic cycle. This is as-
sociated with a strong driving of the meridional flow by the large-scale magnetic
field (on this point see also Passos, Charbonneau, and Beaudoin, 2012), but
with regards to the zonal dynamics, the large-scale magnetic torque here drives
angular momentum poleward, as expected from the shearing of a latitudinally-
oriented poloidal large-scale magnetic field by a latitudinal differential rotation
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Figure 8. Temporal evolutions of angular momentum fluxes for each contribution. Panels
(A) and (B) show the net radial angular momentum transport rate through spherical shells at
r/R = 0.718 and r/R = 0.69. Panels (C) and (D) display time series of the mean latitudinal
flux at these same depths, both at θ = −45o. Note the varying vertical scales on panels (A)
vs (B), and (C) vs (D). The vertical dotted lines indicate epochs of polarity reversal of the
large-scale internal toroidal magnetic field, as determined from Fig. 1, equivalent here to “solar
minimum”. Here each time series has been smoothed with a boxcar average of width 4 yr.
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characterized by equatorial acceleration. Moving inwards, already at r/R = 0.70
(not shown) the magnetic torque has reversed and now drives angular momentum
equatorward, and by r/R = 0.69 (panel D) the contribution of the meridional
flow has vanished and the large-scale magnetic torque is the sole driver of the
equatorward angular momentum flux, which remains strongly modulated by the
magnetic cycle. The Reynolds and Maxwell stresses are minor contributors to
the latitudinal flux of angular momentum at all depths in the stable layer.

3.3. Volumic force densities

We now turn to explicit calculations of volumetric force densities, by taking the
divergence of the various contributions to the total angular momentum flux, as
appearing on the RHS of eq. (15), at each grid point in the meridional [r, θ] plane.
In both HD and MHD simulations, temporally averaging each set of grid point
values over four magnetic half-cycles produces again patterns with a high degree
of symmetry with respect to the equator. Comparing HD and MHD simulations
reveals the most pronounced differences at mid- to high latitudes, where even
the nominally HD forces —Reynolds stresses and Coriolis force acting on the
meridional flow— show large differences in their spatial distributions. This is
particularly striking in the Coriolis term, which tends to accelerate (decelerate)
the zonal flow in the outer (inner) half of the convecting layers of the HD
simulation, and shows the opposite pattern in the MHD simulation. In the MHD
simulation, Maxwell and Reynolds stresses tend to oppose each other at most
locations in the meridional plane, and the two magnetic contributions are the
sole significant contributors within the underlying stable fluid layer, consistent
with Fig. 6.

Figure 9A offers a more focused look at the torsional oscillation dynamics at
high latitudes, in the form of time series of the various azimuthal force compo-
nents extracted at a specific grid point located at depth r/R = 0.925 and −70◦

latitude (Southern hemisphere). At first glance, at this location the Reynolds and
Maxwell stresses contribute very little to the zonal dynamics, which is primarily
driven by the large-scale Lorentz force (red) and Coriolis force (green). However,
these two contributions are of similar magnitudes but strongly anticorrelated,
and so nearly cancel each other. The resulting total force (black) is then of much
smaller magnitude than either of these two contributions, and comparable again
to the lower amplitude Maxwell stresses (orange).

Figure 9B replicates the temporal evolution of this net force, together with
the evolution of the mean toroidal magnetic component (red) and zonal flow
speed (blue). The red dashed line is a time series of the large-scale toroidal
field extracted at mid-latitudes at the core-envelope interface, and represents
here a proxy of the overall cycle phase. Despite strong temporal fluctuations,
the plot reveals that the net zonal force is generally in the prograde direction
throughout the peak phases of the magnetic cycle, and tends to fluctuate about
zero around epochs of polarity reversals in the large-scale magnetic field. This is
consistent with the peak prograde amplitude of torsional oscillations occurring
around times of cycle maximum (cf. Figs. 1 and 4). The fact that the local
variation of the toroidal field lags behind the zonal flow variations suggests that
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Figure 9. Two representations of temporal evolution of the total force applied on the plasma
at r/R = 0.925 at a latitude of −70o. Panel (A) depicts individual force components : blue -
Reynolds stresses; green - meridional circulation with Coriolis effect; orange - Maxwell stresses;
red - large-scale magnetic fields; black - sum of all four contributions. The vertical dotted line
indicate times of magnetic cycle minimum, based on the zonally-averaged toroidal field at
the core-envelope interface (cf. Fig. 1). Panel (B) shows time series of the total force (black),
the zonal velocity (blue) and toroidal magnetic field (red). The red solid line is the toroidal
magnetic field taken at r/R = 0.925, θ = −70o, while the red dashed line is that same quantity
extracted at r/R = 0.718, θ = −60o. Here each time series has been normalized to its peak
values for comparison purposes, and smoothed with a boxcar average of width 4 yr. The vertical
dotted lines delineate subsequent magnetic half-cycles.
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the latter’s shearing action contributes at least in part to its induction. It is quite
remarkable that the force component in (A) which shows the best correlation
with the zonal flow variations is the Reynolds stresses (blue), which have the
lowest individual amplitude of all four force components.

Figure 10 offers yet a different look at the torsional oscillations dynam-
ics. The curves are trajectories in a two-dimensional phase space defined in
terms of the zonally-averaged zonal flow deviation about its temporal mean
over the simulation span (horizontal), versus the zonally-averaged latitudinal
flow deviation about its own temporal mean (vertical). Four such trajectories
are shown, for meridional plane grid points located at the subsurface high lat-
itudes (r/R, θ) = (0.95,±70◦) in panels (A) and (B), and mid-high-latitude
core-envelope interface (r/R, θ) = (0.718,±60◦) in panels (C) and (D).

Figure 10. Phase diagrams of the perturbation in latitudinal velocity plotted vs. the pertur-
bation in longitudinal velocity for two depths and four latitudes, as labeled above each panel.
The color sequence indicates the temporal evolution : black - violet - blue - green - yellow -
orange - red. The colored solid dots indicate the epochs of magnetic cycles maxima.
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In the high latitude subsurface layers (panels A and B), both flow perturba-
tions are strongly correlated in time, with the poleward latitudinal flow varying
in phase with the prograde rotational acceleration. That local rotational accel-
eration (deceleration) should correlate in this manner to the variation of the
latitudinal flow component, consistent with conservation of angular momentum
in an axisymmetric fluid ring symmetrically contracting (stretching) as it gets
displaced towards (away) from the rotation axis by the latitudinal flow. This
suggests that, in this high-latitude location, the zonal dynamics are “enslaved”
to the meridional flow dynamics. This situation does not hold everywhere, how-
ever, as evidenced by panels (C) and (D) of Fig. 10. These diagrams are now
constructed from time series of zonal and latitudinal flow variations extracted at
±60◦ latitude at the core-envelope interface. The corresponding phase diagrams
of zonal and latitudinal flow residuals are now markedly different from their
high latitude subsurface counterparts on panels (A) and (B), with the two flow
residuals now varying cyclically but out of phase with one another, with a
phase lag ∼ π/2. This indicates that the zonal dynamics cannot be reduced
to angular momentum conservation in a contracting (expanding) fluid ring,
and results from a more complex interplay of time-varying direct and indirect
magnetically-mediated forcing (see also the companion analysis presented in
Passos, Charbonneau, and Beaudoin, 2012).

3.4. Energetics of the torsional oscillations

The conclusion drawn above can be further substantiated through an analysis of
the flux of energy to and from the various energy reservoirs defined by the flow
and magnetic field. The evolution equation for the kinetic energy density of the
flow, εF = ρ̄(u · u)/2, takes here the form :

∂εF
∂t

= −2u · FF + u · FB , (24)

the volumetric force densities associated with the flow (FF ) and magnetic field
(FB) have been schematically grouped on the RHS. With u = dx/dt, both
terms on the RHS correspond to the volumetric work done by the various forces
on or against the flow u. In what follows, we are interested in the energy flow
in association with the torsional oscillations, so we will set u ≡ uφ, FF ≡
FReyn + FCirc, and FF ≡ FMaxw + FMagn, as defined by Eqs. (16)—(19).

Figure 11 shows each power density contribution from Eq. (24) integrated
over a conical volume going from the South pole to latitude −60o. Any negative
contribution indicates energy extracted from the zonal flow. The only contribu-
tion that systematically does so here are the Reynolds stresses, moreover in a
very well defined cyclic fashion. This is associated with the diffusive part of the
Reynolds stresses acting to slow torsional oscillations, most importantly in the
rising phase of the magnetic cycle, when the torsional oscillations are in their
prograde acceleration phase. Energy injection is in fact dominated by the Cori-
olis force exerted on the meridional circulation, with peak energy transfer rate
usually occurring in the first half of each magnetic half-cycle. Most remarkable
perhaps is the fact that the magnetic forces (their amplitude being multiplied
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by a factor of 5 on Fig. 11) mediate little or no significant direct transfer of
energy to or from the mean zonal flow, and therefore that high-latitude torsional
oscillations are not directly driven by the cycling large-scale magnetic field.

Figure 11. Temporal evolution of the power of various force contributions at the south pole of
the sun, integrated for −90o < θ < −60o. We represented the HD contributions multiplied by
-2 to be consistent with Eq. (24). We also multiplied the magnetic components by 5 to enhance
their temporal variations. Color coding as before : blue - Reynolds stresses; green - Coriolis
force affecting the meridional flow; orange - Maxwell stresses; red - large-scale magnetic fields;
black - total (variation of the energy in the flow in φ). The vertical dotted lines delineate
subsequent magnetic half-cycles. All time series have been smoothed with a boxcar filter of
width 5 yr

Table 1 lists the power densities associated with our zonal volumetric force
components (left column), now integrated over the full 180 yr time span of the
simulation segment. They are integrated spatially again over the Southern polar
caps (middle column), as on Fig. 11, and over the full domain (right column).
Once again, only the Coriolis force acting on the meridional flow injects energy in
the zonal flow, but it surpasses by far all the other contributions. The magnetic
force components, on average, extract energy from the zonal flow. This energy
gets transferred to magnetic energy, which evolves according to

∂εB
∂t

= −∇ · S− u · FB , (25)

where S is the Poynting electromagnetic energy flux, and the second term on the
RHS is the same as on the RHS of eq. (24), except of course for the sign. The
inescapable conclusion is that direct magnetic driving of the torsional oscillations
does not represent a saturation mechanism for the global dynamo operating in
this simulation. However, we have seen previously that the magnetic cycle does
drive large fluctuations in the meridional flow, and the Coriolis force acting on
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Table 1. Mean powers obtained upon averaging in time the
terms in Eq. (24) for two integration ranges. A positive value
means an input in the flow energy.

Powers (W) −90o < θ < −60o −90o < θ < 90o

−2
∫
uφFReyn dV −1.27× 1025 −2.84× 1025

−2
∫
uφFCirc dV +5.35× 1025 +1.26× 1026∫

uφFMaxw dV −1.36× 1024 −1.57× 1024∫
uφFMagn dV −6.47× 1023 −2.46× 1024

this cyclically forced flow is the main driver of torsional oscillations. Indeed, the
energy analysis presented in §5 of Passos et al. (2012) indicates that magnetic
driving of the latitudinal flow is the primary sink of magnetic energy in this
simulation. The energy flow is thus of the form :

Magnetic energy → meridional flow → torsional oscillations → small-scale tur-
bulence → (numerical) dissipation.

4. Concluding remarks

In this paper, we have carried out a focused analysis of one of the implicit large-
eddy MHD simulation of solar convection computed by Ghizaru, Charbonneau,
and Smolarkiewicz (2010) (see also Racine et al., 2011; Charbonneau and Smo-
larkiewicz, 2012). To the best of our knowledge, these simulations remain unique
in generating a spatially well-organized large-scale magnetic field component
undergoing regular polarity reversals in a manner resembling in many ways the
solar magnetic cycle. We have shown that a well-defined rotational torsional
oscillation signal is present in the simulation, showing a surprisingly good degree
of similarity with those observed in the sun, including: (1) frequency twice that
of the magnetic cycle; (2) greater amplitudes in polar and subsurface regions,
peaking at a few nHz; (3) peak prograde phase coinciding approximately with
the peak in large-scale magnetic field; (4) diverging double-branch latitudinal
structure; (5) depth-independent phase at most latitudes.

We investigated rotational dynamics by first computing from the simulation
output the various contributions to angular momentum fluxes, in the MHD
simulation as well as a parent, unmagnetized simulation otherwise operating
under the same numerical and physical parameter settings. We could show that
in the MHD simulation, the presence of a large-scale cycling magnetic field drives
torsional oscillations not just directly through the associated large-scale magnetic
torque, but also indirectly by modulating the other forces influencing zonal
dynamics, most notably the transport of angular momentum by meridional flow.
In fact, all force components driving the zonal flows undergo cyclic variations
driven by the magnetic cycle, including the nominally “small-scale” Reynolds
and Maxwell stresses.
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We also examined the dynamical character of the rotational coupling between
the convecting layers and underlying stably-stratified fluid layers. Because of the
low-dissipative properties of the numerical scheme underlying the simulations,
a tachocline-like shear layer builds up immediately beneath the nominal base of
the convective layers, within which significant radial and latitudinal cyclically-
varing fluxes of angular momentum develop. The net radial flux is determined
by a competition between the meridional flow and Maxwell stresses within the
tachocline (0.7 ≤ r/R ≤ 0.718) and by the magnetic torque and Maxwell stresses
below. The latitudinal flux shows a strong cyclic signal, in phase with the mag-
netic cycle. It is dominated by the meridional flow within the tachocline, and
by the large-scale magnetic torque below. The upper part of the stable layer
is here an important player in setting the global cycle of angular momentum
redistribution —and thus torsional oscillations— within the convection zone (on
these issues see also Gilman, Morrow, and Deluca, 1989).

Turning to a simple analysis of the energetics of torsional oscillations, we could
also show that the primary direct power source for torsional oscillations arising
in the simulation is the action of the Coriolis force on large-scale meridional fluid
motion, with Reynolds stresses acting to oppose these oscillations at most phases
of the cycle. Surprisingly, direct driving by the large-scale magnetic torque makes
only a minor contribution. This is in agreement with a parallel investigation by
Passos, Charbonneau, and Beaudoin (2012), who carried out a similar energy
analysis for the meridional flow and could show that magnetic driving of this flow
represented the primary sink of magnetic energy. This suggests that saturation
of global dynamo action in this simulation occurs through the magnetic driving
of flows on large spatial scales, magnetic energy being first diverted into the
meridional components, and subsequently, through angular momentum conser-
vation, into torsional oscillations, where it eventually damps through turbulent
stresses.

This state of affairs, should it carry over the real Sun, has interesting con-
sequences with regards to attempt to use fluctuations in large-scale flows as
precursors to the solar cycle amplitude. More specifically, taken jointly with
the results presented in Passos, Charbonneau, and Beaudoin (2012), our anal-
ysis suggests that fluctuations in the meridional flow may be better potential
precursors than torsional oscillations, because the bulk of magnetic driving of
large-scale flows occurs on and through this flow component. Re-analysis of ex-
tant surface Doppler measurements has now allowed to reconstruct variations of
the surface latitudinal flow back to the beginning of cycle 22 (Ulrich, 2010; Dik-
pati et al., 2010), and has shown that significant cycle-to-cycle variations indeed
exist. We are currently pushing our simulations much further in time, as well
as under different parameter regimes, which should allow a statistically sound
investigation of the precursor potential of torsional oscilaltions as well as surface
latitudinal flow.
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T. Arentoft, I. González Hernández, C. Lindsey, & F. Hill (ed.) Solar-Stellar Dynamos as
Revealed by Helio- and Asteroseismology: GONG 2008/SOHO 21, Astronomical Society
of the Pacific Conference Series 416, 489.

Ghizaru, M., Charbonneau, P., Smolarkiewicz, P.K.: 2010, Magnetic Cycles in Global
Large-eddy Simulations of Solar Convection. Astrophys. J. Lett. 715, 133 – 137.
doi:10.1088/2041-8205/715/2/L133.

Gilman, P.A., Morrow, C.A., Deluca, E.E.: 1989, Angular momentum transport and dynamo
action in the sun - Implications of recent oscillation measurements. Astrophys. J. 338,
528 – 537. doi:10.1086/167215.

Hill, F., Howe, R., Komm, R., Christensen-Dalsgaard, J., Larson, T.P., Schou, J., Thompson,
M.J.: 2011, Large-scale Zonal Flows During the Solar Minimum – Where Is Cycle 25? In:
AAS/Solar Physics Division Abstracts #42, 1610.

Howard, R., Labonte, B.J.: 1980, The sun is observed to be a torsional oscillator with a period
of 11 years. Astrophys. J. Lett. 239, 33 – 36. doi:10.1086/183286.

Howe, R.: 2009, Solar Interior Rotation and its Variation. Living Reviews in Solar Physics 6,
1.
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