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ABSTRACT

[The need for reliable predictions of the solar activity cycle continues to drive the development of
dynamo models incorporating a representation of surface processes sufficiently detailed to allow as-
similation of magnetographic data. In this series of paper we present one such dynamo model, and
document its behavior and properties.] In this paper we complete the presentation of a new hybrid
2× 2D flux transport dynamo model of the solar cycle based on the Babcock–Leighton mechanism of
poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMR). This
hybrid model is constructed by coupling the surface magnetic flux transport described in Lemerle et al.
(2015) to an axisymmetric kinematic flux transport dynamo model defined in a meridional plane. The
surface model provides the poloidal source term for the internal dynamo model via its outer boundary
condition, while the latter generates the bipolar emergences which drive reversal of the surface dipole
in the surface model. A key aspect of the coupled model is the definition of an emergence function
describing the probability of BMR emergence as a function of the spatial distribution of internal
axisymmetric magnetic field. We use a genetic algorithm (GA) to calibrate this function, together
with other model parameters, against observed cycle 21 emergence data. Using these GA-calibrated
best-fit parameter values, we present a reference dynamo solution reproducing many solar cycle char-
acteristics, including good hemispheric coupling, phase relationship between the surface dipole and
the BMR-generating internal field, correlation between dipole strength at cycle maximum and peak
amplitude of the next cycle, and lack thereof between peak cycle amplitude and dipole strength of next
minimum. The saturation of the mean cycle amplitude takes place only through the quenching of the
mean BMR tilt as a function of erupting magnetic flux, as suggested by observational analyses. The
observed statistical scatter about the mean BMR tilt, built into the model, acts as a strong source of
stochasticity which dominates amplitude fluctuations, at least in the parameter regimes investigated
so far. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting
a few cycles. Although significant spectral power is produced at low frequencies, no Gleissberg-like
long periodicities are apparent in the power spectra of magnetic energy, dipole moment, or other cycle
characteristics. The dynamo can also shut off entirely following an unfavorable sequence of emergence
events, usually through occasional emergence of a large BMR deviating significantly from Joy’s law.
Because it includes a spatially resolved representation of the solar photosphere, this hybrid model is
particularly well-suited for providing synthetic data for coronal magnetic field reconstructions, as well
as for assimilation of magnetographic data towards solar cycle forecasting.

Keywords: Alex: [A verifier] dynamo — Sun: activity — Sun: interior — Sun: magnetic fields — Sun:
photosphere — sunspots

1. INTRODUCTION

Close to a century has now gone by since the discov-
ery of the underlying magnetic nature of the eleven-year
sunspot cycle (Hale et al. 1919). The magnetic polarity
reversals of the leading and following (with respect to
rotation) components of large bipolar magnetic regions
(BMRs) is now thought to reflect the presence, some-
where in the solar interior, of a large-scale, dominantly
axisymmetric zonally-oriented (toroidal) magnetic field,
antisymmetric about the sun’s equator and itself un-
dergoing polarity reversals approximately every eleven
years, for a full magnetic cycle period of ' 22 years. The
rotational shear of a pre-existing dipole, later detected
on the solar surface (Babcock & Babcock 1955), can act
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as an inductive source for such an internal toroidal mag-
netic flux system. However, closing the dynamo loop
requires an inductive mechanism capable of regenerating
the dipole from this internal toroidal component, in a
manner such as leading the cyclic polarity reversals of
both of these large-scale components of the solar mag-
netic field.

Many candidates for this toroidal-to-poloidal hydro-
magnetic inductive mechanisms have been identified,
starting with cyclonic convection (Parker 1955) and its
associated mean electromotive force, and the surface de-
cay of bipolar magnetic regions (Babcock 1961), now
referred to as the Babcock–Leighton (BL) mechanism.
These were joined more recently by helical waves along
thin magnetic flux tubes (Schmitt 1987; Ossendrijver
2000, and references therein), and shear instabilities in
the tachocline (Dikpati & Gilman 2001), the stably strat-
ified rotational shear layer located beneath the base of
the solar convection zone, as revealed by helioseismol-
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ogy. In all cases, the rotational influence mediated by
the Coriolis force is the key agent that breaks the mir-
ror symmetry of the inductive flows, thus allowing to
circumvent Cowling’s theorem.

Of these various candidates for poloidal field regenera-
tion, the BL mechanism stands out as the only one that
can be directly observed operating at the solar surface,
and as such is far better constrained than any other.
In particular, the distribution of tilt angles of BMRs,
namely the angle defined by a line segment joining each
pole of the BMR measured with respect to the east–
west direction, is now well characterized from white light
(Howard 1991; Dasi-Espuig et al. 2010) and magneto-
graphic observations (Wang & Sheeley 1989). This tilt
arises through the action of the Coriolis force on the flows
developing along the axis of buoyantly rising toroidal
magnetic flux ropes, believed to be generated near the
base of the solar convection zone, and eventually piercing
the photosphere in the form of BMRs (see Fan 2009 for a
review). Associated with this tilt is a net dipole moment
so that, effectively, a poloidal magnetic component is be-
ing produced from a pre-existing toroidal component.
The magnitude of this tilt, and its pattern of variations
with latitude, BMR flux and separation, and statistical
fluctuations about the mean, all play a key role in setting
the magnitude of the surface dipole moment produced in
the course of a sunspot cycle.

Because the BL mechanism operates at the solar sur-
face, a transport mechanism is also needed to carry the
surface poloidal magnetic field down into the interior,
where rotational shearing is taking place. Here again a
number of appropriate candidate mechanisms are avail-
able, including advection by large-scale meridional flows
pervading the solar convection zone, as well as turbu-
lent transport effects, namely isotropic diffusive trans-
port and directional turbulent pumping. Viewed glob-
ally, the BL mechanism is a non-local inductive effect:
the surface source of poloidal field is driven by the deep-
seated toroidal component, on timescales much shorter
than the magnetic cycle period.

Dynamo models of the solar cycle relying on the BL
mechanism of poloidal field regeneration have undergone
a vigorous revival in the last 25 years of so, spurred by
Wang et al. (1989), Wang & Sheeley (1991), Choudhuri
et al. (1995), and Durney (1995). Many such model are
now dispersed in the literature (for recent reviews see
Charbonneau 2010; Karak et al. 2014). The vast ma-
jority rely on a two-dimensional axisymmetric formula-
tion of the problem, whereby the large-scale flows and
magnetic field components are both axisymmetric, and
the dynamo equations solved in a meridional (r, θ) plane.
Typically, helioseismology-compatible parameterizations
for solar-like internal differential rotation and meridional
circulation are introduced, and these flows are assumed
steady (the so-called kinematic approximation).

Many such models do differ in how they incorporate
the BL mechanism, a fundamentally non-axisymmetric
effect, into the axisymmetric dynamo equations (com-
pare, e.g., Durney 1995; Dikpati & Charbonneau 1999;
Nandy & Choudhuri 2001; Muñoz-Jaramillo et al. 2010).
They also differ in assumptions made regarding the pri-
mary magnetic field transport mechanism. As a conse-
quence, models based on rather different input physics
can do roughly as well as one another in reproducing

the primary characteristics of the observed solar cycle.
However, the differences can matter a lot in practice.
Perhaps no better illustration of this point can be found
than the widely differing dynamo model-based predic-
tions of sunspot cycle 24 made by Dikpati et al. (2006)
and Choudhuri et al. (2007), each using a BL model “cal-
ibrated” to earlier sunspot cycles.

This problem is compounded when introducing data
assimilation into the model-based prediction, as the
datasets must then also be preprocessed in some way
to accommodate the axisymmetric formulation of the dy-
namo model used for forecasting. Both aforecited model-
based prediction schemes used distinct geometricaly sim-
plified implementations of different datasets being assim-
ilated, and in all likelihood these differences also con-
tributed to the widely varying predictions for the am-
plitude of cycle 24. Ideally, data assimilation should be
carried out using full-disk magnetograms and/or detailed
observations of active region emergences, including com-
plete positional and timing information. Either way, this
requires a dynamo model with a geometrically complete
representation of the solar surface, and thus demands
abandoning axisymmetry.

One extreme possibility consists in turning to global
magnetohydrodynamical simulations of solar convection.
Despite remarkable progress in the past decade (for a
review see, e.g., § 3 of Charbonneau 2014), such simu-
lations still cannot accommodate sufficient spatial reso-
lution to resolve convection and magnetic field evolution
in the surface layers, or even capture the interior process
of magnetic flux rope formation and buoyant rise (but
on the latter do see Nelson et al. 2013; 2014). Typi-
cally, such simulations also fail to drive regular, solar-like
polarity cyclic reversals in the large-scale magnetic field
they generate (but see Passos & Charbonneau 2014 for
the closest thing yet).

Intermediate approaches are also possible: finding a
way to include the full non-axisymmetric representation
of, at-least, the surface processes, while retaining the
kinematic approach for the transport of magnetic flux.
To our knowledge, only two such models exist in the
literature (Yeates & Muñoz-Jaramillo 2013; Miesch &
Dikpati 2014), as they include a full three-dimensional
kinematic representation of the solar convection zone up
to the surface. Here again, they mostly differ in how
they incorporate the localized emergence of new mag-
netic flux: Yeates & Muñoz-Jaramillo (2013) impose lo-
calized flow perturbations at the base of the convection
zone to trigger the eruption of active regions out of the
toroidal flux, while Miesch & Dikpati (2014) apply a sur-
face flux deposition technique, more alike our emergence
procedure, through an empirical masking of the deep-
seated toroidal field. [The models seem also to differ in
the way they treat the surface boundary layer.]

In this series of paper we present a BL dynamo
model that belongs to this same category. We retain a
fairly conventional two-dimensional axisymmetric kine-
matic flux transport dynamo (FTD) model, specifically
the model described in Charbonneau et al. (2005), with-
out its non-local poloidal source term, and couple it to
a two-dimensional surface flux transport (SFT) simula-
tion. The latter provides the source term for the former
through the upper boundary condition, and in turn the
FTD provides the emergences required as input to the
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SFT simulation. We opted to call this a “2 × 2D” dy-
namo model. This is still a kinematic model, in that
it uses steady parametrized large-scale flow fields com-
patible with helioseismology and surface measurements.
Specifying the form of these flows requires the adjust-
ment of many model parameters, in order to generate
the most “solar-like” dynamo solutions possible.

In Lemerle et al. (2015, hereafter Paper I) we intro-
duced a genetic algorithm-based method for formally
carrying out this optimization problem, in the context
of the surface flux transport simulation. Not only does
this approach finds the formally optimal solution, but it
also allows to map a range of acceptable solutions, thus
providing robust Monte Carlo-like confidence intervals
on best-fit model parameters and allowing the identifica-
tion of degeneracies in model parameters. Although the
optimization process is set to minimize deviations with
respect to synoptic magnetograms (and derived global
quantities), the range of acceptable surface meridional
flow profiles also fits nicely surface Doppler measure-
ments (Ulrich 2010), even though these data are not used
to constrain the optimization process.

In the present paper we extend the procedure to the
coupled model described above, and thus produce an
“optimal” 2 × 2D BL dynamo model of the solar cy-
cle. The use of quotes is motivated by the fact that even
this basic optimal model involves unavoidable stochastic
components, associated with the flux emergence process,
so that it can only fit the Sun (meaning, e.g., the sunspot
number time series) in a statistical sense. Indeed, we also
showed in Paper I how the uncertainties in global cycle
characteristics were dominated by the inherent stochas-
ticity of the flux emergence process.

In § 2 we discuss the formulation of the coupled model
and its components. In § 3 we turn to its calibration
against observed solar features. In § 4 we present self-
consistent reference dynamo solutions and examine their
long term patterns of variability. We conclude by com-
paring and contrasting our optimized 2 × 2D model to
other BL-type dynamo models available in the extant
literature.

2. MODEL

The contemporary version of the original picture pro-
posed by Babcock (1959) runs as follows:

(0) at solar maximum, strong toroidal magnetic fields
are present deep in the solar interior, antisymmetric
with respect to the equator;

(i) during the ascending and descending phases of the
solar cycle, toroidal flux loops rise and emerge at
the solar surface in the form of BMRs, twisted due
to the Coriolis effect, such that the western spots
tend to be closer to the equator (tilt following on
average the so-called Joy’s law);

(ii) surface diffusion/transport near the equator allows
for more cancellation of the western polarity, when
merging with its opposite from the other hemi-
sphere, leaving the remaining “eastern” flux to be
transported toward the poles and to trigger the po-
larity reversal of magnetic polar caps;

(iii) the new surface dipole is subducted and sheared
by differential rotation, building up a new internal
toroidal magnetic structure, ready for

(iv) the generation of a new population of BMRs during
the next half-cycle.

The numerical implementation we propose for carrying
out this scheme is quite simple:

(i) new BMRs are continuously deposited at the so-
lar surface, at times, latitudes and longitudes, tilts,
angular separations, magnetic fluxes and polarity
generated through a (probabilistic) flux emergence
algorithm based on the strength and spatial distri-
bution of the deep-seated magnetic fields;

(ii) the SFT equation is solved on the solar spherical
surface, and generates the expected cancellation,
decay, transport and specific features typically ob-
served in surface magnetograms (see Paper I);

(iii) the FTD equation is solved in the meridional plane,
using the evolving results of the surface simulation
as a time-dependent upper boundary condition on
the poloidal field; transport of this poloidal field
to the base of the convection zone and subsequent
shearing by differential rotation eventually builds
up strong toroidal magnetic fields deep in the con-
vection zone;

(iv) the dynamo loop is closed by allowing this deep-
seated magnetic structure to generated the emer-
gences required in step (i).

2.1. Basic Ingredients

In the depths of the solar convection zone or in the tan-
gles of photospheric turbulent motions, magnetic fields
are dispersed, transported, amplified or destroyed by
small and large-scale flows. In the solar interior and pho-
tosphere, these processes are well-captured by the mag-
netohydrodynamics (MHD) induction equation:

∂B

∂t
= ∇××× (u×××B− η∇×××B) , (1)

with η the net magnetic diffusivity, including contri-
butions from the small microscopic magnetic diffusivity
ηe = c2/4πσe (with σ−1

e the electric resistivity of the
plasma), as well as a dominant turbulent contribution
associated with the destructive folding of magnetic field
lines by small-scale convective fluid motions. We adopt
here the kimematic approximation, whereby the flow u is
considered given. This approximation has been shown to
be appropriate in reproducing reasonably well the syn-
optic evolution of the solar surface magnetic field (see,
e.g., Wang et al. 2002a; Baumann et al. 2004), as well
as the overall solar dynamo properties (see, e.g., Karak
et al. 2014, and references therein). On spatial scales
much larger than convection, two flows contribute to u:
meridional circulation uP(r, θ) and differential rotation
$Ω(r, θ)êφ. Both these flows can be considered axisym-
metric (∂/∂φ ≡ 0) and steady (∂/∂t ≡ 0) as per the kine-
matic approximation. They can be expressed in spherical
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polar coordinates (r, θ, φ) as

u(r, θ) =
R

ρ(r)/ρ0
∇××× (Ψ(r, θ)êφ)︸ ︷︷ ︸

uP(r,θ)=ur(r,θ)êr+uθ(r,θ)êθ

+$Ω(r, θ)êφ , (2)

where the meridional flow has been formulated in terms
of a stream function Ψ(r, θ), thus ensuring mass con-
servation in a ρ(r) = ρ0ξ

m density profile, with ξ(r) =
(R/r)− 1, m = 1.5 for an adiabatic stratification, R the
solar radius, and $ = r sin θ.

2.1.1. Meridional Circulation

We opted to use a modified form of the meridional
flow profile introduced by van Ballegooijen & Choudhuri
(1988). This flow can be defined through a separable
stream function of the form:

Ψ(r, θ) = uθ(R, θ)
R

r

[
− ξm+1

m+ 1
+
c1ξ

2m+1

2m+ 1
− c2ξ

2m+p+1

2m+ p+ 1

]
,

(3a)
where

c1 =
(2m+ 1)(m+ p)

(m+ 1)p
ξ−mb ,

c2 =
(2m+ p+ 1)m

(m+ 1)p
ξ
−(m+p)
b ,

and ξb = (R/Rb) − 1. Parameters p and m determine
the depth and concentration of the return flow, down to
r = Rb. For the purpose of the foregoing analysis and
calibration, parameters p and Rb will be treated as free
parameters, while m will keep the value of 1.5 character-
istic of an adiabatic stratification.

We deviate from the original formulation of van Balle-
gooijen & Choudhuri (1988) by using the following lati-
tudinal dependence, also used in Paper I:

uθ(R, θ) = −u0

u∗0
erfq
(
v sin θ

)
erfn

(
w cos θ

)
, (3b)

with u∗0 a normalization factor such that u0 is the maxi-
mum meridional flow velocity and q, n, v, and w parame-
ters that allow to generate a very wide range of solar-like
surface meridional flow profiles. The value of n is fixed to
1 as to prevent the formation of a 0 m s−1 plateau near
the equator. We developed this flexible formulation in
Paper I to allow for the inclusion of various profiles used
in flux transport modeling (e.g., Dikpati & Charbonneau
1999; van Ballegooijen & Choudhuri 1988; Wang et al.
2002b) and measured on the Sun (e.g., Ulrich 2010).

2.1.2. Differential Rotation

Unlike meridional circulation, the solar internal differ-
ential rotation profile is well constrained by helioseismol-
ogy. We use here the helioseismically-calibrated solar-
like parameterization introduced in Charbonneau et al.
(1999):

Ω(r, θ) = Ωc+
Ω(R, θ)− Ωc

2

[
1 + erf

(
r −Rc
δc/2

)]
, (4a)

with Ωc = 2.724 µrad s−1, Rc = 0.7R, and surface rota-
tion

Ω(R, θ) = Ω0

(
1 + a2 cos2 θ + a4 cos4 θ

)
, (4b)

where a2 = −0.1264, a4 = −0.1591, and Ω0 =
2.894 µrad s−1 (see also Snodgrass 1983). The thickness
δc of the transition region between differential and solid
rotation, the tachocline, near the base of the convection
zone, is kept as a free parameter.

2.1.3. Magnetic Diffusivity

In the stably stratified core, the presumed absence of
turbulence suggests a net diffusivity (ηc) given by Ohmic
dissipation, while in the bulk of the convection zone, en-
hanced turbulent dissipation (ηt) of the magnetic field
is expected to dominate. The following parametric pro-
file, given by Dikpati & Charbonneau (1999), allows for
a smooth transition between these two regions:

η(r) = ηc +
ηt
2

[
1 + erf

(
r −Rc
δc/2

)]
, (5)

where Rc takes the same values as in the preceding dif-
ferential rotation profile.

In the surface layer, supergranular convective motions
drive a random walk that disperses magnetic flux, and
can be modeled as a diffusive process (Leighton 1964)
characterized by an effective magnetic diffusivity of order
ηR ' 1012 − 1013 cm2 s−1. This value is used solely in
the SFT part of the model. The overall radial profile
of η(r) consequently includes an implicit step fonction
at r = R. The exact values for ηc, ηt, and ηR, as well
as δc, are virtually impossible to determine from first
principles, such that they must be treated as a unknown
parameter needing a proper calibration.

2.2. The Flux Transport Dynamo Equations

The large-scale axisymmetric magnetic field simulated
in the FTD component of the model can be expressed as

B(r, θ, t) = ∇××× (Aφ(r, θ, t)êφ)︸ ︷︷ ︸
BP=Br êr+Bθ êθ

+Bφ(r, θ, t)êφ , (6)

where BP and Bφêφ are respectively the poloidal and
toroidal vector components of the field. Inserting this
decomposition for B along with Equation (2) for the flow,
into the MHD induction equation (Equation (1)) then
yields the usual two evolutionary equations for the scalar
components Aφ(r, θ, t) and Bφ(r, θ, t):

∂Aφ
∂t

= − 1

$
(uP ·∇)($Aφ) + η

(
∇2 − 1

$2

)
Aφ , (7a)

∂Bφ
∂t

= −$(uP ·∇)

(
Bφ
$

)
+ η

(
∇2 − 1

$2

)
Bφ

−(∇ ···uP)Bφ +
1

$

∂η

∂r

∂($Bφ)

∂r
+$BP ·∇Ω . (7b)

These two equations are linear in Aφ andBφ, but are cou-
pled by the shearing term in Equation (7a) which acts
as a source for Bφ proportional to Aφ. No such source
appears explicitly in Equation (7b). Here the regenera-
tion and amplification of the poloidal field is supplied by
a continuous input from the SFT simulation, providing a
time-evolving surface boundary condition for Aφ which
effectively acts as a source.

2.3. Surface Flux Transport
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Following earlier modeling work on surface magnetic
flux evolution, in particular in the preceding paper of
this series (Paper I), we consider the magnetic field to be
predominantly radial on global scales and we solve only
the r-component of Equation (1), at r = R. This leads
to the usual two-dimensional linear advection-diffusion
equation for the scalar component BR = Br(R, θ, φ, t),

∂BR
∂t

=− 1

R sin θ

∂

∂θ

[
uθ(R, θ)BR sin θ

]
− Ω(R, θ)

∂BR
∂φ

+
ηR
R2

[
1

sin θ

∂

∂θ

(
sin θ

∂BR
∂θ

)
+

1

sin2 θ

∂2BR
∂φ2

]
− BR
τR

+ SBMR(θ, φ, t) , (8)

to which two supplementary terms have been added:
a source term SBMR(θ, φ, t) to account for the discrete
emergence of new surface flux in the form of BMRs, and
a linear sink term −BR/τR to allow for an exponential
decay of the surface field with time. Schrijver et al.
(2002) originally found such a decay on a timescale of
5− 10 years to be necessary to preclude secular drift and
ensure polarity reversal of the polar cap when modeling
surface flux evolution over many successive cycles of dif-
fering amplitudes. This was subsequently justified phys-
ically by Baumann et al. (2006) as the effect of a vertical
turbulent diffusion, or equivalently a convective submer-
gence, on the decay of the dominant dipole mode, two
physical mechanisms that cannot be directly included in
the SFT model. We included this term in Paper I but did
not find it to be required for the SFT results to match
the synoptic magnetogram of cycle 21. We test it again
here, with τR treated as a free parameter.

2.4. Numerical Solution and Coupling

The FTD equations (7) and SFT equation (8) are
solved concurrently, each on a separate two-dimensional
computational grid on which spatial discretization is car-
ried out via the Galerkin finite element method, and im-
plicit temporal discretization through the one-step Θ-
method (see, e.g., Burnett 1987).

The SFT simulation is solved over a regular Carte-
sian grid in (θ, φ) representing the whole solar surface,
with longitudinal periodicity enforced through a padding
of ghost cells. Rigorous flux conservation is also re-
quired since only a small fraction of the emerging mag-
netic flux ultimately builds up the axial dipole observed
at sunspot minima. We minimize numerical discretiza-
tion errors by adopting double precision arithmetics, a
256×128 longitude–latitude grid, and 8000 time steps for
the eight-cycle runs that will be analyzed in this paper
(for more details on numerical errors see Paper I, § 2.4
and figure therein).

The FTD simulation is solved simultaneously over a
regular 128× 96 Cartesian grid in (r,cos θ), from pole to
pole and 0.5 ≤ r/R ≤ 3.0. Below r = 0.5R, the radiative
core is considered perfectly conducting and the Aφ =
Bφ = 0 boundary condition is applied. For r > R, the
absence of flows and electrical currents imposes Bφ = 0
and a potential field solution for Aφ:

(
∇2 − 1

$2

)
Aφ = 0.

The spherical geometry finally constrains Aφ = Bφ = 0
at the poles. The overall scheme is similar that described
in (Charbonneau et al. 2005).

2.4.1. From SFT to FTD

The surface (r = R) boundary condition on Aφ is up-
dated at every FTD time step, via the longitudinal aver-
aging of the SFT solution 〈BR〉φ(θ, t) and integration of
the resulting latitudinal function:

Aφ(R, θ, t) = A0
φ +

R

sin θ

∫
〈BR〉φ(θ, t) sin θdθ , (9)

where A0
φ is set to zero at the poles. This provides the

coupling from the SFT toward the FTD model.

2.4.2. From FTD to SFT: Emergence Function

The coupling from the FTD toward the SFT is the
emergence of BMRs. In view of the considerable com-
plexity of the various processes involved in the formation,
destabilization, buoyant rise, and emergence of deep-
seated magnetic flux tubes (see, e.g., Weber et al. 2011
and review by Fan 2009), we opted here to input emerg-
ing BMRs directly into the SFT component of the model,
based on a semi-empirical emergence function giving, as
a function of the strength of the internal magnetic field,
the probability that the emergence of a BMR will occur.

Calculations of the destabilization and buoyant rise of
magnetic flux tubes carried out in the thin-tube approx-
imation do offer some useful guidance. From the sta-
bility diagrams obtained by Schussler et al. (1994) and
Ferriz-Mas et al. (1994), one can infer the depth, latitude
and magnetic amplitudes at which toroidal flux tubes
are expected to destabilize. According to their results,
and depending on the level of subadiabaticity, instability
growth rates near r/R ' 0.7 remain approximately con-
stant, or show a smooth increase with latitude, from the
equator up to `∗ ' 70◦, and then fall of rapidly to zero in
δ`∗ ' 5◦. A lower threshold of order 104 − 105 G is also
required, on the amplitude of the magnetic field inside
concentrated flux tubes. A crucial missing link is the de-
gree of magnetic field amplification taking place during
the formation of these toroidal flux tubes. Accordingly,
we define this lower limit as B∗ ∈ 101 − 104 G, and treat
it as another free parameter to be calibrated. Modeling
also shows that a certain level of twist is required for the
tube to maintain its coherence during the rise through
the convective envelope (Fan 2009). Accordingly, we in-

troduce the quantity |Bmix| = |Bφ|b |Aφ|a, with expo-
nents in the range b ∈ [0.5, 3.0] and a ∈ [0.0, 2.0], and
use it to build the following quasi-normalized emergence
function:

|FB(θ, t)| = 1

4

(
1 + erf

(
|Bmix| −B∗

δB∗

)) ∣∣∣∣ Bmix

max |Bmix|

∣∣∣∣c
×
((

1− µ`
) |`|

90
+ µ`

)(
1− erf

(
|`| − `∗

δ`∗

))
.

(10)

The first part of Equation 10 sets an emergence cutoff in
Bmix below B∗, as well as a possible saturation (c→ 0) or
linear growth (c → 1) of the probability above B∗. The
second part accounts for the latitudinal dependence of
the instability’s growth rate, which we assume to increase
linearly from µ` ∈ [0, 1] at the equator to 1 near latitude
`∗ ≥ 65◦, followed by a quick drop to zero (cf. Figures 1
and 2 in Ferriz-Mas et al. 1994). The sign of FB(θ, t) is
given by the sign of the input Bφ.
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The emergence process is made inherently non-
deterministic with the following sources of stochasticity:

(i) at every SFT time step, the relative number of
new BMRs to emerge is extracted from a uni-
form random distribution, proportional to the sum∑
θ FB(θ, t) at the corresponding FTD time step,

(ii) the probability of emergence of a BMR at a given
latitude is made proportional to FB(θ, t).

Also, independently from the distribution of FB(θ, t),
and as determined in our analysis of Wang & Sheeley
(1989)’s database entries (see Appendix A of Paper I):

(iii) emergence longitudes are assumed to be random,

(iv) magnetic fluxes Φ are extracted from a log-normal
distribution centered at log Φ0 = 21.3 (log Mx) with
standard deviation σlog Φ = 0.5 (log Mx) (Paper I,
Equation (13)),

(v) magnetic bipole separations δ follow a power law
with flux, with a gaussian dispersion about it (Pa-
per I, Equation (15)),

(vi) magnetic bipole tilts α relative to the equatorial di-
rection follow a linear increase with latitude (Joy’s
law) and a gaussian spread with standard devia-
tion decreasing exponentially with log Φ (Paper I,
Equations (16a) and (16b)).

The input of BMRs in the SFT simulation enter the
source term

SBMR(θ, φ, t) =
∑
i

Bi(θ, φ)δ(t− ti) , (11a)

with δ the Dirac delta. Each new BMRs is placed at
its given position (θi, φi) and time ti, with a gaussian
distribution for each pole:

Bi(θ, φ) = Bi0e
−δ2i+/2σ

2︸ ︷︷ ︸
Bi+(θ,φ)

+−Bi0e−δ
2
i−/2σ

2︸ ︷︷ ︸
Bi−(θ,φ)

, (11b)

where δi+ and δi− are the heliocentric angular distances
from the centres (θi+, φi+) and (θi−, φi−) of the two
poles, respectively, and σ = 4◦ the width of the gaus-
sians.

The preceding steps dictate the relative probability of
given emergences to occur, but the actual number of
BMRs to emerge every time step remains adjustable.
The conversion factor K, between the emergence func-
tion FB(θ, t) and the actual emerged butterfly diagram,
eventually sets the absolute amplitude of the dynamo. It
therefore plays the role of a dynamo number.

These distributions of BMRs emergence, i.e. the SFT
source term, is a most critical aspect of the 2 × 2D BL
dynamo model. In order for it to match the solar dy-
namo behaviors, the next logical step is to carry out a
calibration of all parameters describing the full model,
using observed emergences as a contraint, as detailed in
the following section.

3. MODEL CALIBRATION

The various physical components of the coupled
FTD+SFT model introduced in the preceding section
jointly involve a large number of numerical parameters;
27 to be precise. Nine of these can be fixed confidently
either through observations or theoretical considerations.
Five (rc, Ω0, Ωc, a2, and a4) are the numerical parame-
ters defining the differential rotation profile (see § 2.1.2),
another (m) is the polytropic index characterizing the
stratification within the convection zone, and yet an-
other (n) is used to formulate a flexible surface merid-
ional flow profile but set to 1 to reflect solar observations
(see § 2.1.1). The last two parameters to be held fixed,
δB∗ and δ`∗, control the Alex:sizes of each member of the BMR

injected on the model photosphere shapes of the latitudinal
and magnetic masking used in the emergence function
(see § 2.4.2); experimenting with the model reveals that
within reasonably wide ranges, the exact values chosen
for these parameters have little impact on the global dy-
namo behavior. Consequently, they are fixed at values
0.1B∗ and 5◦ respectively.

This leaves 18 adjustable parameters, which are listed
in Table 1. Eleven pertain to the linear terms in the
model, including the shape of the meridional flow, mag-
netic diffusivity and surface sink (δc, Rb, u0, p, q, v, w,
ηc, ηt, ηR, and τR), and the remaining seven (r∗, b, a, c,
B∗, `∗, and µ`) to the form of the nonlinear emergence
function (§ 2.4.2).

3.1. Validation Against the Miesch & Dikpati 2004
Model

The large number of model parameters listed in Ta-
ble 1 results from the very general forms adopted for
many model ingredients, notably the meridional flow pro-
file and emergence function. This gives the model great
flexibility, in that it includes as a subset a number of pub-
lished models. As an example and a form of validation
exercise, we now reproduce a dynamo solution resembling
to the one presented in Miesch & Dikpati (2014).

Since Miesch & Dikpati (2014)’s model includes a full
two-dimensional representation of the solar surface and
an emergence algorithm similar to ours, direct contact is
allowed between specific features of the two models [ex-
cept for different numerical procedures]. Their [single-
cell] meridional circulation profile (described in Dikpati
2011) and magnetic diffusivity profile (described in Dik-
pati & Gilman 2007) may be closely approached by ours,
provided the parameter values listed in the first column
of Table 1. Similarly, their emergence function is com-
parable to the one we describe in § 2.4.2, with a lat-
itudinal masking approximated by parameters µ` = 0
and `∗ = 45◦ (a low-latitude cutoff conducive to the
production of a solar-like butterfly diagram but hard to
justify from the point of view of stability of thin flux
tubes) and applied to the Bφ component only evaluated
at depth r∗/R ' 0.705. The magnetic masking includes
a lower threshold B∗ of unknown value and apparently
no higher threshold (parameter c) (see first column of Ta-
ble 1). The detailed parametrization of individual emerg-
ing BMR nonetheless differs significantly from ours, in
a generally more deterministic manner. The latitude of
emergence is directly associated with the location of peak
toroidal field, as compare to the probabilistic approach
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Table 1
Parameter values

Symbol Reference Tested Optimal
value interval solution

(C = 0.28) (C ∈ [0.90, 0.95])

δc/R 0.05 [ 0.04 , 0.10 ] 0.08± 0.01

Rb/R 0.69 [ 0.60 , 0.70 ] 0.600± 0.005
0.000

u0 18 c [ 8 , 18 ] 17± 2 m s−1

m (remove) 0.5 [ 0.4 , 2.0 ] 1.5± 0.3
0.2

log p 2.0 [−1.0 , 1.0 ] −0.6± 0.4

q 2.5 d [ 20 , 25 ] 0± 1
0

v 1.0 d [ 20 , 23 ] 0± 1
0

w 3.5 d [ 20 , 25 ] 0± 1
0

log ηc 9 [ 7 , 11 ] 9± 1
2 (cm2 s−1)

log ηt 10.7 [ 11.0 , 13.0 ] 11.8± 0.1 (cm2 s−1)

log ηR 12.48 c [ 12.38 , 12.82 ] 350± 150 (cm2 s−1)

τR
a 32 c [ 7 , 32 ] 8± 4 years

r∗/R 0.705 [ 0.60 , 0.70 ] 0.600± 0.005
0.000

b 1.0 [ 0.5 , 3.0 ] 1.0± 0.1
0.2

a 0.0 [ 0.0 , 2.0 ] 0.0± 0.1
0.0

c 1.0 [ 0.0 , 1.0 ] 1.0± 0.0
0.6

B∗ b 102 [ 101 , 104 ] 2± 0 G

`∗ 45 [ 64 , 90 ] 0.600± 0.005
0.000

µ` 0.0 [ 0.0 , 1.0 ] 0.600± 0.005
0.000

Note. — [INTERVALLES, LOG, UNITES A CORRIGER] Reference
values approximate velocity and diffusivity profiles, and emergence proce-
dure used by Miesch & Dikpati (2014). profiles are the ones used for the
solution shown in Figure 1d. Intervals given for each parameter are those
used for optimizations W21×8-18 and W21×8-11. Final solution is given
after the last W21×8-11 optimization, with following error analysis. Values
in bold were manually fixed prior to this last optimization.
a τR & 32 years is equivalent to removing term −BR/τR in Equation (8).
b Threshold value B∗ unavailable from Miesch & Dikpati (2014).
c As determined in Paper I, where the initial interval were u0 ∈ [5, 30] m s−1,
ηR ∈ [102, 104] km2 s−1, and τR ∈ [21, 25] years. The linear correlation be-
tween u0 and ηR obtained from the surface analysis should still be consid-
ered in [conjunction] with the final results given in the rightmost column.
d As opposed to the optimal intervals obtained in Paper I, where w=8± 24

4 ,

v=2.0± 1.5
1.0, and q=

(
2.8± 2.0

1.1

)
· 21.25(log2 v)2 .

we use. The tilts, separation, sizes and fluxes of the
spot pair seem to be mainly determined by the value
of Bφ and the latitude of emergence, rather than asso-
ciated with independent statistical distributions. [Both
approaches have their weaknesses.]

In order to minimize the differences associated with
stochastic realizations of our emergence procedure, we
limit this exercise to the input of observed emergences.
Following Paper I, we use the comprehensive database of
over 3000 BMRs gathered by Wang & Sheeley (1989) for
cycle 21. By feeding these data into Equations (11a) and
(11b), the 2 × 2D simulation is indirectly forced to run
in a cycle-21-like mode. The remaining model parame-
ters are set to approach Miesch & Dikpati (2014)’s model
(first column of Table 1). We obtain the two-cycles solu-
tion presented in Figure 1(a), for the synoptic evolution
of Bφ at the base of the convection zone. This solu-
tions resembles Miesch & Dikpati (2014)’s result in that
it presents a strong mid-high-latitude poleward branch,

as well as a weaker low-latitude equatorial branch.
Applying the appropriate latitudinal and magnetic

mask, we obtain the emergence function, or equivalently
the probabilistic distribution of emergences, presented in
Figure 1(b). Unfortunately, this result does not match
solar observation in the sense of producing the butterfly
diagram of emergences. We now seek to better match the
solar dynamo behaviors by adjusting model and masking
parameters in a rigorous way.

3.2. Numerical Optimization

We are now facing the monumental task which con-
sists in optimizing the 18 parameters listed in Table 1 so
that the resulting magnetic field evolution most closely
resembles solar observations.

The first choice to be made is the goodness-of-fit mea-
sure to be used to drive such optimization. We opted to
use a single fitness measure, namely the value of the cor-
relation coefficient C between the synoptic distribution of
synthetic and observed emergences of BMRs. This pre-
supposes that the magnetic flux tubes producing BMRs
upon emergence through the photosphere rise radially
through the convection zone, on a timescale very much
shorter than the cycle period, [comparable with the used
numerical time steps]. Models based on the thin flux
tube approximation support this idea, at least for the
more strongly magnetized flux tube presumably produc-
ing the larger BMRs (see, e.g., Fan 2009, and references
therein).

Next we must select a suitable observational dataset
against which to optimize the model.

Following Paper I, we use the comprehensive database
of over 3000 BMRs gathered by Wang & Sheeley (1989)
for cycle 21. By feeding these data into Equations (11a)
and (11b), the 2 × 2D simulation is indirectly forced to
run in a cycle-21-like mode. In order to minimize any in-
fluence of the initial condition (solar minimum-like dipo-
lar configuration, as introduced in Paper I), we generate
a sequence of eight replications of the cycle 21 database
(hereafter W21×8), by sequentially inverting the lati-
tudes of emergence from one replication to the next, and
use the output corresponding to the last two cycles to
compute the correlation coefficient.

We perform the numerical optimization of C using the
genetic algorithm-based optimizer PIKAIA 1.2c0 (Char-
bonneau & Knapp 1995; Charbonneau 2002). Genetic
algorithms allow for an efficient and adaptive exploration
of the parameter space, and are thus quite robust at han-
dling global optimization problems. As described in Pa-
per I, they also allow for a quasi-Monte Carlo sampling
of the parameter space about the current optimum so-
lution, thus helping to construct error estimates on op-
timal parameter values. In the present context PIKAIA
is operating in a 18-dimensional parameter space (viz.
Table 1), with the fitness measure given by the correla-
tion C. As numerical optimization algorithms, genetic
algorithm (GA) tend to be computationally expensive,
as the number of model evaluations is equal to the pop-
ulation size times the number of generational iterations.
In most model fitting tasks reported upon in what fol-
lows, a population size of 96 trial solutions evolving over

c0 http://www.hao.ucar.edu/modeling/pikaia/pikaia.php
(March 2015)
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Figure 1. [FIGURES A METTRE A JOUR] Left: Time-latitude contour plots of the toroidal magnetic field component Bφ(r∗, θ, t),
averaged between r∗/R = 0.68 and 0.70, for a) a reference solution run over two replications of solar cycle 21, c) an optimal, but unacceptable,
solution (C = 0.86) found within the limits imposed by the surface optimization of Paper I, e) an example of an acceptable solution with
C = 0.90, and g) an optimal solution (Cmax = 0.95). i) Density plot of observed BMRs, extracted from Wang & Sheeley (1989)’s database,
where all emergences in a given hemisphere and cycle have been attributed the same polarity. Right: b,d,f,h) Time-latitude contour plots of
the emergence function FB(θ, t) associated with each of the solutions presented at the left, with corresponding linear correlation coefficients.
j) Smoothed version of the density plot presented at the left. All diagrams show the last quarter of simulations W21×8 (last two repetitions
of cycle 21), which was used for optimization. Time, given in years, starts at the beginning of the eight-cycles runs. Vertical dashed lines
indicate the times of activity minima.

500 generations was found to be sufficient to reliably en-
sure proper convergence of all model parameters. This
adds up to 48000 model fitness evaluations per optimiza-
tion run. Calculating the fitness of a single trial solu-
tion (18-parameter vector) implies running the SFT and
FTD simulations in parallel, with appropriate coupling
through the surface boundary condition, and finally eval-
uating C. For our working spatial mesh and time step-
ping this requires about twenty minutes on a single-core
modern CPU, adding up to 667 core-days for a typical
optimization run. However, this sequence of operations
is applied independently to each member of the popu-
lation, and so can easily be carried out in parallel (see,
e.g., Metcalfe & Charbonneau 2003). With the only in-
formation returned by each evaluation being the fitness,
near-perfect parallelization can be achieved, by assign-
ing one core per population member, thus bringing the
wall-clock time down to a few days.

3.3. Choosing Parameter Ranges

The intervals explored for each parameter (second col-
umn of Table 1) are chosen to be physically meaningful
and computationally stable.

[...]
[In particular, parameters u0 and ηR are restricted to

the intervals found in Paper I to better reproduce surface
synoptic magnetograms. Parameters q, v, and w are left
free to vary in their full original intervals despite the
preceding calibration.]

For masking parameters, we use values within ranges
allowed by instability diagrams [REF], as mentioned ear-
lier, which means excluding the `∗ = 45◦ value used by
Miesch & Dikpati (2014).

[...]

3.4. Optimal Solution for Cycle 21
Paul: [Describe optimal solutions...]
Alex: [J’attendrais plutot la fin de la section...]

The first sequence of optimizations are run with all 18
unconstrained parameters allowed to vary freely in the in-
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Figure 2. [TRY LOG SCALE, ADD W21×8-18 CAPTIONS IN
THE FIGURES, CHANGE PARAMETERS ORDER: r∗, b, a, c,
B∗, `∗, and µ`.] Fitness C as a function of emergence parameters,
for each of the 43200 solutions obtained from three independent op-
timizations of the W21×8-18 set. On each plot, the thick horizontal
line indicates the interval where C ≥ 0.950, and the thick vertical
line the parameter value where true maximum fitness C = 0.955
is reached. Thin vertical blue lines indicate the parameter values
where fitness reaches C = 0.90, such that any solution above the
horizontal blue line is considered acceptable.

tervals listed in Table 1, hence called W21×8-18. We first
analyse the model’s behavior relative to the parameters
involved in the very definition of the emergence function
FB(θ, t) (Equation (10)). Figure 2 illustrates the value of
the goodness-of-fit C as a function of emergence parame-
ters r∗, b, a, c, B∗, `∗, and µ` for a set of 43200 solutions
obtained from three independent optimizations (differ-
ent seed populations), 200 generations each, 72 members
per generation. In all three optimizations, the fitness
reaches the same optimal value Cmax = 0.95, surrounded
by a wide variety of sub-optimal solutions and of unac-
ceptable ones.

Clearly, all seven parameters presented are not equally
constrained by the fitting procedure. By looking at all
solutions standing above the C ≥ 0.950 (thick black)
line, we get a first estimate of the relative restriction
applied on each parameter. For instance, parameters r∗,
b, a, and B∗ appear fairly well constrained to a limited
interval within the original boundaries, while parameters
c, `∗, and µ` show wider valid regions.

In order to build meaningful [strongly motivated] error
estimates for each parameter, we must assess the phys-
ical limit of validity of the optimization criterion. In
such a complex modeling problem, the optimal solution is
only as physically meaningful as the goodness-of-fit mea-
sure being maximized by the GA. Our adopted fitness
measure is physically motivated, but nonetheless retains
some level of arbitrariness (e.g., ...). Clearly, there must
exist a value of C above which solutions are physically
acceptable, even if not strictly optimal. An example of
such a solution, with C = 0.90, is presented in Figures 1e
and 1f. The butterfly shape in this solution is still
clearly visible, though a second tail is starting to build
towards the high latitudes. [...] These differences appear
significant enough to understand that such solution is
not as good as the optimal one, but still at the limit of
acceptability in terms of observed global features. The
horizontal blue lines on Figure 2 delimit the solutions
that are characterized by a criterion C ≥ 0.90. Only a
few [...]% of all the solutions stand above this line, aris-
ing from various combinations of parameters inside the
corresponding intervals (as delineated by the thin blue
lines on the figure).

Before going further into the parameters analysis, we
now opt to get rid of the variability associated with the
definition of the empirical emergence function (Equa-
tion (10)), and pick up definitive values, within the in-
terval of acceptability, for the parameters involved. The
inferred depth for the generation of flux instabilities is
thus set to its optimal interval r∗/R = 0.70 ± 0.02, by
averaging the magnetic field values between r/R = 0.68
and 0.72. For simplicity, the relative contribution to
Bmix of the poloidal field is set to zero (a = 0), while
we round the optimal exponent of the toroidal contri-
bution to b = 1.5. The lower threshold, above which
this diffuse toroidal field is assumed to be able to gen-
erate instabilities, is set to its highest acceptable value:
B∗ = 102G. The emergence function FB remains pro-
portional to Bmix, with c = 1.0, rather than saturating
above B∗. The highest latitude of emergence is fixed to
`∗ = 70◦ (sin `∗ = 0.94), in accordance with instability
diagrams by Ferriz-Mas et al. (1994), and the equatorial
intercept µ` is set to 1.0, such that no latitudinal filter is
applied below `∗ = 70◦, i.e. the probability of emergence
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Figure 3. [ADD W21×8-11 CAPTIONS IN THE FIGURES] Same as Figure 2, but for the eleven physical model parameters, and three
independent optimizations of the W21×8-11 set.

is only dependent on the value of Bmix at these latitudes.
The final emergence function (i.e. emergence prob-

ability) can now be mapped as a function of latitude
and toroidal field amplitude, to form a synthetic “stabil-
ity” diagram similar to the one presented in Ferriz-Mas
et al. (1994) (Figure ??). [FIG: SYNTHETIC STABIL-
ITY DIAGRAM]

That set, we carry out a new series of three optimiza-
tions, hereafter called W21×8-11, with only the 11 phys-
ical model parameters (δc, Rb, u0, p, q, v, w, ηc, ηt, ηR,
and τR) left to vary freely in their prescribed intervals.
The corresponding 43200 solutions are presented on Fig-
ure 3 as a function of each parameter values. Again, the
optimal fitness reaches Cmax = 0.95, and all solutions

characterized by a C ≥ 0.90 are considered acceptable.
The corresponding interval for each parameter is used to
define final error bars about the optimal value, as listed
in the last column of Table 1. As mentioned earlier, var-
ious combinations of parameters within these accepted
intervals lead to acceptable solutions, but not all. These
results should therefore be used in conjunction with an
understanding of the shape of the parameter-space land-
scape in the optimal region. Among the 55 possible two-
dimensional cuts of the domain, ten are presented on
Figure ??. [FIG OF CORRELATIONS BETWEEN PA-
RAMETERS ?] Some parameters present specific regions
of validity, while others show nearly filled rectangles in-
dicating that all combinations are valide within the final



2× 2D Babcock–Leighton dynamo. II. Dynamo 11

Figure 4. Top panel: evolution of the total magnetic energy con-
tent inside the simulated Sun, for ' 8-[half]-cycles sample realiza-
tions of a 2 × 2D dynamo run in the quasi-linear regime at four
different dynamo numbers K (horizontal dashed line indicates the
initial energy level). Middle panel: long term growth rate of the
magnetic energy as a function of dynamo number K, ten indepen-
dent realizations per value of K, both in the fully stochastic (thick
grey) and partially stochastic (thin black) regimes. Bottom panel:
similar as the preceding panel, but for the oscillating frequency of
the detrended magnetic energy.

interval.

4. A SOLAR-LIKE DYNAMO SOLUTION

Now that the physical model and masking parameters
have been properly calibrated to ensure that function
FB(θ, t) reproduces the observed solar butterfly diagram
of surface emergences, we may use it as the statisti-
cal emergence function it was meant to be, i.e. feed-
ing the missing surface source term SBMR(θ, φ, t) (Equa-
tions (11a) and (11b)) with new emergences generated
from deep seated toroidal flux and thus closing the loop
for a self-consistent 2× 2D dynamo.

In all following cases, we use as initial condition the
simulation state at the end of the previously calibrated
W21×8 sequences. This ensures that the new simula-
tions start up from an adequate state not so far from a
solar activity minimum.

4.1. Quasi-Linear Regime

The quasi-linearity in B [...] of the FTD equations (7a)
and (7b) and SFT equation (8) is expected to generate
either growing or decaying dynamos. As in the well-
studied mean-field framework where this behavior is con-
trolled by the level of alpha-effect Alex: [Je n’utilise pas le

symbole α car il est utilise dans l’article pour les tilts] provided,
it is here the conversion factor between FB(θ, t) and the
surface butterfly diagram, i.e. the absolute number of
emerging BMRs, that plays the role of such a “dynamo
number”. The top panel of Figure 4 illustrates the tem-

poral evolution of the total magnetic energy content in-
side the simulated Sun, for ' 8-[half]-cycles sample re-
alizations of a 2 × 2D dynamo run in the quasi-linear
regime at four different dynamo numbers K. From these
few samples, the transition between decaying (small K)
and ever growing (large K) solutions seems sharp, but
a more complete analysis reveals otherwise. The middle
panel of Figure 4 shows how the growth rate of the mag-
netic energy varies no so regularly with K. Error bars on
the plot illustrate the intervals of growth rates obtained
at each given K, through ten different realizations of the
statistical emergence procedure described above, in both
fully stochastic (RAPPELER LES SOURCES sources (i)
to (vi)) and partially stochastic regimes (RAPPELER
LES SOURCES sources (i) to (iv) only). This reveals
the rather high level of stochasticity [non-linearity] in-
troduced by these random processes, a expected charac-
teristic of BL dynamo models [REF], in particular the
distributions in separations (v) and tilts (vi) of emerged
BMRs. The consequence is that bifurcation occurs over
some interval, rather than on a well-defined point, with
different realizations of the dynamo in K ' [0.4, 0.6] re-
sulting in diverging results. The fact that this transition
region lies near one half of the reference value K = 1.0
(by definition required through the calibration of the pre-
ceding section to reproduced the observed butterfly dia-
gram for cycle 21) suggests that the dynamo should run
in a strongly supercritical regime, with some non-linear
feedback operating. This aspect will be discussed in the
following subsection.

As another indicator of the model behavior, average cy-
cle frequencies (periods) of the corresponding solutions,
are also presented in the bottom panel of Figure 4, again
with error bars showing the intervals of frequencies ob-
tained for a given K. Considering the imprecision at
measuring cycle periods for quickly decaying dynamos
(low K), no strong trend appears from this plot. This
suggests how robust is the model at producing oscilla-
tions on a 10− 11 years timescale, in spite of the strong
variability associated with stochastic processes.

4.2. Tilt-Quenching and Reference Dynamo Solution[s]

To overcome the problem of linearity, but without deal-
ing explicitly with dynamical feedback, some ad hoc
quenching may be added to the dynamo source terms.
As would the well-known mean-field alpha-quenching do,
we apply here a tilt-quenching relative to the amplitude
of the contributing underlying toroidal field Bφ(r∗, θ, t),
in order to mimic the inertia of strong rising flux tubes
against the twisting imparted by the Coriolis force. The
quenched tilt is written

αq =
α

1 + (Bφ/Bq)2
, (12)

with Bq some ajustable critical magnetic field ampli-
tude. In the context of the present dynamo model, we
find a tilt-quenching with Bq ' 500 G, at dynamo num-
ber K = 0.75, to be adequate to generate stable dy-
namos, comparable to solar amplitudes for the butterfly
density plot and the monthly number of newly-emerged
BMRs (or “pseudo-SSN”). Alex: [Describe how it differs from

the SSN...] The value K = 0.75 is still behind the K = 1.0
that was used in the calibration process. This could
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Figure 5. [NUMEROTER !!] From top to bottom: latitude–radius snapshots of the toroidal magnetic field between r/R = 0.5 and 1.0, at
nine different phases of one of the following half dynamo cycles (color table saturated above 1.5 kG), with dashed lines indicating the depth
of the tachocline (r/R = 0.7); time–latitude contour plot of the toroidal magnetic field averaged in the depth range 0.68 ≤ r∗/R ≤ 0.72,
for a ' 32-[half-]cycles (more than 300 years) realization of a tilt-quenched 2× 2D dynamo, run at supercritical dynamo number K = 0.75;
corresponding temporal evolution of the total magnetic energy content inside the simulated Sun (0.5 ≥ r/R ≥ 1.0), with horizontal dashed
line indicating the initial energy level; time–latitude density plot (butterfly diagram) of the number of BMRs emerged at the surface, as
dictated by the emergence function FB , in turn based on the preceding toroidal field amplitude; corresponding monthly number of newly
emerged BMRs (pseudo-SSN), as a function of time; time–latitude contour plot of the surface radial magnetic field (color scale saturated
above 27 G); and corresponding temporal evolution of the surface axial dipole moment. Vertical dotted lines indicate the times of activity
minima as defined by the minimum values of the pseudo-SSN.
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suggest an inappropriate absolute amplitude for the dy-
namo, but these considerations are of minimal impor-
tance in the present context where we seek only the gen-
eral behavior of the dynamo. A calibration of this nature
will likely be required, however, in [the] following paper
of this series where we plan to study the predictive ca-
pability of the model for forecasting solar activity.

Figure 5 illustrates the evolution of the deep toroidal
field, total magnetic energy, BMRs density, pseudo-SSN,
surface radial field, and axial dipole moment for a sam-
ple dynamo solution run over more than 300 years and
roughly 32 synthetic solar [half-]cycles. The temporal
series illustrate solar-like behaviors in many aspects, in
particular cycle periods varying between 8.5 and 12 years,
cycle amplitude variations of a factor three to four in the
pseudo-SSN, and long term variability such as some pro-
gressive increase of cycle amplitude after the occurence
of a weak cycle or the triggering of small cycles after very
strong ones. Some significant hemispheric asymmetries
are also noticeable on the various plots, but still with a
sharp synchronization which indicates a strong coupling
between hemispheres. On the other hand, monthly fluc-
tuations of the pseudo-SSN appear weaker than those of
the Sun, revealing some deficiencies in the stochasticity
of the flux emergence process. The amplitude of the os-
cillating surface axial dipole moment also peaks at too
high values (' 10 G) as compared with the Sun (' 4 G
at the end of cycle 21). This is due to either a surplus of
emerged flux induced by too high a value for K or most
probably to the use of a suboptimal profile for the surface
meridional circulation leading too extra flux accumula-
tion near the poles. The peak amplitude of the radial
surface field, systematically located near the poles at ac-
tivity minima, is in fact an order of magnitude stronger
than the observed one.

Also shown in Figure 5 is a series of radius–latitude
cuts of the toroidal field component, at nine different
phases of a synthetic sunspot cycle. The toroidal field
reverses amplitude after ' 9 years, which is slightly
shorter than the average observed sunspot cycle. The
peak toroidal field amplitude near r/R = 0.7 is reached
at mid-cycle, near maximum sunspot activity. Below
the tachocline, the magnetic field from three to four
successive cycles piles up to thinner and thinner lay-
ers as it reaches the depth r/R = 0.6. This is pre-
cisely what is to be expected from the average diffusivity
η ' 5× 1010 cm2 s−1 used in 0.6 ≥ r/R ≥ 0.7, which cor-
responds to a diffusive time-scale of ' 31 years. Below
r/R = 0.6, the magnetic diffusivity set to 109 cm2 s−1,
leads to a diffusive time-scale & 1000 years. Therefore,
while the meridional circulation acts on a time-scale com-
mensurate with the sunspot cycle period, the deep diffu-
sive processes act on much longer terms. The remnants
from old cycles appear to be able to feed back into the
dynamo system and induce long term memory.

Figure 6 shows some long term interrelations between
cycle properties, extracted from the preceding dynamo
solution. The middle left panel in the figure illustrates
the strong linear correlation (0.89) obtained between cy-
cle (n) amplitude (maximum pseudo-SSN) and maxi-
mum axial dipole moment at the end of the preceding
cycle (n − 1). This behavior is to be expected from
the quasi-linear transport and conversion of the poloidal
magnetic energy accumulated at cycle minimum into a

Figure 6. Amplitude (maximum pseudo-SSN) of cycle n as a
function of maximum axial dipole moment at the end of cycle
n − 3 (top left panel), of cycle n − 2 (top right panel), of cycle
n − 1 (middle left panel), and of cycle n (middle right panel), for
the 32-[half-]cycles run presented in Figure 5. Bottom left panel:
cycle amplitude as compared to the period of the same cycle. Bot-
tom right panel: cycle amplitude calculated independently in each
hemisphere and plotted against one another. In each panel is also
given the corresponding Pearson’s linear coefficient.

deep toroidal component peaking at cycle maximum and
generating a proportional number of surface emergences.
As shown in the middle right panel of the figure, the re-
verse correlation is not true, however, as the stochastic
properties of emerged BMRs during a given cycle n pre-
vent a direct determination of the axial dipole amplitude
at the end of the same cycle (n). Also, even if long term
memory does exist in the system, the bad correlations
obtained between amplitude of cycle n and axial dipole
at the end of cycles n − 2 (top right panel) and cycles
n − 3 (top left panel) show how these processes are not
completely deterministic. All the preceding results corre-
spond precisely to the observed solar cycle characteristics
(see, e.g., Muñoz-Jaramillo et al. 2013, Figure 5).

Also shown in the bottom left panel of Figure 6 is an
absence of net correlation between cycle amplitude and
period. This slightly differs from a solar behavior as ob-
servations show that strong cycles are generally shorter
than weak ones. Finally, the bottom right panel illus-
trates how the two hemisphere are correlated in terms of
cycle amplitude.

4.3. Long Term Variability

Figure 7 illustrates the Fourier transform of the energy
and “signed” pseudo-SSN temporal evolutions, averaged
over ten independent realizations of a ' 96-[half]-cycles
tilt-quenched 2 × 2D dynamo, similar to the preceding
' 32-[half]-cycles reference solution. The top two pan-
els, obtained in the fully stochastic regime, show more
variability than the bottom panels for which the simula-
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Figure 7. Fourier transforms of (left panels) the magnetic energy and (right panels) “signed” pseudo-SSN temporal evolution, averaged
over ten independent realizations of a ' 96-[half-]cycles tilt-quenched 2 × 2D dynamo simulation, in the fully stochastic (top panels) and
partially stochastic (bottom panels) regime. Continuous blue curves illustrate the gaussian best fit to each spectrum.

tions were run with only part of the stochastic emergence
processes. Both in the energy and pseudo-SSN temporal
Fourier transforms, the width of the best-fit Gaussian in
the fully stochastic case is about twice that in the par-
tially stochastic one. The full magnetic cycle period, as
revealed by the signed pseudo-SSN temporal spectrum,
peaks at a period of 20.8 ± 0.6 years (at the two sigma
level) in the fully stochastic case and 20.9 ± 0.3 years
in the partially stochastic case. The half-cycle period
revealed by the oscillating magnetic energy peaks at
10.4 ± 0.2 years in the first case and 10.5 ± 0.1 years
in the second one. These results indicate that despite
the strong variability in cycle amplitude obtained in the
simulations, the period is very robust, more than in the
real Sun, even with the fully stochastic emergence pro-
cedure. The low-frequency ends of the spectra are also
of interest, nearly an order of magnitude stronger in the
fully stochastic case, for both the energy and the pseudo-
SSN. In the fully stochastic case, the low-frequencies of
the temporal spectrum for the energy harbor amplitudes
comparable with the main oscillation amplitude, which
confirm the long term memory embedded in the deep-
seated magnetic structures. The effect is much less ap-
parent at the surface as revealed by the temporal spec-
trum of the pseudo-SSN.

Figure 8 shows three different realizations, at the same
dynamo number and quenching Bq...

From a set of 30 realizations similar to the preceding
ones, three die before reaching the 32th cycle and seven
before reaching the 96th cycle. The probability of a dy-
namo to remain active after a certain number of cycles
thus decreases with time in a manner that could be com-
patible with a stochastically-driven asymptotic tendency.
Simulation of tens of independent realizations over thou-
sands of cycles would be required to evaluate the actual
shape of this decreasing curve.

5. DISCUSSION

The dynamo solutions presented above result from the
use of a model calibrated to cycle 21 emergence data
through an optimization process operating on a specific
goodness-of-fit measure and in a bounded search space.
These bounds were set (loosely) on observational and/or
physical grounds, but obviouly pose a restriction on the

range of solutions accessible to the optimization. Could
we do do better than the optimal solution listed in Table
1? We have carried out a number of alternate optimiza-
tion runs in order to answer this question, as described
in what follows.

An 18-parameter optimization similar that described
in §?? but using much broader ranges of parameter does
manage to return a best-fit solution with C = 0.97, sig-
nificantly better than the original 18-parameter best-fit
solution, which has C = 0.95. This nominally superior
fit, however, is achieved through of a low-latitude cut-
off for the emergence function, down to `∗ = 30◦, which
is clearly incompatible with instability diagrams for thin
toroidal flux ropes.

We also carried out optimization runs in which the
parameters defining the latitudinal dependence of the
meridional flow (via Equations (??)—(??) are con-
strained to a narrower range of acceptable values, cor-
responding to the best-fit surface flux transport solution
obtained in paper I. The best-fit solution from such an
optimization reach only C ' 0.86; while the best-fit mea-
sures used in paper I is not the same as here, this is a
significant difference. More worrisome is the fact that the
surface meridional flow for the best-fit solution of Table
1, plotted on Figure 9, provides a rather poor fit to the
Doppler observations of Ulrich (2010), which at low lat-
itudes lie outside the range of acceptable solutions from
the optimizatin run. The best-fit profile of paper I did
much better in this respect (its range of acceptable solu-
tion indicated by the two dotted lines on Figure 9).

This suggests some incompatibility between the opti-
mization of the SFT model relative to surface magne-
tograms and the optimization of the coupled SFT–FTD
model relative to the shape of the butterfly diagram. The
W21×8-11 optimal solution of §?? still lies within the
surface-optimized ranges for the maximum meridional
flow amplitude u0, the surface diffusivity ηR, and the ex-
ponential decay time τR, while the parameters q, v and w
(see Equation (??)), setting the latitudinal dependence
of the stream function, do not. Interestingly, despite sig-
nificant variations in latitudinal profiles all acceptable
solutions (C ≥ 0.9) have a peak equatorward meridional
flow speed of m s−1 near the base of the circulation cell;
this is consistent with the deep meridional flow setting
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Figure 8. Time–latitude density plot (butterfly diagram) and corresponding monthly number (pseudo-SSN) of newly emerged BMRs, for
our reference dynamo solution (same as middle panels of Figure 5) and two other realizations of a ' 32-[half-]cycles tilt-quenched 2× 2D
dynamo simulation.

the cycle period in these models, which leads to a very
tight constraint when fitting the butterfly diagram.

The analytic form adopted here for the meridional flow
stream function is of course extremely simple: steady and
separable in r and θ, which enforces the same latitudunal
dependence at all depths, here defining a single flow cell
per meridional quadrant. What our butterfly diagram-
based goodness-of-fit measure thus constrains is primar-
ily the flow at the base of the convection zone. The
misfit with the results from purely surface optimization
suggests that the internal flow is more complex than the
single-cell profile used here. Indeed, the recent helio-
seismic inversions of Zhao et al. and Schad et al. (2013)
suggest multiple cells in radius, which is known to have a
large impact on the operation fo flux transport dynamos
(e.g., Jouve & Brun 2007). The dynamo modelling work

of Hazra et al. (2014) indicates, however, that provided
additional transport processes such as turbulent diffu-
sion and/or pumping can couple the surface and base of
the convection zone, solar-like butterfly diagrams can be
produced (see also Jiang et al. 2013).

Another physical inconsistency of the W21×8-11 op-
timal solution is the meridional flow’s deep penetration
below the base of the convection zone. This is known
to be conducive to the production of solar-like butterfly
diagrams (e.g., Nandy & Choudhuri 2002), but unlikely
on dynamical grounds (Gilman & Miesch 2004), and del-
icate to reconcile with observed solar light element abun-
dances (Charbonneau 2007). Finally, both observations
(Ulrich 2010) and numerical simulations (Passos et al.
2012) suggest that the meridional flow may undergo sys-
tematic temporal variations in the course of the cycle,
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Figure 9. Observed and modeled latitudinal profiles of surface
meridional flow. The gray band indicates the range of acceptable
profiles in the W21-11 optimal solution of §??, while the two dot-
ted line indicate the acceptable range obtained in paper I by fitting
synoptic magnetograms. The solid dots are the Doppler measure-
ments of Ulrich (2010) for cycles 22 and 23.

presumably driven by the cycling magnetic field. Such
effects are a priori excluded from the meridional flow
parametrization used here.

All these incompatibilities and inconsistencies most
likely reflect, at least in part, the specific choices made
for the parametrization of the meridional flow profile.
An interesting possibility would be to use our genetic
algorithm-based fitting technique to invert a spatially-
resolved discretisation the internal meridional flow from
the sunspot butterfly diagram. Such a method, dubbed
genetic forward modelling, has already been used succes-
fully to infer the rotational profile of the deep solar core
from low-` rotational frequency splittings (see Charbon-
neau et al. 1998).

Genetic forward modelling could also be used to in-
vert stability diagrams for the emergence of BMRs. Our
best-fit emergence function has a = 0 in Equation (??),
implying that the emergence probability is primarily set
by the strength of the toroidal magnetic component, in
agreement with the idea that sunspots form from axisym-
metric toroidal magnetic flux ropes located at of near
the base of the convection zone. However, our eruption
threshold of 200 Gauss is rather low, even if some level of
amplification is expected in forming a compact flux rope
from a diffuse magnetic field. There is clearly room for
improvement in this model component.

Additional refs:
Charbonneau, P., Tomczyk, S., Schou, J., Thompson,

M.J. 1998, ApJ, 496, 1015
Charbonneau, P. 2007, AdvSpRes, 39, 1661
Gilman, P.A., & Miesch, M.S. 2004, ApJ, 611, 568
Hazra, G., Karak, B.B., Choudhuri, A.R. 2014, ApJ,

782, 93
Jiang, J., Cameron, R.H., Schmitt, D., & Isik, E. 2013,

A&A, 553, 128
Jouve, L., & Brun, A.S. 2007, A&A, 474, 238
Nandy, D., & Choudhuri, A.R. 2002, Sci, 296, 1671
Passos, D., Charbonneau, P., & Beaudoin, P. 2012,

SolP, 279, 1
Schad, A., Timmer, J., & Roth, M. 2013, ApJL 778,

L38
Zhao, J., Bogart, R.S., Kosovichev, A.G., Duvall,

T.L.Jr., & Hartlep, T., 2013 ApJL 774, L29
Model uses single-cell meridional flow; recent helioseis-

mic inversions suggest more complicated pattern. Best-
fit model requires latitudinal profile differing from those
obtained in paper I by fitting synoptic magnetograms
only with surface flux transport model (FIG: and explain
more).

Other potentially non-solar-like feature: deply pene-
trating meridional flow.

These problems are not critical, as they arise primarily
from specific choices made for the analytical functional
form adopted to describe the meridional flow. Confident
that these models ingredients can be modified to yield
comparably good (and perhaps better) representations
of the solar cycle, while remaining in better agreement
with helioseismic inferences regarding flos in the solar
interior. A GA-based inversion of the internal meridional
flow profile based on matching synoptic magnetograms
and constrained by surface flow measurements could even
be contemplated.

[Recall the parameters optimal values...]

[What happens if we change those values...]

[What is the physical meaning of the optimal solu-
tions...]

[How does it compare with preceding models...]

[Low amplitude for Bphi...]

[Does the τ corresponds to analysis by Baumann2006
? τ ∼ 5 years corresponds to decay of dipole mode
(n = 0,l = 1) for volume diffusion coefficient of
100 km2 s−1, which corresponds to values obtained for
the turbulent diffusivity in the convection zone.]

...

6. CONCLUSIONS

In this paper we have described a new solar cycle model
based on the BL mechanism of poloidal field regenera-
tion through the surface decay of active regions. This
new model is based on the coupling of a conventional
latitude–longitude simulation of surface magnetic flux
evolution (as described in Paper I), coupled to an equally
conventional axisymmetric kinematic flux transport dy-
namo model defined in a meridional plane (closely fol-
lowing Charbonneau et al. 2005). The novelty lies in the
coupling between these to model components: the sur-
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face flux evolution simulation provides the source term
of the internal dynamo through the surface boundary
condition; while the internal dynamo provides the mag-
netic flux emergence, in the form of pseudo-sunspot bipo-
lar pairs, that act as a source in the surface magnetic
flux simulation. The properties of these synthetic bipo-
lar pairs —flux distribution, component separation, tilt
angles, etc— are tailored to reflect observed statistical
properties of real sunspots and active regions, as docu-
mented in Paper I (Appendix).

The other key aspect of the coupling is the emergence
function, which controls the probability of bipole emer-
gence as a function of the spatiotemporal distribution of
the deep-seated magnetic field produced by the dynamo
component of the coupled model. The emergence prob-
ability is assumed to scale linearly with this emergence
function, with the proportionality constant acting as the
dynamo number for the full coupled model.

The coupled model involves a number of parameters
and functionals that cannot be set from first principle,
and thus must be optimized to provide the best pos-
sible fit to solar observations. We opted to carry out
this optimization task through a GA-based maximiza-
tion of the fit between the spatiotemporal distribution of
sunspot emergences (butterfly diagram) as produced by
the model, and the cycle 21 emergence data of Wang &
Sheeley (1989). This scheme returns not only a globally
optimal solution, but also Monte Carlo-like error esti-
mates on best-fit parameters values.

The magnetic cycles generated by this dynamo model
are intrinsically non-steady, due primarily to the large
statistical scatter about the mean East–West tilt pattern
of BMRs (as embodied in Joy’s Law). This is expected,
since the axial dipole component of the bipolar pair is
determined by this tilt. As a consequence, a critical dy-
namo number can only be defined in a statistical sense.

Even though the amplitude of successive simulated cy-
cles are strongly affected by the specific stochastic re-
alization of flux, separation and tilts in the course of a
given cycle, even in the linear regime the cycle period is
largely insensitive to the value of the dynamo number. A
quenching parametrization of the mean tilt angle based
on the strength of the internal magnetic field readily sta-
bilize the mean cycle amplitude, but large fluctuation
about this mean nonetheless persist. Such a quenching
is supported by both observational analyses (see Dasi-
Espuig et al. 2010 Alex: [ correlations =¿ lien amplitude cycle

vs tilt, mais pas directement] ) and modeling of the buoyant
rise of thin magnetic flux tubes (see Fan 2009, § 5.1.2,
and references therein).

One consequence of tilt quenching is that a very high
amplitude cycle tend to be followed by a lower-than-
average cycle. Alex: [Je ne dirais pas nécessairement ça... Un

cycle de forte amplitude est aussi simplement difficile à renverser,

ce qui conduit naturellement à un cycle subséquent plus faible...]

Very low amplitude cycles can also be produced by un-
favorable emergence patterns, which then lead to persis-
tently low amplitudes in subsequent cycles, with slow re-
covery to normal amplitude values. Despite these strong
fluctuations in cycle amplitudes, the magnetic cycle is
characterized by good hemispheric coupling, in terms of
both hemispheric cycle amplitude and timing of hemi-
spheric minima/maxima.

As a descriptive representation of the observed solar

cycle, the model reproduces a number of well-known fea-
tures. The dipole peaks at or slightly before the time of
pseudo-sunspot cycle minimum, and its amplitude shows
no correlation with the maximum (synthetic) [pseudo]-
sunspot number of the ending cycle. This is a direct
consequence of the strong stochasticity introduced by the
realization of tilt patterns throughout the cycle, which is
the primary source of cycle amplitude fluctuations. How-
ever, the model reproduces the observed positive correla-
tion between dipole strength at cycle minimum and the
amplitude of the subsequent pseudo-sunspot cycle. This
indicates that, as in the real Sun, the dipole moment
generated in the model is a good precursor of cycle am-
plitude.

Room for improvement certainly remains. The model
fails to reproduce the observed moderate anticorrelation
between cycle amplitude and duration, producing in-
stead a very weak positive correlation between these two
quantities. While a few extant kinematic flux transport
dynamo models do better in this respect (e.g., Karak
& Choudhuri 2011) Alex: [’The Waldmeier effect and the flux

transport solar dynamo’], another possibility is that the ori-
gin of this pattern is to be found in dynamical effects,
namely the magnetic backreaction on large-scale flows.
The recent analyses of Passos et al. (2012) suggest that
an increase in the speed of the deep equatorward merid-
ional flow may indeed be driven by a higher-than-average
large-scale magnetic field, which in advection-dominated
flux transport dynamos would be expected to lead to a
proportional reduction in cycle period (see, e.g., Dikpati
& Charbonneau 1999).

The long timescale behavior of the simulated cycles
also shows some interesting features, some solar-like and
others less so. The model autonomously generates sig-
nificant power at low frequencies, but without any well-
defined spectral peaks that could be associated with
Gleissberg-like long periodicities. The model does pro-
duce occasional Dalton-minimum-like periods of succes-
sive low amplitude cycles, and can also spontaneously
shut down the cycle and enter a non-cycling grand-
minima-like state, through an unfavorable stochastic pat-
tern of bipolar pseudo-sunspot emergences in the course
fo a cycle. This is a relatively common occurrence for a
simulation using the best-fit parameter values obtained
in § 3: about one fourth of simulations initialized with
distinct random seeds were found to undergo shutdown
at some point during a 100-cycle long time span.

In subsequent papers in this series we will investigate
cycle fluctuation patterns in greater detail, and quantify
the occurrence statistics of Dalton-like minima. The few
such events found so far in our extant simulation runs
suggest that entry into these failed minima is rapid, from
one (half-)cycle to the next, while recovery to average cy-
cle amplitudes is more gradual. We also plan to add a
weak turbulent alpha-effect in the convective envelope
portion of the domain, and investigate whether this can
pull the model out of a shutdown state, as existing sim-
ulations have already suggested (e.g., Ossendrijver 2000;
Karak & Choudhuri 2013; Hazra et al. 2014).

Because it includes an explicit, spatially-resolved rep-
resentation of the solar “surface”, the solar cycle model
presented here is ideally suited for assimilation of magne-
tographic data. The resulting data-driven model could
then be used to carry out prediction of upcoming cy-
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cles. The results presented in this paper indicate that
an accurate determination of the tilt angles of individual
emerging bipolar sunspot pairs will be a critical element
of such an endeavor.

BMR bipolar magnetic region

BL Babcock–Leighton

FTD flux transport dynamo

GA genetic algorithm

MHD magnetohydrodynamics

SFT surface flux transport

We are grateful to some people.... Thanks to funding
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