
Chapter 12

Cooperation
{chap:coop}

12.1 The prisoner’s dilemma {sec:IPD}

Under suspicion of breaking into the computer systems of Multi-National United, two hackers
are being detained in separate cells and interrogated in turn by Agent Smith. Evidence gathered

Agent Smith
at the time of arrest being rather thin, each suspect is being told that he/she will get off with a
lighter sentence if agreeing to provide additional evidence to ensure a guilty verdict for the other.
For each suspect the best possible outcome arises by betraying the other, but only provided the
other does not betray as well; mutual betrayal (defection) is dangerous because both suspects
then end up in deeper trouble than they would have had they each opted to remain true to the

Danger: of mutual betrayal
other (cooperation), which is the dual move with the greatest mutual benefit.

This situation exemplifies the types of problems adressed by game theory. The key concept
in the type of two-player game just described is the payoff matrix. In this matrix the element
ij give the score obtained by making move i if the opponent plays move j; in terms of our two
moves, Cooperate (C) and Defect (D), the payoff matrix used in all that follows is:

IPD: payoff matrix

(
C D

C CC CD
D DC DD

)

=

(
C D

C 3 0
D 5 1

)

. (12.1) {eq:payoff}

On the basis of this specific payoff matrix, and without information regarding the other player’s
behavior, the best move is clearly to defect (average payoff 3, versus 1.5, if the opponent’s move
is equiprobably C or D). But the opponent can figure this out too, and therefore by the same
logic will also defect. In that case both players obtain a score of 1, less than the equiprobable
“average” payoff associated with (12.1). It is also much less than if both had cooperated (payoff
3 to each), but still more than a cooperating move met by a defection (payoff zero). What is
then the best move ? Therein lies the prisoner’s dilemma1.

If the game involves only a single round, then retaliation is not a concern, and from a
purely probabilist point of view the best strategy is to defect. This is no longer the case if the
game is played as many consecutive rounds between the same two players. This is the iterated
prisoner’s dilemma (hereafter IPD). In such a situation the opponent’s behavior in past rounds

IPD: defined
can be used to pick the “best” move for the current round. In the remainder of this chapter
we consider the complex patterns of cooperation and competition that can take place between
the following five classical IPD strategies:

IPD: strategies

1. ALLC: Always cooperate; this “nice” strategy is non-reactive, since the current move is
not influenced by the opponent’s prior move(s).

1Numerical values other than those given in the payoff matrix (12.1) are of course allowed, but in general
subject to the constraint DC > CC > DD > CD for the class of games under consideration here. The dilemma
materializes provided the entries in the payoff matrix satisfy the relation 2 × CC > CD + DC.
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162 CHAPTER 12. COOPERATION

2. ALLD: Always defect; like ALLC, this “nasty” strategy is not influenced by the oppo-
nent’s prior move(s).

3. RAND: Choose randomly but with equal probability between cooperation of defection,
independently of the opponent’s prior move(s) (non-reactive);

4. TFT: Tit-for-Tat: start off with cooperation, then simply reciprocate the opponent’s
latest move; TFT is an example of a reactive strategy, as it is influenced (in fact, for TFT
it is completely determined) by the opponent’s prior move.

5. PAV: The so-called “Pavlov” strategy: also a reactive strategy, which starts off with
cooperation, then switches move (C → D or D → C) whenever the opponent defects.

Reactive or not, these are all remain very simple strategies, that require one bit (TFT and
PAV) or no bit (ALLC, ALLD and RAND) of memory to store relevant prior move information.
Moreover they are all computationally quite simple; no need for a 3-pound universe of a brain
to execute any of these!

The left half of Table 12.1 illustrates seven typical 20-round IPD game plays between differ-
ent pairs of these five strategies. For each player in a given contest, the table lists the sequence
of moves, D or C, with the corresponding score for each individual move listed above and
below the sequence of moves, followed by the average score-per-round given for each player.
Repeating this process for all combinations of our five strategies, including strategies playing
against themselves, one can construct the following score matrix, now computed for 100 rounds
per game so as to minimize the impact of the initial move on the final score2, as opposed to 20

IPD: score matrix
for the illustrative games of Table 12.1:









ALLC ALLD RAND TFT PAV

ALLC 3.00 0.00 1.50 3.00 3.00
ALLD 5.00 1.00 3.00 1.04 3.00
RAND 4.00 0.50 2.25 2.23 2.84
TFT 3.00 0.99 2.26 3.00 3.00
PAV 3.00 0.50 2.01 3.00 3.00









(12.2){eq:ipdscore}

Entries in this matrix give the average score-per-round of the strategy listed in the leftmost
column playing against the strategy listed in the top line. The best payoff, 5.0 per round, is
to ALLD when playing ALLC; this, of course, also yields the worst possible payoff for ALLC,
namely zero. TFT loses the first round against ALLD, but then defects at all subsequent rounds
(see Game 1 in Table 12.1). This leads to a small score differential in favor of ALLD, the more
rounds the lesser this differential. PAV does worst than TFT against ALLD, because faced
with systematic defection it alternates between C and D, for an average payoff of 0.5 (Game 2
in Table 12.1). ALLD does extract a good average score of 3 per round, playing against PAV,
because the latter cooperates every second move. ALLC, TFT and/or PAV playing against one
another always score 300 because they all open with cooperation, and TFT and PAV will only
change to D if the opponent defects, which will not happen here (Games 4, 5, and 6). Playing
against itself over many rounds, RAND simply collects the mean score of the whole payoff
matrix (12.1); it obtains an almost identical score playing TFT (Game 3) since the latter, from
the first defection onward, echoes its randomness; it exploits ALLC half the rounds on average,
and is exploited by ALLD half the rounds as well.

Whether due to lack of sleep, illicit chemicals, or just plain bad lighting on the dance floor,
in the real world we all sometimes make mistakes. This can be accomodated within the IPD

Mistakes: due to bad lighting
by introducing a mistake probability p (" 1) that a strategy makes the “wrong” move at any
given round. The right half of Table 12.1 illustrates the effect. Here in all cases player 1 is

Mistakes: random
making a wrong move on round 5, while player 2 makes a wrong move on round 15 (lowercase

2In this 100-round score matrix, all scores implying the strategy RAND are averages over 104 statistically
independent realizations of the 100-round game with the opponent.
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12.1. THE PRISONER’S DILEMMA 163

Table 12.1: 20-rounds IPD faceoffs with and without noise{tab:ipd}

Game Player No noise Score With noise Score

51111111111111111111 1.2 51110511111111511111 1.55
1 ALLD DDDDDDDDDDDDDDDDDDDD DDDDcDDDDDDDDDDDDDDD

TFT CDDDDDDDDDDDDDDDDDDD CDDDDCDDDDDDDDcDDDDD
01111111111111111111 0.95 01115011111111011111 1.05

51515151515151515151 3.0 51513515151515515151 3.1
2 ALLD DDDDDDDDDDDDDDDDDDDD DDDDcDDDDDDDDDDDDDDD

PAV CDCDCDCDCDCDCDCDCDCD CDCDCCDCDCDCDCcDCDCD
01010101010101010101 0.5 01013010101010010101 0.6

50505103333511051050 2.3 50503503333511351050 2.55
3 RAND DCDCDDCCCCCDDDCDDCDC DCDCcDCCCCCDDDCDDCDC

TFT CDCDCDDCCCCCDDDCDDCD CDCDCCDCCCCCDDcCDDCD
05050153333011501505 2.3 05053053333011301505 2.3

33333333333333333333 3.0 33335015015015333333 2.65
4 TFT CCCCCCCCCCCCCCCCCCCC CCCCdCDDCDDCDDCCCCCC

PAV CCCCCCCCCCCCCCCCCCCC CCCCCDDCDDCDDCcCCCCC
33333333333333333333 3.0 33330510510510333333 2.4

33333333333333333333 3.0 33335050505050111111 2.15
5 TFT CCCCCCCCCCCCCCCCCCCC CCCCdCDCDCDCDCDDDDDD

TFT CCCCCCCCCCCCCCCCCCCC CCCCCDCDCDCDCDdDDDDD
33333333333333333333 3.0 33330505050505111111 2.15

33333333333333333333 3.0 33335133333333013333 2.75
6 PAV CCCCCCCCCCCCCCCCCCCC CCCCdDCCCCCCCCCDCCCC

PAV CCCCCCCCCCCCCCCCCCCC CCCCCDCCCCCCCCdDCCCC
33333333333333333333 3.0 33330133333333513333 2.75

“c” and “d”). Comparing the games (and scores) on the left and right halves of Table 12.1, one
soon realizes that even an occasional wrong move can sometimes have a lasting and devastating
impact. This is particularly striking with TFT playing against itself, where a single wrong
move by one player will turn was was up to then an unbroken sequence of cooperation move
into an alternance of Cooperation/Defection, leading to a significant drop in the scores for both
players (see Game 5). PAV, on the other hand, shows error tolerance when playing against
itself (Game 6), in that it can recover to mutual cooperation two rounds after any mistaken
move. ALLC and ALLD are in some sense error tolerant by design, since their moves are not
influenced by that of the opponent.

Figure 12.1 gives the listing of a C-function that returns the score obtained by one strategy
(variable p1) playing another (variable p2), over a set 100 rounds. In the absence of mistakes
(input variable prob= 0), a simple pre-computed look-up table for the scores is used, while a
true 100-round IPD game is played when mistakes are allowed to occur (0 < prob < 1).
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164 CHAPTER 12. COOPERATION

int ipd( int p1, int p2, float prob )
{
/* Declarations/initialisations ------------------------------------------------ */
int mvp1n, mvp1, mvp2n, mvp2, k ; float scorep1 ;
int mv0[5]={1,0,0,0,1} ; /* initial move */
float payoff[2][2]={{3.,0.},{5.,1.}} ; /* payoff matrix Eq (12.1)*/
float score[5][5] ={ {300., 0.,150.,300.,300.}, /* score matrix Eq (12.2)*/

{500.,100.,300.,104.,300.},
{400., 50.,225.,223.,284.},
{300., 99.,226.,300.,300.}, /* NOTE: pre-computed for */
{300., 50.,201.,300.,300.} } ; /* a 100-round IPD ! */

/* Executable ------------------------------------------------------------------ */
if ( prob == 0 ) { /* no mistakes */

scorep1=score[p1][p2] ; /* just use score matrix */
} else { /* mistakes: play IPD */

mvp1=mv0[p1] ; mvp2=mv0[p2] ; /* make initial move */
if ( p1 == 2 ) { mvp1=floor(1.*rand()/RAND_MAX) } /* special case: RAND */
if ( p2 == 2 ) { mvp2=floor(1.*rand()/RAND_MAX) } /* special case: RAND */
scorep1=0 ;
for (k=0 ; k < 100 ; k++) { /* play for 100 rounds */
switch (p1) { /* player 1 */
case 0 : mvp1n=1 ; break ; /* ALLC */
case 1 : mvp1n=0 ; break ; /* ALLD */
case 2 : mvp1n=floor(2.*rand()/RAND_MAX) ; break ; /* RAND */
case 3 : mvp1n=mvp2 ; break ; /* TFT */
case 4 : mvp1n=pow(mvp1,mvp2) ; break ; /* PAV */

}
switch (p2) { /* player 2 */
case 0 : mvp2n=1 ; break ; /* ALLC */
case 1 : mvp2n=0 ; break ; /* ALLD */
case 2 : mvp2n=floor(2.*rand()/RAND_MAX) ; break ; /* RAND */
case 3 : mvp2n=mvp1 ; break ; /* TFT */
case 4 : mvp2n=pow(mvp2,mvp1) ; break ; /* PAV */

}
if (1.*rand()/RAND_MAX < prob) { mvp1n=1-mvp1n } /* player 1 makes mistake */
if (1.*rand()/RAND_MAX < prob) { mvp2n=1-mvp2n } /* player 2 makes mistake */
scorep1+=payoff(mvp1n,mvp2n) ; /* cumulative payoff */
mvp1=mvp1n ; mvp2=mvp2n ; /* update for next round */
} /* end of this round */

}
return scorep1 ; /* score of player 1 */

}

Figure 12.1: Source code in the C-programming language for a function computing the score of
one strategy (p1) playing another (p2). Strategies are identified as integers, here going from 0
to 4: 0 ≡ALLC, 1 ≡ALLD, 2 ≡RAND, 3 ≡TFT, and 4 ≡PAV, with a switch case construct
selecting the corresponding strategy. Internally the function uses “0” to indicate a defection,
and ‘1” for cooperation; this allows (among other things) a compact implementation of PAV:
its move (if player 1) is given by mvp2 to the power mvp1. The effect of mistakes is to turn a C
into a D, or vice versa, which here means turning a “1” into a “0” or vice versa; this is readily
implemented by computing one minus the noise-free move. {code:IPD}
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12.2 The fully-mixed IPD {sec:ESS}

Things start becoming really interesting when groups of strategies interact in an evolutionary
context. We consider a heterogeneous population of fixed size N , with the number Ni of each
distinct strategies present in the population at generational iteration n defining their frequency;
restricting ourselves to the five strategies introduced above, we have:

fn
i =

Ni

N
,

5
∑

i=1

fn
i = 1 . (12.3) {???}

At each temporal iteration of the evolutionary simulation, each population member plays the
IPD with every other member. From an ecological point of view, this is a fully mixed model.
The collective total score Sn

i of each strategy at iteration n is then used to compute new
IPD: fully mixed

frequencies for the next “generation”, according to

fn+1
i = N × Sn

i ×

(
5

∑

i=1

Sn
i

)−1

, (12.4) {eq:reprodrule}

where the index n measures the generational (temporal) iteration. Note that this “reproduction
rule” implies that the frequency of a given strategy at generation n+1 is not just proportional
to its mean score, but also to its frequency at generation n; in other words, the reproduction
rate of a strategy is determined by its mean score, and that rate times its current frequency
in the population sets its subsequent frequency in the next generation. Such a simulation is
readily set up using as its operating core the IPD C-function listed in Fig. 12.1. Figure 12.2
shows a possible implementation in the C language.

C Code: for fully mixed IPD
Figure 12.3 shows the result of two such fully-mixed evolutionary simulations, the first noise-

free (top panel) and the second introducing a mistake probability p = 10−2 (bottom panel).
This noise level implies that over the 100 rounds of each game played, each player will make
on average one mistake per game. In both cases the evolution starts off with an equal mixture
of all 5 strategies (f0

i = 0.2, i = 1...5).
With the score-proportional reproduction rule given by eq. (12.4) and an initially equal

mixture of strategies, the average values of each rows in (12.2) indicate which strategies will
at first prosper and which will flounder. These mean values are the following: ALLC= 2.10,
ALLD= 2.608, RAND= 2.364, TFT= 2.45, and PAV= 2.302, so we would expect ALLD to
prosper and ALLC to decline. This is indeed what is observed during the first few iterations on
the top panel of Fig. 12.3, but as the strategy frequencies change the mean values of the score
matrix (12.2) in themselves are no longer a good evolutionary predictor. In fact these initial
evolutionary trends change dramatically once ALLC has been nearly decimated by ALLD, by
the tenth iteration or so. Consider that the mean scores for an equal mixture of the four
remaining strategies would then be: ALLD= 1.608, RAND= 1.955, TFT= 2.313, and PAV=
2.128. All the mean scores have gone down, but ALLD is particularly hard hit, having lost its
primary “prey”. This favors TFT, which rises to eventually dominate the population. PAV
finishes slightly above its initial frequency, with RAND and ALLC surviving at very low levels
and ALLD exterminated. It is remarkable that ALLD, the strategy that appeared unbeatable
on the basis of the IPD payoff matrix (12.1), is the only one that becomes extinct in this
simulation.

In the presence of low-level noise (mistake probability p = 10−2, bottom panel on Fig. 12.3),
the evolution begins basically the same way, but once ALLD becomes extinct and ALLC and
RAND fall to low frequencies, the error-correcting capability of PAV gives it an edge over
TFT, and over the next 100 generation PAV slowly takes over the population, passing TFT at
generation 45 here. Which strategy ends up dominating the final population in the presence of
occasional mistakes can be quite sensitive to noise level. Starting always from an equal mixture
of strategies, TFT dominates the population up to about p = 8 × 10−3, with PAV abruptly
taking over at larger p values. An equally abrupt transition occurs at p % 7× 10−2, with TFT
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#include <stdio.h>
#include <stdlib.h>
#define NT 100 /* number of generational iterations */
#define NP 100 /* target size of population */
#define PM 0.0 /* mistake probability */
int main(void)
{
/* Declarations/initialisations -------------------------------------------- */
int ipd( int, int, float ) ; /* IPD function (Fig 12.1) */
int makepop( float[5], float [NP+5]) ;
int iter, k, ipop, iopp, np, pop[NP] ;
float scores[5], f[5], score1, totalfit ;

/* Executable -------------------------------------------------------------- */
for ( k=0 ; k<5 ; k++ ) { f[k]=0.2 ; } /* Equal initial mixture */
np=makepop(frac,pop) ; /* make population array */
for ( iter=0 ; iter<NT ; iter++ ) { /* generational iteration */

for ( k=0 ; k<5 ; k++ ) { fitstrag[k]=0. ; }
totalfit=0. ;
for ( ipop=0 ; ipop<np ; ipop++ ) { /* Loop over population */
score1=0. ;
for ( iopp=0 ; iopp<np ; iopp++ ) { /* Loop over opponents */
if ( iopp != ipop ) { /* no playing with yourself */
score1+=ipd(pop(ipop),pop(iopp),PM) ; /* Play game */

}
scores(pop(ipop))+=score1/(np-1) ; /* Average score of ipop */
totalfit+=scores(pop(ipop)) /* total score on the fly */

} /* End loop over opponents */
} /* End population loop */
for ( k=0 ; k<5 ; k++ ) { f[k]=NP*scores(k)/totalfit ; /* Eq (12.4) */
np=makepop(f,pop) ; /* new population array */
printf ("Frequencies: %d,%f,%f,%f,%f,%f\n",iter,f[0],f[1],f[2],f[3],f[4]) ;

} /* End generational loop */
}
int makepop( float frac[], float pop[] ) /* Builds population array */
{

int i, k, tot, ns[5] ;
tot=0 ;
for (k=0 ; k<5 ; k++) {

ns[k] = floor( NP*frac[k]+0.25 ) ; /* Eq. (12.3) */
for (i=tot ; i<tot+ns[k] ; i++ ) { pop[i]=k ; } /* Fill pop array */
tot+= ns[k] ;

}
return tot ; /* Population size */

}

Figure 12.2: Source code in the C-programming language for a fully-mixed evolutionary simula-
tion of a IPD-playing population of strategies. The C-function makepop computes the number
of strategies associated with the core-based fractions, as per eq. (12.4 and fills the population
array pop accordingly. Because of truncation happening when turning real-valued frequencies
into integer-valued numbers of startegy, the total population size np sometimes deviates from
the set target NP, but very seldom by more than ±1 already for NP= 100. {code:mixedIPD}
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Figure 12.3: Variations of strategy frequencies with time, in two fully-mixed 100-round IPD
simulations. In both cases a population of 100 players plays all other players in the population
once at each temporal iteration. The top plot shows results for a noiseless reference simulation,
while in the simulation of the bottom panel playing “mistakes” occur with probability p = 10−2.
{fig:ipd2ts}

taking over again from PAV. Increasing the noise level just a bit more, to p % 10−1, triggers yet
another abrupt transition with ALLD now completely dominating the population. In a noisy
environment ALLD does well playing against itself, because it scores 5 every time its ALLD
opponent cooperates by mistake, and zero when it cooperates by mistake, for a mean score of
2.5 per mistake-ridden round, much better than its score of 1.0 in the absence of noise, and
already as good as TFT playing against itself at very low noise levels. As p approaches a value
of one half, all strategies start behaving effectively randomly, and converge again to fi = 0.2.

In most of these fully-mixed IPD simulations, the frequencies of all strategies eventually sta-
bilize, sometimes after a few tens of generational iterations, other times after a few hundreds.
An interesting question is the stability (or lack thereof) of the global strategy frequencies. An
Evolutionary Stable Strategies (ESS) is a strategy which, when dominating in given “environ-
ment”, cannot be destabilized by externally-driven perturbations in the population frequencies,
and can resist invasion by new or formerly extinct strategies introduced in the stabilized pop-
ulation3. One of the computational exercise at the end of this chapters leads you into an
exploration of invasion and ESS in the fully-mixed IPD evolutionary model.

12.3 The spatially extended IPD {sec:spatialIPD}

From the point of view of population dynamics, for most living organisms the fully mixed model
of the preceding section is ecologically and socially unrealistic. Even in our age of planet-wide
communication and (relatively) easy plane travel, as a resident of Montréal I remain far more

3In the biological evolutionary context the primary such perturbations are the appearance of mutants within
the existing population, or migration of new competing species into the local ecosystem.
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likely to interact with an American from Vermont than with a Russian resident of Novosibirsk.
The spatial dimension can be introduced by placing strategies on the nodes of a lattice, and

having them play only nearest-neighbour strategies. From one generational iteration to the next,
each node simply adopts the strategy of its highest scoring neighbour, provided it exceeds its
own score. This defines the spatial IPD, and the code listed on Fig. 12.4 illustrates one possible

IPD: spatial

C Code: for spatial IPD
numerical implementation, based on 8 nearest-neighbours (top/down/right/left/diagonals).
Note how the scores are first calculated for all nodes, and the choice of replacement strategies
for each node is carried out subsequently in a second set of loops over the lattice dimensions.
The lattice update is then carried out in a final set of loops. This is yet another instance

Synchronous updating
of synchronous updating, necessary to avoid introducing a spatial evolutionary bias to the
simulations.

This reproduction rule implies that a strategy entirely surrounded by its kin cannot change.
As a consequence, once a compact group of any one strategy forms, it can only evolve at its
perimeter. This turns out to be a key determinant of the evolution in these spatially-extended
IPD simulations, as it can allow survival of a strategy in a hostile playing environment. This is
illustrated on Figure 12.5, for the specific case of a group of ALLCs holding out despite being
surrounded by ALLDs. The ALLC at the middle of the block scores 8 × 3 = 24 per round,

Safety in numbers
while the best performing ALLD scores 20 per round (3×5+5×1). As consequence, the other
8 ALLCs will resist invasion by ALLD because their highest-scoring neighbour is always the
central ALLC.

Figure 12.6 shows a simulation where a lattice populated by ALLC is contaminated with
5% of randomly distributed ALLDs. Within a few iterations ALLD has taken over much of the
lattice, but unlike what would happen in the fully-mixed case, here ALLC manages to survive
in invasion-resistant clusters, as on Fig. 12.5, jointly accounting for a % 10% fraction of the

Clusters: in spatial IPD
population. Here the spatial pattern stops evolving after the tenth iteration, so that the bottom
right panel on Fig. 12.6 representing the final, “frozen” state of the simulation4.

Figure 12.7 shows the first five generational iteration of another spatial IPD noise-free
simulation starting from a random distribution of equiprobable strategies, this time using all
five strategies considered previously. This is the spatially-extended counterpart of the fully
mixed simulation of Fig. 12.3 (top panel). In the first few generational iterations the evolution
starts off as in the fully mixed model, with the ALLD population growing quickly at the expense
of ALLC. While an isolated TFT loses to surrounding ALLD, a compact group of TFT can
resist invasion by ALLD at its boundaries. This is because their small score deficit playing a
neighbouring ALLD is more than offset by the 3-per-round score obtained playing against each
other. The same is true of PAV, but to a lesser extent because it scores an average 0.5 per
round against ALLD, half the score obtained by TFT against ALLD. As a consequence, after
a few iterations TFT groups start expanding rapidly at the expense of ALLD, with a slower
expansion of PAV groups. Compact groups of PAV and the few small remaining groupings of
ALLC both stabilize when surrounded by TFT, as per our spatial reproduction rule. Already
by the third iteration TFT dominates the lattice, with the few, rapidly shrinking clusters of
ALLD managing to survive only on the perimeter of ALLC or RAND clusters, against which
they secure scores equal to (against RAND) or higher (against ALLC) than TFT playing against
itself. RAND is the big loser here, becoming extinct already at the tenth iteration, over two
times faster than in the fully-mixed noise-free evolutionary simulations of §12.2.

The introduction of a finite mistake probability in the spatial IPD does not change the
fact that compact groups of strategies can only evolve at their boundaries. But perturbations
of these boundary interactions by noise leads to widely varying evolving spatial patterns and
dominant strategies. This is illustrated on Figure 12.8, showing the spatial distribution of
strategies on a 100× 100 lattice after 250 generational iterations, for varying mistake probabil-

4For the payoff matrix (12.1), an ALLC playing 8 surrounding ALLCs scores 24 per round, while an ALLD
with 4 ALLDs and 4 ALLCs as neighbours also scores 24 per round. This leads to an undesirable situation
whereby the order in which the game is played with the 8 neighbours can influence the change (or lack thereof)
in strategy at the node, which in turn can introduce a systematic spatial bias in the replacement of strategies.
Throughout this section, this problem is summarily bypassed by using a payoff matrix entry DD = 0.999 instead
of 1.0.

Complexity by Examples, Paul Charbonneau, Université de Montréal complexity.tex, August 17, 2015



12.3. THE SPATIALLY EXTENDED IPD 169

#include <stdio.h>
#include <stdlib.h>
#define NT 25 /* number of generational iterations */
#define N 100 /* lattice size */
#define PM 0.0 /* mistake probability */
int main(void)
{
/* Declarations/initialisations --------------------------------------------- */
int ipd( int, int, float ) ; /* IPD function (Fig 2.1) */
void periodic( float[N+2][N+2] ) ;
int iter, j, k, jb, kb, ip ;
float pop[N+2][N+2], fit[N+2][N+2], popnew[N+2][N+2], score, best, prob ;
int dx[8]={-1,0,1,1,1,0,-1} ; dy[8]={-1,-1,-1,0,1,1,1,0} ;

/* Executable --------------------------------------------------------------- */
for ( j=1 ; j<N+1 ; j++ ) { /* random initial condition */

for ( k=1 ; k<N+1 ; k++ ) { pop[j][k]=floor(5*rand()/RAND_MAX) ; } }
for ( iter=0 ; iter<NT ; iter++ ) { /* generational iteration */

for ( j=1 ; j<N+1 ; j++ ) { /* first loops over lattice */
for ( k=1 ; k<N+1 ; k++ ) {
fit[j][k]=0. ;
for ( ip=0 ; ip<8 ; ip++ ) { /* Loop over neighbours */

fit[j][k]+=ipd(pop[j][k],pop[j+dx[ip]][k+dy[ip]],PM) ; } /* Play IPD*/
}

} /* end first lattice loops */
periodic( fit ) ; /* enforce periodicity in x,y */
for ( j=1 ; j<N+1 ; j++ ) { /* second lattice loops */
for ( k=1 ; k<N+1 ; k++ ) {
jb=j ; kb=k ; best=fit[j][k] ; /* current best: self! */
for ( ip=0 ; ip<8 ; ip++ ) { /* Loop over neighbours */

if ( fit[j+dx[ip]][k+dy[ip]] > best) {/* found a new best */
jb=j+dx(ip) ; kb=k+dy(ip) ; best=fit[jb][jk] ; } }

popnew[j][k]=pop[jb][kb] ; /* adopt strategy of best */
}

} /* End second lattice loops */
for ( j=1 ; j<N+1 ; j++ ) { /* replace population */
for ( k=1 ; k<N+1 ; k++ ) { pop[j][k]=popnew[j][k] ; } }

periodic( pop ) ; /* enforce periodicity in x,y */
} /* End generational loop */

}
void periodic( float latt[][] ) /* Enforces periodic B.Cs. */
{
int j ;
for ( j=1 ; j<N+1 ; j++ ) {

latt[j][0]=latt[j][N] ; latt[j][N+1]=latt[j][1] ; /* periodic in x */
latt[0][j]=latt[N][j] ; latt[N+1][j]=latt[1][j] ; /* periodic in y */

}
latt[0][0] =latt[N][N] ; latt[N+1][N+1]=latt[1][1] ; /* the 4 corners */
latt[0][N+1] =latt[N][1] ; latt[N+1][0] =latt[1][N] ;

}

Figure 12.4: Source code in the C-programming language for the spatially-extended IPD. This
code uses the same IPD C-function (listed on Fig. 12.1) as the fully-mixed model of Fig. 12.2.
{code:spatialIPD}
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Figure 12.5: Survival of a 3 × 3 block of ALLC (orange) surrounded by ALLDs (gray). The
score of each strategy playing against its 8 neighbours is indicated. The outer layer of ALLD
is assumed to be surrounded by even more ALLD. These scores are based on the payoff matrix
(12.1). {fig:gangup}

ities p, as labeled. All simulations begin from the same random initial conditions and use the
same sequence of random numbers when playing RAND, so that the differences truly reflect the
system’s evolution, rather than idiosyncracies of the initial conditions or of RAND’s behavior.
The p = 0 snapshots represents the spatially frozen end state of the simulation of Fig. 12.7,
persisting unchanged since the eleventh iteration for this simulation.

Already at p = 10−3, where mistakes happen on average once every 10 games, ALLC benefits
from TFT’s inability to correct mistakes when playing against itself; in a 100-round game, its
score can range from 1.02 to 3.02, depending on when the mistake happens. ALLC being blindly
forgiving, at low noise levels it does quite well playing against itself; if each player makes only
one mistake in a 100-round game, they each collect a score of 2.99 instead of 3.0. This is
even better than PAV playing against itself (2.94 instead of 3.0). In such an environment, an
apparently suicidal strategy like ALLC ends up doing well when it can cluster; there can indeed
be safety in numbers! The larger population of ALLC also allows survival of ALLD at much

Safety in numbers
higher levels (f % 0.15) than in the absence of noise (f = 1.3 × 10−4).

At high noise levels (p > 3× 10−2) PAV’s error-correction capabilities give it an unbeatable
edge over TFT. At p = 0.1 (on average ten mistakes per player in a 100-round game), the
simulation is dominated by PAV (f = 0.84) already after 100 generational iterations, with
remaining isolated compact blocks of ALLC each surrounded by a thin shell of parasitic ALLD.
ALLD also survives in linear structures cutting paths through the dominant PAV background.
TFT, extinguished here after 30 iteration, cannot compete with PAV at this noise level, due to
its inability to correct mistakes. The spatial pattern is still evolving slowly after 250 iterations,
with PAV occasionally taking over a node occupied by an ALLD following a favorable sequence
of playing mistakes.

At intermediate noise levels (p = 10−2), RAND and PAV again become extinct, after 50 and
130 iterations respectively, leaving an approximately equal mixture of ALLC, ALLD et TFT.
Their spatial distribution (bottom left panel on Fig. 12.7 roughly resembles that characterizing
lower noise levels (rop right panel), but the evolution shows a new and interesting temporal
behavior, namely a three-species predator-prey cycle between ALLC, ALLD, and TFT. This is
depicted on Figure 12.9, showing a 50 generation-long segment of the frequency time series in

Predator-Prey
the p = 10−2 simulation of Fig. 12.7. The cycle is intimately tied to the spatial distribution
of the three strategies. ALLD cannot invade compact clusters of TFT, but it can eat into the
layers of ALLC, until it hits the underlying “core” of TFT. At this point the growth of ALLD
ceases, and soon TFT rises again, working jointly with ALLC to recover ground lost to ALLD.
Because ALLC is more noise tolerant than TFT, it eventually gains ground against TFT as
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Figure 12.6: Invasion of an ALLC population (orange) by a small number of randomly dis-
tributed ALLD (gray). ALLD dominates the lattice within a few iterations, but small clusters
of ALLC manage to resist invasion and persist into the final, frozen state of the simulation
(bottom right). {fig:invasion}

well, with the latter starting to decline while the former keeps rising. The stage is now set for
the onset of the next cycle.

Recurrence cycle

12.4 To cooperate or to defect ?

Throughout this chapter we only “tested” a very small set of five strategies, but we can nonethe-
less extract from our results some valid general conclusions: blind cooperation (ALLC) is not a
good strategy; neither is systematic defection (ALLD), except if an unlimited supply of suckers

Danger: of blind cooperation
(ALLC) is available for repeated abuse, an unlikely situation in any realistic evolutionary con-
text. TFT represents a form of compromise that works extremely well as long as the player’s
actions are “rational”, in the sense of not being subjected to too many random mistakes. But
surely strategies even better than TFT must exist ?

In the late 1970s Robert Axelrod organized an IPD tournament in which participants could
Axelrod, Robert

IPD: tournament
enter a computer program encoding their favorite strategy. Axelrod received 15 valid entries,
including both deterministic and probabilistic strategies, some quite simple and other very in-
tricate. In this tournament, the simplest program won: it was TFT (also the shortest entry,

Tit-For-Tat
in terms of lines of code). A second tournament held a few years afterwards attracted over 60
competing strategies, many designed with the knowledge that TFT had won the first tourna-
ment. TFT won again! As far as I know, no strategy has yet been found that can manage to
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Figure 12.7: Evolving spatial distribution of strategies in the spatial version of the IPD, using 8
nearest-neighbour tournament. The initial condition (top left) is a random mixture of strategies.
For the specific initial condition used here, by the eleventh iteration the evolution has ceased
and the spatial pattern remains frozen thereafter. {fig:6snapshots}

beat TFT in such a noise-free, multi-strategy tournament environment5.
It is interesting to reflect upon the fact that as an ethical guide for social interations, TFT

embodies only three simple behavioral principles: (1) Start off nice; (2) retaliate ruthlessly;
(3) don’t hold a grudge. Axelrod’s tournaments, and in a more limited way this chapter,
demonstrate that there is empirical support —if not grandeur— in this view of life.

12.5 Exercices and further computational explorations

1. Using the fully-mixed model of §12.2, introduce a fraction f of TFT in an ALLD popu-
lation; at what value of f can TFT invade ALLD ? Repeat the exercise, this time with
PAV trying to invade ALLD.

2. Use the IPD function of Fig. 12.1 to compute score matrices equivalent to eq. (12.2), but
with noise probabilities 10−3, 10−2 and 10−1. Can you infer from these which strategy is
likely to dominate as the noise level varies, in the context of a fully-mixed model ? And,
can you now figure out why at moderate noise levels, ”lines” of ALLD can survive within
a PAV-dominated environment (see Fig. 12.8, bottom right panel).

5A modified version of TFT which systematically defects on the very last round of each game would clearly
gain a small edge over classical TFT; however, beating TFT in this manner is only possible if the number of
rounds to be played is known a priori.
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12.5. EXERCICES AND FURTHER COMPUTATIONAL EXPLORATIONS 173

Figure 12.8: Similar in format to Fig. 8.6, but showing now the distribution of strategies
after 250 generational iterations, in a series of spatial IPD simulations with increasing mistake
probability p, as labeled. All four simulations started from the same random initial distribution
of strategies. The top right panel is the final “frozen” state of the noise-free simulation of
Fig. 12.7. {fig:4snapshots-noise}

3. Consider the following two new strategies: GRIM is an unforgiving version of ALLC, in
that it starts off nice (move C), but as soon as facing defection (D) from an opponent
it switches to D to the end of the game, no matter what the opponent does afterwards.
“Generous Tit-for-Tat” (GTFT) operates like TFT, except that it can play a move C with

IPD: strategies
some probability p (= 0.3, say) even if the opponent’s previous move was D, which can
serve as an error correction mechanism. Set up a fully-mixed evolutionary simulations
using these two new strategies in addition to the five considered in this chapter, and
examine which reach dominance under various noise conditions (including no noise).

4. Construct diagrams similar to Figure 12.5 and determine (1) what is the smallest-size
block of TFT or PAV than can survive in an ALLD environment; (2) what is the smallest-
size block of ALLD that can survive in either an TFT or PAV-dominated environment.

5. Introducing noise in the IPD can be viewed as changing the values of the score matrix’s
entries (if you’re not convinced, do exercise #2 above!). Another way to change the score
matrix is to change the payoff matrix (12.1). Consider a payoff matrix of the form:

IPD: payoff matrix

(
C D

C 1 0
D b 10−3

)

Run noise-free spatial IPD simulations starting with an equal mixture of randomly dis-
tributed ALLC and ALLD, using different values of b in the range 1.1 ≤ b ≤ 1.7. Reflect
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Figure 12.9: Three-species Predator-Prey cycles in a spatial IPD simulation with mistake prob-
ability p = 10−2 (bottom left panel on Fig. 12.8). {fig:ts-cycle}

upon the wide variety and complexity of the spatiotemporal evolutionary patterns pro-
duced... and on their resemblance to some of the patterns produced by the hodgepodge
machine back in the preceding chapter... as well as way back in chapter 2!

6. And now for the Grand Challenge: adding a random walk to the spatial IPD. At each
generational iteration, each player makes a random walk move to one of its four immediate
nearest-neighbour (top/down/right/left), and then plays a 100-round IPD game with
any other player located within a 3 × 3 stencil to compute its own score. At the next
generational iteration, the player simply adopts the highest-ranking strategy among those
played against, just as in the standard spatial IPD. You may of course allow two or more
walkers to occupy the same node (if needed, see the epidemic propagation code of Fig. 9.1
to get started). Start with a randomly distributed equal mixture of ALLC and ALLD,
and then consider a random mixture of the five strategies considered in this chapter (and
add GRIM and GTFT from exercise #3, if you want to go all the way...). Is mobility
favoring or hindering the dominance of some strategies over others ?

12.6 Further readings

This chapter is strongly inspired by

Flake, G.W., The computational beauty of Nature, MIT Press, chap. 17 (1998),
Nowak, M.A., Evolutionary Dynamics, Cambridge: Harvard University Press, chap. 9

(2006).

An absolute must-read in game theory remains
Game theory

Axelrod, Robert
Axelrod, R., The Evolution of Cooperation, New York: Basic Books (1984).

At a more technical/mathematical level, and also covering a broader range of games, see:

Complexity by Examples, Paul Charbonneau, Université de Montréal complexity.tex, August 17, 2015
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Gintis, H., Game Theory Evolving, 2nd ed., Princeton: Princeton University Press (2009).

The aforecited book by Nowak also offers an excellent introduction to game theory, including
engaging and accessible analyses of stability and equilibria in populations of strategies. If §12.3
got you intrigued regarding the game theoretic approach to evolution and population dynamics,
see also:

Hofbauer, J., & Sigmund, K., Evolutionary Game and Population Dynamics, Cambridge:
Cambridge University Press (1998)
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Chapter 13

Evolution {chap:evolve}

All the complex systems we encountered so far in this book relied on the repeated action of rules,
which led to interesting emergent behavior; but in all cases these rules were designed a priori
and hardwired into the system. In some cases, such as avalanches (chapter 5) or earthquakes
(chapter 8), the origin of these rules could be traced back more of less straightforwardly to basic
physical laws, but in other cases not. Some aspects of driving behavior (chapter 7) and animal
flocking (chapter 10) are certainly, at some level, constrained by fundamental physical laws, but
the rules implemented in these models also incorporated some sort of “intelligent design”. The
IPD strategies encountered in the preceding chapter are a good case in point: Tit-For-Tat was
designed by someone1, who had a definite purpose in mind: winning Axelrod’s tournament!

Rapoport, Anatol
But what if there is no such wise Grand Architect around to design strategies? Who sets the
rules then ?

Biologists have known for well over a century that evolution by means of natural selection
breeds complexity. In this final chapter we evolve IPD strategies through the (un)holy trin-
ity of evolutionary biology: selection, inheritance, and variation2. This will first require the
introduction of another class of biologically-inpired agents: neural networks.

Agents: as neural networks

13.1 The IPD player as a neural network

Some strategies introduced in the preceding chapter, such as ALLD and ALLC, are non-reactive,
in that they are not influenced by prior moves. TFT, on the other hand, is a reactive strategy,
as it is based on (and only on) the opponent’s prior move. More general reactive strategies
could take into account more information regarding prior moves by the opponent as well as the
player itself. To be more specific, let us write player one’s move at round n as some function
(f1, say) of the array H of its previous moves and those of opponent player two:

Pn
1 = f1(H) , H = [P n−1

1 , Pn−2
1 , ..., Pn−1

2 , Pn−2
2 , ...] . (13.1) {???}

with the various P1, P2, etc taking on the two possible values “D” or “C”, as before, and
the function f1 returning one of these two values as output. For example, if player 1 plays
the award-winning TFT strategy, f1 depends only on P n−1

2 ; in fact, fTFT
1 = Pn−1

2 . For non-
reactive strategies such as ALLC and ALLD, f1 does not even depend on H: fALLD

1 = D and
fALLC
1 = C.

A strategy can be generally defined as the association of a specific move, D or C, to ev-
ery possible instance of H. An enumerative approach (based, e.g., on a lookup table) becomes
rapidly impractical as soon as H contains more than a few elements; likewise experts systems

1Anatol Rapoport, at the time a professor of Mathematics and Psychology at the University of Toronto.
2This is the only chapter in this book which is not self-contained, as it builds substantially on the previous one.

Unless familiarity with game theory and the prisoner’s dilemma is already in hand, readers in an evolutionary
rush need to read at least §12.1.
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Figure 13.1: A simple “feed-forward” artificial neural network. This network has four input
units, two hidden layer units, and a single output unit subjected to a bias. The input vector
consists of the prior two moves of the player (P n−1

1 , Pn−2
1 ) and its opponent (P n−1

2 , Pn−2
2 ). The

output is the move P n
1 of the player at the current round n. Information flows from left to right

in such a network, and the hidden and output units process their incoming signals according to
eqs. (13.4)—(13.5). The superscripts IH and OH have been omitted on the connection weights
to avoid overcrowding the diagram. {fig:nndemo}

(based, e.g., on a slew of if...else logical statements) rapidly become a coding nightmare un-
less H is small. Artificial Neural Networks offer an interesting and computationally efficient
approach when H does not contain an extremely large number of elements.

Neural networks are made up of a set of interconnected computing units, each processing
input signals received from some (or all) other units, and broadcasting the result back to some
(or all) of the other units. Here we consider a (relatively) simple network which is designed
to process a signal entering the network through input units, and producing an output signal.
Figure 13.1 illustrates the basic network architecture. Here the four input units each transmit
to the rest of the network one of the prior two moves of the player or its opponent, converting
them to numerical values according to the convention:

S1
1 =

{

−1 if Pn−1
1 = D

+1 if Pn−1
1 = C

, S2
1 =

{

−1 if Pn−2
1 = D

+1 if Pn−1
1 = C

, (13.2){eq:inmove}

S3
1 =

{

−1 if Pn−1
2 = D

+1 if Pn−2
2 = C

, S4
1 =

{

−1 if Pn−2
2 = D

+1 if Pn−2
2 = C

. (13.3){???}

These inputs are transmitted to the hidden layer units, which first compute their linear combi-
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nations aH , weighted by the network’s corresponding connection weights, the result being fed
into a nonlinear activation function ϕH which then returns the signals SH which represent the
output of the two hidden layer units:

SH
j = ϕ(aH

j ) , aH
j =

4
∑

i=1

wIH
ij SI

i , j = 1, 2 . (13.4) {eq:nnwh}

The same computation (with one addition, to be discussed shortly) is now repeated, this time
from the hidden layer to the output layer, here comprised of a single unit:

SO
1 = ϕ(aO

1 ) , aO
1 = bO

1 +
2

∑

i=1

wHO
i1 SH

i . (13.5) {eq:nnwo}

The last step is to convert the signal of the output unit into an IPD move. One simple possibility
is

Pn
1 =

{

D if SO
1 < 0

C if SO
1 > 0

. (13.6) {eq:outmove}

The role of the activation function is to restrict the numerical output of the computational
units to some preset range, here set to [−1,+1]. This makes it more difficult for a single neural
path (from input layer to output layer) to dominate the behavior of the network, A variety of
simple mathematical functions can do the job, for example the logistic function:

Neural network: activation func-

tion
ϕ(a) = 2

(
1

1 + exp(−2a)
−

1

2

)

. (13.7) {eq:activation}

In such networks the flow of information is unidirectional, from the input layer to the output
layer, via the hidden layers. Such an architecture is called a feed-forward network (or percep-
tron). The hidden layer may appear superfluous, but it plays in fact a crucial role, as its units
act as feature detectors allowing parallel processing of the signal patterns transmitted by the
input units3.

Note, on Figure 13.1, how the output unit receives signals from the two units of the hidden
later, as well as from a “bias” unit whose input is always +1. Such a bias allows this neural
network to encode non-reactive strategies such as ALLD and ALLC, which are not influenced
by prior moves. For example, if the two connection weights between the hidden layer and
output layer are very small in magnitude, then the move output is determined by the sign of
the bias connection weight bO

1 :

• ALLC: bO
1 > 0, |bO

1 | ( |wHO
11 |, |wHO

12 |.

• ALLD: bO
1 < 0, |bO

1 | ( |wHO
11 |, |wHO

12 |.

In what follows, the network connection weights are restricted to the range −2 ≤ wIH , wHO ≤
+2, while the bias weight will never exceed the range −1 ≤ bO

1 ≤ +1.
How could TFT be encoded by such a neural network? TFT cares only about the opponent’s

prior move (P n−1
2 on Fig. ??), so all “IH” nodes other than wIH

31 and wIH
32 can be % 0. Keeping

one eye on Fig. 13.1 and the other on eqs. (13.4)–(13.5), you should convince yourself that the
following two distinct neural net configurations both yield TFT behavior:

• TFT: bO
1 % 0, wIH

31 > 0, wHO
11 > 0, all other w’s % 0.

• TFT: bO
1 % 0, wIH

32 < 0, wHO
21 < 0, all other w’s % 0.

Many more such TFT configurations are of course possible; this redundancy is in fact a hallmark
Neural network: redundancy

3The fact that the hidden layer is comprised here of only two units is not essential; two is often deemed
minimal, and more than the number of input units would be unusual for the type of application considered here.
Likewise, feed-forward neural networks can include more than one hidden layer. A few introductory textbooks
on neural networks are listed in the bibliography at the end of this chapter, for the benefit of those interested
in learning more about these fascinating information processing systems, as well as their biological inspiration.
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180 CHAPTER 13. EVOLUTION

of neural network computation.
With an input vector H ≡ (P n−1

1 , Pn−2
1 , Pn−1

2 , Pn−2
1 ) containing 4 entries, 24 = 16 distinct

binary 4-element inputs to our NN are possible, each yielding a move D or C; there are
consequently 216 = 65536 distinct move vectors possible, each defining a distinct “stragegy”
played by the neural net; schematically we can express this as:































Pn−1
1 Pn−2

1 Pn−1
2 Pn−2

2

D D D D
D D D C
D D C D
D D C C
D C D D
D C D C
D C C D
D C C C
C D D D
C D D C
C D C D
C D C C
C C D D
C C D C
C C C D
C C C C































→ NN →































D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D





























































C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D





























































D
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D































...































C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
D





























































C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C































(13.8){eq:NN16moves}

where the “...” stands for the missing 65531 move vectors! The leftmost move vector is our
familiar ALLD strategy, while the rightmost is ALLC. The following is a list of strategies to be
encountered in what follows, some familiar and some less so:

TFT ≡































D
D
C
C
D
D
C
C
D
D
C
C
D
D
C
C































DTFT ≡































D
C
D
C
D
C
D
C
D
C
D
C
D
C
D
C































ATFT ≡































C
C
D
D
C
C
D
D
C
C
D
D
C
C
D
D































REP1 ≡































D
D
D
D
D
D
D
D
C
C
C
C
C
C
C
C































TFTT ≡































D
C
C
C
D
C
C
C
D
C
C
C
D
C
C
C































(13.9){eq:NNmovevec}

DTFT (Delayed TFT) operates as TFT, but replicates the opponent’s move not from the last
round, but rather from two rounds ago (P n−2

2 ); ATDT (Anti-TFT) systematically plays the
IPD: strategies

move opposite to the opponent’s prior move; TFTT (Tit-For-Two-Tats) is a forgiving version
of TFT, defecting only after two successive defection from the opponent. REP1 is a strategy
that simply repeats its prior move, independent of the opponent’s moves; if starting with D,
REP1 will thus behave like ALLD, but starting with C it will behave like ALLC instead, the
playing behavior being entirely controlled by the player’s first (pre-wired) move. REP2 operates
similarly, repeating the player’s move from two rounds ago4.

4A much more compact way to express strategies can be defined upon introducing a “don’t care” symbol
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In all cases, here the move “chosen” by the neural net remains a completely deterministic
function of its inputs. This means that a stochastic strategy such as RAND (see §12.1) cannot
be encoded by the type of neural network considered here.

13.2 Numerical Implementation

We now turn to evolutionary simulations conceptually equivalent to the fully-mixed population
model encountered in §12.2. We consider a population of 100 agents (i.e., neural networks),
each playing a 10-round IPD with a randomly selected 20-member subset of the population.
The best-scoring agent then replaces a randomly-selected subset of 4 population members. This
sequence defines a generational iteration, at the end of which the contest begins anew within
the new agent population, which only contains 4 new members. The code listed on Figure 13.2
offers one straightforward implementation, which requires the four C-functions listed in Figure
13.3. Note the following:

1. From a practical point of view, running the neural network only involves the calculations
described by eqs. (13.4)—(13.5). The complete “definition” of an agent thus includes a
set of 11 connection weights, as well as the set of two prewired moves required to get the
IPD going. Those are stored in the two-dimensional population array w[NP][13], the j th

line the defining parameters for agent j, organized in the order:

wj ≡ (wIH
11 , wIH

21 , wIH
31 , wIH

41 , wIH
12 , wIH

22 , wIH
32 , wIH

42 , wHO
11 , wHO

21 , bO
1 , P−1, P−2) , (13.10) {eq:wvector}

2. The declaration for the population array w stands outside the main program, making it
a global variable accessible to the program and all functions without having to pass it as
an argument.

3. The evolutionary process is initiated by assigning random values to the connection weights
defining each NN in the population. In all simulations considered here the weights are
uniformly distributed in the interval [−2,+2], except for the bias weight (bO

1 ) which is
restricted to [−1,+1].

4. More

5. The neural network function nn requires two arguments, the first being a 4-element vector
priorm containing the prior moves of the player and its opponent, and the second an index
tag identifying the location of the playing agent in the population array w. The function
returns the move played for a single round of the IPD.

6. The output move omits the calculation of ϕ(a), since the outcome depends only on the
sign of the weighted sum aO

1 and eq. (13.7) is sign-preserving.

13.3 Some representative simulations

Figure 13.4 shows the outcome of four evolutionary simulations, in the form of time series for
the average score-per-move of the best (black) and worst (gray) player at each generational

(traditionally, #), which means that the corresponding position in the input vector has no influence on the
choice of move. Under this notation the five strategies just described could be written as

• TFT: [#, #, D, #] → D, [#, #, C, #] → C.

• DTFT: [#, #, #, D] → D, [#, #, #, C] → C.

• ATFT: [#, #, D, #] → C, [#, #, C, #] → D.

• REP1: [C, #, #, #] → C, [D, #, #, #] → D.

• REP2: [#, C, #, #] → C, [#, D, #, #] → D.

with ALLC defined simply as [#, #, #, #] → C, and ALLD as [#, #, #, #] → D.
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#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#DEFINE NG 250 /* number of generational iterations */
#DEFINE NP 100 /* number of players (population size) */
#DEFINE NOPP 20 /* number of opponent for each player */
#DEFINE PM 0.0 /* mutation probability */
#DEFINE NR 4 /* number of agents replaced at each generation */
float w[NP,13] ; /* population connection weights and first moves */
int main(void)
{
/* Declarations/initialisations -----------------x-------------------------- */
int nnipd( float[4], int ) ; /* neural network function */
int findbest( float[NP] ) ; /* max funtion for array */
void replaceandmutate ( int ) ; /* generational replacement */
int i, ip, io, iopp, ipd, move1, move2, i, ibest ;
float pm1[2], pm2[2], score[NP] ;
float payoff[2][2]={{3.,0.},{5.,1.}} ; /* payoff matrix */

/* Executable -------------------------------------------------------------- */
for (ip=0 ; ip<NP ; ip++) { /* initialize population */

for (i=0 ; i<11; i++) { w[ip,i]=-2.+4.*rand()/RAND_MAX ; } /* weights */
w[ip,11]=-1.+2.*rand()/RAND_MAX ; /* bias */
for (i=0 ; i<1; i++) { w[ip,12+i]=floor(2.*rand()/RAND_MAX) ; } /* moves */

}
for (ig=0 ; ig<NG ; ig++) { /* loop over generations */

for (ip=0 ; ip<NP ; ip++) { /* loop over population */
score[ip]=0.
for (iopp=0 ; iopp<NOPP ; iopp++) { /* loop over opponents */
io=floor(np*1.*rand()/RAND_MAX) /* pick an opponent */
pm1[0]=w[ig][12]; pm1[1]=w[ig][13]; pm1[2]=w[io][12]; pm1[3]=w[io][13];
pm2[0]=w[io][12]; pm2[1]=w[io][13]; pm2[2]=w[ig][12]; pm2[3]=w[ig][13];
score[ip]+=payoff[pm1[0]][pm2[0]]+payoff[pm1[1]][pm2[1]] ;
for ( ipd=0 ; ipd<10 ; ipd++) { /* play 10-round IPD */
move1=nnipd(prmv1,ip) ;
move2=nnipd(prmv2,io) ;
score[ip]+=payoff[move1][move2] ; /* player’s score */
pm1[1]=pm1[0] ; pm1[0]=move1 ; pm1[3]=pm1[2] ; pm1[2]=move2 ;
pm2[1]=pm2[0] ; pm2[0]=move2 ; pm2[3]=pm2[2] ; pm2[2]=move1 ;

} /* end of this IPD game */
} /* end of opponent loop */

} /* end of population loop */
ibest=findbest( score ) ; /* find best scoring agent */
replaceandmutate ( ibest ) ; /* alter population */
printf("best score-per-move %f at gen. %d\n",ip,score[ip]/10./NOPP,ig) ;

} /* end of generation loop */
}

Figure 13.2: Source code for an evolutionary simulation in which each agent in the popula-
tion plays a 10-round IPD against a randomly-selected 20-member subset of its colleagues,
with 4 copies of the highest scoring agent being inserted in the population at the end of each
generational iteration. {code:nnipd1}
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int nnipd( int priorm[], int i ) /* neural network function/agent */
{

float activation( float ) ;
int j, k, inputm[4] ;
float a, sh[2], move ;
for ( k=0 ; k<4 ; k++ ) {inputm[k]=2*priorm[k]-1 ; } /* [0,1] to [-1,1] */
for ( j=0 ; j<2 ; j++ ) { /* signals to hidden layer */

a=0. ;
for ( k=0 ; k<4 ; k++ ) { a+= w[i][4*j+k]*inputm[k] ; } /* Eq (13.3) */
sh[j]=activation(a) ; /* signals from hidden layer */

}
a=w[i][10]+w[i][8]*sh[1]+w[i][9]*sh[1] ; /* Eq (13.4) */
return (1+a/abs(a))/2 ; /* output signal, 0 or 1 */

}
/*---------------------------------------------------------------------------*/
float activation( float a ) /* activation function for neural network */
{ return 2.*(1./(1.+exp(-2.*a))-0.5) ; } /* activation funct. Eq (13.7) */
/*---------------------------------------------------------------------------*/
int findbest( float score[] ) /* find best scoring population member */
{
float best=0. ; int ibest=0 ;
for( ip=0 ; ip<np ; ip++) { /* loop over population */

if( score[ip] > best) { best=score[ip] ; ibest=ip ; }
}
return ibest ;

}
/*---------------------------------------------------------------------------*/
void replaceandmutate( int ib ) /* generational replacement with mutation */
{
int ir, ip ;
float wbest[11] ;
for(iw=0 ; iw<14 ; iw++) { wbest[iw]=w[ib][iw] ; } /* save best agent */
for(ir=0 ; ir<NR ; ir++) { /* replace NR agents */

ik=floor(NP*1.*rand()/RAND_MAX) ; /* pick a loser... */
for(iw=0 ; iw<10 ; iw++) { /* connection weights */
if ( 1.*rand()/RAND_MAX < PM ) {
w[ik][iw]=-2.+4.*rand()/RAND_MAX ; /* mutation hits */

} else { w[ik][iw]=wbest[iw] ; } /* replace with best */
}
if ( 1.*rand()/RAND_MAX < PM ) { /* bias */
w[ik][10]=floor(2.*rand()/RAND_MAX) ; /* mutation hits */

} else { w[ik][10]=wbest[10] ; } /* replace with best */
for(iw=0 ; iw<1 ; iw++) { /* prewired first moves */

if ( 1.*rand()/RAND_MAX < PM ) {
w[ik][iw]=floor(2.*rand()/RAND_MAX) ; /* mutation hits */

} else { w[ik][iw]=wbest[iw] ; } /* replace with best */
}

} /* end replacement loop */
}

Figure 13.3: The four C functions required by the evolutionary simulation code of Fig. 13.2.
{code:nnipd2}
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iteration, together with the population-averaged score (red). The NN plotted at right is the
best player at iteration 250, and the vector at the far right gives its sequence of move when
facing the 16 possible input vectors (RHS of eq. 13.8).

With random initial weights and faced with a variety of input moves, a large enough popula-
tion of NN will return D or C equiprobably5. One would thus expect that such a population of
random NN playing against one another will sample the score matrix equiprobably, producing a
population-averaged score of (1+5+0+3)/4 = 2.25, and this indeed what is observed initially
on Fig. 13.4.

In the first few tens of iterations, in all cases the best, average and worst scores all drop
rapidly, as indiscriminately cooperating strategies are exploited to extinction by ALLD-like
strategies. The gradual disappearance of the latter eventually makes things harder for the
former, which sometimes leads to the rise and dominance of other, more complex strategies
having managed to survive the early dominance of defecting strategies. The rate of evolution
early on in the simulation reflects the level of selection pressure, here set by the number of
copies of the best strategies introduced in the next generation; the larger that number, the
faster the evolution.

Most simulations end up in a state where the best, worst and average scores are identical,
suggesting that the whole population is made up of NNs playing the same strategy. In the first
first run plotted on the top panel, the population simply converges to a pure ALLD strategy.
At the neural network level, this is achieved here through a strong negative bias on the ouput
unit, coupled with small connection weights from the hidden to the output layer.

The second run converges, after some 100 generational iterations, to a score-per-move of
3.0. However, here the neural net is playing neither ALLC nor TFT; while it does start off
nice (playing C and C on its first two moves), it defects on all but two possible input vectors.
Consequently, it does fairly well at exploitation early on, but as it becomes more and more
frequent in the population, it still does well because it then behaves effectively like ALLC (or
TFT). In other words, this “tribal” agent plays ALLC with copies of itself, but plays ALLD
with almost everybody else.

Repeating such simulations starting with different sets of initial random connection weights
soon reveals that the stabilized best scores are almost always 1.0, 2.0 or 3.0. For a 4-input
neural network playing against itself, only four sequences of moves are possible: persistent dual
defection, persistent dual cooperation, and alternating dual defection/cooperation with cadence
of 1 or 2:

...11111111... ...33333333... ...13131313... ...11331133...

P1 : ...DDDDDDDD... ...CCCCCCCC... ...DCDCDCDC... ...DDCCDDCC...

P2 : ...DDDDDDDD... ...CCCCCCCC... ...DCDCDCDC... ...DDCCDDCC...

...11111111... ...33333333... ...13131313... ...11331133...

For our usual IPD payoff matrix (eq. (12.1), the corresponding scores per move are respectively
1, 3, 2, and 2.

In some rare instances (a few percent for the simulation parameters used here), the evolution
never stabilizes to a uniform population playing the same strategy. The bottom panel of
Fig. 13.4 shows an example, which starts off pretty much like on the panel above, but with the
best and average scores settling respectively around 2.6 and 2.2 after some 200 generations,
and mildly fluctuating about these values thereafter even with the simulation pushed to 1000
generational iterations. Here two groups of strategies are co-existing in a stable equilibrium,
neither one managing to gain numerical dominance over the other.

By their very design, these evolutionary simulations simply pick the “best” strategy present
in the initial population. However, a population size of 100 only samples a very small subset

5Note that this is not the same as RAND, which returns random moves in the course of a single IPD game;
here a NN with random connection weights still behaves deterministically against any given opponent.
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Figure 13.4: Four evolutionary simulations starting from different random populations of 100
agents. At each generational iteration, each agent plays a 10-round IPD with a randomly
selected 20-member subset of the population. The black and gray lines plot the score of the
best and worst population member, with the red line giving the population average. The neural
net displayed on the right corresponds to the best scoring agent at the last iteration. Positive
and negative connection weights are drawn in green and red, respectively, with the thickness
proportional to the magnitude of the corresponding weight. Listed above the NN are the pre-
wired initial moves −1 and −2 for this agent. The vector on the far right gives the move played
by this NN for the 16 possible input vectors (see eq. (13.8); for a NN playing againt a copy of
itself, only the four moves singled out by arrows are possible. {fig:nnplay}
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of possible strategies. To do better we can certainly start with a larger initial population, but
a more interesting possibility consists in maintaining variability in the evolving population of
NN by introducing mutations during the replication process of the best strategy into the next
generation.

Consider the following procedure: each time the best NN is copied into the next generation,
its connection weights (and pre-wired initial two moves) can be randomly reset within their
allowed range, with probability p (" 1). The impact of such mutations can be large or small,
depending on the weight affected and the strategy being encoded. Changing an element of the
initial move vector can make strategies like REP1 or REP2 switch from ALLD-like to ALLC-like
behavior, or the other way around. In contrast, a random change in a wIH connection weight
will have negligible impact if the value of the wHO for the corresponding hidden layer unit is
very small, but may have a large impact if that weight dominates the signal to the output unit.

Figure 13.5A shows the first 50000 generational iterations of a representative evolutionary
simulation carried out with a mutation rate p = 0.005, zero bias to the output unit, and
a population of 40 players with 8 being replaced per generation. The black line shows the
variations of the score obtained by the best player at each generation, and the red line is
the population-averaged score. The horizontal colored bars indicate epochs during which the
best-scoring strategy is one of those listed along the bottom horizontal axis, as color coded. A
characteristic feature of this simulation (and others carried out using varying selection pressures,
mutation rates or bias values) is the appearance of temporally extended epochs where the best
and mean scores remain generally stable at values very close to either 1.0, 2.0 or 3.0, values we
know already are associated with a single strategy playing against itself. Transitions between
these three possible “equilibrium states”, in contrast, are often quite rapid, as can be seen on
the four closeups plotted on panels B though E. These closeups also include the time series of
the worst score in the population (light blue), and in green 10 times the the root-mean-square
deviation (σ) about the population mean (〈Sn〉):

〈Sn〉 =
N

∑

j=1

Sn
j , (13.11){eq:meanscore}

σ =




1

N

N
∑

j=1

(Sn
j − 〈Sn〉)





1/2

. (13.12){???}

The r.m.s. deviation σ and the best-worth score difference both provide a measure of variability
within the agent population.

The first closeup (panel B) shows the initial 1000 iterations of the simulation. As with
the mutation-free simulations of Fig. 13.4, both the best and average score drop rapidly at
first, here levelling off around an average score of two. Great variability characterizes this
early phase, with TFT present and often extracting the best score, but failing to take over the
population. Variability decreases markedly from iteration 670 onwards, with the appearance
of a population of defectors behaving effectively like ALLD. Closeup C is extracted later in
the simulation, and shows a two-step transition from a population of TDT to REP1 effectively
acting like ALLD, with an brief intermediate phase dominated by ATFT. As exemplified by
panel D, these transitions can become quite intricate, but fairly rapid transitions tend to be the
rule rather than the exception. Sometimes the population switches strategies without leaving
a strong signal in the score time series, for example the ∼ 100-generation-long transition from
TFT to DTFT dominance taking place around generation 36100 on panel E. Neither ALLC,
PAV nor TFTT managed to gain even short-lived dominance in this one specific simulation.

The time series plotted on Fig. 13.5 look rather noisy, giving the impression that mutations
are continuously perturbing the evolving population. This is partly a consequence of the highly
compressed time axis, because the mutation rate is actually quite low here. With 11 connection
weights and two prewired moves determining the agent’s playing behavior, the probability that a
NN be replicated in the next generation without being affected by mutations is (1−p)13 = 0.937
for p = 0.005 here; a lot of the variability observed stems from the fact that each player faces
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Figure 13.5: The top panel shows 50000-generation time series of the best (black) and
population-averaged (red) scores in an evolutionary simulation using a population of 40 agents,
mutation rate p = 0.005, no bias to the ouput unit (bO

1 = 0), and replacement of 10% of the
population at each generational iteration. The colored bands along the top horizontal axis iden-
tify periods were certain specific strategies are the best players, the color coding being given
along the lower axis. Panels B through D are 1000-generation closeups spanning the intervals
indicated by yellow bands on panel A. Added on these these closeups are the time series for
the worst score (light blue), and the r.m.s. deviation of the agents’ scores about the population
mean (green, multiplied by a factor of 10). {fig:longts}
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Figure 13.6: Top-scoring neural networks just before (left), during (middle) and after (right) the
rapid evolutionary transition occuring around generation 11000 on Figure 13.5C. The plotting
format is described in the caption to Fig. 13.4. The bias connection to the output unit is
plotted as a dotted line since in this specific simulation the bias is set to zero. This evolutionary
transition occurs as a consequence of mutations affecting first the wHO

2 connection weight, then
the first prewired move, and subsequently wOH

1 (see text). {fig:plot3nn}

off with only 10 randomly chosen opponents per generation, so score fluctuations are expected
even in the absence of mutations.

Even if they are relatively rare, mutations can have a profound evolutionary impact. Figure
13.6 shows the mutation-driven changes in the top-scoring neural network during the rapid
evolutionary transition taking place around generation 11000 on Fig. 13.5C. Prior to the tran-
sition the best NN is playing TFT6, with the NN’s behavior dominated by the neural path
Pn−1

2 → wIH
32 → SH

2 → wHO
21 → SO

1 . At generation 10999 a mutation hits wHO
21 , changing its

sign; the NN then starts returning the exact opposite move as before the mutation, i.e., it now
plays ATFT. A mutation at generation 11035 changes the player’s prewired first move from C
to D, but this has no impact since ATFT’s behavior is determined only by the opponent’s prior
move. However, a further mutation at generation 11044 changes the connection weight wHO

11

from a small, negative value to a moderately large positive value, which transfers dominance
to the neural path P n−1

1 → wIH
11 → SH

1 → wHO
11 → SO

1 . The NN is now playing REP1, but
effectively behaving like ALLD since its prewired first move is D.

13.4 Punctuated equilibrium ?

As a loose analog of “evolution”, Figure 13.5 stands a long way from the picture of geologically
slow, gradual change associated with the original formulation of Charles Darwin. Instead, new
populations of strategies are produced in intermittent bursts of evolutionary activity, delineating
long period of statis. Paleontologists had been staring at this very same pattern in the fossil
record for a long time before coming to grips with the fact that it did not result from “missing
data”, but represents a real pattern, now known as punctuated equilibrium. But are we really
seeing a similar pattern in our immensely simpler evolutionary IPD simulations?

If we identify the uniform population of strategies during stable phases as “species”, then
one relatively unambiguous possibility of comparison lies with the distribution of species life-
times, which is reasonably well-documented in the fossil record. In our simulations this means
identifying boundaries of stable regions, a task nowhere as straightforward as one might imag-
ine in view of the significant variability present even during stable phases. The procedure
adopted is illustrated on the top panel of Figure 13.7, and operates as follows. First, the time
series of population-averaged score is first smoothed using a 5-point trapezoidal running mean,

6Careful examination of Fig. 13.5C will reveal that the best and population-averaged scores-per-move during
the TFT phase are slightly below 3.0; this is because the pre-wired move P −2

1 is here D, which yields a small
but noticeable drop in total score since the game is being played only 10 times per encounter in the simulations
considered here.
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mathematically defined as:

S̄k =
1

8
(〈S〉k−2 + 2〈S〉k−1 + 2〈S〉k + 2〈S〉k+1 + 〈S〉k+2) , (13.13){???}

where 〈S〉k is the population average at generational iteration k (viz. eq. (13.11)). Then, the
resulting time series is then scanned, and a transition is deemed to take place at generational
iteration k whenever

|S̄k+1 − S̄k−1| ≥ 0.1 . (13.14) {???}

Once the beginning and ends of stable phases have been identified in this manner, their
duration, equivalent to species lifetime, is readily calculated. The bottom panel of Figure 13.7
shows a PDF of this quantity, for a 250000 generation simulation in which 561 stable phases
have been identified via the procedure just described. The PDF takes the form of a power
law, here with logarithmic slope −1.3. Higher mutation rates and stronger selection pressure
also yield power-law PDFs, but with steeper slopes, reaching as high as −1.8. Remarkably,
distribution of species lifetimes inferred from the fossil record are also distributed as a power
law, with a somewhat steeper logarithmic of −2. Coincidence ? Maybe; or maybe not.

In the simulation setup used throughout this chapter mutations events are independent of
one another and occur at a time-independent rate. If the transitions on Fig. 13.7 were directly
and uniquely triggered by mutation, then for such a stationary memoriless random process one
would expect Poisson statistics to hold, which should lead to an exponential distribution of
inter-event waiting times, i.e., species lifetime. The fact that we observe instead a power-law
indicates that some other process introduces “memory” into the system; that process is, of
course, score-dependent selection and replication in the next generation. More...

13.5 Evolution on the computer

The evolutionary IPD simulations investigated in this chapter are worlds away from real bi-
ological evolution, yet they do embody its three fundamental operational principles: selec-
tion, inheritance and variability. The biological analogy can be pushed further, for example
by encoding the weight vector (13.10) as a chromosome-like binary string; after which pairs
of high-scoring agents are selected and their chromosomes recombined to produce offsprings
through genetically-inspired crossover and mutation operators. Genetic Algorithms operate in
this manner, and have been used quite succesfully for complex data modelling and engineering

Genetic algorithms
design tasks. That the complexity of biological evolution could be harnessed in this manner to
crack tough problems in the physical sciences is both remarkable and wonderful in the most
profound sense of the word. Some people may find this also surprising, but DNA co-discoverer
Francis Crick perhaps expressed it best: “Evolution is cleverer than you are!”7

Crick, Francis

Rapoport, Anatol

Hofstadter, Douglas13.6 Exercices and further computational explorations

1. Construct the move vector (see eq. (13.9) and equivalent compact representation (see
footnote 4) for the strategy PAV introduced in the previous chapter (§12.1).

2. Draw a feed-forward neural network where the three prior moves of the players and its
opponent are used as input, and with three units in the hidden layer. How many connec-
tion weights ae needed to define the operation of such a network ? How many distinct
input move vectors are there ? How many distinct strategies can such a network encode
?

7Admittedly, all we have really demonstrated in this chapter is that evolution is at least as clever as Anatol
Rapoport was; this is already not bad at all! Then again, Anatol Rapoport’s brain was a product of evolution,
so we should perhaps have expected this... or not ? Following this line of reasoning further is likely to get us
into what Douglas Hofstadter dubbed strange loops, so let’s quit it while we’re still just only mildly confused.

complexity.tex, August 17, 2015 Complexity by Examples, Paul Charbonneau, Université de Montréal
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Figure 13.7: Probability density function of “species” lifetime for a 250000 generation evolu-
tionary simulation using a population of 40 agents, mutation rate p = 0.005, bias bO

1 ∈ [−1,+1]
and replacement of 10% of the population at each generational iteration. The top panel shows
the first 8000 generations of the smoothed time series of population-averaged score-per-move,
with periods of population stability indicated by gray horizontal bands and the green vertical
lines indicating the onset of stable epochs. The bottom panel show the probability density
function of the durations of stable epochs, characterized by a power-law form spanning over
two orders of magnitude in duration. {fig:punctequ}
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3. repeat sims of 13.3 with increasing mutation rate; when do stable phases disappear ? how
is PDF affected ?

4. roulette wheel algorithm for selection

5. Five

6. And now, the ultimate Grand Challenge: Spatial IPD with random walking NNs; whenn
2 NN meet, the winner replicates the loser.

13.7 Further readings

There is no second chance to make a first impression; my first contact with neural network was
the following book, which made quite a first impression on me because twenty years and many
more books later, I still find it an outstanding introduction to the topic at large:

Anderson, J.A., An Introduction to Neural Networks, MIT Press (1995).

At a mathematically more advanced level, I also learned a lot from :

Haykin, S., Neural Networks: a comprehensive Foundation, MacMillan Publishing (1994).

On punctuated equilibrium, you might as well start with a retrospective view from one of the
original proponents of the idea:

Gould, S.J., Punctuated Equilibrium, Harvard University Press (2007).

Many good introductory textbooks on genetic algorithms are available. I happened to learn
the topic from the following excellent tutorial-like book (yes, first impressions again...):

Genetic algorithms

Davis, L. (ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold (1991).

The following classic, although mathematically and conceptually more arduous, remains a must-
read:

Holland, J.H., Adaptation in Natural and Artificial Systems, MIT Press (1992)
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