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Long-term solar variability: What does theory say?

{ch:long_dyn}
It bears repeating: there currently exist no concensus model for the dy-
namo process(es) powering the solar magnetic cycle, nor for the magnetic
backreaction mechanism(s) regulating its amplitude. This evidently does
not augur well for the understanding (and/or prediction) of variations of
solar activity on long timescales, which is the focus of this chapter, but we
shall proceed nonetheless. “Long timescale” refers here to variations of the
cycle amplitude and/or duration unfolding over multi-decadal timescale or
more, observational evidence for which having been presented in the pre-
ceding chapter. Of particular interest in this context are the Grand Minima
episodes of strongly suppressed activity, such as the 1645-1715 Maunder

Grand Minima
Minimum (§7.2).

Ref to §7.2
From the point of view of dynamo modeling, two broad classes of expla-

nations exist for Grand Minima:

• Extreme modulation of the cycle amplitude, with the same dynamo-driven
cycle perduring through a Grand Minimum, but at amplitude values too
low for sunspot formation.

Threshholded Mod-

ulation
• Intermittency, meaning a transition between two distinct dynamo states,

one being the primary “normal” cycle, and the other not necessarily cyclic
but characterized by a magnetic field too weak for sunspot formation.

Intermittency

Extant data, as reviewed in chapter ??, currently does not allow to discrim-
inate unambiguously between these two classes of explanations. The cyclic
signal observed in the 10Be record across the Maunder Minimum (Beer

Ref to MM Fig?
et al., 1998, see also §X.Y herein) suggests sustained cyclic activity, as one
would expect under a Grand Minimum scenario invoking amplitude modu-
lation. On the other hand, the observed non-periodic recurrence of Grand
Minima, as well as their significant variability in duration, is typically eas-
ier to produce in noise-triggered intermittency-based scenarios. Part of the
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difficulty goes back to the ill-understood quantitative link between sunspots
and the overall strength of the dynamo-generated internal magnetic field.
While the two are clearly correlated (REF previous chapter), the relation-
ship is not linear, and is likely characterized by a threshold at low magnetic
field strength.

In this context another dynamo property will play an essential role: whether
or not the dynamo is self-excited, i.e., can magnetic field amplification take
place from an arbitrarily weak seed field. A dynamo relying on differential
rotation shear and the classical turbulent α-effect is in principle self-excited,
while a solar cycle model invoking, e.g., the Babcock-Leighton mechanism
or flux tube instabilities for poloidal field regeneration is not. In these lat-
ter case, if the primary dynamo “turns off” for whatever reason, a distinct
inductive mechanism must be invoked to restart it again.

The issue of the so-called Grand Maxima (see §??) is trickier. Working
Ref to §7.3
Grand Maxima with historical data, lack of sunspots can be used as an unambiguous marker

of Grand Minima, but no equivalent “binary” criterion exist for period of
sustained, above-average activity levels. Under an intermittency-based dy-
namo scenario, Grand Maxima could correspond to a third, distinct dynamo
state, while under the amplitude modulation view they can only be defined
in terms of some (arbitrary) threshold in some magnetism-related measure.

In the remainder of this chapter a survey is presented of the various
dynamo-based scenarios put forth as explanatory frameworks for long timescale
variations in solar activity, including the occurrence of Grand Minima and
Maxima. The various dynamo models reviewed in chapter 2 will serve as
starting points towards this program. Nonlinear modulation and the com-
plex interplay of stochastic forcing and nonlinearities leading to intermit-
tency are first explored in §§3.1 and 3.2 using very simple low-order models,
after which representative examples occurring in spatially-extended mean-
field and mean-field-like dynamo models, as well as global MHD simulations,
are reviewed in §3.3. Based on this survey of extant modelling framework,
the issue of long-term predictability is revisited in §3.4.

3.1 Nonlinear amplitude modulation{sec:amplmodul}
The dynamical backreaction of the large-scale magnetic field is an obvious
mechanism to consider in exploring long timescale modulation of the pri-
mary magnetic cycle. This has been investigated in detail in the context of
low-order dynamical systems, more or less inspired by truncation of the gov-
erning dynamo equations (see Tobias et al., 1995; Knobloch and Landsberg,
1996; Knobloch et al., 1998; Weiss and Tobias, 2016). Two broad classes
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of amplitude modulation have been identified, based on the energetics of
the long-timescale modulation: type I modulation refers to the exchange of
enegry between two (or more) magnetic energy reservoirs, each associated
with a different equatorial parity; type II modulation refers to a modulation
envelope driven by energy exchange between the magnetic field and kinetic
energy of the inductive flows.

Figure 3.1 depicts schematically the workings of these two variants on non-
linear amplitude modulation. Imagine the dynamo to operate in the super-
critical regime with amplitude indicated by the dot labeled A on Fig. ??A.
Suppose now that the growing magnetic field leads to a reduction of dif-
ferential rotation, either by direct impact of the azimuthal component of
the associated Lorentz force (2.3.6), or through reduction of the Reynolds
stresses powering differential rotation (Λ-quenching, viz. §2.3.5). The net
effect can be viewed as an inexorable decrease of of the effective dynamo
number D. The system will gradually move from point A towards B, to a
much lower magnetic amplitude, and thus much reduced Lorentz force. This

Figure 3.1 Schematic depiction of (A) amplitude modulation (Type II), and
(B) parity modulation (Type I) in non-kinematic dynamo models operating
not too far from criticality. {fig:Hopfamplmod}

will allow differential rotation to recover, leading to an increase in D and
thus moving the system back to A. The dynamo number D is thus moving
periodically back and forth within the range indicated by the blue box on
Fig. 3.1A. If the timescale for quenching and recovery of differential rota-
tion is longer than the (inverse) linear growth rate of the dynamo, the cycle
amplitude will undergo a periodic waxing and waning, moving slowly back
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and forth along the black curve from point A to B and back. This is Type
II modulation.

Figure 3.1B, depicts, again very schematically, the workings of parity mod-
ulation. This materializes most readily when the lowest order equatorially
symmetric (quadrupole-like) and antisymmetric (dipole-like) dynamo modes
have comparable critical dynamo numbers and growth rates, as is often the
case with many mean-fied and mean-field-like models. This is plotted as
two distinct bifurcation curves on Fig. 3.1B, labeled “D” and “Q”. Consider
again a slow decrease of the dynamo number driven by a gradual reduction of
differential rotation, pushing now the dominant mode (here D) from A to B,
i.e., below its critical dynamo number (left-pointing blue arrow). Once differ-
ential rotation begins to recover and the effective dynamo number starts to
increase (right-pointing arrow), the system resides temporarily in a regime
in which the quadrupole-like symmetric mode has the largest growth rate,
before returning to its dipole-like initial state. Once again a periodic mod-
ulation of the primary cycle is generated, but this time it is accompanied
by a change in equatorial parity. For symmetric and antisymmetric modes
having closely similar growth rates and critical dynamo numbers, this type
of parity modulation can be mediated by relatively small variation of differ-
ential rotation (and also by stochastic forcing; see, e.g., Mininni and Gómez
2004; Olemskoy and Kitchatinov 2013; Hazra and Nandy 2019).

Amplitude modulation of both types can co-exist and operate simultane-
ously in a given dynamo system, as some of the case studies presented in
§3.3 below will amply demonstrate.

Supermodulation
Type 1,2: Knobloch example, Tobias 1997
Define parity index here!

3.2 Stochastic forcing and nonlinearities{sec:stochforc}
Amplitude modulation driven by stochastic fluctuations of the dynamo num-
ber, as illustrated on Fig 2.11, can lead to modulation patterns unfolding
on timescales much longer than the coherence time of the fluctuations. Spe-
cific examples of this effect in mean-field dynamo models have already been
presented on Figure 2.13.

A more extreme form of amplitude variation can occur if stochastic fluc-
tuations push the solution far across the bifurcation point and into the
subcritical regime; the cycle amplitude then undergoes exponential decay to
the fixed-point trivial solution B = 0, and the dynamo can only restart once
a favorable fluctuation pushes the system back into the supercritical regime.



3.2 Stochastic forcing and nonlinearities 93

Figure 3.2 On-off of intermittency in a self-excited nonlinear dynamo mod-
els without a lower operating threshold on the field strength/cycle ampli-
tude. Stochastic decrease of the dynamo number push the solution into the
subcritical regime (red arrow) and later back into the supercritical regime
(green arrow) by stochastic increase of the dynamo number.{fig:Hopf2A}

This type of behavior, illustrated schematically on Figure 3.2, is known as
On-Off Inter-

mittency
on-off intermittency (Platt et al., 1993). It characterizes self-excited dynamo
processes in which amplification remains possible even if the magnetic field
falls to very low amplitude, which is the case e.g. for dynamo action driven
by the turbulent mean electromotive force (§1.3.4). Under this scenario the
mean duration of quiescent episodes is determined by the decay and growth
timescales of the dynamo in the range of dynamo numbers spanned by the
fluctuations. This represents an attractively simple explanation for Grand
Minima, but is predicated on the dynamo operating relatively close to crit-
icality.

The low-order model of Cameron and Schüssler (2017b) introduced in
§2.4.1 offers a particularly simple example of on-off intermittency. Figure 3.3
shows a time series produced using this model. The model parameters (see
eq. (2.32)) have been adjusted to fit the solar cycle, namely: ω0 = π/11 yr−1



94 Long-term solar variability: What does theory say?

Figure 3.3 Segment of a time series of smoothed decadal mean amplitude
(1-2-2-2-1 smoothing window) produced by the Cameron and Schüssler
(2017b) stochastically forced low-order model, with parameter values β =
0.02 yr−1 for the linear growth rate, σ = 0.4 for the stochastic forcing
amplitude. The horizontal dashed lines drawn at 20 and 60 indicates the
lower and upper thresholds used to identify Grand Minima (colored in
blue) and Grand Maxima (red) epochs. Figure produced from numerical
data kindky provided by R. Cameron. {fig:cs17intermit

for an 11-yr half-cycle, γi = 0 for a amplitude-independent cycle period, and
γr = 4.9× 10−6 yr−1 so that the dynamical variable X has sunspot-number-
like numerical values. The fluctuating behavior is then set by the linear
growth rate β, and noise amplitude σ. This plot, (and many subsequent sim-
ilar Figures) has been constructed such as to mimic the radioisotope-based
reconstruction of solar activity levels, as discussed in §6.3 (and esp. Fig. ??).
A time series of decadal mean values pn is first constructed from the higher

REF to §6.3.2

and Fig 6.7
temporal cadence model output, and the resulting time series smoothed us-
ing a 1-2-2-2-1 averaging filter:

p̄n =
1

8
(pn−2 + 2pn−1 + 2pn + 2pn+1 + pn+2) . (3.1){eq:12221}

The resulting time series of p̄ is plotted as the solid line on Fig. 3.3. It is char-
acterized by substantial fluctuations including occasional excursions at very
high and very low amplitude values. Following the procedure introduced in
§X.Y, threshold values of X = 20 and X = 60 (horizontal dashed lines) are

REF to previous

chapter
used to delineate epochs of Grand Minima and Maxima in reconstructed
activity, as colored in blue and red. For proper choices of model parame-
ters, the frequency distribution of Grand Minima duration and inter-event
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waiting times constructed from the model output are both approximately
exponential, as expected if the trigger is a stationary memoryless random
process, and generally consistent with the corresponding distributions char-
acterizing reconstructions based on radioisotopes, as discussed in §X.Y (see

Another REF

to §in previous

chapter ?

Cameron and Schüssler, 2017b, for further discussion). In this model the av-
erage duration of Grand Minima is controlled primarily by the parameter β,
setting the linear growth rate of the dynamo. Moreover, in this model, when
the dynamo is pushed in the subcritical regime, the solution is still oscilla-
tory even though the amplitude is decreasing exponentially; residual cyclic
activity during Grand Minima phases, as suggested by some radioisotope
reconstructions, can thus be naturally accounted for. As explicitly demon-
strated by Cameron and Schüssler (2017b), these dynamical properties carry
over to a mean-field-like 1D Babcock-Leighton model, supporting the claim
that these results are robust. The source of fluctuations, as captured by the
parameter σ, is ascribed to the strong scatter in the E-W tilt of bipolar
active regions (see §2.4.4, and §3.3.2 further below).

The low-order model of Passos et al. (2012) introduced in §2.3.7 also ex-
hibits on-off intermittency when subjected to stochastic forcing. The dynam-
ical behavior is now more complex (as per Fig. 2.9) but the intermittency
mechanism is still basically that illustrated on Fig. 3.2. Passos et al. (2012)
impose uniformly distributed zero-mean forced fluctuations in the numerical
parameter a controlling the magnitude of the magnetic backreaction on the
meridional flow variable vp. This introduces variability in the time rate of
change of the flow, which directly carries over to the magnetic flux transport
terms (first terms on the RHS of eqs. (2.25)–(2.26)). For an unfavorable se-
quence of fluctuations, the dynamo can be short-circuited and pushed into
the subcritical regime. One such event is illustrated on Figure 3.4. The top
panel shows time series segments of the three dynamical variables A, B
and v (see eqs. (2.25)–(2.27)) including a Grand Minimum, and the bottom
panel the corresponding phase space trajectory across that Grand Minimum.
On the latter, the black dashed line shows the limit cycle in the absence of
stochastic forcing, the gray dots the blurring of this limit cycle when noise is
introduced. The colored trajectory shows the impact of a large fluctuations
triggering a high amplitude outward excursion in parameter space (blue),
with subsequent collapse to the A = B = 0 axis (cyan to green). Follow-
ing recovery of the meridional flow variable, the dynamo grows again as at
outward spiralling trajectory (yellow to red).

Under this scenario entry into a Grand Minimum is swift, while recovery
to normal cycle behavior is more gradual. The strong increase in magnetic
and velocity amplitudes is here a good precursor to the onset of Grand Min-
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Figure 3.4 A Grand Minimum in the non-kinematic low-order dynamical
model of Passos et al. (2012). The upper panel displays time series of the
three dynamical variablesA (poloidal field amplitude, red), B (toroidal field
amplitude, purple to red), and v (meridional flow amplitude, blue) across
a Grand Minimum. The bottom panel shows the same Grand Minimum,
this time in the form of a phase space trajectory (see text). Adapted from
Figs 8 and 11 in Passos et al. (2012). {fig:BLMaunder}

ima, which recur aperiodically in this model. The frequency distributions of
Grand Minima durations and inter-event waiting times are both approxi-
mately exponential, again consistent with a memoryless stochastic trigger.
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Figure 3.5 In-out intermittency in nonlinear dynamo models subjected to
both upper and lower operating threshold on the field strength/cycle am-
plitude. The limit cycle solution (thick solid line) has a finite-sized basin
of attraction, shaded in gray and labeled [B]. Here the trivial B = 0 fixed-
point solution remains accessible in the supercritical regime, with a basin of
attraction corresponding to regions [C] and [D]. Intermittent behavior can
now be triggered by stochastic fluctuations either of the dynamo number
(horizontal arrow), or of the cycle amplitude itself (vertical arrows).{fig:Hopf2B}

A distinct form of intermittency can materialize in dynamos that are not
self-excited, due to magnetic field regeneration being subjected to a lower
operating threshold. Figure 3.5 illustrates schematically this more compli-
cated dynamical situation. As on Fig. 3.2, the transition from the fixed-
point B = 0 solution to a cyclic (limit cycle) state occurs when the dynamo
number D exceeds its critical value Dcrit. Here, however, at the bifurca-
tion point the limit cycle appears with a finite amplitude, and is charac-
terized by a finite basin of attraction (gray shading). Any initial condition
within the gray-shaded area converges to the limit cycle solution (curved
thick solid line), while initial solutions starting above or below converge
to the B = 0 fixed point. This dynamical behavior characterizes dynamo
models in which source terms are subjected to a lower operating threshold
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on the magnetic field; Babcock-Leighton-type models (1.3.7) belong to this
variety, since sunspot emergences requires a minimal strength for the par-
ticipating magnetic flux ropes. In the absence of active region emergences,
the regeneration of the poloidal magnetic component cannot take place,
and sustained dynamo action is impossible. For specific examples of such a
Babcock-Leighton models with lower operating thresholds, see, e.g., Chat-
terjee et al. (2004); Charbonneau et al. (2005), as well as Fig. 2.10 herein.
Likewise, dynamos driven by instabilities of magnetic flux tubes (§1.3.8) also
require a minimal field strength for the instability to be excited. In either
cases, intermittency can now occur if some internal mechanism manages to
knock the cyclic solution out of its basin of attraction.

Stochastic noise could affect the operation of such a dynamo in at least
two distinct ways. If the dynamo operates close to criticality, then as with
the simpler case depicted on Fig. 3.2 a fluctuation in the dynamo number
can push the solution into the subcritical regime (horizontal solid red arrow
on Fig. 3.5), following which the cycle amplitude will decay. Unlike for the
simpler bifurcation case illustrated Fig. 3.2, here a subsequent stochastic
increase of the dynamo number (open green arrow) would push the solution
into region [D], which is part of the attraction basis for the B = 0 solution.
Restart is then only possible if another source of magnetic field pushes the
solution back inside the attraction basin of the cyclic solution (upward-
pointing solid green arrow).

In addition, fluctuations in the cycle amplitude (of whatever origin), can
push the dynamo outside of the attraction basin of the cyclic solution (ver-
tical red arrows) even if the dynamo number remains in the supercritical
regime. The magnitude of the needed fluctuations depend on the details
of the dynamo model and amplitude-limiting nonlinearity considered. Note
however that even very low noise level can do the trick if the dynamo op-
erates in a regime where the solution wanders close to boundary of the
attraction basin, which can happen in the chaotic regimes often accessible
to strongly supercritical dynamo solutions. The mean duration of quiescent
episodes under this dynamical regime is now harder quantify; as for the sim-
pler on-off intermittency mechanism depicted on Fig. 3.2, it is controlled by
the decay and growth timescales of the primary dynamo in regions [A] and
[B] on Fig. 3.5, but also by the timescale(s) associated with the secondary
mechanism pushing the solution back into the attraction basin ([D]→[B]).

The iterative map considered in §2.3.10 offers a particularly simple exam-
ple of in-out intermittency. As the solution is pushed far into the supercritial
regime, a series of period-doubling bifurcations lead to chaotic modulation,
and farther in this chaotic supercritical regime the aperiodically varying am-
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Figure 3.6 Segment of a time series of smoothed cycle amplitude (1-2-
2-2-1 smoothing window) produced by the stochastically forced iterative
map (3.2). The horizontal dashed line drawn at pn = 0.2 indicates the
lower threshold to identify “quiescent” from “active” epochs (see text), the
former being colored in blue. {fig:stochmap}

plitude iterate wanders close to the boundary of the attraction basin (see
Fig. 2.10A). Once in the chaotic regime, even low amplitude noise, mean-
ing here noise amplitude much smaller than the amplitude iterate, can then
trigger intermittency through the [B]→[C] or [B]→[D] routes on Fig. 3.5.

Figure 3.6 shows a representative time series of cycle amplitude pn, for a
stochastically-forced version of this iterative map:

pn+1 = 4 anp
2
n(1− pn) + εn n = 0, 1, 2, ... (3.2) {eq:stochmap}

with

an ∈ G(1.375, 0.125) , εn ∈ G(0.03, 0.06) , (3.3) {eq:stochmap2}

where the random deviates an and εn are extracted anew at each itera-
tions from Gaussian distributions G(µ,σ) of mean µ and standard deviation
σ, as indicated. Note that with these choices, an is very nearly always in
the supercritical regime (cf. Fig. 2.10A), so the [B]→[A]→[B] channel to
intermittency is essentially inactive here. In this modified form, the map pa-
rameter an is now subjected to stochastic fluctuations (multiplicative noise),
as introduced in §2.4.2, as well as additive stochastic noise εn, representing
the action of an additional inductive mechanism, for example a small-scale
dynamo. The combined action of these two sources of stochastic forcing
causes the solution to move in and out of the attraction basin of the cyclic
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solution, producing quiescent phases of suppressed cycle amplitude inter-
spersed within epochs of “normal” cyclic behavior, albeit characterized by
significant cycle-to-cycle variations in amplitude. Here the system is deemed
to have entered a quiescent phase when the amplitude iterate falls below
pn = 0.2, which corresponds to the lowest extent of the attraction basin for
the deterministic version of this map (see Fig. 2.10). Note how the quiescent
phases, colored in blue, have varying durations and show no hint of period-
icity on their occurrence. Unlike on the time series of Fig. 3.3, here there
are no upward excursion in cycle amplitude in the active mode of operation
of the dynamo, i.e., there are no equivalents to Grand Maxima in this very
simple model.

This system is characterized by an intermittency threshold, namely a min-
imal additive noise level (upper bound value on εn in eq. (3.3)) below which
the amplitude iterate cannot climb back into the attraction basis of the limit
cycle. Sufficiently far from this threshold, and provided the εn remain signif-
icantly smaller than the cycle amplitude pn, the frequency distribution for
the durations of quiescent phases shows little dependence on the additive
noise level, except in the tail of very long duration quiescent phases. Like-
wise, the distribution for active phase durations is exponential and largely
insensitive to the additive noise level, even though low-level noise is essential
to this intermittency mechanism (see Charbonneau, 2001, 2005, for further
details and illustrative examples).

3.3 Case studies{sec:cases}

It is not a priori obvious that the production of Grand Minima and other
long timescale behaviors in the various highly simplified “toy models” con-
sidered above necessarily carries over to more realistic spatially-extended
solar cycle models including solar-like large-scale flows and spatially-varying
inductive mechanisms. In this section we consider in some detail a few “case
studies”, i.e., representative instances of such models in which counterparts
to these long timescale modulation patterns and intermittent behaviors are
indeed observed. Many more such examples can be found in the published
literature; the selection that follows is meant primarily to illustrate the wide
range of possible Grand Minima scenarios.

3.3.1 Self-excited kinematic dynamos: fluctuating α-effect{ssec:alphafluct}
Many extant mean-field solar cycle models achieve the production of long
timescale modulation, including Grand Minima and Maxima, through forced
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stochastic fluctuations of the dynamo source terms. The most straightfor-
ward avenue is on-off intermittency in mildly supercritical models, as illus-
trated schematically on Fig. 3.2 and captured quantitatively in the low-order
dynamical system model of Cameron and Schüssler (2017b) described in the
preceding section.

Our first case study is an example of this intermittency mechanism oc-
curing in a stochastically-forced version of the mean-field dynamo model of
Kitchatinov and Olemskoy (2012). This 2D kinematic axisymmetric mean
field-like model solves dynamo equations equivalent to the αΩ version of
eqs. (2.11)–(2.12), with a non-local surface source term capturing the regen-
eration of the large-scale poloidal magnetic component through the Babcock-
Leighton mechanism. The model also incorporates a solar-like internal dif-
ferential rotation profile and single-cell meridional flow, similar to those in-
troduced for model BLMC in §2.2.2, but operates at low magnetic Reynolds
number Rm = 10, so that the transport of magnetic flux takes place in
the diffusion-dominated regime. This dynamo is self-excited, as it does not
incorporate a lower magnetic field strength threshold on its poloidal source
term.

The stochastically-forced version of this model, described in Olemskoy and
Kitchatinov (2013), introduces fluctuations in the surface poloidal source
term that depend on both space and time, a setup far more realistic phys-
ically that the simpler and more commonly adopted forced fluctuation of
just the dynamo number. In keeping with the idea that their poloidal source
term models the Babcock-Leighton mechanism of poloidal field regenera-
tion through active region decay, Olemskoy and Kitchatinov (2013) set the
coherence length and time of their forcing function at 6◦ and one month,
typical values for the latitudinal extent and lifetime of a large active region
(see their §2.3 for a full description of their forcing formalism).

Figure 3.7 shows some sample results generated with this dynamo model.
The top panel shows a time-latitude diagram of the deep toroidal magnetic
field, the model’s equivalent to the sunspot butterfly-diagram, and the bot-
tom panel a 1-2-2-2-1 smoothed time series of peak integrated magnetic flux,
linearly scaled to yield sunspot number-like numerical values. The model is
run here in the mildly supercritical regime, so that the triggering of Grand
Minima takes place through on-off intermittency (Fig. 3.2), but with an in-
teresting new twist. The latitudinal dependence of stochastic forcing leads
to the excitation of higher-order dynamo modes, which can strongly inter-
fere with the operation of the fundamental dynamo mode even if the latter
remains supercritical from the point of view of the net dynamo number
(on this point see also Hoyng et al., 1994; Ossendrijver et al., 1996). This
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Figure 3.7 Grand Minima in the stochastically-forced Babcock-Leighton
solar cycle model of Olemskoy and Kitchatinov (2013). The top panel is
a time-latitude diagram of the toroidal magnetic component, akin to the
sunspot butterfly diagram in this model. The bottom panel shows the 1-2-2-
2-1 smoothed time series of cycle amplitudes, in a format similar to Figs. 3.3
and 3.6. The threshold values for Grand Maxima (red) and Minima (blue)
are set at values that match the fraction of time spent in these phases,
as inferred from cosmogenic radioisotope-based reconstructions. Graphics
kindly provided by L. Kitchatinov. {fig:KitchOlem1}

shows up prominently on the time-latitude diagram of Fig. 3.7, as a strong
hemispheric asymetry in activity level, persisting here from the onset to the
recovery phase of this model Grand Minimum. Note also the residual cyclic
activity throughout the Grand Minimum, here restricted to the Southern
hemisphere.

Interestingly, the frequency distribution of Grand Minima durations, as
reconstructed from the bottom panel of Figure 3.7, shows a hint of bimodal-
ity akin to that characterizing some radioisotope reconstructions. As with

REF to Fig

in previous

chapter?

the simple low-order model of Cameron and Schüssler (2007), the mean du-
ration of Grand Minima is primarily set by the linear growth rate of the
dynamo, and a solar-like distribution results from operating the model in
the mildly supercritical regime. The inter-event waiting time distribution is
again approximately exponential, as expected from a stationary memoryless
random process.
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For other examples of intermittency through stochastic forcing of a self-
excited dynamo, see also Ossendrijver et al. (1996); Tworkowski et al. (1998);
Moss et al. (2008); Usoskin et al. (2009).

3.3.2 Non-self-excited dynamos: dual source terms {ssec:2alphafluct
In dynamo models that are not self-excited, recovery from a Grand Minimum
may require a second inductive mechanism to push the primary dynamo back
above its operating threshold (upward-pointing green arrow on Fig. 3.5). Our
next case study offers an example of such a dual-dynamo solar cycle model.

The kinematic 2D mean-field-like model of Passos et al. (2014) invokes
the Babcock-Leighton mechanism of poloidal field regeneration for its pri-
mary dynamo, and uses a solar-like differential rotation and a quadrupolar
meridional flow (single cell per meridional quadrant), as described in Chat-
terjee et al. (2004). In the Passos et al. (2014) implementation, the Babcock-
Leighton mechanism operates in a finite range of toroidal field strengths
103 ≤ Bφ ≤ 105 G; its dynamical behavior is thus akin to Fig. 3.5, i.e., the
dynamo has a finite basin of attraction in the supercritical regime. To allow
restart of the primary dynamo, a secondary dynamo relying on the turbu-
lent electromotive force associated with convection is added within the bulk
of the convection, quenching at a field strengh Bφ > 104 G (on such “dual-
dynamos”, see also Dikpati and Gilman, 2001; Mason et al., 2002; Cole and
Bushby, 2014). Forced stochatic fluctuations are imposed on either or both
of the two dynamo numbers controlling the strength of the poloidal field
regenerative terms, i.e., the stochastic driver affects only the T → P portion
of the dynamo loop. The onset and recovery from a Grand Minima thus
follows the [B]→[A]→[D]→[B] path on Fig. 3.5.

Figure 3.8 depicts a typical Grand Minimum arising in this dual-dynamo
model. The top panel is a time-latitude diagram of locations of bipolar mag-
netic region emergences, and the bottom panel shows the corresponding
time-latitude diagram for the deep-seated toroidal magnetic field generat-
ing these emergences. Note how strong hemispheric asymetries and residual
cyclic activity is observed across the Grand Minima, analogous to the Maun-
der Minimum (cf. Fig. 4.14A).

Ref Fig 4.14A
The magnitude and partial overlap in the operating range of the two

dynamo source terms is important and requires some fine tuning for the
desired behavior to materialize. The basic (non-fluctuating model) intro-
duces a turbulent α-effect of a magnitude low enough to cause minimal
changes in the magnetic cycles generated by the Babcock-Leighton source
term in its absence. The frequency and mean duration of Grand Minima
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Figure 3.8 A Grand Minimum in the stochastically-forced dual-dynamo
model of Passos et al. (2014), a 2D axisymmetric kinematic mean-field-like
dynamo combining a Babcock-Leighton surface poloidalsource term and
a classical α-effect distributed in the convection zone. Time-latitude dia-
grams of bipolar magnetic region emergences (top panel) and deep-seated
toroidal magnetic field (bottom panel) are shown, spanning a Grand Mini-
mum episode. The first 30 simulated years are still relaxing the (arbitrary)
initial condition. {fig:GMPassos14}

episodes is found to depend on the magnitude and fluctuation levels of both
of these poloidal source terms. A supercritical Babcock-Leighton dynamo
and strongly fluctuating mean-field α-effect leads to long Grand Minima,
while a mildly critical Babcock-Leighton dynamo and smaller fluctuations
in the mean-field α-effect yields shorter and more frequent Grand Minima.
In all cases the occurrence of Grand Minima is aperiodic, as expected from
a stochastic trigger.

For the solution displayed on Figure 3.8, this dual-dynamo system never
entirely shuts off, as evidenced by the sustained regular polarity reversals
of the deep toroidal field (bottom panel). The turbulent α-effect is prevent-
ing the primary dynamo from becoming strongly subcritical, maintaining it
instead close to criticality. Grand Minima in this model are perhaps better
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characterized as being caused by a form of self-regulating amplitude modu-
lation combined with a threshold effect, rather than true intermittency.

In solar cycle models relying on the Babcock-Leighton mechanism of polar
field reversal and regeneration, the variability in the emergence rates and
physical properties of bipolar active regions amounts to a source of strong
stochasticity in the T → P segment of the dynamo loop. Figure 2.14 already
demonstrates that a single active region with extreme characteristics (such as
a large magnetic flux and tilt angle departing strongly departing from Joys’s
law) can strongly alter the buildup of the surface dipole, and consequently
the amplitude of the subsequent magnetic cycle cycle. Such occurrences have
been observed on the sun (Cameron et al., 2014), and are oven invoked as the
physical origin of the strong stochasticity introduced in an ad hoc manner
in many extant Babcock-Leighton solar cycle models of varying levels of
complexity. The models of Cameron and Schüssler 2017b, Olemskoy and
Kitchatinov 2013 and Passos et al. 2014, just considered above, are all cases
in point.

Our next case study builds on the 2×2D solar cycle model ofLemerle and
Charbonneau (2017) described in §2.4.4. This kinematic dynamo model in-
corporates a detailed description of surface flux evolution and bipolar mag-
netic flux emergence and surface flux evolution, the the physical charac-
teristics of the later being drawn from statistical distributions built from
observed solar active regions. In some rare and extreme cases, the negative
impact of a large, “rogue” bipolar active region on the global dipole can
be strong enough to shift the phase relationship between the surface dipole
and internal magnetic field to the point of derailing the cycle and effec-
tively pushing the model into the subcritical regime ([B]→[A] red arrow on
Fig. 3.5; see §X.Y in Nagy et al. 2017 for a specific example).

As with the simpler mean-field-like model of Passos et al. (2014), once
the dynamo shuts off and enters a Grand Minimum, a secondary dynamo
process is required to kickstart it again for recovery to normal cyclic behav-
ior. Once again a weak mean-field α-effect can achieve the desired effect.
Under “normal” conditions the magnetic field generated by the (primary)
Babcock-Leighton dynamo quenches the α-effect of the (secondary) turbu-
lent dynamo. But once the primary dynamo shuts off, the magnetic field
decays under the operating threshold of the turbulent α-effect, which then
turns on and pushes the magnetic field back above the operating threshold
of the primary dynamo, and normal cyclic behavior resumes; as with the
Passos et al. (2014) model just considered, relatively fine tuning of the mag-
nitude and quenching levels of the two source terms is required to obtain
the desired behavior.
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Figure 3.9 A Grand Minimum in the Lemerle and Charbonneau (2017)
Babcock-Leighton dynamo model including a secondary turbulent α-effect
concentrated at the bottom of the convection zone. The top panel shows a
time-latitude diagram of the surface radial field, on which are superimposed
isocontours of the surface density of emerging bipolar magnetic regions.
The bottom panel shows time series of pseudo-sunspot number and surface
dipole moment. Adapted from Fig. 2 in Ölçek et al. (2019). {fig:GMDeniz}

Figure 3.9 displays a Grand Minimum occurring in this model, in the form
of a surface time-latitude diagrams of the zonally-averaged surface radial
field component with superimposed isocontours for the density of emerging
bipolar magnetic regions (top), and time series of pseudo-sunspot number
and surface dipole moment (bottom). This Grand Minimum is characterized
by a failed restart at t ≃ 170 yr, during which buildup and reversal of the
surface dipole resumes for four half-cycles, but there is there is otherwise no
clear periodic signal across this extended (duration ∼ 200 yr) quiescent pe-
riod. Note also the intermittent surges of mid-latitude activity; in this model,
these sometimes persist for many successive cycles, and can be interpreted
as the model’s equivalent of Grand Maxima.

Strong hemispheric asymetries are present before entering and upon exit-
ing the extended Grand Minimum. As with the stochastically forced mean-
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Figure 3.10 Time series of 1-2-2-2-1 smoothed cycle amplitudes in an ex-
tended simulation run of the Lemerle and Charbonneau (2017) Babcock-
Leighton dynamo model including a secondary turbulent α-effect. As in
earlier such Figures Grand Maxima and Minima are colored in red and
blue respectively. The threshold value used to identified the latter is cho-
sen so as to reproduced cosmogenic radioisotope-based estimates for the
fractional time spend in Grand Minima states. Note the extreme Grand
Maximum at t ≃ 9100 yr. Simulation and graphics courtesy of D. Ölçek. {fig:GMDenizts}

field-like solutions of Fig. 3.7, stochastic forcing is here decorrelated between
hemispheres, as it results from random variations in the physical character-
istics of simulated emerging BMRs. However here hemispheric asymmetries
are also induced bythe interaction of the turbulent α-effect-driven dynamo,
for which the fastest growing linear mode is steady and equatorially symmet-
ric. This explain the dominance of negative magnetic polarity throughout the
Grand Minimum. See Ölçek et al. (2019) for further details on the interaction
between the two dynamos operating concurrently in these simulations.

Figure 3.10 shows a time series of smoothed cycle amplitudes for the
same model run as on Fig. 3.9, but over a 104 yr time span, in the now usual
format. Grand Minima and Maxima recur aperiodically, and with former
showing a much wider range of durations than the latter. Here once again
the onset of Grand Minima and Maxima is driven by memoryless stochastic
process, leading in both cases to inter-event waiting time distributions that
are exponential in form. The duration of Grand Minima is set by two factors:
the decay time of the residual large-scale magnetic field once the dynamo
shuts off determines at which point quenching of the α-effect will vanish;
and the growth time of the associated αΩ dynamo process. For the solutions
displayed on Fig. 3.9, the former dominates and effectively sets the mean
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duration of Grand Minima phases. Their wide range of durations ultimately
reflects the state of the internal field at the time the primary Babcock-
Leighton dynamo shuts off.

For other examples of in-out intermittency in non-self-excited dynamos
through the interplay of dual magnetic induction mechanisms, see Schmitt
et al. (1996); Ossendrijver (2000b); Charbonneau et al. (2004); Karak and
Choudhuri (2013); Hazra et al. (2014a).

3.3.3 Fluctuating meridional flow{ssec:cmfluct}

In dynamo models characterized by spatially segregated inductive source re-
gions, any stochastic or deterministic (nonlinear) variation of the transport
process linking the source regions can alter the dynamo loop, and in some
cases shut it off altogether. Our next case study, the solar cycle model of
(Choudhuri and Karak, 2012, see also Karak 2010; Karak and Choudhuri
2013) exemplifies the production Grand Minima through stochastic varia-
tions of the meridional flow amplitude in a Babcock-Leighton solar cycle
model.

The dynamo model used by Choudhuri and Karak (2012) in described in
detail in ?. It is a 2D axisymmetric kinematic mean-field-like model similar
to model BLMC introduced in §2.2.2, but with the Babcock-Leighton mech-
anism modeled as a conventional subsurface α-effect term on the RHS of
the evolution equation for the poloidal magnetic component. Active region
emergences are mimicked by depositing toroidal magnetic fields in the sub-
surface layers whenever the deep-seated toroidal field at the same latitude
exceeds some preset threshold. The model uses a solar-like differential rota-
tion profile and a quadrupolar meridional flow, with a single flow cell per
meridional quadrant. While a lower threshold exists on emergences, there is
none on the α-effect itself, which can also operates on any diffuse magnetic
field present in the subsurface layers, a feature important in what follows.

The simulations described below result from operating the model in the
the so-called diffusion-dominated regime (see Yeates et al., 2008, and discus-
sion therein), in which case a positive correlation materializes between the
speed of the meridional flow and the amplitude of pseudo-sunspot cycles.
Such a correlation makes it possible to make a model-dependent inference
of past meridional flow variations from the known amplitude and duration
of sunspot cycles (see, e.g. Lopes and Passos, 2009; Karak, 2010).

Fit a Gaussian, then run temporally-extended simulations.
Not intermtitency; GM produced by the combined effects of a threshold
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Figure 3.11 Grand Minima in the axisymmetric kinematic BL model of
Karak and Choudhuri (2013), including forced stochastic variations of the
meridional flow. The top panel shows time series of pseudo-sunspot number
(black) and meridional flow speed parameter (red) over a 1000 yr time span.
The bottom panel shows the 1-2-2-2-1 smoothed decadal mean over 104 yr,
with Grand Maxima and Minima indicated in red and blue, as on previous
similar plots. The dotted lines delineate the time interval corresponding
to the top plot. Figure generated from numerical data kindly provided by
B.B. Karak.{fig:KC13}

on sunspot emergence and amplitude modulation by forced CM variations
(Karak10 Fig 3)

Exponential distributions of GM duration and interevent wait time as
expected from meoryles stochastic trigger.

Need long coherence time to obtain GM; hard to justify if flow variations
are driven by convective turbulence with coherence time of a few months;
But model is kinematic; such long timescale variations perhaps driven by
magnetic backreaction. Investigation of this mechanism with nonkinematic

3.3.4 Self-excited dynamos: nonlinear magnetic backreaction on
differential rotation

In all of the above case studies, cycle fluctuations are generated in the P → T
segment of the dynamo loop. We now turn to the T → P segment, specif-
ically the nonlinear magnetic backreaction on differential rotation. As dis-
cussed already in ??, this mechanism can achieve saturation of the dynamo
at fixed cycle amplitude; however, in the low Prandtl number regime, it
can also generate extreme amplitude modulation which, in conjunction with
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a field strengh threshold on sunspot formation, can offer a viable physical
explanation for Grand Minima and Maxima.

Our first case study in this family is the dynamo model described in
Bushby (2006). This is a non-kinematic but otherwise conventional self-
excited 2D axisymmetric αΩ dynamo model, relying on differential rotation
shear and the turbulent α-effect as inductive mechanisms. The model uses
a solar-like internal differential rotation profile, a negative (N-hemisphere)
α-effect concentrated at low latitudes, and a magnetic diffusivity dropping
rapidly below the convection zone, yielding an interface-like dynamo. The
nonlinear backreaction on differential rotation uses the strategy outlined in
§2.3.6, namely solving only for the variations of the differential rotation with
respect to an imposed solar-like profile (viz. eq. (2.23)), via the solution of
a reduced dynamical essentially identical to eq. (2.24.

Figure 3.12 shows a set of magnetic energy time series generated using
this model, obtained for various combinations of dynamo and Prandtl num-
bers, as labeled. Recall (from §2.3.6) that the latter sets the timescale over
which magnetically-induced variations of large-scale flows are attenuated.
At low dynamo number D and Prandtl number Pm ∼ 1, the dynamo devel-
ops a constant-amplitude cycle (not shown), here with a period P ≃ 10−2τ ,
where τ is the magnetic diffusion time (viz. eq. (1.9)). This primary cycle
remains in in the low-Pm regime, but there now also appears a modulation
on a timescale much longer than the primary cycle, with period given ap-
proximately by P/Pm (panel A). This modulation becomes chaotic as the
dynamo is pushed farther into the supercritical regime (panel B). At fixed
dynamo number, the modulation period increases as Pm decreases (cf. pan-
els C and D). Parity (red) modulation also occurs in all solutions, becoming
quite irregular in the more supercritical solutions and/or at low Prandtl
numbers. without any preferred symmetry emerging. Careful comparison of
the black and blue time series on Fig. 3.12 reveals that the kinetic energy
associated with the flow perturbation lags temporally the magnetic energy.
While the overall amplitude of differential rotation variations increases with
decreasing Prandtl number on long timescales, the amplitude of torsional
oscillations on the timescale of the primary cycle vary proportionally with
Pm. Refering back to the simple low-order order model of §3.1, these non-
kinematic solutions typically exhibit concurrently both Type I and Type II
patterns of amplitude modulation.

For the strongly modulated solution of Fig. 3.12D, it is tempting to iden-
tify the modulation phases of very low magnetic energy (ME≤ 0.05 say) with
Grand Minima. Entry and exit from these Grand Minima is gradual and of-
ten accompanied by strong hemipheric asymetry, a natural consequence of
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Figure 3.12 Cycle amplitude modulation in the non-kinematic αΩ mean
field model of Bushby (2006). The four panels show time series of mag-
netic energy (ME, in black), perturbation kinetic energy (PKE, in blue-
dashed) and parity (red-dotted, scaled from [−1, 1] to the vertical extent
of each plot), for different combinations of dynamo and Prandtl numbers,
as labeled. Time is in unit of the magnetic diffusion time, and the criti-
cal dynamo number for the range of model parameter values explored is
≃ −1.5× 106 for Pm ∼ 1. Plotted from numerical data kindly provided by
P. Bushby.{fig:nkin1}

parity modulation. Although not obvious on Fig. 3.12D, the primary cy-
cle does perdure through Grand Minima, albeit at very low amplitude. In
this parameter regime Grand Minima tend to recur quasi-periodically, on a
timescale inversely proportional to the Prandtl number, their roughly con-
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stant duration being set by the time required to dissipate the flow variations
induced by the Lorentz force.

In the strongly chaotic solution of Fig. 3.12B it is also certainly possible to
identify phases of very low magnetic energy with Grand Minima. They are
now markedly aperiodic and not as well delineated as for the solution plotted
on panel D. This solution also exhibits, on very long timescales, an additional
modulation pattern whereby both magnetic and perturbation kinetic energy
undergo a rapid upwards excursion by over two orders of magnitude, followed
by slower recovery to the “basal” chaotic state. This could be interpreted as
Grand Maxima in this dynamo model. In all these solutions, introduction of
α-quenching as an additional amplitude-limiting regularity tends to stabilize
the modulation patterns, in both magnetic energy and parity.

Figure 3.13 shows the behavior of a similar non-kinematic 2D axisymmet-
ric dynamo model, this time using a full α-tensor extracted from the global
MHD “millenium” simulation discussed in §?? (see in particular Fig. 2.5).
The top panel shows time series of magnetic energy (black) and parity (red)
over a timespan covering a Grand Maximum immediately followed by a
Grand Minimum. The bottom panel shows the corresponding time-latitude
diagram for the toroidal magnetic component at mid-depth in the convec-
tion zone. As in the Bushby (2006) model just considered, at Prandtl num-
ber Pm ≃ 1 this self-excited dynamo settles into a fixed-amplitude cycle
(see Fig. 2.8), but for Pm significantly below unity develops a modulation
of the cycle amplitude on timescales much longer than the cycle period,
with ubiquitous modulation of the solution parity. Here the solution is in
a symmetric (quadrupolar-like) state across the high-amplitude phase and
subsequent decrease into a very low amplitude, Grand Minimum-like regime,
but then re-emerges in an antisymmetric, dipole-like configuration. Similar
parity modulation across Grand Minima has been observed in other non-
kinematic models of varying levels of complexity (see, e.g., Tobias, 1997;
Beer et al., 1998; Sokoloff and Nesme-Ribes, 1994). In this model the mod-
ulation period is found to increase with decreasing Pm, the ratio scaling
approximately as Pm−1.

Figure 3.14 shows a time series of magnetic energy for the same solution,
but now over a ∼ 104 yr time span, in which the primary cycle has been
removed so that only the modulation amplitude remains. Threshold val-
ues have been set to identify Grand Minima (blue) and Maxima (red), with
values such that the percent time spent in Grand Minima and Maxima is ap-
proximately the same as inferred from the radioisotope record. Although not
particularly obvious on Fig. 3.14, the inter-event waiting time distributions
for Grand Minima and Maxima are both well approximated by exponentials,
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Figure 3.13 Parity modulation in a non-kinematic 2D axisymmetric α2Ω
mean-field model. This is a low Prandtl number, supercritical solu-
tion (Pm = 10−2, D = 5.25 × 105) exhibiting chaotic modulation
(cf. Fig. 3.12D).{fig:nkin2}

even though the modulation is here entirely deterministic, i.e., characterized
by infinite “memory”.

As noted in 2.1.6, the dynamo-generated magnetic field impacts differen-
tial rotation not just through the large-scale Lorentz force, but also through
the modulation of hydrodynamical forcing of differential rotation (see Fig. ??).
In the mean-field context, the magnetically-mediated reduction of Reynolds
stresses, otherwise known as Λ-quenching (see Kitchatinov and Rüdiger,
1993; Kitchatinov et al., 1994, also §2.3.5 herein). Küker et al. (1999) have
investigated the production of strong amplitude modulation and Grand Min-
ima via this mechanism. If Λ-quenching is strong and dominant over other
amplitude-limiting mechanisms, quasiperiodically-recurring Grand Minima
are produced in the low (10−1) Prandtl number regime. Entry into and re-
covery from Grand Minima is gradual, and in their model is accompanied by
a reduction of the cycle period by factors ranging from 2 to 4. Lowering the
Prandtl number to 10−2 yields even more extreme variations, with Grand
Minima becoming very rare events.

For other examples of extreme cycle amplitude modulation through non-
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Figure 3.14 Modulation envelope for the cycle amplitude over a 104 yr time
span in the non-kinematic α2Ω mean-field solution of Figure 3.13. Compare
to Figs. 3.3, 3.6, 3.7 (bottom), and 3.10.{fig:nkin3}

linear magnetic backreaction on large-scale flows in a self-excited dynamo,
see also Brooke et al. (1998); Pipin (1999); Kitchatinov et al. (1999); Brooke
et al. (2002); Phillips et al. (2002).

3.3.5 Global MHD simulations{ssec:MHDintermitt}

Global magnetohydrodynamical simulations of turbulent thermally-driven
convection and dynamo action (see §2.1) in principle incorporate many of
the mechanisms and interplays of mechanisms that can lead to extreme
amplitude modulation and/or intermittency. In particular, nonlinear back-
reaction on flows and a strongly fluctuating turbulent electromotive force
are both present, and are captured in a dynamically consistent manner at
all spatial and temporal resolved by the simulations.

Figure 3.15 shows a segment of a simulation run from the global MHD sim-
ulation discussed in Augustson et al. (2015). This is a high-resolution MHD
simulation using the ASH code (REFs) with slope-limited diffusion, going
under the code name K3S. This low Rossby number simulation operates
at three times the solar rotation rate, and generates a solar-like differen-
tial rotation profile as well as a regular large-scale magnetic cycle with full
magnetic period of 6.2yr and dipole-like equatorial parity. The large-scale
magnetic fields accumulates at the base of the domain and develops unipolar
large-scale polar caps, as well two equipartition-strength wreath-like twisted
toroidal flux systems at mid-latitudes, which migrate equatorward in the
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course of each half-cycle. Large magnetically-mediated modulation of differ-
ential rotation develop in the course of the magnetic cycle, with the mid-
latitude large-scale shear reduced by as much as 60% at cycle peak. This
deterministic modulation of differential rotation is found to play a key role
in the process of magnetic polarity reversal (on this see also Strugarek et al.,
2017).

The K3S simulation also produced a Grand Minimum-like event, lasting
some 5 half-cycles, which appears to result from a form of parity modulation.
The top panel of Figure 3.15 shows a time-latitude diagram of the zonally-
averaged radial magnetic component at depth r/R = 0.75. The disruption
of the cycle at low latitudes between t = 34 and 50 yr is quite striking. The
total magnetic energy integrated over the simulation domain (middle panel)
diminishes only slightly during the event, although this reflects in part the
persistence of the strong magnetic fields sustained at high latitudes in this
simulation; if the volumetric integration is restricted to ±40◦ latitude, the
drop in magnetic energy becomes more conspicuous (orange time series).
The disruption of the basic cycle is associated with the excitation of modes
of even equatorial parity, with concommitant decrease of odd-parity modes.
This is shown on the bottom panel of Fig. 3.15, displaying time series of
magnetic energy associated with axisymmetric (m = 0) modes of odd (red)
and even (blue) equatorial parity. Theses time series are constructed from
the radial magnetic field component at depth r/R = 0.75. Up to t ≃ 33 yr the
odd parity had remained dominant, but then switches rapidly to a mixture
of odd and even parity which perdures throughout the event. Such a change
in the repartition of magnetic energy between modes of opposite parity,
while the total energy remains approximately constant, is reminiscent of the
Type I nonlinear modulation described in §3.1. Recovery to dominant odd
parity takes place more gradually across the Grand Minimum, but power in
even parity modes remains elevated for many cycles following the end of the
event. The detailed analysis carried out by Augustson et al. (2015) reveals
that both the entry and exit from the Grand Minimum are coincident with
the appearance of significant power in the non-axisymmetric (m ̸= 0) modes
(see their Fig. 7b).

The K3S simulation of Augustson et al. (2015) just discussed arguably
offers, at this writing, the closest analog of a Grand Minimum occuring in a
global MHD simulation. Other similar simulations do offer examples of other
potentially relevant mechanisms for disrupting magnetic cycles developing
therein. Figure 3.16, taken from Lawson et al. (2015), depicts the apparent
disappearance of the large-scale magnetic cycle in a EULAG-MHD simula-
tion akin to that discussed in §2.1. The top time-latitude diagram shows the
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Figure 3.15 A Grand Minimum in the ASH K3S global MHD simulation
of Augustson et al. (2015). The top panel is a time-latitude diagram of the
zonally-averaged radial magnetic component at /R = 0.75, near the base
of the simulation domain. The color scale covers the range ±1 kG from red
to deep blue. The middle panel shows a time series of magnetic energy
intergrated over the simulation domain, and the bottom panel shows the
corresponding time series of power in odd (red) and even (green) axisym-
metric (m = 0) spherical harmonics modes of the radial field decompo-
sition at r/R = 0.75. The bipolar structures at low latitudes reflect the
pesence of equipartition-strength toroidal magnetic “wreaths” (Augustson
et al., 2015). The vertical dashed line indicate the entry and exit from the
Grand Minimum. Figure generated from numerical data kindly provided
by K. Augustson.{fig:K3S}
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Figure 3.16 Dynamo mode transitions in a EULAG-MHD global simula-
tion of convection and dynamo action, akin to the Passos and Charbonneau
(2014) simulation discussed in §2.1. The top panel is a time-latitude dia-
gram of the zonally averaged toroidal magnetic field at the base of the
convecting layers (r/R = 0.71), while the bottom panel displays a time-
longitude diagram of the (unaveraged) toroidal magnetic component ex-
tracted at the same depth and latitude 45◦ North. The apparent disap-
pearance of the large-scale magnetic cycle at t ≃ 500 yr (top panel) is in
fact due to the large-scale field transiting to a non-axisymmetric (m = 1)
“tilted dipole” configuration, still undergoing regular polarity reversals on
a multi-decadal timescale (see text). Reproduced from Lawson et al. (2015)
(Figure 14). {fig:mhd70}

spatiotemporel evolution of the zonally-averaged toroidal magnetic compo-
nent at the interface between the convectively unstable fluid and the un-
derlying stably stratified fluid layer present in this simulation. A regular
cycle showing good hemispheric synchrony and antisymmetric parity devel-
ops after about 100 yr of simulate time, and perdures for another 250 yr
until the Southern hemsphere fails to reverse its polarity. The subsequent
two (half-)cycles are then parity symmetric, but at t ≃ 500 yr the Northern
hemisphere shuts off, followed half a cycle later by the Southern hemisphere.

In fact, as shown on the bottom panel of Fig. 3.16, the large-scale magnetic
cycle perdures through the end of this simulation, with roughly the same
peak magnetic field strength and slightly reduced cycle period. What is
plotted here is now a time-longitude diagram extracted at the same depth as
the top panel and latitude 45◦ in the Northern hemisphere. It reveals that at
t ≃ 500 yr, what was up to then a cycling axisymmetric large-scale magnetic
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field (no variation with longitude on global scales) transits abruptly to a
non-axisymmetric configuration, which turns out to be well approximated
by a dipole strongly tilted with respect to the rotation (symmetry) axis.
This tilted dipole mode still undergoes regular polarity reversals, with a
period only slightly shorter than its axisymmetric predecessor. The analysis
of Lawson et al. (2015) suggests that this transition may be triggered by the
development of a magnetoshear instability in the upper reaches of the stable
fluid layer (on this see also Miesch, 2007; Gilman et al., 2007; Guerrero et al.,
2016, and references therein).

The set of spherical wedge MHD simulations presented and analyzed in Vi-
viani et al. (2018) also exhibits transition to non-axisymmetric, and further
indicate that these bcome dominant at high rotation rates. Earlier simialr
simulations by Käpylä et al. (2016) illustrates yet another potentially rele-
vant mechanism, namely the “destructive interference” between no less than
three spatially segregated dynamo modes developing in their simulation (on
co-existing dynamo modes in global MHD simulations see also Beaudoin
et al., 2016).

3.3.6 All together now{ssec:sumupcases}
Even the small set of case studies discussed in this section reveal an abun-
dance of riches with regards to the means of generating Maunder Minimum-
like epochs of strongly suppressed magnetic activity in extant dynamo mod-
els of the solar cycle. In what follows an attempt is made to identify some
robust trends that persist across models.

In view of the strongly turbulent state of the solar convection zone, stochas-
tic fluctuations in dynamo source terms appear inevitable, and these offer
a simple means of generating long timescale fluctuations and Grand Min-
ima/Maxima, in particular if the dynamo operates close to criticality; how-
ever, it is not at all obvious a priori whether or not the sun operates in this
mildly supercritical regime. Convection itself is presumably strongly super-
critical, but this does not imply that the dynamo process also is. One can
find some observational support in the fact that the solar luminosity (and
thus convective enthalpy flux) and differential rotation show very little vari-
ation in the course of the magnetic cycle, suggesting in turn that a weak
backreaction on inductive flows. This is what one would (somewhat naively)
expect from a midly supercritical dynamo, unless amplitude saturation is
entirely dominated by the constraint of magnetic helicity conservation.

Turning to strongly supercritical dynamos, deterministic nonlinear modu-
lation of large-scale flows and interference between between distinct dynamo
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modes also emerges as a viable mechanism for long term modulation. The
term “distinct” is to be understood as encompassing global modes differing
and in equatorial and/or stapatially segragated local modes. Supercritical-
ity is typically needed to avoid periodic or quasi-periodic modulation. An
important caveat here relates to the fairly simplistic manner in which mag-
netic backreaction on large-scale flows is typically implemented in otherwise
kinematic axisymmetric mean-field dynamo models. This failing remains
particulary acute for flux transport dynamos.

At this writing, solar-like Grand Minima/Maxima have been and remain
hard to produce in global MHD simulations of convection and dynamo ac-
tion. The need to carry out temporally-extended simulation runs poses a
obvious practical difficulty, but one can legitimately wonder whether there is
more to it than that. Observationally, dipole reversal by the poleward trans-
port of active region decay product appears to be an important component
of the dynamo loop, yet there are no “active regions” in global simulations.
Many such simulations also simulate only the convection zone, which de facto
eliminates some potentially important inductive mechanism and dynamical
effects.

The question can be turned around: can at least some long timescale vari-
ability scenarios be eliminated on the basis of extant data ? Here discrimi-
nant may be found in the manner different solar cycle models enter and exit
Grand Minima. In most scenarios discussed in this section, recovery from a
Grand Minimum is gradual, the return to “normal” cycle amplitudes tak-
ing place over a few magnetic cycles; this is not always the case (cf., e.g.,
Ossendrijver, 2000a, and Charbonneau et al. 2004). In some scenarios entry
into Grand Minima takes place through a large excursion in cycle ampli-
tude, while in other scenarios entry is as gradual as recovery (compare, e.g.,
Figs. 3.4 and 3.8 herein). Historical sunspot and auroral data (as well as
yearly 10Be data) across the 1645–1715 Maunder Minimum could be crucial
in this respect.

3.4 Can long-term variability be predicted ? {sec:GMpredict}
As discussed in the next chapter, the prediction of solar Grand Minima and
Maxima, and more generally of long timescale variability in overall activity
levels, is becoming an important aspect of space climate modelling, and
even of Earth’s climate modelling (Gray et al., 2010; Matthes et al., 2017).
In light of the model results just discussed, this may appears hopeless task:
not only do we not know which physical mechanism(s) drive long timescale
variability, we do not even have a concensus model for the “basic” solar
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magnetic cycle. Yet, the same model results indicates that prediction at
some level may be possible.

Recent observational and modelling work indicates that the stochasticity
of active region emergence poses strong limits to prediction, with a pre-
dictability window likely not exceeding a single (half)-cycle (Hathaway and
Upton, 2016; Nagy et al., 2017; Labonville et al., 2019; Petrovay, 2020). Like-
wise, stochastically-driven intermittency (e.g., Figs. 3.3 and 3.7) is unpre-
dictable, although short-term precursors may exist (more on this shortly).
This, however, does not preclude prediction on long timescale, especially
if long timescale variability is driven by deterministic nonlinear amplitude
modulation. Looking for example at Figs. 3.12 and 3.13, there is clearly
long-term “memory” in the amplitude modulation, with an associated pre-
dictability window largely exceeding the period of the primary cycle.

With regards to the prediction for the onset of Grand Minima, one pre-
cursor pattern emerges in a variety of models that rely on distinct basic
dynamos and fluctuation mechanism: strong hemispheric asymetry prior to
onset (see Figs. 3.7, 3.9 and 3.15 herein). This can result from determinis-
tic parity modulation, as well as from stochastic excitation of higher order
dynamo modes.

chiefly: large hemispheric asymetry in cycle preceding onset (point to Figs)
reflecting parity modulation, or more generally, interaction of modes with
distinct symmetries

GO effect
Kristof’s ARDoR

3.5 Summary

• There exist a wide variety of possible scenarios to push a solar/stellar
dynamo in and out of quiescent epoch of strongly reduced or interrupted
cyclic activity;

• purely deterministic nonlinear modulation tends to generate periodically
or quasi-periodically recurring Grand Minima, often of similar duration;

• scenarios including stochastic mechanisms tend to produce aperiodically
recurring Grand Minima with a wide distribution of durations;

• dynamo model subject to a lower operating threshold on field strength
need a secondary dynamo to restart and exit from Grand Minima;

• some scenarios exhibit a precursor signal to the onset of grand min-
ima (high cycle amplitude, pronounced GO signal, strong hemispheric
asymetry).

• ARDoR
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Dubé, Caroline, and Charbonneau, Paul. 2013. Stellar Dynamos and Cycles from
Numerical Simulations of Convection. Astrophys. J., 775(1), 69.

Durney, B. R. 1995. On a Babcock-Leighton dynamo model with a deep-seated
generating layer for the toroidal magnetic field. Solar Phys., 160(Sept.), 213–
235.

Durney, B. R. 1997. On a Babcock-Leighton Solar Dynamo Model with a Deep-
seated Generating Layer for the Toroidal Magnetic Field. IV. Astrophys. J.,
486(Sept.), 1065–1077.

Durney, B. R. 2000. On the Differences Between Odd and Even Solar Cycles. Solar
Phys., 196(Oct.), 421–426.

Fan, Y. 2009. Magnetic Fields in the Solar Convection Zone. Living Rev. Solar
Phys., 6.

Fan, Y., and Fang, F. 2014. A Simulation of Convective Dynamo in the Solar
Convective Envelope: Maintenance of the Solar-like Differential Rotation and
Emerging Flux. Astrophys. J., 789(July), 35.

Fan, Y., Fisher, G.H., and Deluca, E.E. 1993. The origin of morphological asym-
metries in bipolar active regions. Astrophys. J., 405, 390–401.

Fan, Y., Fisher, G. H., and McClymont, A. N. 1994. Dynamics of emerging active
region flux loops. Astrophys. J., 436(Dec.), 907–928.

Featherstone, N. A., and Miesch, M. S. 2015. Meridional Circulation in Solar and
Stellar Convection Zones. Astrophys. J., 804(May), 67.

Ferriz-Mas, A., Schmitt, D., and Schüssler, M. 1994. A dynamo effect due to
instability of magnetic flux tubes. Astron. Astrophys., 289, 949–956.

Gastine, T., Yadav, R. K., Morin, J., Reiners, A., and Wicht, J. 2014. From solar-
like to antisolar differential rotation in cool stars. Mon. Not. R. Astron. Soc.,
438(Feb.), L76–L80.

Ghizaru, M., Charbonneau, P., and Smolarkiewicz, P.K. 2010. Magnetic cycles in
global large eddy simulations of solar convection. Astrophys. J. Lett., in press.



References 125

Gilman, P. A. 1983. Dynamically consistent nonlinear dynamos driven by con-
vection in a rotating spherical shell. II - Dynamos with cycles and strong
feedbacks. Astrophys. J. Suppl., 53(Oct.), 243–268.

Gilman, P. A., and Rempel, M. 2005. Concentration of Toroidal Magnetic Field in
the Solar Tachocline by η-Quenching. Astrophys. J., 630(Sept.), 615–622.

Gilman, P. A., Dikpati, M., and Miesch, M. S. 2007. Global MHD Instabilities
in a Three-dimensional Thin-Shell Model of Solar Tachocline. Astrophys. J.
Suppl., 170(May), 203–227.

Glatzmaier, G. A. 1984. Numerical simulations of stellar convective dynamos. I -
The model and method. Journal of Computational Physics, 55(Sept.), 461–
484.

Glatzmaier, G.A. 1985. Numerical simulations of stellar convective dynamos. II.
Field propagation in the convection zone. Astrophys. J., 291, 300–307.

Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch,
U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G. A.,
Shindell, D., van Geel, B., and White, W. 2010. Solar Influences on Climate.
Reviews of Geophysics, 48(4), RG4001.

Guerrero, G., and de Gouveia Dal Pino, E.M. 2008. Turbulent magnetic pumping in
a Babcock-Leighton solar dynamo model. Astron. Astrophys., 485, 267–273.

Guerrero, G., Dikpati, M., and de Gouveia Dal Pino, E. M. 2009. The Role of Diffu-
sivity Quenching in Flux-transport DynamoModels. Astrophys. J., 701(Aug.),
725–736.

Guerrero, G., Smolarkiewicz, P. K., Kosovichev, A. G., and Mansour, N. N. 2013.
Differential Rotation in Solar-like Stars from Global Simulations. Astrophys.
J., 779(Dec.), 176.

Guerrero, G., Smolarkiewicz, P. K., de Gouveia Dal Pino, E. M., Kosovichev, A. G.,
and Mansour, N. N. 2016. On the Role of Tachoclines in Solar and Stellar
Dynamos. Astrophys. J., 819(Mar.), 104.

Guerrero, G., Zaire, B., Smolarkiewicz, P. K., de Gouveia Dal Pino, E. M., Koso-
vichev, A. G., and Mansour, N. N. 2019. What Sets the Magnetic Field
Strength and Cycle Period in Solar-type Stars? Astrophys. J., 880(1), 6.

Hale, G. E., Ellerman, F., Nicholson, S. B., and Joy, A. H. 1919. The Magnetic
Polarity of Sun-Spots. Astrophys. J., 49(Apr.), 153.

Hathaway, D. H. 2012. Supergranules as Probes of the Sun’s Meridional Circulation.
Astrophys. J., 760(Nov.), 84.

Hathaway, D. H., and Upton, L. A. 2016. Predicting the amplitude and hemispheric
asymmetry of solar cycle 25 with surface flux transport. Journal of Geophysical
Research (Space Physics), 121(10), 10.

Hazra, G., Karak, B. B., and Choudhuri, A. R. 2014a. Is a Deep One-cell Meridional
Circulation Essential for the Flux Transport Solar Dynamo? Astrophys. J.,
782(Feb.), 93.

Hazra, G., Karak, B. B., Banerjee, D., and Choudhuri, A. R. 2015. Correlation
Between Decay Rate and Amplitude of Solar Cycles as Revealed from Obser-
vations and Dynamo Theory. Solar Phys., 290(June), 1851–1870.

Hazra, G., Choudhuri, A. R., and Miesch, M. S. 2017. A Theoretical Study of the
Build-up of the Suns Polar Magnetic Field by using a 3D Kinematic Dynamo
Model. Astrophys. J., 835(Jan.), 39.

Hazra, S., Passos, D., and Nandy, D. 2014b. A Stochastically Forced Time Delay
Solar Dynamo Model: Self-consistent Recovery from a Maunder-like Grand



126 References

Minimum Necessitates a Mean-field Alpha Effect. Astrophys. J., 789(July),
5.

Hazra, Soumitra, and Nandy, Dibyendu. 2019. The origin of parity changes in the
solar cycle. Mon. Not. R. Astron. Soc., 489(3), 4329–4337.

Hotta, H., and Yokoyama, T. 2010a. Importance of Surface Turbulent Diffusivity
in the Solar Flux-Transport Dynamo. Astrophys. J., 709(Feb.), 1009–1017.

Hotta, H., and Yokoyama, T. 2010b. Solar Parity Issue with Flux-transport Dy-
namo. Astrophys. J. Lett., 714(May), L308–L312.

Hotta, H., Rempel, M., and Yokoyama, T. 2015. Efficient Small-scale Dynamo in
the Solar Convection Zone. Astrophys. J., 803(1), 42.

Hotta, H., Rempel, M., and Yokoyama, T. 2016. Large-scale magnetic fields at high
Reynolds numbers in magnetohydrodynamic simulations. Science, 351(Mar.),
1427–1430.

Howe, R. 2009. Solar Interior Rotation and its Variation. Living Rev. Solar Phys.,
6.

Hoyng, P. 1988. Turbulent transport of magnetic fields. III. Stochastic excitation
of global magnetic modes. Astrophys. J., 332, 857–871.

Hoyng, P. 1993. Helicity fluctuations in mean field theory: an explanation for the
variability of the solar cycle? Astron. Astrophys., 272, 321–339.

Hoyng, P., Schmitt, D., and Teuben, L. J. W. 1994. The effect of random alpha-
fluctuations and the global properties of the solar magnetic field. Astronom.
Astrophy., 289(Sept.), 265–278.

Jackiewicz, J., Serebryanskiy, A., and Kholikov, S. 2015. Meridional Flow in the
Solar Convection Zone. II. Helioseismic Inversions of GONG Data. Astrophys.
J., 805(June), 133.

Jennings, R.L., and Weiss, N.O. 1991. Symmetry breaking in stellar dynamos. Mon.
Not. R. Astron. Soc., 252, 249–260.

Jha, Bibhuti Kumar, Karak, Bidya Binay, Mandal, Sudip, and Banerjee, Dipankar.
2020. Magnetic Field Dependence of Bipolar Magnetic Region Tilts on the
Sun: Indication of Tilt Quenching. Astrophys. J. Lett., 889(1), L19.

Jiang, J., Chatterjee, P., and Choudhuri, A.R. 2007. Solar activity forecast with a
dynamo model. Mon. Not. R. Astron. Soc., 381, 1527–1542.

Jiang, J., Cameron, R. H., Schmitt, D., and Schüssler, M. 2011. The solar magnetic
field since 1700. I. Characteristics of sunspot group emergence and reconstruc-
tion of the butterfly diagram. Astronom. Astrophy., 528(Apr.), A82.

Jiang, J., Cameron, R. H., Schmitt, D., and Işık, E. 2013. Modeling solar cycles 15
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Käpylä, P. J., Viviani, M., Käpylä, M. J., Brandenburg, A., and Spada, F. 2019.
Effects of a subadiabatic layer on convection and dynamos in spherical wedge
simulations. Geophysical and Astrophysical Fluid Dynamics, 113(1-2), 149–
183.
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Stein, Robert F., and Nordlund, Åke. 2012. On the Formation of Active Regions.
Astrophys. J. Lett., 753(1), L13.



References 133

Stejko, Andrey M., Guerrero, Gustavo, Kosovichev, Alexand er G., and Smo-
larkiewicz, Piotr K. 2020. 3D MHD Modeling of the Impact of Subsurface
Stratification on the Solar Dynamo. Astrophys. J., 888(1), 16.

Stenflo, J. O., and Kosovichev, A. G. 2012. Bipolar Magnetic Regions on the Sun:
Global Analysis of the SOHO/MDI Data Set. Astrophys. J., 745(Feb.), 129.

Stix, M. 1976. Differential Rotation and the Solar Dynamo. Astron. Astrophys.,
47, 243–254.

Strugarek, A., Beaudoin, P., Charbonneau, P., Brun, A. S., and do Nascimento, J.-
D. 2017. Reconciling solar and stellar magnetic cycles with nonlinear dynamo
simulations. Science, 357(July), 185–187.

Strugarek, A., Beaudoin, P., Charbonneau, P., and Brun, A. S. 2018. On the Sensi-
tivity of Magnetic Cycles in Global Simulations of Solar-like Stars. Astrophys.
J., 863(1), 35.

Svalgaard, L., Cliver, E. W., and Kamide, Y. 2005. Sunspot cycle 24: Smallest cycle
in 100 years? Geophys. Res. Lett., 32(Jan.), L01104.

Thelen, J.-C. 2000. A mean electromotive force induced by magnetic buoyancy
instabilities. Mon. Not. R. Astron. Soc., 315, 155–164.

Tlatova, Ksenia, Tlatov, Andrey, Pevtsov, Alexei, Mursula, Kalevi, Vasil’eva, Vale-
ria, Heikkinen, Elina, Bertello, Luca, Pevtsov, Alexander, Virtanen, Ilpo, and
Karachik, Nina. 2018. Tilt of Sunspot Bipoles in Solar Cycles 15 to 24. Solar
Phys., 293(8), 118.

Tobias, S. M., Weiss, N. O., and Kirk, V. 1995. Chaotically modulated stellar
dynamos. Mon. Not. R. Astron. Soc., 273(Apr.), 1150–1166.

Tobias, S. M., Cattaneo, F., and Brummell, N. H. 2011. On the Generation of
Organized Magnetic Fields. Astrophys. J., 728(2), 153.

Tobias, S.M. 1996. Diffusivity quenching as a mechanism for Parker’s surface dy-
namo. Astrophys. J., 467, 870–880.

Tobias, S.M. 1997. The solar cycle: parity interactions and amplitude modulation.
Astron. Astrophys., 322, 1007–1017.

Tworkowski, A., Tavakol, R., Brandenburg, A., Brooke, J.M., Moss, D., and Tuomi-
nen, I. 1998. Intermittent behaviour in axisymmetric mean-field dynamo mod-
els in spherical shells. Mon. Not. R. Astron. Soc., 296, 287–295.

Upton, L., and Hathaway, D. H. 2014. Predicting the Sun’s Polar Magnetic Fields
with a Surface Flux Transport Model. Astrophys. J., 780(Jan.), 5.

Usoskin, I.G., Sokoloff, D., and Moss, D. 2009. Grand Minima of Solar Activity
and the Mean-Field Dynamo. Solar Phys., 254, 345–355.
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