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ABSTRACT

We investigate the physical mechanisms leading to the suppression of the

turbulent electromotive force in a EULAG-MHD global magnetohydrodynamical

simulation of solar convection producing a large-scale, axisymmetric magnetic

component undergoing regular polarity reversals. Assuming the turbulent elec-

tromotive force to be linearly related to the large-scale magnetic field, we extract

from the simulation the components of the α-tensor describing this relationship.

By segmenting the simulation into temporal blocks and focusing on the high

latitudes regions, where a strong dipole component builds up in the simulation,

we show that significant suppression of the α-effect takes places in the course of

the large-scale magnetic cycle. The φφ component of the α-tensor, the primary

contributor to the regeneration of the large-scale poloidal component, can be well

reconstructed from the kinetic and magnetic helicities associated with the small-

scale flow and field, with a good match in amplitude resulting from assuming a

turbulence coherence time smaller than the convective turnover time by a factor

of five. Adopting this physical model for the α-tensor, we go on to show that

quenching takes place not only via the growth of the magnetic helicity term, but

also through a significant reduction of the kinetic helicity. Nonetheless, our re-

sults are generally consistent with the strong quenching paradigm, whereby the

α-effect is suppressed by the small-scale, turbulent magnetic field long before it

reaches equipartition with the large-scale magnetic component.

1. The solar magnetic cycle and its fluctuations {sec:intro}

The sun’s magnetic activity cycle modulates all of solar activity, from radiative variabil-

ity to the frequency of all geoeffective eruptive phenomena. A proper understanding of the

physical mechanism(s) underlying solar dynamo action and regulating the cycle’s amplitude

and duration are thus a crucial component of space weather, and research on solar-terrestrial

interaction in general (Weiss 2010). We are still a long way from physically-based predic-

tion of solar cycle characteristics, even though significant progress has been made in recent
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years (for a recent review see Petrovay 2010). Part of the problem lies with the fact that

no concensus currently exists as to the mode of operation of the solar cycle; the shearing

of the solar magnetic field by differential rotation is near-unanimously considered as a key

process, but what drives the regeneration of the solar dipole moment remains ill-understood.

Some dynamo models invoke the electromotive force associated with turbulent convection,

others the surface decay of active regions (the Babcock-Leighton mechanism), while others

yet focus on various rotationally-influenced (magneto)hydrodynamical instabilities taking

place immediately beneath the base of the solar convection zone. A survey of these different

types of dynamo models can be found in Charbonneau (2010). Most such models make use

of geometrical and dynamical simplifications, most notably perhaps the use of the so-called

kinematic approximation, in which the magnetic backreaction of the magnetic field on the

inductive flows is neglected or parametrized through largely ad hoc prescriptions. Proper

tuning of these ad hoc functionals and associated model parameters can in many cases lead

to cyclic behavior showing reasonably solar-like variability patterns in the amplitude and

duration of magnetic cycles (see, e.g., Karak & Choudhuri 2011; Kitchatinov & Olemskoy

2012; and references therein)

An alternate approach is made possible by global magnetohydrodynamical simulations of

solar convection, which recently have succeeded in producing magnetic fields well-organized

on large spatial scales and undergoing more or less regular polarity reversals (Augustson et

al. 2013; Beaudoin et al. 2013; Brown et al. 2010, 2011; Ghizaru et al. 2010; Käpylä et

al. 2010, 2012; Racine et al. 2011). There are no active regions in such simulations (but

do see Nelson et al. 2012, 2013), and therefore no Babcock-Leighton mechanism, but the

turbulent electromotive force associated with thermally-driven convection is captured in a

dynamically consistent manner at spatial and temporal scales resolved by the computational

grid. Moreover, magnetic cycles in these simulations undergo significant modulation of their

amplitude and period, presumably reflecting the unavoidable stochastic forcing characteriz-

ing the turbulent environment in which the large-scale dynamo is operating.

The aim of the present paper is thus to examine in some detail the existence, form and

mechanism of suppression for the turbulent electromotive force measured in one such simula-

tion. We first briefly review in §2 the mathematical formalism of mean-field electrodynamics,

and attendant definition of the turbulent electromotive force and α-effect. In section 3 we

provide a brief overview of the global magnetohydrodynamical (MHD) numerical simulations

providing data for the foregoing analysis, describe the methods used to extract the α-tensor

from this numerical simulation, and compare the result to reconstructions of the α-tensor

based on kinetic and current helicities. The magnetic suppression of the α-effect taking place

in the simulation is investigated in §4, where we also compare our results to α-quenching

parametrizations typically used in mean-field or mean-field-like dynamo models. We close
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in §5 by summarizing our conclusions and discussing the limitations of our analyses.

2. Mean-field electrodynamics and the α-effect {sec:mfe}

The mathematical and physical underpinnings of mean-field electrodynamics are well-

covered in a number of textbooks and review articles, (Moffat 1978; Krause & Rädler 1980;

Ossendrijver 2003; Charbonneau 2013), and consequently only aspects most relevant to the

α-effect and attendant α-quenching are covered in this section. Mean-field electrodynamics

is based on the assumption of scale-separation, according to which the total flow U and

magnetic field B can be separated in large-scale, slowly varying “mean” components 〈U〉
and 〈B〉, and small-scale, rapidly varying “turbulent” components u′ and b′:

B = 〈B〉 + b′ , U = 〈U〉 + u′ , (1) {eq:scalesep}

where the angular brackets represent an averaging operator defined over an intermediate

averaging scale such that 〈u′〉 = 0 and 〈b′〉 = 0. No restrictions are imposed on the relative

magnitudes of large- and small-scale components, but a good separation of scale must exist

between u′, b′ and 〈U〉, 〈B〉 for the approach to be physically meaningful. Substituting

eq. (1) in the MHD induction equation and applying the averaging operator then leads to

an evolution equation for 〈B〉 known as the mean-field induction equation:

∂〈B〉
∂t

= ∇× (〈U〉 × 〈B〉 + EEEE − η∇× 〈B〉) , (2) {eq:mfmhd}

where

EEEE = 〈u′ × b′〉 (3) {eq:emf}

is the (mean) turbulent electromotive force, which acts as a source term. This quantity is

then expanded in terms of the mean magnetic field:

Ei = αij〈B〉j + βijk

∂〈B〉j
∂xk

+ ... , (4) {eq:alphabeta}

which achieves closure, in the sense that the RHS of eq. (2) no longer depends explicitly on

small-scale quantities. For homogeneous, isotropic turbulence, αij = αδij and βijk = βεijk,

so that truncating eq. (4) after the second term and substituting in eq. (2) yields:

∂〈B〉
∂t

= ∇× (〈U〉 × 〈B〉 + α〈B〉 − (η + β)∇× 〈B〉) . (5) {eq:mfmhd2}

The α-term now emerges as a mean-field-aligned electromotice force, and the β-term as

turbulent diffusion of the mean magnetic field. Three distinct physical regimes lead to the



– 4 –

same closed-form expression for α and β: strong magnetic dissipation, weak small-scale

magnetic field, or short coherence time for the turbulent flow (leading to the Second Order

Correlation Approximation, hereafter SOCA; see, e.g. Ossendrijver 2003; Rempel 2006); all

three cases imply that the mean magnetic field suffers little deformation by the small-scale

flow, in which case it can be shown that

α = −τc

3
〈u′ · ∇ × u′〉 , (6) {eq:alpha}

β =
τc

3
〈(u′)2〉 , (7) {eq:beta}

with τc being the coherence time of the turbulent flow. Equation (6) indicates that the

isotropic part of the α-effect is proportional to kinetic helicity hv = u′ ·ωωωω′, where ωωωω′ = ∇×u′

is the vorticity associated with the small-scale flow. The kinetic helicity will thus be nonzero

in turbulent flows breaking reflection symmetry. In the solar/stellar context, this break is

achieved through the agency of the Coriolis force, which imparts cyclonicity on convective

upfdrafts and downdrafts (Parker 1955). In the presence of rotation and stratification, eq. (6)

becomes

α = −τ 2
c

3
(u′

rms)
2ΩΩΩΩ · ∇(ρu′

rms) , (8) {eq:alpha2}

where u′

rms =
√

u′ · u′ (see Steenbeck & Krause 1969). This indicates that the the α-effect

is positive (negative) in the Northern (Southern) hemisphere, decreases with decreasing

latitudes, and may undergo a sign change at the base of the convection zone due to the rapid

drop of the turbulent flow speed when moving down into the stably stratified solar radiative

core.

In the magnetohydrodynamical regime, one expects the turbulent electromotive force

to be affected by the magnetic field. The pioneering simulations of Pouquet et al. (1976)

suggest that for MHD turbulence with short coherence time, eq. (6) should replaced

α = −τc

3
(〈u′ · ∇ × u′〉 − ρ−1〈j′ · b′〉) . (9) {eq:nlalpha}

The first term in parentheses on the RHS of this expression is again the kinetic helicity hv,

and the second is its magnetic equivalent, namely the current helicity, where µ0j
′ = ∇× b′.

Note that this magnetic contribution to the α-effect has a signed opposite to that of the

kinetic contribution. This expresses the fact that the small-scale magnetic field induced by

the small-scale flow will tend to oppose that flow, a general property of flow-field interactions

in the MHD limit.
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3. Measuring the α-effect {sec:alpha}

Conceptually, the α-effect is a kinematic property of the flow, and can be “measured”

in a number of ways. The most straightforward is perhaps to impose a uniform large-scale

magnetic field across a convecting fluid layer (see, e.g., Brandenburg et al. 1990; Ossendrijver

et al. 2001, 2002; Ziegler & Rüdiger 2003; Cattaneo & Hughes 2006; and references therein).

The inductive action of the turbulent flow acting on this imposed large-scale magnetic field

generates a small-scale magnetic component b′, which can be used to compute EEEE via eq. (3).

The α-tensor components are then computed by projecting this emf onto the large-scale

uniform field. In the context of this imposed field approach, it is essential to ensure that

(1) the underlying convective flow remains unaffected by the induced magnetic field, so that

the α-effect being measured is really that associated with the original flow, and (2) the

turbulent flow itself does not act as a dynamo, in which case the turbulent electromotive

force measured in the simulation no longer bears any relation to the imposed mean-field. The

test-field method (Schrinner et al. 2007), bypasses in principle both of these these difficulties

by solving a kinematic evolution equation for the small-scale magnetic component, using the

flow field from an unmagnetized simulation and a set of weak test magnetic fields (see, e.g.,

Käpylä et al. 2009). Even then the procedure is delicate as it must often involve periodic

resetting of the magnetic field, long temporal averages, can be sensitive to numerical details

(cf., e.g., Hughes & Cattaneo 2008).

A more direct approach becomes possible in in MHD convection simulations generating

autonomously their large-scale magnetic fields. After calculating the mean flow 〈U〉 and

magnetic field 〈B〉 through a suitable averaging procedure, eqs. (1) are used to compute the

small-scale components u′ and b′ by simply subtracting these averages from the total flow U

and field B produced by the simulation. Equation (3) is then used to compute the turbulent

electromotive force. In this case the α-effect being measured is no longer a kinematic property

of the unmagnetized flow, but rather the linear relationship characterizing the dependence

of EEEE on 〈B〉 in the nonlinearly saturated state of the simulation. This “direct” approach was

used in Racine et al. (2011), working off a EULAG-MHD convection simulation producing a

cycling large-scale axisymmetric magnetic component (see also Ghizaru et al. 2010; Beaudoin

et al. 2013; Charbonneau & Smolarkiewicz 2013; Smolarkiewicz & Charbonneau 2013). Zonal

averaging then becomes the natural averaging operator, and the α-tensor components are

then extracted from fitting the time series of ξξξξ and 〈B〉 at each grid point (r, θ) in a meridional

plane:

〈ξj〉(r, θ, t) = αjk(r, θ)〈Bk〉(r, θ, t) , j, k = r, θ, φ . (10)

We follow here Racine et al. (2011) in carrying out a least-squares minimization using Sin-

gular Value Decomposition. We do so on the output of a very long duration EULAG-MHD
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simulation (1400 yr) shown on on Fig. 1 herein. As with the simulation originally analyzed

by Racine et al. (2011), a large-scale magnetic field builds up in this simulation, peaking at

∼ 0.5 T is strength, antisymmetric about the equatorial plane and undergoing regular cyclic

polarity reversals well-synchronized across hemispheres, on a ' 40 yr cadence. The large-

scale toroidal component peaks at mid-latitudes and immediately beneath the base of the

convecting fluid layers, with an associated dipole moment sharply peaked at polar latitudes

and reversing polarity in phase with the internal toroidal component. As detailed in Passos

& Charbonneau (2014), the variations in amplitude and duration of successive cycles in this

simulation show a number of solar-like characteristics. The analyses of Racine et al. (2011;

see also Simard et al. 2013) indicate that these simulations operate as α2Ω dynamo, in the

sense that the turbulent emf and shearing by differential rotation both contribute, with

comparable magnitude, to the induction of the large-scale toroidal magnetic component.

As with the similar simulation analyzed originally by Racine et al. (2011), the α-tensor

extracted from the simulation of Fig. 1 is full, with off-diagonal components of significant

magnitudes, and overall essentially identical to Fig. 9 in Racine et al. (2011). Figure 2A

herein focuses on the αφφ tensor component, one of the two dominant components here and

the crucial one in the regeneration of a mean poloidal magnetic component from the mean

toroidal field. It shows many features “predicted” by eq. (8), including hemispheric signs,

peaks in polar regions, and a sign change near the base of the convecting layers. It also

shows a secondary maximum at low latitudes in each hemisphere, a feature seen before at

moderate to high rotation rates (see, e.g., Käpylä et al. 2006). Figure 2B shows the associated

standard deviation associated with the SVD fitting procedure, which is significantly smaller

that the magnitude of αφφ everywhere except in equatorial regions where 〈B〉 is very small

(viz. Fig. 1A), and below the convecting layers where EEEE vanishes, in both cases leading to

an ill-defined least-squares fitting problem.

The fit defined by eq. (10) is based on a rather severe truncation of eq. (4), yet Racine

et al. (2011) could show that the cyclic behavior of the turbulent emf extracted from the

simulation is actually well-captured, with the fitting residual showing a 1/f power spectrum

extending over one order of magnitude beyond the primary cycle frequency (see their Fig. 10).

We now focus on the reconstruction of the (diagonal) α-tensor constructed through

eq. (9). The calculation of the mean kinetic and current helicities from the simulation output

is straightforward, and the results are shown on Fig. 2D and E. Overall, the kinetic helicity

has a magnitude larger than the current helicity by a factor ∼ 5, and thus dominates here

the reconstruction of the α-tensor, except in the subsurface layers and at the mid-latitudes

at the the base of the convection zone. The other quantity that needs to be extracted from

the simulation output is the coherence time τc. This is now far from straightforward, as
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Fig. 1.— Spatiotemporal evolution of the zonally-averaged magnetic field for a long duration

EULAG-MHD solar convection simulation. The top panel shows a time-latitude diagram

of the zonally-averaged toroidal component at r/R = 0.718, corresponding to the interface

between the convecting fluid layers and the undelying stably stratified fluid layer. Panel (B)

shows a time-radius diagram at 52◦ latitude, where the dashed line indicates the base of the

convective zone. The bottom panel shows the zonally-averaged radial magnetic at the outer

boundary of the simulation domain (r/R = 0.96). {fig:mhd37a}
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Fig. 2.— The φφ component of the α-tensor, as extracted and reconstructed from the simu-

lation. Part (A) shows αφφ as directly extracted following the SVD-based fitting procedure

described in §3, with the associated standard deviation plotted in (B). Part (C) shows α∗

φφ

as reconstructed using eq. (9), from the kinetic and magnetic helicity profiles plotted in (D)

and (E). Part (F) shows the integration domain used in the α-quenching analysis of §4. {fig:alpha}
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it involves measuring the lifetime of coherent flow structures developing in the simulation.

We follow here Brown et al. (2010) and Racine et al. (2011) in setting this coherence time

equal to the eddy turnover time τu, itself estimated from the rms flow speed and background

density scale height:

τc = τu =
Hρ

u′

rms

. (11) {eq:tauc}

This amounts to assuming that the turbulence flow has a Strouhal number S ' τc/τu equal

to unity.

Figure 2C shows the tensor diagonal α∗ reconstructed from eq. (9) with τc estimated in

this manner. The resemblance with the actual extracted tensor on part A is striking: both

tensor components peak at the poles, show a secondary maximum at low latitudes, and a

sign change near the base of the convection zone. Notice, however, the different ranges of the

color scales; here α∗ is a factor ∼ 5 larger than the actual αφφ extracted from the simulation.

Since the spatial pattern of the tensors are so similar, it becomes natural to assume that

the discrepancy arises from an overestimate of the coherence time τc. Indeed, if one assumes

τc/τu ' 0.2 instead of unity, so as to recover similar overall amplitudes for α∗ and αφφ, then a

peculiar internal consistency is recovered: we now satisfy one of the conditions under which

eqs. (6) and (9) are expected to hold, namely short coherence time turbulence, in the sense

that the lifetime of convective eddies is significantly shorter than their turnover time.

4. Measuring α-quenching {sec:quench}

The turbulent α-effect is expected to be quenched once the large-scale magnetic field

becomes strong enough for magnetic tension to resist deformation by the turbulent flow.

However, no concensus exists as to how exactly this takes place, and at which strength of

the large-scale field. Many kinematic mean-field dynamo models introduce a simple algebraic

amplitude-limiting nonlinearity limiting the growth of the large-scale magnetic field through

reduction of the α-effect. Another approach, known a dynamical α-quenching, is based on

the cascade of magnetic helicity to small-scale. It consists in writing an evolutionary equation

for the current helicity hB, which is solved simultaneously with the dynamo equation, and

with the total α-effect given by eq. (9) or some closely related form. Recent numerical

simulations by Käpylä et al. (2012) even suggest that in the nonlinearly saturated stages of

their simulations, the total α-effect is dominated by its “magnetic” contribution, ∝ hB.

Since the simulation of Figure 1 produces a large-scale magnetic field and yields a well-

defined α-tensor, it is possible to use the simulation output to investigate whether the latter

depends on the former. We first repeat the SVD fitting procedure used to obtain the αφφ
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tensor component plotted on Fig. 2A, this time over disjoint 100-month wide temporal blocks

centered on epochs of cycle maxima and minima, the latter determined on the basis of the

time series of magnetic energy associated with the large-scale magnetic component waxing

and waning in the course of the simulation. We opted to integrate the αφφ component over

the domain indicated on Figure 2F. This selected area is one where αφφ does not change sign,

has a magnitude much larger than its variance, and is located at high latitude, where the

large-scale dipole moment is building up (viz. Fig. 1C). Henceforth, unless explicitly stated

otherwise, averaging is always carried out over this domain, separately for each hemisphere.

The results are shown Fig. 3, in the form of bar charts, one bar per temporal block. The

error bars assigned to each measurement are obtained by integrating the standard deviation

over the same spatial domain as αφφ, assuming that fluctuations at each grid point are

uncorrelated. With only a few exceptions, the αφφ tensor extracted from each of the 34

cycles in the simulation show a statistically significant difference between epochs of maxima

and minima. Qualitatively similar results are obtained for the other components of the

α-tensor.

Next, we carry out a similar exercise, this time extracting the α-tensor over successive

100-month long temporal block, extending over the whole simulation with a 50% overlap

from block to block. For each such block we average the αφφ component and the magnetic

energy over the same spatial domain as before (viz. Fig. 2F). The αφφ component shows

a clear decrease with magnetic energy, dropping from a mean value ' 4.4 m s−1 at cycle

minima, down to 1.8 m s−1 at cycle maxima, amounting to a reduction by a substantial

factor of three. Similar levels of quenching are observed with other α-tensor components,

e.g., the averaged αrθ drops from 1.5 to 0.7 m s−1 from cycle minimum to maximum.

We can take advantage of the fact that eq. (9) offers a good representation of the αφφ

component extracted from the simulation (viz. Fig. 2) to investigate the physical origin of

the measured α-quenching. Recall that dynamical α-quenching assumes that reduction of

the α-effect takes place through the growth of the magnetic term on the RHS of eq. (9).

This growth is seen as an unavoidable consequence of magnetic helicity conservation, which

requires accumulation of magnetic helicity of one sign at small scales, if a large-scale mag-

netic component with helicity of opposite sign is to be produced by turbulent dynamo action

(Brandenburg 2001). Figure 5 shows the temporal variations of the kinetic helicity hv and

magnetic helicity hb over the course of the 34 cycles in the simulation, in the form of a

trajectory in the 2D phase space [hv, hb]. Both helicities are averaged over the high latitude

domain depicted on Fig. 2F, as well as in time, over 100-month wide temporal blocks over-

lapping by 50%, as on Figure 4. The plot shows the trajectory associated with the Northern

hemisphere, but the Southern hemisphere trajectory is similar, except for being reflected

about the origin. One magnetic cycle correponds here to one clockwise circuit along the
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Fig. 3.— Bar diagram showing the magnitude of the αφφ tensor component, averaged over

the domain shown on Fig. 2F. The top (bottom) half of the diagram correspond to the

Northern (Southern) hemisphere. The SVD fitting procedure was applied here over 100-

month wide segments centered over successive cycle minima (red and yellow) or maxima

(green and black). Error bars are estimated by averaging the standard deviation over the

same domain, assuming spatially uncorrelated statistics. With only a few exceptions, cycle

maxima show a level of α-quenching significantly exceeding the error bars. {fig:alphabarNS}
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Fig. 4.— Variation of the αφφ component versus magnetic energy of the zonal magnetic

component, both again averaged over the domain shown on Fig. 2F. The SVD fit is carried

out over successive 100-month wide time blocks, with 50% overlap between successive blocks,

and the magnetic energy is averaged similarly in space and time. The larger green solid dots

indicate the mean values for these quantities at cycle maxima and minima, taken directly

from Fig. 3. α-quenching is again quite obvious here, with αφφ decreasing by a factor of ∼ 3

over the range of magnetic energy density sampled throughout the cycles. {fig:alphaquenching}
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loop-like path, and the solid green dots show the locii corresponding to the set of maxima

and minima on Fig. 3.

The cyclic growth of the current helicity hB from cycle minimum to subsequent maxi-

mum, followed by a decrease to the next minimum, is generally consistent with the picture

of dynamical α-quenching, according to which the a cascade of magnetic helicity to small-

scale during the growth phase of the cycle eventually leads to a saturation of the large-scale

dynamo. However, here the kinetic helicity also varies substantially, dropping by almost a

factor of two between minima and maxima. In fact, considering the relative magnitudes of

hv and hb (cf. Fig. 2D and E), here this decrease of kinetic helicity contributes twice as much

as the growth of current helicity in quenching the α-effect. Interestingly, in the descending

phase of the cycles the decrease of current helicity leads significantly the rebuilding of kinetic

helicity, a possible indication that dissipation at small scales is already starting to destroy

magnetic helicity even before cycle maximum is reached.

The numerical simulation of Figure 1 achieves stability through implicit diffusivities

associated with the numerical advection scheme, which here is the same for the advection

of fluid velocity and magnetic field; in other words, here the magnetic Prandtl number

is expected to be of order unity. The rather complex variation of kinetic versus current

helicity is therefore unexpected, and must originate not with the dissipative properties of

the simulation, but rather with changes in the character of the small-scale flows, likely

mediated by the large-scale magnetic field and perhaps also time-varying large-scale flows.

Further insight into the quenching mechanism can be obtained by investigating the

ways in which the helicites vary in the course of the cycle. Kinetic helicity can decrease

either through a general decrease of the rms small-scale flow speed, or through decreasing

alignment between u′ and ωωωω′ = ∇×u′. Likewise, current helicity can decrease either because

the small-scale magnetic field decreases, or becomes increasingly misaligned with the small-

scale electrical current density j′ = µ−1
0 ∇×b′. These quantities can all be extracted from the

numerical simulation output, and once again averaged over our now customary integration

domain of Fig. 2F. Figure 6 shows phase space trajectories between the alignement angle and

flow/field magnitude for kinetic helicity in (A), and current helicity in (B). These alignment

angles are defined here through:

cos θv =
hu

|u′| |ωωωω′| , cos θb =
hb

|b′| |j′| , (12) {eq:angles}

both averaged over the usual integration domain. The plots show the trajectories for the

Northern hemisphere; similar trajectories are observed in the Southern hemisphere.

The decrease of kinetic helicity from cycle minimum to maximum is seen to originate in

approximately equal part with a decrease of the rms flow speed, and decreasing alignment
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Fig. 5.— Phase space portrait of the joint variations of the kinetic and current helicities in

the Northern hemisphere. As in previous Figures, hv and hB are averaged over the domain

shown on Fig. 2F and averaged over successive 100-month wide temporal blocks with 50%

overlap (solid dots), with consecutive blocks connected by a line segment. The trajectory

runs clockwise on this plot, with mean values over cycle maxima and minima indicated by

solid green dots. {fig:alphaphasespace}
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Fig. 6.— Phase space portrait of the cyclic variations of kinetic (top) and current (bottom)

helicities in the Northern hemisphere, each panel in a format similar to Fig. 5. The trajectory

runs clockwise on the bottom plot, with mean values over cycle maxima and minima again

indicated by the larger green dots on each panel. The rms turbulent flow speed varies in

phase with the angle it subtends with vorticity, but in the case of current helicity the angle

between b′ and j′ is out of phase by ∼ π/2 with the variation of b′rms (see text). {fig:2helphasespace}
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between the flow and its vorticity, both varying tightly in phase throughout the magnetic

cycle. The pattern leading to the variation of current helicity is more complex, however.

The small-scale magnetic field b′ and electrical current density j′ remains almost orthogonal

to one another across the cycle (cos θb ' 0), departure from orthogonality peaking in the

descending phase and vanishing upon approaching minimum in the descending phase.

The α-quenching parametric formulae most often used in mean-field dynamo models are

based on the assumption that the α-effect becomes suppressed once turbulent fluid motions

reach energy equipartition with the large-scale magnetic field, i.e.,:

1

2
ρ(u′

rms)
2 =

〈B〉2
2µ0

(13)

This working hypothesis is most often introduced in mean-field models by adding an explicit

algebraic dependence on 〈B〉 to the α-tensor components:

α → α

1 + (〈B〉2/Beq)
(14)

This ad hoc expression obviously “does the right thing”, in that it ensures α → 0 as 〈B〉 À
Beq. However, attempts to validate such expression against MHD numerical simulations of

forced helical toy flows have instead lead to the alternate “strong quenching” expression:

α → α

1 + Rm(〈B〉2/Beq)
(15)

where Rm is the magnetic Reynolds number characterizing the flow. With Rm ∼ 108—1010

in solar convection zone, α-quenching then sets in at a magnitude of 〈B〉 four to five orders

of magnitude below equipartition. The difference between eqs. (14) and (15) hinges on the

fact that at high-Rm, the turbulent flow first reaches energy equipartition with b′, not 〈B〉;
eq. (15) then follows from the scaling ratio b′/〈B〉 ∼

√
Rm, expected in the limit Rm À 1

(see Cattaneo & Hughes 1996).

In the simulation used in this paper ρ = 42 kg m−3 and u′

rms ' 20 m s−1 in the middle of

averaging domain used for the α-quenching analysis, which leads to a kinetic energy density

ek ' 8000 J m−3. This value corresponds to an equipartition field strength of ' 0.15 T, in

remarkable agreement with the centroid value on Fig. 6. On the other hand, examination

of Fig. 4 indicates that quenching is already well underway at 〈Bφ〉2/2µ0 ' 103 J m−3.

This suggests that that α-quenching in our simulation is mediated primarily by small-scale

magnetic field, in agreement with the strong quenching Ansatz, even though here Rm '
50, which, while definitely larger than unity, is still a long way from 108. Note that this

conclusion relies on the use of the toroidal component of the large-scale magnetic field to

compute these energy density, since αφφ operates on this magnetic component; calculating
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the magnetic energy using all large-scale field components leads to a smaller ratio between

magnetic energies at large and small scales, a consequence of the strong dipole moment

building up in the simulation.

5. Concluding remarks {sec:concl}

In this paper we extracted the α-tensor from a temporally extended EULAG-MHD

simulation of solar convection, producing a well-defined large-scale axisymmetric magnetic

component undegoing regular cyclic polarity reversals. The specific simulation we use spans

18 magnetic cycles of period ' 80 yr, equivalent to 36 “solar activity cycles”. These mag-

netic cycles are characterized by reasonably stable amplitudes, durations, and show good

hemispheric synchrony. Mean-field-based analyses modelling of similar simulations (Racine

et al. 2011; Simard et al. 2013) suggest that they operate as α2Ω dynamos, in which the

cycle regeneration of the large-scale poloidal magnetic component is mediated by a mean-

field-aligned turbulent electromotive force.

To a first approximation the α-tensor relating the mean magnetic field to the mean

turbulent emf is found to be independent of the phase of the cycle, and its φφ compo-

nent, crucial to the regeneration of the dipole moment, turns out to be well-represented by

classical expressions computed in the context of the SOCA approximation. These expres-

sions (viz. eqs. (6) and (9) herein) relate the isotropic part of the α-tensor to the mean

kinetic and current helicities of the small-scale flow and magnetic field, and are applicable

to near-homogeneous, near-isotropic turbulence. We conjecture that the good agreement so

obtained results from the low coherence time of the small-scale turbulent flow building up in

our simulation, which is one of the physical regimes under which SOCA is expected to hold.

Focusing on the φφ component of the α-tensor, we could show that significant magnetic

quenching of the α-effect is taking place at high latitudes, where a strong axisymmetric

dipole moment builds up in the simulation. Taking the SOCA expression for αφφ at their

face value, we sought to track the origin of the measured quenching to magnetically-mediated

variations in the kinetic and current helicities. Our analysis shows that quenching of the α-

effect takes place not only through a growth of the current helicity, but also by a decrease of

the kinetic helicity. Approximately half of this decrease is due to a drop in the rms turbulent

flow speed, while the other half results from a change in the alignment of the small-scale flow

with respect to it vorticity vector. These results indicate that, at least in this simulation,

quenching of the α-effect is a fully magnetohydrodynamical phenomenon, finding its roots

in magnetically-mediated changes in the patterns of turbulent convection.
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Independently of the applicability (or lack thereof) of the SOCA expressions for the

α-tensor, our analysis indicates that even in the minimum phase of the magnetic cycles our

α-effect shows a strong dependence on magnetic energy, indicating that significant magnetic

quenching is acting already then. Our α-effect evidently operates in a strongly nonlinear

regime at all phases of the large-scale magnetic cycles unfolding in the simulations, as seems

to also be the case in the simulations of Käpylä et al. (2012, 2013). We also compared

our quenching results to algebraic quenching formulae commonly used as amplitude-limiting

nonlinearities in many mean-field and mean-field-like models of solar and stellar dynamos.

Our results are consistent with the so-called strong quenching Ansatz, whereby quenching

of the α-effect is effected primarily by the small-scale magnetic field component, rather than

directly by the large-scale magnetic component defining the cycles.

In light of these results, it is tempting to conclude that magnetic quenching of the

turbulent electromotive force is the mechanism controlling here the amplitude of the large-

scale magnetic cycle. However, parallel analyses of similar simulations have shown that the

cycle also drives solar-like torsional oscillations of the internal differential rotation (Beaudoin

et al. 2013), and modulates the large-scale meridional flow also buildinp up in the simulation

(Passos et al. 2012). All these processes represent transfer of magnetic energy to kinetic

energy, and thus can also contribute to the saturation of the large-scale magnetic cycle. A

detailed energy balance analysis is currently under way to identify which of these mechanism

dominates the draining of the magnetic energy reservoir (Passos et al., in prep.). While these

simulations are still far removed from solar conditions, the hope remains that the detailed

diagnosis and analyses they permit may shed some light on the mechanisms controlling the

amplitude and duration of the real solar cycle, and offer a quantitative springboard towards

a similar understanding of observed stellar cycles.
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