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Chapter 1

Magnetic field amplification

by fluid dynamos

Astrophysical dynamo theory is an immense topic, which is the subject of nu-
merous recent and not-so-recent monographs (e.g., Moffatt, 1978; Parker, 1979;
Krause and Rädler, 1980; Rüdiger and Hollerbach, 2004; Charbonneau, 2013;
Moffatt and Dormy, 2019), as well as a number of extensive review articles (e.g.
Ossendrijver, 2003; Brandenburg and Subramanian, 2005; Charbonneau, 2014).
This first lecture aims at establishing the basic physical principles underlying
magnetic field amplification by (astrophysical) fluid dynamos. The design and
behavior of specific solar cycle models will be dealt with in my second Lecture.

1.1 Magnetohydrodynamics

At the microscopic level, solar plasma is made up of an electrically neutral
mixture of electrically-charged constituents: electrons, Hydrogen and Helium
nucleii, and small quantities of heavier ions. In the solar interior up to the pho-
tosphere, the number densities and thermal speeds are high enough for collision
frequencies to largely exceed any other relevant plasma frequencies. Under such
physical conditions, at the macroscopic level the interaction of fluid flows and
magnetic fields is well-described by the magnetohydrodynamical approximation.

MHD approximation
What follows is only a brief introduction to magnetohydrodynamics (here-

after MHD) in the solar context. More detailed presentations can be found in a
number of textbooks, e.g., Choudhuri (1998), Davidson (2001), Goedbloed and
Poedts (2004), and Priest (2014).

1.1.1 The MHD induction equation

Our starting point towards magnetohydrodynamics is Maxwell’s equations, and
more specifically Faraday’s Law:

Faraday’s Law

ISSSnotes.tex, April 7, 2022 5 ISSS 2022, Paul Charbonneau, Université de Montréal



6 CHAPTER 1. MAGNETIC FIELD AMPLIFICATION BY FLUID DYNAMOS

∂B

∂t
= −∇×E , (1.1)

where E [Vm−1] and B [T] are the electric and magnetic fields, respectively
(SI units are used throughout; 1T≡ 104 Gauss). In a collisionally-dominated

Ohm’s Law
plasma flowing at speed u at the macroscopic scale, Ohm’s Law is expected to
hold in a reference frame co-moving with the flow:

J′ = σE′ , (1.2)

where J [Am−2] is the electric current density, primed quantities denote mea-
sures made in the comoving frame, and σ [siemens per meter, ≡ Ohm−1 m−1,
≡C2s−1m−3kg−1] is the electrical conductivity, typically quite large for solar
plasma. For a non-relativistic fluid flow u, Lorentz transformation to the rest
frame reduces to J′ = J and E′ = E+ u×B. Substituting in Ohm’s Law then
yields an expression for the rest frame electric field:

Generalized Ohm’s Law

E = J/σ − u×B . (1.3)

Excluding externally imposed rapid variations of E, Ampère’s law holds in its
pre-Maxwellian form:

Ampère’s Law
∇×B = µ0J , (1.4)

where µ0 = 4π×10−7 N A−2 is the magnetic permeability. Using this expression
to substitute for J in Eq. (1.3), and inserting the resulting expression for E on
the RHS of Eq. (1.1) leads to the MHD induction equation:

∂B

∂t
= ∇× (u×B− η∇×B) , (1.5)

where η = (µ0σ)
−1 [m2 s−1] is the magnetic diffusivity. The first term on the

Magnetic diffusivity
RHS expresses induction by the flow of electrically charged constituents across
the magnetic field, and the second Ohmic dissipation of the current systems
supporting that same magnetic field, as per Eq. (1.4). The MHD induction
equation is the mathematical and physical cornerstone of magnetic field gener-
ation in electrically conducting fluids, i.e., fluid dynamos.

Fluid dynamo
Because the magnetic field is solenoidal (i.e., ∇·B = 0), it can be expressed

in terms of a magnetic vector potential A via B = ∇ ×A. Substituting into
Magnetic vector potential

the MHD induction equation (1.5), the later can be “uncurled” into:
Poloidal/toroidal

∂A

∂t
= u× (∇×A)− η∇2A , (1.6)

under the Coulomb gauge ∇ ·A = 0. This is a useful alternate formulation of
the induction equation, which is often used in the dynamo context. In partic-
ular, working in spherical polar coordinates (r, θ, φ), it will prove convenient to
express an axisymmetric (∂/∂φ = 0) magnetic field as the sum of poloidal and
toroidal components as the following mixed representation:

B = ∇× (Aφêφ)
︸ ︷︷ ︸

poloidal

+Bφêφ)
︸ ︷︷ ︸

toroidal

(1.7)
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1.1. MAGNETOHYDRODYNAMICS 7

with the field’s symmetry axis coinciding with the polar axis of the coordinate
system.

The electrical current density required to sustain the sun’s large-scale mag-
netic field is actually quite low. Consider a dipole of (surface) strength B =
10−3 T (≡ 10G) imbedded in a sun-like sphere of radius R = 7 × 108 m. Di-
mensional analysis of Ampère’s Law (1.4) yields

J ∼
B

µ0R
≃ 10−5 A m−2 ; (1.8)

In the solar interior this current density is generated by a net drift speed v
Drift current

between electrons and ions, i.e., J = nqv. With an electron particle density
n ≃ 1029 m−3 at the base of the solar convection zone, the required drift speed
is a minuscule |v| ∼ 10−15 m s−1.

1.1.2 Timescales and the magnetic Reynolds number

The relative importance of induction versus dissipation, and associated timescales,
can be estimated by dimensional analysis of Eq. (1.5). Assume that it is pos-
sible to identify a priori a characteristic values u0 for the flow speed, and L
for a length scale adequately characterizing the spatial variations of both the
flow and magnetic field. Replacing spatial differential operators by 1/L and
temporal derivatives by 1/τ in eq. (1.5) leads to:

1

τ
∼

u0

L
−

η

L2
. (1.9)

The ratio of the first to second term on the RHS of Eq. (1.9) yields a measure
of the relative importance of induction versus dissipation. This dimensionless
ratio is known as the Magnetic Reynolds number :

Magnetic Reynolds number

Rm =
u0L

η
. (1.10)

With the magnetic diffusivity η ∼ 1m2 s−1 for the bulk of the solar convection
zone, u0 ∼ 10m s−1 for deep convection, and L set equal to the solar radius
R⊙ = 6.96 × 108 m, we get Rm ∼ 1010, indicating that Ohmic dissipation is
very inefficient on global solar scales. Note that this is not so much because u0

is particularly large or η very small —copper at room temperature is a much
better electrical conductor than the plasma in the solar interior,— but is instead
a consequence of the large spatial scale of the system. Equation (1.9) also
yields two natural timescales for magnetic field evolution, namely the advective
timescale:

Advection time
τu = L/u0 , (1.11)

and the diffusive timescale:
Diffusion time

τη = L2/η . (1.12)

Note that under these definitions Rm ≡ τη/τu. Using the same numerical values
as above, we get τu ≃ 1 yr and τη ≃ 1010 yr, the latter being twice the age of
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8 CHAPTER 1. MAGNETIC FIELD AMPLIFICATION BY FLUID DYNAMOS

the Sun1. The very long diffusive timescale implies that we must look to the
flow u to explain the much shorter evolutionary timescales observed, from the
decadal cycle period, down to minutes for the evolution of small photospheric
magnetic flux concentrations.

1.1.3 Dynamics: the Lorentz force

At first glance the MHD induction equation (1.5) is linear in B, but this ap-
parent linearity is deceptive because magnetic fields alter the inductive flow u

through the Lorentz (magnetic) force. This nonlinear magnetic backreaction is
ultimately what limits the strength of the solar magnetic field, and thus the
amplitude of the magnetic activity cycle. In the MHD limit, the magnetic force
per unit volume acting on the plasma is given by

Lorentz force

F = J×B (1.13)

(see §2.2 in Davidson, 2001, for an illuminating derivation). At the micro-
scopic level the Lorentz force acts on individual charged constituents, but in a
collisionally-dominated plasma the momentum so transfered to these charged
constituents is very rapidly redistributed to neutrals (if there are any around)
via collisions, so that the plasma as a whole experiences a volumetric body force.

It will often prove useful to decompose this force into two contributions:

J×B =
1

µ0

(∇×B)×B = ∇

(
B2

2µ0

)

+
1

µ0

(B · ∇)B . (1.14)

The first term on the RHS is the gradient of magnetic pressure, and the second
Magnetic pressure

Magnetic tension
is magnetic tension.

1.1.4 Flux freezing and ideal MHD

The plasma in the solar interior and atmosphere is characterized by a rela-
tively high electrical conductivity, which leads to Rm ≫ 1 on scales ranging
from convection through active regions up to the solar radius. This has crucial
consequences for the dynamical interaction between flow and magnetic fields.

Going back to Faraday’s Law (1.1), but now expressed in its integral form:

Faraday’s law
∫

S

(∇× ) · n̂dS =

∮

γ

E · dℓℓℓℓ = −
∂

∂t

∫

S

B · n̂ dS , (1.15)

where the first equality results from the use of Stokes’s theorem. Here S is
some arbitrarily-shaped surface with local normal unit vector n̂, bounded by
the closed contour γ. Both are fixed in space (Eulerian representation), so that
∫

S
and ∂/∂t commute. This leads to:

∮

γ

E · dℓℓℓℓ = −
∂

∂t

∫

S

B · n̂ dS , (1.16)

1Note that these and similar estimates presented in these class notes are sensitively depen-
dent on the exact choice of length scale L.
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1.1. MAGNETOHYDRODYNAMICS 9

The LHS is the electromotive force, and the RHS is the time derivative of the
magnetic flux ΦB crossing the surface S:

ΦB =

∫

S

B · n̂dS . (1.17)

Assume now that S is a material surface moving (non-relativistically) with
Magnetic flux

the fluid. The above expression still holds provided the partial time derivative
is replaced by the Lagrangian (or material) derivative D/Dt ≡ ∂/∂t + u · ∇.
Moreover, the co-moving surface (and bounding contour γ) being by definition
at rest with respect to the moving fluid, E can be replaced by J/σ. Thus in
this Lagrangian viewpoint Eq. (1.15) becomes:

1

σ

∮

γ

J · dℓℓℓℓ = −
D

Dt

∫

S

B · n̂ dS . (1.18)

In the limit of infinite electrical conductivity, this expression reduces to:

D

Dt

∫

S

B · n̂ dS = 0 . (1.19)

This indicates that the magnetic flux threading any material surface of arbitrary
shape and orientation is conserved as the surface is transported and/or deformed
by the flow. This is known as flux freezing.

Flux freezing
With the magnetic field expressed in terms of a vector potential A via B =

∇×A, Stokes’ theorem allows to rewrite Eq. (1.19) in terms of the circulation
Γ of A:

DΓ

Dt
= 0 , Γ =

∮

γ

A · dℓℓℓℓ . (1.20)

As depicted on Figure 1.1, Equation (1.20) requires that a single magnetic field-
line threading any material surface bounded by the contour γ must remain
“attached” to that surface as it is moved and deformed by the flow. Since the
argument holds even for any infinitesimal contour enclosing any single fieldline,
one must conclude that in the limit of infinite conductivity, magnetic fieldlines
must move with the fluid, i.e., they are “frozen in”. This is known as Alfvén’s

Alfvén’s theorem
theorem2 (see also §3.1 in Moffatt and Dormy, 2019).

Alfvén’s theorem can also be understood upon recalling that in MHD what
sustains the magnetic field is the current density J, itself associated with the very
small drift speed between charged constituents of the globally neutral plasma
(viz. §1.1.2). Infinite electrical conductivity implies that electrical charges drift
through the plasma without the associated current density being attenuated; in
other words, the current system J moves along with the bulk flow, and so does
the magnetic field, as per Ampère’s Law (1.4).

The case of infinite conductivity (equivalently, η = 0 or Rm → ∞) defines
the ideal MHD regime. The MHD induction equation (1.5) then becomes

Ideal MHD
2This is identical to the behavior of vorticity lines in an inviscid fluid; in that hydrody-

namical context the equivalent of (1.20) is known as Kelvin’s theorem.
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10 CHAPTER 1. MAGNETIC FIELD AMPLIFICATION BY FLUID DYNAMOS

Figure 1.1: In (A), a material contour γ bounds a surface S threaded by a single
magnetic fieldline pointing outside the page (indicated by a “⊙”). Under the
right-hand rule, the circulation Γ of the associated vector potential is > 0. In
(B), the contour has moved to the right but the fieldline has stayed behind;
now Γ = 0, and so is the magnetic flux threading the surface bounded by γ.
Equation (1.19) precludes this in the ideal MHD limit, requiring instead that
the situation be as depicted in (C), where the magnetic fieldline has moved so
as to remained enclosed by the material contour γ. This is flux freezing.

identical to the kinematic theorem describing the advection of a line element by
a flow u, implying again that magnetic fieldlines move with the fluid (see, e.g.,
Davidson 2001, §2.7.4). The consequent ability of the fluid flow to bend and
stretch magnetic fieldlines, in the very high Rm regime relevant to solar plasma,
is at the heart of the MHD induction mechanism. The strong flow-field coupling
embodied in by flux-freezing is also essential for the acceleration of plasma by
the Lorentz force.

From the mathematical point of view, the ideal MHD limit η → 0 is singular,
because the associated small parameter, here η, multiplies the highest order
derivatives in Eq. (1.5). As η becomes vanishingly small (or, again equivalently,
Rm → ∞), dissipation persists, but in boundary-layer-like structures of typical

thickness ∝ Rm−1/2. Outside of these structures, Ohmic dissipation remains
negligible; flux freezing is thus expected to hold in the bulk of the fluid.

1.1.5 Magnetic Helicity

Flux freezing has far-reaching consequences because it also implies that mag-
netic fieldlines cannot break or cross one another, which poses a strong topolog-
ical constraint on the field’s spatiotemporal evolution. This can be quantified
through magnetic helicity, a global topological measure of linkage between mag-
netic flux systems threading a volume V Berger (1999); Pevtsov et al. (2014):
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1.1. MAGNETOHYDRODYNAMICS 11

Magnetic helicity
HB =

∫

V

A ·BdV, (1.21)

where again the vector potential A is such that B = ∇×A. In a closed system,
i.e. without helicity flux through its boundaries, magnetic helicity can be shown
to evolve according to:

d

dt

∫

A ·BdV = −2µ0η

∫

J ·BdV , (1.22)

where the quantity J ·B is the current helicity (see Brandenburg and Subra-
manian, 2005; Schrijver and Siscoe, 2009, chap. 3). In ideal limit η → 0,

Current helicity
which is the relevant limit for the interiors and atmospheres of the sun (and
stars), the RHS vanishes and Eq. (1.22) then indicates that total helicity must
be conserved, or at best vary on the long diffusive timescale τη. Conservation

Helicity conservation
of magnetic helicity thus puts a strong constraint on the high-Rm amplification
of any magnetic field that carries a net helicity, which is certainly the case with
the large-scale solar magnetic field.

1.1.6 Energetics

An evolution equation for magnetic energy can be constructed by taking the
scalar product of the magnetic fieldB on both sides the MHD induction equation
(1.5). After exerting considerable vector calculus skills and integrating over the
volume V containing the plasma and magnetic field, one arrives at:

Magnetic energy

dEB

dt
≡

d

dt

∫

V

B2

2µ0

dV = −

∮

∂V

S · n̂ dA−
1

σ

∫

V

J2dV−

∫

V

u · (J×B)dV (1.23)

where S is the Poynting (electromagnetic energy) flux:

S =
1

µ0

E×B [Wm−2] . (1.24)

The associated term on the RHS of Eq. (1.23) is zero for an isolated star em-
bedded in vacuum3.

The second term on the RHS is Ohmic dissipation, irreversibly decreasing
total magnetic energy by converting it to heat. In MHD this Joule heating is
given by the Ohmic dissipation function:

φB =
η

µ0

(∇×B)2 [Jm−3 s−1] . (1.25)

The third term in Eq. (1.23) expresses the work per unit time done by (on)
the flow against (by) the Lorentz force. This is the channel through which the

3This follows from E dropping with distance at best as r−2 (if a net electric charge is
present) and B as r−3 (for a dipolar magnetic field). With the surface element dA increasing
as r2, the integrand in the surface integral on the RHS of (eq. 1.23) drops at least as r−3,
which guarantees that the integral vanishes as the boundary ∂V is pushed to r → ∞.
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12 CHAPTER 1. MAGNETIC FIELD AMPLIFICATION BY FLUID DYNAMOS

kinetic energy of the flow can be converted to electromagnetic energy, or vice
versa. If u · (J×B) < 0 then the plasma system converts kinetic energy of
the flow into magnetic energy. If this happens in a manner sufficiently efficient
to offset losses due to Ohmic dissipation so that dEB/dt > 0, then the plasma
system is called a dynamo. This requirement is the very essence of any dynamo

Dynamo energy conversion
process, and also reveals its fundamentally nonlinear nature.

The opposite case u · (J×B) > 0 implies that the magnetic field transfer
energy to the plasma flow. Most eruptive manifestations of solar activity are
powered in this manner (viz. Lectures by Francesca Zuccarello).

1.2 The many solar dynamo problems

In its conceptually simplest form, the dynamo problem consists in finding a
flow u which, when inserted in the MHD induction equation (1.5), leads to
amplification of and sustenance of B against Ohmic dissipation. From this
point of view our prospects are quite good, because vigorous flows abound in
the sun. Thermally-driven turbulent convection transports the bulk of the solar
luminosity in the outer 30% of the sun’s radius. This same turbulent convection

Thermal convection
also generates Reynolds stressess driving inverse cascades that power large-scale
flows, notably differential rotation and meridional circulation (see, e.g. Miesch

Differential rotation

Meridional circulation
and Toomre, 2009). Energetically, solar convection and differential rotation are
the primary contributors to u in Eqs. (1.5) and (1.23).

The structure of the inductive term ∇ × (u × B) in the MHD induction
equation (1.5) certainly suggests that magnetic fields are produced on a spa-
tial scale commensurate with that of the flow u. Such flows are characterized
as small-scale dynamos and will be discussed at length later this week in the
Lectures by Matthias Rempel. As his Lectures will show, small-scale dynamo
action provides a convincing explanatory framework for the origin of the strong
and spatiotemporally intermittent small magnetic flux elements observed in the
solar photosphere (see Lectures by Luis Bellot Rubio).

Magnetic elements
In contrast, the magnetic field component associated with the solar 11-yr

activity cycle is structured on scales much larger than convection, commensurate
in fact with the solar radius, and is characterized by a significant amount of
net magnetic flux on those scales, persisting over timecales much longer than
the convective turnover time. Fluid dynamos achieving the amplification and
sustenance of such magnetic fields are known as large-scale dynamos. They

Large-scale dynamo
can still be powered in part or in totality by small-scale fluid motions such as
thermally-driven convection, but one must then conceive of a plausible physical
scenario where by a turbulent flow with typical scales of order 105–107 m and
103–106 s, induce and sustain against dissipation a spatiotemporally coherent
magnetic component with scales of order 109 m and 108 s. As we shall see
shortly, this turns out to be possible, although far from trivial.

The observed spatiotemporal evolution of the solar magnetic field on large
spatial scales (≈ R⊙) conventionally associated with the solar cycle suggest
that the dynamo loop can be broken into two steps, whereby the action of fluid
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1.3. AMPLIFICATION BY STRETCHING AND SQUEEZING 13

flows on a pre-existing poloidal component (P , fieldlines contained in meridional
planes) induces a toroidal (T , zonally-oriented) magnetic component, and in
turn flows acting on this toroidal component generate a new poloidal component,
of polarity opposite to that originally present. Schematically, the process can
be represented as:

... → P (+) → T (−) → P (−) → T (+) → P (+) → ... (1.26)

where the (±) indicate the polarity of each large-scale component. In reality the
situation is not as cleanly delineated, as both steps are operating concurrently,
and may not be spatially coincident, in which case a magnetic flux transport
process is required to link the two regions of induction. Nonetheless, this two-
step framework will prove useful in categorizing the various types of solar cycle
models discussed throughout this lecture.

For the P (±) → T (∓) step, the vast majority of models and scenarios rely on
the shearing of a large-scale poloidal field by differential rotation (§1.4 below);
here a key turning point occurred in the later 1980’s, when helioseismology suc-
ceeded in mapping the internal solar differential rotation, revealing the presence
of the multiple rotational shear regions (Brown et al., 1989; Dziembowski et al.,
1989).

In contrast, concensus has not yet been reached regarding the T (±) → P (±)
step, for which a variety of mechanisms are being considered, the most promising
of which to be introduced later in this Lecture. All ultimately rely on the
Coriolis force to generate an azimuthally-oriented electromotive force through
non-reflectionally symmetric fluid motions acting on a pre-existing large-scale
toroidal magnetic field.

1.3 Amplification by Stretching and Squeezing

Inductive amplification of magnetic fields can take place across a bewildering
variety of physical scenarios. Working in the ideal MHD limit η → 0, it will
prove useful to first recast the induction equation (1.5) in the form:

(
∂

∂t
+ u · ∇

)

︸ ︷︷ ︸

advection

B = (B · ∇)u
︸ ︷︷ ︸

shearing

− B(∇ · u)
︸ ︷︷ ︸

compression

. (1.27)

The advection operator on the LHS is just the Lagrangian derivative, and cap-
tures the bulk transport of B by the flow u, without deformation of amplifica-
tion. The shearing and compression term both act as source terms, and thus
can amplify B; for very subsonic flows the mass conservation constraint is well
approximated by ∇ · (̺u) ≃ 0, so that ∇ · u = −u · ∇(log ̺). In the strongly
stratified outer convection zone and photosphere, strong field amplification can
take place via this term, with the scale height of the stratification now imprint-
ing itself on the vertical structure of the induced field. More on this in Matthias
Rempel’s Lectures.
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14 CHAPTER 1. MAGNETIC FIELD AMPLIFICATION BY FLUID DYNAMOS

Both terms on the RHS of (1.27) are linear in B and proportional to deriva-
tives of u; Assuming again that u is steady, the required mathematical in-

kinematic approximation
gredients for exponential growth of the magnetic field are clearly present in
Eq. (1.27). How this pans out in a real flow, however, turns out to be anything
but simple, especially with the nonlinear backreaction of the Lorentz force is
taken into account.

1.4 Shearing by differential rotation

An obvious way to have a dynamo producing net magnetic flux on the scale of
the solar radius is to capitalize on the inductive action of a flow itself structured
on this large scale. Solar differential rotation is an obvious candidate.

Working in spherical polar coordinates (r, θ, φ), we consider the shearing of
an axisymmetric (∂/∂φ ≡ 0) poloidal magnetic field (component contained

Poloidal magnetic field
in meridional planes) by a steady differential rotation (an axisymmetric zonal

Differential rotation
flow):

u = ̟Ω(r, θ)êφ . (1.28)

Bp ≡ Br(r, θ)êr +Bθ(r, θ)êθ . (1.29)

where ̟ ≡ r sin θ is the cylindrical radius. Under this very simple configura-
tion, and neglecting Ohmic dissipation, the three components of the induction
equation then reduce to

∂Br

∂t
= 0 , (1.30)

∂Bθ

∂t
= 0 , (1.31)

∂Bφ

∂t
= ̟[Brêr +Bθêθ] · ∇Ω . (1.32)

For a purely poloidal magnetic field at t = 0, the φ-component then integrates
to

Bφ(r, θ, t) = ̟(Bp · ∇Ω) t , (1.33)

i.e., at any point in the meridional [r, θ] plane, a magnetic component oriented
in the zonal direction —a toroidal field— grows linearly in time, at a rate

Toroidal magnetic field
proportional to the local poloidal field strength and magnitude of the rotational
shear. Note that in itself, such a stretching of the poloidal field in the zonal
direction leaves the strength of the poloidal component unaffected. Note also
that for this axisymmetric configuration, the only possible steady-state solutions
(∂/∂t = 0) must satisfy

[Brêr +Bθêθ] · ∇Ω = 0 , (1.34)

i.e., the angular velocity must be constant along any poloidal fieldline. This is
Ferraro theorem

known as Ferraro’s theorem.
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1.4. SHEARING BY DIFFERENTIAL ROTATION 15

Figure 1.2: Shearing of an axisymmetric large-scale poloidal magnetic field (red
fieldlines on panel A) by the solar differential rotation (green isocontours in A).
The resulting toroidal magnetic component on panel B is antisymmetric about
the equatorial plane, and peaks here in the tachocline, where rotational shear is
strongest. The associated Lorentz force on panel C always opposes the shearing
flow, as is required for energy transfer from the flow to the magnetic field. The
dashed circular arc indicates the base of the convective envelope.

Figure 1.2 illustrated this shearing process, for the case of a dipolar large-
scale magnetic field (red fieldlines on panel A) being sheared by a solar internal
rotation profile displayed on panel (A) as green isocontours of angular velocity

differental rotation
Ω(r, θ). Such a profile is characterized by a more rapidly rotating equator and
slowly rotating pole through the convective envelope (0.7 ≤ r/R ≤ 1), matching
onto a rigily rotating radiative core across a thin rotational shear layer called the
tachocline (Brown et al., 1989; Spiegel and Zahn, 1992; Howe, 2009), straddling
the core-envelope interface (dashed circular arcs on all panels of Fig. 1.2). The

Tachocline
angular velocity also drops significantly in the subsurface layers, generating a
layer of strong negative radial shear (∂Ω/∂r < 0) from the equator up to ∼ 60◦

latitude. Panel (B) is a color rendering of the toroidal magnetic component
Surface shear layer

produced by this shearing process. The strongest toroidal fields are produced
in regions of strong shear where poloidal fieldlines are most closely aligned with
∇Ω, as expressed by Eq. (1.33). For the solar-like differential rotation profile
used here, strong toroidal fields are produced in the tachocline and subsurface
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16 CHAPTER 1. MAGNETIC FIELD AMPLIFICATION BY FLUID DYNAMOS

shear layer through the agency of radial shear, and at mid-latitudes within the
convection zone primarily via the latitudinal shear.

One can readily verify that a solar-like 10−3 T (10 G) poloidal field, when
subjected to a solar-like pole-to-equator angular velocity contrast +10−6 rad s−1

induces in 10 yr a toroidal component of strength ∼ 0.3T (3 kG). This is ap-
proaching the estimated strength of the sunspot-forming internal solar magnetic
field (Fan, 2021, and references therein). It also implies that on large spatial
scales the internal zonal (toroidal) component is ∼ 103 more intense than the
dipolar (poloidal) component.

Because the latitudinal shear changes sign across the equator, the induced
toroidal field will also be antisymmetric about the equator, which is the magnetic
parity inferred from Hale’s polarity Laws (§1.8.1 below).

Hale’s polarity Laws
With the toroidal component growing linearly with time according to Eq. (1.33),

so will the Lorentz force. For the setup considered here its component in the
φ-direction is given by:

Fφ(r, θ, t) =
t

µ0̟
Bp · ∇[̟Bφ(r, θ, t)] . (1.35)

This zonal component of the Lorentz force is illustrated on Fig. 1.2C. Careful
comparison with panel (A) reveals that the Lorentz force acts here in a direction
such as to reduce the rotational shear. This is in fact required by Eq. (1.23) if
energy is to be extracted from the flow, to supply the magnetic energy associated
with the growth of the toroidal magnetic component. This is a general, robust
result, which is not at all restricted to the flow/field configuration considered
here.

Setting Eq. (1.35) equal to zonal acceleration per unit mass, dimensional
analysis indicates that the Lorentz force will backreact on differential rotation
on a dynamical timescale given by:

τΩ =
µ0̺L

2Ω

BpBφ
. (1.36)

Using the numerical values Bφ ∼ 1T and ̺ ∼ 10 kgm−3 for the outer half
of the solar convection zone yields τΩ ∼ 103 yr; and a ∼ 1% variation in Ω,
commensurate with observed solar torsional oscillations (Howe, 2009), can be
generated in ∼ 10 yr.

Torsional oscillations

1.5 Cowling’s theorem

Rotational shearing of a steady (∂/∂t ≡ 0) axisymmetric (∂/∂φ ≡ 0) poloidal
magnetic field by steady differential rotation, as we just considered, obviously
cannot produce polarity reversals.

Less obvious but even more important is the fact that this setup in itself,
cannot sustain the magnetic field against Ohmic dissipation over timescales
of the order of the magnetic diffusion time (Eq. (1.12)). To understand why
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1.6. MEAN-FIELD ELECTRODYNAMICS AND THE α-EFFECT 17

consider the following representation of an axisymmetric magnetic field, whereby
its poloidal component is defined in terms of a toroidal vector potential A =

Axisymmetric magnetic field
A(r, θ, t)êφ:

B(r, θ, t) = ∇× (A(r, θ, t)êφ)
︸ ︷︷ ︸

poloidal

+B(r, θ, t)êφ
︸ ︷︷ ︸

toroidal

. (1.37)

This ensures ∇ · B = 0 for any axisymmetric magnetic field so constructed.
Again retaining only the contribution of differential rotation to the large-scale
flow (viz. Eq. (1.28)), substitution of Eq. (1.37) into the induction equation
allows to separate the latter into the following pair of evolution equations for A
and B:

∂A

∂t
= η

(

∇2 −
1

̟2

)

A , (1.38)

∂B

∂t
= η

(

∇2 −
1

̟2

)

B +̟(∇× (Aêφ)) · ∇Ω , (1.39)

where the magnetic diffusivity η is assumed constant. The second term on the
RHS of (2.4) acts as a source term for B, proportional to A; however, no such
source is present on the RHS of Eq. (2.3). As a consequence, the latter can
only resistively decay on the diffusive timescale (1.12). Once A has vanished,
the source term on the RHS of Eq. (2.4) also vanishes, and from that point on
B will also decay on the resistive timescale. This is the essence of Cowling’s
theorem: an axisymmetric flow cannot support an axisymmetric magnetic field
against Ohmic dissipation.

Cowling’s theorem
The unbounded linear growth of the toroidal magnetic field obtained previ-

ously in the case of rotation shearing (Eq. (1.33)) results from having assumed
a steady poloidal component; as a solution of the induction equation, this is
therefore only (approximately) valid for times much shorter than the diffusion
time (1.12). In itself, the flow/field system of §1.4 is not a dynamo.

Escape from Cowling’s theorem must therefore involve departures from ax-
isymmetry. In the solar case salvation can be found in turbulent convection,
but at the price of facing the wide disparity of scales and dynamical intricacies
characterizing MHD turbulence at high fluid and magnetic Reynolds numbers.

1.6 Mean-field electrodynamics and the α-effect

It is an observed fact that solar convection is characterized by spatial scales
much smaller that the solar radius; and that the magnetic field associated with
the solar activity cycle is spatially organized on the much larger global scale of
the sun. This scale separation is at the core of mean-field electrodynamic, an
approach allowing to capture statistically the inductive effect of a small-scale
turbulent flow acting on a large-scale magnetic component.
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18 CHAPTER 1. MAGNETIC FIELD AMPLIFICATION BY FLUID DYNAMOS

1.6.1 Scale separation and the turbulent emf

The first step is to separate the total flow and magnetic field into large-scale
and small-scale contributions:

Scale separation

B = 〈B〉+ b′ , u = 〈U〉+ u′ , (1.40)

where the angular brackets denote an averaging over an intermediate length
scale, sufficiently large so that 〈u′〉 = 0 and 〈b′〉 = 0. This is not a linearization,
as no assumptions are being made regarding the magnitude of u′ versus 〈U〉,
or b′ vs 〈B〉. Inserting Eq. (1.40) into the MHD induction equation (1.5) and
averaging leads to the mean-field induction equation:

∂〈B〉

∂t
= ∇× (〈U〉 × 〈B〉+ ξξξξ − η∇× 〈B〉) , (1.41)

where
Mean emf

ξξξξ = 〈u′ × b′〉 (1.42)

is the mean electromotive force (hereafter emf) produced by correlated fluctu-
ations of the flow and field at small scales. The key point is that this emf can
act as a source term for 〈B〉, because it will not necessarily average to zero,
even though u′ and b′ individually do4. If Eqs. (1.40) are inserted into the
MHD induction equation, without averaging, but now subtracting Eq. (1.41),
one obtains an evolutionary equation for the small scale field:

∂b′

∂t
= ∇× (〈U〉 × b′ + u′ × 〈B〉+ u′ × b′ − ξξξξ − η∇× b′) . (1.43)

Formally solving Eqs. (1.41) and (1.43) as a coupled system is not a desirable
avenue here, as the whole aim of the mean-field approach is to avoid having to
deal explicitly with the small scales. Consider instead the mathematical nature
of the coupling between Eqs. (1.41) and (1.43); for u′ considered given, Eq. (1.43)
is linear in b′, except for a source term (u′ × 〈B〉) linear in 〈B〉; similarly, with
〈U〉 and u′ given, Eq. (1.41) is linear in 〈B〉, except for ξξξξ providing a source
term linear in b′. It follows that the mean emf can be expressed as a linear
(tensorial) development in terms of the large-scale magnetic field:

Ei = aij〈B〉j + bijk
∂〈B〉j
∂xk

+ ... , (1.44)

where the tensors a, b, etc, depend on the statistical properties of u′, but cannot
depend on 〈B〉. It is physically illuminating to explicitly separate the symmetric
and antisymmetric parts of these tensors, so that the emf becomes

ξξξξ = αααα · 〈B〉+ γγγγ × 〈B〉 − ββββ · (∇× 〈B〉) + ... (1.45)

4This mean electromotive force is entirely analogous to the Reynolds stresses appearing
in the Navier-Stokes unmagnetized fluid equations upon introducing scale separation and
averaging.
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1.6. MEAN-FIELD ELECTRODYNAMICS AND THE α-EFFECT 19

The symmetric rank-2 tensor αααα is just the symmetric part of aij , the pseudo-
velocity γγγγ collects its three independent antisymmetric components, and the
rank-2 tensor ββββ collects the antisymmetric parts of bijk:

αij =
1

2
(aij + aji) , (1.46)

γk = −
1

2
ǫkijaij , (1.47)

βij =
1

4
(ǫiklbjkl + ǫjklbikl) , (1.48)

(see Krause and Rädler, 1980; Schrinner et al., 2007, for further details). These
three quantities capture the physical effects most often invoked in constructing
mean-field dynamo models of the solar cycle, and in principle can be computed if
the statistical properties of the turbulent flow and field are known. For perfectly
homogeneous, isotropic turbulence, one expects

αij = αδij , (1.49)

γk = 0 , (1.50)

βij = βδij , (1.51)

where δij is the usual Kronecker delta. Substituting Eq. (1.45) in the mean-field
induction equation (1.41) then yields:

∂〈B〉

∂t
= ∇× (〈U〉 × 〈B〉+ α〈B〉 − (η + β)∇× 〈B〉) . (1.52)

The α-term now emerges as a (turbulent) electromotive force aligned with the
mean-magnetic field, in contrast to the conventional motional emf ∝ 〈U〉 × 〈B〉
which is perpendicular to 〈B〉. This contribution to the total turbulent emf,
crucial in many dynamo models discussed further below, is known as the α-
effect, and is non-zero for flows lacking reflection symmetry.

α-effect
The β-term in (1.45), makes an additive contribution to the magnetic diffu-

sivity η, and can thus be interpreted as turbulent diffusion of 〈B〉. The α- and
turbulent diffusivity

β-effects in Eq. (1.52) embody, respectively, constructive and destructive fold-
ing of the mean-magnetic field by the small-scale turbulent flow (see Fig. 1.3).
In other words, turbulence may provide a mean-electromotive force acting as a
source for the mean-magnetic field, but it will also inevitably generate enhanced
dissipation of that same mean magnetic field. No free lunch !

The γγγγ term, when present, adds to the mean flow 〈U〉. This is a non-
solenoidal (∇ · γγγγ 6= 0) pseudo-flow, in the sense that it acts only as such on the
mean magnetic field 〈B〉. It is known as turbulent pumping.

turbulent pumping

1.6.2 Calculating the α-effect and turbulent diffusion

Approximate expressions for α, β and γγγγ can be obtained for turbulence that
is mildly inhomogeneous and anisotropic, as would be expected in the presence
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Figure 1.3: Illustration of constructive (top) and destructive (bottom) folding
of a mean-magnetic field by a small-scale flow. In (A), radially-diverging cy-
clonic updrafts (orange flat arrows) create magnetic field loops with associated
local electrical current density (green 3D arrows), as per Ampère’s Law. If the
field suffers relatively little deformation, then these local currents are oriented
approximately parallel to the original mean magnetic field, and collectively add
up to a mean current density parallel to the mean field. In (B), a “random”
small-scale flow (orange flat arrows) acting on a mean magnetic field generate
randomly-oriented magnetic field loops, with which are associated randomly-
oriented local current densities; unlike in (A), these now vectorially add up
to zero, but still contribute to enhanced Ohmic dissipation. Artwork kindly
provided by D. Passos.
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of stratification and rotation. Tractable formulations are restricted to a few
specific physical regimes: low magnetic Reynolds number, turbulence with short
coherence time, or strong mean magnetic field. In all cases this amounts to the
large-scale mean magnetic field suffering little deformation by the small-scale
flow, as on Fig. 1.3A. In these regimes it can be shown that:

α = −
τc
3
〈u′ · (∇× u′)〉 , (1.53)

γγγγ = −
τ

6
∇〈(u′)2〉 , (1.54)

β =
τc
3
〈(u′)2〉 . (1.55)

(see, e.g., Ossendrijver, 2003; Brandenburg and Subramanian, 2005; Schrijver
and Siscoe, 2009, chap. 3). Order-of-magnitude estimates for the middle of
the solar convection zone using |u′| ∼ 10m s−1 and τc ∼ 1month lead to β ∼
108 m2s−1, and α and |γγγγ| both in the m s−1 range.

From the dynamo point of view, the key addition made by the turbulent
emf is the α-effect, because it allows to bypass Cowling’s theorem. In the solar

Cowling’s theorem
context, the break of reflection symmetry required to produce a non-vanishing
α-effect is imparted on the turbulent flow by the Coriolis force, with convective
updrafts developing a systematic sense of twist, counterclockwise (clockwise)

Cyclonicity
in the Northern (Southern) solar hemisphere (Parker, 1955), much like cyclones
in Earth’s atmosphere, as illustrated schematically on Fig. 1.3A.

In this context a key dimensionless grouping is the Rossby number, measuring
the influence of the Coriolis force on the small-scale flow:

Rossby number

Ro =
u

2ΩL
, (1.56)

where u and L are typical velocity and length scales for the flow under consid-
eration, and Ω is the solar angular velocity. Turbulent fluid motions acquire a
cyclonic character in the Ro < 1 regime, but not in the opposite situation where
Ro > 1. Deep convection, with u ∼ 10m s−1 and L ∼ 107 m, has Ro ∼ 0.1 and

Convection

Supergranulation

Granulation

so is expected to acquire a cyclonic character, whereas whereas surface granula-
tion, (u ∼ 103 ms−1 and L ∼ 1000 km leading to Ro ∼ 102) is not. With Ro ∼ 1
supergranulation (u ∼ 102 ms−1 and L ∼ 30Mm) is borderline cyclonic.

With the break of homogeneity and isotropy provided, respectively, by strat-
ification and rotation, Eq. (1.53) becomes:

α = −
16

15
τ2c (u

′)2ΩΩΩΩ · ∇ ln(̺u′) , (1.57)

where u′ =
√

〈(u′)2〉 and ΩΩΩΩ is the sun’s angular rotation vector. In the sun’s
convection zone the turbulent convective velocity is independent of latitude to
a good first approximation, and increases with radius more slowly than density
decreases, so that ∇ ln(̺u′) < 0. (see Brandenburg and Subramanian, 2005,
§6.2, and esp. Note 5). Equation (1.57) thus predict an α-effect varying as
cos θ, positive (negative) in the sun’s Northern (Southern) hemisphere, except
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Figure 1.4: Schematic representation of an axisymmetric and equatorially anti-
symmetric toroidal magnetic field (thick lines) deformed at small scales by cy-
clonic convective updrafts/downdrafts into meridional planes (thin lines). The
collective effect of this deformation is to drive a zonal electrical current parallel
to the original toroidal field, oriented in the same direction in both hemisphere.
This zonal EMF will thus generate a dipole-like large-scale poloidal magnetic
component [Reproduced from Parker 1979, Cosmical Magnetic Fields, Oxford:
Clarendon Press, p. 548]

at the very base of the convection zone where ∇ ln(̺u′) can change sign because
convective velocities drop rapidly as downflows impinge on the stably stratified
radiative interior.

Imagine now the α-effect acting on a large-scale magnetic toroidal compo-
nent, such as that generated by shearing of a pre-existing large-scale dipole
(viz. §1.4 and Fig. 1.2). Geometrically, the zonally-directed magnetic fieldlines
are lifted and twisted into meridional planes, as illustrated schematically on Fig-
ure 1.4. The combined effect of many such cyclonic events is to generate a mag-
netic component in meridional (r, θ) planes —or, equivalently, a zonally-oriented
mean electrical current— where there was none originally (Parker, 1955); the
net effect is thus to produce a large-scale poloidal magnetic component from a
pre-existing large-scale toroidal component, i.e., a T → P process. As explained

T → P
earlier in §1.4, shearing of this poloidal magnetic component can in turn induce
a toroidal component. Acting jointly, the α-effect (T → P ) and shearing by
differential rotation (P → T ) can thus (in principle) produce a working dynamo
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loop, each mechanism providing the magnetic field component required by the
other to operate. Of course, such a dynamo scenario is only viable provided
turbulent induction wins over turbulent dissipation at large spatial scales.

1.6.3 The dynamo number

Consider a simple situation in which no large-scale flow is present. The large-
scale magnetic component can then be assumed to be force-free, i.e., it satisfies
J×B = 0. A wide classes of such force-free magnetic fields can be expressed
as:

∇× 〈B〉 = k〈B〉 . (1.58)

This is a reasonable approximation if no large-scale flow contributes to induc-
tion5. Assuming β ≫ η and with neither α nor β depending on position, the
substitution of Eq. (1.58) into (1.52) immediately leads to:

∂〈B〉

∂t
= k(α− kβ)〈B〉 , (1.59)

which accepts eigensolutions of the form:

〈B〉(x, t) = b̂(x) exp(k(α− kβ)t) . (1.60)

Growth of the magnetic field is only possible provided
Dynamo number

D ≡
α

kβ
> 1 . (1.61)

The dimensionless combinaison of constants on the RHS of this expression
defines the dynamo number (D) for this model; the critical dynamo number
(Dcrit), here equal to unity, is the threshold value marking the onset of expo-
nential growth. Remembering that k is an inverse length scale associated with

Critical dynamo number
〈B〉, this indicates that turbulent induction will tend to favor the growth of
the eigenmode with the largest spatial scale than can be accomodated in the
system, because the smaller magnetic scales are more strongly affected by dissi-
pation6. Equation (1.60) also indicates that once D exceeds Dcrit, its value sets
the growth rate of the magnetic field.

This exponentially growing magnetic solution evidenty cannot exhibit mag-
netic polarity reversals, but this can be remedied by introducing a large-scale,
uniformly sheared flow in the problem. As first demonstrated by Parker (1955),
the linear kinematic form of the mean-field dynamo equations in Cartesian geom-
etry sustain wave-like exponentially growing solutions known as dynamo waves.
. Parker’s model and analytical solution are detailed in Appendix A to these

dynamo waves
lecture notes. As Lecture 2 will demonstrate, dynamo waves also materialize in
both linear and nonlinear mean-field dynamo models in spherical geometry.

5The small-scale magnetic component driving the α-effect cannot be force-free, of course,
otherwise no energy transfer from the flow to the magnetic field could take place, as per
Eq. (1.23).

6These “smaller magnetic scales” characterizing 〈B〉 are still much larger than those as-
sociated with the small-scale flow u

′ driving the α-effect and turbulent diffusivity, as per the
assumption of scale separation.
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1.7 Electromotive forces from instabilities

The Coriolis force, ultimately responsible for the appearance of the α-effect
in non-reflection symmetric convective turbulence, can in principle act on any
flow resulting from development of any instabilities, provided its growth rate is
roughly commensurate with the solar rotation period.

In the mildly stably stratified upper tachocline, immediately beneath the
base of the solar convection zone, the presence of differential rotation and strong
magnetic fields is conducive to the growth of a number of hydrodynamical and
magnetohydrodynamical instabilities. Under the action of the Coriolis force,
the growth of some of these instabilities can generate flows with a net helicity
which, upon acting on a pre-existing large-scale magnetic field, can produce a
field-aligned electromotive force reminiscent of the α-effect (see, e.g., Ferriz-Mas
et al., 1994; Ossendrijver, 2000; Thelen, 2000; Dikpati and Gilman, 2001; Chat-
terjee et al., 2011). These instabilities are usually invoked to provide the zonal
electromotive force required to regenerate the poloidal large-scale component,
with shearing of this poloidal component by the tachocline differential rotation
(viz. §1.4) to close the dynamo loop.

1.8 Active region decay and the Babcock-Leighton

mechanism

We now turn to a distinct T → P induction mechanism predating the develop-
ment of mean-field electrodynamics, formulated semi-empirically based instead
closely on the observed evolution of the surface magnetic field of the Sun. We
thus open this section with an observational detour.

1.8.1 The Laws of Hale and Joy

At least on the larger scales, magnetic fields emerge at the photosphere as
bipolar magnetic regions (hereafter BMR; see Fig. 1.5, right panel) believed to
be associated with magnetic flux ropes buoyantly rising from the solar interior
as Ω-loops (Parker, 1955). Two related solar magnetographic pattern of great

Magnetic flux rope

Ω-loop
importance in the dynamo context are known as Hale’s Law(s) and Joy’s Law,
after Hale et al. (1919).

Hale’s Laws refers to the ordering pattern of magnetic polarities in bipolar
magnetic regions observed in the photosphere, most of which being approxi-

Hale’s Laws
mately aligned with the E-W direction of solar rotation (see again Fig. 1.5):

• In a given cycle, a given hemisphere always present the same polarity
ordering of leading/trailing pole with respect to the direction of rotation.

• In a given cycle, the ordering leading/trailing poles is opposite in the two
hemispheres;
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Figure 1.5: Continuum image (left) and magnetogram (right) of NOAA active
region 11428 on 2 March 2012. the line segment joining the centers of the two
magnetic poles of this “textbook” bipolar magnetic region makes a tilt angle α
with the East-West direction of solar rotation, here horizontal. Graphics kindly
provided by Aimee Norton, Stanford U.

• This hemispheric polarity ordering reverses from one sunspot cycle to the
next.

Hale’s Law thus establish the existence of a large-scale equatorially anti-
symmetric toroidal flux system in the solar interior, reversing polarity from
one sunspot cycle to the next. If BMR are interpreted as Ω-loops anchored in
this deep-seated toroidal flux system, then its magnetic polarity is given by the
trailing polarity of the emerging BMRs.

Joy’s Law refers to the fact that, on average, the leading (with respect to
rotation) pole of a bipolar magnetic region lies a bit closer to the solar equator
than the trailing pole. This tilt with respect to the E-W direction is also

Joy’s Laws
illustrated on Fig. 1.5). The observed mean tilt angle γ is found to increase
with heliographic latitude (λ). A minimal relationship capturing this variation
is

γ = 15.7 sinλ , [degree] (1.62)

(Fisher et al., 1995). Substantial scatter exists about this mean curve, and
increases with decreasing unsigned magnetic flux of the BMR. See McClintock
and Norton (2013) for more details on the observational characterization (and
the many associated subtleties) of Joy’s Law.

1.8.2 Stability and buoyant rise of magnetic flux rings

Magnetohydrodynamical numerical simulations of the formation, destabiliza-
tion, rise and emergence of magnetic flux tubes and ropes through the solar
convection zone are extremely challenging, in view of the extreme range of scales
involved (see, e.g., Hotta and Iijima, 2020, and references therein). Much of our
understanding of the global patterns of magnetic flux emergence and its contri-
bution to the dynamo process powering the solar cycle comes from simplified

ISSSnotes.tex, April 7, 2022 ISSS 2022, Paul Charbonneau, Université de Montréal
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models and local area numerical simulations. All relevant aspects of the topic
are very comprehensively covered in the extensive review article by Fan (2021);
what follows focuses on results most relevant to foregoing discussion of the
Babcock-Leighton mechanism (§1.8.3 below).

In the ideal MHD regime, the MHD induction equation becomes structurally
identical to the evolution equation for a line element passively advected by a
flow (see §2.7.2 in Davidson, 2001). This is at the root of the thin flux tube
approximation (Spruit, 1981), which reduces a magnetic flux tube or rope to
a material line, an approximation justified as long as the tube’s cross-sectional
radius is much smaller than all other relevant length scale in the system. This
thin flux tube regime turns out extremely useful and computationally efficient in
modelling the destabilisation and buoyant rise (the so-called Parker instability)
of magnetic flux ropes through the convection zone.

Because a subadiabatic environment is usually consider essential to ensure
the amplification and storage of magnetic fields on a timescale commensurate
with the magnetic cycle, current thinking places the formation and (temporary)
storage site of the participating flux ropes —or, more specifically, toroidal flux
rings— at or immediately beneath the interface between the convection zone,
in the stably stratified but weakly subadiabatic overshoot layer (Parker, 1975;
Moreno-Insertis, 1986; Choudhuri and Gilman, 1987; Fan, 2021).

Overshoot layer
Figure 1.6, taken from Ferriz-Mas et al. (1994), show the results of a stabil-

ity calculation for a thin ring-shaped flux tube carrying 1014 Wb (1022 Mx) of
magnetic flux, with initial magnetic strength B0 and placed at latitude λ0 in a
very mildly subadiabatic stratification (δ = −2.6 × 10−6), characteristic of the
overshoot region. Important results from such simulations are:

• Non-axisymmetric buoyancy-driven instabilities of low azimutal wavenum-
bers are easier to excite than the axisymmetric (m = 0) form of the insta-
bility

• Flux tubes of magnetic strength inferior to a few Tesla (10 kG) remain
stable in the overshoot region, at all latitudes and for all (reasonable)
levels of subadiabacity.

• Magnetic tension stabilizes flux tubes at latitudes in excess of ∼ 70◦.

• The instability growth rate is very short as soon as the instability threshold
is exceeded.

Once a flux tube is deemed unstable, its subsequent deformation and rise
through the convection zone can be followed by integration of the thin flux
tube equations Many such simulations have been carried out under various as-
sumptions regarding the background stratification, flux tube properties, ener-
getics, etc. (see, e.g., Choudhuri and Gilman, 1987; Fan et al., 1993; D’Silva
and Choudhuri, 1993; Caligari et al., 1995; Fan and Fisher, 1996; Weber et al.,
2013). While the thin flux tube approximation breaks down before the tubes
reach the photosphere, as their diameter exceeds the rapidly decreasing scale
height beyond r/R⊙ ≃ 0.98, their behavior and properties at that depth can
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III

I

II

Figure 1.6: A stability diagram for magnetic flux rings located in the slightly
subadiabatic fluid layers underlying the solar convection zone. The plot displays
isocontour of the growth time (in days) in the latitude-field strength plane, for
instability planforms of azimuthal order m = 1 and m = 2, as indicated by
the gray scale. The 50 day contour intersects the abcissa at B0 ≃ 1.5 × 105 G.
Regions left white are stable. Diagram kindly provided by A, Ferriz-Mas, used
by permission.

still be compared to the patterns and properties of BMRs observed emerging in
the solar photosphere. Particularly pertinent in the solar dynamo context are
the following:

1. Flux tubes of magnetic strength inferior to a few Tesla (10 kG) are de-
flected poleward and emerge at high latitude, even if they originate from
low latitudes deep in the sun;

2. Flux tubes with magnetic strength in the approximate range 4 ∼< B ∼<

10T rise almost radially, and develop a tilt with respect to the East-West
direction similar to Joy’s Law (more on Joy’s Law immediately below).

3. Flux tubes with magnetic intensity in excess of B 10T rise radially but
emerge without a tilt.

A key quantity in understanding these patterns is the ratio of the tube’s rise
time to the solar rotation period (akin to an inverse Rossby number). When
this ratio is of order unity or larger, the Coriolis force will strongly impact the
tube’s shape and rise trajectory. Not surprisingly, the rise time turns out to
decrease with increasing magnetic field strength of the initial flux tube, a direct
consequence of increased magnetic buoyancy.
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The latitudinal dependency of Joy’s law (viz. Eq. 1.62) materializes nat-
urally in thin flux tubes simulations (see, e.g. D’Silva and Choudhuri, 1993;
Caligari et al., 1995), from the action of the Coriolis force on the secondary flow
developing along the rising flux tube as a consequence of angular momentum
conservation (Fan et al., 1993). Here again the the tilt angle at emergence de-
pends primarily on the field strength of the tube, and much less on its total
flux.

Weber et al. (2011) (see also Weber et al., 2013) have imbedded thin flux
tube simulations in a non-static background, specifically a 3D hydrodynamical
numerical simulation of rotating stratified solar convection, so as to model more
realistically the interaction of the rising tube with its environment. Convective
entrainement markedly reduces the rise time of weakly magnetized flux tubes
(B0 ∼< 4T ≡ 40 kG, see their Fig. 8), thus avoiding their deflection to high
latitudes. The observed dependence of Joy’s Law on BMR field strength, in-
cluding the (large) scatter about the mean tilt angle at a given latitude and field
strength is also reproduced quite well (Weber et al., 2013). Interestingly, these

Joy’s law
simulations also suggest an alternate and equally plausible physical explanation
for the physical origin of Joy’s Law, namely the drag-mediated twist of the flux
tubes by cyclonic convective upflows.

1.8.3 The Babcock-Leighton mechanism

Whatever its physical origin, the tilt of the magnetic axis of an emerging BMR
implies a non-zero projection along the N-S direction, which amounts to a dipole
moment (non-vanishing m = 0 terms in a spherical harmonics expansion). For
a BMR of unsigned magnetic flux Φ emerging at latitude λ, with the two poles
separated by an angular distance d and with a tilt angle γ with respect to the
E-W direction, the dipole contribution δD is given by:

δD =
3d cosλ

4πR2
Φsin γ . (1.63)

The decay of this BMR and subsequent dispersal and transport of its magnetic
flux by surface flows (as described further below) can tap into a fraction of

Surface flux transport
this dipole moment and contribute to the global solar dipole. This occurs again
because of Joy’s Law: the leading members of each BMR pair is, at least

Joy’s law
on average, closer to the equatorial plane and thus subjected to greater cross-
equatorial diffusive cancellation than the trailing member. The resulting excess
of trailing magnetic polarity can then accumulate at high latitudes, as illus-
trated by the simple surface flux simulation (hereafter SFT) shown on Fig. 1.7.
Such simulations solve the r-component of the MHD induction equation on a 2D
(latitude-longitude) spherical computational corresponding to the solar photo-
sphere. The magnetic field evolves following transport by differential rotation,
poleward meridional flow, diffusion associated with small-scale convective mo-
tions, and emergence of bipolar magnetic regions (see Mackay and Yeates, 2012;
Jiang et al., 2014, for reviews).
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The “pedagogical” SFT simulation plotted on Fig. 1.7 is initialized (panel
A) with two sets of four BMRs initially located at latitudes ±15◦ and equally
spaced in longitude. The polarity ordering respects Hale’s polarity law, and
the BMR axes subtend a small angle with respect to the E-W direction (panel
A), as per Joy’s Law. Even though at t = 0 the signed flux is zero in each
hemisphere (panel A), at later times (panel F) non-zero hemispheric signed flux
has built up, in the form of an axisymmetric large-scale dipole. The net effect of
the emergence and decay of many such BMRs is thus the production of a dipole
moment (poloidal field) from decaying active regions (emerging toroidal field).
This is a toroidal-to-poloidal (T → P ) magnetic regeneration process, known as

B-L mechanism
the Babcock-Leighton mechanism, after Babcock (1961) and Leighton (1964).
Together with shearing by differential rotation (§1.4), it can yield a working
dynamo loop, even in the absence of turbulent induction7

B-L dynamo
With observed BMR emergences used instead as input, SFT simulations

such as on Fig. 1.7 can reproduce quite well observed synoptic evolution of the
surface magnetic field on solar cycle timescales, and generate synthetic magnetic
butterfly diagrams closely resembling observations, including a good reproduc-
tion of the solar dipole’s temporal evolution (DeVore et al., 1984; Wang et al.,
1989; Wang and Sheeley Jr, 1991; Schrijver et al., 2002; Baumann et al., 2004;
Jiang et al., 2014; Upton and Hathaway, 2014; Lemerle et al., 2015; Upton and
Hathaway, 2018). Figure 1.8 shows an example spanning activity cycle 21

Surface flux transport
(1976–1986). The bottom panel is a magnetic butterfly diagram obtained by
zonal averaging of the latitude-longitude computational plane of the SFT sim-
ulation. The salt-and-pepper pattern at low latitudes reflects the emergence
of bipolar magnetic regions, which do not zonally average out to zero on this
time-latitude diagram because of their Joy law tilt. The poleward transport
of the trailing polarity shows up as slanded streaks, black (negative Br) in the
Northern hemisphere and white (positive Br) in the South. This eventually
leads to the reversal of the positive dipole of the initial condition, occuring here
about 5 years after the beginning of the simulation. This is followed by the
buildup of the negative dipole, peaking close near the end of the simulation at
polar field strength approaching 5× 10−4 T (5 G).

A different view of the dipole evolution is presented on the top panel, showing
latitudinal profiles of the zonally-averaged surface radial magnetic field spaced
25 months apart, as color-coded. Note the steep cross-equatorial gradient in
Br building up and sustained throughout the rising and maximum phases of
the sunspot cycle, a manifestation of the preferred diffusive cancellation of the
leading polarity flux (DeVore et al., 1984). The reversal of the existing dipole

B-L mechanism
and its subsequent buildup reflects the operation of he Babcock-Leighton mech-

7The conceptual similarities and differences between the mean-field α-effect (§1.6) and the
Babcock-Leighton mechanism are worth reflecting upon: in the former, a small-scale cyclonic
flow twists individual toroidal magnetic fieldlines into meridional planes, and turbulent dif-
fusion then merges these small-scale loops into a large-scale poloidal field; in the latter, the
Coriolis force and/or large cyclonic convective cells twist a buoyantly rising toroidal flux ring
—a large-scale magnetic object— out of the [r, φ] plane, and following emergence and decay,
diffusion and surface flows build a large-scale dipole. In both cases, the Coriolis force is the
ultimate culprit.
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Figure 1.7: A pedagogical surface flux transport simulation. Diffusion and
shearing by surface differential rotation inexorably distorts the surface field dis-
tribution, with the trailing polarity accumulating at the poles in response to the
poleward-directed meridional flow. Note that for visualization purposes, each
BMR’s initial surface areas in (A) is unrealistically large, and the peak surface
field strength is normalized to unity in each frame. Time is given in units of the
turnover time of the meridional flow.
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Figure 1.8: A simulation of solar surface magnetic flux evolution showing the
Babcock-Leighton mechanism in action, in response to emergence of bipolar
magnetic regions in the course of activity cycle 21 (1976–1986). The bottom
panel shows the corresponding magnetic butterfly diagram, with the vertical
lines flagging the five times at which the temporal cuts are plotted on the top
panel. The grayscale is saturated at ±5G to better emphasize the poleward
transport at mid-latitudes. Surface flux evolution simulation taken from Lemerle
et al. (2015), using as input the cycle 21 active region emergence database of
Wang and Sheeley (1989).
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anism.
In such simulations the bulk of the initial magnetic flux undergoes diffusive

cancellation, and only a minute fraction accumulates at the pole. In the solar
context, however, this is not problematic. The solar polar cap magnetic flux
adds up to ∼ 1014 Wb, which is about the unsigned flux contained in one large
bipolar magnetic regions. About 1017 Wb (1025 Mx) of magnetic flux emerges
in such active regions in the course of a typical activity cycle so the toroidal-to-
poloidal flux conversion efficiency required of the Babcock-Leighton mechanim
is in fact quite low.

The important take-home message is: the Babcock-Leighton mechanism is
observed operating at the solar surface, and so is very well-constrained observa-
tionally. The key question, in the solar cycle context, is whether it is a crucial
component of the dynamo loop, or represents a mere side-effect of a dynamo
operating independently in the solar interior. This question will be revisited in
my second lecture.

1.9 Summary

1. The spatiotemporal evolution of magnetic fields in the solar interior and
extended atmosphere is well-described by magnetohydrodynamics;

2. In the solar interior and atmosphere, for all but the smallest spatial scales
the magnetic Reynolds number is very high so that flux freezing holds;

3. A flow is deemed a dynamo if its inductive action can amplify and sustain
the magnetic field against Ohmic dissipation;

4. Dynamo tap into the kinetic energy of the inductive flows via the work
done against the Lorentz force;

5. Small-scale dynamos generate magnetic fields on scales comparable or
smaller than those of the inductive flow, but no magnetic flux on larger
scales;

6. Large-scale dynamos generate net magnetic flux on spatial and temporal
scales larger than those of the inductive flows.

7. Many distinct inductive effects can potentially contribute to the regenera-
tion of the solar magnetic field: shearing by differential rotation, cyclonic
turbulence in the convection zone, surface decay of active regions, and
assorted MHD instabilities in the tachocline and/or outer reaches of the
radiative core;

8. Magnetic buoyancy is the primary driver of magnetic flux emergence from
the solar interior.
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Chapter 2

Dynamo models of the solar

cycle

It is imperative to open this lecture with a simple and sobering fact: we cur-
rently do not have a concensus dynamo model for the solar cycle. Even the
physical origin of some rather basic features is not yet settled; for example what
process(es) set the cycle period, regulate its amplitude, or drive the equatorward
progression of surface activity in the course of a cycle; but at least the start-
ing point is generally agreed upon: the solar cycle is powered by the inductive
action of flows in the solar interior, and under solar/stellar interior conditions
this dynamo process is well described by the magnetohydrodynamical induction
equation (1.5).

The aim of this lecture is to describe the construction of dynamo models of
the solar cycle, and review their general features and properties. Here “solar
cycle model” is to be understood as a physically and/or geometrically simpli-
fied mathematical/physical/computational construct that can describe —and
perhaps predict— the observed spatiotemporal evolution of the large-scale solar
magnetic field.

2.1 The magnetic solar cycle

The various manifestations of the solar magnetic activity cycle, and their associ-
ated temporal variations, are discussed at length in the Lectures by Theodosios
Chatzistergos. Sunspots are the best known tracer of the magnetic cycle. They
appear when deep-seated toroidal flux ropes rise through the convective enve-
lope and emerge at the photosphere (Parker, 1955, 1975; Fan, 2021). Assuming
that they rise radially and are formed where the magnetic field is the strongest,
the sunspot butterfly diagram can be interpreted as a spatio-temporal “map”
of the Sun’s internal, large-scale toroidal magnetic field component.

Figure 2.1 is a magnetic butterfly diagram of the surface radial component of
the solar magnetic field. The global magnetic polarity reversal on a ≈ 11 yr pe-
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riod is quite obvious. The imprint of the sunspot butterfly diagram is visible at
low latitudes (∼

< 35◦). At high latitudes a surface dipole pattern is also present,
reversing polarity at times of sunspot maximum. Note also the poleward drift
of the surface fields, away from sunspot latitudes. This pattern is believed to
originate from the transport of magnetic flux released by the decay of sunspots
at low latitudes 1

Figure 2.1: Zonally-averaged time-latitude magnetogram of the radial
component of the solar surface magnetic field. The low-latitude com-
ponent is associated with sunspots. Note the polarity reversal of
the high-latitude magnetic field, occurring approximately at time of
sunspot maximum (courtesy of D. Hathaway, Solar Cycle Science; see
http://solarcyclescience.com/bin/magbfly.png).

In the solar cycle context, the dynamo problem is reformulated towards iden-
tifying the circumstances under which the flow fields observed and/or inferred
in the Sun can sustain the cyclic regeneration of the magnetic field associated
with the observed solar cycle. This involves more than merely sustaining the
field. A model of the solar dynamo should also reproduce:

• cyclic polarity reversals with a decadal half-period,

• low-latitude confinement and equatorward migration of the sunspot-generating
deep toroidal field and its inferred strength,

• poleward migration of the diffuse surface field,

• observed π/2 phase lag between poloidal and toroidal components,

• peak surface polar field strength of order ∼ 10−3 T (10 G),

• observed antisymmetric equatorial parity,

• predominantly negative (positive) magnetic helicity in the Northern (South-
ern) solar hemisphere.

1for alternate viewpoints, see Petrovay and Szakály (1999); Ulrich and Tran (2013).
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At the next level of “sophistication”, a solar dynamo model should also be
able to exhibit amplitude fluctuations, and reproduce (at least qualitatively)
the empirical patterns and correlations extracted from the sunspot and proxy
records, including the so-called Grand Minima, during which the cycle amplitude
–and perhaps the cycle itself– is strongly suppressed over many cycle periods
One should finally add to the list torsional oscillations in the convective envelope,
with proper amplitude and phasing with respect to the magnetic cycle. All this
adds up to a very tall order by any standard.

2.2 Kinematic axisymmetric dynamo models

Because of the great disparity of time- and length scales involved, and the fact
that the outer 30% in radius of the Sun are the seat of vigorous, thermally-driven
turbulent convective fluid motions, the solar dynamo problem is very hard to
tackle as a direct numerical simulation of the full set of MHD equations (but
do see Sect. 2.7 below). Most solar dynamo modelling work has thus relied on
simplification – usually drastic – of the MHD equations, as well as assumptions
on the structure of the Sun’s magnetic field and internal flows.

Two drastic yet (it turns out) reasonable and common assumptions are:

1. kinematic approximation: the large-scale flow field u is considered
given and steady.

2. axisymmetric approximation: the large-scale magnetic field associated
with the magnetic cycle is considered axisymmetric (∂/∂φ = 0 in spherical
polar coordinates).

To a good first approximation, the kinematic approximation is well-supported
by solar observations: Helioseismology (Christensen-Dalsgaard, 2002) has pinned
down with good accuracy the two dynamo-relevant solar large-scale flow com-
ponents, namely differential rotation throughout the interior, and meridional
circulation in the outer half of the solar convection zone (for reviews, see Gizon,
2004; Howe, 2009), with cycle-related variations (torsional oscillations) being of
very low amplitude, a few percent.

Also to a good first approximation, axisymmetry on large scales (≈ R⊙)
is supported by the sunspot butterfly diagram, Hale’s polarity law, synoptic
magnetograms, and the shape of the solar corona at and around solar activity
minimum. These observations also indicate that the large-scale solar magnetic
field has its symmetry axis coincident with the rotation axis (unlike for Earth’s
magnetic field).

2.2.1 Mathematical formulation

Under axisymmetry, it is convenient to express the large-scale field as the sum
of a toroidal (i.e., longitudinal) component and a poloidal component (i.e., con-
tained in meridional planes), the latter being expressed in terms of a toroidal
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vector potential. This is the same mathematical approach used earlier in estab-
lishing Cowling’s theorem (§1.5) Working in spherical polar coordinates (r, θ, φ),
one writes again

B(r, θ, t) = ∇× (A(r, θ, t)êφ) +B(r, θ, t)êφ. (2.1)

Likewise, the (steady) large-scale flow field u is written as the sum of an ax-
isymmetric azimuthal component (differential rotation), and an axisymmetric
“poloidal” component up (≡ ur(r, θ)êr + uθ(r, θ)êθ), i.e., a flow confined to
meridional planes:

u(r, θ) = up(r, θ) +̟Ω(r, θ)êφ , (2.2)

where ̟ = r sin θ and Ω is the angular velocity (rad s−1). Substitution of
(2.1) and (2.2) into the MHD induction equation (1.5) yields two separate (but
coupled) evolution equations for A and B:

∂A

∂t
= η

(

∇2 −
1

̟2

)

A

︸ ︷︷ ︸

resistive decay

−
up

̟
· ∇(̟A)

︸ ︷︷ ︸

transport

, (2.3)

∂B

∂t
= η

(

∇2 −
1

̟2

)

B +
1

̟

∂(̟B)

∂r

∂η

∂r
︸ ︷︷ ︸

resistive decay

− ̟up · ∇

(
B

̟

)

︸ ︷︷ ︸

transport

− B∇ · up
︸ ︷︷ ︸

compression

+̟(∇× (Aêφ)) · ∇Ω
︸ ︷︷ ︸

shearing

. (2.4)

where, in anticipation of later developments, the magnetic diffusivity may de-
pend on radius inside the sun.

Once augmented with suitable additional source terms, Eqs. (2.3)–(2.4) will
become our model axisymmetric dynamo equations. They are to be solved in
a meridional plane, i.e., Ri ≤ r ≤ R⊙ and 0 ≤ θ ≤ π, with regularity of the
solutions requiring that A = 0 and B = 0 on the symmetry axis. It is usually
assumed that the deep radiative interior can be treated as a perfect conductor,
so that one sets A = 0 and ∂(rB)/∂r = 0 at some depth Ri chosen deeper
than the lowest extent of the region where dynamo action is taking place. It
is usually assumed that the Sun/star is surrounded by a vacuum, in which no
electrical currents can flow, i.e., ∇ × B = 0; such an axisymmetric potential
field, expressed via Equation (2.1), then requires

(
∇2 −̟2

)
A = 0, B = 0, r/R⊙ > 1, (2.5)

Formulated in this manner, the dynamo solution spontaneously “picks” its
own parity, i.e., its symmetry with respect to the equatorial plane. Alternately,
one may solve only in a meridional quadrant (0 ≤ θ ≤ π/2) and impose equato-
rial parity via the boundary condition at the equatorial plane (θ = π/2):

∂A

∂θ
= 0, B = 0 → antisymmetric, (2.6)

A = 0,
∂B

∂θ
= 0 → symmetric. (2.7)
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2.2.2 Model ingredients

All kinematic solar dynamo models discussed in what follows have some basic
“ingredients” in common. Unless noted otherwise, all illustrative models dis-
cussed below are computed using the following analytic formulae for the angular
velocity Ω(r, θ) and magnetic diffusivity η(r):

Ω(r, θ)

ΩE

= ΩC +
ΩS(θ)− ΩC

2

[

1 + erf

(
r − rc
w

)]

, (2.8)

with
ΩS(θ) = 1− a2 cos

2 θ − a4 cos
4 θ, (2.9)

and
η(r)

ηT
= ∆η +

1−∆η

2

[

1 + erf

(
r − rc
w

)]

. (2.10)

With appropriately chosen parameter values, Equation (2.8) describes a solar-
like differential rotation profile, namely a purely latitudinal differential rotation
in the convective envelope, with equatorial acceleration and smoothly match-
ing a core rotating rigidly at the angular speed of the surface mid-latitudes2.
This rotational transition takes place across a tachocline, of half-thickness w

Differential rotation
coinciding with the core-envelope interface at rc/R⊙ = 0.7 (see Fig. 2.2B, with
parameter values listed in caption). As per Eq. (2.10), a similar transition takes
place with the net diffusivity, falling from some large, “turbulent” value ηT in
the envelope to a much smaller diffusivity ηc in the convection-free radiative
core, the diffusivity contrast being given by ∆η = ηc/ηT . Given helioseismic

Magnetic diffusivity
constraints, these represent minimal yet reasonably realistic choices3.

This idealized solar-like differential rotation profile is still quite complex, in
that it is characterized by three partially overlapping shear regions:

• a strong positive radial shear in the equatorial regions of the tachocline,

• an even stronger negative radial shear in its the polar regions,

• a significant latitudinal shear throughout the convective envelope and ex-
tending partway into the tachocline.

For a tachocline of half-thickness w/R⊙ = 0.05, the mid-latitude latitudinal
shear at r/R⊙ = 0.7 is comparable in magnitude to the equatorial radial shear;
its potential contribution to dynamo action should not be casually dismissed.

Meridional circulation is as unavoidable as differential rotation in turbulent,
compressible rotating convective shells (see Featherstone and Miesch, 2015, and
references therein). The convenient parametric form developed by van Bal-

Medridional circulation
2Belvedere et al. (2000) presents an alternate analytic expression that is even closer to

helioseismic inversions.
3Helioseismology has also revealed the existence of a significant radial shear in the outer-

most layers of the solar convective envelope. Even if the storage problem could be somehow
bypassed, it does not appear possible to construct a viable solar dynamo model relying ex-
clusively on this angular velocity gradient (see, e.g., Dikpati et al., 2002; Brandenburg, 2005;
Pipin and Kosovichev, 2011a, for illustrative calculations).
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38 CHAPTER 2. DYNAMO MODELS OF THE SOLAR CYCLE

Figure 2.2: Common ingredients to the mean-field and mean-field-like dynamo
models discussed in the following sections. Panel (B) shows the run of net
magnetic diffusivity (blue) with depth, as described by Eq. (2.10), with param-
eter values rc/R⊙ = 0.7 and w/R⊙ = 0.05. The red and green profiles refer
to the depth dependency of the poloidal source terms introduced in Sects. 2.3
and 2.4, and 2.5, respectively. Panel (B) shows isocontours of angular veloc-
ity normalized to the surface equatorial value, as generated by Equation (2.8)
with parameter values ΩC = 0.8752, a2 = 0.1264, a4 = 0.1591. The radial
shear changes sign at colatitude θ = 55◦ at the core-envelope interface (dotted
line on all panels). Panel (C) depicts streamlines of the meridional flow, from
the model of van Ballegooijen and Choudhuri (1988), with parameter values
m = 0.5, p = 0.25, q = 0, and rb = 0.675.
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2.3. MEAN-FIELD MODELS 39

legooijen and Choudhuri (1988) is used in all forthcoming illustrative models
including meridional circulation (Sects. 2.4 and 2.5). This “minimal” parame-
terization defines a steady quadrupolar circulation pattern, with a single flow
cell per quadrant extending from the surface down to a depth rb. Circulation
streamlines are shown in Fig. 2.2C; the flow is poleward in the outer convection
zone, with an equatorial return flow peaking slightly above the core-envelope
interface, and rapidly vanishing below. This is consistent with the latest helio-
sismic inversions (see Gizon et al., 2020).

2.3 Mean-field dynamo models

We now add the mean-electromotive force (§1.6.1) to Eqs. (2.3)–2.4), under the
assumption of isotropy so that ξξξξ = α〈B〉+β∇×〈B〉. This leads to the following
form for the adimentional axisymmetric mean-field dynamo equations:

∂A

∂t
= −

Rm

̟
(up · ∇)(̟A)

︸ ︷︷ ︸

advection

+ η

(

∇2 −
1

̟2

)

A

︸ ︷︷ ︸

dissipation

+ Cαξφ
︸ ︷︷ ︸

α effect

(2.11)

∂B

∂t
= −Rm

[

̟(up · ∇)

(
B

̟

)

︸ ︷︷ ︸

advection

− (∇ · up)B
︸ ︷︷ ︸

compression

]

+ η

(

∇2 −
1

̟2

)

B +
1

̟

dη

dr

∂(̟B)

∂r
︸ ︷︷ ︸

dissipation

+ CΩ̟(∇×Aêφ) · ∇Ω
︸ ︷︷ ︸

shearing

+Cα∇× (ξrêr + ξθêθ)
︸ ︷︷ ︸

α effect

(2.12)

Note how the α-term is the only inductive contribution appearing on the RHS
of (2.11), allowing the regeneration of the large-scale poloidal magnetic com-
ponent and thus evading Cowling’s theorem The above dimensionless forms

Cowling’s theorem
are produced by expressing time in units of the (turbulent) magnetic diffusion
time R2/η0, with R the solar radius, used to scale lengths. Three dimensionless
groupings now appear in these dimensionless dynamo equations:

Cα =
α0R

η0
, (2.13)

CΩ =
Ω0R

2

η0
, (2.14)

Rm =
u0R

η0
, (2.15)

where α0, η0, Ω0 and u0 are representative values for the magnitudes of the
α-effect, turbulent diffusivity, rotational shear and meridional flow speed, re-
spectively. The first two are dynamo numbers associated with the α-effect and

Dynamo number
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40 CHAPTER 2. DYNAMO MODELS OF THE SOLAR CYCLE

rotational shearing, while the third is a magnetic Reynolds number measuring
the relative importance of the meridional flow versus diffusion in transporting
the magnetic field in meridional planes.

Estimates based on the mixing-length model of convection as well as mea-
surements in MHD simulations (viz. Fig. 2.13A–C) indicate α0 being of the
order of a few m s−1 which, for Ω0 ∼ 10−6 rad s−1 and R = 7 × 108 m, yields
Cα/CΩ ≃ 10−3 ≪ 1, independently of the poorly constrained value of η0. On
this basis the terms involving α on the RHS of Eq. (2.12) are often set to zero,
yielding the αΩ dynamo model, effectively retaining only the αφφ component of
the full αααα-tensor. The net dynamo number, setting the growth rate of the dy-

αΩ dynamo
namo solutions in the linear regime (viz. §1.6.3) is then given by D = Cα×CΩ.

Dynamo number
If on the other hand the shearing term (∝ ∇Ω) is neglected, one obtains

the purely turbulent α2 dynamo model, encountered already in §1.6.3. Such
α2 dynamo

models are relevant to dynamo action in planetary cores and convective stars
with vanishing differential rotation (if such an object were to exist).

Retaining both inductive contribution on the RHS of (2.12) yields the more
general α2Ω dynamo model. Mean-field analysis of many global MHD sim-

α2Ω dynamo
ulations (discussed in upcoming §2.7.2) producing large-scale cycling magnetic
fields suggests that these simulations operate in this regime (Racine et al., 2011;
Augustson et al., 2015; Simard et al., 2016; Warnecke et al., 2018).

2.3.1 Linear solutions as eigenvalue problems

With the large-scale flows, turbulent diffusivity and α-effect considered given,
Equations (2.11, 2.12) become truly linear in A and B. It becomes possible to
seek eigensolutions in the form

A(r, θ, t) = a(r, θ) exp(st), B(r, θ, t) = b(r, θ) exp(st), (2.16)

with s = σ + iω. Substitution of these expressions into Equations (2.11, 2.12)
yields an eigenvalue problem for s and associated eigenfunction {a, b}. The real
part σ of the eigenvalue is then a growth rate, and the imaginary part ω an
oscillation frequency. One typically finds that σ < 0 until the total dynamo
number

D ≡ Cα × CΩ , (2.17)

exceeds a critical value Dcrit beyond which σ > 0, corresponding to a grow-
ing solutions (cf. §1.6.3). Such solutions are said to be supercritical, while

Critical dynamo number
the solution with σ = 0 is critical. A dynamo solution is considered weakly
supercritical if its dynamo number only slightly exceeds Dcrit; cyclic solution
exhibiting polarity reversals require ω 6= 0. In the weakly supercritical regime
such cyclic solutions typically have σ ≪ ω, while σ ≫ ω in the strongly super-
critical regime.

Figure 2.3 shows variation of the dynamo growth rate and frequency for
four distinct sequences of linear αΩ eigensolutions. All sequences use the model
ingredients of Fig. 2.2, with the minimal dependency α ∝ cos θ and omit the
meridional flow, i.e., up = 0 is set in eqs. (2.11)–(2.12). The four sequences differ
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2.3. MEAN-FIELD MODELS 41

only in the sign of the α-effect and in the parity imposed via the equatorial plane
boundary condition, as labeled. Some noteworthy characteristics are:

• Both the growth rate and cycle frequency increases with the total dynamo
number D

• The growth rates and frequency are nearly independent of equatorial par-
ity.

• The critical dynamo number (σ = 0) and dynamo frequency are ony
weakly dependent on the sign of the dynamo number.

These characteristics carry over to other kinematic αΩ model setups as well
(see, e.g. Stix, 1976).

Figure 2.4 shows four eigenfunction snapshots of the Cα = +5 equatorially
antisymmetric solution of Fig. 2.3, spanning half a magnetic cycle, i.e., the
ϕ = π snapshot is identical to ϕ = 0 except for opposite magnetic polarities for
both toroidal and poloidal components. Note that:

• The eigenfunction peak at mid-latitudes at the base of the convective enve-
lope (dashed circular arc), a direct consequence of the ∝ cos θ dependence
for the α-effect, and that both the radial shear and α-effect also peak at
the core-envelope interface (viz. Fig. 2.2).

• The ratio of poloidal-to-toroidal field strength, in turn, is found to scale
as some power (usually close to 1/2) of the ratio Cα/CΩ, at a fixed value
of the product Cα × CΩ.

• The phase difference between the poloidal and toroidal components is
±π/2, according to the sign of the product Cα ×CΩ (see, e.g. Stix, 1976).

2.3.2 Dynamo waves

One of the most remarkable property of the αΩ dynamo model is that it supports
travelling wave solutions, as a careful examination of Fig. 2.4 reveals. This
was first demonstrated in Cartesian geometry by Parker (1955) (as detailed
in Appendix A), who proposed that a latitudinally-travelling “dynamo wave”
was at the origin of the observed equatorward drift of sunspot emergences in
the course of the cycle. This finding was subsequently shown to hold in

Dynamo wave
spherical geometry, as well as for non-linear models (Yoshimura, 1975; Stix,
1976). Dynamo waves 4 travel in a direction s given by

s = α∇Ω× êφ, (2.18)

a result now known as the “Parker-Stix-Yoshimura sign rule”. For the linear αΩ
dynamo solution of Fig. 2.4, the α-effect is positive in the Northern hemisphere
and the angular velocity gradient is negative in the high latitude tachocline, so
that the above expression predicts latitudinal propagation towards the equator.

4These are not “waves” in usual sense of the word, although they are described by modal
solutions of the form exp(ik · x − ωt); wave-like propagation results from a spatial offset
between source and dissipation.
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42 CHAPTER 2. DYNAMO MODELS OF THE SOLAR CYCLE

Figure 2.3: Growth rates (top) and frequency (bottom) versus dynamo number
Cα for sequences of linear kinematic axisymmetric αΩ dynamo solutions, with
positive or negative dynamo number and fixed equatorial parity, as labeled.
Model ingredients as on Fig. 2.2, and parameter values CΩ = 2.5 × 104, and
η0 = 5 × 107 m2 s−1, (leading to τ ≃ 300 yr). Exponentially growing dynamo
modes have σ > 0. The first mode to reach criticality is the negative Cα mode,
at Dcrit = −0.9× 105, almost independently of equatorial parity. The positive-
Cα mode becomes critical at Dcrit = 1.1× 105. Diamonds in the bottom panel
give the cycle frequency in α-quenched but otherwise identical model (see §2.3.3
below).
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2.3. MEAN-FIELD MODELS 43

Figure 2.4: Four meridional plane snapshots of a mildly supercritical linear αΩ
dynamo solution, spanning half a magnetic cycle and with exponential growth
removed. The defining parameters are CΩ = 25000, Cα = +5, and Rm = 0
(no meridional flow). The toroidal field is rendered in color (green to blue for
negative B, yellow to red for positive B). Poloidal fieldlines are superimposed
(blue for clockwise orientation, orange for counterclockwise). The dashed circu-
lar arc indicates the base of the convection zone at r/R = 0.7, and the dotted
arcs give the width of the transition layer for η and Ω (see Fig. 2.2). The polar
axis coincides with the left quadrant boundary. An animation of this solution
is available on the web page complementing these lecture notes.
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44 CHAPTER 2. DYNAMO MODELS OF THE SOLAR CYCLE

2.3.3 Nonlinear solutions: α-quenching

Exponential growth of the large-scale magnetic cannot perdure indefinitely.
Magnetic tension will increasingly resist deformation by the small-scale tur-
bulent fluid motions. This should then leads to a reduction of the α-effect,
and eventual saturation of the dynamo-generated magnetic field amplitude, the
dynamo number being effectively reduced to its critical value. This is called
α-quenching.

One may thus expect that α-quenching sets in when the growing dynamo-
generated mean magnetic field reaches a magnitude such that its energy per
unit volume is comparable to the kinetic energy of the underlying turbulent
fluid motions:

〈B〉2

8π
=

1

2
̺(u′)2 . (2.19)

Denoting the corresponding equipartition field strength by Beq, one often intro-
Equipartition field strength

duces an ad hoc nonlinear dependency of α directly on the mean-field 〈B〉 by
writing:

α → α(〈B〉) =
α0

1 + (〈B〉/Beq)2
. (2.20)

This algebraic quenching expression “does the right thing”, in that α → 0 as
〈B〉 grows beyond Beq. It remains an extreme oversimplification of the complex

α-quenching
interaction between flow and field that characterizes MHD turbulence, but its
wide usage in solar dynamo modeling makes it a nonlinearity of choice for the
illustrative purpose of this lecture5.

A useful quantity to monitor in order to ascertain saturation is the total
magnetic energy, integrated over the computational domain:

EB =
1

8π

∫

V

〈B〉2 dV. (2.21)

Figure 2.5 shows time series of this quantity in a sequence of α-quenched kine-
matic αΩ mean-field dynamo solutions, otherwise identical to the antisymmet-
ric, positive Cα linear solutions of Fig. 2.3. The four solutions have increasing
values for the dynamo number D, and all start from the same initial condition
of very weak magnetic field.

The linear phase of exponential growth (gray lines), with growth rate in-
creasing with D, is followed by saturation at an energy level also increasing
with D; these are behaviors typical of α-quenched mean-field and mean-field-
like dynamo models operating not too far in the supercritical regime. Here
α-quenching has had the desired effect, namely stabilizing the cycle amplitude
at field strengths corresponding to a significant fraction of the equipartition
value Beq introduced in the quenching parametrization (2.20). In contrast, for
subcritical solutions (D/Dcrit < 1), the magnetic field decays exponentially to
zero whatever the initial condition might be.

5Analyses of various MHD numerical simulations do support to some extent the general
idea of α-quenching (e.g., Brandenburg et al., 2008; Karak et al., 2014; Simard et al., 2016).
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Figure 2.5: Time series of total magnetic energy in an α-quenched kinematic
axisymmetric αΩ mean-field dynamo model, for increasing values of the dynamo
number scaled to its critical value (D/Dcrit), as labeled. Magnetic energy is
scaled to the corresponding equipartition field strength Beq in Eq. (2.20), via
Eq. (1.23). All solutions are initialized with a purely toroidal magnetic field of
very low amplitude. The gray lines indicate the linear phase, during which the
magnetic amplitude grows exponentially at a rate increasing with the dynamo
number. In the nonlinearly saturated phase that is eventually established, the
overall magnetic cycle amplitude increases with increasing value of the dynamo
number.

2.3.4 Cycle period and butterfly diagram

In such nonlinearly saturated models the cycle frequency shows reduced sensitiv-
ity toD and becomes equal to some approximately fixed fraction of the magnetic
diffusion time (1.12), as indicated by the diamonds and dotted line on the bot-
tom panel of Fig. 2.3. The primary determinant of the (dimensional) period
then becomes the adopted value for the turbulent diffusivity. Although model
dependent to some extent, decadal periods typically require 108 to 109 m2 s−1,
roughly consistent with estimates from mixing length models of convective en-
ergy transport; values lower by a factors of ∼ 10 are required for dynamos
contained in radially thin layers, because the smaller radial length scale en-
hances dissipation. Similarly low values are also possible (and in fact expected)
in the upper tachocline, where residual turbulent diffusivity presumably results
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46 CHAPTER 2. DYNAMO MODELS OF THE SOLAR CYCLE

from convective overshoot.
Figure 2.6 shows time-latitude diagrams of the toroidal field extracted at

the core-envelope interface, here r/R⊙ = 0.7. If sunspot-producing toroidal
flux ropes form in regions of peak toroidal field strength, and if those ropes
rise radially to the surface, then such diagrams are directly comparable to the
sunspot butterfly diagram.

The top panel is an α-quenched cousin of the linear solution shown on
Fig. 2.4, while in the bottom two panels the α-effect has been artificilly con-
centrated towards the equator through an assumed latitudinal dependency ∝
sin2 θ cos θ. With an eye on Fig. 2.2B, notice also how the dynamo waves prop-
agates along isocontours of angular velocity, in agreement with the Parker–
Yoshimura sign rule (cf. Sect. 2.3.2). Note that even for an equatorially-concentrated
α-effect (Panels B and C), a strong polar branch is nonetheless apparent in the
butterfly diagrams, a direct consequence of the stronger radial shear present at
high latitudes in the tachocline. Models using an α-effect operating through-
out the whole convective envelope, on the other hand, would feed primarily on
the latitudinal shear therein, so that for positive Cα the dynamo mode would
propagate radially upward in the envelope (see Lerche and Parker, 1972).

It is noteworthy that co-existing dynamo branches, as in Panel B of Fig. 2.6,
can have distinct dynamo periods (on this see also Belvedere et al., 2000), which
in nonlinearly saturated solutions leads to long-term amplitude modulation.
This does not occur for the Cα < 0 solution, where both branches propagate
away from each other, but share a common latitude of origin and so are phased-
locked at the onset (cf. Panel C of Fig. 2.6).

An important take-home message from Fig. 2.6 is that the solar internal
differential rotation profile, with its multiple shear regions, can lead to very
complex dynamo wave patterns. Low latitude confinement and equatorward
propagation, as suggested by the sunspot butterfly diagram, requires the α-
effect to be concentrated at low latitudes at the base of the convection zone,
and to be negative in the Northern hemisphere.

2.4 Flux transport dynamos

Meridional circulation can bodily transport the dynamo-generated magnetic
field (terms labeled “transport” in Equations (2.3, 2.4)), and therefore, for a
(presumably) solar-like equatorward return flow that is vigorous enough – in the
sense of Rm being large enough – overpower the Parker–Yoshimura propagation
rule (see, e.g. Choudhuri et al., 1995; Küker et al., 2001; Charbonneau and
Barlet, 2011; Pipin and Kosovichev, 2011b). Figure 2.7 shows an example, here
for a kinematic α-quenched αΩ mean-field model including meridional flow, but
otherwise identical to the model of Fig. 2.6A, i.e. an α-effect positive in the
Northern hemisphere and ∝ cos θ. In the absence of meridional flow this model
would generate a dynamo wave propagating poleward at low latitude; but here
the advective action of the meridional flow succeeds in driving equatorward
propagation.
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Figure 2.6: Northern hemisphere time-latitude (“butterfly”) diagrams for the
three α-quenched kinematic αΩ dynamo solutions with different spatial dis-
tribution and sign for the α-effect. The diagrams are constructed at the
depth r/R⊙ = 0.7 corresponding to the core-envelope interface. Isocontours
of toroidal field are normalized to their peak amplitudes, and plotted for in-
crements ∆B/max(B) = 0.2, with yellow-to-red (green-to-blue) contours corre-
sponding to B > 0 (< 0). The assumed latitudinal dependency of the α-effect
is given above each panel. Other model ingredients as in Fig. 2.2. Note the
co-existence of two distinct cycle periods in the solution shown in Panel B.
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Figure 2.7: Snapshots covering half a cycle of an αΩ kinematic mean-field lin-
ear αΩ dynamo solution, including a meridional flow and α-quenching, spanning
half a magnetic cycle. The defining parameters are CΩ = 5 × 105, Cα = +0.5,
and Rm = 2500. Color coding of poloidal and toroidal components same as on
Fig. 2.4 above. Note the strong amplification of the surface polar field and the
latitudinal stretching of poloidal magnetic fieldlines at the core-envelope inter-
face. An animation of this solution is available on the web page complementing
these lecture notes.
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The behavioral turnover from dynamo wave-like solutions to circulation-
dominated magnetic field transport sets in when the circulation speed becomes
comparable to the phase speed of the dynamo wave, i.e., in the high Rm regime.
In this circulation-dominated regime, the cycle period loses sensitivity to the
assumed turbulent diffusivity value, and becomes determined primarily by the
circulation’s turnover time. Models achieving equatorward propagation of the
deep toroidal magnetic component in this manner are now often called flux-
transport dynamos (see Dikpati and Gilman, 2009; Karak et al., 2014, and

Flux transport dynamo
references therein).

In the opposite limit of low Rm, the dynamo wave is simply Doppler shifted,
the frequency increasing (decreasing) if the wave travels in the same (opposite)
direction as the flow (Roberts and Stix, 1972). If both flow and wave phase
speeds are of the same order, then dynamo action can become severely altered,
the solution sometimes transiting to a steady mode, or even decaying altogether,
the exact behavior being dependent on model details. See §4.4 in Charbonneau
(2020) for further discussion.

2.5 Babcock-Leighton models

Solar cycle models based on what is now called the Babcock–Leighton mecha-
nism (see §1.8) were first proposed by Babcock (1961) and further elaborated
by Leighton (1964, 1969), yet they were all but eclipsed by the rise of mean-field
electrodynamics in the mid- to late 1960s. Their revival in the aerly 1990’s was
motivated in part by the fact that synoptic magnetographic monitoring over
sunspot cycles 21 and 22 gave strong evidence that the surface polar field rever-
sals are indeed triggered by the decay of active regions (see Wang et al., 1989;
Wang and Sheeley Jr, 1991; Mackay and Yeates, 2012, and references therein).

2.5.1 Source term

The mean-field dynamo equations (2.11)–(2.12) are often taken as a starting
point for building a solar cycle model based on the Babcock-Leighton mecha-
nism. The idea is to replace the α-effect term in the poloidal equation (2.11) by
a source term designed to capture the T → P workings of the Babcock-Leighton
mechanism. Three main approaches are used in the literature:

1. A poloidal source term is introduced in the surface layers, and made lin-
early proportional to the toroidal field strength at the corresponding lati-
tude at the bottom of the model convection zone This non-local approach
was introduced by Wang et al. (1991) and later used by Dikpati and Char-
bonneau (1999), Charbonneau et al. (2005), Guerrero and de Gouveia
Dal Pino (2008) Hotta and Yokoyama (2010); Kitchatinov and Olemskoy
(2012), and Olemskoy and Kitchatinov (2013).

2. The αΩ form of the mean-field dynamo equation is retained, with an
α-effect-like poloidal source term concentrated in the surface layer, and
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a “buoyancy algorithm” displaces toroidal fields from the bottom layers
when some set field strength threshold is exceeded (Nandy and Choudhuri,
2001, 2002). See also Chatterjee et al. (2004) and Jiang et al. (2007).

3. Whenever the deep-seated toroidal field exceeds some preset threshold, an
axisymmetric “double ring” of vector potential is deposited in the surface
layer, and left to spread latitudinally under the influence of magnetic
diffusion. This approach, developed by Durney (1995) (see also Durney
1996, 1997) and later used by Muñoz-Jaramillo et al. (2010), is closest to
the essence of the Babcock–Leighton mechanism.

In all cases the poloidal source term is concentrated in the outer convective
envelope, and is akin to a positive α-effect, in that a positive dipole moment is
being produced from a positive deep-seated mean toroidal field. Most aforecited
model implementations introduce an algebraic α-quenching-like upper operating
threshold on the toroidal field strength. Some implementations also include a
lower operating threshold, as suggested by thin flux tubes simulations (see, e.g.,
Durney, 1995; Nandy and Choudhuri, 2001; Charbonneau et al., 2005).

2.5.2 A representative solution

Figure 2.8 displays a sequence of meridional plane snapshots for a representative
Babcock–Leighton dynamo solution computed following the model implemen-
tation of Charbonneau et al. (2005) (non-local source term, radial profile given
by the red curve on Fig. 2.2). The equatorward advection of the deep toroidal
field by meridional circulation is here clearly apparent. Note also how the sur-
face poloidal field first builds up at low latitudes, and is subsequently advected
poleward and concentrated near the pole. Compare this carefully to the simi-
lar Figure 2.7, for a flux transport mean-field αΩ solution. Both behave very
similarly, yet in principle embody very different inductive mechanisms for the
poloidal field.

2.5.3 Cycle period and butterfly diagram

Figure 2.9 shows N-hemisphere time-latitude diagrams for the toroidal mag-
netic field at the core-envelope interface (Panel A), and the surface radial field
(Panel B), for a Babcock–Leighton dynamo solution taken from Dikpati and
Charbonneau (1999). Note how the polar radial field changes from negative
(blue) to positive (red) at just about the time of peak positive toroidal field at
the core-envelope interface; this is the phase relationship inferred from synop-
tic magnetograms (see, e.g., Figure 2.1 herein) as well as observations of polar
faculae (see Sheeley Jr, 1991).

Although it exhibits the desired equatorward propagation, the toroidal field
butterfly diagram in Panel A of Figure 2.9 peaks at much higher latitude (∼ 45◦)
than the sunspot butterfly diagram (∼ 15◦ – 20◦, cf. Figure 2.1). This occurs be-
cause this is a solution with high magnetic diffusivity contrast, where meridional
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Figure 2.8: Snapshots covering half a cycle of a kinematic mean-field-like
Babcock-Leighton dynamo solution, spanning half a magnetic cycle. The defin-
ing parameters are CΩ = 5 × 104, Cα = +5, and Rm = 840. Format same
as on Fig. 2.7 above. Note again the strong amplification of the surface po-
lar field, leading here to a buildup of toroidal field in the high-latitude portion
of the tachocline. An animation of this solution is available on the web page
complementing these lecture notes.
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Figure 2.9: Time-latitude diagrams of the toroidal field at the core-envelope
interface (Panel A), and radial component of the surface magnetic field (Panel B)
in the Babcock–Leighton model of the solar cycle. This solution is computed
for solar-like differential rotation and meridional circulation, the latter here
closing at the core-envelope interface. The core-to-envelope contrast in magnetic
diffusivity is ∆η = 1/300, the envelope diffusivity ηT = 2.5× 1011 cm2 s−1, and
the (poleward) mid-latitude surface meridional flow speed is u0 = 16 m s−1.
Figure produced from numerical data kindly provided by M. Dikpati.
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circulation closes at the core-envelope interface, so that the latitudinal compo-
nent of differential rotation dominates the production of the toroidal field. This
difficulty can be alleviated by adjustment of the meridional flow profile (see, e.g.
Nandy and Choudhuri, 2001, 2002), or (of course) by artificially concentrating
the Babcock-Leighton poloidal source term at low latitudes.

A noteworthy property of this class of solar cycle model is the dependency
of the cycle period on model parameters; in the advection dominated regime,
the meridional flow speed is found to be the primary determinant of the cycle
period P . For example, in the Dikpati and Charbonneau (1999) model, the
cycle period P scales as:

P = 56.8u−0.89
0 s−0.13

0 η0.22T [yr]. (2.22)

This behavior arises because, in these models, the two source regions are spa-
tially segregated, and the time required for circulation to carry the poloidal
field generated at the surface down to the tachocline is what effectively sets the
cycle period. The corresponding time delay introduced in the dynamo process
has rich dynamical consequences (see, e.g., Charbonneau et al., 2005, and ref-
erences therein). The weak dependency of P on ηT and on the magnitude s0
of the poloidal source term is very much unlike the behavior typically found in
mean-field models, where both these parameters usually play a dominant role
in setting the cycle period.

Magnetic flux transport in Babcock-Leighton model can also be achieved by
means other than the meridional flow, notably by turbulent pumping (§1.6.1)
With the expected downward pumping throughout the bulk of the convective
envelope, and with a significant equatorward latitudinal component at low lat-
itudes (see Fig. 2.13D,E further below), the Babcock–Leighton mechanism can
lead to dynamo action even if the internal meridional flow is weak and/or con-
strained to the upper portion of the convective envelope. Downward turbulent
pumping then links the two sources regions, and latitudinal pumping provides
the needed equatorward concentration of the deep-seated toroidal component.
See Guerrero and de Gouveia Dal Pino (2008); Karak and Nandy (2012); Jiang
et al. (2013); Karak et al. (2014); Hazra and Nandy (2016); Karak and Cameron
(2016). The dynamo solutions presented Guerrero and de Gouveia Dal Pino
(2008) are found to obey a scaling law of the form

P = 181.2u−0.12
0 γ−0.51

r0 γ−0.05
θ0 [yr], (2.23)

over a wide range of parameter values. The radial pumping speed γr0 emerges
here as the primary determinant of the cycle period.

2.5.4 Beyond 2D: non-axisymmetric models

Some recent Babcock-Leighton solar cycle models abandon the axisymmetric ap-
proximation, either by solving the problem in three spatial dimensions (Yeates
and Muñoz-Jaramillo, 2013; Miesch and Dikpati, 2014; Miesch and Tewelde-
birhan, 2016; Hazra et al., 2017; Karak and Miesch, 2017; Kumar et al., 2019;
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Whitbread et al., 2019), or solving a (non-axisymmetric) surface magnetic flux
evolution model concurrently with a axisymmetric mean-field-like interior dy-
namo model (Lemerle and Charbonneau, 2017; Nagy et al., 2017). All of these
dynamo models are still kinematic (prescribed, time independent differential
rotation and meridional flow), and use a mean-field-like turbulent diffusivity.
A parameterized prescription is introduced to generate emergence of (tilted)
bipolar magnetic regions in the surface layers of the model, as a function of the
internal distribution of magnetic fields.

See §5.5 in Charbonneau (2020) for more on such non-axisymmetric model
formulations.

2.6 Cycle regulation and fluctuations

The nonlinear dynamical backreaction of the field on the flow is a sine qua non
energetic requirement for field amplification (viz. rightmost term in Eq. (1.23)).
It can achieve saturation of the magnetic field, as with the simplistic algebraic α-
quenching introduced in §2.3.3, or generate periodic or quasi-periodic variability
of the basic cycle on a variety of timescales, depending on the inductive mecha-
nisms included in a given dynamo model. Moreover, the turbulent nature of the
solar convection zone implies that most of the inductive mechanisms considered
in the first lectures will be subjected to significant stochastic fluctuations. The
solar dynamo is both nonlinear and stochastic.

This section aims at providing a brief introduction to these matters, and
indicating a few good entry points into the vast technical literature on this
topic. See also §7 in Charbonneau (2020).

2.6.1 Stochastic forcing

Sources of stochastic fluctuations abound in the solar interior, all ultimately
due to the strongly turbulent character of solar convection, the ultimate energy
source of all inductive processes contributing to solar dynamo action. Ten-
sor components describing the turbulent electromotive force are expected to
be strongly fluctuating quantities, an expectation confirmed by analytical es-
timates (e.g., Hoyng, 1988, 1993) and measurements in numerical simulations
(e.g., Otmianowska-Mazur et al., 1997; Ossendrijver et al., 2001; Brandenburg
and Sokoloff, 2002; Käpylä et al., 2006; Racine et al., 2011; Simard et al., 2016;
Warnecke et al., 2018, and references therein).

The effect of stochastic forcing has been investigated in most detail in the
context of classical mean-field models (see Choudhuri, 1992; Hoyng, 1993; Os-
sendrijver and Hoyng, 1996; Ossendrijver et al., 1996; Mininni and Gómez, 2002,
2004; Moss et al., 2008; Charbonneau and Barlet, 2011). In models not too far
from criticality variations of the cycle amplitude on timescales much longer
than the cycle period are readily generated, especially when the models include
a tachocline-like low-diffusivity layer beneath the nominal convection zone.
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As for the Babcock-Leighton mechanism, observations of emerging bipo-
lar magnetic active regions reveals large fluctuations in key characteristics for
buildup of surface polar fields, notably tilt angle, flux, and pole separation
Mean-field-like implementations of Babcock-Leighton dynamos behave similarly
to bona fide mean-field models upon introduction of random stochastic forcing
in their source term and/or other model components (see e.g. Charbonneau
and Dikpati, 2000; Charbonneau and Barlet, 2011; Choudhuri and Karak, 2012;
Olemskoy and Kitchatinov, 2013; Kitchatinov et al., 2018; Hazra and Nandy,
2019). In particular, incorporating observed distributions of active region prop-
erties in Babcock-Leighton dynamos including a latitude-longitude representa-
tion of the solar surface, as considered in §2.5.4, can also lead to very solar-like
cyclic behavior. See, e.g., Nagy et al. (2017) and Karak and Miesch (2017).

2.6.2 A zoo of nonlinearities

The nonlinear dynamical feedback of the field on the flow can achieve saturation
of the magnetic field in various ways, depending on the inductive mechanisms
included in a given dynamo model:

• The magnetic field can suppress the turbulent cyclonic fluid motions giv-
ing rise to the α-effect. This is generally known as α-quenching, and is
potentialy important in all mean-field dynamo models relying on a turbu-
lent electromotive force. For α-quenching formulations more elaborate

α-quenching
than introduced in §2.3.3, see e.g. Brandenburg et al. (2009); Pipin et al.
(2012).

• The Lorentz force associated with the large-scale magnetic field can sup-
press the large-scale flows contributing to induction. This is traditionally
called the Malkus-Proctor effect, and is a potentially important nonlin-
earity in all models relying on shearing by differential rotation to generate
the toroidal large-scale magnetic component. See, e.g., Moss and Brooke

Malkus-Proctor effect
(2000); Bushby (2006); Simard and Charbonneau (2020).

• The magnetic field can reduce differential rotation indirectly by altering
the Reynolds stresses powering large-scale flows. This is known as Λ-
quenching, and like the Malkus-Proctor effect is a potentially important
nonlinearity in any model where the toroidal field is produced through
shearing by differential rotation. See, e.g., Kitchatinov and Rüdiger

Λ-quenching
(1993); Küker et al. (1999).

• Magnetic flux loss through magnetic buoyancy is potentially important in
all dynamo models: ∼ 1017 Wb of magnetic flux emerges in the form of
active region in the course of a typical cycle. See, e.g., Moss et al. (1990);
Kitchatinov et al. (2000)

• In flux transport models relying on the Babcock-Leighton mechanism for
regenerating the surface dipole, the growing magnetic field can cause a
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reduction of the tilt giving rise to a dipole component in emerging bipolar
magnetic regions. See, e.g., Lemerle and Charbonneau (2017); Jha et al.

tilt-quenching
(2020).

• In flux transport dynamo models operating with spatially segregated source
regions, including but not limited to Babcock-Leighton models, the grow-
ing magnetic field can reduce the efficiency of the transport mechanism
linking the two source regions. See, e.g., Rempel (2006); Karak and
Choudhuri (2012).

2.6.3 The dynamo as a dynamical instability

The behavior seen on Fig. 2.5 is typical of self-excited dynamos operating near
criticality, whatever the actual nonlinear mechanism of amplitude saturation
may be. However weak the magnetic field of the initial condition (excluding
only B = 0 everywhere in the domain), supercritical solutions (D/Dcrit > 1)
grow exponentially and saturate at a magnetic amplitude increasing with the
value of the dynamo number; whereas in subcritical solutions (D/Dcrit < 1)
the magnetic field always decays exponentially to zero, no matter how strongly
magnetized an initial condition might be. Dynamo action can thus be viewed
as an instability. Zero magnetic field is always a valid solution to the induction
equation, but beyondDcrit this solution becomes unstable to any small magnetic
perturbation introduced in the system.

In the language of dynamical systems, the onset of dynamo action reflects
the loss of stability of the fixed-point trivial solution B = 0 to a limit cycle,
through a Hopf bifurcation. This is illustrated schematically on Figure 2.10A,

Hopf bifurcation
showing a bifurcation diagram as could be constructed from a sequence of so-
lutions with increasing D/Dcrit, as on Fig. 2.5. The thick line represents a

Bifurcation diagram
measure of the saturated magnetic amplitude, plotted versus the dynamo num-
ber normalized to its critical value. Immediately beyond the bifurcation point,
the saturated amplitude increases first very rapidly, then gradually more slowly,
with increasing D/Dcrit. The Hopf bifurcation route to cyclic dynamo action is
believed to be a generic feature of nonlinear solar/stellar dynamos (e.g. Tobias
et al., 1995; Weiss and Tobias, 2016, and references therein).

Some of the magnetic field regeneration mechanism described in the first
lecture are subject to a lower operating threshold on the magnetic field strength.
This is the case for the Babcock-Leighton mechanism (§1.8), as well as for the
mean electromotive force generated by the development of MHD instabilities in
the tachocline (§1.7). The presence of an operating threshold on B leads to the
bifurcation structure depicted schematically on Fig. 2.10B. Even if D/Dcrit > 1,
the initial condition must lie within the attraction basin (gray shaded area) for

Attraction basin
exponential growth to the stable limit cycle solution to ensue. Initial conditions
lying outside the attraction basin decay exponentially to the trivial solution
B = 0. Unlike for the classical Hopf bifurcation of panel A, now at the onset
of dynamo action the magnetic amplitude is already finite. Such dynamos are
not self-excited, in that they cannot amplify an arbitrarily weak seed magnetic
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Figure 2.10: Schematic depiction of a bifurcation leading to nonlinearly sat-
urated cycle amplitude following onset of dynamo action beyond the critical
dynamo number. Panel (A) is a standard Hopf bifurcation, relevant to self-
excited dynamos such as those relying on the mean-field α-effect. The thick
black line shows the variation of the nonlinearly saturated cycle amplitude as a
function of the dynamo number D, normalized to its critical value Dcrit. Panel
(B) shows the bifurcation structure expected in dynamo with a lower operating
threshold on the magnetic field strength. In that latter case dynamo solutions
materialized only in a finite-sized basin of attraction, indicated by the gray
shading (see text).

field.

2.6.4 Intermittency

The distinction between the two bifurcation structures depicted on Fig. 2.10 has
important consequences for the response of the dynamo to stochastic forcing,
and in particular for the production of so-called Grand Minima of markedly
suppressed cyclic activity (viz. Lectures by Theodosius Chatzistergos). As de-
picted schematically on Fig. 2.11A, fluctuations (of whatever origin) of induc-
tive process can push the solution across the primary Hopf bifurcation, leading
to shutdown of dynamo action. In non-self-excited dynamos, fluctuations can
knock the solution out of its basin of attraction, leading to a collapse to the
trivial solution B = 0 (Fig. 2.11B). An an additional inductive mechanism is
then required to climb back into the attraction basin.

See §7.3 in Charbonneau (2020) for a few examples of dynamo models ex-
hibiting intermittency, and further references to the technical literature.
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Figure 2.11: Schematic depiction of (A) on-off intermittency and (B) in-out
intermittency in a generic bifurcation diagram close to criticality. In (B) the
gray shaded area indicates the basin of attraction of the finite amplitude cycle.
Outside of this basin the amplitude decays exponentially to zero, even if D >
Dcrit (see text).

2.7 Insight from MHD numerical simulations

I close with a brief overview of some results from MHD numerical simulations
that offer some level support for the various geometrically and physically simpler
solar cycle models described in the course of this lecture.

2.7.1 Large-scale magnetic fields and cycles

Magnetohydrodynamical (MHD) simulations of solar convection solve numeri-
cally the set of coupled nonlinear partial differential equations describing the
conservation of mass, momentum, internal energy and magnetic flux in a thick
spherical shell of electrically conducting fluid subjected to thermal forcing. The
dynamical backreaction of the Lorentz force on the inductive flow is then prop-
erly captured at all scales resolved by the simulation.

Starting with pioneering work of Gilman (1983) and Glatzmaier (1984, 1985),
and propelled by ever improving compute power and algorithmic design, in the
past decade many global MHD simulations have succeeded in generating a large-
scale magnetic field, sometimes undergoing polarity reversals in the form of more
or less regular cycles; for a representative sample, see: Racine et al. (2011);
Masada et al. (2013); Nelson et al. (2013); Fan and Fang (2014); Simitev et al.
(2015); Duarte et al. (2016); Guerrero et al. (2016); Hotta et al. (2016); Käpylä
et al. (2017); Strugarek et al. (2018).

As an example of a simulated large-scale magnetic cycle, consider Figure
2.12, showing sample results for a 300-yr long segment of the EULAG-MHD
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1600-yr long “millenium” simulation discussed in Passos and Charbonneau (2014).
This simulation generates a very regular magnetic cycle, well synchronized

Figure 2.12: Magnetic cycles in the global EULAG-MHD anelastic “millenium”
simulation of Passos and Charbonneau (2014). Part (A) shows a snapshot
in Mollweide projection of the toroidal (zonal) magnetic component at depth
r/R⊙ = 0.718 ; part (B) is a snapshot of the zonally-averaged toroidal field
in a meridional plane, taken at the same time as in (A). Part (C) and (D)
show respectively time-latitude and radius-latitude diagrams of the zonally-
averaged toroidal field, the former at depth r/R = 0.718 and the latter at
latitude −50 degrees. The dashed lines in (B) and (D) indicate the bottom of
the convectively unstable layers. An animation of this simulation is available
on the web page complementing these Lectures notes.

across hemispheres and with the magnetic field antisymmetric about the equa-
tor, all similar to the sun, but with a full magnetic cycle period of about 80
yr, longer than the sun’s by a factor of nearly four, at the upper end of the
range of cycle periods produced by other global MHD simulations that produce
reasonably regular magnetic cycles. As evidenced on Fig. 2.12B and D, the
magnetic field accumulates and reaches its peak strength in the outer reaches of
the convectively stable fluid layer (see also Browning et al., 2006; Masada et al.,
2013; Guerrero et al., 2016, 2019), approaching or exceeding equipartition. The
“butterfly diagram” of panel C indicates that activity peaks at mid- rather than
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low-latitudes, and shows only a hint of equatorward propagation on the pole-
ward edges of the toroidal field bands; some other simulations fare better in this
respect (e.g. Warnecke et al., 2014; Augustson et al., 2015; Duarte et al., 2016;
Strugarek et al., 2018). This simulation also generates a strong dipole moment
oscillating in phase with the toroidal component, torsional oscillations of solar-
like magnitude, and a weak cyclic modulation of the convective luminosity in
phase with the magnetic cycle, also solar-like.

Summing up the most salient empirically determined features of simulated
large-scale magnetic cycles materializing in these types of MHD simulations:

• Regular, solar-like stable cycles with strong hemispheric coupling and syn-
chrony are the exception rather than the rule.

• The presence and period of magnetic cycles depends sensitively on ro-
tation; low Ro favors magnetic cycles, high Ro favors steady large-scale
magnetic fields. In the solar range of Ro, the cycle period increases with
increasing rotation rate.

• Multiple magnetic cycles with significantly different periods can coexist at
moderately small Rossby numbers (0.1 ∼< Ro ∼< 1).

• In many (but not all, viz. Viviani et al. 2019) simulations, the spatiotempo-
ral propagation of the large-scale magnetic fields appears consistent with
the Parker-Yoshimura rule for dynamo waves.

• Both Λ-quenching and the Malkus-Proctor mechanism are detected in
simulations. A form α-quenching is also measured, while quenching of the
turbulent diffusivity appears marginal.

• The presence of a stably stratified fluid layer underlying the convecting
fluid yields longer period cycles, and the growth of MHD instabilities
therein may impact cyclic activity

For further details and discussion of these types of global MHD simulations,
see §3 in Charbonneau (2014) and/or §6 in Charbonneau (2020).

2.7.2 Mean-field tensors

The output of the global simulations ijust discussed can be used to measure the
mean-field coefficient introduced previously, including the essential α-tensor,
and thus test the range of validity and analytic predictions of mean-field theory
(see Brandenburg and Sokoloff, 2002; Schrinner et al., 2007; Racine et al., 2011;
Dubé and Charbonneau, 2013; Augustson et al., 2015; Beaudoin et al., 2016;
Simard et al., 2016; Warnecke et al., 2018; Viviani et al., 2019).

As an example, Figure 2.13A–C shows meridional plane representations of
the diagonal elements of the αααα-tensor, radial and latitudinal turbulent pumping
speed in D–E, and in F the isotropic part of the the turbulent diffusivity tensor
ββββ, all extracted from the same global MHD simulation as on Fig. 2.12 (Simard
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Figure 2.13: A selection of mean-field tensor components extracted from a global
EULAG-MHD simulations of magnetic cycles (to be discussed in chapter 2,
viz. Fig. 2.12). (A) αrr; (B) αθθ; (C) αφφ; (D) radial turbulent pumping speed
γr; (E) latitudinal turbulent pumping speed γθ; (F) the isotopic part of the ββββ
tensor, in unit of 107 m2s−1. In all cases the extraction is carried out indepen-
dently in each hemisphere, so that the high degree of symmetry/antisymmetry
about the equatorial plane is a true feature of the simulation.
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et al., 2016). These show both similarities and differences with the tensor com-
ponents extracted from the distinct simulations of Augustson et al. (2015) and
Warnecke et al. (2018). Focusing on the similarities, the following appear to be
robust properties:

• The αααα-tensor is full, with off-diagonal components of roughy similar mag-
nitude as diagonal components;

α-effect

• The largest magnitudes, reaching up to a few tens of m s−1, are found
in the αrr component, with αφφ taking second place. The simulations of
Augustson et al. (2015) is somewhat more balanced in this respect, with
the αθθ and off-diagonal components showing magnitudes similar to αrr

and αφφ.

• αφφ and αθθ are both mostly positive (negative) in the Northern (South-
ern) hemisphere, but shows a sign change near the base of convecting fluid
layer;

• Radial turbulent pumping is downwards in the bulk of the convecting
layers.

Turbulent pumping

• Significant equatorward latitudinal turbulent pumping, at speed ranging
from a few to ∼ 10m s−1, materializes at mid- to low-latitudes in the bulk
of the convecting fluid layers.

Turbulent diffusivity

• The isotropic turbulent diffusivity β is high, ranging from a few 107 m2 s−1

on Fig. 2.13F, approaching 109 m2 s−1 in the more luminous simulations
analyzed by Warnecke et al. (2018).

• In mean-field terminology, simulated large-scale magnetic cycles are driven
by an α2Ω dynamo.

2.7.3 Flux emergence from numerical simulations

Some of the aforecited global MHD simulations of solar convection have also
been found to generate elongated tube-like strands of superequipartition mag-
netic field (Nelson et al., 2013, 2014; Fan and Fang, 2014; Chen et al., 2017).
Figure 2.14 shows an example, taken from Nelson et al. (2013). At low lat-
itudes within its convective layers, this global MHD simulations generates an
intense toroidal flux system of opposite polarity the two hemisphere (left panel).
Within each of these so-called wreaths, superequipartition-strength magnetic

Ω-loops
flux strands form and are entrained by turbulent convection, forming Ω-loop-
like undulations that grow and rise under the combined action of convective
entrainement and buoyancy caused a density deficit within the strands (center
and right panels).

Despite being locally twisted and deformed by convective fluid motions, the
rising flux strands manage to maintain the overall East-West alignment of the
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Figure 2.14: Formation and rise of rope-like magnetic flux systems in the wreaths
of toroidal magnetic field generated in the 3D global MHD simulations of Nelson
et al. (2013). The superequipartition-strength magnetic flux strands form within
the wreaths and subsequently expand and twist as they rise towards the top of
the simulation domain. Reproduced from Nelson et al. (2013) (their Figure 18),
by permission

toroidal wreaths from which they originate, and thus would satisfy Hale’s po-
larity law. Moreover, the strand’s apexes develop a Joy Law-like tilt as they

laws
rise to the top of the simulation domain (Nelson et al., 2014). This is caused by
twisting by the cyclonicity of the turbulent convective upflows, as in the thin
flux tube simulations of Weber et al. (2013).

Joy’s law
For further details and discussion of the formation and emergence of mag-

netic flux ropes in in global MHD simulations, Fan (2021).

2.8 Summary

• There is currently no concensus on a “basic” solar cycle model; various
inductive mechanisms are possible, and may be operating concurrently;

• There is currently no concensus on the exact channel(s) through which
the dynamical backreaction of the Lorentz force regulates the solar cycle’s
amplitude and duration;

• The nonlinear dynamics of flow-field interactions can generate a wide vari-
ety of cycle amplitude patterns, going from simple amplitude stabilisation
all the way to chaotic modulation;

• The turbulent nature of the solar convection zone, within which the dy-
namo is operating in part or entirely, implies that transport and inductive
mechanisms acting therein are subjected to strong stochastic fluctuations;

• The solar dynamo is both nonlinear and stochastic;

• The interaction of stochastic forcing with dynamical nonlinearities can
generate a bewildering spectrum of behaviors unfolding on timescales
much longer than the period of the primary magnetic cycle.
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Appendix A

Linear Cartesian dynamo

waves

This Appendix presents the analytic solution of the mean-field dynamo equa-
tions first obtained by Parker (1955), demonstrating the existence of dynamo
wave behavior.

Parker’s solution is kinematic and formulated in Cartesian geometry, as with
the simple exponentially growing/decaying solution considered in §1.6.3, but
now introduces a large-scale, uniformly sheared flow in the problem. To be
specific, working in Cartesian geometry we identify the direction êz as “radial”,
êy as “azimuthal”, and êx as “latitudinal”. We write the mean flow as:

〈U〉 = Ωzêy , (A.1)

describing a purely ‘radial” constant shear, and express the large-scale magnetic
field as:

〈B〉(x, z, t) = ∇× (A(x, z, t)êy) +B(x, z, t)êz . (A.2)

Assuming again β ≫ η, upon substituting this expression into the mean-field
induction equation (1.52), the latter separates into:

∂A

∂t
− β

(
∂2A

∂x2
+

∂2A

∂z2

)

= αB , (A.3)

∂B

∂t
− β

(
∂2B

∂x2
+

∂2B

∂z2

)

= −Ω
∂A

∂x
+ α

(
∂2A

∂x2
+

∂2A

∂z2

)

. (A.4)

With α, β and Ω independent of position and time, eigensolutions can be sought
in the form of plane waves:

[
A(x, z, t)
B(x, z, t)

]

=

[
a
b

]

exp
[
λt+ ik(z cosϑ+ x sinϑ)

]
. (A.5)
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where the wavenumber k sets the scale of the large-scale magnetic field, and ϑ
the propagation direction in the [x, z] plane. Substituting this expression into
Eqs. (A.3)–(A.4) leads to the dispersion relation

(
λ+ βk2

)2
= αk

(
αk + iΩ sinϑ

)
. (A.6)

This is a quadratic (complex) polynomial in λ, with the two solutions:

λ± = − βk2 ±

√

|α|k

2

{
(√

Ω2 sin2 ϑ+ α2k2 + |α|k
) 1

2

+ i sign(Ωα sinϑ)
(√

Ω2 sin2 ϑ+ α2k2 − |α|k
) 1

2

}

, (A.7)

The λ− solution can only produce decaying disturbances (Re(λ−) < 0), whereas
the λ+ root can potentially leads to dynamo action, in the sense that Re(λ+) >
0. Examination of equation (A.7) indicates that an exponentially growing dy-
namo wave can materialize in a finite wavenumber “window” k ∈]0, k∗[, where
k∗ is a root of:

k6∗ −
α2

β2
k4∗ −

α2Ω2

4β4
sin2 ϑ = 0 . (A.8)

In the limit of strong shear (|α| ≪
√

β|Ωsinϑ|, or, equivalently, if the second
term on the RHS of Eq. (A.4) is negligible with respect to the first, then we
have

Re(λ+) ≃ −βk2 +

√

|αΩsin2 ϑ|k

2
, (A.9)

and exponential growth of the magnetic field will thus take place provided

|αΩsinϑ|

2β2k3
> 1 . (A.10)

with the root of Eq. (A.8) then given by

k∗ ≃

(
|αΩsinϑ|

2β2

)1/3

. (A.11)

The LHS of Eq. (A.10) thus acts as the dynamo number for this dynamo wave
solution, with a critical value of unity. Once again we find that the larger

Dynamo number
scales (small k) are favored by the dynamo process. Equation (A.10) indicates
that the growth rates is largest for ϑ = π/2; i.e., for a wavevector oriented in x,
along isolines of 〈U〉.

The eigenvalues associated with these growing solutions have nonzero imag-
inary parts, so that the combined action of large-scale shear (Ω), turbulent
induction (α) and turbulent dissipation (β) can generate propagating dynamo
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waves, leading to local reversals of magnetic polarity every half-wave period
Dynamo wave

(Parker, 1955). In this shear-dominated regime the frequency of these so-called
dynamo waves is given by

Im(λ+) ≃ sign(Ωα sinϑ)

√

|αΩsinϑ|k

2
. (A.12)

The sign of the product αΩ thus sets the propagation direction along the 〈U〉
isolines. This is known as the Parker-Stix-Yoshimura sign rule, and carries over
to models in non-cartesian geometries with dynamo coefficients varying with

PSY sign rule
position (see Stix, 1976; Yoshimura, 1975). Here if we associate z with the radial
direction and 〈U〉 with differential rotation (y ≡longitude), this implies dynamo
waves propagating in the latitudinal direction, consistent with the equatorward
progression of activity belts evidenced by the sunspot butterfly diagram (see
§2.1), provided the product α× Ω is negative.

In the opposite limit Ω → 0, the imaginary part of the eigenvalue vanishes
(viz. Eq. (A.7)), Eq. (A.6) leads to a condition for exponential growth (λ > 0)
identical to Eq. (1.60), as expected.

ISSSnotes.tex, April 7, 2022 ISSS 2022, Paul Charbonneau, Université de Montréal
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70 BIBLIOGRAPHY

Brown, T. M., Christensen-Dalsgaard, J., Dziembowski, W. A., Goode, P.,
Gough, D. O., and Morrow, C. A. 1989. Inferring the sun’s internal angular
velocity from observed p-mode frequency splittings. Astrophys. J., 343(Aug.),
526–546.

Browning, M.K., Miesch, M.S., Brun, A.S., and Toomre, J. 2006. Dynamo Ac-
tion in the Solar Convection Zone and Tachocline: Pumping and Organization
of Toroidal Fields. Astrophys. J. Lett., 648, L157–L160.

Bushby, P.J. 2006. Zonal flows and grand minima in a solar dynamo model.
Mon. Not. R. Astron. Soc., 371, 772–780.

Caligari, P., Moreno-Insertis, F., and Schüssler, M. 1995. Emerging flux tubes
in the solar convection zone. I. Asymmetry, tilt, and emergence latitudes.
Astrophys. J., 441, 886–902.

Charbonneau, P. 2014. Solar Dynamo Theory. Ann. Rev. Astron. Astrophys.,
52(Aug.), 251–290.

Charbonneau, P., and Barlet, G. 2011. The dynamo basis of solar cycle precursor
schemes. Journal of Atmospheric and Solar-Terrestrial Physics, 73(Feb.),
198–206.

Charbonneau, P., and Dikpati, M. 2000. Stochastic Fluctuations in a Babcock-
Leighton Model of the Solar Cycle. Astrophys. J., 543(Nov.), 1027–1043.

Charbonneau, P., St-Jean, C., and Zacharias, P. 2005. Fluctuations in Babcock-
Leighton Dynamos. I. Period Doubling and Transition to Chaos. Astro-
phys. J., 619(Jan.), 613–622.

Charbonneau, Paul. 2013 (Jan). Solar and Stellar Dynamos. Saas-Fee Advanced
Course.

Charbonneau, Paul. 2020. Dynamo models of the solar cycle. Living Reviews
in Solar Physics, 17(1), 4.

Chatterjee, P., Nandy, D., and Choudhuri, A. R. 2004. Full-sphere simula-
tions of a circulation-dominated solar dynamo: Exploring the parity issue.
Astron. Astrophys., 427(Dec.), 1019–1030.

Chatterjee, P., Mitra, D., Rheinhardt, M., and Brandenburg, A. 2011. Alpha
effect due to buoyancy instability of a magnetic layer. Astron. Astrophys.,
534(Oct.), A46.

Chen, Feng, Rempel, Matthias, and Fan, Yuhong. 2017. Emergence of Magnetic
Flux Generated in a Solar Convective Dynamo. I. The Formation of Sunspots
and Active Regions, and The Origin of Their Asymmetries. Astrophys. J.,
846(2), 149.

Choudhuri, A. R. 1992. Stochastic fluctuations of the solar dynamo. Astron. As-
trophys., 253(Jan.), 277–285.
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72 BIBLIOGRAPHY

Durney, B. R. 1995. On a Babcock-Leighton dynamo model with a deep-seated
generating layer for the toroidal magnetic field. Solar Phys., 160(Sept.), 213–
235.

Durney, B. R. 1996. On a Babcock-Leighton Dynamo Model with a Deep-Seated
Generating Layer for the Toroidal Magnetic Field, II. Solar Phys., 166(July),
231–260.

Durney, B. R. 1997. On a Babcock-Leighton Solar Dynamo Model with a Deep-
seated Generating Layer for the Toroidal Magnetic Field. IV. Astrophys. J.,
486(Sept.), 1065–1077.

Dziembowski, W. A., Goode, Philip R., and Libbrecht, K. G. 1989. The Radial
Gradient in the Sun’s Rotation. Astrophys. J. Lett., 337(Feb.), L53.

Fan, Y., and Fang, F. 2014. A Simulation of Convective Dynamo in the Solar
Convective Envelope: Maintenance of the Solar-like Differential Rotation and
Emerging Flux. Astrophys. J., 789(July), 35.

Fan, Y., and Fisher, G. H. 1996. Radiative Heating and the Buoyant Rise of
Magnetic Flux Tubes in the Solar interior. Solar Phys., 166(1), 17–41.

Fan, Y., Fisher, G.H., and Deluca, E.E. 1993. The origin of morphological
asymmetries in bipolar active regions. Astrophys. J., 405, 390–401.

Fan, Yuhong. 2021. Magnetic fields in the solar convection zone. Living Reviews
in Solar Physics, 18(1), 5.

Featherstone, N. A., and Miesch, M. S. 2015. Meridional Circulation in Solar
and Stellar Convection Zones. Astrophys. J., 804(May), 67.

Ferriz-Mas, A., Schmitt, D., and Schüssler, M. 1994. A dynamo effect due to
instability of magnetic flux tubes. Astron. Astrophys., 289, 949–956.

Fisher, G. H., Fan, Y., and Howard, R. F. 1995. Comparisons between Theory
and Observation of Active Region Tilts. Astrophys. J., 438(Jan.), 463.

Gilman, P. A. 1983. Dynamically consistent nonlinear dynamos driven by con-
vection in a rotating spherical shell. II - Dynamos with cycles and strong
feedbacks. Astrophys. J. Suppl., 53(Oct.), 243–268.

Gizon, L. 2004. Helioseismology of Time-Varying Flows Through The Solar
Cycle. Solar Phys., 224, 217–228.

Gizon, Laurent, Cameron, Robert H., Pourabdian, Majid, Liang, Zhi-Chao,
Fournier, Damien, Birch, Aaron C., and Hanson, Chris S. 2020. Meridional
flow in the Sun’s convection zone is a single cell in each hemisphere. Science,
368(6498), 1469–1472.
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80 BIBLIOGRAPHY
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