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The magnetic field of solar-type stars influences their evolution, shapes 
their astrosphere, and impacts their orbiting planets. They are observed to 
regularly cycle over decadal periods (11 years in the case of our Sun) and were 
reported to have a complex dependency upon stellar rotation1. This cyclic 
behavior takes its roots into the dynamo mechanism(s) sustaining stellar 
magnetic fields, which depend on the large-scale flows as well as the properties of 
convective turbulence inside the star. However, the detailed interplay between 
rotation, convection and magnetism that leads to cyclic magnetic fields still 
resists our physical understanding. Here we report on a set of turbulent global 
numerical simulations that exhibit magnetic cycles varying systematically with 
rotation and luminosity. We find that the magnetic cycle period is inversely 
proportional to the Rossby number, in opposition with previous estimates based 
on linear mean-field dynamo theory. Furthermore, this trend is shown to be 
compatible with the cycle period of the sun and other solar-type stars. Our 
results suggest that the magnetic cycle of these stars can be attributed to a non-
linear dynamo process ubiquitously occurring in their turbulent convection zone, 
with the stellar luminosity and rotation rate jointly controlling the cycle period. 

  
Ongoing searches for exoplanets have spurred renewed interest in the 

characterization of stellar activity, and its ultimate dynamo origin. The wealth of new 
observational data now makes it possible to determine absolute luminosities via 
accurate parallax measurements, rotation through Doppler measurements and 
precision photometry, stellar differential rotation through photometry and 
asteroseismic sounding, and the large-scale spatial structure of stellar photospheric 
magnetic fields through Zeeman-Doppler imaging. These data represent a crucial 
complement to stellar activity measurements available from the long term monitoring 
programs at the Mt Wilson and Lowell Observatories2,3. Of particular interest are 
variations of stellar cycle amplitudes and periods as a function of fundamental stellar 
parameters such as mass, luminosity, and rotation. The physical picture emerging 
from these joint datasets turns out to be more complex than suggested by prior 
interpretation of stellar cycle data through mean-field dynamo theory1,4,5. 

 
In parallel to these renewed observational efforts, numerous global 

magnetohydrodynamical (MHD) simulations of solar convection have succeeded in 
producing large-scale magnetic fields over the past decades6-11, in some cases 
generating regular, solar-like cyclic magnetic polarity reversals12-17. These 



simulations also generate large-scale flows such as differential rotation in a 
dynamically consistent manner, and thus offer unique test beds for the physical 
interpretation of stellar magnetic cycle observations. 

 
We report here on a set of such global MHD simulations carried out with the 

EULAG code18,20, using a fixed background stellar structure but covering a factor of 2 
in rotation rates and 3 in convective luminosity. The simulated domain consists in a 
global (i.e. spherical) stellar convection zone with a solar-like aspect ratio (Rbottom ~ 
0.7 Rtop) covering 3.22 density scale-heights. All simulations in the set generate some 
tantalizingly solar-like features, including: (i) an accumulation of a strong, large-scale 
axisymmetric magnetic field at the bottom of the convection zone, (ii) regular polarity 
reversals on a decadal time-scale, reasonably well synchronized across hemispheres, 
and (iii) an equatorial propagation of the large-scale magnetic field (see Figure 1), (iv) 
a solar-like differential rotation (fast equator, slow poles; with one simulation 
standing close to the transition to anti-solar rotation). The more obvious non-solar 
features are the concentration of toroidal field bands at mid- rather than low-latitudes, 
and an irregularly alternating pattern of symmetric and anti-symmetric equatorial 
parity. This is clearly apparent in panel D in Figure 1 where periods of symmetrical 
and anti-symmetrical states follow up one another. Such parity drifts are understood 
to reflect the interactions between the two families of dynamo symmetry19-21, which 
couple in the non-linear regime.  

 
The magnetic cycle trends in our set of simulations are displayed in Figure 2 

(blue circles with error-bars). Two main trends are unambiguously identified. First, 
the magnetic cycle period is found to decrease proportionally to the rotation rate when 
the convective luminosity is held constant (red squares in panel A). Second, the cycle 
period also decreases with increasing convective luminosity (Pcyc ∝ Lbc

-0.8) at constant 
rotation rate (red squares in panel B). In each panel, the position of the Sun is labeled 
by the standard solar symbol (⊙) in magenta. The secondary solar cycle of 2 years 
identified through helioseismology22-24 is also shown by a smaller symbol. The 
luminosity dependency is scaled out in panel C. Our simulation results then collapse 
onto a single trend with rotation rate that is very close to matching the Sun. This result 
is quite encouraging, as the aspect ratio of the convection zones simulated here is very 
close to solar. 

 
We further compare our results to the growing sample of observed magnetic 

cycles of distant stars. Two samples of stars are shown in Figure 2, observed with Mt 
Wilson spectrophotometers (BV sample, cyan stars)1,5,25 and with the HARPS 
spectrograph (L11 sample, orange diamonds)26,27. We reanalyzed part of the latter 
sample due to significant error bars in the originally reported cycle periods. The 
original sample is shown in transparent diamonds for reference, and the solid orange 
diamonds label robust cycle periods found after re-analysis. As the luminosity of the 
two samples was not reported in the literature, we calculated it using Hipparcos 
parallaxes28, V magnitude, and a standard bolometric correction29.  The errors on the 
Hipparcos parallaxes translate into errors in luminosity that are less than 10% for 
most of the stars in the two samples. The samples are composed of stars with very 
different spectral types, and consequently very different convection zone aspect ratios 
and luminosities. Some stars also exhibit two different cycles periods, in which cases 
both periods are plotted in Figure 2 and linked by a dashed line.  

 



Several “activity branches” have historically been defined in these 
samples1,30,31, the two primary branches both showing a positive correlation between 
cycle and rotation periods. Our simulation results point to a different interpretation, in 
which the cycle period is instead inversely proportional to the rotation period. This is 
due in part to the strong dependence of the cycle period on the convective luminosity, 
as emerging from our simulation set, which was not taken into account in earlier 
analyses of these stellar data. On panel C in Figure 2 we plot the observed magnetic 
cycle period multiplied by a corrective proportionality factor deduced from our 
simulations, so as to remove the inferred stellar luminosity dependency. The corrected 
cycle periods of the observed stars then also align on a trend inversely proportional to 
the stellar rotation period, as suggested by our numerical simulations. We furthermore 
highlight in magenta four stars that are likely to possess a convection zone of depth 
similar to the sun’s. Three of the four identified stars align very well on the trend 
suggested by our numerical simulations. The sample of stars still shows a large spread 
around this trend, which is likely due to (i) the varying aspect ratio of the convection 
zone of the stars in the samples and (ii) the existence of multiple cycle periods for 
several stars. 
 

The interpretation of observed cycle period variations with stellar parameters 
have most often been based on kinematic dynamo models formulated through mean-
field theory1,4. The two key ingredients in such models are differential rotation and 
cyclonic turbulence, both resulting ultimately from the action of the Coriolis force on 
thermally driven convection. In this context, the governing parameter is the Rossby 
number (Ro), which measures the dimensionless ratio of the non-linear advection to 
the Coriolis force (see also supplementary materials). Mean field dynamo theory thus 
suggests a direct relationship between cycle properties and the Rossby number. This 
expectation is realized in our set of simulations, as shown in Figure 3. The cycle 
period is found to scale as Ro

-1, in contrast to dimensional inferences from kinematic, 
linear mean-field dynamo32, which predicts cycle periods varying instead as Ro

+1.  
 
This is of course not particularly surprising in itself, as our numerical 

simulations operate in the nonlinearly saturated regime in which the magnetic force 
alters the balance establishing the large-scale flows (here the differential rotation and 
meridional circulation). In the panel B of Figure 3 we show the systematic 
acceleration of the differential rotation (red threads propagating towards the equator) 
that modifies the electromotive force (white contours) to trigger the polarity inversion 
of the mean azimuthal magnetic field (grey contours). The amplitude of these 
fluctuations of the differential rotation is small (of the order of a percent), similarly to 
the observed torsional oscillations on the Sun. A detailed analysis of our simulations 
reveals that the torque applied by the large-scale magnetic field controls these 
modulations. Furthermore, the magnetic cycle period decreases when the amplitude of 
the differential rotation modulation increases, highlighting the key role of the non-
linear feedback of the Lorentz force on the large-scale differential rotation in driving 
polarity reversals and setting the cycle period. Such effects have no counterparts in 
classical kinematic dynamo theory, within which magnetic cycles are ascribed to a 
dynamo wave materializing under a steady differential rotation. 
 

Recent stellar data is gradually filling the gap between what were traditionally 
considered to be two distinct branches in the rotation-cycle period diagram for solar-
type stars1,5 (see left panel in Figure 2). This left the Sun inconveniently lying in 



between, forcing to conjecture that it just happens to be in a transition state between 
these two branches. Although restricted in the stellar parameter range they span, our 
simulation results suggest a single trend of cycle period with rotational influence -as 
quantified by the Rossby number- that can accommodate both the sun and extant 
stellar data within a single dynamo branch. The scatter about the mean relationship 
observed between cycle period and rotation rate is then attributed to the sensitive 
dependence of the cycle period on luminosity, and perhaps other structural factor such 
as the exact depth of the convection zone. Different tendencies at larger Rossby 
number may also be expected, and require further inquires. Taken at face value, these 
considerations would reinstate the Sun to the status of an ordinary solar-type star, and 
true Rosetta stone of stellar astrophysics. 
 
 
 
 
     
 

 
Figure 1 | A regular magnetic cycle. (A-C) Snapshots of a representative three-
dimensional simulation of a regular non-linear magnetic cycle. Red (positive) and 
blue (negative) volumes represent the radial velocity (vr) of the convective flow. A 
half sector of the spherical shell has been cut out to display the large scale magnetic 
field lines buried in the convection zone (the red/blue coloring of the magnetic tubes 
labels positive/negative azimuthal magnetic field). These field lines trace the large-
scale magnetic field averaged over 50 rotation periods. In panel B the magnetic field 
is 4 times weaker than in panels A and C, making the deeply seated magnetic field 
lines less meaningful.  The magnetic field lines outside of the simulation domain 
(grey tubes) are derived using a standard potential field extrapolation. (D) Azimuthal 
average of the azimuthal component of the magnetic field as a function of latitude and 
time at depth r=0.75 R★.  
 



 
Figure 2 | Systematic trends of the cycle period. The cycle half-period (11 and 2 
years for the Sun) are plotted against rotation period (A) and stellar luminosity (B) for 
our set of simulations (blue circles) and two observed samples of stars (cyan stars and 
orange diamonds) 1,5. The dependence of the cycle period upon the stellar convective 
luminosity observed in our set of simulations is factored out on panel C, which 
collapses our simulations on a single scaling law with the rotation period, consistent 
with observational data after applying the same luminosity-based correction.   
 

 
 
Figure 3 | Interpretation of the convective dynamo (A) Magnetic cycle period as a 
function of the local Rossby number deep in the convection zone in our set of 
simulations. The fitted scaling law indicated by the dashed grey line is compatible 
with a simple Pcyc ∝ Ro

-1 dependence. (B) Relative variation (compared to the 
temporal average) of the differential rotation as a function of latitude and time at 
depth r=0.75 R★. The iso-contours of the mean azimuthal magnetic field at ±0.1 Tesla 
are shown in grey (see also Figure 1). The contribution of shearing by differential 
rotation to the mean electro-motive force is shown as white contours. For both sets of 
contours, solid lines correspond to positive values and dashed lines to negative values. 
The polarity inversion (i.e. the destruction of the azimuthal magnetic field) is hence 
driven by the regular non-linear acceleration of the differential rotation (red regions at 
mid-to-high latitudes). 
 
 
Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper. 
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METHODS 
 
The EULAG code. The Eulerian-Lagrangian (EULAG) code solves the anelastic 
form of the MHD equations33-35 without explicit dissipative terms. Numerical stability 
is enforced through the dissipation provided by the underlying advection algorithm36, 
which effectively acts as an implicit subgrid model37,38.	In the work presented here the 
domain consist of a convective layer with no underlying stable zone38,39. The bottom 
spherical boundary is a perfectly conducting stress-free wall, which acts as a deep 
strongly stratified conducting layer. The top of the simulation domain is also 
impenetrable and stress-free, and the magnetic field is forced to be radial so as to 
mimic the connection to a stellar chromospheric layer.  Convective motions are driven 
through a volumetric heating/cooling driving the thermal structure towards a mildly 
superadiabatic ambient stratification36,38,40.  Under such a thermal forcing setup, the 
transport of heat (the convective luminosity) associated to convective motions is an 
output of the simulation and is computed a posteriori. 
 
Set of numerical simulations. We display a summary figure of the properties of 
three representative numerical simulations of our study in Figures 4, 5 and 6. Figure 4 
summarized our reference simulation shown in Figure 1. Figure 5 shows a case with 
faster rotation, and Figure 6 a case with faster rotation and larger convective 
luminosity. The layout of the three figures is the same and is as follows. The 
differential rotation (panel A) and meridional circulation (panel B) are averaged over 
longitude and over multiple magnetic cycle. The three cases show a solar-like 
differential rotation pattern (slow poles, fast equator). The differential rotation 
strengthens when the rotation rate increases (from Figure 4 to Figure 5) and when the 
convective luminosity increases (from Figure 5 to Figure 6). In the latter case, it is 
interesting to note that the rotation profile weakens at the equator when the luminosity 
increases, but more strongly decreases at the pole which makes the latitudinal contrast 
of the differential rotation increase with the stellar luminosity. The meridional flow 
evolves accordingly41 and remains mostly multi-cellular at the equator and mono-
cellular at higher latitude. The convective flows are shown on panel C by the 
representation of the radial velocity on a Mollweide projection on the sphere at depth 
r=0.75 R★. In Figure 5 and 6 the “banana cells” (elongated cells in the polar direction 
which exist in the equatorial region, outside of the tangent cylinder) appear more 
clearly than in Figure 4, which is expected as these models rotate faster.  The time-
latitude and time-radius diagrams of the azimuthally averaged azimuthal component 
of the magnetic field are shown in panels D and E. On these panels the magnetic cycle 
clearly appears. The most rotationally constrained model (Figure 4) remains in a very 
stable symmetric state about the equator, while the two other cases exhibit a clear 
beating between the quadrupolar (symmetric) and dipolar (anti-symmetric) modes of 
the large-scale dynamo. The convective luminosity profile throughout the convection 
zone is shown in panel F. It greatly varies with radius due to the convection-forcing 
scheme42. We choose to define the convective luminosity of our models by averaging 
it over the gray band in panel F, which is were the oscillatory dynamo primarily 
resides. Finally, the Fourier spectrum at depth r=0.75 R★ and latitude 44° is shown in 
panel G. A peak is identified clearly for each case. The cycle period reported in this 
work (see Figures 2 and 3) are defined based on the whole domain time-evolution, 
and is calculated as follows. 
 



Estimation of the cycle period. We estimate the magnetic cycle period in our 
numerical simulations by running a Fourier transform on the longitudinally averaged 
azimuthal component of the magnetic field at all points in radius and latitude. The 
main peak of the Fourier transform (see panel G in Figures 4-6) is stored at each 
point, along with a period bandwidth defined as a band around the main peak for 
which the Fourier transform is larger than 10% of its peak value. A probability 
density function is formed with all the stored peaks, and the maximum of the 
distribution defines the main cycle period of the simulation. The error-bar on the 
cycle period is taken as the maximal bandwidth associated with the cycle-period. Note 
that the cycle period in Figure 2 is actually the half-cycle period (i.e. 11 years for the 
Sun). 
 
Estimation of the convective luminosity. The convective luminosity is estimated by 
computing the azimuthal and latitudinal average of the convective heat flux averaged 
over several cycle periods such as 
 
L(r) = 4π r2  ρ cp < vr T’ >, 
 
where T’ are the temperature fluctuation, vr the radial velocity, ρ the density, cp the 
specific heat of the plasma at constant pressure, and <> stands for average over the 
spherical of radius r and over time (over several magnetic cycles). The convective 
luminosity at the base of the convection zone Lbc is defined here as the average of the 
convective luminosity L over the [0.75 R⊙, 0.8 R⊙] radial interval (see panel F in 
Figures 4-6), in the region where dynamo action is taking place and safely away from 
the lower boundary. 
 
Estimation of the Rossby number. The Rossby number quantifies the relative 
importance of non-linear advection to the Coriolis acceleration in the Navier-Stokes 
equation of fluid dynamics expressed in a rotating frame of reference. In the context 
of cool stars, it is often also defined as a ratio of two timescales, the rotation period of 
the star, and the convective turnover time at the base of the convection zone of the 
star. In this work we calculate the Rossby number as  
 
Ro = | ł × u | / ( 2 Ω★), 
 
which is the ratio of vorticity of the convective flows over the rotation rate of the star. 
The Rossby number is averaged over time and longitude, over the same radial range 
[0.75 R⊙, 0.8 R⊙] as the convective luminosity, and over a latitudinal wedge of 140° 
centered on the equator. The error-bar on the Rossby number is set with its standard 
deviation over the averaging surface in the radius-latitude plane. 
 
Estimation of the luminosity of the observed stars. We follow the standard 
procedure29 to estimate the luminosity of a star in the two samples used in this study. 
The effective temperatures of the stars were originally published along the reported 
cycle periods5,27. The luminosity L★ of a star can be approximated through 
 
Log10 ( L★ / L⊙ ) = -0.4 ( mV - 5 Log10(d/10) + BCV - Mbol

⊙) , 
 



where mV is the apparent magnitude in V band, d the distance between the Sun and 
the star (in parsec), Mbol

⊙ the bolometric magnitude of the Sun and BCV the so-called 
bolometric correction, which is an empirical function the effective temperature29. The 
distance d and mV were taken from the latest Hipparcos catalogue28. A sub-sample of 
the stars analyzed here is also present in the Gaia catalogue43. We re-derived the 
stellar luminosities with the Gaia parallaxes and did not find a significant change in 
the results presented in this work. 
 
Re-analysis of the cycle periods in the L11 sample27. The observational evidence 
for an activity cycle on distant stars is tedious to obtain, as it requires a long-term 
monitoring over a decadal time-scale. The HARPS spectrograph has monitored a few 
hundred stars since 2003, and can thus be used to probe for activity cycles of a few 
years in distant stars27. These results were nonetheless never fully published, due in 
part to the large uncertainties on the reported activity cycle periods in this large 
sample of stars. In this work we reported the complete initial sample27 as transparent 
diamonds in Figure 2, for reference. A major result from the HARPS data was the 
existence of stars with magnetic cycles populating the (Prot, Pcyc) diagram in between 
the two historically determined branches of activity, where the Sun was before lying 
alone as an anomalous (or in-transition) solar-type star. In this work we re-analyzed 
these particular stars of the HARPS sample to identify the robustness of the reported 
activity cycle periods (plain orange diamonds in Figure 2). We show in Figure 7 one 
of these stars, HD 146233 (also known as 18 Sco) which one of the closest solar-twin 
discovered yet44. A solar twin has fundamental physical parameters very similar, if 
not identical, to those of the Sun45. 18 Sco is a bright star (V = 5,49) G-type stars 
within 50 parsecs of the Sun. We observe that its folded activity index indeed exhibit 
a cyclic pattern of about 7 years. In addition, the independent monitoring at Lowell 
Observatory (J. Hall, personal communication) also corroborates this cyclic activity 
of 18 Sco. All the 8 stars shown as orange diamonds in Figure 2 present an 
unambiguous periodicity in their Ca II R’HK index, albeit with somewhat large error-
bars, which gives us confidence in their inclusion along the historical data-set of the 
Mt Wilson observatory5. A careful re-analysis of the remaining sample27 still remains 
to be done, and may require longer-term observations that will be available in the 
future. 
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Figure 4 | Reference case (A) Differential rotation profile averaged over time and 
longitude. (B) Meridional circulation contours averaged over time and longitude. 
Clock-wise circulations are shown in red, anti-clockwise in blue. (C) Radial velocity 
on a Mollweide projection on the sphere at depth r=0.75 R★. Red denotes upflows 
and blue downflows. (D) Azimuthal component of the magnetic field averaged over 
longitude as a function of time and latitude at depth r=0.75 R★ (near the base of the 
convection zone). (E) Azimuthal component of the magnetic field averaged over 
longitude as a function of time and normalized radius at latitude 44°. (F) Convective 
luminosity (see Methods section) as a function of depth. The grey band corresponds 
to the depth of large magnetic fields where we choose to estimate the convective 
luminosity used in Figure 2. (G) Fourier spectrum of the azimuthal component of the 
magnetic field at depth r=0.75 R★ and latitude 44° (dashed black lines in panels D 
and E). The peak of the spectrum shows the magnetic cycle period. The magnetic 
cycle periods shown in Figure 2 and 3 are calculated with Fourier spectra on the 



whole (r,latitude) domain (see Methods section). The vertical grey bar shows the 
uncertainty on the cycle period based on the Fourier spectrum. 
 

 
Figure 5 | Larger rotation case The layout is the same as in Figure 4. 
 
 



 
Figure 6 | Larger rotation and luminosity case The layout is the same as in Figure 
4. 
 



 
Figure 7 | Activity cycle in HD146233 HD 146233 (18 Scorpii; HR 6060), is one of 
the stars identified as a “Solar twin”. Its R’HK from the HARPS data (blue points with 
error-bars) is shown folded on the reported activity period of about 7 years (green 
curve).   
 
 
 


