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ABSTRACT

In this paper, we examine the mode of dynamo action in the implicit large-eddy magnetohydrodynamical simulation
of solar convection reported upon in Ghizaru et al.. Motivated by the presence of a strong and well-defined large-
scale axisymmetric magnetic component undergoing regular polarity reversals, we define the fluctuating component
of the magnetic field as the difference between the total field and its zonal average. The subsequent analysis
follows the physical logic and mathematical formulation of mean-field electrodynamics, whereby a turbulent
electromotive force (EMF) is computed by suitable averaging of cross-correlations between fluctuating flow and
field components and expressed in terms of the mean field via a linear truncated tensorial expansion. We use
singular value decomposition to perform a linear least-squares fit of the temporal variation of the EMF to that of the
large-scale magnetic component, which yields the components of the full α-tensor. Its antisymmetric component,
describing general turbulent pumping, is also extracted. The α-tensor so calculated reproduces a number of features
already identified in local, Cartesian simulations of magnetohydrodynamical rotating convection, including an αφφ

component positive in the northern solar hemisphere, peaking at high latitudes, and reversing sign near the bottom
of the convection zone; downward turbulent pumping throughout the convecting layer; significant equatorward
turbulent pumping at mid latitudes, and poleward at high latitudes in subsurface layers. We also find that the EMF
contributes significantly to the regeneration of the large-scale toroidal magnetic component, which from the point
of view of mean-field dynamo models would imply that the simulation operates as an α2Ω dynamo. We find little
significant evidence of α-quenching by the large-scale magnetic field. The amplitude of the magnetic cycle appears
instead to be regulated primarily by a magnetically driven reduction of the differential rotation.
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1. INTRODUCTION

The solar magnetic field is the energy source for the whole
set of physical phenomena collectively known as “solar activ-
ity.” While flux emergence is the primary driver on timescales
ranging from minutes to months, on longer timescales of years
to millennia solar activity is strongly modulated by the solar
cycle, namely the cyclic variation of the Sun’s large-scale mag-
netic component. This cyclic variation, characterized by polar-
ity reversals approximately every 11 years, is believed to be
powered by a magnetohydrodynamical dynamo process oper-
ating in the solar interior, within its convective envelope and
possibly immediately beneath its interface with the underlying,
stably stratified radiative core (r/R� � 0.71, according to he-
lioseismic inversions of the solar internal sound speed profile;
see, e.g., Christensen-Dalsgaard 2002). A proper understanding
of this dynamo process is thus justly recognized as a corner-
stone of research into the myriad of manifestations of solar
activity.

For physical conditions characteristic of the solar interior,
Q1

the solar dynamo is expected to be well described by the clas-
sical magnetohydrodynamical approximation (e.g., Davidson
2001; Goedbloed & Poedts 2004), a fusion of the hydrodynam-
ical fluid equations and Maxwell’s equations applicable to a
non-relativistic, globally neutral, and collisionally dominated
plasma obeying Ohm’s law. The resulting set of nonlinear, cou-
pled partial differential equations remains daunting, and in gen-
eral can only be solved numerically. Simplified model formula-
tions based on mean-field electrodynamics (e.g., Moffatt 1978;

Krause & Rädler 1980; Rüdiger & Hollerbach 2004, and ref-
erences therein) readily produce cyclic solutions for reasonable
though largely ad hoc input parameters and key functionals such
as the α-effect and turbulent diffusivity (for a recent review see
Charbonneau 2010). However, and without at all diminishing
their usefulness as descriptive models as well as thinking tools,
the freedom to specify free functions, and the highly simplified
treatment of the nonlinear interactions between flow and field,
poses fundamental limits on the applicability of such models to
the solar cycle.

Q2
Alternately, the dynamo problem can be tackled as a dynam-

ically consistent simulation of thermally driven magnetohydro-
dynamical convection in a thick, stratified, and rotating spherical
shell of electrically conducting fluid (Gilman 1983; Glatzmaier
1984). The resulting computational problem is quite challeng-
ing due to the turbulent nature of fluid motions in the solar
convection zone, which generates a very wide range of spatial
and temporal scales in the evolving flow and magnetic field. For
many decades, the computational resources needed to capture
dynamo action in a global simulation of the whole solar con-
vection zone have kept this type of simulation at the forefront
of computational fluid dynamics, a situation that persists to this
day (see Miesch & Toomre 2009 for a review).

Following the development of a massively parallel version
of the Glatzmaier (1984) simulation code by Clune et al.
(1999), a reasonably turbulent regime could be attained. While
such turbulent global MHD simulations of solar convection do
produce a lot of magnetic fields (see, e.g., Brun et al. 2004),
they often fail to produce magnetic fields well organized on
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large spatial scales and carrying a significant net hemispheric
flux. Toward this end, the introduction of a stable fluid layer
underlying the convection zone, where strong, persistent angular
velocity shear can develop in a tachocline-like layer, has been
shown to be conducive to the buildup of persistent large-scale
magnetic fields (see Browning et al. 2006; Ghizaru et al. 2010;
Käpylä et al. 2010); however, at higher rotation rates it appears
that the buildup of large-scale magnetic fields can occur entirely
within the convective envelope, without a tachocline (Brown
et al. 2010, 2011).

Regular, solar-like cyclic activity has proven very hard to
produce in such simulations. The groundbreaking simulations
of Gilman (1983) and Glatzmaier (1984, 1985) did produce
polarity reversals, but computing limitations restricted these
simulations to mildly turbulent regimes, while the resulting
spatiotemporal evolution of the large-scale magnetic field they
produced was non-solar in a number of ways, notably the ten-
dency for latitudinal migration of the large-scale magnetic field
to take place poleward rather than equatorward. In the more
turbulent, contemporary versions of these simulations, polar-
ity reversals of large-scale magnetic field structures, have been
produced for rotation rates five times that of the Sun (Brown
et al. 2011), with the timing of these reversals markedly asyn-
chronous across hemispheres. Miesch et al. (2011) also reported
on the occurrence of a few polarity reversals in a variation
on the simulations of Brown et al. (2011) operating now at
the solar rotation rate. This simulation shows better synchrony
across hemispheres, but again a tendency, albeit weak, for pole-
ward migration of the large-scale magnetic component. Oper-
ating under an entirely different numerical framework, Käpylä
et al. (2010) also obtained cyclic large-scale magnetic fields in
a spherical wedge simulation spanning up to 120◦ in longitude,
67◦ in latitude, and including an underlying stable layer. Those
cycling large-scale magnetic fields again are characterized by
poleward propagation much as in Gilman (1983) and also show
strong hemispheric asymmetries.

At this writing the turbulent simulations having produced the
most solar-like cyclic large-scale magnetic fields are those pre-
sented in Ghizaru et al. (2010). Based on an MHD extension of
the well-documented general-purpose hydrodynamical simula-
tion code EULAG (Prusa et al. 2008; Smolarkiewicz & Szmelter
2009, and references therein), the simulation is based on the
hydrodynamical model setup of solar convection described in
Elliott & Smolarkiewicz (2002). The temporally extended sim-
ulation reported in Ghizaru et al. (2010) is characterized by a
number of encouragingly solar-like features: (1) a well-defined
axisymmetric large-scale magnetic field component, antisym-
metric about the equatorial plane; (2) magnetic polarity rever-
sals with a half-period of approximately 30 years, synchronous
across hemispheres, (3) a strong (up to 0.3 T) toroidal compo-
nent concentrated at the interface between the convecting and
underlying stable layers, peaking at mid latitudes and showing
a weak but clear tendency for equatorward migration as the
cycles unfold; (4) a dipolar component, well aligned with rota-
tion axis and strongly peaked at high latitudes; (5) a reasonably
solar-like internal differential rotation, showing equatorial ac-
celeration and vanishing rapidly at the core-envelope interface.
The most glaring departures from the observed solar cycle are
the cycle period, three times too long; the fact that the large-scale
surface poloidal and deep-seated toroidal component oscillate
essentially in phase, in contrast to the π/2 phase lag observed
on the Sun; and the pole-to-equator contrast in surface angular
velocity, too small by a factor of almost three.

We are currently engaged in a systematic numerical explo-
ration of parameter space, in order to answer a number of press-
ing questions, notably (1) what sets the cycle period in the
simulation; (2) why is our simulation producing well-defined,
fairly regular cycles while the simulations of, e.g., Browning et
al. (2006), by all appearances quite similar in overall design and
turbulent regime, did not; and (3) how robust are the cycles to
the manner in which convection is being forced and to the dis-
sipation introduced via the numerical advection scheme. This is
a long, tedious, and computationally demanding process, which
could be greatly accelerated if the physical nature of dynamo
action in these simulations could be pinned down with some
degree of confidence. Accordingly, the purpose of this paper is
to examine the mode of dynamo action in the one specific sim-
ulation run presented in Ghizaru et al. (2010), which has since
been extended to 337 years of simulated time, in the course
of which 11 polarity reversals have taken place. Our primary
aim is to examine the degree (if any) to which dynamo action
in this simulation can be described through turbulent effects
described by mean-field electrodynamics, as embodied in the
α-effect and turbulent pumping. An overview of the simulation
is first presented in Section 2, after which we describe the pro-
cedure adopted to extract the components of the α-tensor, and
what these turn out to look like in our simulation (Section 3).
We then examine (Section 4) the degree to which large-scale
dynamo action in the simulation resembles what one can ob-
serve in conventional mean-field dynamo models and examine
the relative importance of turbulent induction of the toroidal
component versus shearing of the large-scale magnetic compo-
nent by differential rotation. We close Section 5 by summarizing
our results and speculating on further improvements that could
lead to a better reproduction of the observed characteristics of
the solar cycle in this type of MHD simulation.

2. OVERVIEW OF THE SIMULATION

The purpose of this section is to give a description of the
magnetic cycles developing in a temporally extended version
of the global MHD simulations of solar convection reported
upon in Ghizaru et al. (2010). This specific simulation provides
the numerical data used in the remainder of this paper in our
analysis of large-scale dynamo action.

2.1. Computational Model

A detailed presentation of our simulation framework and
numerical integration scheme will be given in a forthcoming
publication, so that what follows is meant as an overview.
The simulation solves the anelastic form of the ideal MHD
equations in a thick, gravitationally stratified spherical shell
(0.62 � r/R� � 0.96) spanning 3.4 density scale heights
and rotating at the solar rate Ω� = 2.69 × 10−6 rad s−1. The
analytic equations governing momentum, energy, and induction
evolution are written in symbolic vector form as

Du
Dt

= −∇π ′ − g
Θ′

Θo

+ 2u × � +
1

μρo

(B · ∇) B, (1)

DΘ′

Dt
= −u · ∇Θe + H − αΘ′, (2)

DB
Dt

= (B · ∇) u − B(∇ · u). (3)

In the above expressions u and B are the flow velocity and
magnetic field, respectively, and Θ is the potential temperature,
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effectively a measure of specific entropy (s = cp ln Θ). The
Lagrangian derivative is defined in the usual manner:

D

Dt
≡ ∂

∂t
+ (u · ∇). (4)

These evolution equations are also subject to mass continuity
and solenoidality constraint on B:

∇ · (ρou) = 0, (5)

∇ · B = 0. (6)

In the momentum equation (1), π ′ is a density-normalized
pressure perturbation in which magnetic pressure and centrifu-
gal forces have been subsumed. The basic state defining the
background stratification is unmagnetized, rigidly rotating, isen-
tropic and satisfies hydrostatic balance with g ∝ r−2. Sub-
scripts “o” refer to this basic state, with primes denoting devia-
tions from a prescribed ambient state, assumed to be in global
thermodynamic equilibrium, consistent with helioseismically
calibrated solar structural models (e.g., Christensen-Dalsgaard
2002). In our simulation this ambient state (subscript “e”) is
defined through a combination of polytropes, with a polytropic
index varying linearly with r in the stable layer from n = 3.0
at the base of the domain to n = 1.5 at the base of the unsta-
ble layer at r/R� = 0.718, and set to n = 1.49995 within the
model’s convection zone. Radiative diffusion, symbolized by H
on the right-hand side of Equation (2), is expressed in terms of
the potential temperature perturbation as

H = Θo

ρoTo

∇ ·
(

κr

ρoTo

Θo

∇Θ′
)

, (7)

with κr the coefficient of radiative diffusivity, and To(r) the
temperature profile associated with the isentropic basic state.
Convection is driven through the Newtonian cooling term αΘ′ in
Equation (2), which forces the system toward the ambient state
on a timescale given by the inverse of α (α = 2 × 10−8 s−1 for
the simulation considered here). This procedure, borrowed from
simulation of an idealized terrestrial climate (Held & Suarez
1994; Smolarkiewicz et al. 2001), is physically equivalent to
imposing a heat flux through the fluid layer. The simulation of
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Ghizaru et al. (2010), subjected to the residual (perturbation)
solar heat flux, is only weakly forced from the convection point
of view. Ongoing simulations operating under different forcing
regimes indicate that simulated large-scale dynamo behavior
can be sensitive to details of the forcing. Such sensitivity is not
at all unusual in a turbulent fluid system (Piotrowski et al. 2009).

For numerical implementation, the system of evolutionary
Equations (1)–(3) is written as a set of Eulerian conservation
laws—using mass continuity and solenoidality, Equations (5)
and (6)—and recast in the geospherical coordinate system (Prusa
& Smolarkiewicz 2003):

∂(ρ∗�)

∂t
+ ∇ · (V∗�) = ρ∗R, (8)

where
� = {u, Θ′, B} (9)

denotes the vector of prognosed physical (viz., measurable)-
dependent variables, R symbolizes all right-hand-side terms
in Equations (1)–(3), including metric forces. The quantity
ρ∗ = Gρo combines the anelastic density and the Jacobian

of coordinate transformation, and V∗ = ρ∗ẋ is an effective
flux transport term constructed using contravariant velocity ẋ
associated with the actual curvilinear coordinates used. The
Lorentz force term in Equation (1) as well as the induction
terms in Equation (3) are written in fully conservative form
that incorporate u and B under the divergence operator; cf.
Section III in Bhattacharyya et al. (2010). Furthermore, an
auxiliary term of the form −∇π∗ is added to the right-hand
side of the induction Equation (3), in order to compensate for
the truncation error-level departures from ∇ · B = 0, through
the solution, at every time step, of the associated elliptical
problem for the auxiliary potential π∗. The solution of the
resulting conservation laws proceeds as outlined in Ghizaru et
al. (2010), following the established EULAG procedures (Prusa
& Smolarkiewicz 2003; Prusa et al. 2008).

Viscous, thermal, and Ohmic dissipation are conspicuously
absent on the right-hand side of Equations (1)–(3); indeed,
with the exception of the radiative diffusion term appearing
explicitly on the right-hand side of Equation (2), all dissipation
is delegated to the non-oscillatory advection scheme MPDATA
(Smolarkiewicz 2006) at the core of EULAG. In essence, the
higher-order truncation terms of MPDATA provide an implicit
turbulence model (Domaradzki et al. 2003; Margolin et al.
2006; Margolin & Rider 2007). The simulation analyzed in
what follows is computed at relatively low spatial resolution
(Nr × Nθ × Nφ = 47 × 64 × 128), which permits long
temporal integrations, yet the low dissipative properties of the
underlying computational framework still yield a reasonably
turbulent regime, with estimated Reynolds numbers of order
102 and magnetic Prandtl number of order unity.

Simulations typically use a static state as initial condition,
with small velocity and magnetic perturbations introduced at
t = 0. The integration proceeds at a fixed-size time step,
specifically half an hour, for a grand total of some 6 × 106

time steps for the simulation discussed in what follows.

2.2. Cycling Large-scale Magnetic Fields

Figure 1 shows a temporal sequence of the toroidal (zonal)
magnetic component in the simulation, extracted on a spheri-
cal shell corresponding to the core-envelope interface (r/R� =
0.718 in the simulation), plotted in latitude–longitude Moll-
weide projection. From top to bottom, the sequence runs from
one magnetic maximum to the next and is temporally centered
on a polarity reversal (middle panel). Despite strong fluctuations
in the magnetic field, a large-scale axisymmetric component an-
tisymmetric about the equatorial plane is clearly apparent except
at the time of polarity reversal. In fact, except for the obvious
reversal of magnetic polarity, the magnetic field distributions at
top and bottom are remarkably similar, showing concentration
at mid latitudes and comparable peak strengths (∼0.3 T) in both
hemispheres. Polarity reversals occur through a gradual weaken-
ing of the large-scale axisymmetric magnetic component, with
antisymmetry about the equatorial plane maintained reasonably
well as the time of reversal is approached (t = 202.5 years), and
establishing itself rapidly again once the next half-cycle starts
to build up (t = 221.9 years).

The spatiotemporal evolution of the large-scale axisymmetric
component is best viewed by zonally averaging the total mag-
netic field present at any given time in the simulation. Working
in spherical coordinates (r, θ, φ), where −π/2 � θ � π/2 is
the latitude (rather than the polar angle), such a zonal average
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Figure 1. Temporal sequence of the toroidal magnetic component extracted at
the core-envelope interface (r/R� = 0.718) in the three-dimensional MHD
simulation presented in Ghizaru et al. (2010), plotted in Mollweide projection.
The sequence runs from top to bottom and covers a time interval corresponding
to a half-cycle, temporally centered on a polarity reversal. The color scale codes
the magnetic field strength in Tesla.

(An animation of this figure is available in the online journal.)

is defined as

〈B〉(r, θ, t) = 1

2π

∫ 2π

0
B(r, θ, φ, t)dφ. (10)

The top panel in Figure 2 shows a time–latitude diagram
of the toroidal magnetic component (〈Bφ〉) averaged in this
manner, constructed at a depth corresponding to the core-
envelope interface in the model (r/R� = 0.718). If the
toroidal magnetic flux ropes assumed to give rise to bipolar
active regions are indeed stored at this depth, as suggested by
stability analyses (e.g., Ferriz-Mas et al. 1994; Fan 2009), and
rise radially to the photosphere, then this is the simulation’s
equivalent to the sunspot butterfly diagram (e.g., Hathaway
2010). The toroidal magnetic component is concentrated at mid
latitudes (30◦ � |θ | � 70◦), as opposed to the low latitudes

Figure 2. Spatiotemporal evolution of the zonally averaged magnetic field
in the three-dimensional MHD simulation of Ghizaru et al. (2010). Top
panel: time–latitude diagram of the zonally averaged toroidal magnetic
component at the core-envelope interface (r/R� = 0.718); middle panel: cor-
responding radius–latitude diagram, extracted at latitude −45◦ in the south-
ern hemisphere. The dashed line indicates the core-envelope interface; bot-
tom panel: time–latitude diagram of the zonally averaged surface radial field
(r/R� = 0.96), with magnetic half-cycles numbered from minima to minima,
as with the sunspot cycles. The color scale codes the magnetic field strength in
Tesla.

(5◦ � |θ | � 40◦) suggested by the butterfly diagram, but
does show a tendency for equatorial migration as each half-
cycle unfolds. On a time–latitude diagram such as Figure 2 (top
panel), this is seen in the strong toroidal field concentrations,
which take an elongated, elliptical shape, with the “major axis”
tilted toward the equator as the cycle is followed in time. In
other words, throughout a cycle the latitude of peak large-scale
toroidal magnetic field occurs at decreasing latitudes, until the
cycle terminates and the next one begins anew at higher latitudes.

The middle panel of Figure 2 shows time–radius slice of the

Q4

same simulation run, extracted in the southern hemisphere at
latitude −45◦, where the toroidal field is strongest at the core-
envelope interface (cf. top panel). Note how polarity reversals
begin well within the convection zone, at depth r/R� � 0.8,
with radial drift and concentration of the magnetic field both
upward as well as downward all the way to the core-envelope
interface, where the field reaches its peak strength.

The bottom panel of Figure 2 shows the corresponding
time evolution of the zonally averaged radial surface magnetic
component, again in a time–latitude diagram. The surface field is
characterized by a well-defined dipole moment closely aligned
with the rotational axis, with transport of surface fields taking
place from lower latitudes, and possibly contributing to the
reversal of the dipole moment. Comparing the three panels
in Figure 2 reveals that the dipole moment and deep-seated
toroidal component reach their peaks at approximately the same
time, indicating that they oscillate in phase, without significant
temporal lag.

Overall, the magnetic cycle characterizing the large-scale,
zonally averaged magnetic component is quite regular, here
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Figure 3. Zonally averaged angular velocity (left), and meridional flow (right) in a hydrodynamical simulation of solar convection ran in the same parameter and
forcing regime as the MHD simulation presented in Figures 1 and 2. The angular velocity profile is solar-like, including in particular a thin, tachocline-like rotational
shear layer straddling the interface between the convection zone and underlying stable layer (indicated by the dashed circular arc). The meridional flow vectors (right)
are superimposed on a color coding for the magnitude of the latitudinal mean-flow component 〈uθ 〉. While these plots were produced by averaging in time over some
100 years, the differential rotation is found to remain remarkably steady over the duration of the simulation. The meridional flow is more strongly fluctuating, but the
vertically elongated flow structures crossing the equator are relatively steady, as they reflect the presence of quasi-steady, convective rolls, stacked in longitude and
aligned with the rotation axis, and which yield a residual signature upon zonal averaging. They show up very prominently here because the meridional flow at mid to
high latitude is much slower than convective velocities.

with a half-period of 30 years, almost thrice the 11 years of
the solar cycle. Note the good long-term synchrony maintained
between the Northern and Southern hemispheres, persisting
despite significant fluctuations in the amplitude and duration
of cycles in each hemisphere. In keeping with solar tradition,
we delineate the cycles from one toroidal field polarity reversal
to the next. Remember therefore that what we henceforth refer to
as “cycle,” as numbered on the bottom panel of Figure 2, spans
in fact one-half of a complete magnetic cycle. While the average
period of our cycles so-defined is almost exactly 30 years for our
11 cycles, this period can become as low as 25 years (simulated
cycle 11) or as high as 35 (simulated cycle 4) from one cycle to
the next.

2.3. Large-scale Flows

Stratification and rotation, the latter through the agency of
the Coriolis force, introduce cross-correlation between turbulent
velocity components that lead to significant Reynolds stresses
powering large-scale flows throughout the solar convection
zone. This phenomenon also arises naturally in the type of
rotating, stratified convection simulations considered here, in
either the hydrodynamical of magnetohydrodynamical regimes
(e.g., Miesch et al. 2000; Brun et al. 2004; Browning et al. 2006,
and references therein).

The zonal averaging procedure defined in Equation (10)
can be used to extract a mean flow 〈u〉(r, θ, t) from the
simulation output. The result of this procedure is shown in
Figure 3, in the form of isocontours of zonally averaged
rotational frequency (angular velocity divided by 2π ) and
meridional flow vectors superimposed on a color coding of
the latitudinal mean-flow component 〈uθ 〉. This is a purely
hydrodynamical parent simulation subjected to the same thermal
forcing as the MHD simulation described above. Differential
rotation is reasonably solar-like, with equatorial acceleration

and near-radial isocontours at mid to high latitudes, transiting
rapidly to rigid rotation across a thin tachocline-like shear
layer located immediately beneath the convective layers. The
sharpness of this rotational transition layer is noteworthy for
these types of simulations; it is a direct reflection of the low
dissipation embodied in our numerical scheme and of the
rapidly increasing subadiabaticity with depth characterizing our
ambient stratification. The pole-to-equator contrast in surface
and subsurface rotation rate, ∼100 nHz, is also reasonably
solar-like. This differential rotation pattern remains fairly steady
over the time span of the simulation. The large-scale meridional
flow, in contrast, is much more strongly fluctuating, but when
averaged over a sufficient long time span, away from the
equatorial regions the net flow is found to be poleward in
the surface and subsurface layers, and equatorward near the
base of the convection zone. The surface meridional flow,
peaking at ∼1 m s−1 at mid to high latitudes, is about a factor
of 10 slower than observed on the solar surface. At lower
latitudes, the elongated flow structures parallel to the rotation
axis are the residual signature of persistent elongated convective
rolls stretching across the equator, typical of these types of
simulations running in this turbulent regime (see, e.g., Miesch
et al. 2000, Figure 5; Brun et al. 2004, Figure 1; Käpylä et al.
2010, Figure 2).

Turning now to our MHD simulation, these large-scale flows
are now found to carry the signature of the magnetic cycle.
This is shown in Figure 4, displaying again the rotational
frequency and meridional flow in meridional planes, in the
same format and using the same color scales and ranges as
in Figure 3, together now with the zonally averaged toroidal
magnetic component (rightmost plots). These were all averaged
in time over as temporal window of width Δt = 3.3 years, about
one-tenth of a magnetic half-cycle, centered over the peak of
simulated cycle 1 (t = 16 years, top row) and following cycle
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Figure 4. Zonally averaged angular velocity (left), meridional flow (middle) a toroidal magnetic component (right) at time of cycle maximum (t = 16 years, top row)
and minimum (t = 32 years, bottom row). The zonal means were also averaged in time over a temporal window of width 3.3 years in order to produce smoother plots.
The ranges of the color scales are deliberately kept the same as in Figure 3, so as to highlight the strong suppression of differential rotation as compared to the purely
hydrodynamical parent simulation, and enhancement of the meridional flow at times of cycle maximum. Noteworthy cycle-induced variations in the axisymmetric
flows include torsional oscillations superimposed on the differential rotation profile, and the development of secondary meridional flow cells at high latitudes (see
the text).

minimum (t = 32 years, bottom row). Differential rotation (left)
is again characterized by equatorial acceleration, but there now
remains little latitudinal gradients at mid latitudes as compared
to the parent hydrodynamical simulation. The pole-to-equator
contrast in rotation rates is down to 40 nHz at epochs of cycle
minimum, and even less at maximum, which is now a far
less solar-like situation. Differential rotation spreads somewhat
deeper into the stable layer, especially at high latitudes, but
a modest tachocline-like shear layer still persists. Significant
cycle-driven torsional oscillations materialize throughout the
simulation. In Figure 4, this is mostly apparent at high latitudes,
with the polar region speeding up at time of cycle maxima, but
lower-amplitude torsional oscillations are actually present also
in equatorial regions and at all depths.

The surface and subsurface meridional flow remains gen-
erally poleward at mid to high latitudes, although secondary,
counterrotating flow cells develop in the descending phase of
the cycles, their onset visible here on the 〈uθ 〉 plot at maximum
phase. At the base of the convecting layers, the meridional flow
is equatorward at mid to high latitudes at all cycle phases, but
does show significant cyclic variations in speed, generally be-
ing more vigorous near cycle maximum, reaching half a meter

per second at ±60◦ latitude. The flow pattern near times of
“cycle minimum” more closely resembles what is observed in
the purely hydrodynamical simulation (cf. Figure 3).

2.4. Energetics

With zonal means of the total flow u and magnetic field B
defined through Equation (10), subtracting these means from the
total flow and magnetic field then yields the non-axisymmetric
contributions:

u′(r, θ, φ, t) = u(r, θ, φ, t) − 〈u〉(r, θ, t), (11)
B′(r, θ, φ, t) = B(r, θ, φ, t) − 〈B〉(r, θ, t). (12)

In the following section, we shall demonstrate that these non-
axisymmetric contributions can be reasonably associated with
small spatial scales and are henceforth referred to as such, while
the zonal means can be associated with large spatial scales,
commensurate with the size of the simulation domain. It is then
straightforward to compute the contributions of these various
flow and field components to the total specific energy budget,
through volume averages over the full simulation domain:

E(〈u〉) = 1

2

∫
V

〈u〉2dV, (13)

6
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Figure 5. Time series of the four contributions to the global energy budget, as defined via Equations (13)–(16), as labeled. The 30 year cycle shows up prominently in
E(〈B〉), as it of course should, and also in E(〈u〉) but more weakly in E(B ′) and hardly at all in E(u′). Note also how the large-scale flow and field are globally within
a factor of two of energy equipartition at times of cycle maximum. Numbering of simulated half-cycles as in Figure 2.

(A color version of this figure is available in the online journal.)

E(u′) = 1

2

∫
V

(u′)2dV, (14)

E(〈B〉) = 1

μ0

∫
V

ρ−1〈B〉2dV, (15)

E(B ′) = 1

μ0

∫
V

ρ−1(B ′)2dV, (16)

with 〈u〉2 = 〈u〉 · 〈u〉, etc. The comparison between these
various contributions is carried out pictorially in Figure 5,
in the form of time series spanning the full simulation run.
All four contributions are similar in magnitude, and the cycle
stands out as a prominent, smooth cyclic variation in the energy
contribution of the axisymmetric component of the magnetic
field, which varies by a factor 2–3 between epochs of cycle
“maxima” and “minima.” The small-scale magnetic energy
E(B ′) does show some in-phase variations with E(〈B〉), but the
energy contributions of the non-axisymmetric flow component,
dominated by turbulent convection, remain remarkably steady
in comparison, showing only short timescale fluctuations about
a well-defined mean value. The energy contribution of the
axisymmetric flow, dominated by differential rotation, shows
variations on timescale commensurate with the cycle of the
axisymmetric part of the magnetic field and reflects the signature
of torsional oscillations.

3. MEAN-FIELD ANALYSIS

3.1. Scale Separation and Averages

Mean-field electrodynamics is predicated on the assumption
that the fluid flow (u) and magnetic field (B) can be separated
into “mean” (usually spatially large-scale and slowly varying in
time) and “fluctuating” (usually small-scale and rapidly varying)
components:

u = 〈u〉 + u′, B = 〈B〉 + B′, (17)

where the angular brackets denote an intermediate averaging
scale for which

〈u′〉 = 0, 〈B′〉 = 0. (18)

Given the well-defined large-scale axisymmetric component
present in our simulation, it becomes natural to associate
the averaging scale with the zonal average defined through
Equation (10), so that the fluctuating components be-
come defined as the non-axisymmetric contributions through
Equations (11) and (12). In practice, it is of course possible to
define fluctuating flows and fields in this way for any global
MHD simulation run. However, for the mean-field electrody-
namics approach to be mathematically well-posed and physi-
cally meaningful, it is essential for a good separation of scales
to hold. Accordingly, we first examine in some detail whether
this is indeed the case for our simulation.

Figure 6 shows the mean and fluctuating toroidal magnetic
field components resulting from this decomposition applied to
the toroidal field distribution plotted on the bottom panel of
Figure 1 (simulation time t = 230 years, very near the peak
of simulated cycle 8). At the base of the convection zone, both
components have similar strength, but the fluctuating component
in Figure 6 shows little or no azimuthal structuring on scales
comparable to the solar radius, nor any clear hemispheric
pattern. In particular, no sign of a significant non-axisymmetric
dipolar or quadrupolar components is visible.

This visual impression is confirmed by a modal decompo-
sition in spherical harmonics, which reveals significant power
concentrated in axisymmetric (m = 0) mode of low, odd angu-
lar degree 	. This is illustrated in Figure 7, showing the result of
a modal decomposition of the toroidal magnetic component at
the core-envelope interface (r/R� = 0.718). The decomposi-
tion was carried out at every time step and then averaged for two
sets of disjoint data blocks of temporal width 900 days centered
either on the epochs of polarity reversals (panel A, for “cycle
minima”) or peak toroidal field (panel B, for “cycle maxima”).
The top row of Figure 7 displays the result of this procedure
in the form of color coding of the absolute values of the modal
coefficients, in the plane defined by the angular degree 	 (hor-
izontal) and azimuthal degree m (vertical). The diamond shape
results from the truncation of azimuthal modes, chosen so as to
ensure comparable peak spatial resolution in the latitudinal and
azimuthal directions.
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Figure 6. Latitude–longitude Mollweide projection of the zonally averaged
toroidal magnetic component (top), and associated small-scale fluctuating
toroidal component (bottom), as defined by Equation (12), extracted at a depth
corresponding to the core-envelope interface at simulation time t = 230 years,
near the peak of magnetic half-cycle number 8 (see Figure 2). The sum of these
two components is the total toroidal field distribution plotted on the bottom
panel of Figure 1.

(A color version of this figure is available in the online journal.)

Comparing panels A and B of Figure 7 reveals significant
power in the axisymmetric (m = 0) angular modes of odd-	
angular degree at cycle maximum, that all but vanish at times of
cycle minimum. This is particularly prominent for the dipolar
(	,m) = (1, 0) mode. At high-	 values, on the other hand,
power is broadly and more evenly distributed in modes of all
azimuthal orders m and shows no clear variations with the phase
of the cycle for the large-scale field. Indeed, subtracting panel
B from panel A, yielding panel C in Figure 7, reveals very little
residual power at high wavenumbers.

Figure 7(D) shows the variation of the same (unsigned) modal
coefficients as a function of the latitudinal wavenumber 	 for the
axisymmetric modes only (m = 0, solid lines), and the quadratic
sum of all coefficients for non-axisymmetric modes (m �= 0,
dotted lines). The latter are seen to dominate over the former for
	 � 10, but are of comparable amplitude for smaller 	, except
at maximum epochs (red lines) where the modal amplitudes
are dominated by the 	 = 1 and 	 = 5 axisymmetric modes.
Note also how the summed non-axisymmetric coefficients at
maximum and minimum epochs (red and green dotted lines)
are almost exactly coincident at all 	-values. For axisymmetric
modes (solid lines), this holds only for 	 � 10. In addition,
the peaks at 	 = 1 and l = 5 remain present at almost the
same amplitude in the subtracted distribution (black), while the
amplitude for other modes drops significantly, by over an order
of magnitude at high 	-values. In fact, for axisymmetric modes
the only significant difference between maximum and minimum
phases is suppression of the 	 = 1 and 	 = 5 modal amplitudes.
All this indicates that the cycle in the large-scale axisymmetric
magnetic field does not alter significantly the spectral properties
of the small-scale, “turbulent” magnetic component.

Examining time series of individual modal coefficients re-
veals that the cycle shows up prominently in the (	,m) = (1, 0)
and (5, 0) modes, but the time series for m �= 0 modes, as well
as for even-	 axisymmetric modes, have much lower ampli-
tudes and show no sign of persistent cyclic variation. This has

been further verified by computing Fourier transforms of these
various time series, which show clear peaks at periods of ∼29
and ∼58 years in the odd-	 axisymmetric modes, but no peaks
and overall power levels inferior by over an order of magnitude
for even-	 and m �= 0 modes. Similar temporal patterns are ob-
served within the convection zone and/or for the other magnetic
components. Overall, the above analyses then suggest that the
decomposition embodied in Equations (11) and (12) represents
a viable Ansatz, at least for this simulation run.

3.2. The Turbulent Electromotive Force

With the assumption of scale separation vindicated at least to
some degree, our purpose is now to identify and characterize
the dynamo mechanism underlying the observed magnetic
cycle described above. The starting point of the analysis is
the magnetohydrodynamical induction equation (e.g., Davidson
2001), describing the evolution of a magnetic field B subjected
to the inductive action of a flow field u in addition to Ohmic
dissipation of the associated electrical current density:

∂ B
∂t

= ∇ × [u × B − η∇ × B] , (19)

where η = (μ0σe)−1 is the magnetic diffusivity, inversely pro-
portional to the electrical conductivity σe (SI units are used
throughout). Note that explicit Ohmic dissipation is now re-
tained, unlike in the induction equation solved by the simulation
(cf. Equation (3)). Inserting Equations (17) and performing the
zonal average introduced earlier, and remembering that the av-
eraging operator commutes with spatial derivatives pertaining
to the large spatial scales, one readily obtains

∂〈B〉
∂t

= ∇ × [〈u〉 × 〈B〉 + E − η∇ × 〈B〉] , (20)

where
E = 〈u′ × B′〉 (21)

is the mean EMF due to the fluctuations about the large-scale
magnetic field. Note that this mean turbulent EMF is generally
nonzero, because the correlation between the fluctuating flow
and magnetic field does not necessarily vanish upon averaging,
even though u′ and B′ individually do by definition. For more
details on some of the many subtleties involved, see, e.g.,
Moffatt (1978), Rüdiger & Hollerbach (2004), Hoyng (2003),
and Ossendrijver (2003).

From the simulation results, it is straightforward to recon-
struct u′ and B′ via Equations (11) and (12), and then compute
the EMF by performing the required cross product and zonal
averaging at every time step, as per Equation (21). The result
of this calculation is presented in Figure 8 for the r (top), θ
(middle), and φ (bottom) components of the EMF, in the form
of time–latitude slices at depth r/R� = 0.85 near the middle of
the convection zone (left panels), where polarity reversals are
initiated (see Figure 2), and meridional slices extracted at sim-
ulation time t = 112 years, at the peak of the fourth magnetic
half-cycle (right panels). Note already how the EMF vanishes
rapidly as one moves below the core-envelope interface, as ex-
pected since convectively driven turbulence disappears there.
Otherwise the EMF pervades most of the convection zone. De-
spite being a very noisy “signal,” on the largest spatial scales
all EMF components exhibit a well-defined symmetry (Er , Eφ)
or antisymmetry (Eθ ) about the equatorial plane. Note in par-
ticular that a φ-component of the EMF positive (negative) in
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Figure 7. Spectral distribution of modal amplitudes for the toroidal magnetic component at the core-envelope interface in the simulation, r/R� = 0.718. The top
row shows power distributions in the (l, m) plane. The unsigned values resulting from a standard spherical harmonic decomposition were averaged over two sets
of disjointed blocks centered over cycle minima (panel A) and maxima (panel B), respectively. Panel C results from subtracting panel A from panel B and shows
the amplitude distribution associated with the large-scale magnetic component, which is concentrated primarily in the (	, m) = (1, 0) and (5, 0) modes. The color
scale spans two orders of magnitude, in constant logarithmic increments, running from 5 × 10−3 to 0.67 T. The bottom plot shows, as a function of the latitudinal
wavenumber 	, the power of all non-axisymmetric modes summed over the azimuthal wavenumber m (dotted lines), with the solid line corresponding to axisymmetric
(m = 0) modes.

(A color version of this figure is available in the online journal.)

both hemispheres is precisely what is required to support a pos-
itive (negative) dipole moment (cf. bottom panels in Figures 2
and 8), as per the right-hand rule, since under the MHD ap-
proximation the EMF drives a parallel electrical current density.
Moreover, reversing the direction of this EMF every half-cycle
then amounts to reversing the sign of that dipole moment, as
observed in the simulation.

All EMF components show strongly reduced amplitudes in
the equatorial regions. This can be traced to a change in the
topological character of convective fluid motions, which at low
latitudes tend to organize themselves in longitudinal stacks of
large, latitudinally elongated convective cells approximately
aligned with the rotational axis (see Figure 1(A) in Ghizaru et al.
2010). These are quite typical of these types of global convection
simulations (see, e.g., Browning et al. 2006, Figure 1; Brown
et al. 2010, Figure 1; Käpylä et al. 2010, Figure 2). Evidence of a
quenching of the small-scale flow components can also be found
in the spatial distribution of the small-scale surface magnetic
field, which shows a significant decrease in both coverage and
magnitude at very low latitudes (see, e.g., Figure 1(B) in Ghizaru
et al. 2010).

The most striking global spatiotemporal feature visible in
Figure 8 is certainly the cyclic variation of all EMF components,
with a period identical to that of the cycle observed in the

large-scale magnetic field (cf. Figure 2). Here the large-scale
velocity field is roughly stationary over the entire simulation,
and the small-scale turbulent velocity field is also stationary in a
statistical sense (cf. Figure 5). Since the EMF term depends only
on the small-scale fluctuations about the large-scale magnetic
fields, it is then not at all obvious a priori that the EMF
should exhibit the same cyclic evolution as the mean field;
the fact that it does already provide us with important clues
as to the nature of the large-scale dynamo operating in our
simulation. More specifically, it suggests that the turbulent EMF
actually plays a key role in the production of the large-scale
magnetic component. We now turn to this question, using the
mathematical machinery of mean-field electrodynamics.

3.3. The α-tensor

The essence of mean-field electrodynamics is to provide an
expression for the EMF in terms of the large-scale magnetic
field, so that the small scales (fluctuations) are effectively
removed from the problem. The procedure consists of a simple
linear expansion of the EMF as a power series about the large-
scale magnetic field and its derivatives, i.e.,

Ei = αij 〈Bj 〉 + βijk∂j 〈Bk〉 + higher order derivatives, (22)

9
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Figure 8. Three components of the turbulent EMF 〈u′ × B′〉. The left column shows time–latitude slices extracted at the middle of the convection zone (r/R� = 0.85),
while the right column shows snapshots of the spatial variations in meridional planes, at the peak of simulated cycle 4 (t = 112 years). For the purpose of constructing
the time–latitude diagrams, the simulation was undersampled at intervals of 10 solar days (�0.82 years).

(A color version of this figure is available in the online journal.)

with summation implied over repeated indices. The tensors
appearing on the right-hand side of this expression and relating
the EMF to the mean field can depend on the properties of
small-scale flow and field fluctuations, but not on the mean field
itself, a situation expected to hold only if the latter is too weak
to impact the dynamics of the fluctuating flow. Even though
it is defined globally, the steadiness of the time series of the
energy contribution of the small-scale flow on the temporal
scale of the cycle in the large-scale field, as seen in Figure 5,
is consistent with this working hypothesis. Note also here that
since this expansion is linear in the large-scale field, if that field
exhibits cyclic properties, then so should the EMF, which is
what we observe (cf. Figure 8). This is our central motivation for
appealing to mean-field electrodynamics to analyze the dynamo
operating deep in the convection zone of our simulation.

The leading-order contribution in the right-hand side of
Equation (22) is usually named “α-effect.” The second term in
the expansion is responsible, among other effects, for turbulent
diffusion. For our first analysis, however, we retain only the
α-effect for simplicity. Owing to the rough stationarity of the
large-scale flows in the simulation, we also assume that αij is
time independent, an assumption that will prove itself well-
verified a posteriori. We thus write as a first approximation

Ei(t, r, θ ) = αij (r, θ )〈Bj 〉(t, r, θ ) . (23)

One can further decompose αij into symmetric and antisymmet-
ric parts, such that the EMF may be rewritten as

Ei = α(ij )〈Bj 〉 + (γ × 〈B〉)i , (24)

10
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where

γi = −1

2
εijkαjk (25)

is called the general turbulent pumping velocity, because it
effectively provides an additive contribution to the mean,
large-scale inductive flow in Equation (20), although its phys-
ical origin lies with the fluctuating, small-scale flow and
magnetic field. The flow-like vector field γ so-defined is in
general non-solenoidal (∇ · γ �= 0) and acts on the total mag-
netic field, with variations between magnetic component sub-
sumed into the off-diagonal terms of the symmetric part of the
α-tensor (see Ossendrijver et al. 2002 for a more thorough
discussion).

3.4. Extracting the Components of the α-tensor

A number of methods have been designed to measure the
components of the α-tensor in turbulent MHD simulations
(e.g., Ossendrijver et al. 2001, 2002; Käpylä et al. 2006, 2009;
Hubbard et al. 2009, and references therein). These method have
been designed in the context of MHD simulations that do not
produce a well-defined large-scale magnetic component, so that
the latter must be imposed externally—and artificially—with the
consequence that the α-tensor being measured is not necessarily
characterizing the simulation prior to the application of the
external field. For more on these—and other—difficulties, see

Q5
Brandenburg (2009), Cattaneo & Hughes (2009), and references
therein. In contrast, we are in the very advantageous position
to have in hand a simulation that does generate a large-scale
magnetic field, in a manner consistent with the dynamical
interaction of flow and field on all numerically resolved spatial
scales.

The procedure we employ here to extract αij from the
simulation data differs from the approaches found in the
literature, and we shall therefore first detail it. Essentially, we
attack this problem from an experimentalist’s point of view, i.e.,
we have (numerical) data in our possession, namely the EMF and
the average magnetic field, and we wish to verify if these data
match a specific model, namely the α-effect parameterization
of the EMF embodied in Equation (23). This task therefore
amounts to a fitting problem, in other words the components
of the tensor αij are calculated a posteriori by minimizing the
difference between the left-hand side and right-hand side of
Equation (23). We opt here for a standard least-squares fit, based
upon singular value decomposition (hereafter SVD; see Press
et al. 1992, Section 15.4). We state results of various theorems
without proof.

For a given component, say m (= r , θ or φ) of the EMF at a
fixed grid point4 (rb, θc), we define the time-dependent functions
y(t) and Xk(t) as follows:

y(t) = Em(t, rb, θc) , (26a)

Xk(t) = 〈Bk〉(t, rb, θc) . (26b)

We also define
ak = αmk(rb, θc) , (27)

4 Since the quantities considered in this section are constructed from
azimuthal averages, our computational grid is reduced to two spatial
dimensions here.

which then allows us to rewrite the parameterization of the EMF
as

y(t) =
3∑

k=1

akXk(t) . (28)

Denoting by Nt the number of time steps of our simulation, we
define a merit function as

χ2 =
Nt∑
i=1

[
y(ti) −

3∑
k=1

akXk(ti)

]2

, (29)

where ti is the value of the time coordinate at the ith step. The
goals are to find the three parameters ak that minimize the merit
function and to obtain an estimate of the goodness of fit. The
method we employ to carry out these two tasks simultaneously
is the SVD of the “design matrix” A, defined as

Aij = Xj (ti) . (30)

The design matrix therefore depends on the large-scale magnetic
field components. This matrix has Nt rows and three columns,
and by virtue of a theorem of linear algebra, can always be
decomposed as follows:

A = U · w · VT , (31)

where the matrix U is an nt-by-three column orthogonal matrix,
w is a three-by-three diagonal matrix containing the so-called
singular values, and V is a three-by-three orthogonal matrix.
The key element is that the solution to the minimization of the
merit function (29) is directly obtained in terms of the three
matrices U, V, and w. The solution vector a = (a1, a2, a3) is
given by

a = V · w−1 · UT · y , (32)

where the vector y = (y1, y2, . . . , yNt
) and therefore depends

on the selected EMF component. To construct the SVD of our
design matrix, we use the algorithm and routines of Press et al.
(1992), as implemented in the IDL programming language. By
repeating this procedure for all three components of the EMF
and for each of the Nr ×Nθ grid points (rb, θc), we can calculate
the complete tensor αij (r, θ ).

Figure 9 shows the results of this fitting procedure over
the complete 337 year simulation interval. Each meridional
slice encodes one component of the α-tensor or combinations
thereof. The 3 × 3 structure of the subfigures reflects the 3 × 3
components of the tensor, with the top-left to bottom-right
diagonal corresponding to the diagonal components αrr , αθθ ,
and αφφ . The three meridional slices above this diagonal (top
right) correspond to the off-diagonal elements of the symmetric
part of the α-tensor (indices within parentheses), while the
three plots below the diagonal represent the three independent
components of the antisymmetric part of the tensor, plotted here
as components of the turbulent pumping velocity γ defined
through Equation (25). To facilitate comparison, the same color
scale is used on all meridional slices.

Although all components of the α-tensor are roughly of the
same order of magnitude, the strongest components are found
to be αrr and αφφ , both antisymmetric about the equatorial
plane. The former is highly structured spatially, peaking in
subsurface layers and in the equatorial regions and with nu-
merous sign changes in each hemisphere. The latter is spatially
more homogeneous, with sign changes only across the equato-
rial plane and across a near-spherical surface located above the
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Figure 9. Components of the α-tensor, plotted in meridional plane. The color scale encodes the magnitude, in m s−1, and is the same for all plots. The three plots along
the diagonal correspond to αrr , αθθ , and αφφ ; the three plots above the diagonal to the corresponding off-diagonal component of the symmetric part of the tensor, and
the three plots below the diagonal to the three components of the turbulent pumping velocity, as labeled and directly related to the three non-zero component of the
antisymmetric part of the full α-tensor via Equation (25). The fitting procedure treats each hemisphere separately, so that the high degree of symmetry or antisymmetry
about the equatorial plane characterizing the various tensor components is not a fitting artifact. A few isocontours are added to the two tensor components highly
saturated by the adopted color scale: ±5, 10 m s−1 for αrr , and ±4, 5 m s−1 for αφφ .

core-envelope interface, at r/R � 0.76. Significant amplitudes
are obtained in the off-diagonal contributions, particularly α(rθ)
and its associated pumping velocity γφ . This can be traced to
the development of persistent non-axisymmetric flow structures
in the low-latitude portions of the outer convection zone (see
Figure 4), which contribute a strong signal to the “small-scale”
flow component even after the azimuthally averaged mean-flow
is subtracted (viz., Equation (11)). These flow structures are also
responsible for the strong low-latitude signal seen in αrr .

The αφφ component is of particular interest here, as it is the
primary contributor to the production of the large-scale poloidal
magnetic component (cf. bottom panel on Figure 2). Its first im-
portant structural property is antisymmetry with respect to the
equatorial plane, as expected for cyclonic turbulence, where re-
flectional symmetry is broken by Coriolis forces (Parker 1955).
Note that the fitting method we use to measure the components
of the α-tensor treats each hemisphere independently, so that
the high degree of antisymmetry observed here is a real char-

acteristic of the simulation, rather than a fitting artifact. In the
Northern hemisphere, the αφφ component is positive in the bulk
of the convection zone and peaks at high latitudes, as expected
in view of the sense of twist imparted by Coriolis forces on di-
verging convective updrafts and converging downdrafts (Parker
1955). The sign change near the base of the convecting layer has
been observed before in measurements of the α-tensor in other
MHD simulations of convection (e.g., Ossendrijver et al. 2001)
and is associated with the rapid decrease of the turbulent inten-
sity as one moves downward toward and into the convectively
stable fluid layer underlying the convection zone.

The SVD method has the additional advantage to automati-
cally provide the variance in the estimate of a given parameter
ak. Denoting this variance by σ 2

k , it is given by

σ 2
k =

3∑
i=1

(
Vki

wii

)2

. (33)
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Figure 10. (A) Time–latitude diagram of the EMF residual defined by Equation (34), constructed on a sphere of radius r/R� = 0.85. (B) Power spectrum of the
residuals of part (A) averaged in latitude to produce a simple time series. The sloping red line is a guide to the eye, showing a 1/f spectrum. The vertical line segment
indicates the frequency corresponding to the primary magnetic cycle (full period 59.8 years).

(A color version of this figure is available in the online journal.)

The standard deviation (square root of variance) is in the range
1–2 m s−1 in most of the convective layers for all α-components,
but reaches much larger values in the underlying stable layers.
This is inconsequential, as it arises simply because the EMF
and large-scale magnetic field are both very weak below the
convective zone, reducing greatly the quality of the fit in that
region.5 Examination of the standard deviation distribution
in meridional slices indicates that even though the stronger
α-tensor components peak at high (αφφ) or low (αrr ) latitudes,
the absolute quality of the fit is actually best at mid latitudes,
where the EMF signal is strongest (see Figure 8), as expected.
Nonetheless, at mid-convection zone depth the inferred values
of αφφ in polar regions deviate from zero by more than three
standard deviations, leaving no doubt that these values are
physically meaningful. On the other hand, in the equatorial
region delimited by |θ | � 30◦ and 0.7 � r/R� � 0.8 the
standard deviation is of the same order of magnitude as αφφ ,
indicating a poorer fit in that area. This is simply due to the fact
that both the EMF and the toroidal large-scale field are small in
that region, as can be seen in Figures 2 and 8.

Q6
While the variance of the fit provided by the SVD is a useful,

well-defined tool to characterize the accuracy of the fit, other
methods can provide complementary information regarding the
parameterization of the EMF. Here we demonstrate the quality
of the fit by looking at the ability of the α-effect parameterization
to reproduce the observed EMF from the α-tensor and the large-
scale magnetic field. In Figure 10(A), we plot a time–latitude

5 Essentially, where both the EMF and 〈B〉 are weak, the fitting algorithm
attempts to obtain αij by inverting a problem that is numerically ill-posed.
Schematically, this amounts to solving α = δ/ε, with α of order unity, but with
both δ and ε being very small.

diagram of the residual between the observed EMF and the
reconstructed EMF, i.e., the quantity

Δφ = Eφ − αφj 〈Bj 〉, (34)

computed at depth r/R� = 0.85. It is quite remarkable to see
that essentially no cyclic features remain in Δφ . Apart from the
equatorial band where the EMF barely manifests itself, there are
in fact no clearly discernible structures in Δφ . This implies that
the α-effect parameterization performs very well at capturing the
origin of the cyclic features of the EMF, the remainder of the
EMF being essentially turbulent noise. This visual impression is
confirmed by averaging latitudinally and performing a Fourier
transform of the resulting time series to produce the power
spectrum plotted in Figure 10(B). The low wavenumber portion
of this spectrum is tolerably well represented by a 1/f power
law and does not show any particular features or changes in
slope at frequencies corresponding to the cycle period of the
large-scale field or its first few harmonics.

3.5. Turbulent Pumping

The three meridional slices under the diagonal in Figure 9
represent the components of the turbulent pumping speed, as
defined through Equation (25). The vertical component γr is
found to be negative through most of the convective envelope,
with upward pumping taking place only in the subsurface layers.
This is better viewed in Figure 11 showing radial cuts of γr

extracted at latitude +45◦ (panel A, solid line) and latitudinal cuts
extracted at depth r/R� = 0.75 (panel B). This is qualitatively
similar to the results obtained by Ossendrijver et al. (2002, see
their Figure 5) in their local Cartesian simulations including
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Figure 11. (A) Radial and (B) latitudinal cuts of the radial (solid lines) and
latitudinal (dashed lines) turbulent pumping velocity components, extracted at
latitude 45◦ in (A), and at depth r/R� = 0.76 in (B). Radial pumping is
downward in the bulk of the convecting layers, except near the surface, while
latitudinal pumping is equatorward at mid to low latitudes. See also the bottom-
left (γθ ) and bottom-middle (γr ) panels in Figure 9.

rotation.6 This downward pumping reaches significant speeds,
∼1 m s−1 in the bottom half of the convective layers, except at
very low latitudes where it all but vanishes. Upward pumping
occurs at all latitudes for r/R� � 0.9, except at very low
latitudes |θ | � 15◦), where the γr > 0 region reaches almost to
the base of the convecting layer (see Figure 9, central bottom
meridional slice).

We also detect in our simulation a significant equatorward
latitudinal pumping in the outer two thirds of the convective
envelope (see the bottom-left meridional slice in Figure 9 and
dashed lines in Figures 11(A) and (B)), particularly prominent
at mid latitudes where it reaches ∼1 m s−1 in the middle of
the convection zone. Both the direction and magnitude of this
latitudinal pumping velocity are similar to those measured in
the local simulations of Ossendrijver et al. (2002). Again like
these authors, we also observe significant poleward latitudinal
pumping in the subsurface layers of the simulations, with speeds
approaching 2 m s−1 at latitude |θ | � 60◦. Given the ∼30 year
duration of our cycles, it is therefore quite possible that the

6 Note that although we both use right-handed coordinate systems, the
pseudoradial z-direction in Ossendrijver et al. (2002) points into the domain,
while our radial r-direction points outward; therefore, a positive γr does
correspond to a radially upward flow component in our simulation, while a
positive γz defines a downward flow in Ossendrijver et al. (2002). Our
respective ”latitudinal” unit vectors are however oriented in the same way, i.e.,
northward, so that our γθ is directly comparable to their γx .

poleward drift and intensification of the surface magnetic field
seen on the bottom panel of Figure 2 is driven at least in part by
turbulent pumping, as proposed already by Ossendrijver et al.
(2002).

It is also interesting to compare the turbulent pumping
velocity to the drift speed of the large-scale toroidal magnetic
field visible on the top and middle panels of Figure 2. The net
drift speed of large-scale magnetic structures is influenced by
other physical processes, notably turbulent diffusion. Indeed, if
turbulent pumping plays a role in this drift its speed should still
have values of the same overall order of magnitude as to the
observed drift speeds. For most cycles, the equatorial drift of
the toroidal component at the core-envelope interface (Figure 2,
top panel), as measured by tracking the latitude of peak mean
toroidal magnetic field at any given time, spans 25◦–30◦ in
20–25 years, depending on individual cycles. This yields drift
speeds in the range 0.3–0.5 m s−1. Both the magnitude and
direction of this drift compare well to the mid-latitude latitudinal
turbulent pumping speed |γθ | � 0.2 m s−1 at r/R� = 0.718,
as plotted in Figure 11(A). Likewise, measuring the slope from
r/R� = 0.8 to 0.7 of the polarity reversal line on the middle
panel of Figure 2 leads to a radial drift speed ∼ −0.1 m s−1, only
a factor of five smaller than the mid-latitude values of γr in this
range of depth, as plotted in Figure 11(A). All of this suggests
that turbulent pumping may well play an important role in the
spatiotemporal evolution of the large-scale, mean magnetic field
building up in the simulation.

3.6. α-quenching and Cycle Amplitude Saturation

We next turn our attention to the possible time dependence of
the tensor αij . Our entire analysis so far relies on the assumption
that αij depends only on position and not time. As we have just
shown, this hypothesis works fairly well in practice, in the sense
that it provides an accurate parameterization of the EMF in terms
of the large-scale magnetic field. At a more physical level, there
are however reasons to believe that the α-effect could vary in
time via a nonlinear dependence on the magnetic field strength.

In the solar context, the α-effect can arise via the system-
atic twist imparted by cyclonic convection on a pre-existing
large-scale magnetic field. This idea was introduced by Parker
(1955), who argued that it could circumvent Cowling’s theorem
by providing a viable regeneration mechanism for the Sun’s
large-scale poloidal magnetic component. Because magnetic
tension should resist any twisting by the flow, it has been ar-
gued that Parker’s mechanism can only operate up to the point
where the large-scale magnetic field reaches local equipartition
with the turbulent fluid motions. This has led to the introduc-
tion of a number of simple so-called α-quenching algebraic
formulae, e.g.,

αij = α0
ij

1 + (〈Bj 〉/Beq)2
, (35)

where Beq is the equipartition magnetic field strength (see also
Rüdiger & Kitchatinov 1993).

In order to explore if the α-effect varies from one cycle to the
next, in a manner related to the strength of the mean magnetic
field, we refine our analysis by breaking up the simulation data
into blocks each spanning 100 solar days (∼8 years). One set
of blocks is centered on times of cycle maximum, when the
large-scale magnetic field reaches peak strength, and a second
set of interweaved blocks is centered on times of polarity
reversals, where the large-scale magnetic component reaches
its minimum. Because of the regularity of the cycles in the
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Figure 12. Temporal variation of the spatially averaged αφφ tensor component,
computed separately in each hemisphere according to Equation (36b); this
yields positive (negative) values in the northern (southern) solar hemisphere.
The darker shading corresponds to blocks centered on times of maxima in
〈B〉, and the lighter shades to interleaved blocks centered on times of polarity
reversals. The error bars are computed from the variance returned by the SVD
fitting algorithm via Equation (33). Qualitatively similar results are obtained for
other α-tensor components, i.e., no systematic, statistically significant variation
between epochs of cycle maxima and minima.

simulations (see Figure 2), and good hemispheric synchrony,
such a partition of the simulation can be unambiguously defined
and readily carried out. We then apply the fitting procedure
described previously to each block of data independently, which
yields a sequence of functions {αij (r, θ, tc)}, where tc is the time
around which a given block is centered.

With the SVD fit now carried out over a much reduced time
span, the resulting α-tensor is much noisier, with the standard
deviation associated with the fit now often exceeding the fitted
values themselves. In order to extract a statistically meaningful
signal from these results, we spatially average the α-tensor
components over meridional planes for each tc, yielding a single
measure αc for each time block; for example, applying this
procedure to the αφφ component

αc = 1

S

∫ rmax

rmin

∫
hem.

αφφ(r, θ, tc)

σφφ(r, θ, tc)
r dr dθ , (36a)

S =
∫ rmax

rmin

∫
hem.

1

σφφ(r, θ, tc)
r dr dθ . (36b)

Note that we use the standard deviation returned by the SVD
algorithm as a weighting factor on the values being averaged.
The radial integration bounds rmin and rmax are chosen to include
the convective zone, but not the stable layers (r/R� � 0.718)
nor the surface of the simulation, in order to capture the
contributions from regions where the α-effect is expected to
operate substantially. The latitudinal integration is restricted to
either the north or south hemisphere, to avoid uninteresting
cancellations as the sign of αφφ flips from one hemisphere to the
other. The standard deviation on the spatially averaged quantity
is computed as

σc = A/S, (37)

where A is the surface over which the above averaging integrals
are defined. This amounts to treating the integral as a weighted
sum of statistically independent measurements, probably a

Table 1
Hemispherically Averaged αφφ (m s−1)

Epoch Northern Hemisphere Southern Hemisphere

Maxima + 1.682 ± 0.069 −1.571 ± 0.067
Minima + 1.871 ± 0.059 −1.919 ± 0.070
Full run + 1.712 ± 0.011 −1.750 ± 0.011

debatable hypothesis here, but nonetheless sufficient for the
foregoing analysis.

The results of those calculations, as applied to the αφφ

component, are shown in Figure 12, where each histogram-type
column represents one temporal block. The total width of error
bars is given by 2σc. Viewed in this way, the actual values of
αc do not vary substantially in both hemispheres throughout
the entire simulation and do not appear to show any clear,
systematic variations between maximum and minimum phases.
Similar results are obtained for the other components of the
α-tensor. The αφφ component does show a very weak (r =
−0.27) anticorrelation with the mean magnetic field strength
spatially averaged in each time block, but even there the range
of variation is only about one-half of the standard deviation.

In an attempt to further suppress the noise, we then used
the SVD fitting algorithm to do a single fit on all time blocks
associated with maximum phases, and a separate fit for all time
blocks centered on minimum phases. The resulting α-tensor
components were then averaged spatially in the same manner as
previously. The resulting αc values, again for the φφ component,
are listed in Table 1 with the corresponding spatial average for
the αφφ component extracted from the full simulation run, as
plotted in Figure 9 (bottom right). Here we finally obtain a
min/max difference that exceeds the range of the estimated
error bars, and which moreover runs in the direction expected
from the idea of α-quenching, namely a weaker αc when the
mean field is strongest. However, the associated variation in αc

between maximum and minimum phases remains rather modest,
at the 20% level for the Southern hemisphere, down to the 10%
level in the Northern.

The results of Table 1 reflect the variation of the spatially
integrated α-profiles and could of course hide more substantial
local variations. This is examined in Figure 13, showing now
the spatial distribution of the αφφ component extracted from the
set of concatenated data blocks centered on cycle minima (top
row) and maxima (bottom) row, together with the corresponding
spatial distributions of the standard deviation returned by our
SVD fitting scheme (at right). At first glance both distributions
appear quite similar, but a closer look reveals a marked reduction
of αφφ at the base of the convection zone at maximum epochs,
as well as at high latitudes. While these amplitudes of these
variations (by ∼1–2 m s−1) are well within the local one standard
deviation at high latitude (∼2–4 m s−1), at lower latitude they
are comparable or slightly larger than one standard deviation,
suggesting a statistically significant local variation. Note also
that this is also where the toroidal large-scale component reaches
its peak value (see Figure 2), so this is in fact where α-quenching
would be expected to be most important.

In contrast to the αφφ component, αrr , αθθ as well as the
radial pumping velocity γr shows no significant local variation
whatsoever between maximum and minimum epochs. Other
components show high-latitude variations, but all at or within
the associated one standard deviation range. In fact, the only
other noteworthy pattern is a significant enhancement of the
poleward latitudinal turbulent pumping in the surface layers at
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Figure 13. αφφ tensor component extracted from two concatenated sets of disjointed data blocks, the first centered on epochs of cycle minima (top left), the other
on cycle maxima (bottom left). The color scale is the same as in Figure 9, with additional contours overlaid for values ±4 and ±6 m s−1. The two meridional plane
diagrams on the right show the corresponding standard deviation returned by the SVD fitting algorithm. Compare the left plots to the bottom-right plot in Figure 9,
showing the same component fitted over the full simulation span. While the min/max differences are largest at high latitudes, they only exceed the standard deviation
at mid latitudes near the base of the convective envelope, where the large-scale toroidal field is strongest (cf. Figure 2).

maximum epochs, by a factor of nearly two, which is slightly
larger than the local one standard deviation range for γθ .

Taken as a whole, the results presented above indicate that
little or no significant α-quenching occurs in our simulation,
i.e., the magnitude of the α-tensor components is for the most
part insensitive to the value of the large-scale magnetic field.
This justifies, a posteriori, our use of the tensorial expansion of
the turbulent EMF in terms of the mean magnetic field (viz.,
Equation (22)), as the starting point of the analysis carried out
throughout this section.

4. RELATIONSHIP TO MEAN-FIELD DYNAMO MODELS

The scale separation and azimuthal averaging introduced
earlier jointly form the basis of the so-called mean-field dynamo
models, which have been and continue to be used extensively
in studying solar and stellar magnetic activity cycles. If one
assumes at the onset that the large-scale magnetic field 〈B〉 is
axisymmetric, then it can be expressed as the sum of a toroidal
component and poloidal component defined through a purely

azimuthal axisymmetric vector potential 〈A〉 = 〈Aφ〉êφ , as

〈B〉(r, θ, t) = 〈Bφ〉(r, θ, t)êφ + ∇ × (〈Aφ〉(r, θ, t)êφ). (38)

One can further assume that the mean flow is also axisymmetric
and comprised only of differential rotation, i.e.,

〈u〉(r, θ, t) = �Ω(r, θ, t)êφ, (39)

where � ≡ r cos θ and Ω is the (axisymmetric) angular
velocity. Under those assumptions, Equation (20) for the mean
field is then readily separated as

∂〈Aφ〉
∂t

= η

(
∇2 − 1

� 2

)
〈Aφ〉 + Eφ, (40)

∂〈Bφ〉
∂t

= η

(
∇2 − 1

� 2

)
〈Bφ〉 + � [∇ × (〈Aφ〉êφ)] · ∇Ω

+ êφ · [∇ × E], (41)

for constant η and under the Coulomb gauge ∇ · 〈A〉 = 0.
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Figure 14. Time–latitude diagrams for the azimuthal components of the inductive contributions ∇ × 〈u′ × B′〉 (top panel) and ∇ × (〈u〉 × 〈B〉) (middle panel),
constructed at depth r/R� = 0.718, at the base of the convection zone (left column) and at r/R� = 0.803 (right column). Both contributions are here roughly of the
same order of magnitude but have opposite signs at most latitudes. The sum of the top and middle panels is shown on the bottom panels, using the same color scale
and ranges; this gives the expected rate of change of the mean azimuthal field, itself overlaid as black (white) contours for 〈Bφ〉 > 0 (< 0).

(A color version of this figure is available in the online journal.)

Equations (40)–(41) are known as the mean-field dynamo
equations, and models based on these equations (or variations
thereof) remain to this day the workhorse of solar cycle model-
ing, interpretation, and even prediction (see, e.g., Charbonneau
2010, and references therein). They show the critical importance
of the mean EMF in such axisymmetric mean-field models; the
EMF provides a source term on the right-hand side of the evo-
lution equation for 〈Aφ〉, without which dynamo action is im-
possible, as per Cowling’s theorem. It also provides a source
term for the toroidal component 〈Bφ〉, but here it is less crucial
because differential rotation already provides a source contribu-
tion, provided a poloidal magnetic component is present. The
so-called αΩ dynamo model results from dropping the α-effect
term in Equation (41), while dropping instead the differential
rotation shearing term yields the α2 model, in which the turbu-
lent EMF is the sole inductive mechanism. Retaining all terms
leads to the α2Ω mean-field dynamo model.

4.1. Contributions to Toroidal Field Induction

To which (if any) of these three possible mean-field model
categories could we identify our simulation? The answer clearly
hinges on the relative importance of the 〈u〉 × 〈B〉 and 〈u′ ×
B′〉 terms on the right-hand side of the mean-field induction
Equation (20). In keeping with our “experimental” approach,
we simply use the mean and fluctuating flow and magnetic
field components defined previously do directly calculate, using
simple centered finite differences, the azimuthal components of
both ∇ × (〈u〉 × 〈B〉) and ∇ × 〈u′ × B′〉, which then measures
the rate of change of the magnetic field associated with each
inductive contribution.

Figure 14 shows the results of this exercise, in the form of
time–latitude diagrams for the azimuthal component of each of
these two contributions (top and middle rows), as well as their
sum (bottom row), extracted at the base of the convection zone
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(r/R� = 0.718, left column) and higher up in the convection
zone (r/R� = 0.803, right column). The time span covered
corresponds to the second half of the simulation run. It must
be remembered that computed in this manner, the plotted
tendencies reflect not only the action of source terms but also
transport by turbulent pumping and large-scale flows.

At any phase of the cycle, both contributions are here
clearly of the same overall order of magnitude. Furthermore,
constructing similar diagrams at other depths indicates that
this remains the case throughout the bulk of the convection
zone. In the terminology of mean-field electrodynamics, one
would then conclude that in this one specific simulation, the
large-scale magnetic field is sustained by an α2Ω dynamo,
in the sense that both source terms on the right-hand side
of Equation (41) contribute to the evolution of the toroidal
field. However, it is also clear from Figure 14 that these two
contributions to toroidal field production act in opposition to
each other at most latitudes during most phases of the cycle.
Interestingly, a similar pattern was observed in the MHD
simulations of Brown et al. (2010), which produced steady
large-scale magnetic fields. In their simulations D3 (see their
Section 5.1), production of toroidal magnetic fields by the
large-scale differential rotation shear was found to dominate
over an opposing turbulent induction and Ohmic dissipation.
Here, in the absence of explicit Ohmic dissipation and with
both contributions to toroidal field production of comparable
strengths, sign notwithstanding, the net tendency (bottom row)
shows a spatiotemporal evolution that is markedly different from
either contribution, and overall much smaller in magnitude.

The solid contours in Figures 14(C) and (F) show the spa-
tiotemporal evolution of the large-scale toroidal magnetic com-
ponent at the corresponding depths. At the base of the envelope
the 〈Bφ〉 component and its temporal variation reconstructed
from the upper two panels, shown as color levels, are seen to be
offset in time, with d〈Bφ〉/dt leading 〈Bφ〉 in a manner consis-
tent with the development of the observed polarity reversals at
that depth. This phase offset, in turn, results from the residual
tendency left from the near cancellation of the turbulent EMF
and large-scale shear contributions plotted in panels A, B, and
D, E. A similar temporal offset is observed at mid-convection
zone depth at the mid latitudes, but not in the vicinity of the
equatorial plane.

These results, especially when considered jointly with those
of Brown et al. (2010, 2011), suggest that the development
of cycles arises through a rather delicate balance between the
magnitude and relative phasing of turbulent induction and large-
scale shear. One could then legitimately suspect that the cycle
period in these simulations is also sensitively dependent on this
balance, which is itself likely dependent on various simulation
parameters such as rotation rate, forcing, stratification, and so
on. How and when the transition from steady to cyclic dynamo
action takes place requires a detailed parameter study, which
goes well beyond the scope of the present paper. Nonetheless,
the demonstrated difficulty in “finding” regular cyclic large-
scale dynamo action in these kinds of turbulent simulations, at
the solar rotation rate at least, may well be a reflection of the
need for such a fine balance to materialize.

4.2. Relating the α-tensor to Kinetic and Magnetic Helicities

The mathematical machinery of mean-field electrodynamics
also involves the characterization of the turbulent EMF in terms
of the mean magnetic field. In particular, for turbulent flows
satisfying certain statistical properties and operating in certain

specific physical regimes, it offers the mean of calculating the
form of the α-tensor (see, e.g., Moffatt 1978). In the case of
a turbulent flow that is isotropic and homogeneous but lacks
reflectional symmetry, the α-tensor reduces to the diagonal form
αδjk , with

α = −τ

3
hv, (42)

where τ is the correlation time of the turbulence and hv is the
mean kinetic helicity associated with this turbulent flow:

hv = 〈u′ · ∇ × u′〉. (43)

The key result here is that albeit for the sign difference, the
α-effect coefficient is directly proportional to the kinetic helicity,
a quantity readily computed a posteriori from the simulation
output. The result of such a calculation is plotted in Figure 15(C),
with the kinetic helicity having been averaged temporally as well
as azimuthally over the complete time span of the simulation.
Except for the sign difference, the degree of resemblance with
the αφφ tensor component plotted on panel A is quite striking.
Both functionals are strongly peaked at very high latitudes,
and in each hemisphere only show a sign change near the
base of the convection zone. The most prominent difference
is found at low latitudes, where hv shows a secondary peak in
the middle of the convection zone that is absent in the αφφ

profile. The αθθ component (see Figure 9) is also tolerably
well represented by the negative of the mean kinetic helicity,
the most prominent discrepancy being that αθθ peaks at mid
latitudes. The αrr diagonal component is that which shows
the least similarity with the mean kinetic helicity, presumably
because it is more sensitive to the break of homogeneity on
which Equation (42) is predicated, induced by stratification of
the background state and/or upper boundary condition. Another
significant departure relates to the temporal behavior of the
kinetic helicity, which shows a clear signature of the cycle in
the large-scale magnetic field, while most α-tensor components
extracted from the simulation do not, at least not at a level that
could be deemed statistically significant; in the simulation, the
cyclicity of the EMF is well captured by the cyclicity of the
large-scale magnetic component (viz., Figure 10).

Equation (42) is also predicated on a number of other strong
assumptions, including the requirement that the small-scale
turbulent flow remains entirely unaffected by the small-scale
turbulent magnetic field. Once the latter becomes dynamically
significant, it is expected that it will alter the small-scale
flow giving rise to the α-effect. Based on a set of local
Cartesian incompressible MHD simulations operating in the
strongly nonlinear regime, Pouquet et al. (1976) suggested that
Equation (43) should be replaced by

α∗ = −τ

3
(hv − hB) , (44)

where hB is the mean current helicity, generalized to our
anelastic MHD formulation as

hB = 1

μ0ρ0
〈B′ · ∇ × B′〉. (45)

The physical link between kinetic and current helicity becomes
more transparent upon noting that B′/

√
μ0ρ0 is the Alfvén

velocity, measuring the propagation speed of transverse MHD
waves for which magnetic tension provides the restoring force;
in essence, what Equation (44) expresses is simply that magnetic
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Figure 15. Meridional slice plots of (A) αφφ , replotted directly from Figure 9; (B) is the corresponding tensor component reconstructed from Equation (44), using the
temporally and zonally averaged kinetic and magnetic helicity profiles extracted from the simulation and plotted on panels (C) and (D), respectively. The correlation
time τ is computed according to Equation (46) and is set to zero below the core-envelope interface r/R = 0.718, indicated by the dashed circular arc on all panels.

(A color version of this figure is available in the online journal.)

tension tends to oppose any twisting of magnetic field lines
by the small-scale turbulent flow. The mean current helicity in
our simulation is plotted in Figure 15(D), again as a combined
azimuthal and temporal average spanning the full simulation
duration. This magnetic contribution to the α-coefficient is
found to be significantly smaller than its kinetic counterpart,
by a factor of about 10. The strong peaks straddling the base
of the convection zone at mid latitude in both hemispheres are
associated with the strong mean magnetic field building up in
these regions, which, acted upon by the small-scale turbulent
flow, feeds the production of small-scale current helicity.

Figure 15(B) shows the α∗(r, θ ) profile reconstructed accord-
ing to Equation (44). The correlation time within the unsta-
ble layers is estimated in a similar manner as in Brown et al.
(2010), i.e.,

τ (r) = Hρ

u′ , (46)

where Hρ is the density scale height of the background stratifica-
tion and u′ is the rms average of the small-scale flow component,
the averaging being carried out zonally, latitudinally, and tem-
porally over the full time span of the simulation. In the stable
layers, τ is artificially set to zero, since Equation (44) is not
expected to hold there, pertaining as it does to fully developed
turbulence.

With the kinetic helicity about an order of magnitude larger
than the magnetic helicity, the structure of this estimated
α∗(r, θ ) reflects primarily the spatial structure of the kinetic
helicity, except in the immediate vicinity of the core-envelope
interface where the kinetic and magnetic contributions have
comparable magnitudes. While the overall amplitude of this
reconstructed α profile is about a factor of three larger than the
measured αφφ (Figure 15(A)), in terms of the spatial variations
Figures 15(A) and (B) are remarkably similar. Interestingly, the
overall magnitude of the reconstructed α, ∼ 20 m s−1, is quite
comparable to the α reconstructed similarly in Brown et al.
(2010, see their Figure 8) in a simulation rotating at thrice the
solar rate, and sustaining a temporally steady, rather than cyclic,
large-scale magnetic field component.

The limited applicability of Equation (44) to our simulation
notwithstanding, the weak contribution of the specific current
helicity as compared to the kinetic helicity term suggests that
the dynamical impact of the small-scale magnetic component
on the small-scale flow is correspondingly weak. Recall that we
also demonstrated, in Section 3.6, that the α-tensor components
show little or no significant variation with the strength of the
large-scale magnetic field. This would suggest that the α-effect
in our simulation operates in the quasi-linear regime and that
the saturation of the dynamo amplitude must be achieved via a
different mechanism.
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5. DISCUSSION AND CONCLUSION

We have investigated the mode of large-scale dynamo
action taking place in the global implicit large-eddy simula-
tion of the solar convection zone reported upon in Ghizaru et al.
(2010). Motivated by the presence of a strong and well-defined
axisymmetric magnetic component arising in the simulation,
we defined the large-scale magnetic field as the longitudinal
average of the total simulated magnetic field, with the resid-
ual produced by subtracting this average component from the
total field defining the small-scale, fluctuating magnetic compo-
nent. Zonally averaging the cross-correlation of the latter with
the corresponding small-scale flow component then permits the
calculation of a turbulent EMF, and its development in terms
of the large-scale, zonally averaged component allows to calcu-
late the components of the α-tensor. The α-tensor components
so calculated were found to compare well to a number of re-
sults obtained in local Cartesian simulations with an externally
imposed large-scale magnetic component. Noteworthy results
include a positive αφφ component in the northern solar hemi-
sphere, peaking at high latitude and changing sign near the base
of the convecting shell; downward turbulent pumping in the bulk
of the convection zone, except in a thin subsurface layer where
pumping is upward-directed; significant latitudinal pumping,
equatorward at mid to low latitude in the bulk of the convecting
layer, but poleward in the high latitude, subsurface layers.

Because our simulation generates its own large-scale mag-
netic field, no such field need be imposed externally to measure
the α-effect. The α-effect that we do measure is then dynami-
cally consistent with the nonlinear interaction of flow and field at
all numerically resolved spatial and temporal scales. However,
our analysis is physically meaningful only to the degree that
the scale separation procedure used to divide the total flow and
field into mean and fluctuating components is applicable to our
simulation results. The modal analysis described in Section 3.1
suggests that it is. Moreover, Figure 10 provides additional em-
pirical evidence that something closely akin to the α-effect of
mean-field electrodynamics offers an adequate representation
of the turbulent EMF arising in the simulation.

The mean-field analysis reported upon in this paper relies
entirely on a posteriori calculations of cross-correlations be-
tween the small-scale flow and magnetic field, as defined via
Equations (11) and (12) and as resolved by our computational
grid. The implicit presence of dissipative terms at the trunca-
tion level of the MPDATA advection scheme at the core of
EULAG has been shown, in the context of purely hydrodynam-
ical simulations, to mimic subgrid dynamical processes such as
self-similar energy cascade (Domaradzki et al. 2003; Margolin
et al. 2006; Margolin & Rider 2007). Evidently, the smallest
resolved scales in our simulation have been influenced by these
subgrid effects, and therefore so has our reconstructed EMF; yet
the overall dynamo picture emerging from our analysis shows
remarkable internal self-consistency, which suggests that MHD
subgrid effects, if present, are not the primary direct drivers of
cyclic evolution on large spatial scales.

The simultaneous presence of globally well-structured α-
effect and significant internal differential rotation suggests
that our simulation could be operating as what is known in
mean-field electrodynamics as an αΩ dynamo. This inference
is buttressed by a number of simulation features, notably
the fact that the in-phase (or nearly so) production of a
positive large-scale dipole moment from a positive toroidal
component is what is expected of kinematic αΩ dynamo
models having the angular velocity outwardly increasing and

αφφ > 0 in the northern solar hemisphere (see Stix 1976).
Oscillatory behavior has been shown to be possible also in linear
α2-type models, i.e., in the complete absence of differential
rotation, provided the α-effect has sufficiently steep radial
variations, including sign changes (Stefani & Gerbeth 2003).
Such oscillatory α2-type solutions were recently identified in
the helically forced MHD simulations of Mitra et al. (2010).
These authors also presented specific examples showing that
such externally forced α2 dynamo models could also exhibit
latitudinal propagation of the azimuthal large-scale magnetic
component. Given the rather complex spatial variations of our
measured α-tensor components (see Figure 9), it then remains
possible that the α-effect is the primary driver of the polarity
reversals and mild equatorward propagation of the deep-seated
mean magnetic component observed in our simulation. Then
again, the comparable magnitudes of the small-scale and large-
scale contributions to the φ-component of the induction term
(cf. Figures 14(A) and (B)) would rather point to the so-called
α2Ω dynamo, in which shearing by the large-scale flow and
the turbulent EMF both contribute to the regeneration of the
large-scale toroidal magnetic component. Unless differential
rotation is very weak, such dynamos behave qualitatively like
αΩ dynamos. In particular, they also support traveling dynamo
waves propagating according to the Parker–Yoshimura sign rule
(see, e.g., Choudhuri 1990; Charbonneau & MacGregor 2001).
At a given turbulent intensity, the distinction between these
three classes of models therefore hinges on the magnitude of
differential rotation in the region where dynamo action is taking
place.

Interestingly, the pole-to-equator angular velocity contrast in
a purely hydrodynamical simulation using the same stratifica-
tion and thermal forcing as in Ghizaru et al. (2010) is much
closer to solar (cf. Figures 3 and 4), indicating that the magnetic
field—both small scale and large scale—has a significant impact
on the dynamics of large-scale flow building up in the simula-
tion. A similar behavior was observed already in the simulations
of Gilman (1983) and carried over also to the more strongly tur-
bulent simulations of Browning et al. (2006). Assume for the
sake of the discussion that a stronger, solar-like internal dif-
ferential rotation could be produced in our simulation, e.g., by
introducing a latitudinal gradient in the thermal forcing, as done
in Miesch et al. (2006) and Browning et al. (2006). In kinematic
αΩ mean-field models operating close to criticality, the cycle
frequency is found to increase as a power, usually close to unity,
of the so-called dynamo number D, defined as

D = α0(ΔΩ)R3

η2
T

, (47)

where R is a measure of the size of the dynamo region (often
taken as the solar/stellar radius), α0 measures the magnitude
of the α-effect, ΔΩ that of the differential rotation, and ηT is
the turbulent diffusivity value used in the model. Consider now
our simulation; assuming that ramping up ΔΩ by a factor of
three can be achieved without affecting too much the EMF
or (implicit) turbulent diffusivity, Equation (47) would then
predict a decrease of the cycle period by a factor of ∼3, which
would bring it down to the solar value. This would alleviate
simultaneously two of the primary failings of the present
simulation as compared to the solar cycle, namely the latitudinal
surface differential rotation being too weak and the cycle period
being too long. On the other hand, the fact that the large-scale
surface poloidal and deep-seated toroidal components oscillate
almost exactly in phase may well lie outside the reach of these
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types of global MHD simulations. Modeling of the solar surface
magnetic flux evolution (e.g., Wang & Sheeley 1991; Schrijver
et al. 2002; Baumann et al. 2004) has shown that the poleward
transport of magnetic decay products of sunspots and active
regions by supergranular diffusion and the poleward meridional
flow is an important driver of polar field reversals. There is
of course nothing equivalent to decaying active regions in our
simulations, so in retrospect an incorrect timing of surface polar
field reversals is perhaps not exceedingly worrisome.

The question of cycle amplitude saturation also merits further
investigation. The analysis of Section 3.6 suggests that if some-
thing like classical α-quenching by the mean magnetic field is
taking place, it is at a rather modest level, globally of the order of
∼10%–20%. Unless the dynamo is only very mildly supercriti-
cal, this is likely insufficient to provoke amplitude saturation. In
addition, the analysis of Section 4.2 suggests that quenching by
the small-scale magnetic component is also insignificant, cur-
rent helicity being almost an order of magnitude smaller than
kinetic helicity in the bulk of the convecting layers. Moreover,
and even though it is defined globally, the steadiness of the E(u′)
time series plotted in Figure 5 is consistent with the conclusion
drawn on the basis of Figure 12, namely that the α-tensor is not
affected significantly by the presence of the large-scale magnetic
field. On the other hand, the energy contribution associated with
the large-scale flow does show a fairly clear cyclic variation, ap-
proximately in anti-phase with the large-scale magnetic energy
for most cycles; and, as we noted already, the latitudinal differ-
ential rotation is much weaker in the MHD simulation than in its
purely hydrodynamical counterpart. This suggests that dynamo
saturation takes place via magnetic backreaction on the large-
scale flow. It remains to be investigated whether this backreac-
tion is mediated by the Lorentz force component associated with
the large-scale magnetic field (the so-called Malkus–Proctor ef-
fect), or through small-scale Maxwell stresses, either directly or
through quenching of the small-scale Reynolds stresses power-
ing the large-scale flow (sometimes referred to as Λ-quenching;
see, e.g., Kitchatinov & Rüdiger 1993; Rempel 2006, and refer-
ences therein).

Another intriguing question relates to the mechanism(s)
responsible for the equatorward propagation of the sunspot
activity belts in the course of the cycle. If sunspots are assumed
to originate from the destabilization and vertical rise of toroidal
magnetic flux ropes stored immediately beneath the solar core-
envelope interface, then the observed equatorward drift should
reflect a similar drift in the deep-seated toroidal magnetic
components from which these flux ropes are believed to form.
The weak equatorial propagation visible on the top panel of
Figure 2 amounts to a drift speed in the range 0.3–0.5 m s−1,
while in the Sun this speed is estimated at 1 m s−1. In the
simulation considered here, a weak positive radial differential
rotation is sustained at mid to low latitudes at the core-envelope
interface. In conjunction with a negative αφφ at the base of the
envelope (see Figure 9, bottom-right meridional slice), we then
have αφφ × dΩ/dr < 0, which should then lead to equatorward
propagation of the dynamo wave as per the Parker–Yoshimura
sign rule. Then again, our simulation is also characterized by a
mean meridional flow component which, at mid latitude at the
core-envelope interface, is equatorward and reaches a few tenths
of meters per second, comparable to the drift speed inferred from
Figure 2. Moreover, as discussed in Section 3.5 the latitudinal
turbulent pumping at the base of the envelope is equatorward
and also reaches a few tenths of meters per second. In our
simulations, the large-scale differential rotation and meridional

flow both show significant temporal variations in phase with
the cycling large-scale magnetic field, and the energy density of
the large-scale flows and field are commensurate (cf. Figure 5).
Particularly in the case of the meridional flow, it is not clear
a priori whether the observed cyclic variations locally drive,
or are driven by, cyclic variations in the large-scale magnetic
component. Clarifying this question again requires a complete
and detailed investigation of the dynamical balance arising in
the simulation. Such an analysis is now underway and will be
reported upon in a forthcoming paper.
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Käpylä, P. J., Korpi, M. J., & Brandenburg, A. 2009, A&A, 500, 633
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