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Magnetic field generation by fluid dynamos

{ch:Dynamo}
The solar magnetic field is the engine and energy source powering all phe-
nomena that collectively define what we call solar activity. The cyclic regen-
eration of this magnetic field is now generally understood to be driven by a
hydromagnetic dynamo operating somewhere in the solar interior, through
the inductive action of fluid flows. However, some important aspects of the
physical processes involved remain elusive, notably the mechanism(s) regu-
lating the primary cycle’s amplitude and period, the physical origin of cycle-
to-cycle fluctuations in overall activity levels, and the underlying causes of
modulations on long timescales, including the extended periods of strongly
reduced magnetic activity.

Astrophysical dynamo theory is an immense topic, which is the subject of
numerous recent and not-so-recent monographs (e.g., Moffatt, 1978; Parker,
1979; Krause and Rädler, 1980; Rüdiger and Hollerbach, 2004; Charbonneau,
2013; Moffatt and Dormy, 2019), as well as a number of extensive review ar-
ticles (e.g. Ossendrijver, 2003; Brandenburg and Subramanian, 2005; Char-
bonneau, 2014). This chapter aims at establishing the basic physical prin-
ciples underlying magnetic field generation by astrophysical fluid dynamos.
The design and behavior of specific solar cycle models will be discussed at
length in chapters 2 and 3.

1.1 Magnetohydrodynamical dynamo action

At the microscopic level, solar plasma is made up of an electrically neutral
mixture of electrically-charged constituents: electrons, Hydrogen and Helium
nucleii, and small quantities of heavier ions. In the solar interior up to the
photosphere, the number densities and thermal speeds are high enough for
collision frequencies to largely exceeds any other relevant plasma frequen-
cies. Under such physical conditions, at the macroscopic level the interaction
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of fluid flow and magnetic field is well-described by the magnetohydrody-
namical approximation (hereafter MHD; see, e.g., Davidson, 2001). It is this
interaction that leads to the cyclic regeneration of the solar magnetic field
by dynamo action.

1.1.1 The MHD induction equations{ssec:mhd}
The starting point towards magnetohydrodynamical induction is Maxwell’s
equations, and more specifically Faraday’s Law:

Faraday’s Law

∂B

∂t
= −∇×E , (1.1){eq:Faraday}

where E [Vm−1] and B [T] are the electric and magnetic fields, respectively
(SI units are used throughout). In a collisionally-dominated plasma flowing
at speed u at the macroscopic scale, Ohm’s Law is expected holds in a
reference frame co-moving with the flow:

J′ = σE′ , (1.2){eq:Ohm}

where J [Am−2] is the electric current density, primed quantities denote
measures made in the comoving frame, and σ [Ohm m−1, ≡C2s−1m−3kg−1]
is the electrical conductivity. For a non-relativistic fluid flow u, Lorentz
transformation to the rest frame reduces to J′ = J and E′ = E + u×B.
Substituting in Ohm’s Law then yields an expression for the rest frame
electric field:

Generalized Ohm’s Law

E = J/σ − u×B . (1.3){eq:mhd1}

Excluding externally imposed rapid variations of E, Ampère’s law holds in
its pre-Maxwellian form:

Ampère’s Law

∇×B = µ0J , (1.4){eq:mhd2}

where µ0 = 4π×10−7 N A−2 is the magnetic permeability. Using this expres-
sion to substitute for J in eq. (1.3), and inserting the resulting expression
for E on the RHS of eq. (1.1) leads to the MHD induction equation:

∂B

∂t
= ∇× (u×B− η∇×B) , (1.5){eq:mhd}

where η = (µ0σ)−1 [m2 s−1] is the magnetic diffusivity. The first term on
Magnetic diffu-

sivity
the RHS expresses induction by the flow of electrically charged constituents
across the magnetic field, and the second Ohmic dissipation of the current
systems supporting that same magnetic field, as per eq. (1.4). The MHD
induction equation is the mathematical and physical cornerstone of magnetic
field generation in electrically conducting fluids, i.e., fluid dynamos

Fluid dynamo
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1.1.2 Timescales and the magnetic Reynolds number{ssec:scaling}
The relative importance of induction versus dissipation, and associated timescales,
can be estimated by dimensional analysis of eq. (1.5). Assume that it is pos-
sible to identify a priori a characteristic values u0 for the flow speed, and
L for a length scale adequately characterizing the spatial variations of both
the flow and magnetic field. Replacing spatial differential operators by 1/L
and temporal derivatives by 1/τ in eq. (1.5) leads to:

1

τ
∼ u0

L
− η

L2
. (1.6) {eq:mhddim}

The ratio of the first to second term on the RHS of eq. (1.6) yields a measure
of the relative importance of induction versus dissipation. This dimensionless
ratio is known as the Magnetic Reynolds number :

Magnetic

Reynolds

number
Rm =

u0L

η
. (1.7) {eq:Rm}

With the magnetic diffusivity η ∼ 1m2 s−1 for the bulk of the solar con-
vection zone, u0 ∼ 10m s−1 for deep convection, and L set equal to the
solar radius R⊙ = 6.96 × 108 m, we get Rm ∼ 1010, indicating that Ohmic
dissipation is very inefficient on global solar scales. Note that this is not so
much because u0 is particularly large or η very small —copper is a much
better electrical conductor than the plasma in the solar interior,— but is in-
stead a consequence of the large spatial scale of the system. Equation (1.6)
also yields two natural timescales for magnetic field evolution, namely the
advective timescale:

Advection time

τu = L/u0 , (1.8) {eq:tadvec}

and the diffusive timescale:
Diffusion time

τη = L2/η . (1.9) {eq:tdiff}

Note that under these definitions Rm ≡ τη/τu. Using the same numerical
values as above, we get τu ≃ 1 yr and τη ≃ 1010 yr, the latter twice the age
of the Sun. The very long diffusive timescale implies that we must look to
the flow u to explain the much shorter evolutionary timescales observed,
from the decadal cycle period, down to minutes for the evolution of small
photospheric magnetic flux concentrations.

The electrical current density required to sustain the sun’s large-scale
magnetic field is actually quite low. Consider a dipole of (surface) strength
B = 10−3 T imbedded in a sun-like sphere of radius R = 7× 108 m. Dimen-
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sional analysis of Ampère’s Law (1.4) yields

J ∼ B

µ0R
≃ 10−5 A m−2 ; (1.10)

In the solar interior this current density is generated by a net drift speed v
Drift current

between electrons and ions, i.e., J = nqv. With an electron particle density
n ≃ 1029 m−3 at the base of the solar convection zone, the required drift
speed is a minuscule |v| ∼ 10−15 m s−1.

1.1.3 Backreaction: the Lorentz force{ssec:LorentzF}
At first glance the MHD induction equation (1.5) is linear in B, but this
apparent linearity is deceptive because magnetic fields produced by dynamo
action are typically not force-free, so that sufficiently strong magnetic fields
will alter the inductive flow u. This nonlinear magnetic backreaction is ul-
timately what limits the strength of the solar magnetic field, and thus the
amplitude of the magnetic activity cycle. In the MHD limit, the Lorentz
(magnetic) force per unit volume acting on the plasma is given by

F = J×B (1.11){eq:Fmag1}

(see §2.2 in Davidson, 2001, for an illuminating derivation). At the micro-
Lorentz force

scopic level the Lorentz force acts on individual charged constituents, but
in a collisionally-dominated plasma the momentum so transfered to these
charged constituents is very rapidly redistributed to neutrals via collisions,
so that the plasma as a whole experiences a volumetric body force. It will
often prove useful to decompose this force into two contributions:

J×B =
1

µ0
(∇×B)×B = ∇

(
B2

2µ0

)

+
1

µ0
(B ·∇)B . (1.12){eq:Fmag2}

The first term on the RHS is the gradient of magnetic pressure, and the
Magnetic pres-

sure
Magnetic ten-

sion

second is magnetic tension.
A magnetic field is called force-free when J×B = 0 everywhere in the

domain under consideration. A current-free field (J = 0) is an obvious ex-
ample, in which case the magnetic field can be expressed as the gradient of
a scalar potential. For specified boundary conditions, such potential fields
represents the lowest magnetic energy state available to the system. An-
other class of force-free magnetic fields are those where electrical currents
flow along magnetic fieldlines:

∇×B = kB , (1.13){eq:Fmag3}
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where k may vary from one fieldline to the next. This expression describes
a wide class of helical fields (see, e.g., §2.1 in Moffatt and Dormy, 2019),

Helical magnetic

field
with k−1 giving the length scale on which the magnetic field is spatially
structured.

1.1.4 Energetics of dynamo action

Taking the dot product of B into eq. (1.5) and integrating over the volume
V of the system (here the Sun) leads to the following evolution equation for
the magnetic energy (EB): Magnetic energy

dEB

dt
≡ d

dt

∫

V

B2

2µ0
dV = −

∮

∂V
S · n̂dA− 1

σ

∫

V
J2dV−

∫

V
u · (J×B)dV

(1.14) {eq:emag}
where S = µ−1

0 E×B [Wm−2] is the Poynting (electromagnetic energy) flux.
The associated term on the RHS of eq. (1.14) is zero for an isolated star em-
bedded in vacuum1. The second term on the RHS is Ohmic dissipation,
irreversibly decreasing total magnetic energy by converting it to heat. The
third term is where dynamo action resides; it expresses the work per unit
time done by (on) the flow against (by) the Lorentz force. This is the channel
through which the kinetic energy of the flow can be converted to electro-
magnetic energy, a process that must take place in a manner sufficiently
efficient to offset losses due to Ohmic dissipation, so that dEB/dt > 0. This

Dynamo en-

ergy conversion
requirement is the very essence of any dynamo process, and also reveals its
fundamentally nonlinear nature.

1.2 Flux freezing, ideal MHD, and magnetic helicity conservation {ssec:idealMHD}
The plasma in the solar interior and atmosphere is characterized by a rela-
tively high electrical conductivity, which leads to Rm ≫ 1 on scales ranging
from convection through active regions up to the solar radius. This has cru-
cial consequences for the dynamical interaction between flow and magnetic
fields.

Go back to Faraday’s Law (1.1), but now expressed in its integral form:
∮

γ
E · dℓℓℓℓ = − ∂

∂t

∫

S
B · n̂dS , (1.15) {eq:almost}

Here S is some arbitrarily-shaped surface with local normal unit vector n̂,
1 This follows from E dropping with distance at best as r−2 (net electric charge) and B as r−3

(dipolar magnetic field). With the surface element dA increasing as r2, the integrand in the
surface integral on the RHS of (eq. 1.14) drops at least as r−3, which guarantees that the
integral vanishes as the boundary ∂V is pushed to r → ∞.
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bounded by the closed line γ. The LHS is the electromotive force, and the
RHS is the time derivative of the magnetic flux ΦB crossing the surface
S. Assume now that S is a material surface moving with the fluid. The

Magnetic flux
above expression still holds provided the partial time derivative is replaced
by the Lagrangian (or material) derivative D/Dt ≡ ∂/∂t+ u ·∇. Moreover,
the co-moving surface (and bounding line γ) being by definition at rest
with respect to the moving fluid, E can be replaced by J/σ. Thus in this
Lagrangian viewpoint Eq. (1.15) becomes:

1

σ

∮

γ
J · dℓℓℓℓ = − D

Dt

∫

S
B · n̂dS . (1.16)

In the limit of infinite electrical conductivity, this expression reduces to:

D

Dt

∫

S
B · n̂dS = 0 . (1.17){eq:alfven}

This indicates that the magnetic flux threading any material surface of arbi-
trary shape and orientation is conserved as the surface is transported and/or
deformed by the flow. This is known as flux freezing.

Flux freezing
The magnetic field is a solenoidal vector field, in that ∇ · B = 0; any

such vector field can be expressed in terms of a vector potential A such that
B = ∇×A. Stokes’ theorem then permits to express eq. (1.17) in terms of
the circulation Γ of A:

DΓ

Dt
= 0 , Γ =

∮

γ
A · dℓℓℓℓ . (1.18){eq:alfven2}

As depicted on Figure 1.1, Eq. (1.18) requires that a single magnetic field-
line threading any material surface bounded by the contour γ must remain
“attached” to that surface as it is moved and deformed by the flow. Since
the argument holds even for any infinitesimal contour enclosing any single
fieldline, one must conclude that in the limit of infinite conductivity, mag-
netic fieldlines must move with the fluid, i.e., they are “frozen in”. This is
known as Alfvén’s theorem, and is another expression of flux freezing. 2 (see

Alfvén’s theo-

rem
also §3.1 in Moffatt and Dormy, 2019).

Alfvén’s theorem can also be understood upon recalling that in MHD
what sustains the magnetic field is the current density J, itself associated
with the very small drift speed between charged constituents of the neutral
plasma (viz. §1.1.2). Infinite electrical conductivity implies that electrical
charges drift through the plasma without the associated current density

2 This is identical to the behavior of vorticity lines in inviscid fluid; in that hydrodynamical
context the equivalent of (1.18) is known as Kelvin’s theorem.
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Figure 1.1 In (A), a material contour γ bounds a surface S threaded by
a single magnetic fieldline pointing outside the page (indicated by a “⊙”).
Under the right-hand rule, the circulation Γ of the associated vector po-
tential is > 0. In (B), the contour has moved to the right but the fieldline
has stayed behind; now Γ = 0, and so is the magnetic flux threading the
surface bounded by γ. Equation (1.17) precludes this in the ideal MHD
limit, requiring instead that the situation be as depicted in (C), where the
magnetic fieldline has moved so as to remained enclosed by the material
contour γ. This is flux freezing.{fig:thalfven}

being attenuated; thus the current system J moves along with the bulk
flow, and so does the magnetic field, as per Ampère’s Law (1.4).

The case of infinite conductivity (equivalently, η = 0 or Rm → ∞) defines
the ideal MHD regime. The MHD induction equation (1.5) then becomes

Ideal MHD
identical to the kinematic theorem describing the advection of a line element
by a flow u, implying again that magnetic fieldlines move with the fluid (see,
e.g., Davidson 2001, §2.7.4). The consequent ability of the fluid flow to bend
and stretch magnetic fieldlines, in the very high Rm regime relevant to the
solar plasma, is at the heart of the MHD induction mechanism.

This has far-reaching consequences because flux freezing also implies that
magnetic fieldlines cannot break or cross one another, which poses a strong
topological constraint on the field’s spatiotemporal evolution. This can be
quantified through magnetic helicity, a global topological measure of linkage
between magnetic flux systems threading a given volume ?Berger (1999);
Pevtsov et al. (2014):

Magnetic helic-

ityHB =
∫

V
A ·BdV, (1.19) {eq:maghel}

where again the vector potential A is such that B = ∇ × A. In a closed
system, i.e. without helicity flux through its boundaries, magnetic helicity
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can be shown to evolve according to (see Brandenburg and Subramanian,
2005; ?, chap. 3):

d

dt

∫
A ·BdV = −2µ0η

∫
J ·BdV , (1.20){eq:totalhel}

In ideal limit η → 0, which is the relevant limit for dynamo action in the
interior of the sun and stars, the RHS vanishes and eq. (1.20) then indicates
that total helicity must be conserved, or at best vary on the long diffusive
timescale τη. Conservation of magnetic helicity thus puts a strong constraint

Helicity conser-

vation
on the high-Rm amplification of any magnetic field that carries a net helicity,
which is certainly the case with the large-scale solar magnetic field.

1.3 Mechanisms of magnetic field generation{sec:BSources}
In its conceptually simplest form, the dynamo problem consists in finding a
flow u which, when inserted in the MHD induction equation (1.5), leads to
amplification of and sustenance of B against Ohmic dissipation. From this
point of view our prospects are quite good, because vigorous flows abound
in the sun. Thermally-driven turbulent convection transports the bulk of the
solar luminosity in the outer 30% of the sun’s radius. This same turbulent
convection also generates Reynolds stressess driving inverse cascades that
power large-scale flows, notably differential rotation and meridional circu-
lation (see, e.g. Miesch and Toomre, 2009). Energetically, solar convection
and differential rotation are the primary contributors to u in eqs. (1.5) and
(1.14).

1.3.1 Shearing by differential rotation{ssec:drshear}
Shearing of a large-scale poloidal magnetic field by differential rotation turns
out to be a key ingredient in nearly all solar cycle models considered in the
remainder of this book, so we first examine this induction mechanism.

Working in spherical polar coordinates (r, θ,φ), we consider the shearing of
an axisymmetric (∂/∂φ ≡ 0) poloidal magnetic field (component contained
in meridional planes) by a steady differential rotation (an axisymmetric
zonal flow):

u = ϖΩ(r, θ)êφ . (1.21){eq:shear1a}

Bp ≡ Br(r, θ)êr +Bθ(r, θ)êθ . (1.22){eq:shear1b}

where ϖ ≡ r sin θ is the cylindrical radius. Under this very simple configura-
tion, neglecting Ohmic dissipation, and for a purely poloidal magnetic field
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at t = 0, the φ-component of the induction equation (1.5) integrates to

Bφ(r, θ, t) = ϖ(Bp ·∇Ω) t , (1.23){eq:shear2}

i.e., at any point in the meridional [r, θ] plane, the toroidal magnetic com-
ponent grows linearly in time, at a rate proportional to the local poloidal
field strength and magnitude of the rotational shear.

Figure 1.2 illustrated this shearing process, for the case of a dipolar large-
scale magnetic field (red fieldlines on panel A) being sheared by a solar
internal rotation profile displayed on panel (A) as green isocontours of

Solar dif-

ferental rotation
angular velocity Ω(r, θ). Such a profile is characterized by a more rapidly
rotating equator and slowly rotating pole through the convective envelope
(0.7 ≤ r/R ≤ 1), matching onto a rigily rotating radiative core across a
thin rotational shear layer called the tachocline (Brown et al., 1989; Spiegel
and Zahn, 1992; Howe, 2009), straddling the core-envelope interface (dashed

Tachocline
circular arcs on all panels of Fig. 1.2). The angular velocity also drops signif-
icantly in the subsurface layers, generating a layer of strong negative radial
shear (∂Ω/∂r < 0) from the equator up to ∼ 60◦ latitude. Panel (B)

Surface shear layer
is a color rendering of the toroidal magnetic component produced by this
shearing process. The strongest toroidal fields are produced in regions of
strong shear where poloidal fieldline are most closely aligned with ∇Ω, as
expressed by eq. (1.23). For the solar-like differential rotation profile used
here, strong toroidal fields are produced in the tachocline and subsurface
shear layer through the agency of radial shear, and at mid-latitudes within
the convection zone primarily via the latitudinal shear.

One can readily verify that a solar-like 10−3 T poloidal field, when sub-
jected to a solar-like pole-to-equator angular velocity contrast +10−6 rad s−1

induces in 10 yr a toroidal component of strength ∼ 0.3T. This is commen-
surate with estimates of the strength of the sunspot-forming internal solar
magnetic field (Fan, 2009, and references therein). Because the latitudinal
shear changes sign across the equator, the induced toroidal field will also be
antisymmetric about the equator, which is the parity inferred from Hale’s
polarity Laws.

REF to other

chapter
With the toroidal component growing linearly with time according to

eq. (1.23), so will the Lorentz force. For the setup considered here its com-
ponent in the φ-direction is given by:

Fφ(r, θ, t) =
t

µ0ϖ
Bp ·∇[ϖBφ(r, θ, t)] . (1.24) {eq:shear3}

This zonal component of the Lorentz force is illustrated on Fig. 1.2C. Careful
comparison with panel (A) reveals the Lorentz force acts here in a direction
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Figure 1.2 Shearing of an axisymmetric large-scale poloidal magnetic field
(red fieldlines on panel A) by the solar differential rotation (green iso-
contours in A). The resulting toroidal magnetic component on panel B is
antisymmetric about the equatorial plane, and peaks here in the tachocline,
where rotational shear is strongest. The associated Lorentz force on panel
C always opposes the shearing flow, as is required for energy transfer from
the flow to the magnetic field. The dashed circular arc indicates the base
of the convective envelope. {fig:shearpol}

such as to reduce the rotational shear. This is in fact required by eq. (1.14)
if energy is to be extracted from the flow, to supply the magnetic energy
associated with the growth of the toroidal magnetic component. This is a
general, robust result, which is not at all restricted to the flow/field config-
uration considered here.

Setting eq. (1.24) equal to zonal acceleration per unit mass, dimensional
analysis indicates that the Lorentz force will backreact on differential rota-
tion on a dynamical timescale given by:

τΩ =
µ0ρL2Ω

BpBφ
. (1.25)

Using the numerical values Bφ ∼ 1T and ρ ∼ 10 kgm−3 for the outer half
of the solar convection zone yields τΩ ∼ 103 yr; and a ∼ 1% variation in Ω,
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commensurate with observed solar torsional oscillations (Howe, 2009), can
be generated in ∼ 10 yr.

1.3.2 Cowling’s theorem {ssec:cowling}
Rotational shearing of a steady (∂/∂t ≡ 0) axisymmetric (∂/∂φ ≡ 0)
poloidal magnetic field by steady differential rotation, as we just considered,
obviously cannot produce polarity reversals. Less obvious but even more
important is the fact that this setup in itself, cannot sustain the magnetic
field against Ohmic dissipation over timescales of the order of the magnetic
diffusion time (eq. (1.9)). To understand why consider the following repre-
sentation of an axisymmetric magnetic field, whereby its poloidal component
is defined in terms of a toroidal vector potential A = A(r, θ)êφ:

B(r, θ, t) = ∇× (A(r, θ, t)êφ)︸ ︷︷ ︸
poloidal

+B(r, θ, t)êφ︸ ︷︷ ︸
toroidal

. (1.26) {eq:Baxi}

This ensures ∇ ·B = 0 for any axisymmetric magnetic field so constructed.
Again retaining only the contribution of differential rotation to the large-
scale flow (viz. eq. (1.21)), substitution of eq. (1.26) into the induction
equation allows to separate the latter into the following pair of evolution
equations for A and B:

∂A

∂t
= η

(
∇2 − 1

ϖ2

)
A , (1.27) {eq:cowa}

∂B

∂t
= η

(
∇2 − 1

ϖ2

)
B +ϖ(∇× (Aêφ)) ·∇Ω , (1.28) {eq:cowb}

where the magnetic diffusivity η is assumed constant. The second term on
the RHS of (1.28) acts as a source term for B, proportional to A; however,
no such source is present on the RHS of eq. (1.27). As a consequence, the
latter can only resistively decay on the diffusive timescale (1.9). Once A has
vanished, the source term on the RHS of eq. (1.28) also vanishes, and from
that point on B will also decay on the resistive timescale. This is the essence
of Cowling’s theorem: an axisymmetric flow cannot support an axisymmetric
magnetic field against Ohmic dissipation. The apparently unbounded linear
growth of the toroidal magnetic field obtained previously (eq. (1.23)) results
from having assumed a steady poloidal component; as a solution of the
induction equation, this is therefore only (approximately) valid for times
much shorter than the diffusion time (1.9). In itself, the flow/field system of
§1.3.1 is not a dynamo.
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Escape from Cowling’s theorem must therefore involve departures from
axisymmetry. In the solar case salvation can be found in turbulent convec-
tion, but at the price of facing the wide disparity of scales and dynami-
cal intricacies characterizing MHD turbulence at high fluid and magnetic
Reynolds numbers.

1.3.3 Small-scale flows and dynamos{ssec:fastdyn}
The structure of the inductive term ∇ × (u × B) in the MHD induction
equation (1.5) certainly suggests that magnetic fields are produced on a
spatial scale commensurate with that of the flow u. In what follows, fluid
dynamos generating magnetic structures on the scale of the inductive flow
(or smaller) are referred to as small-scale dynamos.

Small-scale dy-

namo
Working in the ideal MHD limit η → 0, it will prove useful to first recast

the induction equation in the form:
(
∂

∂t
+ u ·∇

)

︸ ︷︷ ︸
advection

B = (B ·∇)u
︸ ︷︷ ︸
shearing

− B(∇ · u)
︸ ︷︷ ︸
compression

. (1.29){eq:inductexpand}

The advection operator on the LHS is just the Lagrangian derivative, and
captures the bulk transport of B by the flow u, without deformation of
amplification. The shearing term we encountered already on the RHS of
Eq. (1.23). It can obviously amplify B, as seen already in §1.3.1. The com-
pression term can also act to amplify B; for very subsonic flows the mass
conservation constraint is well approximated by ∇ · (ρu) ≃ 0, so that
∇ · u = −u · ∇(log ρ). In the strongly stratified outer convection zone and
photosphere, strong field amplification can take place via this term, with
the scale height of the stratification now imprinting itself on the vertical
structure of the induced field.

Both terms on the RHS of (1.29) are linear in B and proportional to
derivatives of u; Assuming again that u is steady, the required mathematical
ingredients for exponential growth of the magnetic field are clearly present
in Eq. (1.29). How this pans out in a real flow, however, turns out to be
anything but simple.

Consider first the very simple situation depicted in Figure 1.3. A bundle
of horizontal magnetic fieldline is threading a cylindrical volume element
of plasma. The term “magnetic flux tube” will be used to characterize this
highly idealized magnetized plasma structure. The gray lines are stream-

Magnetic flux tube
lines of a steady, incompressible flow including a stagnation point, as indi-
cated by the gray dot labeled P . While the flow pushes the tube vertically
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Figure 1.3 Stretching of a magnetic flux tube in the vicinity of a hyperbolic
stagnation point (in gray, labeled P ). Here a cylinder of incompressible
fluid threaded by a magnetic field (in red) parallel to its axis is inexorably
stretched horizontally as it is displaced downwards towards the stagnation
point, leading to amplification of the magnetic field intensity through flux
conservation (see text). Flow streamlines are drawn in gray.{fig:stagpoint}

downwards (advection term in Eq. (1.29)), flow gradients stretch the tube
horizontally (shearing term in Eq. 1.29), here from length L1 (in light blue)
to length L2 (dark blue) at some later time. The flow being incompressible,
mass conservation requires that the radius R of the tube’s cross-section de-
creases as R2/R1 =

√
L2/L1. Under flux freezing, the (uniform) magnetic

field strength within the tube must then increase as B2/B1 = L2/L1, i.e.,
in direct proportion to the amount of stretching. Magnetic energy also in-
creases, as (L2/L1)2, ultimately in response to the work done by the vertical
component of the flow on the magnetic pressure gradient, pointing radially
outwards at the tube’s boundary. However, here no new magnetic flux is
generated; indeed, field amplification is a direct consequence of magnetic
flux conservation as the tube’s section decreases.

The bulk downwards advection of the tube stops once it reaches the stag-
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nation point; but stretching and compression do not. Near the stagnation
point, ux ∝ x and uy ∝ −y, which leads to exponential stretching in x and
exponential compression in y. As a consequence, the radius R of the tube
inexorably decreases with time, until Ohmic dissipation can operate on a
timescale τη = R2/η commensurate with the stretching timescale τu = R/u.
Once this Rm = 1 stage is reached, resistive decay of the magnetic field sets
in. The smaller the magnetic diffusivity η, the longer it will take to reach this
dissipation radius; but this will always happen here, no matter how small η
might be, since τη scales as R2, while τu scales linearly with R. One can but
conclude that this flow is not a proper dynamo.

Consider now the situation depicted on Figure 1.4. Working still under
flux freezing, a closed, circular magnetic flux tube of unit radius and cross-
section a initially positioned in the xy plane (panel a) is gradually tilted
out of that plane (in b) by an incompressible, now time-dependent flow.
In addition to tilting the loop, this flow also pushes one sector of the tube
inwards (b→c), thus introducing a twist and leading to the formation of a
second loop where the magnetic field orientation is the same as that of the
original flux ring (c→e). At the end of this process (panel f), the original ring-
shaped magnetic flux tube has been stretched into two loops of unit radius,
pressed against one another in the xy plane; magnetic fieldlines within the
two loops are all parallel to one another, except at a single crossing point
(here the dark blue to dark red transition).

It is clear from Fig. 1.4a→f that the total length of the loop has doubled,
with mass conservation again imposing a decrease of the cross-section by a
factor of two; as before, magnetic flux conservation leads to a corresponding
increase in field strength also by a factor of two. However, now the total
magnetic flux across a given cross-section of the two-loop structure has also
doubled. This so-called Stretch-Twist-Fold (STF) sequence exemplifies the

Stretch-Twist-

Fold
process of constructive folding. The twisting motion is essential here; if the

Constructive

folding

loop were only stretched radially outward and folder over (say) without a
twist, magnetic fieldlines with each loop would point in opposite directions,
and add up to zero net magnetic flux, and the strong magnetic field gradients
so produced would favor dissipation. This would then be an instance of
destructive folding.

If the process is now repeated starting from the configuration in (f), after
another such stretch-twist-fold sequence there will now be four unit-radius
flux rings stacked together. After n such sequences, the total length of the
tube, the number of stacked loops, the field strength within the tube, and
the total flux in a cross-section of the bundle, all have increased by a factor
2n. Mass conservation, in turn, requires the section of each loop to have
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(a) (b)

(c) (d)

(e) (f)

Figure 1.4 Stretching, twisting and folding of an initially circular magnetic
flux ring. The gray lines are “shadows” of the tube projected on the three
coordinate planes, to help visualize the 3D distorsion of the tube with time.
The end product is a stack of two flux rings of twice the field strength of
the original ring, and jointly adding up to twice the magnetic flux (see
text). This is the celebrated Stretch-Twist-Fold dynamo of Vainshtein &
Zel’dovich.{fig:stf}
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decreased as 2−n. Assume now that the 2n loops, each of section a × 2−n,
but with their magnetic fields all parallel, can coalesce into a single loop
while conserving mass and magnetic flux; this new single loop is back to the
original cross-section a, while still carrying 2n times the magnetic flux of
the initial ring. This therefore avoids the inexorable decrease of length scale
that ultimately made it impossible for the stagnation point flow of Fig. 1.3
to act as a bona fide dynamo.

If now we interpret the iteration variable n as some discretization of time t,
the 2n increase of the magnetic field strength is equivalent to an exponential
growth of the form

B(t)

B(0)
= exp(t log 2) . (1.30)

The flow driving the STF sequence of Fig. 1.4 is thus a dynamo. The in-
crease of magnetic energy results from the work done by the flow against
magnetic tension in deforming and stretching the flux ring. It is deemed a
fast dynamo because the growth rate of the magnetic field, here equal to

Fast dynamo
log 2, is independent of magnetic diffusivity, indicating that this dynamo
can operate in the Rm → ∞ regime3. Other types of dynamos to be en-
countered shortly, in contrast, are characterized by growth rates that tend
to zero as Rm → ∞; those are characterized as slow dynamos.

Slow dynamo
Considerable efforts have been made towards understanding which flow

properties are conducive to dynamo action, whether fast or slow. The topic
is very comprehensively covered in Childress and Gilbert (1995), Moffatt
and Dormy (2019), and at a more elementary level in chapter 2 of Charbon-
neau (2013). The results most pertinent to the foregoing discussion can be
summarized as follows:

1. Fast dynamo action requires the inductive flow to have chaotic stream-
lines;

2. Whether fast or slow, in the high-Rm regime small-scale dynamos tend to
produce magnetic structures that are spatiotemporally intermittent, and
with typical length scales Rm−1/2ℓ, where ℓ is the characteristic spatial
scale of the inductive flow;

3. Small-scale dynamos can produce a lot of magnetic field, but very little
net magnetic flux on scales significantly larger than the flow.

3 Strictly speaking, the STF dynamo requires magnetic dissipation to ensure the coalescence of
the 2n flux loops produced after n STF steps; otherwise, because the section of each loop
decreases as 2−n, dissipation would eventually set in even for very large Rm, exactly as it did
for the straight flux tube of Fig. 1.3. Dissipation is also required to offset the buildup of
magnetic helicity that takes place at the point of crossing of the loops during coalescence. See
§10.1 in Moffatt and Dormy (2019) for more on these (and other) subtleties associated with
the STF dynamo.
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These results were established for the most part using artificial flows,
either assumed steady of with an imposed time-dependency or mechanical
forcing, but have been found to carry over to more realistic situations in
which the dynamical backreaction of the Lorentz force on the inductive
flow is included self-consistently. Local area, high resolution MHD numerical
simulations of solar convection, with ever increasing resolution and physical
realism, have amply demonstrated its ability to achieve dynamo action and
sustain equipartition-strength magnetic fields (see, e.g. Cattaneo, 1999; Stein
and Nordlund, 2006; Vögler and Schüssler, 2007; ?; Rempel, 2014; Hotta
et al., 2015, and references therein; and for a comprehensive review, Stein
2012).

Figures 1.5 and 1.6 shows surface snapshots of a high resolution MU-
RaM radiative MHD simulation of thermally-driven convection, taken from
Rempel (2014). Figure 1.5 is a continuum intensity image, with granules
showing up as broad brighter areas, separated by a network of darker nar-
row downflow lanes of colder fluid. Figure 1.6 is a grayscale rendition of the
surface radial magnetic field. On both Figures the colored contours delin-
eate regions where the radial surface magnetic field exceeds 1kG in strength.
This simulation is a restart at twice the spatial resolution of case O16bM
in Rempel (2014), that simulation itself initialized from a weak (∼ 10−3 G)
vertical magnetic field of strength varying randomly in the horizontal. The
two snapshopts displayed here are extracted from the statistically stationary,
saturated phase of the simulation.

In this simulation, small-scale dynamo action amplifies the magnetic field
by stretching and shearing throughout the convecting fluid layers, tapping
into the energy of convective fluid motions. The spatiotemporal evolution
of the surface magnetic field, however, is strongly influenced by convective
granulation and radiative cooling in strong magnetic flux concentrations
accumulating in intergranular lanes, leading to further field amplification
and spatial organization on granular scale.

The photospheric snapshot of Figure 1.5 is a 3.2 × 3.2Mn shapshot of
this 25× 25Mm simulation, and shows how warm (bright) fluid rises in the
center of granules, and cools as it spreads out towards the intergranular
lanes, where it sinks back to the interior. In doing so, the (relatively) weak
magnetic fields brought to the surface by convection (advection term in
eq. (1.29) is swept into intergranular lanes, where it is amplified (compression
term in Eq. (1.29)). Once in downflow lanes, the magnetic field is further
amplified by shearing at the downflow’s edges (Rempel, 2018), despite the
small horizontal length scale favoring dissipation. Under the joint action of
advection and dissipation, the field eventually coalesces into buoyant, long-
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Figure 1.5 Snapshot of the continuum intensity at the photospheric layer
in a local area MHD numerical simulation of solar convection. Cooler
(warmer) fluid is rendered in darker (lighter) shade of orange. This is a
closeup covering 3.2 × 3.2Mm, with an horizontal resolution of 8 km. The
green arrows depict the horizontal flow components at a subset of grid
points. The brighter diffuse patches are granules, with a typical horizontal
size of ∼ 1Mm. The colored contours delineate regions having a verti-
cal magnetic field strength |Bz| ≥ 1 kG, yellow (blue) indicating positive
(negative) Bz. Figure generated from numerical data kindly provided by
M. Rempel. {fig:muram}

lived compact and vertically-oriented magnetic flux concentrations exceeding
energy equipartition with fluid motions; there are highlighted by yellow and
blue contours on Figs. 1.5 and 1.6,

Examination of the vertical field distribution displayed on Fig. 1.6 gives
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Figure 1.6 Snapshot of the vertical magnetic field at the same simulation
time as the continuum image of Fig. 1.5, but now over the full 25× 25Mm
horizontal domain size. The spatial extent of the closeup of Fig. 1.5 is
indicated by the green square. The grayscale rendering spans the range
−0.5 kG ≤ Bz ≤ +0.5 kG, from black to white. The colored contours deli-
nate regions having a vertical magnetic field |Bz| ≥ 1kG, yellow (blue)
indicating positive (negative) Bz. Figure generated from numerical data
kindly provided by M. Rempel. {fig:muram2}

the impression that the vertical magnetic field displays an even mixture
of negative and positive polarity. This visual impression is confirmed by
computing density histogram of nodal magnetic field values, a displayed on
Fig. 1.7 for the vertical field Bz (red) and the horizontal component By

(blue). Both density histograms are symmetric about zero, indicating that
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Figure 1.7 Probability density function for the vertical magnetic field val-
ues in the snapshot of Fig. 1.6 (red), and also for the By horizontal compo-
nent (blue). Both PDFs are symmetric about zero, indicating zero magnetic
flux on the scale of the simulation domain. Figure generated from numerical
data kindly provided by M. Rempel.{fig:muram_bh}

no net magnetic flux is produced on spatial scales larger than granular, de-
spite strong local field amplification taking place on subgranular scales. The
extended high field strength tails in the Bz density histograms, absent for
the horizontal component By, reflect the aforementioned buildup of super-
equipartition concentrations of vertical magnetic field in intergranular lanes.
Similar high resolution local area simulations in which significant magnetic
flux is injected at the lower boundary have also demonstrate the ability of
convection to build up photospheric magnetic flux concentrations on scales
much larger than intergranular, akin to pores and sunspots (see, e.g. Cheung
et al., 2010; Stein and Nordlund, 2012; Cheung and Isobe, 2014; Rempel and
Cheung, 2014, for a representative sample of such simulations)

Fluid dynamos generating magnetic structures on the scale of the induc-
tive flow (or smaller) are referred to as small-scale dynamos. The MURaM
MHD convection simulation of Fig. 1.5 is a dynamo of this variety, and does
provide a convincing explanatory framework for the origin of the strong
and spatiotemporally intermittent magnetic field concentrations observed in
the solar photosphere. In contrast, the magnetic field component associated
with the solar 11-yr activity cycle is structured on scales much larger than
convection, commensurate in fact with the solar radius, and is character-
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ized by a significant amount of net magnetic flux on those scales, persisting
over timecales much longer than the convective turnover time. How, then,
can turbulent solar convection, with typical scales of order 105–107 m and
103–106 s, induce and sustain against destructive folding and dissipation a
spatiotemporally coherent magnetic component with scales of order 109 m
and 108 s?

Fluids dynamos achieving the amplification and sustenance of such large-
scale magnetic fields are known as large-scale dynamos. They can still be

Large-scale dy-

namo
powered by small-scale fluid motions such as thermally-driven convection,
provided some physical effect(s) can drive self-organization of the magnetic
field on those larger scales (see Tobias et al., 2011, for more on this point).
This is the topic to which we now turn.

1.3.4 Mean-field electrodynamics and the α-effect {ssec:alpha}
It is an observed fact that solar convection is characterized by spatial scales
much smaller that the solar radius; and that the magnetic field associated
with the solar activity cycle is spatially organized on the much larger global
scale of the sun. This scale separation is at the core of mean-field electrody-
namic, an approach allowing to capture statistically the inductive effect of
a small-scale turbulent flow on the large-scale magnetic component.

The first step is to separate the total flow and magnetic field into large-
scale and small-scale contributions:

Scale separation

B = ⟨B⟩+ b′ , u = ⟨U⟩ + u′ , (1.31) {eq:scalesep}

where the angular brackets denote an averaging over an intermediate length
scale, sufficiently large so that ⟨u′⟩ = 0 and ⟨b′⟩ = 0. This is not a lin-
earization, as no assumptions are being made regarding the magnitude of
u′ versus ⟨U⟩, or b′ vs ⟨B⟩. Inserting eq. (1.31) into the MHD induction
equation (1.5) and averaging leads to the mean-field induction equation:

∂⟨B⟩
∂t

= ∇× (⟨U⟩ × ⟨B⟩+ ξξξξ − η∇× ⟨B⟩) , (1.32) {eq:mfmhd}

where
Mean emf

ξξξξ = ⟨u′ × b′⟩ (1.33) {eq:emf}

is the mean electromotive force (hereafter emf) produced by correlated fluc-
tuations of the flow and field at small scales. The key point is that this emf
can act as a source term for ⟨B⟩, because it will not necessarily average
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to zero, even though u′ and b′ individually do4 If eqs. (1.31) are inserted
into the MHD induction equation, without averaging, but now subtracting
eq. (1.32), one obtains an evolutionary equation for the small scale field:

∂b′

∂t
= ∇× (⟨U⟩ × b′ + u′ × ⟨B⟩ + u′ × b′ − ξξξξ − η∇× b′) . (1.34){eq:ffmhd}

Formally solving eqs. (1.32) and (1.34) as a coupled system is not a desirable
avenue here, as the whole aim of the mean-field approach is to avoid having
to deal explicitly with the small scales. Consider instead the mathematical
nature of the coupling between eqs. (1.32) and (1.34); for u′ considered
given, eq. (1.34) is linear in b′, except for a source term (u′ × ⟨B⟩) linear
in ⟨B⟩; similarly, with ⟨U⟩ and u′ given, eq. (1.32) is linear in ⟨B⟩, except
for ξξξξ providing a source term linear in b′. It follows that the mean emf can
be expressed as a linear (tensorial) development in terms of the large-scale
magnetic field:

Ei = aij⟨B⟩j + bijk
∂⟨B⟩j
∂xk

+ ... , (1.35){eq:emfab}

where the tensors a, b, etc, depend on the properties of the flow, but cannot
depend on ⟨B⟩. It is physically illuminating to explicitly separate the sym-
metric and antisymmetric parts of these tensors, so that the emf becomes

ξξξξ = αααα · ⟨B⟩+ γγγγ × ⟨B⟩ − ββββ · (∇× ⟨B⟩) + ... (1.36){eq:abexpand}

The symmetric rank-2 tensor αααα is just the symmetric part of aij, the pseudo-
velocity γγγγ collects its three independent antisymmetric components, and the
rank-2 tensor ββββ collects the antisymmetric parts of bijk:

αij =
1

2
(aij + aji) , (1.37){eq:alphabetagamma}

γk = −1

2
ϵkijaij , (1.38)

βij =
1

4
(ϵiklbjkl + ϵjklbikl) , (1.39)

(see Krause and Rädler, 1980; Schrinner et al., 2007, for further details).
These three quantities capture the physical effects most often invoked in
constructing mean-field dynamo models of the solar cycle, and in principle
can be computed if the statistical properties of the turbulent flow and field
are known. For perfectly homogeneous, isotropic turbulence, one expects

αij = αδij , (1.40)

4 This mean electromotive force is entirely analogous to the Reynolds stresses appearing in the
Navier-Stokes unmagnetized fluid equations upon introducing scale separation and averaging.
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γk = 0 , (1.41)

βij = βδij , (1.42)

where δij is the usual Kronecker delta. Truncating eq. (1.35) after the sec-
ond term and substituting in the mean-field induction equation (1.32) then
yields:

∂⟨B⟩
∂t

= ∇× (⟨U⟩ × ⟨B⟩+ α⟨B⟩ − (η + β)∇× ⟨B⟩) . (1.43) {eq:mfmhd2}

The α-term now emerges as a (turbulent) electromotive force aligned with
the mean-magnetic field, in contrast to the conventional motional emf ∝
⟨U⟩ × ⟨B⟩ which is perpendicular to ⟨B⟩. This contribution to the total
turbulent emf, crucial in many dynamo models discussed further below, is
known as the α-effect, and is non-zero for flows lacking reflection symmetry.

α-effect
The second term in the expansion (1.35), reduced to the β-term in (1.36),

makes an an additive contribution to the magnetic diffusivity η, and can
thus be interpreted as turbulent diffusion of ⟨B⟩. The α- and β-effects in

turbulent diffu-

sivity
eq. (1.43) embody, respectively, constructive and destructive folding of the
mean-magnetic field by the small-scale turbulent flow (see Fig. 1.8). In other
words, turbulence may provide a mean-electromotive force acting as a source
for the mean-magnetic field, but it will also inevitably generate enhanced
dissipation of that same mean magnetic field. No free lunch !

Approximate expressions for α, β and γγγγ can be obtained for turbulence
that is midly inhomogeneous and anisotropic, as would be expected in the
presence fo stratification and rotation. Tractable formulations are restricted
in a few specific physical regimes: low magnetic Reynolds number, turbulence
with short coherence time, or strong mean magnetic field. In all cases this
amounts to the large-scale mean magnetic field suffering little deformation
by the small-scale flow, as on Fig. 1.8A. In these regimes it can be shown
that:

α = −τc
3
⟨u′ · (∇× u′)⟩ , (1.44) {eq:socaalpha}

γγγγ = −τ

6
∇⟨(u′)2⟩ , (1.45) {eq:socagamma}

β =
τc
3
⟨(u′)2⟩ . (1.46) {eq:socabeta}

(see, e.g., Ossendrijver, 2003; Brandenburg and Subramanian, 2005; ?, chap. 3).
Order-of-magnitude estimates for the middle of the solar convection zone us-
ing |u′| ∼ 10m s−1 and τc ∼ 1month lead to β ∼ 108 m2s−1, and α and |γγγγ|
both in the m s−1 range.
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Figure 1.8 Illustration of constructive (top) and destructive (bottom) fold-
ing of a mean-magnetic field by a small-scale flow. In (A), radially-diverging
cyclonic updrafts (orange flat arrows) create magnetic field loops with as-
sociated local electrical current density (green 3D arrows), as per Ampère’s
Law. If the field suffers relatively little deformation, then these local cur-
rents are oriented approximately parallel to the original mean magnetic
field, and collectively add up to a mean current density parallel to the
mean field. In (B), a “random” small-scale flow (orange flat arrows) act-
ing on a mean magnetic field generate randomly-oriented magnetic field
loops, with which are associated randomly-oriented local current densities;
unlike in (A), these now vectorially add up to zero, but still contribute to
enhanced Ohmic dissipation. Artwork kindly provided by D. Passos. {fig:folding}

From the dynamo point of view, the key addition made by the turbulent
emf is the α-effect, because it allows to bypass Cowling’s theorem. In the
solar context, the break of reflection symmetry required to produce a non-
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vanishing α-effect is imparted on the turbulent flow by the Coriolis force,
with convective updrafts developing a systematic sense of twist, counter-
clockwise (clockwise) in the Northern (Southern) solar hemisphere (Parker,
1955), much like cyclones in Earth’s atmosphere, as illustrated schemati-

Cyclonicity
cally on Fig. 1.8A. Here a key dimensionless grouping is the Rossby number,
measuring the influence of the Coriolis force on the small-scale flow:

Rossby number

Ro =
u

2ΩL
, (1.47)

where u and L are typical velocity and length scales for the flow under
consideration, and Ω is the solar angular velocity. Fluid motions acquire a
cyclonic character in the Ro < 1 regime, but not in the opposite situation
where Ro > 1. Deep convection, with u ∼ 10m s−1 and L ∼ 107 m, has
Ro ∼ 0.1 and so is expected to acquire a cyclonic character, whereas surface
convection is not (u ∼ 103 ms−1 and L ∼ 1000 km leading to Ro ∼ 102).

Imagine now the α-effect acting on a large-scale magnetic toroidal compo-
nent. Geometrically, the zonally-directed magnetic fieldlines are lifted and
twisted into meridional planes, as illustrated schematically on Fig. 1.8A.
The combined effect of many such cyclonic events is to generate a magnetic
component in meridional (r, θ) planes —or, equivalently, a zonally-oriented
mean electrical current— where there was none originally (Parker, 1955);
the net effect is thus to produce a large-scale poloidal magnetic component
from a pre-existing large-scale toroidal component5. As explained earlier in
§1.3.1, shearing of this poloidal magnetic component can in turn induce a
toroidal component. Acting jointly, the α-effect and shearing by differen-
tial rotation can thus (in principle) produce a working dynamo loop, each
mechanism providing the magnetic field component required by the other to
operate. Of course, such a dynamo scenario is only viable provided turbulent
induction wins over turbulent dissipation at large spatial scales.

1.3.5 The dynamo number {ssec:dynnumber}
Consider a simple situation in which no large-scale flow is present and the
large-scale magnetic component is force-free and given by Eq. (1.13); this is
a reasonable approximation if no large-scale flow contributes to induction6.
Assuming β ≫ η and with neither α nor β depending on position, the

5 As with the STF dynamo encountered earlier (viz. Fig. 1.4), magnetic dissipation is again
needed here, for the various loops to disconnect from the toroidal flux system and merge into
a large-scale poloidal component.

6 The small-scale magnetic component cannot be force-free, of course, otherwise no energy
transfer from the flow to the magnetic field could take place, as per eq. (1.14).
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substitution of eq. (1.13) into (1.43) immediately leads to:

∂⟨B⟩
∂t

= k(α− kβ)⟨B⟩ , (1.48) {eq:mfmhdff}

which accepts eigensolutions of the form:

⟨B⟩(x, t) = b̂(x) exp(k(α − kβ)t) . (1.49){eq:mfmhdff2}

Growth of the magnetic field is only possible provided
Dynamo num-

ber D ≡ α

kβ
> 1 . (1.50){eq:mfmhdff3}

The dimensionless combinaison of constant on the RHS of this expression
defines the dynamo number (D) for this model; the critical dynamo num-
ber (Dcrit), here equal to unity, is the threshold value marking the onset of
exponential growth. Remembering that k is an inverse length scale associ-

Critical dy-

namo number
ated with ⟨B⟩, this indicates that turbulent induction will tend to favor the
growth of the eigenmode with the largest spatial scale than can be accomo-
dated in the system, because the smaller magnetic scales are more strongly
affected by dissipation7. Equation (1.49 also indicates that once D exceeds
Dcrit, its value sets sets the growth rate of the magnetic field.

1.3.6 Dynamo waves{ssec:dynwaves}
Now reintroduce a large-scale, uniformly sheared flow in the problem. To be
specific, working in Cartesian geometry we write ⟨U⟩ = Ωzêy, and express
the large-scale magnetic field as:

⟨B⟩(x, z, t) = ∇× (A(x, z, t)êy) +B(x, z, t)êz . (1.51){eq:dynwav1}

Assuming again β ≫ η, upon substituting this expression into the mean-field
induction equation (1.43), the latter separates into:

∂A

∂t
− β

(
∂2A

∂x2
+

∂2A

∂z2

)

= αB , (1.52){eq:dynwave2a}

∂B

∂t
− β

(
∂2B

∂x2
+

∂2B

∂z2

)

= −Ω
∂A

∂x
+ α

(
∂2A

∂x2
+

∂2A

∂z2

)

. (1.53){eq:dynwave2b}

7 These “smaller magnetic scales” characterizing ⟨B⟩ are still much larger than those associated
with the small-scale flow u′ driving the α-effect and turbulent diffusivity, as per the
assumption of scale separation.
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With α, β and Ω independent of position and time, eigensolutions can be
sought in the form of plane waves:

[
A(x, z, t)
B(x, z, t)

]
=
[
a
b

]
exp[λt+ ik(z cos ϑ+ x sinϑ)] . (1.54){eq:dynwave3}

where the wavenumber k sets the scale of the large-scale magnetic field, and
ϑ the propagation direction in the [x, z] plane. Substituting this expression
into eqs. (1.52)–(1.53) leads to the dispersion relation

(λ+ βk2)2 = αk(αk + iΩ sinϑ) . (1.55) {eq:dynwave3}

This is a quadratic (complex) polynomial in λ, with the two solutions:

λ± = − βk2 ±

√
|α|k
2

{(√
Ω2 sin2 ϑ+ α2k2 + |α|k

) 1
2

+ i sign(Ωα sinϑ)
(√

Ω2 sin2 ϑ+ α2k2 − |α|k
) 1

2

}

, (1.56) {eq:dynwave4}

The λ− solution can only produce decaying disturbances (Re(λ−) < 0),
whereas the λ+ root can potentially leads to dynamo action, in the sense that
Re(λ+) > 0. Examination of equation (1.56) indicates that an exponentially

Dynamo wave
growing dynamo wave can materialize in a finite wavenumber “window”
k ∈]0, k∗[, where k∗ is a root of:

k6∗ −
α2

β2
k4∗ −

α2Ω2

4β4
sin2 ϑ = 0 . (1.57) {eq:dynwave5}

In the limit of strong shear (|α| ≪
√
β|Ω sinϑ|, or, equivalently, if the second

term on the RHS of eq. (1.53) is negligible with respect to the first, then we
have

Re(λ+) ≃ −βk2 +

√
|αΩ sin2 ϑ|k

2
, (1.58) {eq:dynwave6}

and exponential growth of the magnetic field will thus take place provided

|αΩ sinϑ|
2β2k3

> 1 . (1.59) {eq:dynwave7}

with the root of eq. (1.57) then given by

k∗ ≃
( |αΩ sinϑ|

2β2

)1/3

. (1.60) {eq:dynwave8}

The LHS of eq. (1.59) thus acts as the dynamo number for this dynamo
wave solution, with a critical value of unity. Once again we find that the
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larger scales (small k) are favored by the dynamo process. Equation (1.57)
indicates that the window of dynamo action is widest, and eq. (1.58) that
the growth rates largest, for ϑ = π/2; i.e., for a wavevector oriented in x,
along isolines of ⟨U⟩.

The eigenvalues associated with these growing solutions have nonzero
imaginary parts, so that the combined action of large-scale shear (Ω), tur-
bulent induction (α) and turbulent dissipation (β) can generate propagating
magnetic “waves”, leading to local reversals of magnetic polarity every half-
wave period (Parker, 1955). In this shear-dominated regime the frequency
of these so-called dynamo waves is given by

Im(λ+) ≃ sign(Ωα sinϑ)

√
|αΩ sinϑ|k

2
. (1.61){eq:dynwave9}

The sign of the product αΩ thus sets the propagation direction along the
⟨U⟩ isolines. This is known as the Parker-Stix-Yoshimura sign rule, and
carries over to models in non-cartesian geometries with dynamo coefficients

Sign rule
varying with position (see Stix, 1976; Yoshimura, 1975). Here if we associate
z with the radial direction and ⟨U⟩ with differential rotation (y ≡longitude),
this implies dynamo waves propagating in the latitudinal direction, in quali-
tative agreement with the sunspot butterfly diagram (REF to later section).
Such dynamo waves will indeed materialize in mean-field dynamo models

REF to Fig in

other chapter
investigated in chapter 2.

In the opposite limit Ω → 0, the imaginary part of the eigenvalue vanishes
(viz. eq. (1.56)), eq. (1.55) leads to a condition for exponential growth (λ >
0) identical to eq. (1.49), as expected.

1.3.7 Active region decay and the Babcock-Leighton mechanism{ssec:BL}
Large bipolar magnetic regions (herefater BMR) are believed to result from
the buoyant destabilisation and rise to the photosphere of toroidal magnetic
flux ropes having formed from the diffuse magnetic field in the deep solar

Magnetic flux rope
interior, at or immediately beneath the interface between the convection
zone and underlying stably stratified radiative core (Parker, 1975; Moreno-
Insertis, 1986; Choudhuri and Gilman, 1987; Fan, 2009). BMRs are observed
to emerge with their magnetic axis approximately aligned with the solar E-W
direction of rotation and show an ordering of magnetic positive/negative po-
larities that is the same within an hemisphere, opposite across hemisphere,

REF to appro-

priate obs Fig
and that switches from one activity cycle to the next. These are known as
Hale’s polarity Laws, and indicate that the deep-seated solar magnetic field
is antisymmetric about the equatorial plane.
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The magnetic axes of BMRs are not exactly aligned with the E-W direc-
tion. Despite a large scatter in observed tilt angles, on average BMRs exhibit
a systematic tilt with respect to the E-W direction, the leading member of
the pair (with respect to the direction of rotation) being closer to the equator
than the trailing member. This tilt angle increases with heliospheric latitude,
a pattern known as Joy’s Law (Hale et al., 1919; Dasi-Espuig et al., 2010;
Stenflo and Kosovichev, 2012; McClintock and Norton, 2013; ?). The tilt is

Joy’s Law
believed to arise from the action of the Coriolis force on the secondary flow
developing along the rising flux tube as a consequence of angular momentum
conservation (Fan et al., 1993). Models using the thin flux tube approxima-
tion succeed in reproducing this tilt pattern (Fan et al., 1993; D’Silva and
Choudhuri, 1993; Caligari et al., 1995).

The tilt of the magnetic axis of a BMR implies a non-zero projection
along the N-S direction, which amounts to a dipole moment. For a BMR of
unsigned magnetic flux Φ emering at latitude λ, with the two poles separated
by an angular distance d and with a tilt angle α with respect to the E-W
direction, the dipole contribution δD is given by:

δD =
3d cos λ

4πR2
Φ sinα . (1.62) {eq:thenumber}

The decay of this BMR and subsequent dispersal of its magnetic flux by sur-
face flows can release a fraction of this dipole moment and contribute to the
global solar dipole. This occurs because the leading members of each pair
is subjected to greater cross-equatorial diffusive cancellation than the trail-
ing member, leading to an excess of trailing polarity accumulating at high
latitudes (DeVore et al., 1984; Cameron et al., 2013; Jiang et al., 2014).
This process is clearly observed in synoptic magnetograms (Ref to Hath-
away Fig). The net effect of the emergence and decay of many such BMRs

REF to a

synoptic

magnetogram

is thus the production of a dipole moment (poloidal field) from decaying
active regions (emerging toroidal field). This toroidal-to-poloidal magnetic
regeneration process is known as the Babcock-Leighton mechanism, after
Babcock (1961) and Leighton (1964). Together with shearing by differential
rotation, it can yield a working dynamo loop.

Figure 1.9 shows results of a simulation (Lemerle et al., 2015) of surface
magnetic flux evolution throughout activity cycle 21 (1976–1986), using ob-
served active region emergences as input. The bottom panel is grayscale

Surface flux

transport
rendering of the synoptic (zonally-averaged) magnetogram for the radial
magnetic component. The salt-and-pepper pattern at low latitudes reflects
the emergence of bipolar magnetic regions, which do not zonally average
out to zero on this synoptic magnetogram because of their tilt with respect
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Figure 1.9 A simulation of solar surface magnetic flux evolution showing
the Babcock-Leighton mechanism in action, in response to emergence of
bipolar magnetic regions in the course of activity cycle 21 (1976–1986).
The bottom panel shows the corresponding synthetic synoptic (zonally-
averaged) magnetogram, with the vertical lines flagging the five times at
which the temporal cuts are plotted on the top panel. The grayscale is satu-
rated at ±5G to better emphasize the poleward transport at mid-latitudes.
Surface flux evolution simulation taken from Lemerle et al. (2015), using as
input the cycle 21 active region emergence database of Wang and Sheeley
(1989). {fig:BLmech}

to the East-West direction. The poleward transport of the trailing polarity
shows up as slanded streaks, black (negative Br) in the Northern hemisphere
and white (positive Br) in the South. This eventually leads to the reversal
of the positive dipole of the initial condition, occuring here about 5 years
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after the beginning of the simulation. This is followed by the buildup of the
negative dipole, peaking close near the end of the simulation at polar field
strength approaching 10−3 T. A different view of the dipole is presented on
the top panel, showing latitudinal cuts of the zonally-averaged surface radial
magnetic field spaced 25 months apart, as color-coded. Note the steep cross-
equatorial gradient in Br building up and sustained throughout the rising
and maximum phases of the sunspot cycle, leading to diffusive cancellation
of the leading polarity flux (DeVore et al., 1984).

The Babcock-Leighton mechanism is definitely observed operating at the
solar surface, and models of surface magnetic flux evolution can reproduce
quite well observed synoptic magnetograms; see, e.g., (see, e.g., Wang et al.,
1989; Wang and Sheeley Jr, 1991; Schrijver et al., 2002; Baumann et al.,
2004; Jiang et al., 2014; Upton and Hathaway, 2014; Lemerle et al., 2015);
consequently the Babcock-Leighton mechanism is very well-constrained ob-
servationally. The key remaining question is whether it is a crucial com-
ponent of the dynamo loop, or represents a mere side-effect of a dynamo
operating independently in the solar interior.

The solar polar cap magnetic flux adds up to ∼ 1014 Wb, which is equiv-
alent to the unsigned flux contained in one large bipolar magnetic regions.
Now, about 1017 Wb of magnetic flux emerges in such active regions in the
course of a typical activity cycle, so the toroidal-to-poloidal flux conver-
sion efficiency required of the Babcock-Leighton mechanim is quite low. The
poloidal flux so produced would in itself be sufficient to account for the
magnetic flux emerging in all active regions in a cycle, considering the am-
plitude of the observed differential rotation (on this point see also Cameron
and Schüssler, 2015).

1.3.8 HD/MHD instabilities {ssec:instabil}
In the mildly stably stratified upper tachocline, immediately beneath the
base of the solar convection zone, the presence of differential rotation and
strong magnetic fields is conducive to the growth of a number of hydrody-
namical and magnetohydrodynamical instabilities. Under the action of the
Coriolis force, the growth of these instabilities can generate flows with a
net helicity which, upon acting on a pre-existing large-scale magnetic field,
can produce a field-aligned electromotive force reminiscent of the α-effect
(see, e.g., Ferriz-Mas et al., 1994; Ossendrijver, 2000a; Thelen, 2000; Dik-
pati and Gilman, 2001; Chatterjee et al., 2011). The effect of these various
instabilities is usually invoked to provide the zonal electromotive force re-
quired to regenerate the poloidal large-scale component, with shearing of
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this poloidal component by the tachocline differential rotation (viz. §1.3.1)
invoked to close the dynamo loop.

1.4 Magnetic flux transport{sec:fluxt}
The advection term on the RHS of eq. (1.29) cannot, in itself, act as a
dynamo, but the associated transport of the magnetic field can be an es-
sential component in any dynamo models where the two source regions for
the T → P and P → T mechanisms are spatially segregated; coupling is
required for a working dynamo loop to ensue.

On large scales, the meridional flow pervading the solar convection zone
is a potentially important contribution to magnetic flux transport, acting
as a “conveyor belt” linking the surface layers to the tachocline. As with
differential rotation, this flow is ultimately driven by convective turbulence,
and is intimately coupled to the internal rotation profile via the mecha-
nism known as gyroscopic pumping (see Featherstone & Miesch 2015). This
axisymmetric (∂/∂φ ≡ 0) flow is oriented within meridional planes [r, θ],
and is directly observed at the solar surface, poleward at speeds reaching at
∼ 10–20m s−1 at mid-latitudes (Komm et al 1993; Ulrich 2010, Hathaway
& Rightmire 2010). This poleward transport is clearly visible on the surface
flux transport simulation of Fig. 1.9, as it leads to the slanting structures
extending from active regions latitudes to the polar caps. Mass conservation
requires an equatorward return flow somewhere in the solar interior, but
the exact shape of this return flow remain unknown. The minimal assump-
tion is of a single cell per meridional quadrant, with the equatorward return
flow peaking near the base of the convective envelope. This is the profile
most often used in extant flux transport dynamo models, and has received
support from some helioseismic inversions of large-scale solar internal merid-
ional flows (Rajaguru and Antia, 2015; ?; Mandal et al., 2018). Other such
inversions suggest a more complex picture, with multiple flow cells stacked in
radius and perhaps latitude (Schad et al., 2013; Zhao et al., 2013; Jackiewicz
et al., 2015; ?). Correlation tracking of magnetic features at supergranular
scales also suggest a shallow equatorward return flow (Hathaway, 2012),
which of course does not rule out deeper flow cells.

Within the framework of mean-field magnetohydrodynamics (§1.3.4), and
from the viewpoint of the large-scale magnetic field, the advective contri-
bution of the small-scale convective turbulence becomes subsumed in two
distinct effects, embodied in the γγγγ and ββββ terms in the expansion (1.36). The
first, turbulent pumping, acts as an additional contribution to the large-scale
flow ⟨U⟩ on the RHS of the mean-field induction equation (1.32). This is
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a non-solenoidal (∇ · γγγγ ̸= 0) pseudo-flow, in the sense that it acts as such
only on the large-scale magnetic field ⟨B⟩. The second advective contribu-
tion of the small-scale flow becomes turbulent diffusion of ⟨B⟩. As discussed
in §1.3.4, turbulent diffusion globally destroys the large-scale magnetic field
⟨B⟩ through the enhanced dissipation of the current density supporting it;
but it can also lead to the diffusive transport of magnetic flux from regions
of strong magnetic fields to regions devoid of magnetism. Indeed, turbulent
diffusion also contributes significantly to the poleward transport of surface
magnetic fields on Figure 1.9.

Numerical simulations of MHD convection and dynamo action, to be re-
viewed in §2.1, indicate that meridional flow and turbulent pumping speeds
can reach meter-per-second values in the bottom half of the solar convec-
tion zone, of the same order of magnitude as the phase speed of dynamo
waves (§1.3.6). These transport mechanisms can thus contribute, and per-
haps even dominate, the equatorward progression of activity belts as the
activity cycle unfolds, and under some circumstances even set the magnetic
cycle period. Dynamo models achieving equatorward propagation based on
these flux transport mechanisms are discussed in chapter 2.

1.5 More on timescales {sec:moretimescl}

Through the survey of MHD inductive and advective mechanisms just com-
pleted, various timescales for magnetic field evolution have been encoun-
tered. Diffusive timescales for the large-scale magnetic field can vary from
at least 106 yr in turbulence-free regions such as the lower tachocline, down
to tens of years in the upper convection zone due to strongly enhanced dissi-
pation mediated by convective turbulence. Advective timescales associated
with thermally-driven convection range from 10 minutes for surface convec-
tion, up to around a month near the bottom of the solar convection zone.
Differential rotation is characterized by advective timescales of order one
year, while the advective timescale of the meridional flow ranges from a few
years at the surface, up to a few tens of year for the turnover time of a single
cell flow reaching all the way to the base of the convective envelope. Dynam-
ical timescales associated with the action of the Lorentz force on inductive
flow can also vary over many orders of magnitude, according to magnetic
field strengths and physical conditions in the region(s) of the solar interior
over which the backreaction is taking place.

This wide range of timescales available to the flow-field dynamo system
implies that modulation of the magnetic cycle can take place over an equiv-
alently wide range of timescales, according to the nature of the physical
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mechanism(s) dominating the amplification, transport and dissipation of
magnetic fields, and of the nonlinear backreaction mechanisms responsible
for regulating the amplitude of the cycle.

1.6 Summary

1. The spatiotemporal evolution of magnetic fields in solar/stellar interiors
is well-described by magnetohydrodynamics;

2. A flow is deemed a dynamo if its inductive action can amplify and sustain
the magnetic field against Ohmic dissipation;

3. Thermally-driven fluid flows are the ultimate energy source powering so-
lar and stellar dynamos and driving the solar magnetic cycle;

4. A number magnetohydrodynamical inductive mechanisms can achieve
magnetic field amplification and regeneration in the sun: shearing by dif-
ferential rotation, cyclonic turbulence in the convection zone, surface de-
cay of active regions, fluid and/or MHD instabilities in the outer reaches
of the radiative core;

5. Small-scale dynamos generate magnetic fields on scales comparable or
smaller than those of the inductive flow, but no magnetic flux on larger
scales;

6. Large-scale dynamos generate net magnetic flux on spatial and temporal
scales larger than those of the inductive flows.

Magnetic field induction, transport, dissipation, and dynamical backreaction
on the inductive flows jointly operate over a very wide range of character-
istic timescales, implying system response over a similarly wide range of
timescales.


